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Research Article

Stochastic Process Pharmacodynamics: Dose Timing in Neonatal Gentamicin
Therapy as an Example

Tomas Radivoyevitch,1 Nopphon Siranart,2 Lynn Hlatky,3 and Rainer Sachs2,4

Received 15 September 2014; accepted 26 December 2014; published online 7 February 2015

ABSTRACT. We consider dosing regimens designed to cure patients by eradicating colony forming units
(CFU) such as bacteria. In the field of “population” pharmaco-kinetics/dynamics (PK/PD), inter-
individual variability (IIV) of patients is estimated using model parameter statistical distributions. We
consider a more probabilistic approach to IIV called stochastic process theory, motivated by the fact that
tumor treatment planning uses both approaches. Stochastic process PD can supply additional insights and
suggest different dosing regimens due to its emphasis on the probability of complete CFU eradication
and its predictions on “pure chance” fluctuations of CFU number per patient when treatment has
reduced this integer to less than ~100. To exemplify the contrast between stochastic process PD models
and standard deterministic PD models, which track only average CFU number, we analyze, neglecting
immune responses, neonatal intravenous gentamicin dosing regimens directed against Escherichia coli.
Our stochastic calculations predict that the first dose is crucial for CFU eradication. For example, a single
6 mg/kg dose is predicted to have a higher eradication probability than four daily 4 mg/kg doses. We
conclude: (1) neonatal gentamicin dosing regimens with larger first doses but smaller total doses deserve
investigation; (2) in general, if standard PK/PD models predict average CFU number drops substantially
below 100, the models should be modified to incorporate stochastic effects more accurately, and will then
usually make more favorable, or less unfavorable, predictions for front boosting (“hit hard early”).
Various caveats against over-interpreting the calculations are given.

KEY WORDS: anti-bacterial dosing regimens; front boosting; PK/PD eradication probability;
small-number stochastic fluctuations; stochastic birth-death cell population dynamics.

INTRODUCTION

Scope

Many medical treatments aim to cure a disease by
eradicating, with or without the aid of the patient’s immune
system, cells, such as bacteria, that are colony forming units
(CFU), rather than aiming to control the disease by
indefinitely prolonged therapy. This paper gives examples
where mathematical modeling predicts that random fluctua-
tions in CFU number per patient are important during
protracted anti-bacterial drug treatments aiming to cure
immunocompromised patients.

Therapies often use dosing regimens where the total
dose is split into fractions separated by extended time
intervals. Figure 1 shows a schematic cycle of 9 daily fractions,
with the first dose larger than the others (“boosted”). In our
specific examples the first several days turned out to be the
most important period.

PK/PD Modeling

Most PK/PDmodels of antibiotic action [reviewed, e.g., in (1–
3)] are deterministic: the main equations concern averages, e.g., the
average number of CFU such as bacteria. Time dependent
averages are typically computed by integrating coupled nonlinear
first order ordinary differential equations [reviewed, e.g., in (4)].
Inter-individual variability (IIV) is usually addressed by assuming
that some of the parameters in the differential equations are
described by appropriate statistical distributions for a patient
population [reviewed in (5)].

PK/PDmodeling has analyzed gentamicin treatment directed
against neonatal Escherichia coli. Neonates are immunocompro-
mised (6) andE. coli has become the leading cause ofU.S. fatalities
due to early-onset neonatal sepsis; one population-based estimate
(7) is that in 2005–2008 yearly incidence was about 840 cases (95%
CI 710–980), with mortality of 210 (150–290) corresponding to
~0.05 deaths per 1,000 live births; premature neonates had
significantly higher risks.
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One PK/PD approach to modeling gentamicin treatment
of E. coli in neonates is given in (8,9). The approach takes
into account drug-induced “adaptive resistance,” which is
reversible within days [reviewed in (4,10)]; it does not
consider irreversible resistance caused, e.g., by bacterial
mutations (11,12). It predicts standard intravenous injection
dosing regimens may sometimes drive the average CFU
number per patient to <1. This prediction indicates that
corrections should be made to take into account random
small-number fluctuations (13), as studied in the theory of
stochastic processes [also called random processes; reviewed,
e.g., in (14,15)].

Tumor treatment planning, especially in the case of
radiotherapy, uses many different stochastic process calcu-
lations, relevant on different time scales, from femto-
seconds to years, as reviewed in (16–19) and in the online
AAPS Supplement section S.4.1. The influence on IIV of
stochastic fluctuations at the single cell level is considered
(16,18); an approach similar to the statistical methods of
population PK/PD is also used to analyze IIV [reviewed, e.g.,
in (20)].

Preview

Stochastic process calculations of tumor control prob-
ability by radiotherapeutic eradication of cancer cells
[reviewed in (16,17,19)] suggested to us analogous analy-
ses of drug dosing regimens: the main novelty in the
present paper is transferring a mathematical stochastic
process theory technique from radiobiological tumor
treatment planning to a PK/PD model of neonatal
gentamicin treatment. Differences due to the fact that
drugs remain in the body during a period of hours or
more had to be taken into account, as did the fact that
typically a substantial fraction of bacteria are CFU
whereas only a small minority of tumor cells are CFU.

Some of our results suggest using large first doses.
However our approach is preliminary and has a number of
limitations. For example, patient immune system action is
neglected. This and other important limitations are itemized
at length in the “Discussion” section.

In the stochastic-process approach to PD introduced
here some IIV is attributed to “pure chance” or, as is
almost equivalent in practice, to biological differences

below the limit of resolution of currently feasible obser-
vations. Despite the many powerful new methods that are
becoming available for observing both individual patient
and population characteristics (21,22) there are still PK/
PD scenarios where probabilistic calculations are indicat-
ed. A conceptual example of at present essentially
unobservable differences would be the difference between
failure vs. success of binary fission for one specific
bacterium in a given patient, whose analysis involves
considering fission failure probability, i.e., using a stochas-
tic model. In discussing systems PD modeling [reviewed,
e.g., in (23)], it was pointed out that “A notable success
… has been the recognition that noise plays an important
role in … creating cell-to-cell variability” (24). In situa-
tions close to cure, where there are only a few CFU in a
patient, such stochastic cell-to-cell variability can presum-
ably sometimes lead to much bigger differences and IIV,
such as cure vs. relapse.

MATHEMATICAL AND COMPUTATIONAL
METHODS

Deterministic and Stochastic Neonatal Gentamicin Pk/Pd
Modeling

Our calculations extend two papers (8,9) on PK/PD
modeling of neonatal gentamicin treatments. Figure 2 is a
condensed summary. Complete details on all the calculations
are given in the online AAPS Supplement, section S3. In
Fig. 2, and throughout, we often use the notation of the two
published papers.

The papers considered four gestation ages (GA). We
shall give results for a highly premature neonate with
GA=25 weeks and a full term one with GA=40 weeks.
Many different dosing regimens, with individual doses given
as 5-min infusions, will be considered; however, in view of
both current thinking (4) and results in the present paper,
regimens involving inter-dose intervals of at least 24 h are
emphasized.

We always assume treatment starts at birth, taken to
be time t=0. For parameters, we use the central values
from (9) and from Table III, “combined data,” in (8).
Using central values gives the predicted individualized
treatment response of a hypothetical “typical” patient, not
the predicted treatment response of a heterogeneous
population. For the purposes of our exploratory analysis
of the difference between deterministic PD and stochastic
process PD, this simplification is arguably the most
informative approach.

As usual, the minimum inhibitory concentration
(MIC) is taken to be 2 mg/L (9). Though not directly
relevant to the question of how deterministic and stochas-
tic estimates differ, toxicity will be discussed below by the
method [reviewed in (4,25)] of comparing the (determinis-
tically calculated) in vivo free drug concentration in the
central compartment to MIC.

The rest of this Methods section describes: (a) a CFU
eradication probability function that will be emphasized

time t (days)

therapy RP

0 3 6 9

Fig. 1. Intermittent dosing. Shown is a hypothetical cycle of 9 dose
fractions, one every 24 h. The first dose fraction is boosted. During a
recovery period (RP), the drug clears and short-term patient toxicity
effects ameliorate
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throughout, (b) the stochastic process methods used, and (c) a
description of how open-source computational PK/PD model-
ing is here implemented.

Eradication Probability

In Fig. 2b, c, there are no arrows into compartment S
for bacterial CFU other than the arrow which also

emanates from S. Correspondingly the models predict
that if the number s(t) of CFU in S ever becomes zero,
it remains at zero (eradication). The initial value at t=0 is
estimated from published data (9) at s(0)~109 CFU per
neonate, with the specific value depending on weight at
birth.

The deterministic PD calculation Fig. 2b predicts only
the average of s(t) and predicts that s(t)=0 never occurs.
Thus the calculation does not directly predict eradication
probabilities. For example if the calculated average of s(t)
is 2, that might mean all patients harbor two CFU so no
eradication has [yet] occurred; but it might alternatively
mean that in 99% of the patients eradication has occurred
and the remaining “unlucky” 1% harbor 200 bacteria
each. In such situations an estimate of the eradication
probability as exp(-average), where average is 2 in our
example, is sometimes used. However, seminal papers by
S. Tucker and coworkers on tumor treatment planning,
e.g., (26), emphasized that this estimate implicitly assumes
Poisson statistics, which can be quite inaccurate in
situations where CFU birth and death rates are large
and time dependent. Moreover the estimate refers to a
single time rather than being a gradually increasing
eradication probability; for example if the average is
evaluated at the bottom of an s(t) trough, it seems
unrealistic to ignore the question of how long the CFU
population lingers at or near that trough. Subsequent analyses
[reviewed in (19)] have reinforced these objections.

In general, an advantage of stochastic models over
deterministic models is that the former give systematic
numerical estimates of eradication probabilities (27). Using
the model summarized in Fig. 2c and given in full in the
online AAPS supplement section S3, we calculated an
eradication probability E(t) that s(t)=0 for various dosing
regimens.

Independent-CFU: Kendall’s Stochastic Model

Review ofDeterministicMethods and Results for Independent-CFU
Dynamics

In Fig. 2c, the CFU in S undergo independent (also
sometimes called “non-interacting” or “exponential”)
population dynamics. Stochastic exponential growth/
decay models generalize deterministic ones, so we start
by reviewing the latter. Denote average CFU number by
m(t); thus, m(t) is analogous to s(t) in Fig. 2b. The
deterministic equation of exponential population dynam-
ics (growth or decay) is m(t)=m(0)exp[μt], where m(0)>0.
Here μ is a constant, called the Malthusian parameter
and interpreted as the difference between per-CFU birth
rate and per-CFU death rate (both always assumed non-
negative in the present paper), with μ thus positive or
negative according to whether birth or death rate is
larger.

More generally, the Malthusian rate could be a function
μ(t) of the time, driven, e.g., by time dependent drug

Deterministic
PD model

DRUG(t)

S

Treatment
bacterial
killing ratePK

PD

 PK/PD model dead bacteria

R

Stochastic
PD model

S

dead bacteria

kdeath
DRUG(t)

or

kgrowth

Schematic overview
of the modeling.

ksr
kdeath

kgrowth

Deterministica

b

c

Fig. 2. Abbreviated synopsis of the modeling. a As input for determin-
istic or stochastic PDmodels of CFU growth and death one needs a rate
for the killing of cycling bacteria by gentamicin. This rate, the function
DRUG(t), was estimated by using published PK/PD mathematical
models, consisting of a standard 3-compartment PK model (small
circles), and then a deterministic PD calculation (large circle) accounting
for the fact that CFU develop reversible, transient, “adaptive” gentami-
cin drug resistance in response to dosing. DRUG(t) is a non-linear
function of the free drug concentration calculated from the PKmodel. b
Additional PD calculations are needed to estimate, using the published
deterministic model, the total number, s(t), of bacteria per patient in the
compartment S for cycling CFU, and the number r(t) of possible
“resting” (quiescent) bacteria in compartment R, which is initially empty,
i.e., r(0)=0.Arrows indicate bacterial cell population dynamical process-
es and their labels are transition rates. For example, ksr, which is time
and density dependent, is the rate at which cycling bacteria become
quiescent. According to the model, ksr becomes substantial only if the
total number of bacteria grows to about 100 times the number present at
birth; until then the decrease of cycling bacteria due to onset of
quiescence is predicted to be negligible. c The present paper emphasizes
a stochastic mathematical model of the eradication probability E(t) that
s(t)=0. In the stochastic calculation: (i) The number s is considered to
jump from integer to integer as time increases. For reasons explained in
the “Results” section, it is possible to use a simplifiedmodel which has no
R compartment. (ii) Jump probabilities are determined by rates: for
treatment killing (downward arrow at left) with per-cell jump probability
DRUG(t) h−1; for background killing (other downward arrow) with per-
cell jump probability kdeath h−1; and for bacterial fission with per-cell
jump probability kgrowth h−1. (iii) E(t) is the probability that at some
time between 0 and t, s has jumped from 1 to 0, whereupon, according to
the model, it remains 0. Thus, E(t) always increases as time increases.
None of the calculations attempt to take into account irreversible
gentamicin resistance or neonate immune system assistance to gentami-
cin treatment
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concentrations. Then the relevant ordinary differential
equation and its solution are the following:

Að Þ dm=dt ¼ μ tð Þm⇒ Bð Þ m tð Þ ¼ m 0ð Þexp ∫t0μ τð Þdτ
h i

> 0: ð1Þ

We are mainly interested in situations where, due
to a large death rate caused by drug treatment,
μ(τ)≪0 for most times τ. Then the integral in Eq. 1
is negative, which implies CFU population decrease,
i.e., m(t)≪m(0).

An essential assumption implicit in Eq. (1) is that
different CFU are independent of each other. In our case,
the assumption is reasonable because we are considering
scenarios where the CFU density is so small stochastic
small-number fluctuations are important. Formally speak-
ing, with μ(t) independent of m(t) the differential equa-
tion (1A) is linear; knowing the time dependence for a
single CFU initially, i.e., knowing the solution with
m(0)=1, determines the time dependence of the average
for any initial value m(0) simply by multiplication. In
contrast, inter-CFU interactions at high densities are
described by nonlinear equations. A simple example is
the logistic differential equation for sigmoidal growth (28),
where the solution for m(0)≫1 is qualitatively different
from, rather than just a multiplicative rescaling of, the
solution for m(0)=1.

Stochastic Process Methods

The stochastic process model corresponding to
Eq. (1) is one of only a few that can be analyzed with
explicit analytic equations, rather than requiring extensive
Monte-Carlo simulations. It is a birth-death stochastic
process model for a population of independent identically
distributed cells, first investigated in detail by Kendall
(29). The per-cell rates of the model can be time-
dependent but must be state independent; the full
definition of the model, and its mathematical properties,
are given in many standard texts [e.g., as example 4.8 by
Tan (15)] and are reviewed in our online AAPS
Supplement, section S2. In contrast to the deterministic
model in Eq. (1), the stochastic counterpart model
requires knowing the birth and death rates b(t) and d(t)
individually, not merely their difference μ(t)=b(t)−d(t); the
(per-CFU) birth rate b(t) is interpreted intuitively (14) by
saying that the chance that 1 CFU divides into 2 CFU
within a very short time interval dt centered at t is b(t)dt ;
a corresponding interpretation holds for the death rate
d(t).

Sections S2 and S4 of the online AAPS Supplement
derive the equations needed to calculate the eradica-
tion probability E(t) of this stochastic model; they
include intuitive comments about how stochastics work
in this comparatively simple case. The overall conclu-
sion there is that stochastic predictions, relative to

deterministic ones, tend to favor front boosting over
back boosting.

Computer Modeling

Technicalities of interest primarily to other computational/
mathematical modelers are relegated to the supplement.
However mathematical and computational PK/PD papers
should, in our opinion, contain enough information that any
reader with a moderate knowledge of modern computational
methods can duplicate every one of the results. We have
therefore included in section 3 of the online AAPS
Supplement copies of, and links to, our customized software,
written in the fully open-source computer language R.

RESULTS

Preview

Except where explicitly stated to the contrary, all
dosing regimens discussed have at least 24 h between
doses. We first calculated the time-dependence of average
CFU number using deterministic PK/PD models for a
10-day period. The results suggested focusing on the first
85 h when comparing stochastic and deterministic PD
models. Carrying out the comparison gave numerical
estimates of the eradication probability E(t). The results
suggested that, in a stochastic calculation that neglects
irreversible resistance and immune system action, a large
first dose, and CFU population dynamics during the first
36 h, are crucial for the predicted eradication probability:
E(t) increasing to >0.5 was calculated to occur quite early
or not at all. Finally, a statistically highly significant
(p≪0.001) correlation was found between the final
eradication probability and a simpler index obtained
directly from the dosing regimen without invoking any
models or adjustable parameters.

Deterministic PK/PD Predictions for the First 10 Days

Figure 3, obtained by using the deterministic PK/PD
model outlined in Fig. 2a, b for one of the dosing cycles
analyzed in (9), indicated that, for this specific dosing
regimen: (a) we should simplify by focusing on the first
85 h of treatment since predicted average total CFU
number at 85 h becomes and remains so high that
stochastic small-number corrections to the deterministic
model are no longer needed; and (b) when using a
stochastic calculation to find E(t) the simplified
independent-CFU (i.e., ksr=0) model of Fig. 2c is ade-
quate, because E(t) grows significantly only at early times
when the total CFU number in the central compartment is
estimated to be many logs smaller than the number which
would lead to substantial deviations from a ksr=0 model.

The First Few Days

Figure 4 shows, for the first 85 h of one dosing
regimen chosen to be reasonably typical, results (panels
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a–d) of deterministic PK/PD modeling and (panels e and
f) of the stochastic PD model summarized in Fig. 2c. It is
seen (panels e and f) that the stochastic PD model
predicts, for the extinction probability E(t), that E(t)
increases most rapidly at early times (when adaptive
resistance is still small) and reaches nearly its final value
EF at ~15 h for the premature neonate or <30 h for the
full-term neonate.

We concluded that, to the extent that these properties
hold for other dosing regimens: (a) the first dose is the
key one as far as obtaining a large final eradication
probability EF; (b) doses later than about 36 h after the
first dose are usually almost useless as regards increasing
the predicted EF.

Tables and Statistics for the First 75 h

We therefore investigated to what extent Figs. 3 and
4 are typical by considering a number of 72 h dosing
regimens with equal intervals between doses; each

regimen was followed by a 3-h recovery period. Results
for 24- and 36-h intervals between doses are shown in
Tables I and II. In each row we state the estimated EF,
specifically the eradication probability E(75) that the
central compartment contains no bacterial CFU at 75 h;
we add calculated free drug concentrations, often consid-
ered as indicators of effectiveness and/or toxicity (4,30,31),
with troughs>MIC usually deprecated. It is seen that
comparing GA=40 weeks with GA=25 weeks for a given
dosing regimen: (a) E(75) for GA=40 weeks is larger
(e.g., rows Table I rows 13 and 14 vs. Table II rows 6 and
7); (b) for eradication probabilities >0.5 there are more
troughs<MIC, especially after several days. In this sense
the term neonate is easier to treat than the premature
neonate (whose central compartment volume per kg is
larger). Tables I and II are selected excerpts from a 32-
row larger table, given in section S3 of the online AAPS
Supplement, each row of which contains results for both
GA=25 and GA=40.
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f The curves are the stochastically calculated eradication probabilities
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In f, the second dose, administered at 24 h, does give a visible
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Fig. 3. Deterministic PK/PD estimates for a 10 day period: an
example. a As in the references, asterisks denote calculated concen-
trations 1 h after each dose (simulated as a 5-min infusion). For the
dosing regimen in this example, peak and trough concentrations are
predicted to decrease. b Most bacteria are predicted to acquire
reversible adaptive drug resistance within 10 h after the first dose. In
addition, the drug clearance gradually increases during the 10-day
period. Both factors tend to make later doses less effective than early
ones. c This panel illustrates some key properties. First, deterministic
PK/PD models sometimes predict that the average total CFU number
in S becomes less than 1. Here, the minimum (at time z) is only about
0.255 CFU per patient. Second, we here have u<36 h for the time u
where the predicted CFU number is less than 100 for the last time.
Third, a simplified model, in which the rate ksr=0, is very nearly exact
until a time greater than u when the predicted CFU number has
grown very large. Such properties facilitate the comparison of
stochastic to deterministic PD predictions (see text)
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Lexicographic Ordering

The tables are “lexicographically ordered” as
follows. If the first dose in row x is smaller than the
first dose in row y, row x is located above row y. Ties
which remain after applying this criterion are broken
by using dose intervals: rows having no second dose
are above those having intervals of 36 h, which in turn
are above those having intervals of 24 h. Ties which
still remain are broken by using the size of the second
dose, then by using the size of the third dose, and
final ly by us ing the s ize of the fourth dose .
Lexicographic order indicates the degree of front
boosting. It is seen that lexicographic order correlates
with E(75). For example in Table II the front boosted
regimen row 20 has a substantially larger E(75) than
the corresponding back boosted, lexicographically ear-
lier, regimen, row 2.

In order to quantify the correlation, we computed
Spearman’s rank correlation coefficient “rho” for the sum of
both E(75) values (GA=25 and GA=40 weeks) using
lexicographic order as predictor; the result was rho=0.96,
with p<10−15 for the alternate hypothesis that the correlation
of E(75) with lexicographic order was due to chance. For
vividness, the input to this rank correlation coefficient
calculation is shown in Fig. 5.

Additional Results

For completeness, Table III gives predictions of our
mathematical model (Fig. 2) for a twice daily dosing
regimen, compared to a single dose that gives a similar
E(75) value. It is seen that during the first 3 days the
predicted concentration for the twice daily regimen never
drops below MIC (2 mg/L) and never gets as high as
5×MIC.

Table I. Eradication probabilities and concentration troughs/peaks. GA=40 weeks

doses
mg/mL

inta EF
concentration at time t (e.g. 7.01 mg/L at time 0.1 hours in row 1)c

t=0.1 23.99 24.1 35.99 36.1 47.99 48.1 71.99 72.1
1 2.5,7,0,0 24 0.06 7.01 1.21 20.81 6.26 6.21 2.41 2.39 0.36 0.36
2 3,6,0,0 24 0.27 8.42 1.45 18.24 5.54 5.50 2.14 2.12 0.33 0.33
3 4,0,0,0 0.60 11.22 1.93 1.92 0.81 0.81 0.34 0.34 0.08 0.08
4 4,4,4 36 0.60 11.22 1.93 1.92 0.81 12.01 3.35 3.32 0.46 11.65
5 4,7,7 36 0.60 11.22 1.93 1.92 0.81 20.41 5.61 5.57 0.75 20.33
6 4,4,0,0 24 0.68 11.22 1.93 13.12 4.10 4.07 1.59 1.58 0.26 0.26
7 4,4,4,0 24 0.68 11.22 1.93 13.12 4.10 4.07 1.59 12.78 1.21 1.20
8 4,4,5,4 24 0.69 11.22 1.93 13.12 4.10 4.07 1.59 15.58 1.45 12.63
9 4,4,7,4 24 0.91 11.22 1.93 13.12 4.10 4.07 1.59 21.17 1.92 13.10
10 4,5,4,4 24 0.92 11.22 1.93 15.92 4.92 4.89 1.91 13.09 1.25 12.44
11 4,7,0,0 24 1.00 11.22 1.93 21.52 6.56 6.52 2.53 2.51 0.39 0.39
12 4,7,4,4 24 1.00 11.22 1.93 21.52 6.56 6.52 2.53 13.71 1.34 12.52
13 4.5x4b 24 0.97 12.62 2.17 14.76 4.61 4.58 1.79 14.37 1.36 13.94
14 5,0,0,0 0.92 14.03 2.41 2.40 1.02 1.01 0.42 0.42 0.10 0.10
15 5,6,6 36 0.92 14.03 2.41 2.40 1.02 17.81 4.94 4.90 0.68 17.46
16 5,4,0,0 24 0.99 14.03 2.41 13.60 4.30 4.27 1.68 1.67 0.28 0.28
17 5,4,4,4 24 0.99 14.03 2.41 13.60 4.30 4.27 1.68 12.86 1.23 12.41
18 6,0,0,0 0.99 16.83 2.89 2.88 1.22 1.21 0.51 0.50 0.12 0.12
19 6,4,4 36 0.99 16.83 2.89 2.88 1.22 12.41 3.52 3.49 0.50 11.69
20 6,3,0,0 24 1.00 16.83 2.89 11.28 3.69 3.66 1.45 1.44 0.25 0.25
21 6,4,0,0 24 1.00 16.83 2.89 14.08 4.51 4.48 1.76 1.75 0.30 0.30
22 7,0,0,0 1.00 19.64 3.38 3.35 1.42 1.41 0.59 0.59 0.14 0.14
23 7,4,0 36 1.00 19.64 3.38 3.35 1.42 12.61 3.60 3.58 0.52 0.52
24 7,4,0,0 24 1.00 19.64 3.38 14.56 4.71 4.68 1.85 1.83 0.32 0.31

a Interval between doses, e.g. in row 1, 2.5 mg/kg at birth, then 7 mg/kg after 24 h
b Four doses, each 4.5 mg/kg
c
Concentration troughs>MIC (=2 mg/L), and peaks >6MIC, are highlighted blue or yellow respectively to facilitate comments on toxicity in

the “Discussion” section

452 Radivoyevitch et al.



One adjustable constant in the published model of
Fig. 2a is Koff, the rate at which adaptively resistant
bacteria return to sensitivity when no longer subjected
to gentamicin, with ln2/Koff the corresponding half-life,
taken as 50 h in (9) and above. The value of the half-
life in patients is not well known, but may often be
smaller (32). Therefore, to check robustness of the
results, we redid our calculations using half-life 25 h
instead of 50 h. The main conclusions were not
changed. In particular, the Spearman coefficient rho
was 0.84, with p=4×10−7. However, as expected, the
model-estimated final eradication probability EF is
higher. Details are in online AAPS Supplement
section S3.3. One of the more notable examples is the
following: for GA=40 and an initial 3 mg/kg dose
followed 24 h later by a 6-mg/kg dose, EF assuming a
half-life of 50 h is 27%; but when assuming a 25-h half-
life, it increases to EF=90%.
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Fig. 5. Rank correlation input. The vertical axis gives the sum of the
2 eradication probabilities E(75) for the 25-week and the 40-week
neonates, as predicted using the mathematical model of Figs. 2a, c.
The horizontal axis is the row number of the 32-row table in the
supplement. The x axis is merely ordinal: stretching it non-linearly
would give a graph with the same information

Table II. Eradication probabilty and concentration troughs/peaks. GA=25 weeks

doses
mg/kg

inta EF
concentration at time t (e.g. 9.3 mg/mL at time 0.1 hours in row 1)c

t=0.1 23.99 24.1 35.99 36.1 47.99 48.1 71.99 72.1

1 4,0,0,0 0.01 9.30 1.87 1.87 1.22 1.22 0.81 0.81 0.40 0.40

2 4,7,7 36 0.01 9.30 1.87 1.87 1.22 17.49 5.36 5.34 2.14 18.40

3 4,6,4,4 24 0.03 9.30 1.87 15.82 5.22 5.20 3.31 12.59 2.96 12.25

4 4,7,0,0 24 0.04 9.30 1.87 18.14 5.89 5.87 3.72 3.71 1.59 1.59

5 4,7,4,4 24 0.79 9.30 1.87 18.14 5.89 5.87 3.72 13.01 3.13 12.42

6 4.5x4b 24 0.05 10.47 2.11 12.56 4.37 4.36 2.78 13.23 2.95 13.40

7 5,0,0,0 0.16 11.63 2.34 2.34 1.53 1.52 1.01 1.01 0.50 0.50

8 5,6,6 36 0.16 11.63 2.34 2.34 1.53 15.47 4.91 4.90 2.00 15.93

9 5,4,0,0 24 0.17 11.63 2.34 11.63 4.19 4.18 2.68 2.67 1.18 1.18

10 5,4,4,4 24 0.17 11.63 2.34 11.63 4.19 4.18 2.68 11.96 2.72 12.01

11 5,5,5,5 24 0.67 11.63 2.34 13.96 4.86 4.84 3.09 14.70 3.28 14.88

12 6,0,0,0 0.53 13.96 2.81 2.80 1.83 1.83 1.22 1.21 0.60 0.60

13 6,4,4 36 0.53 13.96 2.81 2.80 1.83 11.12 3.82 3.80 1.60 10.89

14 6,6,6 36 0.53 13.96 2.81 2.80 1.83 15.77 5.12 5.10 2.10 16.03

15 6,4,0,0 24 0.66 13.96 2.81 12.10 4.50 4.48 2.88 2.87 1.28 1.28

16 6,4,4,0 24 0.70 13.96 2.81 12.10 4.50 4.48 2.88 12.17 2.82 2.81

17 6,4,4,4 24 0.70 13.96 2.81 12.10 4.50 4.48 2.88 12.17 2.82 12.11

18 7,0,0,0 0.83 16.28 3.28 3.27 2.14 2.13 1.42 1.42 0.70 0.70

19 7,4,0 36 0.83 16.28 3.28 3.27 2.14 11.43 4.02 4.01 1.70 1.69

20 7,4,0,0 24 0.97 16.28 3.28 12.57 4.81 4.79 3.08 3.07 1.39 1.38

21 7,4,4,0 24 0.99 16.28 3.28 12.57 4.81 4.79 3.08 12.37 2.92 2.92

22 7,4,4,4 24 0.99 16.28 3.28 12.57 4.81 4.79 3.08 12.37 2.92 12.21

a
Intervals between doses, in hours; e.g. row 2 shows 4 mg/kg given at birth, then 2×7 mg/kg at 36 h intervals

b
Four doses, each 4.5 mg/kg

cConcentration troughs greater thanMIC (=2mg/L), and peaks >6MIC, are highlighted blue or yellow respectively to facilitate comments on toxicity
in the Discussion section
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DISCUSSION

Our results concern a new approach to anti-bacterial PK/
PD modeling, attempting to estimate an eradication proba-
bility E(t) by stochastic PD modeling in silico. This
“Discussion” section will first list some limitations of our
calculations, which imply that the results cannot, at least at
present, serve as prospective estimates of cure rates. Then we
discuss the results in more detail and make suggestions.

Some Limitations of the Analysis, Especially as Regards E(t)
and EF

Among the limitations of our analysis are the following.

& Correlating EF with effectiveness observed in vitro,
preclinically, or clinically was not attempted.

& Our results only apply to individualized treatment of
a hypothetical neonate that has parameters typical of
neonates with the same GA and birth-weight. The
statistical methods of population PK/PD have to be
added to the stochastic process calculations unless
detailed information on each neonate is available and
is used to design individualized treatments. For
example, in general any predicted advantage of front
boosting will apply only to a fraction of the patient
population—there will be some patients for whom
both front boosted and corresponding back boosted
regimens are predicted to be effective and some for
whom neither is predicted to be effective. Any
predicted advantage of front boosting is therefore
“fuzzed out” when applied to many different individ-
uals in a heterogeneous population.

& Our equations merely graft one stochastic process PD
calculation onto an otherwise deterministic PK/PD
calculation. To really estimate eradication, a system-
atically stochastic approach is needed for all aspects.
For example, suppose one sample treated in vitro has
CFU counts below the limit of detection at a
preassigned final time. In a deterministic treatment
the question of whether all CFU in such a sample are
eradicated need not be considered (9) but in a
comprehensively stochastic approach that would be
a key question.

& Our model has many of the same problems as other
current in silico PK/PDmodels (33), e.g. an unfortunate
combination of over-simplification with over-parame-
terization. The changes in predicted EF values when
changing the parameter Koff (see the “Results”

sec t ion) a re one example o f how over -
parameterization can lead to substantial uncertainties.

& In particular, the model may not be detailed enough
biologically to connect cure to CFU number. For
example, even if there are no remaining CFU in the
central compartment, CFU could be “hiding” at other
locations in the body and subsequently repopulate
the central compartment. The deterministic PD
model we are modifying does not address this
possibility, and does not need to address it because
effectiveness is judged by clinical trials rather than
predicted mathematically. But in our stochastic argu-
ment, the possibility is important.

& Similarly, and perhaps most importantly, in its present
form the model is applicable only to immunoincompetent
patients. Neglecting immune system dynamicsmay be less
acceptable in a fully stochastic calculation than in the
corresponding deterministic approximation. A more
extensive calculation, which models the coupled effect of
immune reactions and treatment driving total CFU
number down to such small values that stochastic
fluctuations become important, will eventually be needed.

Comments on EF

Despite the caveats listed above, we suggest there are
reasons to consider EF as a possible effectiveness index,
which deserves experimental and clinical investigation. One
reason is that EF considers a relevant biological scenario
(Fig. 2a, c), however oversimplified. Another is that the
eradication probability E(t) calculated from the model
increases and approaches its limiting value EF gradually,
which seems plausible. Corresponding deterministic estimates
(discussed in the “Eradication probability” subsection of
Methods) refer to just one time, such as the end of treatment
or the time when the predicted average CFU number is at its
minimum, not to the entire time course of a treatment
regimen. Finally, the fact that, at least for neonatal gentamicin
treatments, EF calculated from a model correlates strongly
with a lexicographic ordering, which is so simple that it is
automatically available in the clinic, indicates a potential
practical advantage.

Regimens with Large First Dose but Small Total Dose:
Toxicity

The most interesting rows in Tables I and II have,
compared to most current practice, a larger first dose but

Table III. Additional dosing regimens for GA=40 weeks

doses concentration (mg/L) at time t (hours)

mg/kg E(75) t=0.1 11.99 12.1 23.99 24.1 35.99 36.1 47.99 48.1 59.99 60.1 71.99 72.1

4 0.60 11.19 4.32 4.28 1.93 1.91 0.81 0.81 0.34 0.34 0.15 0.15 0.08 0.08

7x2.2
a

0.59 6.16 2.37
b

8.507 3.08 9.19 3.08 9.19 2.86 8.97 2.60 8.71 2.37 8.48

a 7 dose fractions of 2.2 mg/kg 12 h apart
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smaller total dose. The most extreme examples consist of a
single dose of 5–7 mg/kg at birth and then no further treatment.

Gentamicin overdosing is dangerous, especially as
regards nephrotoxicity and irreversible vestibular ototoxicity
(4,25 ,34) . Cl inical guidel ines for neonates vary
(4,25,30,31,35,36). Guidelines often specify that free drug
concentration in the central compartment should include
frequent or prolonged troughs<MIC (=2 mg/L) during the
first week, which our extreme examples (e.g. Table II row 18)
clearly satisfy. Prolonged or repeated concentrations above a
certain value (6×MIC is one estimate) are also usually
deprecated. However it has been argued that a single high
peak which decays rapidly may perhaps not be too danger-
ous, due to saturation effects in drug uptake for both ear and
kidney (4,25,36). Comparing with Tables I and II indicates
that the high initial doses needed to achieve high predicted
values of EF, especially doses of 6 mg/kg or more which are
used only rarely for neonates (36), are as yet neither
unambiguously safe nor unambiguously ruled out by toxicity
constraints.

Front Loading

If mathematically predicted concentration troughs<MIC
(36) and EF>50% are taken as goals (see caveats above),
there are implications for front boosting. Examples of model-
predicted front boosting advantage include many cases like
the contrast between the single 5 mg/kg dose in Table I row
14 and higher-total-dose regimens (rows 2, 8–11) which lead
to smaller EF, despite also having at least one dose at least as
large as 5 mg/kg and having higher concentration troughs.
The intuitive reasons for this predicted difference include the
development of adaptive resistance and increasing clearance
(Fig. 3b) and also the general tendency of stochastics to favor
early dosing (AAPS Supplement, sections S2 and S4).

Conclusions and Recommendations

For neonatal gentamicin treatments directed at E. coli,
we suggest that the safety and effectiveness of larger first
doses coupled with smaller total doses than usual in current
practice deserve further investigation in silico and in vitro,
which could in turn eventually lead to preclinical and clinical
trials. More generally, if standard PK/PD models predict that
the average CFU number ever drops substantially below ~100
per patient, the models should be modified to incorporate
stochastic effects systematically, which will then usually give
more favorable, or less unfavorable, predictions for front
boosting (“hit hard early”).
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