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RNA-interference  (RNAi)  studies  hold  great promise  for functional  investigation  of  the  significance  of
genetic  variations  and  mutations,  as  well  as  potential  synthetic  lethalities,  for  understanding  and  treat-
ment  of  cancer,  yet  technical  and conceptual  issues  currently  diminish  the  potential  power  of  this
approach.  While  numerous  research  groups  are  usefully  employing  this  kind  of functional  genomic
methodology  to  identify  molecular  mediators  of  disease  severity,  response,  and  resistance  to  treatment,
findings  are  generally  confounded  by “off-target”  effects.  These  effects  arise  from  a  variety  of  issues

beyond  non-specific  reagent  behavior,  such  as  biological  cross-talk  and  feedback  processes  so  thus  can
occur even  with  specific  perturbation.  Interpreting  RNAi  results  in a  network  framework  instead  of  merely
as individual  “hits”  or “targets”  leverages  contributions  from  all hit/target  contributions  to pathways  via
their  relationships  with  other  network  nodes.  This  interpretation  can  ameliorate  dependence  upon  indi-
vidual  reagent  performance  and  increase  confidence  in biological  validation.  Here we provide  background
on RNAi  studies  in  cancer  applications,  review  key challenges  with  functional  genomics,  and  motivate
the  use  of network  models  grounded  in pathway  analyses.
. Introduction

Discovery of gene products vital for function of a biological
ystem, using gene-interference studies at has become increasing
opular because of the capability for RNAi methods for manipu-

ating multiple cellular components in either biased or unbiased
anner. These experiments aspire to identify high-confidence

hit” sets as putatively responsible for an experimental phenotype
nd conceivably imaginable as drug “targets”, although requiring
edicated follow-up tests to buttress confidence in validity. Typ-

cally, the findings from the initial “screen” study are compiled
s list of individual genes whose knockdown yielded significant
lteration of biological system function, and the follow-up vali-

ation experiments are considered in isolation. While there are
ncouraging successes along this avenue, the realization that
olecular components executing or governing cell/tissue pheno-

ypic operation work in concert among myriad dynamic partners
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– directly and indirectly – motivates appreciation for considering
a more integrative perspective on interpretation of RNAi-based
functional genomic studies.

‘Concerted’ operation brings to mind an instrumental orchestra
as one notional metaphor. Proper generation of a musical program
depends on the collective efforts of the players involved, and devi-
ations of any individual in pitch, volume, or timing can produce
inappropriate sound and affect the overall orchestral performance
as other individuals attempt to adapt – or naturally produce fur-
ther errors themselves. The sound of any particular individual is
rarely decisive, while an instrumental section can either mitigate
or amplify aberrations and other instrumental sections may  aim to
compensate. Accordingly, flawed performance may be viewed as
arising from identifiable “drivers” but sustained pathology is more
likely manifested by inability of the overall company to find an
appropriate new balance via diverse modulations. And when aspir-
ing for remediation, as the music proceeds the original deviations
no longer remain the most effective points of correction because
the propagated adaptations and compensations render a simple
“re-set” difficult to achieve dynamically.

We use this integrative, or ‘concerted’ point of view to inform

© 2013 The Authors. Published by Elsevier Ltd.Open access under CC BY license.
our recommendations about the investigation of cancer systems
using RNAi. We  offer that a most effective framework uses multi-
node pathways for gaining greatest insight about how a system is
dysregulated and for how that system might be remediated, and
further that this point of view is essential to RNAi analyses.



2  Cance

2

t
y
t
c
h
a
t
a
F
m
m

t
T
c
c
(
t
a
s
j
w

m
o
t
o
p
c
o
i
t
t
f
s
c
a
l
u
v
i
m
d
p
t
o
t
d

e
s
t
t
w
k
a
p
t
W
M
m
c
F

14 J.L. Wilson et al. / Seminars in

. RNAi screens as a tool for cancer biology

Because cancer is a mutation-driven disease, many investiga-
ors have focused on using genetic characterizations of cancers,
et there are often non-intuitive relationships between gene fea-
ures and disease phenotypes [1–4]. Much is known about the
ancer genome landscape, yet, while hundreds of human genes
ave been linked to cancer, mutations are not always consistent
cross patients, and disease severity may  not correlate with muta-
ional status alone [2,5–8]. Further, occurrence of drug resistance
lso does not exhibit direct correlation with mutational status [3,9].
or instance, in pediatric medulloblastoma, systematic measure-
ent of mutation-status and transcriptional profiling revealed that
utation rates are not consistent across pediatric tumors [9,10].
In our orchestral analogy, these investigations are akin to rating

he quality of the company using each players’ individual audition.
his perspective lacks context and an understanding of the player’s
ontribution to the orchestra’s performance. To account for this
ontext, investigators have turned to RNA-mediated interference
RNAi) technologies to fine tune a genetic player’s ability. These
ools manipulate genetic features at a functional level and may  be

 complementary approach for studying the non-intuitive relation-
hip between mutation, expression, and disease phenotype [6,9,11]
ust as a conductor may  better appreciate a musician’s performance

hile playing within their section.
From an engineering perspective, gene-interference experi-

ents are attractive experiments for understanding cancer because
f the opportunity to modulate gene function under diverse, poten-
ially relevant conditions. Investigators have targeted single genes,
r multiple genes together, in large scale screens, as well as
athway specific studies [6,9]. When investigating genetic amplifi-
ations in liver cancer, one group simultaneously explored the role
f these amplification events and the relative contribution of the

n vivo environment with a genome-scale RNAi screen [12,13]. In
his instance, and many others, RNAi screens afford the opportunity
o explore numerous targets simultaneously. The Achilles Project
rom the Broad Institute added another dimension to genome-wide
creens by drastically increasing the scale of their investigation and
hallenging the reproducibility of shRNA libraries. They introduced

 library of shRNAs into more than 100 established cancer cell
ines and identified functional phenotypes that were common and
nique to each cell line [14,15]. Researchers can take advantage of
arying RNAi reagent targeting efficacy to create titrations of gene
nterference, known as epi-allelic series [14,16]. This technique

anipulates variation in mRNA expression to create a gradient of
isease phenotype. As expected, this approach created varying lym-
homa phenotypes which increased in disease severity as shRNA
argeting efficiency against p53 increased [16]. While we note here
nly a few investigations, RNAi experiments lend themselves to
he perturbation of many more parameters: multiple cues, multiple
osing schemes, multiple environments, and multiple time points.

RNAi reagents hold significant advantages over other interfer-
nce methods, such as small molecule inhibitors. More specifically,
iRNA offers the advantage of isoform specificity and enables fine-
uning of individual isoform expression and activity. For an inves-
igation of T-cell Erk regulation, researchers used epi-allelic series
ith siRNAs against ERK1 and ERK2 to identify the role of these

inases on downstream IL-2 production [17]. The epi-allelic series
gain showed a correlation between siRNA targeting efficiency and
henotype. In addition, the researchers identified that IL-2 produc-
ion scaled with total ERK activation and was not isoform specific.
hen comparing the siRNA-mediated effects on IL-2 to those of a
EK  inhibitor’s effect, they also found that the gene-interference
ethods reduced IL-2 production to a greater extent than chemi-

al inhibitor dosing at an equivalent level of ERK activation [2,8,17].
rom this finding they inferred that ERK may  also have a role as a
r Biology 23 (2013) 213– 218

scaffold in downstream IL2 production; such a phenomenon may
have not been indicated using only either approach alone.

3. RNAi screening challenges

Gene interference screens are quickly becoming high-
throughput, but they are poorly suited to the well-accepted
data analysis tools from other ‘omics biology experiments. Bir-
mingham et al. provide a thorough review of statistical adaptations
for target discovery from RNAi experiments [1,3]. Generally, these
adaptations consist of normalization, and some means of ‘top-hit’
identification based on outstanding performance relative to the
remaining population. However, inconsistent reagent perfor-
mance limits statistical power and subsequent validation of these
candidates often fails.

Variability in RNAi screening data can derive from a variety
of factors, both off-target and crosstalk events, and cause varying
rates of false positives and false negatives in RNAi screens, reduc-
ing confidence in final hit selection [6,7,10]. Off-target events are a
non-specific result of the experimental reagents, and may  include
the inadvertent knockdown of additional transcripts through
microRNA-like effects and the incomplete knockdown of a pro-
tein target due to a protein half-life greater than the experimental
timeline. Crosstalk events, on the other hand, are a result of
the biological response to RNAi perturbation as opposed to the
experimental reagents used. These events may  include increased
expression of transcripts normally repressed by microRNAs that
have to compete for use of the internal degradation machinery,
and increased expression or activity of proteins which are com-
pensatory for the RNAi target [6,9,11].

Many approaches attempt to compensate for off-target effects.
One method utilizes multiple RNAi reagents against the same gene,
and only considers the gene a hit if multiple reagents yield a simi-
lar phenotype [6,9]. However, the ability to identify true positives
from redundant reagents is complicated by the targeted gene prod-
uct’s context within the cell [9,13]. For example, unintended effects
are less likely for gene targets with highly specific, non-redundant
roles or those that exist in linear pathways. However, for highly
connected genes or those involved in multiple pathways, there
is a greater chance of biological crosstalk, and thus varied results
between redundant siRNAs [9,15].

A genome-wide screen for homologous recombination (HR)
mediators highlights the role of unintended effects and how redun-
dant RNAi reagents may  mislead results [12,16]. For instance,
5 out of 10 RNAi reagents against the HIRIP3 gene decreased
capacity for homologous recombination. While all reagents suc-
cessfully reduced mRNA expression, rescue experiments with
RNAi-resistant mRNA failed to recover homologous recombina-
tion activity. Further, relative mRNA expression changes did not
correlate with changes in homologous recombination.

Computational analyses of sequence similarity between siRNA
reagents and non-targeted, mRNA transcripts can predict off-target
effects but is imperfect in all situations. Genome-wide enrichment
of seed sequences (GESS) analysis looks for enrichment of non-
targeted 3′ UTR regions in siRNA sense and antisense sequences
[14,16]. In theory, these 3′ UTR matches identify unintended target
genes and subsequent modulation of these genes should recapitu-
late the phenotype erroneously assigned to the original siRNA. The
method successfully identifies genes enriched in active siRNAs for
multiple screens, and can filter primary screening hits to decrease
the false positive rate [14,17].
In the previously mentioned screen for homologous recombi-
nation mediators, GESS analysis identified a significant enrichment
for RAD51 3′ UTR in the high-scoring, non-RAD51 siRNAs [12]. As
expected, RAD51 mRNA was depleted in the presence of 4 of the
7 siRNAs against HIRIP3 and RAD51 mRNA levels better correlated
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ith changes in the homologous recombination phenotype than
IRIP3 mRNA levels. Yet, only 1 of the 7 HIRIP3 siRNAs actually
ontained the seed match for the RAD51 UTR demonstrating that
dditional cross-talk events may  occur in the presence of the HIRIP3
iRNAs. While GESS successfully identified RAD51 mRNA levels as
he true predictor for homologous recombination, it was unable to
ully explain the observed changes in this gene’s transcription, as
ll HIRIP3 siRNAs did not reduce RAD51.

. Biological networks add contextual value

A network framework enables researchers to consider contex-
ual influences on how pathway components assimilate, integrate
nd propagate knowledge in a manner that is distinct from the
ist model [18,19]. More specifically, a network motif, consisting
f a coherent group of functionally related genetic regulators, may
etter explain an observed phenotype where statistically-ranked

ists are insufficient [4,20]. Already, these network motifs for tar-
et discovery have lead to better understanding of the non-intuitive
elationships between genotype and disease phenotype and iden-
ification of better therapeutic targets [4,8].

Networks can be useful for predicting drug targets and also for
electing drug combinations [19]. Their functional context provides
ational selection of single targets as well as combinatorial targets
hat could synergistically affect a desired phenotype because they
onsider pathway membership [19]. Where toxicity had previously
onstrained the selection of combination therapies, researchers
ay  now instead prioritize combinations based on specificity to

ontrolling a particular phenotype. Understanding macromolecular
athways led to conclusions about synergies between doxorubicin
nd TNF-alpha therapies [21]. The authors showed that administer-
ng TNF-alpha as an adjuvant to doxorubicin treatment increased
poptotic cell death in the presence of low-levels of DNA dam-
ge by using an integrated network approach. Without pathway
nd network-level information, this non-intuitive relationship may
ave been missed.

Network interpretation has already added depth to non-
ntuitive instances of drug resistance. Recently, Wilson et al.
howed that growth-factors within the tumor microenvironment
ay  increase resistance to kinase inhibitor therapy [22]. While

his might seem counterintuitive in a linear-process formalism,
onsidering the cell’s underlying signaling network make these
esults less surprising. Wagner et al. used network inference
ethods to create interaction networks by combining system-

tic RNAi-perturbation data with phosphorylation information
t multiple time points for six receptor-tyrosine kinases (RTKs)
EGFR, FGFR1,c-Met,IGF-1R,NTRK2, and PDGFR�) [23]. From the
esulting networks, they clustered each RTK network, identify-
ng core signaling components shared between all RTKs as well
s cluster-specific modules. They postulated that modules shared
etween RTKs within the same cluster could explain resistance
o targeted RTK therapy. More specifically, if RTKs of a partic-
lar class shared signaling components and affected the same
ownstream phenotypes, then these within-cluster RTKs could
ompensate for chemical inhibition by actuating the original down-
tream phenotype [23]. They demonstrated this compensation
ithin the EGFR/c-Met/FGFR1 cluster by showing correlation of

eceptor expression with resistance to therapies targeted to other
ithin-cluster RTKs.
. Functional pathways explain target variability

A meta-analysis of nine RNAi screens for HIV-replication
actors used functional enrichment to explain discrepancies across
igh-scoring targets from each screen [24]. When they investigated
r Biology 23 (2013) 213– 218 215

the percentage of scoring targets across three screens, this overlap
only included a modest 3-6% of gene targets. They show that
variability between screens, variability between experimental
timing and toxicity thresholds all contributed to the minimal
overlap among these screens. However, when they looked at gene
membership in GO ontology categories, they found much greater
overlap in the enrichment of GO categories across screens than
in the individual gene targets. This finding indicates that a more
global, functional filter is useful for identifying true positives from
highly variable RNAi screens.

Additionally, using functional pathway membership increased
experimental validation rates in an RNAi screen for DNA-damage
mediators [25]. The authors screened all protein-coding genes in
Drosophila melanogaster and compared top hits to an analogous
screen in Saccharomyces cervisiae, but did not see a statistically
significant overlap between screening targets [25]. They expanded
their target list by identifying functional pathways that contained
gene targets from their screen in Drosophila melanogaster and were
able to find enrichment of targets from the Saccharomyces cervisiae
screen within this set. Further, using this expanded set for vali-
dation experiments identified false negatives from the original
screen. These results reaffirm the utility of filtering data by path-
way membership to identify true positives and also using pathway
membership as a search space for false negatives.

In a pioneering study, Jones et al. demonstrated the significance
of using pathway context in a patient setting [26]. They performed
a global analysis of mutations in pancreatic cancers, but found lit-
tle overlap in the specific mutations across patients. However, they
instead found a core set of signaling pathways that consistently
enriched for patient-specific mutations. They postulate that tar-
geting the physiological consequences of these pathways instead
of the individual mutations would improve therapeutic develop-
ment [26]. If we consider the discrepancy between RNAi reagent
performance across replicates as similar to the mutational differ-
ences between patients, these findings present more motivation for
using a pathway-centered approach for functional genomic studies.

6. Network integration is a viable tool for hypothesis
generation

Given the importance of understanding the functional context
of a genetic alteration, network methods are a useful computa-
tional tool. Additionally, these tools enable the incorporation of
multiple data sets and experiments to create more holistic inter-
pretations of biological systems. Because of the availability of many
experimental datasets through various databases, data integration
will be influential in future investigations [27]. Here, we  review a
few integrated network approaches and highlight how networks
have improved the interpretation of biological investigations and
affected further hypothesis generation.

In metastatic breast cancer, integrating copy-number variation
(CNV) and gene expression data across multiple samples accurately
predicted novel drivers of disease [28]. The authors used a refined
method for first identifying recurrent CNVs from gene expression
data and then used a Bayesian methodology to create a network of
mutated genes. From this network, they found master regulators
by selecting genes that had a high authority score. Mathematically,
the authority score identified genes with a statistically significant
number of outgoing connections as compared to the mean num-
ber of connections. To test their hypotheses about mediators for
breast cancer, they performed an siRNA screen testing the effect of

gene interference on cell viability. Of the gene targets that had the
greatest effect on cell viability, they found a significant enrichment
of their high-authority regulators [28]. This finding demonstrates
that networks can synchronize disparate datasets and that network
properties are viable characterizations for finding novel regulators.
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membership to assess his effect on the sound of the orchestra.
‘Network Filtering’ techniques will increasingly become a

secondary post-processing step to statistical analyses for gene-
interference studies. We  have conceptualized how network motifs
may complement existing statistical approaches in Fig. 1. The

Fig. 1. Network filtering uses functional relations to identify candidate targets.
16 J.L. Wilson et al. / Seminars in

Utilizing a data-integration approach, Huang et al. constructed
n EGFRvIII-specific signaling network for glioblastoma multiforme
GBM) by incorporating proteomic and transcriptional data [29].

ore interestingly, they used this network to identify, test and
alidate novel therapies. Their final networks consisted of a high-
onfidence set of experimental data points as well as gene targets
ot included in the original set, but rather added through known
rotein-protein interactions. From this network set, they systemat-

cally expanded targets for therapeutic intervention by identifying
argets with known chemical inhibitors and ranking them based
n their proximity to the core functional network. From this target
et, they identified compounds in clinical trial with known effects
n cancer systems and chemical inhibitors not yet tested for GBM
29].

In the interferon-stimulatory DNA (ISD) sensing pathway, an
ntegrated network approach proved successful for identifying
ovel regulators of this process and for testing new therapeutics
30]. In this analysis, the authors created an interaction network of
otential ISD regulators by combining direct interacting partners of
nown ISD pathway components with interacting pairs from their
wn quantitative mass-spectrometry experiments. Perturbation of
his compendium network with RNAi reagents identified Abcf1,
dc37, ad Ptpn1 as effectors of the ISD-sensing response to dsDNA.

n this situation, curating and expanding interaction information
round known pathway components successfully identified novel
enes for the ISD response. The authors also measured ISD-pathway
nduction after treatment with chemical inhibitors against their
ovel genes and demonstrated a reduction in deleterious inter-

eron production. These results show that integration is useful for
eveloping new hypotheses for therapeutic development and sup-
orts the Jones et al. perspective concerning efficacy of designing
herapeutic options around downstream pathway physiology [26].

Data integration within a network framework also added depth
o understanding metabolic disorders using SNP and genetic link-
ge data [31]. In this investigation, researchers created a network
here interactions depended upon significant co-expression and

inkage data between genes. Using optimization, they selected
ighly connected gene sub-modules and then used these mod-
les for further hypothesis generation. Many sub-modules were
nriched for genetic features that were significantly associated
ith disease traits (fat mass, weight, plasma insulin levels, etc.)

nd one sub-module was significantly enriched for genetic features
ith significant correlation to all disease traits. They expanded this
odule, and created a macrophage-driven superior module from
hich they selected and further perturbed genetic loci. From these
erturbations, they were able to demonstrate the sub-network’s
ontribution to the observed disease traits and classify genetic fea-
ures previously not associated with metabolic traits. This collective
nderstanding of genetic interactions ultimately created a more
omprehensive view of their dataset and novel hypotheses dis-
inct from those that would be identified from looking at gene-trait
ssociations independently.

Recently, our own efforts investigating in vivo mediators of
cute Lymphoblastic Leukemia (ALL) have employed a data inte-
ration approach to ascertain GO biological function enrichment
ather than to looking at screening targets independently (unpub-
ished). A B-cell model of ALL was infected with a genome-scale
hRNA library and after infection, cells were plated in vitro or
ail-vein injected into syngeneic recipient mice. After disease
eveloped, cells were harvested and sequenced for final shRNA rep-
esentation. To analyze this data we used Simultaneous Analysis

f Multiple Networks (SAMNet), which is a flow-based formalism
hich relates screening hits to downstream expression data using

he interactome as a guide for possible connections among the data
32]. The method generated a network enriched for functional path-
ays, such as developmental processes, that are known to play a
r Biology 23 (2013) 213– 218

role in ALL – whereas these were not identified when analyzing
experimental data independently. This enrichment increases con-
fidence that RNAi hits identified within the network are true pos-
itives. Further, SAMNet adds targets, or nodes, to the network that
were not present in the original high-scoring target set, making it
possible to hypothesize about potential false negatives in the data.

In these examples, data analysis in isolation was insufficient for
discovering novel regulators and targets for therapeutic interven-
tion. Instead, a concerted network approach, integrating multiple
data sets or experimental results, improved target identification
and created testable hypotheses for therapeutic development.

7. Reciprocal engineering for future gene-interference
investigations

Understanding and modulating cancer requires a concerted
understanding of gene function and appreciation for each gene’s
pathway membership. Much like an orchestra, the performance
of the group depends on the collective group effort rather than
the ability of any one player. Auditioning players individually is
important for assessing skills and musicality, yet their full poten-
tial depends on their ability to contribute to the sound of the
group. Gene-interference studies are the experimental parallel of
‘auditioning’, yet their interpretation is limited if each player is con-
sidered in isolation. Instead, the conductor must observe the player
within his section to see if deficiencies affect the overall sound or
if the sound of his peers compensate for his weaknesses. In the
same way, building biological networks using RNAi experimen-
tal data analyzes the player in his section, and uses his pathway
Traditional methods for target selection collect high-throughput data, then uses
statistical methods to filter data for top candidates and further experimental vali-
dation. A network filtering approach would collect high-throughput data, perform
statistical analyses, but would add an additional network-construction step to find
functional consensus among top targets before identifying candidate regulators or
predicted pharmacological targets and moving to experimental validation.
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Fig. 2. Reciprocal engineering balances forward and reverse engineering principles. Reciprocal Engineering balances the mechanism-driven paradigm of reverse engineering
with  the design-motivated paradigm of forward engineering. In the graphical representation, reverse engineering is exemplified by the desire to uncover mechanisms
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xplaining relationships among the data – for example using correlation to infer re
etwork to manipulate the system – in this example, inhibiting node functions t
alances relationship discovery with design motives to create networks that infer b

etwork provides context for any RNAi reagent’s performance and
everages a gene target’s pathway membership to identify true and
alse positives. This approach assumes that if multiple RNAi target
enes enrich within a pathway, they are more likely contributing
o an experimental phenotype. Similarly, if an RNAi-targeted
ene stands out experimentally, but does not have interactions
ith other targets, this target may  be a false positive. In this
indset, networks offer a filter for removing false positives from

ntering the final ‘hit-list’. Where RNAi study results are affected
y unintended effects, noise-reduction techniques will have a

arge impact on data interpretation.
However, there is still much to be learned about gene pathways

nd their modulation for cancer systems. While pathways provide
ontext for gene function, pathways themselves are context specific
nd require systematic perturbation [5]. For instance, melanoma
atients with BRAF mutations have drastically different sensitivity
o therapy than colorectal cancer patients with similar mutations
5]. As such, many considerations remain about interpreting path-
ays and using them to refine experimental evidence.

Conceptualizing pathways instead of individual molecules
hanges the hypotheses generated as well as the experimental val-
dations that follow [18]. For instance, because of the increased
evel of interconnectedness, disease modules are computation-
lly identifiable by graph theory parameters such as clustering
oefficients, and shorter path lengths. Further, designing validation
xperiments around these modules may  provide novel insight
nto understanding disease and also improve correlation between

redicted perturbation and experimental phenotype [8,18]. This
onceptualization further requires consideration of network prop-
rties instead of only experimental phenotype and may  instead
rioritize candidates based on number of connections (network
egree) or enrichment against randomized networks. Yet, it is
ships among expression. On the other hand, forward engineering is using a known
r downstream gene activation. Blending both paradigms, Reciprocal Engineering
cal function as well as offer points for manipulation.

unclear which graphical parameters are most predictive of false
positives or false negatives and whether these parameters are con-
sistently predictive across multiple systems.

As network motif discovery becomes more common, we envi-
sion an accompanying shift in approach to these methods. This
shift incorporates reverse engineering principles through a desire
to find models that explain system behaviors as well as forward
engineering principles in which the investigator designs the system
to control a particular phenotype. We  propose that future efforts
to construct and manipulate cancer networks will use an ‘Recipro-
cal Engineering’ approach (Fig. 2). In this ‘Reciprocal Engineering’
mindset, researchers balance motivation to explain a system with
motivation to design a controllable system. Already researchers
have alluded to the value of ‘Integrated Interactomics’ and how
future data integration which balances motivations for understand-
ing and prediction, changes our investigation of cancer systems
[4].

Recent commentaries in the area underscore the potential
impact of this paradigm shift. These articles concur with the notion
that signaling pathways drive cancer progression, and are a rich
source of targets for therapeutic development [5,20]. Both biologi-
cal network models and gene-interference studies are cutting edge
techniques that have greatly added to our understanding of cancer
systems. As such, future endeavors merging these growing fields
will enhance understanding of cancer systems and improve ability
to manipulate a complicated disease.
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