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8 ABSTRACT: Which municipalities and locations within the United States contribute the
9 most to household greenhouse gas emissions, and what is the effect of population density
10 and suburbanization on emissions? Using national household surveys, we developed
11 econometric models of demand for energy, transportation, food, goods, and services that
12 were used to derive average household carbon footprints (HCF) for U.S. zip codes, cities,
13 counties, and metropolitan areas. We find consistently lower HCF in urban core cities
14 (∼40 tCO2e) and higher carbon footprints in outlying suburbs (∼50 tCO2e), with a range
15 from ∼25 to >80 tCO2e in the 50 largest metropolitan areas. Population density exhibits a
16 weak but positive correlation with HCF until a density threshold is met, after which range, mean, and standard deviation of HCF
17 decline. While population density contributes to relatively low HCF in the central cities of large metropolitan areas, the more
18 extensive suburbanization in these regions contributes to an overall net increase in HCF compared to smaller metropolitan areas.
19 Suburbs alone account for ∼50% of total U.S. HCF. Differences in the size, composition, and location of household carbon
20 footprints suggest the need for tailoring of greenhouse gas (GHG) mitigation efforts to different populations.

21 ■ BACKGROUND

22 Demand for energy, transportation, food, goods and services
23 drives global anthropogenic emissions of greenhouse gases
24 (GHGs). Households in the United States alone are directly or
25 indirectly responsible for about 20% of annual global GHG
26 emissions,1,2 yet represent only 4.3% of total global population.
27 In the absence of comprehensive national climate policy, U.S.
28 states and over 1000 U.S. mayors have committed to GHG
29 reductions.3 In response, a new protocol exists for managing
30 community-scale GHG emissions that emphasizes contribu-
31 tions from households.4 For compliance and voluntary policies
32 to be effective, information is needed on the size and
33 composition of household carbon footprints for all regions, at
34 metropolitan, county, city, and even neighborhood scales. As
35 global urbanization accelerates, increasing by 2.7 billion people
36 by 2050,5 the lessons from the data-rich U.S. experience may
37 have increasing importance for planning efforts in urban areas
38 of the world’s expanding list of mega-cities.
39 Previous research using a diverse set of methods focused
40 largely on large metropolitan regions or cities has shown that
41 household carbon footprints (HCF) vary considerably, with
42 energy, transportation, or consumption comprising a larger
43 share of the total and with households in some locations
44 contributing far more emissions than others.6−9 For example,
45 motor vehicles in California comprises 30% of HCF, compared
46 to 6% for household electricity, while electricity is frequently
47 the largest single source of emissions in locations with
48 predominantly coal-fired electricity.10 Income, household size,
49 and social factors have been shown to affect total HCF, while a

50large number of factors have been shown to contribute to
51household energy and transportation-related emissions.1,8,11,12

52A number of studies suggest that geographic differences in
53emissions are in part explained by population density.
54Population-dense municipalities tend to be urban centers
55with employment, housing, and services closely colocated,
56reducing travel distances, increasing demand for public transit,
57and with less space for larger homes. Early research by Newman
58and Kenworthy,13 using data on 32 global cities, suggested a
59strong negative log−linear correlation between vehicle fuels and
60density (Figure S-1 in Supporting Information). More recent
61work using data from domestic and global cities has also
62seemed to confirm this relationship, although with more
63variance than previously thought.14 One thread of research
64suggests that urban form (colocation of housing, employment
65and services) to be a more important factor.15 Other studies
66suggest that neither density nor urban form result in large CO2
67benefits, and these may be outweighed by other social costs,
68such as crowding and higher rents.16

69These earlier studies have been limited to analyzing a small
70set of case studies, and the resulting conclusions are difficult to
71generalize beyond those included in the studies themselves. A
72large, nationwide data set of all locations at fine geographic
73resolution holds potential to reassess the urban form hypothesis
74to more accurately describe the relationship between
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75 population, policy, urban form, and emissions. Our primary

76 research questions are (1) how much variability exists in the

77 size and composition of household carbon footprints across all

78 U.S. locations and (2) how much of this variability can be

79 explained by population density, income, home size, or other

80factors contributing to carbon footprints in urban, suburban,
81and rural areas?
82In this work, we developed econometric models to estimate
83household energy, transportation, consumption of goods and
84services, and total household carbon footprints at fine
85geographic resolution. Min et al.17 used national energy surveys

Figure 1. HCF from (A) electricity, (B) natural gas, (C) fuel oil and other fuels, (D) housing = A + B + C + water, waste, and home construction,
(E) transportation, (F) goods, (H) food, (I) services, and (G) total = D + E + F + H + I. Transportation includes motor vehicle fuel, lifecycle
emissions from fuel, motor vehicle manufacturing, air travel direct and indirect emissions, and public transit. Scales below each map show gradients
of 30 colors, with labels for upper value of lowest of quantile, median value and lowest value of highest quantile, in metric tons CO2e per household,
for zip code tabulation areas (ZCTAs). East Coast metropolitan statistical areas (J), with a larger map of New York metropolitan area (K, outer line)
and New York City (K, inner line) highlight the consistent pattern of relatively low GHG urban core cities and high GHG suburbs.

Environmental Science & Technology Policy Analysis

dx.doi.org/10.1021/es4034364 | Environ. Sci. Technol. XXXX, XXX, XXX−XXXB



86 to develop econometric models that could be applied at zip
87 code tabulation areas to reasonably estimate household energy
88 consumption. Other work in the U.K. has used demographic
89 and lifestyle data to estimate more comprehensive household
90 carbon footprints at fine geographic resolution.12,18

91 We present a model that characterizes the size and
92 composition of household carbon footprints for essentially
93 every U.S. zip code, city, county, and U.S. state. Household
94 carbon footprints are the greenhouse gas emissions required to
95 produce distribute and dispose of all household consumption
96 for one year, including emissions resulting from the purchase
97 and use of motor vehicles, public transit, air travel, household
98 energy, housing, food, water, consumer goods, and services. We
99 use this information to develop high geospatial resolution
100 household carbon profiles of each location and to analyze the
101 effect of population density and level of urbanization on full life
102 cycle GHG emissions.

103 ■ METHODS AND MATERIALS
104 The total household carbon footprint, HCF, of any individual
105 or population can be expressed simply as the product of
106 consumption, C, in dollars or physical units, and emissions per
107 unit of consumption, E, summed over each emissions activity
108 (i) included in the model

∑= C EHCF i i109 (1)

110 We use existing national household survey data to develop
111 econometric models of demand, C in eq 1, for transportation,
112 residential energy, food, goods, and services. Independent
113 variables used to predict household electricity, natural gas and
114 other household heating fuels in the Residential Energy
115 Consumption Survey19 (n = 4363) include energy prices,
116 heating fuel type, heating and cooling degree days, structure of
117 homes (number of rooms, percent single-detached, year home-
118 built), demographic information (income, number of house-
119 hold members, age of householder, race), home ownership,
120 percentage rural or urban, Census divisions, and U.S. state.
121 Predictive variables for motor vehicles miles traveled (VMT) in
122 the National Household Travel Survey20 (n = 11 744) include
123 number of vehicles owned, fuel prices, average time to work,
124 percentage of commuters who drive to work, demographic
125 information (income, number of household members, race),
126 number of food and recreation establishments in the zip code,
127 population density, Census region, and U.S. state. Independent
128 variables for 13 categories of goods and 11 categories of
129 services in the Consumer Expenditures Survey21 (n = 6965)
130 include household size and income. The total number of
131 independent variables used in all models is 37, all of which were
132 also compiled for zip codes for prediction purposes. Regression
133 coefficients, t-statistics, and p-values for each independent
134 variable, in addition to model summary statistics (adjusted r2),
135 various tests of model validation and description of uncertainty
136 are provided in the Supporting Information.
137 The model regression coefficients were then applied to data
138 known at the level of U.S. zip code tabulation areas (ZCTAs, or
139 zip codes) to estimate demand for typical households of each
140 category of consumption for >31k ZCTAs. Information on the
141 demographic characteristics of population, the physical infra-
142 structure of homes, travel patterns, and economic activity are
143 from the U.S. Census.22 Energy and fuel prices are from Energy
144 Information Agency23 at the level of U.S. states (EIA). Heating
145 and cooling degree-days were interpolated for each zip code

146from 5500 NOAA weather stations24 using Geographic
147Information Systems software. Diets for 15 categories of food
148for adults (first two household members) and children
149(remaining members) are from the USDA nutrition database.25

150Demand was then multiplied by GHG emission factors, in
151carbon dioxide equivalents26 for electricity,27 fuels,28 and
152upstream emissions from fuels.29 Indirect life cycle emission
153factors for goods and services are from the CEDA economic
154input-output model.30 Input−output life cycle assessment is
155widely used to approximate emissions from average goods per
156dollar of expenditures in the consumption literature.31

157Emissions from water, waste and home construction are from
158previous work32 and assumed to be the same for all households
159due to lack of regionally specific data. We then created
160population weighted averages for each city, county, and U.S.
161state. Zip codes were further classified into urban core, urban,
162urban fringe, suburban, rural fringe, or rural to evaluate the
163effect of urban development on emissions using U.S. Census
164data.33

165To be clear, the models do not measure consumption, but
166rather estimate demand for goods and services for average
167households in zip codes using econometric models of national
168household survey data. As such, the results should be
169considered benchmarks by which measurements may be
170compared. We are limited to only variables available for zip
171codes and have left out potentially important variables, such as
172fuel economy of vehicles and local energy policies. Local energy
173policies are reflected in the model only to a certain degree, by
174inclusion of some states as dummy variables.
175The primary purpose of these models is prediction and not
176explanation or inference. Because of multicollinearity between
177independent variables, correlation coefficients should not be
178compared. To infer causation and explain the relative influence
179of independent variables, we conducted a separate analysis of
180results for which we do explore the influence of multi-
181collinearity (see discussion of Table 3 in Results and Table S-7
182in Supporting Information for a coefficient correlation matrix).
183Herein, we present results highlighting regional differences
184and explore the impact of population density and suburbaniza-
185tion. The data set could also support a range of other potential
186results not included in this paper, including rankings,
187composition comparisons, mitigation analysis, efficiency ratings
188based on reported energy usage, quantitative spatial analysis,
189and comparison with source emissions. Interested readers are
190encouraged to visit the project Web site34 to view detailed maps
191and results for any zip code, city, county, or U.S. state.

192■ RESULTS
193The broad regional patterns of household carbon footprints
194 f1across the contiguous United States are shown in Figure 1 in
195aggregate, and for the home energy, transportation, goods,
196services, and food components. It is important to note that this
197map allocates all emissions to households at the point of
198residence (a consumption perspective), and not where
199emissions physically enter the atmosphere (a production
200perspective). All data are presented on a per household basis,
201but show similar spatial patterns when viewed on a per capita
202basis. The Midwest, noncoastal East, and much of the South
203have relatively high GHG emissions from electricity (1a), while
204the entire West and Northeast regions of the country show
205relatively low electricity emissions, due primarily to low carbon-
206intensity of electricity production. Natural gas (1b) and other
207heating fuels (1c) are concentrated in colder regions of the
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208 country, including the Midwest, Northeast and parts of the
209 Pacific. Combining all energy emissions along with the life cycle
210 emissions of fuels, water, waste, and home construction into a
211 single metric, “housing,” (1d) presents a more comprehensive
212 view of the contribution of homes to HCF than when
213 considering energy components independently. Viewed
214 through this lens, the Midwest and much of the South have
215 relatively high emissions, so do parts of the Pacific and much of
216 the Northeast. HCF from transportation (1e), goods (1f), food
217 (1h), services (1i), and in total (1g) are widely distributed
218 across the United States with no distinct broad regional
219 patterns; however, the largest concentrations of HCF are
220 surrounding metropolitan regions. When viewing HCF maps at
221 regional spatial scales it is evident that GHG hotspots
222 surrounding metropolitan regions have low carbon footprint
223 cores, with rural areas exhibiting average to low carbon
224 footprints. Figure 1j demonstrates this effect for East Coast
225 metropolitan statistical areas. This pattern holds across the
226 United States, with larger cities exhibiting the strongest urban/
227 suburban differences, for example, the New York metropolitan
228 statistical area (1k).
229 A number of factors account for differences between
230 household carbon footprints in urban cores and suburbs.
231 Supporting Information Figure S-2 shows transportation,
232 energy, goods and total household carbon footprints for zip

233codes in the Atlanta metropolitan area. Atlanta was chosen as
234the example for this figure because it is the most populous
235landlocked MSA. All other large MSAs show very similar
236patterns. The zip codes with the highest energy-related
237emissions are concentrated in a tight band of suburbs between
23815 and 45 miles from the city center. Despite having the same
239weather, energy prices and carbon-intensity of electricity
240production, suburbs still exhibit noticeably higher energy-
241related emissions. Geographic differences are most pronounced
242for transportation-related emissions, which range from <10
243tCO2e per household in the urban core to >25 tCO2e in the
244most distant suburbs. Income and household size contribute to
245larger consumption-related carbon footprints in suburbs. The
246combined result is distinct carbon footprint rings surrounding
247urban cores, with suburbs exhibiting noticeably higher HCF.
248This large data set allows for a more complete understanding
249of the effect of population density on communities than
250 f2previous work limited to a number of cities. In Figure 2, total
251household carbon footprints are plotted against log10 of
252population density for all zip codes (a), cities (b), counties
253(c), metropolitan statistical areas (d), urban core cities (e) and
254the 100 most populous urban core cities (f). Carbon footprints
255in 10 093 cities (and also zip codes) are widely dispersed, with
256standard deviation of 9.2 and mean 52.0 tCO2e. In contrast,
257carbon footprints of entire metropolitan statistical areas are

Figure 2. Average household carbon footprints (HCF) in (a) 31 531 zip code tabulation areas, (b) 10 093 U.S. Census cities and towns, (c) 3124
counties, (d) 276 metropolitan statistical areas, (e) 376 urban core cities, and (f) 100 largest urban core cities, by log10 of population per square mile
(log of population density). The red line in each figure is the mean of all HCF for that population density, binned at increments of 0.1 on the x-axis.
Linear goodness of fit trend lines show no correlation between population density and HCF, with the exception of the 100 largest urban core cities,
R2 = 0.29. Mean HCF decreases only after ∼3000 persons per square mile (or 3.5 on the x axis).
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258 quite similar, 48 tCO2, SD 3.8. The red line in each figure is the
259 mean of all HCF for that population density, binned at
260 increments of 0.1 on the x-axis. Mean HCF, standard deviation
261 and range increase moderately until a threshold of about 3,000
262 persons per square mile is reached (3.5 on the x-axis), after
263 which mean HCF decreases logarithmically by about 10 tCO2e
264 for each 10-fold increase in population density. Linear trend
265 lines plotted for each chart reveal virtually no correlation
266 between population density and household carbon footprints
267 (r2 = 0.001 for zip codes and cities, 0.01 for counties and 0.02
268 for metropolitan areas), with the exception of the 100 largest
269 cities (r2 = 0.29). Other possible trend lines produce similar
270 results, with or without a log x-axis. If plotting only the mean
271 carbon footprints of highly dense cities, it is possible to find
272 strong correlations between population density and trans-
273 portation emissions or total HCF; however, this correlation
274 almost completely disappears when considering all cities or
275 metropolitan regions.
276 In agreement with population density hypotheses, large,
277 dense metropolitan areas do contain locations in city cores with
278 very low HCF compared to smaller, less dense cities, but they
279 also contain suburbs with relatively high HCF, more than

f3 280 offsetting the benefit of low carbon areas in city centers. Figure
f3 281 3 shows the min, mean, and max household carbon footprints

282 of zip codes within each metropolitan statistical area
283 (Supporting Information Figure S-4 is the same plot with

284population density on the x-axis instead of population). There
285is a strong negative correlation between population and min
286values (r2 = 0.483) but also a strong positive correlation
287between population and max values (r2 = 0.361). As
288metropolitan size increases the range between the lowest and
289highest HCF locations also increases, growing from a factor of
2901.5 difference in small metropolitan areas to a factor of 4
291difference in the largest. While the 25 most populous MSAs
292contain locations with 50% lower HCF than average, there is a
293small but noticeable trend of higher overall household carbon
294footprints in larger metropolitan areas because of the influence
295of outlying suburbs. The two largest metropolises, New York
296and Los Angeles, break this trend by demonstrating lower than
297average HCF.
298Analysis of all urban cores (also called principal cities),
299 t1t2suburbs, and rural areas is presented in Tables 1 and 2. Large,

300population-dense cities, which are defined as urbanized areas
301inside a principal city,33 have lower HCF than smaller principal
302cities; however, the opposite is true with large, relatively
303population dense suburbs, which have higher HCF than smaller
304suburbs (Table 1). We find no evidence that increased
305population density correlates directly with lower household

Figure 3. Min, mean and max carbon footprints of zip codes within
276 metropolitan statistical areas (y-axis) by log10 of total population
(x-axis).

Table 1. Summary of Household Carbon Footprints (HCF)
of Urban Core Cities, Suburban Cities, Suburban Towns,
and Rural Areas for Sample of Zip Codes Categorized by
NCHS33a

trans total
st.
dev.

pop.
(M) pop. density

city, large 11.3 41.8 8.2 20.3 9953
city, midsize 13.9 45.1 9.5 7.3 3583
city, small 14.6 46.6 7.3 13.4 2117
rural, remote 16.0 47.6 5.6 4.4 15
town, distant territory 16.1 48.7 5.1 15.0 160
suburb, small territory 16.8 50.0 6.1 3.3 494
suburb, midsize 17.3 51.0 7.0 5.0 902
rural, distant 18.0 51.3 6.1 9.0 74
suburb, large 16.9 53.1 8.9 43.9 2706
town, fringe 18.2 53.2 14.7 3.8 251
town, remote territory 18.4 54.5 18.8 1.3 93
rural, fringe 19.1 55.8 7.8 12.9 254
aSee Supporting Materials for definitions of location types. Table
includes HCF for transportation, total HCF, standard deviation of
total HCF, total population in the sample (in millions of residents),
and population density (persons per square mile).

Table 2. Household Carbon Footprints in Metropolitan
Statistical Area Principal Cities, Suburbs, and Rural and
Micropolitan Areas (MSAs)a

pop.
(M)

tCO2/
cap

tCO2/
hh MtCO2 percentage

metropolitan areas 241 18.4 49 4442 80%
principal cities 98 17.2 44 1695 30%
suburban 143 19.3 53 2747 49%
rural and
micropolitan

59 19.5 50 1145 20%

total 300 18.6 49 5588 100%

aTable includes almost all populated zip codes in the U.S. and per
capital and per household HCF for model year 2007. All locations not
in principal cities, as classified by Census, but within metropolitan
statistical areas are considered “suburbs”.
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306 carbon footprints in suburbs or rural areas; in fact, the opposite
307 appears to be true. Transportation carbon footprints are about
308 50% higher in large suburbs compared to large principal cities,
309 while total carbon footprints are about 25% higher, or 10
310 tCO2e.
311 Table 2 summarizes results from all U.S. zip codes, including
312 300 M people, or over 99.6% of total U.S. population in the
313 model year of 2007. Metropolitan statistical areas account for
314 about 80% of the U.S. population and household carbon
315 footprints. Principal cities, as defined by the U.S. Census,
316 account for about 30% of U.S. carbon footprints, while
317 locations outside of principal cities but still within metropolitan
318 areas (suburbs), account for about 50% of total U.S. household
319 contributions to climate change.
320 Total HCF for all U.S. locations is nearly 6 billion metric
321 tons of CO2 equivalent, or about 80% of total U.S. GHG
322 emissions, but would likely be equivalent to nearly 100% of
323 total U.S. GHG emissions if the carbon intensity of imports
324 were considered.1 Our estimate aligns very closely with other
325 national HCF studies of the United States,1,10,35 all of which
326 estimate average U.S. HCF at about 50 tCO2e. Future versions
327 of this work would benefit from inclusion of a multiregional
328 input-output model to account for the carbon intensity of
329 international supply chains.1,36

330 To develop the best explanatory model of the results we
331 regressed total HCF against all independent variables used in
332 our econometric models (vehicle ownership, household size,
333 energy prices, etc.) for each zip code in the data set. Of the 37
334 independent variables included in the regression models, 6
335 variables explain 92.5% of the variability for all zip codes, 96.2%
336 in principal core cities and 94.6% in suburbs, as measured by
337 adjusted r2. In order of their influence on HCF, controlling for
338 all variables entered previously (or stepwise) these are: number
339 of vehicles per household, annual household income, carbon
340 intensity of electricity, number of rooms (a proxy for home size,
341 which is not available for zip codes), natural log of persons in

t3 342 household and log of population density (model 1 in Table 3).
343 The next most significant variables (not shown) are average
344 time to work, fuel prices for gasoline and natural gas, heating
345 degree days and average year homes built; inclusion of these
346 variables improves adjusted r2 from 0.925 to 0.935.
347 Overall, income is the single largest contributing factor to
348 household carbon footprints (controlling for all other
349 variables), but the combined effect of other model variables,
350 controlling for income, has far greater influence on the model
351 goodness of fit. Income is positively correlated with population
352 density for all locations (R2 = 0.339), but slightly negatively
353 correlated when considering just principal cities (R2 = 0.078).
354 Models 2−4 in Table 3 emphasize the role of population
355 density on household carbon footprints. Consistent with Figure
356 3, model 2 confirms there is virtually no direct correlation
357 between population density and HCF for all zip codes (β =
358 0.037, R2 = 0.001) yet there is a reasonably strong correlation
359 when considering only principal cities (β = 0.484, R2 = 0.234).
360 Population density also becomes strongly significant when
361 controlling for income and household size (β = −0.3) for all
362 locations (model 3). When controlling for rooms and number
363 of vehicles, population density is no longer significant due to
364 multicollinearity between population density and these
365 variables (see Supporting Information for a correlation matrix).
366 Thus, population density appears to affect the size of homes
367 and vehicle ownership and these variables in turn affect HCF,

368along with income, the carbon intensity of electricity,
369household size, and other factors to a lesser degree.
370The diverse composition of household carbon footprints
371between locations (see Supporting Information Figure S-3) is
372also of significance. Emissions from travel are 3 times larger
373than energy in some locations, while in other locations energy-
374related emissions are considerably higher than travel. House-
375hold energy comprises between 15% and 33% of total
376household carbon footprints for about 90% of locations,
377while transportation comprises between 26% and 42%. The
378carbon footprint of food ranges from 12% to 20% of total HCF
379and is in some cases larger than either transportation or energy
380carbon footprints. Previous research9 has further shown that the
381size and composition of carbon footprints varies even more
382noticeably for households of different demographic character-
383istics within locations.
384These results should be understood in the context of
385uncertainty and the methods used to derive the estimates. We
386have used national survey data to predict consumption at fine
387geographic scales and have used average GHG emission factors
388to estimate emissions. This approach hides important regional
389differences. For example, while we estimated vehicle miles
390traveled for every zip code in the U.S. using locally available
391data, we have assumed average vehicle fuel economy for all
392locations. We have also assumed similar diets, housing
393construction, water, and waste-related emissions because of a
394lack of regionally specific data. Some of the model variables
395may indicate multiple conflicting aspects of urban form. For
396example, increased travel time may simultaneously indicate
397increased traffic, higher use of public transit, and longer travel
398distances. Also, population density does not account for mixed
399use, such as commercial and industrial zones colocated in
400populated areas. Additionally, as noted under model validation
401in the Supporting Materials, the model tends to underestimate
402emissions for locations with relatively high consumption.

Table 3. Summary Statistics for All Zip Codes in the Data
Set (All), Principal Cities (Cores), and Suburbsa

all cores suburbs

1 no. vehicles 0.338 0.183 0.310
annual hh income 0.499 0.476 0.500
g CO2/kWh 0.271 0.255 0.288
no. rooms 0.202 0.242 0.221
ln persons per hh 0.179 0.255 0.154
log pop. density −0.126 −0.084 −0.123
adj. R2 0.925 0.962 0 946

2 2 log pop. density 0.037 −0.484 −0.076
adj. R2 0.001 0.234 0 006

3 annual hh income 0.754 0.683 0.780
ln persons per hh 0.314 0.371 0.266
log pop. density −0.302 −0.320 −0.301
year home built −0.116 −0.060 −0.022
adj. R2 0.653 0.812 0 691

4 no. rooms 0.448 0.486 0.526
no. vehicles 0.515 0.472 0.471
ln persons per hh 0.008 −0.015* −0.014**
adj. R2 0.747 0 808 0 788
N 31447 3646 11011

aStandardized beta coefficients. p < 0.001 for all variables, except *p <
0.1, **p < .01. VIF < 2.1 for all variables.
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403 ■ DISCUSSION

404 In this study, we characterize average household carbon
405 footprints of essentially all populated U.S. locations and reveal
406 a more nuanced relationship between population density and
407 household carbon footprints. Previous research using much
408 smaller data sets has suggested a negative correlation between
409 population density and emissions; as population density
410 increases, emissions decrease. In contrast, we find that the
411 mean, standard deviation and range of emissions actually
412 increase until a population density of about 3000 persons per
413 square mile is reached, after which mean HCF declines
414 logarithmically, leveling out at a lower limit of about 30 tCO2

415 per household (35% below average) at densities over 50 000
416 persons per square mile. The net effect of this inverted-U
417 relationship is no overall correlation between population
418 density and HCF when considering all U.S. zip codes (r2

419 <0.001, Figure 2a) and cities (r2 <0.001, Figure 2b); however
420 there is a strong negative log−linear correlation between
421 population density and HCF if only considering the most
422 populous cities (r2 = 0.3, Figure 2f), consistent with previous
423 studies.
424 When considering entire metropolitan statistical areas the
425 inverted-U relationship disappears and the correlation appears
426 to be slightly positive (Figures 2d and 3 and Supporting
427 Information Figure S-4), similar to the left side of the inverted-
428 U relationship for zip codes and cities. More populous
429 metropolitan areas tend to have somewhat higher net HCF
430 due to the influence of more extensive suburbs, which are on
431 average 25% higher than urban cores (Figure 3). The two
432 largest metropolitan areas, New York and Los Angeles, are
433 exceptions with somewhat lower net carbon footprints,
434 suggesting the inverted-U relationship may hold for extremely
435 population-dense metropolitan areas, or megacities. Similar
436 comprehensive studies in other countries are needed to
437 compare the effects of population density and suburbanization
438 to see if lessons in the U.S. are transferable.
439 Higher emissions in suburbs, and at moderate population
440 densities, are due to a number of factors. First, urbanized areas
441 are wealthier than rural areas, with higher consumption and
442 emissions; however, at population densities above a threshold
443 of about 3000 persons per square mile, household carbon
444 footprints tend to be lower, primarily, due to smaller homes,
445 shorter driving distances, and also somewhat lower incomes.
446 As a policy measure to reduce GHG emissions, increasing
447 population density appears to have severe limitations and
448 unexpected trade-offs. In suburbs, we find more population-
449 dense suburbs actually have noticeably higher HCF, largely
450 because of income effects. Population density does correlate
451 with lower HCF when controlling for income and household
452 size; however, in practice population density measures may
453 have little control over income of residents. Increasing rents
454 would also likely further contribute to pressures to suburbanize
455 the suburbs, leading to a possible net increase in emissions. As a
456 policy measure for urban cores, any such strategy should
457 consider the larger impact on surrounding areas, not just the
458 residents of population dense communities themselves. The
459 relationship is also log−linear, with a 10-fold increase in
460 population density yielding only a 25% decrease in HCF.
461 Generally, we find no evidence for net GHG benefits of
462 population density in urban cores or suburbs when considering
463 effects on entire metropolitan areas.

464Given these limitations of urban planning our data suggests
465that an entirely new approach of highly tailored, community-
466scale carbon management is urgently needed. Regions with
467high energy-related emissions, such as the Midwest, the South,
468and parts of the Northeast, should focus more on reducing
469household energy consumption than regions with relatively
470clean sources of energy, such as California. However, if
471household energy were the sole focus of residential GHG
472mitigation programs, then between two-thirds and 85% of
473household carbon footprints would be left unaddressed in most
474locations; the full carbon footprint of households should be
475considered in community GHG inventories and management
476plans. Suburbs, which account for 50% of total U.S. HCF, tend
477to have high motor vehicle emissions, large homes, and high
478incomes. These locations are ideal candidates for a combination
479of energy efficient technologies, including whole home energy
480upgrades and solar photovoltaic systems combined with electric
481vehicles. Food tends to be a much larger share of emissions in
482urban cores, where transportation and energy emissions tend to
483be lower, and in rural areas, where household size tends to be
484higher and consumption relatively low.
485Several recent studies for California37,38 conclude that 80%
486GHG reductions are possible only with near technical potential
487efficiencies in transportation, buildings, industry, and agricul-
488ture. To the extent that these efficiencies are not met, highly
489tailored behavior-based programs must make up the difference
490to decrease demand for energy, transportation, goods, and
491services that drive emissions.
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501http://coolclimate.berkeley.edu/carboncalculator, and an inter-
502active mapping Web site, http://coolclimate.berkeley.edu/
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