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DIFFRACTION PHENOMENA IN SPONTANEOUS AND STIMULATED 
RADIATION BY RELATIVISTIC PARTICLES IN CRYSTALS (REVIEW) 

V.G. Baryshevsky and I. Ya. Dubovskaya 

I. Introduction 

The emission of photons by relativistic particles in media has been calling attention for a 

long time. This connects, first of all, with a wide variety of tasks being solved by using different 

radiation mechanisms, such as: bremsstralung, transition and Cerenkov radiations and so on. In 

later decades investigation of radiation by relativistic particles in crystals is most interesting. A 

number of new radiation mechanisms connected with a periodic structure of crystals have been 

considered theoretically and confirmed experimentally in the Institute of Nuclear Problems 

(Minsk). 

All characteristic properties of radiation, in this case, are resulted in by a crystal periodic 

structure. The medium can influence radiation processes under the passage of relativistic charged 

particles through crystals in two ways. First of all, it is well-known that, when a charged particle is 

incident on a crystal at a small angle relative to crystallographic planes or axes, its trajectory is 

formed by a series of grazing collisions with atoms of a crystal. As a result, the particle moves in 

some averaged potential of crystallographic planes or axes. In this case, we tell about channeling 

phenomenon and can consider the motion of channeled particles as motion inside a potential well -

one-dimensional (for the plane channeling) or two-dimensional (for axial channeling). But the 

particle, moving inside a potential well, according to quantum mechanics, has a discrete spectrum 

of its energy. In this case, this is the energy spectrum of its transverse motion. Consequently, such 

particles can be considered as one-dimensional or two-dimensional atoms (oscillators) being 

characterized by a spectrum of bound states (zones) of transverse energy En, Ef. The number of 

bound states and their characteristics depend on the longitudinal particle energy. One can conclude 

that many phenomena observed for ordinary atoms will manifest themselves under passage of 

channeled particles through crystals. It is obvious that such excited atoms should emit photons 

with the energy equal to the difference of energies of atom states En and Ef. The frequency of 



transition is .Qnf =En- Ef and depends, in a laboratory frame, on the total particle energy. By 

analogy of an ordinary moving oscillator, the frequency of observed emitted photons is evaluated 

by Doppler effect and, as a result, is determined by the following expression: 

ro = .Qnf 
1- ~n (ro) cos e (1) 

where e is the radiation angle,~= u/c, u is the longitudinal particle velocity, n(Ol) is the refractive 

index of photon with a frequency ro in the medium. It is interesting that the relativistic oscillator can 

be formed not only by unperturbed crystal channel but also by an external ultrasonic or laser wave 

which subjects to the crystal and originates a bent crystal channel. 

On the other hand, when the wave length of emitted photons is of the order of the 

interplanar spacing of atoms in a crystal, radiation diffraction can essentially modify photon state. 

In this case, the radiation process is characterized by several refractive indices ni(Ol) dependent on 

the photon momentum direction. In its turn, this leads to the modification of all mechanisms of 

radiation formation by relativistic particles in X-ray region of spectrum. For example, the radiation 

at a large angle relative to particle motion direction becomes possible. As a result, the diffraction 

pattern characterizing a given crystal is formed. The analysis of dielectric properties of a crystal 

under diffraction condition shows that at least one from several refractive indices ni(Ol), 

characterizing the crystal under this condition, becomes more than unity within a frequency 

interval. As a consequence, the Vavilov-Cerenkon condition can be fulfilled. In this case, the X-

ray radiation, being analogous to optical Cerenkov radiation, appears. This radiation mechanism, 

taking place under the penetration of uniformly moving particles through the periodic medium 

under diffraction condition of radiated photons, was theoretically predicted by Baryshevsky and 

Feranchuk and was called Parametric (quasi-cerenkov) X-ray radiation (PXR). It was 

experimentally observed and investigated in Tomsk synchrotron by collaboration of Institute of 

Nuclear Problems (Mnisk) and Institute of Nuclear Physics (Tomsk). 
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Under diffraction conditions, the radiation of relativistic oscillator essentially modifies as 

well. Now the periodic structure of a crystal affects both to particle motion and photon state. This 

leads to the formation of diffraction radiation of oscillator (DRO), which can not be reduced to the 

sequence of two independent processes: radiation by oscillator and diffraction of radiated photons. 

In this case the process of photon emission and its diffraction are developing simultaneously and 

coherently and result in the radiation with new properties. 

The parametric X-ray radiation generated by a particle uniformly moving through a crystal 

has threshold behavior the same as the ordinary Cerenkov radiation and its intensity is proportional 

to the crystal length or photon absorption length. The spectral-angular distribution consists of a 

series of peaks (reflections), concentrated near characteristic frequencies of PXR ffiB = t 2c/2jt ~ 
(t is a reciprocal lattice vector), and is determined, fi~st of all, by a crystal dielectric constant 

under diffraction. It is important to stress, that PXR does not should be mixed with so-called 

"resonance" [1] or dynamical [20] radiations. In the contrary of PXR, which frequencies are 

determined only by a crystal constant, the frequency of resonance radiation depends on a particle 

energy [1]. The dynamical radiation takes place only in thin crystals [20]. Its intensity decreases 

with increasing the crystal length. This is caused by the neglection of the photon refraction inside a 

crystal [20]. The refraction of photons was taken into account by the authors in [4,21]. Just due to 

the fact that the refractive index of a photon can become more than unity under diffraction 

condition, the particle speed inside the crystal becomes more than the phase speed of the photon in 

the medium. This, in turn, leads to the appearance of radiation with the intensity proportional to the 

crystal length (in the absence of absorption). 

Now many features of PXR, predicted theoretically, have been confrrmed in experiments. 

The second type of X-radiation (DRO), also connected with a change of dielectric 

properties under diffraction conditions, was considered in [13] and then in [17-19]. If, in the 

absence of diffraction, the X-ray spectrum of the oscillator is determined by the complex Doppler 

effect (n(ro) < 1), then, under diffraction, the refractive index can become more than unity and, 

consequently, the anomalous Doppler effect possible. In this case the photon emitted by oscillator 

3 



is accompanied by the excitation of oscillator itself. This is one of the important features of 

diffraction radiation of oscillator (DRO). This effect is waiting for own experimental investigation. 

So, the modification of dielectric properties in periodic media under diffraction leads to the 

appearance of two types of radiation with angular distribution forming a diffraction pattern 

determined by parameters of medium periodic structure. For crystals with parameters of lattice of 

the order of A0
, the spectrum of PXR and DRO is in the region of X-ray and even higher 

frequencies depending on excited reflex. 

It is well-known that in amorphous medium the ordinary Cerenkov radiation can be 

considered as a specific case of radiation of oscillator with the zero eigenfrequency [ 1 0]. In a 

periodic medium, in the total analogy, the frequency of PXR can be expressed by the formula (1) 

in the specific case of .Qnf = 0, i.e., 1- ~ni (co) cos 8 = 0· where ni (co) is the refraction index of a 

crystal under diffraction conditions. 

II. Dispersion Characteristics of PXR and DRO. 

Due to the dependence of the refractive index under diffraction on a frequency and a particle 

motion direction, the relation (1) and (2) determining the radiated photon spectrum are the 

equations with several solutions [13,17, 19, 27]. 

For example, let us consider the case of two-wave generation when the diffraction 

condition is fulfilled only for a reciprocal lattice vector t. It means that two strong waves with 

..,.-+ - -wave vectors k and k"t = k + t are excited under diffraction. For the simplicity of analysis of 

photon frequencies, let us represent the equation (1) in the form: 

( ) 
co- .Qnf 

nco=----
co~ cos e (1.1) 

In this case the refractive index in a crystal under diffraction conditions is characterized by 

two dispersion branches n1,2. By using the well-known expression for nt,2 one can rewrite (1.1) 

as follows: 
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1 _ Onr(t-8) = 

~ cos e ros ~ cos e 

= 1- co[ /(1 + ~t}-A~118_, + 
4Jco2) gu 

(1.2) 

for the diffraction radiation of oscillator (ORO) and 

1 = 1- co[ \/(1 + ~ 1)-A~1 _a_l _1 + 
~ cos 0 4ro2 ) gu [(~1 - If- A~1 _a_l _,]

2 
+ 4~1 lg~~ ) 

gu lgd (1.3) 

for parametric quasi-Cerenkov radiation (PXR), generated by a particle passing through the crystal 

with a constant velocity. 

(--) 2 . 2kt +t . th d . . f We have introduced the following notations: ex= , IS e ev1at1on rom exact 
co2fc2 

Bragg condition, 

where A= 't
2

C
2 > 0, 8 =co- ros/ros , cos = t2c2nft ~is the Bragg frequency, corresponding to ex 

co~ , 

= 0, ~ 1 = kzfkz+'tz is the geometry factor of diffraction asymmetry, the axis Z is chosen as a 

normal to the target surface directed inside the crystal. Let us assume the particle with a mean 
~ 

velocity u to move along the axis Z, ~ = u/c, go, gt are the coefficients in a series expansion in 

terms of the reciprocal lattice vectors of the crystal dielectric susceptibility. For simplicity, we will 

assume a crystal to be center-symmetric and the absorption to be neglected, cot= 47tenc/II1e is the 

Langmuir frequency of the medium. 
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Let us consider in detail the condition of the existence of parametric X-ray radiation. 

Indeed, for the existence of this radiation it is enough the relation (1.3) to be fulfilled although for 

one from the two refractive indices characterizing the crystal at a given frequency. On the left-hand 

side of (1.3) there is a term more than unity (~ < 1 and Ieos 81 < 1 ). Consequently, for the 

existence of the solution of Eq.(1.3), the expression, on the right-hand side of (1.3), between the 

figure brackets, should be less than zero. Far from Bragg condition, B ~ oo and we transit to the 

well-known case of amorphous medium, i.e. to the refractive index n (co)= 1- cofJ2 co2 < 1 for 

any frequencies from X-ray region. As a result, Cerenkov radiation is impossible in this region. 

The analysis of (1.3) near Bragg condition la.l.$.lg~ shows that the expression between the figure 

brackets is always positive for one dispersion branch, corresponding to the sight (-); 

consequently, the fulfillment of Eq.(1.3) is impossible. For the second branch, corresponding to 

the sight ( + ), this expression can be negative at la.l ~ lg~. For example, in the case of 

~~~- 1)-A~1 ~ >> 4~t ~2 , 

we can approximately write 

=1-_!._ 1 1-A_y_ 1 co
2 

[ s:] ~ cos e - 2co2 ~ lg~ 

and, obviously, that the fulfillment of Cerenkov condition is possible for Laue diffraction case 

(~I > 0) at frequencies for which lA B I> 1. In Bragg diffraction case (~I < 0) the Cerenkov jgcl] 

condition can be fulfilled not only for one dispersion branch but even for two branches at the ;...! 

degeneration point. 

The comparison of expression (1.3) and (1.2) shows that the relation (1.2) can be satisfied 

for both dispersion branches at !lnr > 0, i.e. for the radiation accompanied by the transition of a 

particle to the lower energy level (En> Ef). It means that two different frequencies are radiated at a 
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given angle. In this situation, we observe normal complex Doppler effect. In this case, the equation 

(1.2) is satisfied for radiation angles more than the angle of parametric (quasi-Cerenkov) radiation. 

At the same time, the fulfillment of (1.2) leads to the strong limitation of particle energy, the 

radiation angle and the value of deviation from the exact Bragg condition a. for the radiation 

accompanied by the oscillator excitation Onr < 0 (En< Ef). In this case, according to (1.2), for one 

from dispersion branches it is possible the radiation of a photon (anomalous Doppler effect) with 

the wave vector directed relative to the particle motion at an angle less than that for the parametric 

(quasi-Cerenkov) radiation. 

where 

The analytical analysis ofEq.(1.2) can be derived in a specific case, when 

2 
2~<1>(co,e}{1- ~cos e)<< 1 

02 

<l>(co,e) = i { 1 + ~1- A~1l:cl + V (~1- 1- A~1l:clt + 4~1 ~ 

Let us represent (1.2) in the form 

1-2 co[ <I> (co,e )(1- ~cos e)) 
02 

(1.4) 

(1.5) 

(1.6) 

In view of Eq.(1.4), Eq.(l.6) divides into two independent equations corresponding to upper and 

:~ lower radiation branches in the absence of diffraction. 

CO! = Onr cot <I> (co, e), 
1 - ~cose 2 onf (1.7) 
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ron=~ <1> (ro,e). 
20m (1.8) 

Neglecting the dependence of~~ on ro, one can obtain the frequency solutions of Eqs.(l.7) 

and (1.8) as a function of a radiation angle: 

(1.9) 

+ ~ (1- ~1 + 1 _ rom-ros)
2 _ 4 ~21.](1-x)-1 - x roo 1g0] x ' 

COn±= roo [1 + ~1 + x (1 +WE ± 
2 2 roo 

(1.10) 

± ~ {1- ~1 + 1 _ ros)
2 

+ 4 ~ 1.] (1 + x)-1 
x roo jgO] x ' 

where 

--
'tJI and 't.Lare the projections of the reciprocal lattice vector to the particle mean velocity direction 

- -and to the plane perpendicular to its velocity, correspondingly; <pis the angle between 't.L and k .L· 

In Fig.1 the dependence ro = ro (8) for the case of symmetric diffraction f31 = 1 is shown. 
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Fig. 1 

According to Fig.1 and Exs.(l.9) and (1.10), the spectrum of radiated photons essentially modify 

under diffraction. Each radiation branch, in the absence of diffraction, splits, in its turn, into two 

subbranches. Thus, diffraction results in the excitation of an additional branch in the complex 

Doppler effect with the frequency close to the Bragg one ffiB and in the formation of a radiation 

non-transparency region in the angular distribution AS= S+- S_ = 10-s + 1Q-6 rad. Under the 

change of the angle S the solution is realized first for one dispersion branch than for the another 

one. In Fig.1 the angular region in which lex! ~ lgcl is pointed out. It should be noted that the 

radiation frequency of additional diffraction branch changes a little with the radiation angle. As a 

result, the angular range, in which lex! ~ lgcl. may considerably exceed the ordinary angular interval, 

characterizing diffraction of an X-ray external monochromatic wave when AS is of the order of 

several angular minutes (in Fig.1 this is the angular interval AS= AS++ AS_). To obtain the 

analytical solution is rather complicated, that is why, the numerical calculation of the dependence of 

a.!lgol on the radiation angle S near the Bragg angle SB was made for the oscillator moving along 

the crystal direction {110) and photon diffraction by crystallographic planes (400) in Si. According 

to these calculations, the magnitude of AS weakly depends on the energy and eigenfrequency of 

oscillator and maintains within the interval of 10-4- 10-3. In Fig.2 the magnitude of a./lgol shows 

as a function of the angleS at the following parameters of the oscillator: Q = 1e V, 'Y = 2.103. As 

you can see AS_"" 4.10-3 rad, AS+= 5.2·10-3 rad and the total intervallaJ ~ lgcl. AS=9.2 10-3 rad. 
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Fig. 2 

The values of the angles e±,when <X =0, is determined from the equation 

(1.11) 

The picture, like the considered one, takes place also for the second branch (see (1.10)). 

So, if roo ::1:- roB and it is possible to neglect the second term under the root in (1.10), then, for 

example, ron+ = roB and ron- = roo at roo < roB. It means that, as in the previous case, we have the 

excitation of the wave with the frequency close to the Bragg frequency in addition to the solution 

far from diffraction at a given radiation angle e. As the calculation shows, the magnitude of a 

keeps practically constant and is determined by the oscillator eigenfrequency in the whole interval 

of radiation angles, corresponding to the fulfillment of the condition (1.4), in spite of the change of 

diffracted wave frequency. Although, the parameter a depends on the eigenfrequency of oscillator 

Q and is equal to zero at 

(1.12) 
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but it remains small da.l ~ lgcl) within the rather wide interval of the eigenfrequencies. For example, 

in the case, considered above, !l± = 0.092e V and la.l ~ lgcl for the interval '4min = 0.08e V and 

O+max = 0.15 eV. 

It should be noted that the equality (1.10) has the solution also for the negative 

eigenfrequency of oscillator (at the frequency close to roB), that corresponds to the anomalous 

Doppler effect, i.e. the radiation of the oscillator is accompanied by its excitation. Such process is 

possible because the refractive index can be more than unity under diffraction condition. 

The analysis of dispersion expression for the radiation, propagating at a large angle and for 

arbitrary geometry of diffraction was made in [29]. Here we discuss the spectrums of DRO and 

PXR only in the two-wave diffraction case. However, due to crystal symmetry, the diffraction 

condition can be satisfied for many waves, that is the case of multi-wave diffraction can be 

realized. In this case the several refraction indices ni(ro), corresponding to the different dispersion 

branches, can be more than unity. It appears that the possibility of new effects in the radiation, 

such as the effect of the excitation of radiation in a roundabout way takes place. It means, that the 

PXR intensity in a diffraction peak may differ from zero even in the case when a given reflection is 

forbidden because of the lattice symmetry. The particular properties in the angular distribution of 

radiation are observed in the vicinity of the point of the dispersion branches degeneration. 
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IT. Parametric X-Ray (Quasi-Cerenkov) Radiation (PXR). 

§1. General Expression for Spectral-An~ular Distribution of Radiation Generated by a 

Particle in a Tar~et. 

Both the spectral-angular density of radiation energy per unit solid angle W;,ro and the 

differential number of emitted photons dN~ro ro = 1/0o · w;,m can be easily obtained if the field 

- -+ E(r,ro ), produced by a particle at large distance r from a crystal, is known [30] 

w- = er2 IE (r,ro j2 , 
n,ro 47t2 (2.1) 

Here the line means the averaging over-all possible states of the radiating system. In order to obtain 

E{r,ro ), Maxwell's equation describing the interaction of particles with the medium should be 

solved. The transverse solution can be found by the help of Green's function of this equation, that 

satisfies the expression: 

G = Go + Go Jfi:_ (£- 1) G , 
47tc2 (2.2) 

Go is the transverse Green's function of Maxwell's equation atE = 1. It is given, for example, in 

[31]. 

By using G,we can find the field being interested in: 

1: (.. ) J G ( .. ..., ) iro · (...J ) 3 ' .L..]1 r,ro = ne r ,r ,ro -JOe r ,ro d r , 
c2 (2.3) 

where n, e = x, y, z, joe {r,ro) is the Founier-transform of e-th component of the current, produced 

by the moving charged particle beam (in the approximation linear in the field, the current is 

determined by the velocity and the trajectory of a particle, which are obtained from the equation of 

particle motion in the external field, by neglecting the influence of the radiation field on the particle 
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motion). Under the quantum-mechanical consideration the current jo should by considered as the 

current of transition of particle-medium system from one state to the another one. 

According to [32], the Green's function is expressed at r ~ oo, through the solution of 

homogeneous Maxwell's equation Eh > {r,co ), containing incoming spherical waves: 

• .J:" (·.., ) ekr ~ E<-)S • (.... ) 
lltt.Dne r ,r ,co = -r-~ ~ ke r',co , 

s (2.4) 

where e sis the unit polarization vector, s- 1,2, e1 j_ p j_ k . 
If the electromagnetic wave is incident on a crystal of finite size, then at r ~ oo 

-s(-) .. ...... ikr 
Ek: (r,co) = 'E?ekr + con~, 

one can show that the relation between the solution~-> and the solution of Maxwell's equation 

£<+> (k:,co) , describing the scattering of a plane wave by the target (crystal), is given by: 

(2.5) 

By using (2.3) we obtain 

(.. ) ekr ico ~ f -s(-)* (.. ) ~ (.., ) 3 , En r,co = -r- cf?. ~ ~ Ek r,co Jo r ,co d r 
(2.6) 

As a result, the spectral energy density of photons with the polarization s can be written in the 

form: 
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2 If -s(-)* (.. ) • (.. )d3.f w;,(l) = ~U Ek r,ro jo r,ro •
1 

• 
(2.7) 

io (f,ro) = f 11•" io (f. t) dt = Q f e•n V( t)O(i'- i( t)) dt , 
(2.8) 

where Q is the charge of a particle, V{t) and i{t) are the velocity and the trajectory of the particle at 

the moment t. By introducing Eq.(2.8) into (2.7) we derive 

dN~ ro = ro~ I ( Jlfl>' (i(t),ro )V{t)d"td~ 
• 41t2 u r (2.9) 

The integration in (2.9) is carried out over the whole interval of the particle motion. 

It should be noted that the application of the solution of homogeneous Maxwell's equation, 

instead of inhomogeneous one, essentially simplifies the analysis of the radiation problem. 

§2. Parametric X-Ray (Quasi-Cerenkov) Radiation (PXR). 

The Theoretical Description. 

The problem of radiation by a charged particle uniformly moving through a space-periodic 

medium has a long history [1,5]. While analyzing the optical radiation inside the complex medium 

consisting of a set of plates with different dielectric constants, Fain berg and Hizhnayk [39] showed 

that, besides the well-known Vavilov-Cerenkov radiation caused by the difference of medium 

dielectric constant from the unity, it is possible the other mechanism of radiation. It appears when 

the radiation wave length is comparable with the dimensional period of the medium and is a result 

of the change of a photon state in the medium. The considered mechanism of radiation was called 

the parametric Vavilov-Cerenkov radiation. 

The problem of the radiation by a particle uniformly moving through the three-dimensional 

periodic medium was considered by Ter-Mikaelian in the frame of the perturbation theory [1]. It 

14 
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was showed that, under the definite interference (resonance) conditions, the "resonance" radiation 

appeared. One of the main features of this radiation [1] is that the energy of emitted photons 

depends on the particle energy and increases with increasing the later one . 

In 1971 Baryshevsky [15] showed that the refraction and diffraction of emitted photons in 

'" the thick crystals led to new, in comparison with an amorphous medium, effects, manifesting 

themselves in induced Cerenkov, transition and bremsstralung radiations by relativistic particles. 

The effects of anomalous transition and dynamical diffraction essentially modify the cross-section 

of electromagnetic processes in crystals. 

·-J 

In [6] Baryshevsky and Feranchuk solved the problem of X-ray radiation by charged 

particles uniformly moving through a crystal not using the perturbation theory relative to the 

interaction of emitted photon with the medium. The expressions for the radiation field amplitudes 

were obtained and the physical reason of the new mechanism of radiation was analyzed. It was ·•tc · 

shown that, in a such process, photons can be emitted even at large angle 9 relative to the particle 

velocity (for example, 9 ~ x/2 >> 1/y). This circumstance was suggested to be applied for 

experimental observation of this radiation. It should be noted that in [16] the integral radiation · i' 

intensity was overestimated. The correct estimation was given in [16'] and in [34-36]. The 

comprehensive analysis of X-ray radiation, formed by a particle uniformly moving through a 

crystal [34-37], allowed to conclude that this radiation had the same physical reason as Vavilov-

Cerenkov radiation. By the analogy of optical radiation, considered in [33], this new mechanism of 

X-ray radiation was called parametric X-ray radiation (PXR). The differential and integral intensity 

of PXR were derived in [34-37] in the frame both the classical and quantum theories, in the case of 

two-beam dynamical diffraction. It was shown that there were effects manifesting themselves only 

in thick crystals and, consequently, cannot be considered by the help of the perturbation theory. 

It should be noted that the analysis of the formulae, obtained in [1], shows the presence of 

interference maxima in the angular distribution of radiation. The angles between the wave vectors 

of photons, emitted in the direction of diffraction maxima and the particle motion direction can be 

much more than the angle 9 - 1/y being characteristic for the radiation in the amorphous medium. 
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The presence of such diffraction maxima is the main difference of the radiation by the charged 

particle in crystals from the radiation in the amorphous medium. However, the results, obtained in 

[1], do not describe just parametric X-ray (quasi-Cerenkov) radiation, as they are correct only for 

rather thin crystals, when the photon refraction can be ignored. As a consequence, the formulae 

from [1] do not give the maximum in the X-ray radiation spectrum in the direction of the particle 

motion. 

The X-ray radiation produced by the particle, moving with constant velocity through a 

crystal, was also considered by Garibian and Yang C. In their first papers they called this radiation 

"dynamical" radiation and then, in the book [4], as quasi-Cerenkov radiation. It is necessary to 

point out that in paper [20], published simultaneously with [16], the results were obtained in the 

frame of the perturbation theory for the thin crystal and practically coincided with the results by 

Ter-Mikaelian and did not describe parametric radiation. In [21] the formulae for the differential 

PXR intensity were derived and the qualitative analysis was made. The analysis of radiation in 

detail and numerical calculation of the integral intensity into the diffraction peak was performed in 

[38-41]. The theory of PXR taking into account the multiple scattering of particles by a crystal was 

derived in [42-46]. The results, obtained by different authors in [47-51], coincide, in general, with 

the results given in [34-37] and [4,38-41]. In [51] the analytical expressions for the integral PXR 

intensity in the perfect and imperfect crystals were obtained. The possibility of the effective 

application of PXR for the solution of different tasks was considered in [52-54]. In [55] the 

comparative analysis of contributions from the different mechanisms of radiation to the total 

intensity of X-ray radiation generated by a particle moving through a crystal target was made. 

Let us follow below the theoretical consideration ofPXR derived in [34-37, 42-46, 56]. 

According to (2.9), for the calculation of the differential number of emitted photons we 

need know the solution~-) (r,ro) which was given, for example, in [2,17] for an arbitrary 

geometry of two-beam diffraction (Bragg and Laue, see Fig. 3). For example, in the Laue case, the 

photon wave function can be written in the following form [2] (here the system li = c = 1 is used): 
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Fig. 3 

(2.10) 

+ {o_sk; [-yo e~:.(L-z)- yo ei~L-z)l + 
"'5 ~ls 'Yo ~2s 'Yo J 

The crystal target is assumed to be the plate parallel target with the surface perpendicular to the Z 

axis and with the length 0 ~ Z ~ L. 

(2.11) 
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~1 = kzfkz + 'tz is the diffraction asymmetry factor, a is the deviation from the exact Bragg 

condition, g~k are the coefficients in a series expansion of the crystal dielectric susceptibility in 

terms of the reciprocal lattice vector. The crystal dielectric susceptibility is a periodic function 

relative to the location of the nuclei and atoms and directly connects with the amplitudes of the 

coherent elastic scattering of photons by electrons and nuclei of the crystal. For the central-

symmetric crystal goo= gu =go, g\0 = ~, g& 1 = g~*, g~ = g't, g~ = g't cos (k,k't) . 

By substituting (2.10) into (2.7) and integrating over the whole particle way, we can obtain 

the following expression for the differential number of photons emitted within the spectral interval 

dro and into the solid angle dQ along the particle velocity direction: 

(2.12) 

Besides, the radiation is formed in the direction of diffraction, determined by the vector roB u + t , 
where roa is the Bragg frequency, corresponding to the requirement a= 0, ~ = u/c. The 

expression for the number of photons emitted in this diffraction direction has the form: 

(2.13) 

where L~~v) and r_z> are the coherent lengths of PXR in the medium and in the vacuum, 

correspondingly. 

(v) 1 2 (m2 2 s: )-1 
LJ.LS = -( ) = - - + ev- 2uJ.Ls • 

q v ro E2 
J.l.S 

~v) = 1._ (m2 + e~)-1 , v = O,'t 
ro E2 

18 

(2.14) 



... 

Here q~! = Pz - Ptz- k~ ( 1 + OJ.I.s) is the longitudinal momentum transmitted to the medium, p and 

p1 are the initial and final momentums of the particle, 6v is the radiation angle of the photon 

~ ~ ~ ... ~ 

6o = k"u and 6-r = k"OOBU + 't. 

According to (2.14), contrary to the amorphous medium where there is only one coherent 

radiation length, we now have, in general, four coherent lengths for each direction of the emission. 

s = 1,2 correspond to two different polarization states of emitted photons, and Jl = 1,2 label two 

different stationary superpositions of electromagnetic waves appearing inside the crystal under the 

interference of the incident and the diffracted waves. 

By analyzing (2.12) and (2.13), we can see that the output of radiation is maximum if the 

real part of the longitudinal momentum transmitted to the medium Re q~s becomes zero. In this case 

the coherent length of radiation becomes equal to the photon absorption length. The dispersion 

equation ReqJ.Ls = 0 determining the condition of PXR formation, is the analogy of the Vavilov­

Cerenkov condition in the crystal. 

cos 6v = .l_ 2Reo<v) 
~ J.I.S (2.15) 

In the case of rather thick crystals when it is possible the application of o-function in the 

expressions (2.12), (2.13) (see [2]), the analytical expressions for the angular and spectral 

distributions of PXR in the diffraction peak can be easily obtained. 

It is very convenient to choose a new coordinate system for each diffraction reflex. In this 

--
case, the Z axis is directed along the vector liB= rot:+t (kB =roB/C), the X-axis is placed on the 

~ ~ 

plane of the vectors u and t , and the Y -axis is perpendicular to this plane (see Fig.4 ). 
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In this coordinate system the photon wave vector k is always directed at a small angle relative to 

the vector ~B. Taking into account the smallness of this angle Sv and integrating the Eq.(2.13) 

over the frequencies we obtain the angular distribution of PXR into a diffraction peak as follows: 

(2.16) 

(e; cos2 288 + e~) 
( 2 2 2\2 ' 
Sx + Sy + Ser} 

where the angles Sx,y are determined in the following way 

e _ (k-ksk.y c 
x,y-

( H)-1 
La (COB) = ~ g0 is the absorption length of photon with the frequency of ros. The summation is 

made over all harmonics of PXR radiated in this direction and 
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(2.17) 

determines the characteristic angular divergence of photons in a given diffraction direction, 

go = Rego. e; is the mean square angle of multiple scattering of the photon by a crystal, y = m/E, 

m is the mass of the radiating particle. It should be noted that the spectral-angular and polarization 

characteristics of PXR, taking into account the multiple scattering of particles by atoms of the 

crystal, was derived in detail in [45]. The comparison of the formulae from [45] with the 

expression (2.16), where the multiple scattering is taken into account by introducing the quality 8;, 

shows that such a phenomenological way of the multiple scattering account gives a good result and 

allows to describe the experimental results with high accuracy. Besides, as the magnitude of 

gt - 1/ro2, then the contributions of different harmonics to the total radiation intensity is 

proportional to - 1/n3 (n is the number of reflections) and, as a consequence, the intensity of 

PXR is determined, in general, by the first harmonic contribution. 

Taking into account only the first radiation harmonic let us represent the spectral-angular 

distribution of radiation in a nondimensional form with the help of the normalized angular 

coordinates and the normalized radiation amplitude, which are 

_ 1 d2N 
J(x,y)-Nd d ' 

0 X y 

Sx y xy=-·-' e , 
ef (2.18) 

where No is the total number of emitted photons. As a result, the angular distribution of photons 

within a diffraction peak is represented by a universal function _depending only on the Bragg angle 

value but not on the parameters of the elementary cell of a given crystal. 

J(x,y) = x2 cos2 28B + y2 
(x2 + y2 + 1) 

21 
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In Fig.5 the two-dimensional angular distribution J(x,y) and the lines of equal intensity are shown 

for 8B = 25°. As you can see'in Fig.5, the main peculiarity of the angular PXR distribution is the 

Fig. 5 
~ 

zero intensity of the radiation in the direction of the vector k B· This fact totally corresponds to the 

angular distribution of the ordinary Vavilov-Cerenkov radiation in the amorphous medium. 

According to Fig.5, the PXR angular distribution has two separate peaks and is polarized along the 

Y-axis. 

The multiple scattering leads to the appearance of bremsstralung, which can be diffracted 

by the same set of crystallographic planes and, consequently, gives the contribution of diffraction 

bremsstralung (DB) to the angular distribution of radiation being observed in the experiment. As a 

result, the fine structure of PXR spectrum is smoothed, especially in the case of light charged 

particles and the intensity of radiation at Sx,y ~ 0 is nonzero. As in the experimental situation the 

total intensity of radiation (PXR+DB) is measured, let us give the analytical expression for the one­

dimensional angular distribution of the total radiation emitted into a diffraction peak: 

l oN ( 1 + cos2 28B) ( 8~ + i en+ 8~r cos2 28B J( ex) =--- = ____ ....;_____..,,_..:.,_ ___ _ 

No aey ( e~ + e;rf'2 (2.20) 

There are two maxima in this case and the angular distance between them is determined by 
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The depth of the gap in the angular distribution depends on the relationship between the radiation 

.. angle 8 and the mean square angle of multiple scattering a and for J(y) is given by the relation: 

(J
Jmin) = _1_ [ s;r cos2 28B + -

2
1 ( 1 + cos2 28B} ~ 

max y s;r 

The angular distribution relative to the variable X is 

and the split of the angular peak, pointed above, takes place only if 

and the magnitude of this split is determined by 

(2.22) 

(2.23) 

.18x = 2fi ( 1 + cos2 28B}-
112 

[( cos2 28B - i) s;r-~ ( 1 + cos2 28er} a;y/2 (2.24) 
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In Fig.6 the angular distributions J(8y) (a) and J(Sx) (b) are represented at SB = 45° and 

e;/e;r = 0.5. The relative contributions of two mechanisms of radiation (PXR and DB) are shown. 
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The angular distribution relative to the azimuthal angle (8x = 8 cos q> , Sy = Ssincp) is 

represented as: 
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J( cp) = _1 aN = l [(cos2 cp cos2 29a + sin2 cp) ~1 (E, 9o) + 
No acp 1t 

(2.25) 

+ ( 1 + cos2 29a) ~2 (E, 9o)] , 

where the functions ~1 (E, 9o) and ~2 (E, 9o) are determined by the particle beam characteristics 

and the conditions of photon detection 

( 
2 2) 2 [P5 + 1 + _1_ (1 + 9i )] 

~1 (E,9o) = 1 n 9et~ 9o - 2 9o 2 1n x2 -
9et 9o + 9ef 1 +_1_ (1 +SID 

x2 

(2.26) 

2 ( 2 1 { 3)"1 
-Po Po+ 1 + x2 1 + 951 , 

h PD -
90 x - E .. J[g7f' 92 - E~ L L . th di . 1 h 9 . th 1 . w ere - VfgJ ' - m v lgo ' s - E2 LR ' R IS e ra auon engt , o Is e angu ar size 

of the detector. The special features of the angular distribution in the vicinity of the degeneration of 

the dispersion equation roots, being possible in the Bragg case of diffraction, were considered in 

[58,59]. In [58] it was first shown that the sharp maximum in the spectral-angular radiation density 

is possible in this case. This effect is the most prominent in the case of multi- wave dynamical 

diffraction. In [60] the spectral-angular and spectral distributions of PXR were analyzed in the 

specific case of diffraction - the back scattering geometry of diffraction. The numerical estimations, 

performed in this paper, showed that the integral intensity in the back reflection direction could 

exceed the integral PXR intensity in the other diffraction peaks. 
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By using the &-function for the integration of (2.13) over the angles,-it is possible to write 

the spectral distribution of the· total radiation in the following nondimensional form: 

J(u)=-1 aN =[1 +(u2+ e; )(1 +cos2 28a}l(1 +u2f 12 , 
Nt au 28;r J (2.27) 

where N 1 = 1!. No, u = c.o- c.oa tan Sa is the normalized frequency. 
2 c.oaSer 

The universal spectral distribution J(u,SB) for the different magnitudes of 8B are 

represented in Fig.7. 

1/2 

-J -l -1 {} 1 J {/ 

Fig. 7. Here: a) 8B = 5"; b) 8B = 15"; c) 8B = 30"; d) 8B = 95". 

According to (2.27), there is only a split in the spectral PXR distribution at small angles 

eB < n/8. However, the experimental observation of this split is possible only in the case of small 
' 

multiple scattering, because of 
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(2.28) 

and tends to zero at Ss = Sef· The total number of photons with the polarization t s. emitted in the 

diffraction direction ~) u + t within the diffraction peak by a particle, is given by the following 

formula (Laue case): 

(2.29) 

' " Re Y gs gs ·Im ygrgs: where go= g
0 

+ ig
0

, as= 't -'t , 't -'t • By taking into account (2.19) and (2.23) the 

go 

divergence of PXR quanta into a diffraction peak can be estimated of the order of magnitude as 

(2.30) 

and the frequency divergence as 

(2.31) 

In the experimental situation the measurement of the intensity is made by the detector with the 

angular size of So. In this case, the integral number of photons emitted in a given reflex and 

experimentally recorded can be represented by the following expression: 

(1 +cos22SB)[In(Sn+2s:r)- 2 s5 2], 
Set Sn + Sef 

(2.32) 

where the summation is derived over all harmonics of PXR, radiated in a given direction 
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~) = 't = _.Llt.zt...._n_ , n = 1,2, ... 
2sin eB d sin eB 

d is the interplanar spacing. As for the correct interpretation of the experimental results, it is 

necessary to take into account the diffraction bremsstralung (DB), especially for electrons, let us 

give the integral intensity of the radiation of DB in the reflex: 

(2.33) 

As we pointed out above, the main contribution to the radiation intensity is made by the first 

harmonic of radiation 

(2.34) 

So, the integral number of photons, recorded into a reflex, can be written as 

N = No [ ~~{E, eo) + ~2 {E, eo)] , (2.35) 

where the functions~~ and ~2 are defined by the expressions (2.26) and (2.26'). 

The obtained expressions describe the PXR radiation for the arbitrary reciprocal lattice 

vector. It means that the total angular PXR distribution is a set of peaks (reflexes) forming the 

diffraction pattern of this crystal, which is analogous to that appearing under the scattering of 

external X-ray beam with the angular divergence of ~e- 1/y by the same crystal. In Fig.8 the 

diffraction pattern, containing the most intensive PXR reflexes, are shown for the different 
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directions of the particle incidence on a crystal. The magnitudes of the angles Sa and the 

frequencies roa, corresponding to these reflexes, are given in Table I. The integral number of 

photons emitted in a given reflex (see Ex.(2.35)) depends on the particle incidence direction, on the 

lattice parameters and on the functions ~ 1 and ~2· At the same time, the fine structure both the 

angular and spectral distributions of emitted photons also depends on the parameters of the particle 

beam and crystal. It is interesting to investigate the functions ~1 and ~2 in the Ex.(2.35) as they 

determine the radiation intensity as a function of the particle energy. 

It is well-known [10], that Vavilov-Cerenkov radiation is distinguished from the other 

mechanisms of radiation by its dependence on the radiating particle energy. If the refractive index 

of the medium n does not depend on the wave vector I( and the frequency of the emitted photon ro, 

then Vavilov-Cerenkov radiation is possible only if the speed of the charged particle satisfies the 

condition 

1- u n cos e = 0 

r'\\ / ..-- T-- .......... 
\~~"-' ..... ~~~\. - - - ' 

II / /. / I ' ,' '\ 
I / \~~\_.1. ~ \ ~ \ 
I • I 

{P, • .1 
~ . --r . ---l!-=-- . ~ 

I I e , I 1 \.' ' .. 1 .• / /I 
\ \ I 

• fJ I ' '...... / / 

', -- -"" / 
..... _ . _.;.../ 

Fig. 8 
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Table I . 

crystal {hld} as COB (KeV) 

Si 12.60 -
Ge { 113} 17.55° 12.19 

c 19.14 

Si 3.44 

Ge {111} 35.02° 3.30 

c 5.22 

Si 4.58 

Ge {220} 45° 4.39 

c 6.96 

From (2.36) it follows the inequality determining the threshold energy of the particle Eo that is 
. ' 

10 

s r 
I 

6 ~ 

a2 o,s ~~~D 0,6 E (&BJ 

Fig. 9 
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In the crystal, where there is a strong dimensional dispersion of the refractive index n (lt,c.o), the 

dependence of the PXR intensity on the particle energy essentially changes [37] (see Fig.9). 

The condition (2.36) is replaced in the crystal by the requirement of the zero value of the real part 

of the longitudinal momentum transmitted to the medium (see Ex.(2.15)). It can be written in the 

form 

'Y -2 + 9
2 

- 2Bf.Ls = 0 . (2.37) 

This equation has a formal solution 

2 -2 " a =-y +2Bfls (2.38) 

for any particle energies. That is why the PXR intensity has not the sharp threshold dependence. 

However, the deviation from the exact Bragg condition, determined by (2.38), increases with 

decreasing the particle energy and at the energies 

~s=lm~' 
H 

2go 
(2.39) 

becomes more than lgJ It means that the diffraction wave amplitude, determining the spectral 

intensity of PXR, falls down according to the law 

(2.40) 

The analysis of the function~~ (E) (2.26), determining the energy dependence of the total PXR 

intensity, shows that the number of photons recorded by the detector atE << Etb is estimated as 
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No= 1t No (eo)
4 

= (_E_r Nmax , 
4 eef Eth (2.41) 

where Nmax is the number of photons with the frequency roB generated by the particle with the 

energy E = Eth. The threshold character of the PXR intensity as a function of the particle energy 

can be manifest itself stronger if the detector has the high angular resolution eo<< eef· In this 

case, the emitted photons will be almost monochromatic~rolroB- eo, i.e. such a detector will 
-+ 

record only photons with a definite wave vector k o and the frequency roo. As a result, the 

magnitude of the refractive index will be exactly determined and the condition (2.37) is fulfilled 

only for the energy 

E>E~= m 
-./2n (ko, roo)- 1 (2.42) 

In the experimental situation the total intensity of PXR and DB is measured, but the energy 

dependence of the later one is determined by the function ~2 (E) (see Ex.(2.26')). The function ~2 

contains the term proportional toe;, that is why the function ~2 also decreases with decreasing the 

particle energy as a function of E-2. As a result, the intensity of DB, for the energy E less than a 

definite energy value ED, determining on the angular size of the detector and the type of a crystal, 

can become even more than the intensity of PXR. In this case the total intensity of radiation in a 

definite reflex has a complicated dependence on the particle energy (see Fig.9). The experimental 

investigation of this curve is interesting for the correct understanding the process of PXR 

formation. The interesting feature of PXR is that its integral intensity is not saturated even when 

the angular size of the detector eo is much more than the radiation angle. 

According to the formulae, obtained above, both the total PXR intensity and the angular 

and spectral distributions depend on the particle energy only through the Lorentz factory. 

Consequently, at a defmite energy, E,the PXR characteristics are strongly differentiated for various 

kinds of charged particles. In Table II you can see the magnitudes on the total numbers of photons 
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w 
w 

elements 

Si 

(h,R. ,k) 

III 

II3 

III 

keY 

ros 

200 

200 

300 

i 

grad electrons 

No x 1Q3 Nox 103 

Sa E =40 geV E=70geV 

0.57 1.99 2.20 

1.08 0.30 0.34 

0.37 1.39 1.52 

Table II 

protons m±- mezons p±- mezons 

Nox 106 Nox 106 No X 104 No X 104 No X 104 No x 104 

E=40geV E=70geV E=40 geV E =70 geV E=40 geV E=70geV 

3.99 25.67 2.58 4.04 1.84 3.3 

0.61 3.91 0.21 0.33 0.16 0.27 

2.65 17.10 1.71 2.7 1.27 2.2 

,f', :. . . , 



emitted in a diffraction peak at So - 1/y by the following particles e±, p, J..L±, 1t± in Si crystal with 

the length 1 em. 

It should be noted that parametric X-ray (quasi-Cerenkov) radiation is the main mechanism 

of radiation in the X-ray range for heavy charged particles due to the smallness of their 

bremsstralung. The estimations show that the ratio for electron is NoBfNPXR- 10·1- 1. At the 

same time, the intensity of the diffraction bremsstralung of protons and 1t± at the energy of 

E = 70 geV are- 10-9- lQ-11 y/p and- 10-6- lQ-7 yJ7t±, correspondingly, that is much less than 

the PXR intensity. The difference increases with increasing the radiating particle energy. 

In Figs.10 and 11 the angular and spectral distributions of the total intensity of PXR and 

DB are shown _for different kinds of particles (e, p, 7t). According to Figs.10 and 11 the 

dependence of the angular distribution on the factor y is stronger than the same dependence of 

spectral distribution. It means that the investigation of the PXR angular intensity curve can provide 

the information of the composition of the beam, containing the different particles with close 

energies. Possessing the high spectral and angular density and strongly depending on the factory, 

the parametric X-ray radiation, generated by heavy particles, can be applied for the measurement of 

the particle energy in the region of the superhigh energies and also for the analysis of the particle 

beam composition. 

2 

0.1 

QOlB 

0,014 

HOvJ 

jj 

-12 -to -s -6 -If -.? o 2 .1; 6 J 10 1.? if ,mrutf 

Fig. 10. Here: E = 70 GeV, WB = 200 keY; (Ill) plane in Si; I- e·; II- p; III- n± 
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Fig. 11. Here: E = 70 GeV, COB= 200 keV; plane (111) in Si; I- e·; IT- p; ill -1t± 

In the conclusion of the theoretical consideration of the main PXR characteristics, we 
• 

should like to stress that, in our opinion, the main application of PXR connects with the production 

of X-ray collimated monochromatic beam with continuously turned frequency. The investigation of 

PXR gives the possibility to analyze the crystal structure, because of the PXR spectrum consists of 

a set of diffraction reflexes, which contain the information about the structural amplitudes of a 

crystal [52]. The spectral PXR intensity in a reflex exceeds the analogous magnitude for the 

synchrotron radiation and allows to obtain the diffraction pattern of high resolution by using the 

electron beams with moderate energy [52,53]. In [54] it was considered the application of PXR in 

the X_ray structural analysis for finding the phases of the crystal structural amplitudes just from 

the measurement of the PXR intensity in reflexes. In was shown that this method can be more 

effective than the well-known methods, because of the possibility to reduce the time of 

experimental measurements. It also do not require the strong restriction of the crystal quality. 
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§3. Experimental Investigation of Parametric (Quasi-Cerenkov) Radiation by Electrons 

(Positrons). 

In spite of comprehensive theoretical description of PXR mechanism formation and its 

main features, this radiation was experimentally confirmed only several years ago [23-26]. The 

first experiment in observation of "dynamical maxima" in X-ray spectrum radiated by a relativistic 

electron beam in a periodic medium was conducted in [61]. But no modifications of radiation 

intensity under the variation of crystal orientation relative to the electron velocity has been 

experimentally observed. The analysis of [61] shows that the procedure of this experiment was 

incorrect and PXR could not be observed during this experiment. The thing is that the intensity of 

X-ray radiation in [61] was measured within the frequency interval .1ro- co in the direction of 

particle velocity. In this case the PXR integral intensity is approximately by the order of magnitude 

less than the intensity of the ordinary transition radiation, not connected with crystal structure. Just 

this circumstance has led to negative results of the experiment [61]. Parametric X-ray radiation was 

first observed in experiments conducted by the collaboration of Institute of Nuclear Problems 

(Minsk) and Institute of Nuclear Physics (Tomsk) in Tomsk synchrotron "Sirius" [23-26]. It was 

used the possibility of formation of PXR reflexes (maxima) at a large angle relative particle velocity 

[ 16] and, that was important, that the positions of these reflexes did not depend on the energy of 

radiating particles and was determined only by relative orientation of a particle velocity and 

crystallographic planes. 

(l)(n)- 't 
't -

2sin So 
= 1tn n- 1 2 ' - ' ... 

d sin So (2.43) 

where d is the interplanar spacing, So is the angle of particle incidence relative to the 

crystallographic planes, corresponding tot, 1 is the reciprocal lattice vector of a crystal. The 

diamond single crystal with the size of 10 x 6 x 35 mm (the axis< 110 >was almost perpendicular 
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to a large face of diamond) and was fixed in a two-axis goniometer. The electron beam angular 

spread was 0.1mrad, chromaticity was about 0.5%, the electron energy was E- 900meV. The 

beam pulse duration wast= 15ms. The measurement of the spectral and angular characteristics of 

the X-ray radiation was made by a Nal(Tl) scintillator spectrometer with a crystal thickness of 

about 1mm and a beryllium entrance window. The energy resolution was ~: = 35% at ro = 

14 keV and~ = 25% at ro = 34 keV. The spectrometer was placed at the angle of e = 7t/2 

relative to the incidence electron momentum on the plane being perpendicular to the vertical 

goniometer axis at the distance of 1m from the crystal. The size of entrance window of a collimator 

corresponded to the angular divergence of ~e = ± 3·10-3 rad. The geometry of this experiment 

[23] is shown in Fig.12. In the case of particle motion along the axis< 110 >,the crystallographic 

planes (100) are at the angle Ss = 45° relative to the particle velocity, and the diffracted radiation 

(PXR reflex) was observed in the direction perpendicular to the incident particle momentum. The 

crystallographic axis of the target was aligned with the electron beam direction by using the 

channeling radiation by the electron beam. In Fig. 13, 14 the PXR spectrum, measured in 

experiments [24,25], can be seen. In accordance with the theoretical predictions the radiation 

spectrum has a line structure. You can see in Fig.13 [25] two maxima in a spectral distribution 

X 

Fig. 12. Here: 1 - x-ray spectrometer; 2-quantometer: 3-diamond crystal. 
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with energies ro4~o = 9.9 ± 0.15keV and ro8~o = 19.7 ± 0.15 keV, which correspond to the 

reflections by a set of planes (11 0) and coincide very well with theoretical magnitudes ro~~o 

= 9.85 keV and ro~~o = 19.7keV, correspondingly. In Fig.14 the experimental results, obtained 

in [24], are shown. In this case the reflection planes were (100). You can see three maxima in a 

spectral distribution, whose positions coincide with theoretical prediction with a good accuracy: 

38 

... 



.. 

ro~\0 = 6.99 keV, ro~0 = 19.9 keV and ro~~o = 20.9 keV. During these experiments the total yield 

of they-radiation per electron in a diffraction peak was measured: for the peak (440)- Ny = (6 ± 

3)·10-7 y/e-, in the peak (660) - Ny =(0.7 ± 0.4)·10-7 y/e-. It should be said that all these first 

experiments were carried out in the geometry, which corresponds, in dynamical diffraction theory, 

to the anomalous case of transition between the Laue and Bragg diffraction geometries and calls as 

asymmetric diffraction case [63]. In this case the general formulae, obtained in § 2, cannot be 

applied For the correct interpretation of experimental results, the theory of PXR in the case of the 

asymmetric diffraction was derived in [43,44]. The specific feature of asymmetric diffraction is 

that, in this case, it is necessary to take into account the terms of dispersion equation quadratic in a 

and, making the matching of solutions of Maxwell's equation on the crystal boundaries, we can 

not neglect the waves reflected by the crystal surface and propagating along the crystal surface in 

vacuum. In [ 43,44] the spectral and angular distributions of PXR were obtained. The total number 

of photons radiated in a diffraction peak can be represented in the following form: 

Ndn) = ~21g't { (1)~ >f ~ { 1 - e-cJ:lg~a) X 
a go 

(2.44) 

.,., where e; is the mean square angle of multiple scattering, So is the angular spread of the photon 

beam, a is the transverse size of this beam along the Z-axis. Here, the contribution of photons of 

diffraction bremsstralung (DB) is taken into account. For the comparison of the theory with 

experiment it was taken into account that the radiation was absorbed in exit window of acceleration 

of the length of L 1 and in the air interspace of the length of L2 between the crystal and a detector 
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and also the different effectiveness of X-ray detector for different hannonics of PXR. In Fig.15 it 

can be seen this histogram of intensities corresponding to the different harmonics and 

crystallographic planes [24,25]. In the histogram it is given the theoretical magnitudes of the X­

ray intensity, generated inside the crystal and corrected with the account of experimental conditions 

and the experimental results of intensities measured by a spectrometer. The analysis of this 

histogram Fig.15 shows that the coincidence between the theoretical predictions and experimental 

values can be considered as good if we take into account that some model approximations about the 

detector's form, a particle distribution in a beam were used in calculations and, on the other hand, 

the measurements were made with the accuracy not above 20%. 
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Solid areas: the number of quanta counted by the detector, Nex; unshaded areas: 

the number of PX quanta generated in the crystal; shaded areas: the theoretical 

values Npxr calculated with taking into account the corrections on the photon 

absorption between the crystal and the dtector and on the detector efficiency. 

In Table III the magnitudes of all parameters which are necessary for the calculation of 

photon numbers recorded by a detector Nb) are given. 
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Table III 

diffraction CO~n) co~~) go· 106 lg~2. 1013 e~r · 106 L~c)(cm) L~{cm) L~(cm) Tln(%) B 
plane keV keV grad diamond window air 
(400) 9.82 9.7±0.15 15.31 120.0 15.31 0.12 0.148 136 78 
(800 19.65 19.7± 0.23 3.83 1.0 6.77 0.63 1.003 1058 15 
(220) 6.95 6.8± 0.15 30.62 883.0 30.62 0.04 0.045 52 94 
(440) 13.84 13.8± 0.15 7.66 14.8 10.60 0.29 0.342 388 27 
(660) 20.84 20.7± 0.20 3.40 0.6 6.35 0.75 1.026 1262 15 

I Lon I Ltan I L2an I Loan I arm I dan I EMeV T-LR~-·1 9o· 102 I 
0.10 a) 0.6 155 187 2.5 0.08 900 14.81.30 1.30 

b) 0.005 72 104 0.65 0.63 

*the reflections by the planes (100) and (110) is equal to zero 



In 1986 several new experiments in the measurement of the PXR integral intensity in 

various crystals and at various angles of radiation (reflexes) were conducted. In particular, the 

experiment in observation of PXR generated by electrons with the energy of 4.5 Ge V in diamond 

single crystal was made in Erevan [64]. This experiment was performed with the help of an 

external Erevan synchrotron beam, that allowed to measure the process cross-section with high 

accuracy. The geometry of the experiment is shown in Fig.16. The electron beam with angular 

spread of I0-4 rad was incident on a crystal target at the angle of 35° relative to the plane (110). 

The registration angle of radiation made the angles of 70° and 60° with the initial particle 

momentum. 

RH 
Na.J 

Fig. 16. G-goniometer, C-crystal, PC-proportional counter, RM-rotating magnet, D-detector of 

electrons. 

The crystal target (the lengths were 0.2mm and 1mm) was installed into a goniometer allowing the 

rotation of the crystal in two mutually perpendicular directions with the accuracy of 4·10-5 rad. The 

well-known orientational dependence of channeling radiation by electrons in a crystal ware used 

for the alignment of the crystal relative to the electron beam momentum. The measurements were 

performed by a proportional counter. The solid angle of quantum registration was 2 ·1 0-4 rad. In 

Fig.17 the spectrum of X -ray radiation at the angle of 28B = 60° is shown after deducting the 

background (the radiation in a nonoriented crystal). You can see a peak at rop,x = 11.3 ± 1.3 keV 

with a good accordance with the theoretical value of rokh = 9.8 keV. 
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In [64] the experimental estimation of possible contribution of the ordinary bremsstralung, 

which was also diffracted by .the same crystallographic planes and, consequently, was observed at 

the same angles and frequencies, was made (see §2). For this purpose, the Al target with the 

length of 3 mm was placed before the diamond target of the length of 0.3 mm. Up to the accuracy 
N 

1000 

!00 
0 

j 10 15 20 25 £,, (Ke V) 

Fig. 17 

of experimental errors the increase of the radiation output, introduced by the diffraction of the real 

photons of bremsstralung produced in Al target, has not been observed. This fact totally coincides 

with the theoretical estimations of contributions from various mechanisms of radiation to the total 

yield of X-ray radiation in the diffraction peak (see [ 43]). According to [ 43], the ratio of photons 

produced due to diffraction of bremsstralung (DB) to the photons of PXR in the same reflex is 

determined by the universal function 

(2.45) 

where Z is the charge of atom nucleus of the medium, E is the particle energy, m is the mass of 

radiating particle. 

According to (2.45) the magnitude of~ for X-ray region of frequencies is~:::: 3-IQ-3, that 

is the main contribution to the radiation intensity in the diffraction peak is made by PXR, indeed. 
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While comparing the experimental and theoretical results the authors of [64] pointed out 

that the theoretical magnitude of the number of y-quanta in a diffraction peak was by an order of 

magnitude more than the experimental one (Nth= 1.38·10-5 and Nex = 1.1 ± 0.1·10-6). 

Unfortunately, the author did not give the expression which was used for the calculation. The 

calculation with the help of the formula, obtained in [42,44], gives the result that agrees with the 

experimental number of quanta with a good accuracy. In Table IV such comparison between the 

theoretical and experimental numbers of quanta radiated in a diffraction peak are represented for 

various experiments. 

It should also consider one of the first experiments in observation of PXR, which was 

conducted in Kharkov electron accelerator of Kharkon Phys.-Techn. Institute. The electron beam 

with the energy of 900 MeV interacted with the Si crystal of the length of 30 ~m being oriented in 

such a way that the Bragg condition was satisfied for crystallographic plane (220) [65,66]. The 

geometry of this experiment was similar as that represented in Fig.16. The experiment, conducted 

in Kharkov, is interesting due to the possibility of obtaining very hard quanta (co > 100 ke V) with 

the help of PXR. The X-ray radiation, generated by relativistic electrons in a crystal, was 

collimated by a set of collimators being placed on horizontal plane at the angle of Ss relative to the 

particle momentum in such a way that the Bragg condition was fulfilled for the small angles 1/y << 

Ss << 1 (Ss is the Bragg angle). 

The photon collimators provided with the collimation ~n = n{~eaf at the linear angle of 

collimation of ~eB << Ss. The photon spectrums were measured by a semiconductor X-ray 

spectrometer with the resolution of- 10 keV. The maximum with the frequency of 00220 = 350 keY 

and the width of ~co = 25 ke V at the angle of Sa = 17.9 mrad was experimentally observed. The 

measured spectrum density was 0.3 y/e·MeV·srad. The rotation of the crystal by the angle of lQ-3 

rad led to the disappearance of this maximum [65-68]. The theoretical value of the PXR intensity, 

calculated with the help of the formula off §2, gives the value less than experimental one. The 

theoretical analysis of the result of [66], made in [69], showed that the peak was formed, in this 

case, by three mechanisms of radiation - PXR, the ordinary diffraction bremsstralung and the 
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crystal mm 
Si 0.38 

c 0.2 
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Si 0.03 

Table IV 

(l)ex a 
(n = 1) 

{hkl.} e (keV) 
(220) 9.50 19 ± 0.5 

(111) 12 ± 0.5 
(220) 30° 11.3 ± 1.3 

35° 9.2 ± 1.1 
35° 8.9± 1.0 

(220) 0.52° 350± 15 

" 

(l)th a 
(n = 1) L\Q N])x. 106 N~ · 106 

(keV) (srad) (y/e-) (y/e-) 
19.6 5.2·10-5 6±1 5.8 

I 

12.0 1.5 ± 0.17 0.7 I 

9.8 2·1o-4 1.0±0.17 0.7 

8.6 0.66±0.08 0.6 
8.6 1.1 ± 0.1 . 1.9 

360.0 2.8·10-7 (2 ± 0.2)·10-3 1.66·10-3 



diffraction bremsstralung with a photon phase velocity less than the velocity of radiating electrons. 

This bremsstralung corresponds to the dispersion branch with n > 1. The estimation shows that the 

contribution of all three mechanisms to a diffraction peak, in experimental conditions, are 

comparable in magnitude. The calculation, taking into account all mechanisms, gives the theoretical 

value 

Nth= N~~R + N~~ + N~~D:: 0.28 + 0.32 y/e ·MeV· srad, 

in dependence of the crystal orientation. It means that agreement is rather well. It should be noted 

that Kharkov experiment considerably differs from the experiments, conducted in Tomsk and 

Erevan relative to the experimental conditions and, as a consequence, the contributions from the 

different mechanisms to the total intensity of radiation in a diffraction peak are different. In both 

later cases the contributions from the other mechanisms in comparison with PXR were very small. 

In [67], for the explanation of [65,66], the author suggested a new mechanism of coherent 

bremsstralung connected not with longitudinal crystal periodicity but with a periodicity of the 

electron density of a crystal on a transverse plane relative to the particle movement direction. 

However, the author did not make a comparison of a theoretical magnitude of the radiation yield 

with the experimental results. That is why, this interpretation can not be considered as successful. 

The comparison between theoretical and experimental magnitudes of the yield was also 
' 

made in [70], where the dependence ofPXR yield on the crystal length was investigated. 

Recently, a series of experiments in the investigation of PXR characteristics have been 

conducted They can be divided in several groups: 1) the measurement of PXR spectral density at a 

given Bragg angle and the integral number of quanta in a given reflex; 2) the investigation of the 

fine structure of angular and spectral distributions inside a given reflex; 3) the investigation of 

dependence of PXR characteristics on the radiating particle energy; 4) the measurement of PXR 

polarization characteristics. Obviously, all first experiments, considered above, can be related to 

the first group. Recently the observation of PXR under the multi-wave diffraction conditions were 

performed. 
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Let us consider each of these groups in detail. After first experiments in which the PXR 

spectrum was observed and the total radiation yield was experimentally measured, the series of 

experiments were conducted in order to investigate in detail the spectral [71-78] and angular 

[26,79-85] distributions inside a definite reflex and also the PXR characteristics in various media 

[73-78]. The experimental geometry of [71] was the same as in the first experiments, but the 

measurements were made for the diamond crystal. It was observed three reflexes, which 

correspond to the reflections (220), (440), (660) and the intensities of radiation in these reflexes 

were measured. It was shown that the agreement between theoretical and experimental results 

rather well. It was also shown that, due ·to the different absorption of photons from different 

reflexes, the relative magnitudes of intensities of these reflexes were changing with the change of 

the target length. So, for the target with a small length, the maximum intensity had a reflex with 

smallest indices. With increasing the target length the contribution of reflexes, corresponding to 

high reflections, i.e. hard quanta, raises due to weak absorption of hard y-quanta in the medium. 

The PXR in GaAs crystal was first observed in [76] and the spectral distribution was measured. It 

was made the comparison of PXR yield and its spectral width with the X-ray characteristic 

radiation corresponding to lines GaK and AsK . The total yields of PXR in reflexes for the 

crystals of Si, quartz and diamond were measured in [77]. The relative comparison of PXR 

characteristics for various targets were also made. These experiments are interesting for the future 

application of PXR as a source of X-ray radiation for the different tasks. The paper [73] is devoted 

to the comprehensive investigation of PXR characteristics in a Si target. It was measured the 

radiation intensity in different reflexes, the angular and spectral distributions and the threshold 

dependence of PXR intensity on the energy of radiating particles. In [73-75] the fine structure of 

PXR spectral distribution in a given reflex was experimentally investigated. By increasing the 

energy resolution of a detector the authors could observe the fine structure of PXR angular 

distribution. It was theoretically predicted in [42], but not observed during the first experiments 

caused by the low resolution of a detector. This fine structure takes place for reflexes 

corresponding to 28B < 45 [42]. It was measured the intensities of two reflexes in Si co220 = 
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19 ke V and 0>111 = 12 ke V. The experimental value of the split of the spectral line was Aroex = 
0.2·COB, that was much more than the theoretical magnitude, which was Aroth = 2·10-2 COB. In [73] 

it was also analyzed the influence of a detector size on the total yield of PXR in a reflex. It was 

shown that the relative magnitude of radiation intensities in different reflexes changed with 

decreasing the angular size of the detector. In this case, the relative contributions of photons 

generated in the higher reflexes increased. This is explained by the fact that the width of the angular 

distribution decreases with increasing reflex indices. 

The paper [78] is devoted to the experimental investigation of PXR characteristics near the 

K-line of absorption in Ge crystal. It was shown that the considerable modification of spectral and 

angular distributions took place in this case. The direct measurement of PXR angular distribution 

was firstly performed in [25] in the case of asymmetric diffraction, that was at SB = 45 in diamond 

monocrystal. The measurement was made with the help of a coordinate detector of X-ray, 

consisting of a number of square cells with the size of 1.3cm. Each of these cells is an ionization 

chamber. The detector contained 16x16 cells and was placed at the distance of Lo = 100 em from 

the crystal target. The fme structure was not observed during this experiment because the angular 

size of the detector was more than the effective radiation angle. However, it was observed the 

asymmetry of radiation angular distribution along the Y -axis, which was the most prominent in this 

geometry. Afterwards, a slit collimator was applied in [79-82] in order to investigate in detail the 

angular distribution of radiation in a given reflex for the crystals of diamond [79-81] and Si [81-

82]. This slit collimator allowed to increase the angular resolution of a detector. This was a narrow 

rectangular slit with the size (2.5x16) mm which corresponded to the angular aperture A8x = ±2.5 

mrad and A8y = ±16 mrad. The geometry of these experiments is shown in Fig.18. During these 

experiments the theoretical prediction of the existence of two maxima in the one-dimensional PXR 

angular distribution in the Y -direction was confirmed (see §2 (2.20), (2.21)). The angular 

distribution of radiation in Si for reflexes (400), (200) and (440) were investigated in [80,82]. 

According to [80], the angular distribution along theY-axis has two maxima and the distance 

between these maxima decreases with increasing the radiation frequency . Along the X -axis the 
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Fig. 18. Here: 1- (001) plane; 2- (110) plane; 3- electron beam; 4- reflex 400; 5- slit 

collimator 

angular distribution exhibited only a single maximum at 9 = 9B, the width of which also decreases 

with increasing the reflex frequency: (1)220 = 7.1 keV, 69x = 12 mrad; (1)400 = 10 keV, 

69x = 9 mrad; (1)440 = 14.2 keV and 68x = 7 mrad. As we have pointed out above, this 

Si · 1111} · {} =§5° · E = 100 f lj I I f 

J{:r) 

• • 
• 

/ ~ 
/ .'-- I iJr 

-J -2 -1 1 2 .1 :I -s . -2 -1 1 2 3 II 

Fig. 19 
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narrowing of PXR angular distributions with the increase of the reflection indices manifests itself 

in experiments also in the increase of the relative contribution of these reflexes to the total intensity 

of radiation, detected at a given angle while decreasing the angular size of a detector [73]. In 

Fig.19 you can see the comparison of experimental results [82] with the theoretical curves being 

calculated in [ 42]. For this comparison, the spectral-angular distribution has been integrated over 

the size of the slit detector. As a result, the PXR angular distribution, in the case of measurement 

with the help of a slit collimator, has the following form: 

[ 11 2 (cos2 28B - 1) + i e; (cos2 28B + 3}- e;r] 
+ X 

112 + e;r 

(2.46) 

y +(-!J'b } 

where X,Y are the coordinates of a slit center, a and b are the sizes of the slit, La is the absorption 

length, Ss is the angle of multiple scattering 

The analysis showed that for the explanation of experimental results, it is necessary to take 

into account the contribution of three harmonics of radiation to the total intensity. According to 

Fig.l9 the agreement between theoretical and experimental results is not only qualitative but also 

quantitative. For example, the split of maximum of angular distribution is ~e~x = 1.8·10-2 rad 

(~e~h = 1.7·10-2 rad, see (2.21)). The papers [84,85] were devoted to the measurement of 
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angular distributions at various energies of radiating particles and also the investigation of the 

azimuthal distribution of PXR intensity in a reflex. The methodic and the geometry of these 

experiments were like as previous one (see Fig.18). It was measured the PXR angular 

distributions in diamond at the energies of electron beam E = 370 MeV, 500 MeV and 900 MeV. 

0). 0.2 0,2 

·20 ·f ·10 

a) t) c) 

Fig. 20. The vertical PXR angular distribution: a) E = 900 MeV; b) E = 500 MeV; c) 

E=370MeV. 

The energy dependence of the distance between two peaks of PXR angular distribution was 

observed. In Fig.20 was shown the radiation angular distributions along the Y -axis for the reflex 

( 400) at different electron energies. You can see that the distance between the maxima decreases 

and the width of distribution increases with decreasing the particle energy. 

One of the main features of PXR is the threshold energy dependence of radiation intensity 

(see §2). That is why, the energy dependence of PXR yield in a given reflex was investigated in 

detail [73,76,79, 82,86]. The comparison of experimental results [82] with the theoretical 

dependence, calculated according the formulae (2.32) and (2.33) is given in Fig.2l(a),(b). You 

can see a rather good agreement. The calculations were derived taking into account the contribution 

of diffraction bremsstralung to the total intensity measured by a counter. The measurements of , 
yields were performed within the energy interval of radiating particles from 300Me V till 900Me V. 
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For diamond crystal and the reflex ( 400), such energy dependence is presented in Fig.21. The 

magnitude of the threshold energy is ~~;::; 300 MeV. The theoretical calculation gives the value E~ 

= 320Me V [87]. 
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Fig. 21(b) Here:- are the theoretical results; ·-are experimental data: a) from Ref. [42]; 

b) from Ref. [87]. 
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According to theory [2,34-36], PXR is polarized. The papers [88-93] are devoted to the 

investigation of the polarization characteristics of PXR. Let us consider, for example, the results of 

[89], where the PXR polarization was measured in Si for the asymmetric diffraction geometry and 

the reflection plane (220), i.e. 28s = 90°, ros = 19.5 + 21.5 keV (it depends on the detection angle 

relative to the Bragg direction). For the investigation of polarization the compton polarimeter, 

consisting of a detector and a scatter, was applied. The angular distribution in a reflex was also 

measured in the independent experiments. In Fig.22, the figures I,II,III point the regions of a PXR 

reflex, in which the linear polarization of radiation was investigated. In the general case, the PXR 

• • 

! 

0 StJ z• mrarl 

Fig. 22. Here: b) the angular PXR distribution in the horizontal direction. 

polarization characteristics depend on the product of the squares of wave amplitude magnitudes of 

n- and cr- - polarizations and the coherent lengths corresponding to them. In the case of the 

equaled coherent lengths, the polarization is given as 

p = 1 - cos2 28s . 

1 + cos2 28s 

Besides, the radiation polarization essentially depends on the radiation azimuthal ang.le in the 

following way: 
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p (<p) = sin2 <p- cos2 <p cos2 29B , 

sin2 <p + cos2 <p cos2 29a (2.47) 

q, is the azimuthal angle measured from the scattering plane (7t-polarized radiation is on the 

scattering plane, cr-polarized radiation is perpendicular to this plane). The measurement of the 

azimuthal dependence of PXR distribution permits to obtain the information about the power of 

polarization P and the inclination angle of the plane of maximum linear polarization <j)o. This 

dependence can be written in the following way: 

N (<p}- No 
N 

0 
= P R cos 2 ( <p - <po} 

(2.48) 

The definition of No is given by the formula (2.34). In Fig.23 the results of measurements of the 

azimuthal dependence of scattered photons are represented for the region IT. You can see the good 

agreemrnt of the curve with the theoretical prediction. The powers of linear polarization P and the 

inclination angles of the polarization plane <j)o, obtained in the experiments [89], are given in 

Table V. 

Table V 

region angular coordinates of 
of collimator p mrad 

reflex mrad mrad 

I 0±0.5 0±0.5 0± 0.06 90.5 ± 3.7 

II 4.0 ± 0.5 0±0.5 0.80 ± 0.08 3 ±2.7 

III 3.0 ± 0.6 -3 ± 0.5 0.82 + 0.12 -51.5 + 5.6 
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Fig. 23 

According to the experimental results the polarization is minimum in the Bragg direction 

(see the region I) and the inclination angle of the polarization plane, in this case, corresponds to the 

position of the polarization plane for the ordinary X -ray diffraction. Out of Bragg direction the high 

power of linear polarization (P = 0.8) was observed, that agreed with theoretical results. For the 

regions II and ill the polarization plane coincides with the plane of photon wave vector and the 

vector along the Bragg direction. It means that there is the total analogy between the polarization 

characteristics of PXR and the ordinary Cerenkov radiation. The high power of polarization of 

PXR. was also demonstrated in [90] by using the original methodic. 

In [93] the measurements were performed in GaAs crystal for the reflex (400). This 

experiment was confirmed that the power of radiation polarization in asymmetric diffraction 

geometry was close to the unity (P = 1). It means that the radiation is totally cr- polarized. The 

angular distribution of PXR, in this case, is described by the expression I ( 9, <p) = sin2 <p I ( 9) , 

that agrees very well with the experimental results (see Fig.24). 

So, the experimental investigations have confirmed the high power of PXR polarization 

and proved the possibility to obtain the source of X-ray with high polarization power and with a 

definite inclination angle of polarization plane by using the collimation of PXR beam out of axis. 
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§4. Multi-wave Effects in Parametric X-Ray (Quasi-Cerenkov) Radiation. 

Up to now the theoretical and experimental investigations of PXR were restricted by the 

case of two-wave dynamical diffraction. However, due to crystal symmetry the conditions of 

diffraction can be fulfilled for many waves, consequently, the multi-wave diffraction case ofPXR 

is realized. The analysis shows that multi-wave diffraction can lead to new effects in PXR in 

comparison with two-wave diffraction case. For example, the spectral-angular PXR distribution 

depends on the effective refractive index in the crystal and on the photon absorption length. Under 

multi-wave diffraction conditions the inequality n (co, a)> 1 can be fulfilled for several refractive 

indices and for some of them the magnitude of a can be close to zero. This leads to the possibility 

of Borman effect in PXR, i.e. to the increase of the diffracted wave amplitude due to the decrease 

of the absorption coefficient, in the comparison with the two-wave diffraction. Besides, under 
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multi-wave diffraction it is possible to excite the diffraction reflex in the indirect way, i.e. the PXR 

intensity in the diffraction peak is not equal to zero, even when the reflex under consideration is 

forbidden because of lattice symmetry [94]. As a result, the regime of multi-wave diffraction leads 

to the increase of the angular PXR density of radiation within the narrow interval of ~-

Recently PXR has been experimentally investigated in the case of multi-wave diffraction 

[76, 95-97]. The experiments were conducted for the crystal GaAs. In the papers [95,96] the 

angular distributions and threshold dependence of PXR in the reflex, corresponding to the 4-wave 

uncoplanar (000, 220, 153, 153) diffraction of radiation with the frequency COB= 18.4 keV were 

measured. The energy of electrons was changed within the interval 250 - 900 MeV. The reduction 

of the width of multi-wave diffraction reflex in comparison with the main two-wave reflex (220) 

was experimentally observed. Fig.25 shows the angular distribution of PXR radiation in the reflex 

(220). In this situation the PXR, angular distribution along the X-axis looks like a bell [2]. The 

multi-wave diffraction changes this angular distribution. Now it has two maxima. On the 

background of the main two-wave reflex of PXR, the lines corresponding to the conditions of 

three-wave generation of PXR appear. If we go away from the center of angular distribution the 

I,re.t.un_;.t 

J 

z 

Fig. 25 

distance between these maxima will increase. The calculated angle of intersection of reflexes ( 15 3) 

and (153) coincides with the measured angle with the accuracy of 10%. The width of the 
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diffraction multi-wave lines is about two times smaller than the width of the main two-wave reflex 

(220). The observed picture of PXR angular distribution, in general, is analogous to the 

distribution of multi-wave diffraction in the case of the external X-rays [94]. 

In [97] the spectral and angular characteristics of PXR were measured in GaAs for the 

electrons with the energy of 900MeV. It was shown that near the <110> direction there was a 

narrow peak caused by multi-wave diffraction on the background of the ordinary two-wave 

diffraction. The geometry of this experiment corresponds to excitation of 8-wave generation of 

PXR (000),(022),(022,)040),(202).(202),(400) for the photons with the frequency of 6.2keV. It 

means that two 4-wave diffraction cases are excited simultaneously ((000),)022),(022),(040) and 

(000),(202),(202),(400)). The detection was made at the angle of 28B =90° in the direction of the 

two-wave reflex ( 400). In Fig.26 the angular distribution of PXR along the Y -axis is represented. 

You can see that there is good agreement between the theoretical and the experimental results 
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Fig. 26. Here: a) the experimental distribution under multi-wave diffraction; b) the theoretical 

distribution for (400) reflex under two-wave diffraction. 
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everywhere excluding the vicinity of the reflex center where the experimental picture shows the 

narrow peak caused by the multi-wave diffraction of PXR. The intensity of the radiation in this 

peak is 2.5 times larger and the angular width of the peak is 4 times smaller than the corresponding 

magnitudes of the main reflex ofPXR (400) in the case of two-wave diffraction. 

For the explanation of these anomalies the theory of multi-wave generation of PXR was 

derived in [98-100]. In [101,102] some specific cases were considered. 

According to (2.9), to obtain the spectral-angular PXR distribution, we can solve the 

boundary problem of dynamical diffraction of X-ray by a plate in the arbitrary case of multi-wave 

diffraction. In [98] the photon wave function g_o)s (r, ro) was obtained by the help of the matrix 

method. -g.o)s (r, ro) is the solution of a set of homogeneous Maxwell's equations and contains 

incoming spherical waves at z-+ oo. In the general case g.o)s (k ro) are represented as: 

EkH (r) = f eikf a- ( ~) 

a<->(~)= {eiroefo>~ e (- ~) + eiC~Q·>~ e (~) e (L- ~) + (2.49) 

+ etcoQco~z-L} eioQ"lL 9 (~- L)} G(-) {0) . 

-where E is the line-matrix of 2N-order consisting of the polarization vectors of all reflections. 

--K is a diagonal vector matrix consisting of the wave vectors of all reflections outside the crystal 

KtfivM:. = io OtfivM• G, M, H-are the reciprocal lattice vectors, u and v are the polarization 

indices. The elements of the Q(±) matrix of 2N x 2N order are defined by the following expression: 
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~± 1 { (±) - <;: - -} - - = -- £ - - - aG uu::; M ' , vM 2y0 u::;, vM ,v (2.50) 

a0 = (re6- co2 }!co2 is the deviation from the exact Bragg condition for the G-reflection, Buo.vM is 

the Kroneker symbol, 

B _ { 1 if G = M and u = v 
uG,vM- . 

0 1fG ;eM and u ;e v, 

y 0 = i 0 N/co is the cosine of the angle between the wave vector io and the normal to the crystal 

surface N , N is directed inside the crystal. The matrix Q(O) is obtained from the matrix 

~at E~~.vM = 0, 9(x) is the unit Hevisai function, KH = iH + coA.N is the wave vector of photon 

for the H-reflection inside the crystal, co is the photon frequency, A.= A. ("k) is the dielectric 

susceptibility of the crystal which is defined by the help of the matrix Q and can have a lot of 

magnitudes [98],~ = (rN), G(±) is the 2N-column vector consisting of the amplitudes of waves 

excited under diffraction inside the crystal, G(±)(O) and G(±)(L) are its magnitude at the crystal 

boundaries, 

G (L) = eiC1Q·l~ G (0} 

The other designations can be found in [98]. 

By substituting the expression (2.49) into (2.9) the spectral-angular distribution of PXR in 

the case of multi-wave diffraction can be represented in the following form [98]: 

(2.51) 

where L0 = _l_, Q0 =co- ~rexoz + coao is the longitudinal momentum transmitted to the medium, 
Qo 2yo 

I is the unit matrix, a is the angle of incidence of a particle beam on the plate, cfo> = qol _ coQ(-)*, 
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the label "0" always corresponds to the wave propagating at the small angle relative to the particle 

velocity. The Z-axis is chosen along the particle motion direction,~= u/c. As you can see from 

(2.51 ), the PXR spectral-angular distribution is expressed in terms of a function of a matrix Q(-)*. 

As a result, for calculating the PXR spectral-angular distribution under multi-wave diffraction we 

should know the roots of a minimal polynomial of the matrix Q(-). With the help of a special 

Lagrange interpolation polynomial [103] we can represent (2.51) in the following form: 

(2.52) 

where 'Yf.Lu = 'Yf.l.uG and is defmed by the expressions: 

_f[n (q-r -A.ii)] <->"( )\ . _ 
'Y!luG-' i'lfll {A.Il- "-i} E L {ua' 1, fJ. - 1, ... , m 

(2.53) 

or, depending on the diffraction geometry, by 

(2.54) 

In the case of rather thick crystals we can use the approximation 

1 - e-i~L} _ ( ll} ( 1 _ e-2Imq~) = 1t Lef'O" ReCIO , Ler = , q6 Im~ (2.55) 

and write the PXR distribution as 
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(2.56) 

M (1) - VXOz 'l 
qo = v cos a - c.o,~ 

the summation over (i) in taken over the roots A.~ which comply with the dispersion equation 

(2.57) 

The term ()Re ~I ac.o describes the influence of the dispersion of the medium on the process of 

PXR formation. 

In [100] the detail analysis of some special cases of multi-wave diffraction of PXR were 

considered. This are three-dimensional symmetrical and three-wave coplanar diffraction. In 

particular, under the three-wave PXR generation when three strong waves are excited inside the 

crystal Ko, KH = Ko + H and Kp, = Ko + F (H and F are the reciprocal lattice vectors), the 

angular distribution of photons emitted in a diffraction peak is determined by the expression [ 1 00] 

N _ = e2~2 [fi (tis)+ ti (t2s)] 

SnH 41t sin2 SoH 11 - Opbpd lt2s- t 1 J ( 92 + e~) (2.58) 

for the case without degeneracy of dispersion equation roots ~t2s - t 1 J >> At~ 1) and 

(2.59) 

when there is the degeneracy dt2s - t1J :::; Ati1), where t are the real part of roots of dispersion 

equation t = ReAsHsH = e;r- ao- g~OH, e;r = y-2 + 92 + eiL I 'Yo, e~ = y-2 + eiL I 'Yo- g'0 , 

OH = 'YOI'YH yo, 'YH and 'YF are the cosines of the angles between the corresponding wave vectors 

Ko, KH and Kp and the normal to the crystal surface, e is the radiation angle, AsH,sF are the 
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elements of the matrix A, L is the crystal length, s = 0', 1t. 

The analysis shows that at the radiation angles ex. for which the relation lcFcl ~ lgJ is 

fulfilled (see [100]), the contribution to the PXR intensity is made only one dispersion branch and 

the angular distribution of three-wave PXR generation does not practically differ from the ordinary 

two-wave case. The multi-wave effect manifests itself only in the vicinity of the small values of 

radiation angles Sx, when lcFd :5: lgJ. In this region, which corresponds to the degeneration of roots 

'tls and 't2s. there is the amplification of the radiation intensity in comparison with the .ordinary 

two-wave generation. This amplification, in general case, is asymmetric relative to the angle of Sx 

and its magnitude depends on the radiation angle Sy. The gain R can be written as 

(2.60) 

From (2.60) we see that the gain depends on the geometric factor (1-8pbpo) and the crystal 

' " 
parameters g0 I g0• This amplification is observed in the narrow interval near the degeneration 

region. At the same time, inside the degeneration region the radiation intensity has a deep gap 

caused by the complexity of the roots 'tls and 't2s in this region. 

The result of numerical calculation of the angular PXR distribution for a coplanar three­

wave diffraction (000),( 131 ),( 111) is represented in Fig.27. This diffraction case includes a strong 

join reflection (040). A beam of 1.2Ge V electrons is incident on a 50 J..Lm silicon plate, cut in the 

plane of (101), at the angle of a= 29.5° in a diffraction plane (101). The PXR yield is recorded at 

the angle 28B = 109.47 with respect to the particle beam direction. The effective PXR angle is 

8er= 68·10-3 rad, N =NO'+ N1t. As one can see, the PXR multi-wave effect is observed only in a 

narrow band (near degeneracy region) close to the line x = 0 (i.e. the reflection plane). This region 

of degeneracy is shown scaled up in the X-direction (25:1) in Fig.28. The degeneracy region has a 
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deep gap and two narrow lines of amplified intensity. The distance between them is approximately 

0.02 Ser (x = Sx/Ser. y = Sy/Ser. ex and Sy are the components of photon radiation angle, counted 

off in diffraction and reflection planes, respectively).In Fig.29 the one-dimensional PXR angular 

distribution at a sectional point y = 1 is shown scaled-up in the X-direction. According to Fig.29 
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two asymmetric peaks are visible at the boundaries of the degeneracy region. The width of these 

peaks is approximately equal to 0.01 Ser and the height depends on the value of the coordinate X. 

The fine structure of the PXR angular distribution may be experimentally observed while studying 

the angular distribution near the degeneracy region with the help of a detector having an angular 

size L18o $ lQ-4 rad and using the electron beam with the angular divergence not greater than 

.£1\jf = V2L18o8er < !Q-3 rad. Although the obtained results cannot be applied for the explanation of 

the experimental data [95-97], observed in the 4- and 8-wave diffraction cases, the general rules of 

multi-wave generation of PXR, observed in the experiments, manifest themselves in the three-

wave diffraction case, considered in [98-100]. The characteristics of PXR in the case of three-

wave asymmetric coplanar diffraction were analyzed in [ 101-1 02]. 
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Fig. 29. Here: - - - is the result of two-beam approximation. -is the result of calculation in the 

case of three-wave coplanar diffraction . 
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§5 Swface Parametric X-Ray (Quasi-Cerenkov) Radiation (SPXR). 

When a particle travels in a vacuum near the swface of a spatially periodic medium, a new 

kind of parametric (quasi-Cerenkov) radiation arises [104,105] - surface parametric 

(quasicerenkov) X-ray radiation. (SPXR). The phenomenon takes place under the condition of 

uncoplanar surface diffraction, considered firstly in [32], when the effective refractive index of 

electromagnetic wave in X-ray region can become more than unity. The effect under consideration 

should differ from the well-known effect of Smith-Parcell radiation, in which photons are formed 

from diffraction reflection back from the surface of a body with spatially periodic dielectric 

constant along the motion of a particle (the direction of the velocity coincides with the direction of 

the reciprocal lattice vector). A swface wave is not formed in this case, and the wave field consists 

of two waves propagating in opposite directions, in contrast to uncoplanar swface diffraction, in 

which at least three waves participate, whose directions of propagation form angles different from 

1t (see Fig.30). The solution of Maxwell's equation ~) (r) in the case of uncoplanar surface 

diffraction was derived in [32]. It was shown that the surface diffraction is characterized, in the 

two-wave case, two angles of total reflection (several' in the case of multi-wave diffraction [107]). 

The solution, obtained in [107], contains the component, which describes a state that damps with 

Fig. 30 
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greater distance from the surface of the medium, both within the material and in the vacuum, and 

which describes a surface wave, i.e., a wave in which the energy flux is directed along the 

boundary of the surface of a spatially periodic target (see revue [108]). According to [106], this 

solution, describing the scattering of the plane wave by the target under the surface diffraction 

geometry, can be written in the following form: 

::::!(+)s -. (- ) - • (- ) - • Ek = e5 eikr + As k, co eik1r + Bs k,co eik2f , (2.63) 

where the wave vector in the vacuum k = (kttkJ.), kt = (ktt- 'kJik2.J = Vk2- ~t> k2 = 
(k2tt - k21.), k2t = kt + 27tt, kt is the wave vector component parallel to the target surface, -:?is the 

reciprocal lattice vector, co is the photon frequency. The amplitudes As and Bs are given in [105, 

32]. By substituting the solution £t)s =(~f)* into (2.3) and taking into account, that the radiation 

condition can be realized only for the. third term of (2.63), the differential number of emitted 

photons can be represented as (see, also [106]) 

(2.64) 

Here we assume that a particle is moving parallel to the target surface at the distance Zo with the 
~ 

constant velocity u, Tis the flight time. The argument of a-function, from (2.64), is equal to zero 

for the frequencies COu = 12':t~ , where ;;: is the component of the unit vector in the direction of 
1- ntti/C 

~ 

the vector k, which is parallel to the surface. 

After integrating (2.64) over frequencies, the angular distribution of radiation has the 

following form: 
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(2.65) 

The spectral-angular distribution of SPXR generated by a particle incident on the crystal at a small 

angle relative to the crystal surface was obtained in [109]. It was assumed that the reciprocal lattice 
~ 

vector 't makes the angle of\jf < (go)l/2 relative to the surface and an arbitrary angle q> relative to 

the tangential component of the particle velocity (see Fig.31 ). The authors solved the 

Fig. 31 
~ 

boundary problem for the wave function of a photon with the wave vector k in the vacuum and the 

frequency ro and obtained the spectral-angular distribution of SPXR ( fi = c = 1 ); 

(2.66) 

where the coherent lengths 
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The formula (2.66) is written for the 7t-polarization,i.e. 

(2.67) 

The amplitudes B, q.~., E1.1. are obtained from the boundary conditions 

B _ 2C1C2 (k1z- k2z) . . 
- cl (kz + k2z) (k't, + klz)- c2 (kz + klz) (k'tz + k2z)' 

E _ 2C1C2 (k'tz + k2(1)z) . . 
l(2)- cl (kz + k2z) (k'tz + klz)- c2 (kz + klz) (k't, + k2z) ' 

In (2.67) it was taken into account that, when(~- So)-~ and v- ~'the difference 

between the diffraction plane and the crystal surface can be ignored. It gave the possibility to 

consider the diffraction and the radiation of 7t- and cr- components of the electromagnetic field 

independently. The analysis of (2.67) shows that at a.;::: ki I k2, a damping solution appears on 
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both sides o(the crystal surface (surface wave). The phase velocity of such wave is smaller than 

the particle speed. It means that Cerenkov mechanism of radiation can be realized. Damping of 

waves along the Z-axis is, thus, not associated with a crystal self-absorption but is determined by 

the effect of a total external reflection under diffraction condition. 

In (2.66) the firs term corresponds to the particle radiation along the path in the vacuum as 

far as the crystal surface intersection and the term with ~ to the particle motion inside the medium. 

The estimation of the coherent lengths shows that the vacuum coherent length 

ltcnlmax = LOt = IImK'tzsd-t is detemimed by the damping of the surface wave and the particle 

incidence angle So. Under the exact Bragg condition (a -+ 0) Lo-r = y/roSo, where 'Y is the Lorentz 
. 

factor of the radiating particle. Thus, the particle starts to radiate effectively at a distance from the 

surface of the order of magnitude cy/ro, i.e., a factor of y larger than the radiation wave length. At 

the same time, the coherent length value ~'t = ltiJ.imax• corresponding to the radiation of the elector 

inside the crystal, is substantially affected by the self-absorption of quanta in a crystal and the 

process of multiple-scattering of particles by atoms. We can represent it as 

where s; is a mean square angle of multiple-scattering per unit of length. As a result, the 

magnitude of ~'t is limited first of all to the value of the coherent bremsstralung length 

Lbr = 2E/Es (Lrc/ro)1' 2 . 

With So-+ 0, Lo-r>> Lbr and, in (2.67) the main contribution to the SPXR intensity is made by 

the part of a particle trajectory before the crystal target. By taking into account this fact and 

integrating (2.66) over frequencies the angular distribution of SPXR can be written in the 

following form: 
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dNn = e2 (~emf IB(CJl<nf Lo-r (roOt) CJl<n 
' dQ 47tf3 1 - iitf3 (2.68) 

It is worth noting that, as an electron moves in the medium, the bremsstralung arising can also 

diffract by a set of planes under consideration. This diffracted bremsstralung (DB) manifests itself 

as an additive to SPXR. Under certain conditions, the DB contribution may be substantial and it 

should be taken into account. 

The angular distribution and lines of constant radiation intensity for one of the Ge crystal 

reflections are shown in Figs.32 and 33, when the electron energy is 500 MeV and the angle of the 

incidence upon the surface is So =lQ-5 rad (see Figs.30,31). The angle cp is taken from the 

Fig. 32 
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direction of the tangent component of the electron velocity vector and the angle 8 is the angle 

between the wave vector k and the Z-axis. The tangent component of the particle velocity 

makes an angle of 30° with the crystal direction <100>. Diffraction occurs on (220) planes. The 

distribution has a typical double-peaked form for the parametric radiation mechanism with a gap in 

the direction of the double Bragg angle of cp = 2<pB = 30°. Under such conditions the coherent 

lengths are 4't = 2-10-2 em, Lo-r= 5·10-1 em, i.e., Lo-r >> LJ.l't· That is why the main 

contribution to the distribution is made by a vacuum term. In Fig.34 the dependence of the 

coherent lengths, ~'t and Lot on the incidence angle So of the electron on the surface is given. In 

Fig.35 the number Ny/e- of SPXR quanta at the fixed angle 8, ~Q = I0-5 srad is given as a 

function of the electron energy. Such quasithreshold dependence of radiation intensity on the 

particle energy is attributed to the fact that the radiation conditions are satisfied at any energies and 

at any a. > 0. However, the radiation intensity is substantial only in the case when a radiated 

photon is close to the exact Bragg condition of a s; lgcl. In the case, shown in Fig.35, the threshold 

particle energy can be estimated as Eth- 100 MeV. 

Table VI gives the main parameters of a spectral-angular distribution of SPXR for some 

reflections of Ge, Si and C crystals. We can see that Ge has the largest quanta yield at the expense 

of a higher lg-r I value. The angular width of peaks in cp is determined from the relation 
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Fig. 34. Here: Lot is the vacuum coherent length, L 1 't and L2t are the coherent lengths inside 

the medium, eo is the beam particle incidence angle. 
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~<p = (Y2 + lgcl)1
12

. The position of SPXR maximum with respect to 8 corresponds to the critical 

angle of total reflection under diffraction condition [104]. 

Thus, the characteristics of the spectral and angular distribution and energy dependence of 

the quantum yield of SPXR are analogous to that for PXR generation inside the crystal. At the 

same time, at the sufficiently small incidence angle of an electron on the crystal surface the main 

Table VI 

cos, 2<!>s. lgol lgtl Sc, ~e. ~<I>. ~N1t 
(h,k,.Q.) 

k3B grM 
X 1Q6 X 1()6 mrad mrad mrad x 1()6 

(400) 5.06 120 84.6 24.5 8.4 5.0 12.0 1.1 

(220) 11.85 30 14.8 8.3 3.1 1.2 4.5 1.9 

(220) 3.20 210 208.9 116.5 12.0 11.1 25.1 19.3 

(220) 12.4 30 7.3 3.5 2.2 1.0 3.4 0.6 

c 
(220) 19.01 30 4.7 1.2 1.9 0.9 3.3 0.13 

contribution to the surface radiation intensity may be made by the vacuum trajectory. In this case, 

multiple scattering does not affect to the radiation process and the vacuum coherent length is limited 

to the real length of the plate. The estimation of the possibility of observing SPXR experimentally 

gives [109]: let an electron beam with the energy 500 MeV, the transverse width of I0-1 em, an 

angular spread of IQ-4 rad and an energy current of 1~A is incident on Ge crystal with the surface 

length of the order of 1 em. In this case, approximately 0.01% of all particles experience effective 

radiation. As a result, for the (220) reflection of Ge, the photon yield will be of the order of 102 

quanta/s. 
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In conclusion it should be noted that, according to the analysis made by Kaminsky, 

Andriyanchik and us, it is possible the formation of circular polarized quanta under the surface 

diffraction and, as a consequence, such circular-polarized quanta can be produced at SPXR 

process. 

§6. Parametric X-Ray Radiation in Crystals being Subjected to the Action of High 

Frequency Ultrasonic Waves. 

According to [2,32], in the presence of an external variable field (for example, ultrasonic 

field) a crystal is characterized by an effective refractive index depending on external field 

parameters. Changing these parameters we can change the properties of parametric radiation. 

As the characteristics and yield of PXR depend on the solution£<-> (r,ro) of homogeneous 

Maxwell's equation describing diffraction process in crystals, then the investigation of the external 

ultrasonic (US) field influence on diffraction of X -ray points to the strong influence of an US 

external field on the PXR process. It was shown in [112] that the action of US wave can be 

resonant in the case of intersection of dispersion surface branches and, as a consequence, the 

degeneration of refractive indices. In [114] it was pointed to the essential modification of scattering 

process and X-ray radiation process under diffraction condition in crystals. Due to dynamical 

character of PXR formation, according to [115], the influence of US wave on this process will be 

maximum under the coincidence of the wave length of US with the period of extinction beatings. 

The theory of PXR under the action of an external US wave to a crystal target was derived 

in papers [116-120]. The boundary problem of diffraction of X-rays by a crystal target being 

subjected to an US external wave was solved in the case of two-wave diffraction in [121-123]. 

We do not give here the expressions for photon wave functions£<-> (k,r) because they are very 

clumsy. The spectral-angular PXR distribution in the presence of US wave was obtained in [ 117-

75 



118]. It was pointed to two new effects which manifest themselves at definite conditions in the 

PXR generation process. 

The first effect, acoustic-parametric resonance, manifests itself as an increase of PXR 

absorption length under the action of US wave and leads to the increase of angular density of 

radiation in thick crystals within a narrow angular region. Indeed, it is well-known (see also §1) 

that the refractive index of centresymmetric crystal under diffraction conditions in X-ray spectrum 

range is represented in the form: 

where all definitions are given in § 1. 

The Cerenkov condition 

is fulfilled, as pointed out in §1, only for nt. for a rather big deviation from the exact Bragg 

condition. In this case the absorption coefficient is practically the same as in amorphous medium 
, 

Jlo =.!. kg0 and the effect of anomalous X -ray transition under diffraction [ 124] is not realized. The 
2 

action of the US wave leads to the change of dielectric properties of a crystal. The modified 

refractive index in the case of 

(2.70) 

can be written in the following form: 
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where-; is the US wave vector, e is the photon radiation angle, k is the photon wave vector, 

2 ' 2 (- -) ' 8er = y 2 + g0 + 85 , ~=cos k" re, r5 = Re (g~~'t), ~ = u/c . The analysis shows that, if 

(2.71) 

then the Cerenkov condition for one of the branches n!1 is satisfied under the simultaneous 

fulfillment of condition of anomalous X-ray penetration. In this case the absorption length of PXR 

increases, consequently, the coherent length of PXR formation also increases (at the condition of 

Req = 0, the coherent length is restricted by the photon absorption length in crystals). The growth 

of coherent length, obviously, leads to the increase of the spectral and angular densities of 

radiation. The spectral-angular distribution of PXR within the narrow region close to the exact 

Bragg direction k~ + t for the case of Laue diffraction in a crystal being subjected to the action of 

the transverse US wave can be represented in the form: 

d2Ns = e2 (es~J 
dcod.Q 47t2 

L Aspp' [~IJLr:· - 1] [a.. - a.. spp']r 
ab 0 ab • a,b,p,p' (2.72) 

where O..o and a..:~p' are the coherent lengths in the vacuum and in a crystal, correspondingly, 
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A.:_r is the solution of the diffraction dispersion equation in the presence of the transverse US 

wave, the amplitudes A?:' are given in [116]. 

The analysis shows that the cross-section of photon radiation in a crystal being subjected to 

the action of a transverse US wave, in general case, is determined by 36 coherent lengths. For each 

from waves with the wave vectors k +pi (p = 0, ±1) there are six coherent lengths corresponding 

to different stationary superpositions of electromagnetic waves which are formed by the interaction 

of incident and diffracted waves with a definite polarization in a crystal. The same number of 

coherent lengths characterizes the formation process of radiation with the another polarization. Let 

us recall, that the radiation process in an amorphous medium is determined by one coherent length 

and in unperturbed crystal there are four coherent lengths determining the radiation formation. 

However, it should be said, that the requirement of Cerenkov condition fulfillment strongly 

restricts a number of coherent lengths which are determined the PXR intensity. 

In [117] it was given the detailed analysis of radiation in a weakabsorbing and strong­

absorbing (thick) crystals. The most interesting situation the later; when L >>Labs· In this case the 

influence of the US oscillations on PXR can be essential. If the coherent length in an unperturbed 

crystal is restricted by 

then, under the fulfillment of the condition (2. 71 ), we have 

, 2 

L -1 = Lo L+1 = Lo J31rs + Os >> Lo 
1 - 1• 1 - 1 1 . 

1 s:2 
rs- Us 
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Here Os = rJ2g~. r: = 1m {g'tg .. t) . Because the angular radiation density is proportional to the 

square of coherent length (see (2.72)) then, obviously, the increase of PXR intensity is possible. 

The analysis of (2. 72) and the angular distribution, obtained in [ 116, 117], shows, that this 

increase takes place within the narrow angular interval in which the influence of US oscillations is 

the greatest 

( 

I 2)1/4 
.18vs = rs - os . 

( 2 I )1/2 • 
As in the unperturbed crystal .18er = y 2 + es - go ' then you can see that .18vs << .18ef· It IS 

important to note that the angular width of the region of PXR intensity growth is determined only 

by crystal parameters and does not depend on generating particle characteristics and the US 

amplitude. 

The angular density of PXR is quadratically depends on the US amplitude when this 

amplitude is much less than the interplanar distance of a crystal. In [ 116, 117] it was obtained the 

angular and spectral PXR characteristics in crystal under the action of longitudinal and transverse 

US waves, which amplitudes are less than a crystal interplanar distance (~a<< 1) for the 

geometries of Laue and Bragg. In Fig.36, the result of numerical calculation of the angular 

distribution of PXR generated by electrons with the energy of 500 MeV in the reflex (220) of Si 

crystal being subjected to the action of transverse US wave ( ros = 8 ke V) is shown. It is important 

to note that the considered effect becomes stronger with decreasing the crystal temperature [ 117-

119]. The temperature dependence of the additional intensity to the PXR angular distribution on the 

crystal temperature is shown in Fig.37. The authors of [117, 119] suggested to apply the effect of 

acoustic-parametric resonance for the investigation of the temperature dependence of the imaginary 

part of the crystal susceptibility. 
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The second effect, resulting from the action of US wave to the crystal, is the X-ray­

acoustic resonance. It manifests itself under simultaneous fulfillment of both Cerenkov and X-ray 

acoustic resonance conditions. Under the X-ray-acoustic resonance it is possible the oscillations in 

the OXR spectral-angular distribution with the period depending on the amplitude of US wave. 

The corresponding theory is given in [117-120]. 

It is known that the action of US wave can result in the intersection of diffraction 

dispersion branches, that is the degeneration of refractive indices take place at the zero amplitude of 

oscillation. The degeneration of refractive indices is possibly only from some threshold magnitude 

of the US wave vector. The US wave with the amplitude a :F- 0 destructs the degeneration within 

the region of ~a. - ~g; where ~ = t ta . It is interesting that the US wave with the wave vector 

close to the threshold magnitude does not influence the PXR, because the degeneration of 

refractive indices of a crystal takes place far from the Cerenkov condition. The influence on the 

OXR characteristics will be resonant under simultaneous fulfillment of both Cerenkov condition 

and the condition of X-ray-acoustic resonance. The calculation shows that the US wave vector, in 

this case, should satisfy the condition 

where Sr is the angle which corresponds to the resonance condition. In the case of the resonant 

field there are the waves the refractive indices of which differ from each other only by the small 

magnitude ~~g~ being proportional to the US amplitude. 

The interference of the waves with the different refractive indices results in the oscillation 

dependence of the PXR spectral-angular density on the US amplitude in a weakabsorbing crystal. 

Besides, the PXR angular density, under the condition of X-ray-acoustic resonance, can 

essentially change. In most cases the angular density in the direction of diffraction reflex decreases. 
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At the same time , the angular density in the forward direction, i.e., in the particle motion direction, 

increases. The angular interval of the effect observation is 6. e -l~g~. The magnitude of the angular 

density, in this case, does not depend on the oscillation amplitude and is determined only by 

characteristics of a crystal and of a charged particle. In Fig.38 the modification of PXR angular 

density as a function of the US wave vector is shown. The third situation corresponds to the X-

ray-acoustic resonance condition. 

The ultrasonic oscillations influence not only the radiation angular distribution but also its 

polarization and the energy dependence of radiation intensity [119,120]. The thing is that the 

resonant action of US oscillations changes the angular density of parametric radiation and, 

consequently, changes a photon number recorded by a detector with a definite angular size. The 

d.JI 
d.Q ,ref.unUs 

15 

Fig. 38Here: The PXR angular distribution in Si (220), E = 900 MeV, the asymmetry factor p 
= 1, WB = 8 keV, CE = z reth: 1)g = 0, z = 0; 2) g = 0.1, z = 1.9, Vs = 5.87·108Gz; 3) ~ =0.1,z 

= 3, Vs = 9.28·108 Gz. 

resonant conditions depend on the energy of radiating particles and, as a consequence, a number of 

photons, incident on a detector, can increase or decrease with changing the particle energy. As a 

result, the energy dependence of PXR intensity, recorded by a detector with the angular size of 
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69o, becomes more complicated. The modification of the threshold dependence of PXR intensity 

as a function of the US wave amplitude is shown in Fig. 39 (licos = 8 keV,.So = I0-3 rad, the 

plane (220) in Si): 

The US oscillations influence the polarization characteristics of PXR as welL Because the 

conditions of the resonant influence of US waves on the 1t- and a-polarizations are different, the 

polarization of produced radiation will depend on the parameters of an external US wave. This can 

allow to change the PXR polarization by the resonant action of a US wave. The change of the PXR 

polarization with changing the US wave vector relative to the threshold magnitude is shown in 

Fig.40. You can see that the action of US wave can essentially modify the polarization degree of 

the detected radiation indeed 
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Fig. 40. Here: Pis the PXR polarization power in Si (220), So= lQ-3 rad, re = zreth: 1) z = 1, 

Vs = 4.17·108 Gz; 2) z = 1.5, Vs = 6.26·108Gz. 
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Part ill. DIFFRACTION X-RAY RADIATION BY RELATIVISTIC OSCILLATOR (DRO). 

As we discussed above, the X-ray radiation of a relativistic oscillator in a crystal essentially 

modifies under diffraction conditions of emitted photons. A new diffraction radiation of iscillator 

(DRO) appears as a result of coherent summation of two processes- photon radiation and 

photon diffraction, but it can not be reduced to the sequence of these two processes. The relativistic 

oscillator itself can be or a relativistic atom or a relativistic charged particle channeled in the 

potential well of averaged crystallographic potential of axes (planes), or an oscillator formed by an 

external electromagnetic field (ultrasonic, laser). It was shown in [2,13,19,27,28] that the DRO 

spectrum is rather complex and is determined by complex and anomalous Doppler effect (see § 1 ). 

It is known that the transverse energy of channeled electrons (positrons) is discrete and 

state to state transitions result in the radiation , i.e., in this case a channeled particle is like an one­

dimensional or two-dimensional 'oscillator with the eigenfrequency in the laboratory frame 

!lnr = En - E£, where En and Ef are the eigenvalues of corresponding one- or two-dimensional 

Schrodinger's equation, in which the particle rest mass is replaced by its total energy my. 

For the analysis of DRO characteristics it is necessary to obtain the spectral-angular 

distribution. The description of channeled particle motion by the help of one- or two-dimensional 

Bloch functions was given in [125]. The expressions for spectral-angular DRO distribution for 

different cases of photon dynamical diffraction were obtained in [ 17 -19]. For example, in the case 

of two-wave Laue diffraction the spectral-angular distribution of DRO can be written in the 

following way[17-19]": 

(3.1) 

where 
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q~ = ro ( 1 - J3u cos e) - nnf - ro BJ.i.s 
'Yo 

-+ 

(3.2) 

eJ.lS was determined in §2, e is the angle between the photon wave vector kt, directed at a small 

angle relative to the particle velocity, and the Z-axis. In the dipole approximation, that is true for 

the X-ray radiation, we have 

-+ 
in an arbitrary nondipole case gnr is defined in [17,18], 

- 1 (-)- . (-) 2 Pnf = 
4 

<i>nk P P <i>ik P d P ' 

<i>nk and <i>ik are the two-dimensional Bloch-functions satisfying the equation like Schrodinger's 

one (see [17-19], L is the crystal target length, Qn0 is the population probability of a particle 

transverse energy state n. 

According to (3.1) the maximum intensity should be observed at the angles and frequencies 

which satisfy the equation 

(3.3) 

The solutions of this equation were obtained in § 1. 

In the case of rather thick crystals the angular distribution of DRO was obtained in 

[2,18,19].For example, the angular distribution ofradiation generated by plane-channeled particles 

can be written as [2]: 
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... 

for r -polarization: 

( ) fA IJ.O . 2 'ty COS q> - 'tx Sin q> n 'tz sin 8 Sin q> - 'ty COS 8 \
2 

Fr e, q> = \'"'1(l)nf sm e cos q> ~~ + Unf ~~ f 

and for 1t-polarization 

F (e ) - [~1 ro~f sine cos q> [cos e (ii, ~)- 'tJ n [ sin2 e cos q> (ii1~}.- 'tx]]
2 

1t ' q> - ~~ + nf ~~ 

where ro~; =nne ( 1 -~cos e- "d Re BIJ.s (ro~;})- 1 , 

Xnf is the matrix element, determined through the one-dimensional Bloch-functions, Lef is the 

effective length (at L <Labs. Ler = L, L >>Labs. Ler = Labs. where Labs is the absorption length). 

The term in square brackets takes into account the influence of medium dispersion on the angular 

distribution. Because the frequency, satisfying the dispersion equation (3.3), belongs first to one 

dispersion branch and then the another one with changing the radiation angle S,(see the analysis in 

§ 1) the summation over the solutions J.l means that we select the corresponding root of the 
~ 

dispersion equation for each definite radiation angle e, n1 is the unit vector directed along the wave 

vector of the photon propagating at a small angle relative to the mean velocity of a channeled 

particle. 

The numerical calculation of the angular DRO distribution taking into account the 

dispersion characteristics of the medium under diffraction conditions, was made in [29]. According 
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to Fig.41 the angular distribution has a fine structure which corresponds to the region of transition 

from one dispersion brarich to the another one. You can see that the DRO distribution looks like 

two narrow rings - the first one corresponds to the solution Jl = 2 and the second one to Jl = 1 

1 

Fig. 41 

(in the case of PXR generation only one solution satisfies Cerenkov condition). The angular 

position of maxima in the DRO distribution can be estimated in the first approximation as: 

91,2 = 

(3.5) 

where eo is the angle which satisfies the following equation 
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SB and C.OB are the angle and the frequency satisfying the exact Bragg condition. For example, 

according to Fig.40, the values of these angles are St = 6.1·10-3 rad and S2 = 6.2·10 rad. The ratio 

of the angular width to the value of the angle S is about of AS/So = 0.1. The expressions for the 

radiation angular distribution are essentially simplified if the particle energy is rather small (1 - J3 

>> li'YO,l Re ~J.Ls). In this case we can consider the frequency, corresponding to the maximum 

intensity, not to depend on the dielectric properties of a crystal and to be determined only by the 

radiation angle. The DRO characteristics, in this case, were considered in [126]. 

In [127] the possibility of the DRO experimentally observation by measuring the angular 

distribution was analyzed. It was shown that this experiment demanded particle beams of high 

quality because the radiation characteristics were very sensitive to the particle beam parameters. 

Indeed, the DRO angular distribution, shown in Fig.41, takes place only for the particle beam 

which characteristics satisfy the following inequality: 

(3.6) 

where 'Y is the Lorentz factor, ASer is the angular spread, Ay/y is the energy spread, An = 27tc is 
L 

the divergence of the oscillator eigenfrequencies. 

In the opposite case the angular width of maxima is equal to 

(3.7) 

As an example, the dependence of DRO angular distribution characteristics on the energy 

divergence of the particle beam is shown in Fig.42. You can see that this dependence is rather 

sharp indeed. 
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Fig. 42 

The dependence of the radiation angular density on the relativistic oscillator energy, which 

has a "resonance" character at a given angle of the radiation observation, was also considered in 

[127]. If the observation angle is equal to zero, the maximum of the angular distribution sharply 

increases with 'Y --7 'f = ( rop,/2QY
12

• When the frequency COB equals COB = COm 9x = 2Qy2 the 

maximum value of the radiation density is observed.at 'Y being a little more than 'YR· The angular 

distribution , in this case, looks like a bell and its width decreases sharply with 'Y ---+ 'YR. (see 

Fig.43). In the region of"(> 'YR. (COB< COmax) the single narrow maximum splits into two peaks (cp 

is fixed), which shift to the region of larger radiation angles 9 with increasing the particle energy 

E. In [127] the relative estimations was given for the contributions from different radiation 

mechanisms to the total radiation angular distribution which can be observed in a definite reflex. It 
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was shown that at Ay/y- 1% the ratio of the DRO angular density to the density of diffraction 

bremsstralung at e = 0 was 

Rl =!.mill_= Qme[ (sin~+ cos2 29Bcos2 '!') 
loB ( 1 + cos2 29B) 4 e; L (Aytyf (3.7) 

where the estimation is given for a channeled electron (positron), 9L is the Lindhard's angle, 'If is 

the angle between the particle oscillation plane and the diffraction plane, e; is the mean square 
2 

angle of multiple scattering per unit length, 1/4 eL is the classical estimation of the magnitude 

lxnf n? c-2• For Si crystal, the channeled electron with the energy of E = 23.6 MeV (y = YR) 

(planes of channeling (100), e = 0, diffraction plane is (220)) the value of the ration is R1 = 25, 

that is the DRO intensity is 25 times larger than the intensity of the diffraction bremsstralung at 

Ay/y = 1% and A 'If¥< Ay/y. If the diffraction radiation is observed at the angle e :;t 0, we should 

compare it with the contribution from the parametric (quasi-Cerenkov) radiation. In this case the 

analogous ratio is estimated as [127] 
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where cp is the angle between the wave vector k and the diffraction plane, Yn = OlB/OlL is the 

( 

I )-1/2 
Lorentz factor corresponding to the threshold magnitude of the energy E = mc2 g0 . You can 

see that this ratio essentially depends on the value of azimuthal angle cp. For example, for Si this 

ratio is estimated as R2 = 5 if the electron with energy of E = 34 MeV is channeled between the 

planes (100) and the diffraction plane is (220). 

Thus, the experimental observation of the diffraction radiation of oscillator is possible by 

the help of the particle beams with the high quality. 

Relativistic oscillator can be formed not only by an unperturbed crystal channel but also by 

an external ultrasonic or laser field which subjects to the crystal and forms a bent crystal channel. 

In [128] the radiation of electrons (positrons) in a crystal, being subjected by the action of a laser 

wave, which forms an oscillator, was considered. The estimations for the intensity of such 

radiation were given. A relativistic oscillator can be a channeled particle, which moves in a plane 

channel, bent by a variable external field (ultrasonic or laser wave ), i.e., in some electromagnetic 

undulator [14]. In this case, the oscillator frequency in the laboratory frame is Q' = rezu- n, 
~ 

where re is the wave vector of an external wave in a crystal, n is its frequency (the Z-axis is 
~ 

chosen along the direction of an average particle velocity u ). The diffraction radiation of oscillator, 

being formed by an external ultrasonic wave, was considered in [129]. 

According to [14], the trajectory of a particle moving in the dynamic ultrasonic undulator is 

written in the following form (see Fig.44) 

r {t) = fch{t) + ?{t) = fch{t} +a cos (n't + o) ' (3.10) 
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Fig. 44 

where rch(t} is the radius vector describing the ordinary high-frequency channeled particle motion 

and?( t} is the radius vector describing the motion of particle in the dynamic undulator. Assuming 

that the frequency of ultrasonic wave is much smaller than the frequency of particle oscillations in a 

crystal channel, we can consider these two kinds of particle motion independently: the ordinary 

channeled particle motion and the motion of the equilibrium trajectory center of particle gravity 
--+ 

inside the bent channel formed under the action of the external variable field. a and 8 are the 

amplitude and the initial phase of particle oscillation in the ultrasonic channel. It should be noted 

that, if the ultrasonic wave amplitude satisfies the condition a<< uu(Edre2f 1 
(E is the particle 

energy, d is the crystal channel width and V is the depth of the potential well for a crystal channel), 

then the radius of the crystal curvature due to the action of the ultrasonic wave is much larger than 

the radius of the trajectory curvature for the channeled particle incident on the crystal at the 

Lindhard angle. In this case, the equilibrium trajectory of a positively charged particle gravity 

center corresponds to the trajectory of a stable channeling regime, and the curvature of the crystal 
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channel, caused by the action of the ultrasonic wave, leads only to the displacement 6 of the 

equilibrium trajectory center of gravity during the particle movement through the crystal. That is 

why, for positively charged particles, for which ar + 6 ~ d/2, we can take into account the 

dechanneling effect, because of channel curvature, by considering the mean square angle of 

multiple scattering in this bent channel in the same way as in an amorphous medium [129] (ar is the 

amplitude of particle oscillation for the ordinary channeling regime). 

In the case under consideration an essential difference arises compared with the diffraction 

radiation from the oscillator caused by a channeled particle. This is that the atomic (nuclear) 

oscillations, resulting in the formation of the ultrasonic undulator, will simultaneously lead to the 

dielectric constant modulation in a crystal and, consequently, can change the diffraction process 

itself. As a result, the photon wave function changes. The Maxwell's equations describing this 

situation is given in [129]. The case when the influence of ultrasonic wave on the X-ray diffraction 

process can be reduced only to the change of the magnitude of Fourier-components of crystal 

dielectric susceptibility was considered in detail. It was obtained the spectral-angular distribution 

and was separated the contributions of parametric (quasi-Cerenkov) radiation and DRO itself. The 

spectral and angular characteristics were analyzed and the total number of photons in a diffraction 

peak was estimated. 

It was shown that, if the following inequality 

is fulfilled, the intensity of the diffraction radiation by a particle in the external field will be more 

intensive than DRO by ordinary channeled particle (ar and Or are the amplitude and the frequency 

of particle oscillations in an unperturbed channel). According to [14], this inequality can be realized 

for a standard ultrasonic field source and, as shown by the estimations, the influence of this wave 

on dechanneling process can be ignored in this situation. 
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In conclusion, it should be noted that the diffraction radiation can also be formed under the 

motion of oscillator over the crystal surface, by analogy to the surface parametric (quasi-Cerenkov) 

radiation. The main difference of the surface DRO from the SPXR is that, in this case, both 

radiation dispersion branches give the contribution to the radiation intensity. It is also possible to 

observe in the vacuum not only normal but also anomalous Doppler effect which is accompanied 

by the excitation of the radiating oscillator itself. 
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Part IV. COOPERATIVE EFFECfS in X-RAY RADIATION 

by CHARGED PARTICLES in CRYSTALS. 

The high spectral and angular densities of parametric (quasi-Cerenkov) and diffraction 

radiation of oscillator and also narrow spectral and angular widths of radiation reflex give the basis 

of application of considered spontaneous mechanisms of X-ray radiation for construction of X-ray 

coherent radiation source by using relativistic particle beams in crystals. Such system can be 

considered as a crystal X-ray free electron laser (FEL). The idea of parametric X-ray generator on 

the basis of channeled electron (positron) beams in crystals was firstly expressed in [130-132]. In 

[130-134] it was obtained the dispersion equation for eigenstates of system, consisting of 

electromagnetic radiation, a beam of relativistic oscillators and a crystal. The increment of the beam 

instability was also analyzed. The possibility, in principle, of obtaining X-ray coherent radiation 

with the help of a beam of relativistic oscillators in crystals was shown. In [135] the Cerenkov 

relativistic beam instability in a crystal was considered and the corresponding increment was 

obtained. Thus, in [130-135] the new kind of X-ray FEL- solid X-ray free electron laser (SXFEL) 

was suggested. As we have pointed above, two mechanisms of spontaneous X-ray radiation, 

generated by a relativistic electron beam in crystals, can constitute the basis of such SXFEL: 

parametric (quasi-Cerenkov) X-ray radiation and diffraction radiation of oscillators formed in 

crystals, for example, by channeling [130-134, 140-143] or under the action of an external field 

[142,144]. 

The main feature of such X-ray generator is that the crystal target, in this case, not only 

forms the mechanism of spontaneous radiation but also is a three-dimensional resonator for X-ray 

radiation which produces a distributed feedback (DFB). Recently, the construction of X-ray 

generator by using channeled electron beams in crystals was also considered in [145-149] and on 

the basis of resonance transition radiation in [150,151]. The possibility of using crystal as a 

resonator which produces one-dimensional distributed feedback for X-ray coherent generator was 
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fJ.I'Stly expressed in [152]. This idea was used for the formation of one-dimensional DFB in solid 

X-ray FELon the basis of channeled particles in [148,149]. However, in all these papers the DFB 

was traditionally considered in one-dimensional geometry when the radiated and diffracted waves 

propagated along one line in opposite directions. The authors [148,149] obtained a low generation 

threshold for such system with one-dimensional DFB only due to the ignoration of radiation self­

absorption inside the crystal. The correct consideration of absorption, as it has been shown in 

[143], leads to the threshold beam density of the order of jth- 1012 Ncm2 for this DFB geometry. 

In the solid X-ray free electron laser, suggested in [130-144], the crystal resonator 

produces the three-dimensional DFB, that allows to optimize the system and essentially decrease 

the generation threshold. The distributed feedback in X-ray region in crystals is possible due to 

diffraction of X-ray radiation by crystal planes, which act like mirrors in a Fabry-Perot resonator. 

The case, under consideration, is distinguished from the ordinary one-dimensional DFB by the 

direction of propagation of diffracted wave. This is a large angle, but not 1t, relative to the particle 

motion direction and, consequently, relative to the radiated wave. The analysis shows that the 

process of amplification and generation in such solid resonator essentially modifies and, under 

definite conditions, is developing more intensive. It was shown that the interaction between the 

particle beam and electromagnetic field is the strongest near the region of degeneration of roots of 

diffraction dispersion equation, particularly, in the case of multi-wave diffraction. 

Let us consider in detail two kinds of X-ray solid generators, suggested in [130-144]. Each 

of them has own advantages and disadvantages. 

8. Parametric (Quasi-Cerenkov) X-ray Generator. 

The quasi-Cerenkov instability of a relativistic electron (positron) beam in three­

dimensional periodic medium in X-ray region was firstly considered in [135]. The authors have 

formulated the problem of X-ray parametric radiation amplification in infinite medium caused by 

quasi-Cerenkov instability of a relativistic particle beam. It was obtained the dispersion equation in 
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the case of two-beam diffraction and the increment of instability. It was shown that the strongest 

interaction between the particle beam and radiation was close to the region of degeneration of 

dispersion equation roots, which was possible only in the geometry of three-dimensional 

distributed feedback. The boundary problem of amplification radiation in a finite parallel-plane 

crystal target was solved and the generation threshold for the particle density was obtained. It was 

assumed that a relativistic particle beam with a mean velocity of 11 was incident at a definite angle 

'1'0 on the parallel-plane crystal target with the length of L. The orientation of a particle beam 

relative to crystallographic planes was made in such a way that spontaneous photons radiated by a 

particle beam, were under diffraction conditions for planes with low indices. The fulfillment of 

diffraction condition not only results in the possibility of quasi-Cerenkov radiation in the X-ray 

region itself but also produces three-dimensional distributed feedback. 

The closed set of equations describing the interaction of radiating beam with a crystal, in 

the general case, consists of Maxwell's equations for electromagnetic field and an equation for 

particle motion in the field (for "cold" particle beam, 8'1' < (kL)-1 'where e is the radiation angle, 

'I' is the angular spread of particles in a beam, lt is the photon vector) or the equation for a 

distribution function (in the case of "hot" particle beam). For example, in the case of a "cold" 

beam we have: 

(4.1) 
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where j (r,t) = e L Va (t) B (r- ra(t)} is the microscopic current density of particles in a beam, 
a 

n(r, t) = e L B (r- ra(t)) is the corresponding charge density, ra(t) and Va(t) are the trajectory and 
a 

the velocity of a-th particle in a beam, E{r,t) and H(r,t) are the electric and magnetic strengths of 

field, ~r,ro) = e(r,ro) E {r,ro), e (i,ro) = L f-t (ro) e-itr is the crystal dielectric constant, 't 
Eo= 1 +go= 1- rof!CJ'il, ro[ = 47te2no/me, no is the electron density in a crystal, g't = e't is the 

Fourier-component of dielectric constant,-;( is the reciprocal lattice vector. 

Considering two-wave generation and representing the trajectory and velocity of a particle 

as ra(t) = roa + ut + Bra{t) and va(t) = u + Bva(t), where 't oa is the position of a-th particle in a 

beam at the moment of intersection of the crystal boundary, the system ( 4.1) can be rewritten as a 

system of Maxwell's equations for electromagnetic fields E {'k,ro} and~ {'k,ro) in the following 

way[ 136-139] 

(4.2) 

where k't = k + t, Ecr = E('k, (l)~cr. E~ = E (k-r. ro) ecr. eo II [ki]. The set of equations (4.2) is written 

for a-polarization of radiation, because it is excited with maximum probability at parametric (quasi­

Cerenkov) radiation (see Part II ), CO[= 47te2nofme, ii0, is the mean density of an unperturbed 

particle beam. 

The comparison of (4.2) with the ordinary set of Maxwell's equations describing X-ray 

dynamical diffraction in a crystal allows to conclude that the boundary problem of X-ray 

amplification (generation) under penetration of a particle beam through a periodic medium can be 
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reduced to the problem of X-ray diffraction by an "active" periodic medium, which consists of the 

crystal+radiating particle beam and is characterized by the following dielectric constant: 

(4.3) 

As the electron density in a beam is much smaller than that in a crystal, the second term on the 

right-hand side of (4.3) can be neglected. The last term has a resonance behavior under the 

fulfillment the synchronism condition between a particle beam and electromagnetic field 

ro- ku = 0. In X-ray region the fulfillment of this condition for a diffracted wave is impossible, 

that is why, it is possible to consider Eo (kt,ro} = eo. 

In the case of "hot" beam, dielectric constant of a such "active" medium is represented as: 

-2 2 Eo {:k,ro} = Eo - _O>L_2 -----"'"xe"""-_xz~e..._ ___ _ 

yro (vi cos <p + '1'2 sin <p + 'l'ulfef 

where x = ro- ku, '1'1· '1'2· '1'11 are the transverse and longitudinal divergences of the particle 

velocities in a beam, <p is the azimuthal angle of a photon, 9 is the angle between the photon wave 

vector and the Z-axis, directed inside the crystal as a normal to the crystal surface. 

Thus, the reduction of analysis of amplification and generation processes in X-ray FEL to 

the solution of a boundary problem of X-ray dynamical diffraction by "active" crystal target with 

the length of L allows to find generations thresholds of such system for different regimes of FEL 

operation and to do the optimization of parameters [138,139]. 
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The dispersion equation determining the solutions for electromagnetic wave vector inside 

the "active" medium in the case of two-wave generation is written as follows: 

(4.4) 

and the general solution of a set of equations (4.2) can be represented in the form 

4 

E = L ea c~ eikor ( 1 + S~eitr) eiol'z ' 
~=1 (4.5) 

where S~ = 
002

g-'t , k~ = ko + koB~iiz are the roots of dispersion equation of ( 4.4 ). The 
ka-tC2- ro2EQ 

wave amplitudes CJ.l are found from the matching conditions for the electromagnetic field (4.5) on 

the boundaries of the crystal target and are written in [139]. 

As a result, the generation conditions in the case of two-wave distributed feedback and the 

different cases of "cold" and "hot" beams and also for different regimes (weak and high gain 

regimes) were obtained. It was shown that, in all cases, the generation threshold has the simple 

meaning: on the left-hand side of equality is always the term describing "production" of radiation 

inside the crystal and on the right-hand side - two terms describing the radiation losses. 

Particularly, the first of these terms connects with the radiation losses through the crystal 

boundaries,and the second one corresponds to the self absorption of radiation inside the crystal. 

The analysis shows that the conditions of generation threshold are optimal near the region 

of degeneration of roots of dispersion equation (4.4). This region corresponds to the edge of 
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nontransparentcy region in dynamical diffraction theory and the interaction of electromagnetic field 

with a particle beam and with a crystal is here the most effective. 

It should be noted that the condition of the degeneration of dispersion equation roots leads 

to the requirement for the photon radiation angle e
2 = (- f3t)- 112 lg~ -lg~- y-2

, and this, in its turn, 

gives the restriction, in the X-ray region, for the possible geometry of Bragg diffraction 

r' 
-~ ,

1 
<f3r<O, 

go+r2 

where r = g'tg-'t. 

The estimations of the threshold magnitude of the beam current density show that the case 

of two-wave solid distributed feedback is not optimal case for the achievement of generation 

regime in the X-ray region. If for "cold" particle beam in LiH and 'l'.i < lQ-6 rad, 'I' I 1 < 10-8 rad 

the threshold current is of the order of 109 A/cm2 at L- 0.1 em, then the multiple scattering of 

electrons makes the beam "hot" and leads to the increase of the threshold particle beam density to 

jth ~ 1010 A/cm2. 

Caused by the destructive influence of multiple scattering process on the relativistic particle 

beam quality and, consequently, on the threshold conditions, it is necessary to decrease the crystal 

target length as much as possible. From the optical laser theory it is well-known that the mirror 

resonator, like as Fabry-Perot, is used for this purpose. In the X-ray region mirrors can be 

replaced by crystal plates which are oriented in such a way that the radiation wave vector is under 

Bragg condition. Due to the radiation generation process takes place in a narrow angle and spectral 

interval Aro/ro - AO ~ w-5 ,the high effectiveness of the radiation diffraction reflection by an 

external crystal resonator can be obtained under the corresponding coordination of resonator and 

the crystal target(" active" medium). This allows to reduce essentially the radiation losses through 

target boundaries. In [138] the generation threshold for the system with the external Bragg mirrors 
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was derived and it was shown that the term connected with losses through boundaries could be 

reduced in (1 - IRI) times, where R is the reflection coefficient of Bragg mirror. As a result, we can 

decrease the crystal length being necessary for the generation threshold achievement. However, the 

estimation shows the threshold magnitude holds rather high . 

As the analysis in [138] shows the transition to the distributed feedback under the surface 

uncoplanar diffraction, when the radiating particle beam is incident on a crystal at a small angle 

'I'- v;; relative to the crystal surface (see Fig.30 in §5), allows to step down the generation 

threshold. First of all, the destructive influence of multiple scattering on the particle beam is 

suppressed. Besides, the behavior of dispersion equation roots changes and this modifies the 

process of radiation amplification. 

The disadvantage of the case of two-wave diffraction distributed feedback is that the 

coordination between the degeneration condition of dispersion equation roots and the requirement 

of Cerenkov synchronism hardly fixes the geometry of distributed feedback and leads to the small 

magnitudes of the diffraction asymmetry factor J3t. It, in its tum, leads to the enhancement of self­

absorption of radiation inside the crystal target. In [132] it was pointed that the transition to the 

multi-wave diffraction allows to modify the functional dependence of the increment of the particle 

beam instability and, consequently, to step down the threshold density of a beam as well. The 

dispersion equation for the three-wave coplanar diffraction geometry of distributed feedback was 

obtained and the rule for writing the dispersion equation for an arbitrary multi-wave diffraction 

distributed feedback was formulated. In [138] it also was derived the expression for the generation 

threshold in the case of three-wave coplanar diffraction. It was shown that, in this case, the 

Cerenkov condition was fulfilled for two dispersion branches that gave the possibility for the 

coincidence of diffraction roots with Cerenkov synchronism condition near the exact Bragg 

condition and, consequently, the possibility to optimize the threshold magnitude. In the case of the 

Laue-Bragg diffraction geometry the threshold density of the beam can be reduced to jth- 108 

Ncm2, at 'I' 5 ·lQ-5 rad) in the vicinity of the double degeneration of dispersion equation roots. It 
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should be noted, that even in the case of three-wave generation, it becomes possible to apply the 

phenomena~ of anomalous X-ray penetration under diffraction condition and, as a result, to step 

down self-absorption of radiation inside the crystal. 

Thus, we can conclude that the most suitable geometry for the achievement of the 

generation regime of quasi-Cerenkov X-ray radiation by the help of relativistic electrons (positron) 

beams in crystals is the grazing geometry of the particle beam incidence on a target with the 

distributed feedback formed by multi-wave surface diffraction. 

The spectral-angular distribution of the coherent PXR near the generation threshold was 

obtained in [139]. 

In [ 136] it was derived the spectral-angular distribution of coherent radiation far from the 

generation threshold in the frame on the perturbation theory and the possibility of experimental 

observation of the coherent PXR in existing accelerators was analyzed. It was shown that the 

observation of coherent parametric (quasi-Cerenkov)radiation far from the generation threshold 

was a very complicated problem for the X-ray region, but, it was possible to observe the coherent 

radiation in an optical region even nowadays. 

9. The X-Ray Generator on the Basis of Relativistic 

Beam of Oscillators. 

The second type of crystal generator is based on the application of diffraction radiation by 

oscillator (DRO) as a spontaneous radiation mechanism [140-144]. As it was said above, the 

radiating oscillator can be formed in the different ways. This can be electrons, channeled in an 

averaged crystallographic potential of plane or axes, or electrons moving in a electrostatic viggler 

[142] or, for example, oscillator formed by an external ultrasonic (optical) wave in a crystal [144]. 

It is obvious that the general approach to the consideration of generation problem by the help of a 

relativistic oscillator beam does not depend on the formation mechanism of oscillator itself. 
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Because the oscillator is a quantum system, the calculation of polarizability tensor of a particle 

beam is more correct to be performed in the frame of quantum electrodynamics. The reduction of 

the problem of radiation application (generation) by a particle beam in a finite crystal target to the 

problem of diffraction of X-ray by an "active" medium , consisting of a crystal and a beam of 

radiating oscillator, is true in this case as well. 

The expression for the polarizability of such an "active" medium in the case of channeled 

particles in unperturbed averaged crystal potential was obtained in [141]: 

;;n (k co)= e _ rot _ 47te2no (W w ) Ia (kk1el 
"""'' 0 2 2 :z-1 ........ yeo co co- rile - n21 + ir (4.7) 

where a2t{"k} is the matrix element of the operator a exp (ikr} and in the dipole approximation it 

takes the form 

the axis iix is chosen to lie along the transverse particle oscillations in a channel, uu is the 

longitudinal velocity parallel to the channeling planes, (kx = knx, liuiix = 0), Ozt is the frequency 

of the transition (see § 1 Part I), e0 II [ ft], W 1 and W 2 are the populations of the states of 1 and 2, r 

is the phenomenological constant, taking into account inelastic collisions and can be estimated in 

the order of magnitudes as (Ld)-1, where Ld is the dechanneling length. While obtaining (4.7) it 

was taken into account that the synchronism condition could be fulfilled only for the wave 

propagating at the small angle relative to the longitudinal velocity of a particle. The fulfillment the 

synchronism condition for the diffracted wave is impossible in the X-ray region (see also §8). As 

the analysis showed [141], although there were a lot of zones (states) of transverse energy of a 

channeled particle, the main contribution to the polarizability tensor was made by a definite 
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transition with the frequency 021· It means that the consideration is reduced to the two-level 

problem. 

Indeed, the contribution to the beam polarizability from the transition between the levels m 

and n is determined by the deviation from the exact synchronism condition of the radiation field 

with the oscillator, i.e., Re {ro-Uk- !lrnn) = 0. This contribution should be taken into account 

only if 

IRe (ro-1ik- omn) s 11m (ku- ro) + r nuJ I (4.8) 

If the magnitudes of Rero and the angle between ii and k are fixed, a number of transitions 

contributing to the polarizability depends on the relationship between ~nand lim (kii- ro) + r J 
where~ determines the typical value of the difference of On+l,n- On,n-1 which characterizes the 

unharmonism of the averaged potential (for the harmonic potential ~n = 0). The analysis of the 

magnitude of~ for the different kinds of averaged crystallographic plane potentials shows that , 

~o >>lim (kii- ro) + r J , 

and, consequently,the synchronism condition can be fulfilled only for the definite transition 021· 

The other terms of a polarizability tensor can be neglected as unresonant ones. It was shown that 

the most effective interaction between the oscillator beam and the radiated wave takes place near the 

degeneration region of roots of the dispersion equation determining the eigenstates of the field in an 

"active" medium (see also §8). But, in the contrary to the parametric (quasi-Cerenkov) generator, 

for which the radiation condition is realized only at large deviation from exact Bragg condition, 

now there is a possibility to overlap the synchronism condition with the exact diffraction condition. 

As a result, in the case under consideration, the manifestation of the effect of anomalous X-ray 

penetration through resonator under dynamical diffraction (Borman effect) is possible. This 
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circumstance is much important because of strong absorption of X-ray inside a crystal target. In 

[141] the boundary problem of X-ray diffraction by an "active" medium of a finite size was solved 

and the generation condition was obtained It was shown that the beam can be in synchronism with 

one of modes of "active" medium. They correspond to the waves with the wave vectors being the 

solution of dispersion equation (~h and B2,). According to [141] the generation condition can be 

realized in two cases: for the wave, corresponding to the root B2 at the positive magnitude of c:x = 
<X+, and for the wave, corresponding to the root ~h for the negative deviation from the exact Bragg 

condition c:x = CL-. It was shown that the solutions of generation equation for different modes are 

identical in a structure. All of them lead to the phase condition like 

s: (O) s: (O) - 21tn 
U} -U2 --­COL (4.9) 

where Bt (0) and B2(0) are the solutions of diffraction dispersion equation, and to the amplitudes 

conditions of generation, which are written for the case of channeled particle in [141] and for the 

case of electrostatic and magnitostatic viggler in [142]. 

If the condition ( 4.9) is fulfilled the longitudinal structure of modes turns to be close to a 

stand wave structure. That is IEI2 and IEr 12 are proportional to- cos2 2ztn (z- L). This condition, 
coL 

in such a way, is analogous to the well-known phase condition of the stand wave appearance in a 

mirror resonator of an ordinary laser [144]. The meaning of amplitude conditions are the same as 

in the case of quasi-Cerenkov X-ray generator (see §8). The field amplification, due to radiation 

process, should be equal to the radiation losses caused by absorption inside the crystal and output 

of radiation through boundaries of crystal target. Because the gain, in the weak-gain regime, is 

proportional to the current density of a beam, the formula for the threshold gain gives the 

requirement for the current density. Instead of current density the invariant characteristics of a 

particle beam are often used, that is the current I, the normalized emittance En = yr <\jf> and the 
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normalized brightness Bn = l/1t2e0 2, where r is the beam radius, <\jl> is the angular spread. The 

angular spread corresponds to the divergence of the longitudinal velocity cre = u <\112> /2 and 

corresponding divergence of the particle energy is 

For the crystal LiH, the diffraction plane (220) the values of the threshold normalized brightness of 

the beam, which correspond to the generation threshold for magnetic, optical undulators and 

channeled particles, are given in Table VII. According to this Table the value of brightness in the 

case of two-wave distributed feedback is rather high. But, as it was shown for parametric quasi­

Cerenkov generator, using the surface multi-wave diffraction for the formation of distributed 

feedback, one can decrease the threshold characteristics of a particle beam and can provide with the 

achievement of generation regime. 

In [141] the underthreshold spectral-angular distribution of radiation was analyzed and it 

was shown that the observation of collective radiation by relativistic oscillators was a very 

complicate problem in the X-ray spectrum region. 

Thus the parallel consideration of two kinds of crystal three-dimensional X-ray generators, 

which are distinguished by the mechanisms of spontaneous radiation, shows that three dimensional 

distributed feedback allows to decrease the current density of the particle beam, in comparison with 

the other papers [145-149] by several orders of magnitude. It makes it possible to consider the 

construction of FEL in the hard X-ray region as a scientific problem of nowadays, which can be 

analyzed not only theoretically but also experimentally. 

In conclusion we briefly consider the question of the time of formation of radiation, 

generated by a particle passing through a crystal. At the first sight, the duration of radiation 

impulse is of the order of L/c, where Lis the target length. But in [155] it was shown that the 
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Table VII 

Parameters I Magnitostatic Wiggler I Optical Wiggler I Channeled Particle 

Accelerator 

Energy =5GeV =290MeV =500MeV 

Normalized brightness = 3.5·109 = 1.7·1010 = 5·109 

Energy spread = 2.4·10-3 1.2·10-5 

Density of current = 5.3·107 = 1.3·106 = 3.3·10S 

Wiggler 
f-' 

=5Jlm 0 Wavelength =1mm 
"' 

Magnetic field strength = 17.5 kG 

Laser energy =0.75 gW 

Czystal 

Wave length of radiation =0.05 A = 0.15 A =1A 

Asymmetry parameter =9 =1 

Diffraction plane (220) (220) (100) 



transmission of the short impulse of X-ray andy-radiation through crystals was accompanied by an 

essential delay of radiation inside the target even in the absence of resonance scattering. 

Let the electromagnetic impulse pass through the medium with the refractive index n(ro) 

The group velocity of wave packet inside the medium is 

vgr = (aron(ro))-t = _ ___k,__ 

caro n(ro) + ro an(ro) 
aro (4.10) 

where cis light speed, ro is the quantum frequency. 

In the X-ray region (- 10 keV) the refractive index is a universal function of frequency 

n(ro) = 1- rofJ2ro2, 41te2nofme and n- 1 = 10-6 << 1. By introducing n(ro) into (4.10) we obtain 

v gp = c ( 1 - rofjw2} , that is the group velocity is does not differ practically from a light speed. As a 

consequence, the time delay of wave packet inside the medium makes up only a small part of a time 

of light passage of the distance L in the vacuum. 

(4.11) 

Let the impulse be diffracted by a crystal. Let us consider, for simplicity, the case of two­

wave dynamical diffraction. The crystal, under these conditions, is characterized by two effective 

refractive indices (see Part I): 

1 
s;:(l,2) 

n1.2 = + u , 

(4.12) 
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Because we consider the photons with the frequencies in the vicinity of the Bragg frequency 

roB, then the magnitudes of goo and got can be taken as constants and only the deviation from exact 

Bragg condition a. is a function of a frequency 

where k = ro/c, tis the reciprocal lattice vector, roB corresponds to the condition a. = 0. As a 

result, we have from (4.10)-(1.12). 

(4.13) 

In the general case of diffraction (goo {1- J31) + J31a.) = 2,.fff; g't and, consequently, the additional 

term is of the order of the unity. Moreover, in the case of asymmetric diffraction, when IJ3tl >> 

1, Vgr can essentially differ from c. It should be noted that the complex character of the 

electromagnetic field under diffraction in a crystal leads to the possibility that v gr becomes more 

than the light speed. If f3t is negative, the expression under the root in (4.13) can be zero (the 

threshold of Bragg reflection). In this case, Vgr tends to zero. The analysis shows that under multi­

wave diffraction the duration of radiation impulse can increase. 
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