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ABSTRACT OF THE DISSERTATION

Evolution of immune system against diverse antigens

by

Jiming Sheng

Doctor of Philosophy in Physics and Astronomy

University of California, Los Angeles, 2021

Professor Shenshen Wang, Chair

The immune system evolves across the host’s lifetime to protect against the wide array of

threats in nature. While the immune system is capable of evolving and adapting to a single

antigen (Ag), it becomes a challenging task to defend against diverse antigenic targets, in-

cluding mutants of a same pathogen or a wide spectrum of pathogen species. First, the rapid

intra-host diversification of highly-mutable pathogens such as human immunodeficiency virus

(HIV) or hepatitis C virus (HCV) creates a coevolutionary arms race with the immune sys-

tem. As a result, viruses persist into a chronic infection in most subjects and are only cleared

in rare cases. In addition, The vaccination trials so far to elicit broadly-neutralizing anti-

bodies (bnAbs) against highly-mutable viruses have met with failure. Second, the immune

system has to allocate its finite amount of adaptive immune cells against the wide spec-

trum of pathogens in the environment. As memory cells accumulate from each pathogen

encounter, the host’s immune repertoire gradually becomes skewed: more adaptive immune

cells are dedicated to the frequent pathogens while fewer are reserved for the rare pathogens.

The skewed repertoire in the elderly has been correlated with immune risk phenotype and

a chronic inflammatory response even in the absence of pathogen, but whether there is a

mechanistic connection remains unknown.

My dissertation aims to address the following questions regarding evolution of immune
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system against diverse antigenic targets: (1): What are the mechanisms and deciding factors

behind the distinct coevolutionary outcomes observed in different subjects? (2): What makes

a viable vaccine design strategy to guide immune system evolution towards bnAbs? (3):

What are the side effects of a skewed immune repertoire, as a result of adapting to different

pathogens encountered during hosts’ lifetime? Also, how can human intervention alleviate

these side effects?

My dissertation shows that (1): different coevolutionary outcomes are decided by the

timing and efficacy of successive narrow and broad antibody (Ab) responses, which in turn

are determined by the conservation level and initial diversity of Ag. (2): A viable vaccine

strategy to elicit bnAbs should balance suppression of strain-specic B cells and preserving

cross-reactive B cells. The corresponding optimal selection strength should increase in time

as driven by the evolution of B cell cross-reactivity. (3): Mediated by adaptive-innate

feedback, repeated pathogen encounters during host lifetime and resulting memory inflation

may trigger a fragility, in which any encounter with a novel pathogen will cause the system

to irreversibly switch from health to chronic inflammation (CI). In addition, the onset of

CI strongly depends on the history of encountered pathogens; the timing of onset can be

delayed drastically when the same set of infections is encountered in a specific order.
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CHAPTER 1

Introduction

Greek philosopher Heraclitus once said: “the only constant in life is change”. Indeed, the

immune system evolves across the host’s lifetime to protect against the wide array of threats

in nature. Understanding and actively modulating the evolution of the immune system is of

great importance as it not only advances our knowledge of nature but also helps in human’s

perpetual fight against disease and aging.

The core of immune system evolution across host life time is the evolution of adaptive

immune repertoire, defined as the collection of antigen-specific receptors on the surface of

B and T cells. During an antigen (Ag) encounter, a Darwinian affinity maturation (AM)

process is initiated for the Ag-cognate B cells ([1]): the B cells that recognize the Ag are

activated and go through somatic hypermutations with a mutation rate ∼ 106 times higher

than normal tissue cells([2]). The mutant B cells with highest receptor-Ag binding affinity are

positively selected to expand, while the rest B cells die by apoptosis. The affinity-matured

B cells create antibody (Ab) molecules to neutralize Ag, as well as become Ag-specific long-

term memory cells in preparation for future encounter against the same Ag. On the contrary,

the T cells do not mutate to improve receptor-Ag binding affinity after they are born from

thymus. Nevertheless, like B cells, the Ag-cognate T cells are also selectively expanded

during Ag encounter, facilitate Ag clearance, and generate a long-term immune memory

([3]). While the immune system is capable of evolving and dealing with a single Ag, such

tasks become more challenging for the immune system when faced with diverse antigenic

targets, including mutants of a same pathogen or a wide spectrum of pathogen species.

First, highly mutable pathogens with a mutation rate comparable with somatic hyper-

mutations of B cells pose a difficult target for immune system evolution. Examples include
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human immunodeficiency virus (HIV) or hepatitis C virus (HCV) that goes through rapid

intra-host diversification and can reach over 10% intra-host nucleotide diversity ([4, 5]). The

intra-host pathogen diversification results in coevolution, or the “red-queen dynamics”, be-

tween the pathogen and adaptive immune system, where the pathogens poise as a moving

goalpost to the evolving immune system and constantly escape adaptive immune recognition

([6, 7, 8]). In turn, HIV persists indefinitely in any infected individual, while HCV can be

spontaneously cleared in only around 30% of those invaded ([9]).

A prospective solution to counter pathogen diversification is the broadly-neutralizing

antibodies, or bnAbs ([10, 11, 12]). BnAbs target the functionally important structures of

the virus that are conserved among viral mutants, as mutations of these structure would

incur a severe fitness cost ([13, 14]). However, in natural infections, bnAbs hardly emerge

until a late (typically more than 2 years) persistent infection has been established ([15, 16,

17]). Rare examples of early bnAbs development during acute infection and subsequent

viral clearance mediated by bnAbs have been reported for HCV ([18, 14]), but not HIV.

In addition, vaccination to elicit bnAbs-as human modulation of immune system evolution-

has also proven challenging ([19, 20, 21]). A major obstacle in bnAbs elicitation is that

strain-specific B cells targeting the variable Ag elements outcompetes cross-reactive B cells

targeting conserved Ag elements during AM. The conserved pathogen structures, for example

the CD4 binding site of HIV, or the E1E2 proteins of HCV, are shielded by highly mutable

glycoproteins. The conserved structures are thus less sterically accessible to B cells and are

less immunogenic ([22, 23]). As a result, fewer B cells recognize conserved viral structures

and their affinity is also harder to improve from mutations. This in turn renders the cross-

reactive B cells disadvantageous when competing against their strain-specific peers ([24]).

In answer to this challenge, vaccination with diverse Ag variants have been proposed.

This is expected to provide a selective advantage to the cross-reactive B cells as they remain

fit when binding different Ag variants. Unfortunately, vaccine trials against HIV or HCV

so far have met with failure ([25]), and the only trial with positive protective effect against

HIV reports a vaccine efficiency of only 31% ([26]).

Apart from the mutants of the same pathogen, the second major challenge to the evolving
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immune system is the wide spectrum of pathogens given the limited resource of immune

system. Over the host lifetime, the immune repertoire has to adapt to the environment

that the host lives in, where diverse pathogen species are present. As the host ages, it

experiences an increasing number of encounters with different pathogens, and pathogen-

specific memory T cells are generated to protect the host from future infections of the same

pathogen. However, “side effects” of memory accumulation also exist. As only a finite

amount of T cells is maintained by homeostasis control ([27, 28]), the inflating number of

memory cells take up the survival niche of naive cells. For example, it has been reported

in a French cohort that the fraction of memory cells among T cells has increased, while

the fraction of naive cells decreased, by more than twofold in people aged 75+ than aged

5-10 ([29]). As naive T cells defend the host against novel pathogens, the immune repertoire

becomes more vulnerable to the unencountered pathogen species over time ([30]). In addition,

an increased fraction of CD8+ T cells in the elderly caused by memory inflation has been

associated with chronic inflammatory response even in the absence of pathogen stimulation

(“inflamm-aging”, [31]), as both are hallmarks of immune risk phenotype (IRP) that predicts

impaired immune function and mortality ([32, 33, 34, 35, 36])

To resolve the challenges mentioned above regarding the evolution of immune system

against diverse antigenic targets, several questions remain to be answered: (1): What are

the mechanisms and deciding factors behind the distinct coevolution outcomes observed in

different pathogen species and different hosts? (2): What makes a viable vaccine design

strategy to guide immune system evolution towards bnAbs? (3): Is there a mechanistic

connection between memory inflation and the chronic inflammation (CI) in the elderly, i.e.,

is the later a second side effect of memory inflation? Also, how can human intervention

alleviates the side effects of memory accumulation?

To answer these questions, statistical mechanics and quantitative modeling provide a

great instrument to decipher the evolution of immunity ([37, 38, 39]). Firstly, statistical-

mechanical method allows modeling of evolution of immunity with simplified assumptions

of biological realism, and uncovering the underlying mechanisms behind experimental ob-

servations. Both statistical mechanics and immunology seek to understand the collective
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behavior of a macroscopic system, based on the knowledge of its microscopic components

as well as their interactions. The collective strength of an immune response, in particular,

depends on the dynamics of individual immune cells as well as the intricate immune-signaling

network, which is nonlinear and includes complex feedbacks. While experiments and clini-

cal observations yield information on the collective immune response, the cellular- or even

molecular-level dynamics are difficult to access in practice. As such, similar to how sta-

tistical physicists abstracted real gas as ideal gas and successfully provided a mechanistic

explanation of the gas laws, in immunology physicists can shine with mechanistic modeling

([40]) and focus on the rules governing the collective behavior of immune response. Secondly,

quantitative models built by theorists can serve as “virtual experiments”, and their predic-

tions help experimentalists to invest resources on the most efficient experiment designs and

most promising treatment protocols. This is crucial as real-life experiments are limited by

the budget of both money and time, as well as by the availability of experimental techniques.

For example, a typical HIV vaccine trial would span around 10 years and cost over 100 mil-

lion dollars ([41, 42, 43]). Notable successes of quantitative modeling in immunology include

the theoretical inspiration of “triple cocktail” therapy against HIV ([44]), the prediction of

phasic B cell mutation rate during AM ([45]), and the explanation of reduced influenza vac-

cine effectiveness on second-time vaccinees than first-time vaccinees ([46]), to name just a

few—many of which are predictions preceding experimental verifications.

My dissertation aims to address the unanswered questions above on immune system’s

evolution, from a statistical-mechanical and computational perspective. Specifically, chapter

2 investigates the intra-host coevolution of immune system and highly-mutable pathogens.

Existing work on this topic often assumes constant population sizes of both immune cells and

Ag ([24, 47]). Such assumption is common in population genetics ([48, 49, 50, 51, 52, 53])

and reasonably approximates the chronic stage of infections. However, it also explicitly

precludes alternative outcomes other than viral persistence, such as the rare yet clinically-

observed cases of spontaneous HCV clearance ([18, 14]). In addition, the assumption of

constant population size neglects potential feedback between ecological dynamics and evolu-

tion in a host. Such feedback arises because B cells not only sample and follow the antigenic
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environment, but also govern the absolute and relative fitness of distinct viral strains. Con-

sequently, antibodies arising early and becoming dominant quickly modify the shared “Ag

resource” that itself adapts, thereby influencing what future antibodies can evolve. Lastly,

existing approaches rarely explore the possibility that physical modulation of receptor-Ag

binding (e.g. locating best complementarity in real space) may strongly impact the effi-

cacy of Ab repertoire. In this dissertation, I have established a computational framework

of agent-based stochastic simulations that incorporate eco-evo dynamics of B cells and Ag,

as well as the flexible Ab-Ag binding footprint ([54]). I have identified three possible co-

evolution outcomes which can be compared with experimental observations: Ag clearance,

persistence and rebound. The transition between different outcomes is decided by the timing

and efficacy of successive narrow and broad Ab responses, which in turn are determined by

the conservation level and initial diversity of Ag. In addition, clearance of structurally com-

plex Ag relies on Ab evolution in a larger antigenic space than where selection directly acts;

rebound highlights the impact of feedback between ecology and rapid evolution. Finally,

immune compartmentalization can slow viral escape but may also delay clearance.

Chapter 3 studies the vaccination protocol to optimally elicit bnAbs against highly-

mutable pathogens. This goal is incorporated in a broader context as the dynamic control of

eco-evolutionary adaptation, and the competition between strain-specific and cross-reactive

B cells during their germinal center (GC) evolution is studied in detail. Specifically, existing

vaccination protocols involve multiple injections (“prime-boost” scheme,[55]) well separated

in time (typically by months, [56, 57, 58]), and after each injection a new set of B cells, be

it naive or memory, are recruited and initialize subsequent GC reactions. Correspondingly,

previous modeling studies assumed a constant antigenic environment during each GC reac-

tion ([59, 60]). However, experimental evidence has shown that bnAbs precursors start with

a low breadth when newly recruited to GCs, and their breadth gradually improves during

AM in GCs ([61, 62]). As such, a time-dependent antigenic environment during a continuous

GC reaction can provide a dynamic selection pressure tailored for concurrent B cells, and a

better outcome than constant antigenic environment can thus be expected. In addition, the

continuous delivery of vaccine Ag during a single germinal reaction has been demonstrated
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recently via osmotic pump technique ([63, 64]), so the clinical realization of the new dy-

namic vaccine protocol is expected to be feasible. In this dissertation, by quantifying B cell

dynamics in GCs with ordinary differential equations, I have identified a trade-off between

suppressing strain-specific B cells and preserving cross-reactive B cells at constant selection

strength. Time-varying selection outperforms constant selection by fulfilling both ends of

the trade-off sequentially in time. In addition, by applying optimal control theory, I demon-

strate that the optimal selection strength increases in time as driven by the evolution of B

cell cross-reactivity. Finally, suppressing strain-specific B cells with time-varying selection

promotes both quantity and quality of cross-reactive B cells, saving the need for two distinct

controls.

Chapter 4 looks into immunosenescence–the aging of immune system–with a particular

focus on repertoire overspecialization and its implications. On one hand, in an earlier math-

ematical model of the adaptive immune response, Stromberg and Carlson demonstrated that

repeated pathogen exposures could lead to an imbalanced immune repertoire that was fragile

to rare pathogens, in the sense that rare pathogens proliferated significantly more than com-

mon pathogens ([30]). On the other hand, Reynolds et al. developed a model to describe the

innate immune response immediately following an acute pathogen encounter ([65]). In ad-

dition, by considering both innate and adaptive immunity, Shi et al demonstrated through

modeling the enhanced pathogen clearance during late stage of sepsis progression ([66]).

Nevertheless, the effect of an evolving adaptive repertoire on innate immunity remains un-

explored, and a mechanistic connection between the aging adaptive repertoire and CI is yet

to be established. In the dissertation, I built an ODE model of coupled dynamics between

innate and adaptive immune branches, which explicitly considers the adaptive suppression

of innate immunity through anti-inflammtory cytokines such as IL-10 ([67]), or through in-

hibition of inflammasomes NLRP1, NLRP3 ([68]). I identify three steady states following

a single pathogen encounter: health, septic death, and chronic inflammation. Mediated by

adaptive-innate feedback, repeated pathogen encounters during host lifetime and resulting

memory inflation may trigger a fragility in which any encounter with a novel pathogen will

cause the system to irreversibly switch from health to CI. This transition is consistent with
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the onset of “inflammaging”, the condition observed in aged individuals who experience

chronic low-grade inflammation even in the absence of pathogens. The model predicts that

the onset of CI strongly depends on the history of encountered pathogens; the timing of

onset can be delayed drastically when the same set of infections are encountered in a specific

order. Lastly, the coupling between the innate and adaptive immune branches generates a

trade-off between rapid pathogen clearance and a delayed onset of immunosenescence.
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CHAPTER 2

Coevolutionary transitions emerging from flexible

molecular recognition and eco-evolutionary feedback

2.1 Abstract

Highly mutable viruses evolve to evade host immunity that exerts selective pressure and

adapts to viral dynamics. How this dynamic reciprocal interaction drives diverging trajec-

tories and outcomes of evolution is not well understood, which limits our ability to mitigate

viral evolution and accelerate immune control. Here we provide a framework for identifying

key determinants of the mode and fate of viral-immune coevolution, by linking molecular

recognition and eco-evolutionary dynamics. We find that conservation level and initial di-

versity of Ag jointly determine the timing and efficacy of successive narrow and broad Ab

responses, which in turn control the transition between viral persistence, clearance and re-

bound. In particular, clearance of structurally complex Ag relies on Ab evolution in a larger

antigenic space than where selection directly acts; rebound highlights the impact of feedback

between ecology and rapid evolution. Finally, immune compartmentalization can slow viral

escape but may also delay clearance. This work suggests that flexible molecular binding

allows a plastic phenotype, which modulates evolutionary transitions of co-adapting popula-

tions. By assisting in the accumulation of potentiating variations, it is possible to shortcut

long paths toward highly adapted states.
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2.2 Introduction

Among the many viruses that inhabit every species on the planet, some evolve as fast as

the adaptive immunity of their host. These rapidly evolving intruders share unusual char-

acteristics [69]: They evade immune detection by putting on diverse and variable disguises

(e.g. via high genetic variability) and divert immune focus by presenting multiple competing

antigenic targets.

Despite strong similarity in evasion tactics employed, courses and outcomes of evolution

may differ markedly among viruses. A dramatic example is that, HIV persists indefinitely

in any infected individual, while HCV can be spontaneously cleared in around 30% of those

invaded [9], even though the genetic diversity of HCV in a chronically infected person is

comparable to or higher than that of HIV [4, 70, 71, 72, 73, 74, 5, 75]. In addition, bnAbs —

capable of recognizing a vast array of mutant strains — evolve against both viruses [76, 77],

presenting a potential solution to counter rapid viral evolution. Yet, HIV bnAbs often emerge

years into infection and confer little protection [78, 79], whereas HCV bnAbs are found to

arise earlier and contribute to viral clearance [80, 81]. Such variability in the path and fate

suggests that transitions between distinct regimes may be controlled and that long routes

of immune adaptation could be shortened, if key determinants of possible outcomes were

identified.

Viral dynamics and outcomes cannot be understood without considering host immu-

nity. B cells constitute the evolving branch of the adaptive immune system and produce a

dynamic Ab repertoire. They undergo an accelerated evolutionary process named affinity

maturation [82] in microenvironments called germinal centers [83]; therein cycles of competi-

tion, proliferation and somatic hypermutations (∼ 106 fold faster than mutations in normal

tissue cells [2]) result in increasingly stronger binders to the recognized Ag. In contrast to

a passive antigenic agent (e.g. vaccine) that merely sustains GC reactions, mutating viruses

respond to AM and engage lymphocytes in mutual selection (Fig. 2.1A): B cells are selected

for enhanced binding to Ags sampled into GCs from circulation, while viruses are selected

for reduced recognition by circulating Abs (secreted B cell receptors, BCRs) output from
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all GCs combined. An enduring co-adaptation relies on genetic novelty in virus and Ab

populations, generated and maintained by rapid mutation at comparable rates. Driven by

stochastic mutation and selection, an ensemble of coevolving trajectories form in an infected

individual.

Important advances are being made to trace viral-immune coevolution during natural

infection. Measurements with ever higher throughput and resolution provide a wealth of

information across scales, ranging from the origin and pattern of phylogeny [84, 85, 86, 87, 88],

time series of functional traits (e.g. Ab potency and breadth) [89, 54, 90, 91] and GC

dynamics [92], to structure and key mutations at and near the binding interface between an

Ag epitope and an Ab paratope [93, 94, 76]. Three chief observations specifically motivate

our model framework. First, not every part of the B cell repertoire is equally accessible; in

particular, bnAbs tend to have significantly lower germline frequencies than strain-specific

Abs [95], reflecting the fact that conserved residues in the epitope (targets of bnAbs) are

fewer and harder to access than variable elements [96, 97]. Second, mutational paths toward

bnAbs vary in length. Although most bnAbs discovered so far accumulate a large number

of genetic alterations [98], some broad Abs effective at controlling infections are generated

with relatively few somatic mutations [99, 100]. This raises the question of how much AM is

needed for bnAbs to emerge and what distinguish short paths from long ones. Third, clonal

diversity and composition vary widely among GCs [92], suggesting that spatial segregation

of B cells may serve a functional role in the face of moving targets.

Mathematical models have long shed light on the competitive dynamics of AM with a

single Ag [101, 102, 103, 104, 105, 106], with quantitative insight gained by supplement-

ing modeling with parameter inference [107]. Recent works have reported features of Ab

evolution against multiple related Ags, with a particular interest in how Ag characteristics

(number, dose, complexity) and temporal patterns (in series or combination) impact the

chance of evolving cross-reactive Abs [108, 109, 110, 111, 112, 113]. This line of research is

primarily motivated by the discovery of bnAbs against a variety of highly mutable pathogens,

such as HIV, HCV, influenza, and malaria, all lacking an effective universal vaccine. In these

in silico vaccination studies, Ags are preset and do not respond to AM.

10



Comparatively fewer studies have considered host-pathogen coevolution [114, 115, 116,

47]; these works often assume constant size of both populations (with recent exceptions [117,

118, 119, 120]). This assumption is typical in theoretical evolutionary biology and presum-

ably suitable for the chronic stage of infections, and yet it precludes outcomes other than

viral persistence, and neglects potential feedback between ecological dynamics and evolu-

tion in a host. Such feedback arises because B cells not only sample and follow the antigenic

environment, but also govern the absolute and relative fitness of distinct viral strains. Conse-

quently, Abs arising early and becoming dominant quickly modify the shared “Ag resource”

that itself adapts, thereby influencing what future Abs can evolve. Furthermore, existing

approaches rarely explore the possibility that physical dynamics of receptor-Ag binding (e.g.

locating best complementarity) may strongly impact the efficacy of Ab repertoire.

Here, we present a computational framework of coevolution that addresses these gaps and

accounts for notable observations, emphasizing how physical dynamics on the molecular level

give rise to evolutionary transitions on much larger scales. We consider Ab cross-reactivity

and flexible binding footprint [121, 54], variation in adaptation rate along different lineages,

as well as feedback to and from population dynamics. Instead of modeling particular viruses,

we predict conditions under which diverse evolutionary trends emerge, and determine ways

in which features of trajectories and diversity patterns at early times inform outcomes.

Main findings are as follows. First, we identify the conservation level and initial diversity

of Ag as key determinants of evolutionary outcomes. Second, we find that BCR mutations

outside the direct contact region can potentiate Ab footprint shift toward sites of viral

vulnerability, thus enabling clearance. Such flexibility of molecular recognition expands the

search space and opens new paths of accelerated adaptation. Third, we show that functional

consequences of GC compartmentalization depends on Ag variability. Our results stress the

importance to consider adaptive dynamics of “Ag resource” when evaluating the viability

and efficiency of immune control. We discuss how this understanding suggests new ways to

enhance immune efficacy and shortcut long routes to desired outcomes.
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2.3 Results

2.3.1 Coevolution model

We develop a computational model of B cell AM driven by a coevolving viral population

(Fig. 2.1A). To study the effect of population subdivision on collective dynamics, we consider

segregation of B cells into a variable number of GCs, independently seeded by germline

clones and evolving in parallel. Ab-secreting cells output from all GCs combined accumulate

in circulation and remove viruses they encounter and match. Meanwhile, circulating viruses

replicate and diversify; those that, by chance, either avoid matching Abs or acquire escape

mutations grow in number. A random subset of Ag is transported into each GC, presented to

B cells, and fuels further rounds of AM. B cells that bind and internalize more Ag compete

better for limited T cell help, while the losers apoptose. Surviving cells either recycle to

mature more or differentiate and exit GCs, thereby closing the loop of reactions between B

cell and Ag populations.

We simulate the stochastic processes during AM (see Methods for steps), based on rules

and parameters derived from experimental studies of GC reactions [122, 123, 124, 92] (see

Appendices). Our model is a coarse-grained one that leaves out migration of B cells within

and between GCs [125, 126] and abstracts the molecular contexts of receptor-Ag binding.

Nonetheless, this simplification allows us to focus on a few novel features that shape evolu-

tionary dynamics and outcomes in essential ways.

2.3.1.1 Phenotypic description of BCR-Ag interaction and evolution

To describe joint dynamics and feedback of B cell and Ag populations, we extend the classic

shape-space model by Perelson and Oster [127] to consider evolving phenotypic distributions.

BCRs and Ags are points in a common n-dimensional Euclidean vector space named shape

space. Dimensions represent groups of amino acids comprising the binding interface between

an Ag epitope and a BCR paratope; contiguous dimensions correspond to spatially proximal

residue groups. Coordinates describe biochemical properties relevant for binding affinity.
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This geometric representation captures specificity of BCR-Ag interaction: a small dis-

tance depicts high complementarity hence strong binding, whereas a large separation reflects

poor match thus weak binding.

Residues in a viral eptiope vary in accessibility to BCR: conserved elements essential

for viral fitness and function are often surrounded and partially masked by highly variable

residues (and covered by glycans) [96, 76]. Consequently, strain-specific B cells that target

easy-to-access variable residues evolve to enhance affinity at a fast pace, whereas cross-

reactive B cells directed at poorly accessible conserved residues tend to improve slowly. In

this sense, spatial accessibility of binding targets dictates adaptation rate of elicited clonal

lineages.

Guided by these observations, we describe the variability of adaptation rate in a phe-

nomenological manner: B cells move fast in dimensions along which Ags can mutate and

evade recognition (nv fast/variable dimensions), but move slowly in dimensions where Ags

are fixed at the origin (nc = n − nv slow/conserved dimensions). The corresponding differ-

ence in mutation effect is encoded by a difference in the jump step size in shape space (see

Appendices). As illustrated in Fig. 2.1B, germline B cells (blue ovals), starting on or outside

a founder hypersphere centered at the origin (where the infecting virus resides), evolve to

approach Ags (red stars) in all directions, while viruses can only move along fast/variable

dimensions, attempting to escape the chase by facing it.

2.3.1.2 Binding affinity and footprint shift

Structural studies [128, 84, 121, 54, 129] indicate that not all the residues constituting a viral

Ag epitope are in contact with a particular BCR paratope. Rather, BCRs specific for the

same epitope may bind different, yet partially overlapping, portions of it, due to differences

in BCR conformation or approach angle. This joint binding surface on the Ag defines the

epitope. Hence, the footprint of a particular BCR spans only a fraction of the epitope; in

our shape space, BCR-Ag binding takes place in a subspace. Further, once in proximity, a

BCR may search across the epitope surface for best complementarity and settle therein once
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located, as commonly seen in molecular recognition [130]. This translates to comparing the

Ag-BCR Euclidean distance among all subspaces (comprising nb contiguous dimensions) and

taking the minimum; this operation picks out the best match from (n − nb + 1) potential

binding sites.

To be specific, we define the local binding affinity Al (in units of kBT ) between a BCR ~x

and an Ag ~y as follows

Al(~x, ~y) ≡ Amax −
1

nb
||~x− ~y||2l . (2.1)

Here l ∈ {1, 2, · · · , n − nb + 1} indexes the starting dimension of a nb-dimensional binding

subspace (i.e. the l-th binding footprint); Amax denotes the maximum affinity at perfect

match. The global affinity is identified as

A(~x, ~y) ≡ max
l
Al(~x, ~y) = Amax −

1

nb
min
l
||~x− ~y||2l . (2.2)

Hence higher affinity indicates smaller mismatch in conformation; minimization of mis-

match reflects a dynamic search for the optimal binding footprint labelled by l∗(~x, ~y) ≡

argmaxlAl(~x, ~y).

This notion of binding subspace endows Abs with desired properties, such as flexibility

in binding target and state-dependent effect of mutations (i.e. epistasis). Importantly, this

representation captures the observed shift of Ab/BCR binding footprint on viral epitope

during HIV-Ab coevolution [54, 121], which correlates the precision of targeting to conserved

residues with breadth development. As shown schematically in Fig. 2.2A, as mutations

induce conformational changes in BCR (purple shape) and/or the variable region of Ag

(green shape), the optimal binding footprint (yellow interface) may shift toward increasingly

conserved regions of the viral epitope (red shape), under conditions to be discussed below.

Footprint shift influences the distribution of mutation effect P (∆A) in two ways: First,

when a deleterious mutation (∆Al∗ < 0) occurs inside current optimal subspace l∗ and lowers

the affinity Al∗ , switch to a different subspace in which Al > Al∗ + ∆Al∗ will buffer against

large detrimental effect. Second, when a beneficial mutation (∆Al > 0) occurs outside

current optimal subspace (l 6= l∗) such that Al + ∆Al > Al∗ , switch into this subspace

will enhance affinity; without footprint shift, this apparently “neutral” mutation would be
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wasted. Thus, as shown in Fig. 2.2B for founder B cells and the infecting virus (contrasting

blue and yellow histograms), shift of binding footprint leads to fewer and smaller deleterious

mutations (a shortened negative tail), along with more frequent beneficial mutations of larger

sizes (an expanded positive wing). This turns out to be key to speeding up B cell adaptation

and enabling viral clearance.

Based on the conservation level of the optimal binding subspace, we classify GC B cells

and Ab-secreting plasma cells into B (broad) type and N (narrow) type, which, respectively,

have greater than and at most nb− 1 conserved dimensions when averaged over encountered

Ags.

2.3.1.3 Ecological dynamics influence mutual selection

A GC B cell ~x is able to successfully acquire Ag in GC cycle t with the following probability

PG(~x, t) =
CAg(t)

∑
~y∈Y e

A(~x,~y)

1 + CAg(t)
∑

~y∈Y e
A(~x,~y)

, (2.3)

where CAg(t) is the concentration of Ag presented on follicular dendritic cells (FDCs) in a

GC, assumed to be proportional to the virus population size at time t in circulation; this

neglects the time lag due to Ag transport and presentation. Y denotes the set of FDC

Ags scanned by B cell ~x in cycle t. Competition for limited T cell help is incorporated by

keeping the top 70% potent B cells in each cycle [111]. Conversely, a virus ~y in circulation

is neutralized by Abs secreted by plasma cells it has encountered in generation t with the

following probability

PV (~y, t) =
Cpla(t)

∑
~x∈X e

A(~x,~y)

1 + Cpla(t)
∑

~x∈X e
A(~x,~y)

. (2.4)

Here, Cpla(t) represents the concentration of plasma cells in cycle t, among which a random

subset X encounter virus ~y. Therefore, through time-dependent concentrations of binding

substrates (Ags and plasma cells), population dynamics directly influence two-way selection

pressure, which, in turn, drives changes in population size and composition, thereby creating

a feedback loop between ecology and evolution.

A central feature of our shape space is that both the virus and B cell populations evolve

in a larger state space than where selection acts (i.e. nv, n > nb). In particular, while BCRs
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mutate in the full space (n dimensions), mutual selection is only based on binding affinity

within a subspace (nb dimensions). Hence, B cells can enhance receptor potency without

increasing selective pressure on the virus. This, therefore, allows mutations that are not

immediately beneficial but may potentiate future adaptation to accumulate more efficiently

than if all dimensions contribute to binding.

2.3.2 Antigenic determinants for coevolutionary outcomes

2.3.2.1 Three phases

Infections are founded by viral strains centered at the origin of our shape space (with a Gaus-

sian distribution); germline B cells are isotropically distributed on a founder hypersphere in

their respective optimal binding subspace. Following estimates based on immunological

data [131], we choose the shape-space dimensionality to be n = 8, in which nb = 3 dimen-

sions constitute each binding subspace, corresponding to the portion of engaged residues

among those comprising the epitope (see Appendices). In the studied parameter range, a

total time span of 200 GC cycles is sufficient to distinguish outcomes.

Our model produces dynamics and phenotypic patterns consistent with natural infection

of highly mutable viruses (Fig. 2.3). Stochastic simulations identify three distinct outcomes

observed in nature — viral/Ag persistence, rebound and clearance — at different combina-

tions of two control parameters, the number of conserved dimensions, nc, and phenotypic

diversity of Ag when they first activate immune responses, σA. A phase diagram delineates

dynamical regimes (Fig. 2.3A): Viral persistence (blue), as commonly observed for rapidly

mutating pathogens (e.g. HIV and HCV), occurs at low epitope conservation (small nc,

nc < nb) and modest initial Ag diversity (small σA); sufficiently conserved epitopes (nc ≥ nb)

combined with moderate Ag diversity at immune activation result in viral clearance (ma-

genta), often associated with acute infections (e.g. influenza and Ebola). More unexpected

is the rebound phase (grey) at large initial Ag diversity. Although viral persistence occurs

in the majority of chronic infections, a recent study of HCV-Ab coevolution has identified

clearance and rebound in different individuals; in both cases bnAbs emerge [80].
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Figs. 2.3B and 2.3C present dynamics of virus and plasma cell populations, respectively,

demonstrating defining features of three phases. Figs. 2.3G-I display characteristic phe-

notypic patterns developed in the shape space (at time points marked by black dots in

Figs. 2.3D-F), distinguishing outcomes since early times. In the persistence phase (Fig. 2.3D),

sustained oscillations in Ag abundance (red), characteristic of predator-prey cycles, are ac-

companied by a steady accumulation of plasma cells (blue) from GC output. The viral-

immune mutual engagement in a Red-Queen state is made vivid through density profiles at

several instants during oscillations (Fig. 2.3G): in a variable subspace, a deforming cloud of

plasma cells (blue) is chasing after Ag clusters (red), which escape increasingly farther from

the infecting strain at the origin that focuses past B cell response (Fig. 2.11).

In the rebound phase, an initially very diverse viral population rapidly falls to a low

abundance (below 10% of the initial size or capacity, but above the extinction threshold at

0.1% capacity) and subsequently recovers, forming a population bottleneck; the resulting lack

of Ag stimulation for GC reaction yields a plateau in plasma cell counts (Fig. 2.3E). Notably,

during the Ag bottleneck, the plasma cell distribution resembles the founder hypersphere,

even after Ags reemerge outside the enclosure (Fig. 2.3H bottom panel), indicating very little

AM prior to viral rebound. Only after escape mutants build up in number, GC reaction and

plasma cell differentiation resume. Note that, even after recovering from the bottleneck, Ags

may still be cleared, if the epitope is sufficiently conserved. This stage proceeds in a similar

manner as in the clearance phase (Figs. 2.3F and 2.3I). Starting from a small variance,

diversifying Ags drive rounds of AM through which B cells evolve from targeting variable

residues (Fig. 2.3I top panel) to recognizing a mixed region (middle panel, condensing at

opposing poles of the founder sphere), and finally focusing onto conserved residues (bottom

panel, high concentration at the origin of a fully conserved subspace). This shift in binding

target toward viral vulnerability results in a monotonic decline of Ag population to below

the extinction threshold (Fig. 2.3F, red curve).
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2.3.2.2 Characterizing broad and narrow responses

To understand the emergence of diverse trajectories and patterns, we examine how nc and

σA jointly control the transition between distinct regimes (Fig. 2.4). While nc governs

the prevalence of germline B cells targeting conserved and variable residues (i.e. precusor

frequency of broad and narrow clones), σA decides their relative accessibility (phenotypic

distance) to Ags. As to be shown below, these parameters control the efficacy and timing of

strain-specific and cross-reactive responses, which, in turn, determine evolutionary outcomes.

To characterize these components, we divide the set X of plasma BCRs into two subsets

XB and XN , based on the number of conserved dimensions c(~x, ~y) in the optimal binding sub-

space between a BCR ~x and a given Ag ~y: XB ≡ {~x ∈ X |c(~x, ~y) = nb};XN ≡ X\XB. Thus,

for any BCR ~x ∈ XB, it binds Ag ~y mostly strongly in a fully conserved subspace; XB is empty

if nc < nb, since all subspaces contain at least one variable dimension. Accordingly, we can

rewrite the probability of Ag removal (Eq. 2.4) as PV (~y, t) ≡ PB(~y, t) + PN(~y, t), where

PS(~y, t) = Cpla(t)
∑

~x∈XS exp [A(~x, ~y)]/{1 + Cpla(t)
∑

~x∈X exp [A(~x, ~y)]}, with S = B,N .

Therefore, PB and PN , when averaged over circulating Ags {~y}, characterize the efficacy

of broad and narrow lineages, respectively.

Fig. 2.4 shows typical trajectories of Ag population size (black) and concomitant strength

of B-type (PB; color, solid) and N-type (PN ; color, dashed) plasma cells for different pairs of

nc and σA (columns and rows). In cases where both types exist (nc ≥ nb, right two columns)

narrow clones arise first and suppress Ag population; broad clones only emerge and expand

as narrow lineages decline in efficacy, signifying viral escape. Hence, the peak in PN indicates

a shift in dominance from strain-specific to cross-reactive response.

2.3.2.3 Initial Ag diversity governs clearance-to-rebound transition

A greater Ag diversity at GC onset (larger σA) reflects a longer lag between infection and

activation of first responsive clones in the B cell repertoire. In our shape space, compared

to the founder virus at the origin, a mutated Ag binds more weakly to some B cells but

more strongly to others, as long as it remains enclosed by B cells. Similar behavior has
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been observed in experiment where the same Ag mutations weaken affinity to certain Abs

but enhance binding to others [132, 129, 133], consistent with Ags being corralled by B cells

early in infection.

Less intuitively, increasing Ag diversity results in higher mean affinity of strain-specific

(N-type) germline B cells without affecting cross-reactive (B-type) cells (see Appendices and

Fig. 2.10), leading to faster Ag removal by specific clones at early times. This implies that

Ag diversity at the response onset (judged by the start of decline in Ag population) controls

the access of narrow and broad clones to Ag “resource”, thereby affecting the rate of Ag

consumption. Indeed, as σA increases, a faster fall in Ag population follows an earlier and

steeper rise in PN (Fig. 2.4 right column, bottom to top), but this also leads to weaker PB

upon viral escape, since broad clones have shorter time to evolve. Thus, through feedback

between population dynamics and mutual selection, initial Ag diversity has a complex influ-

ence on B cell responses; not only does it affect the efficacy of narrow and broad clones at

their peak time, it also tunes the timing of Ag escape and the ensuing expansion of broad

lineages that ultimately determine evolutionary outcomes.

Such eco-evolutionary feedback manifests most dramatically as a rapid viral rebound

following a deep population bottleneck, when initial Ag diversity is large (Fig. 2.4A). A

modest Ag diversity, instead, results in monotonic clearance. These phases appear to capture

distinct kinetics of clearance and rebound in HCV-infected individuals [80] and suggest Ag

diversity at response onset as a predictor of outcomes. The key lies in the level of AM reached

before Ag population falls too small to sustain GC reaction. Specifically, if Ag diversity starts

modest, both narrow and broad clones begin with weak affinity and evolve toward viruses

at similar antigenic distance. By the time narrow clones start to wane while broad clones

are just on the rise, Ags are still relatively abundant. Consequently, broad lineages continue

to gain both abundance and breadth as diversifying Ags favor their selection. This, in turn,

increasingly limits viral growth, yielding a monotonic drop to extinction. Throughout this

process, Ags remain inside B cell enclosure (Fig. 2.12); as the Ag cloud is consumed from the

surface inward, a density gradient is generated, providing an “attractant” field that guides

B cells toward the founder virus.
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In contrast, at large initial diversity, “pioneer” viruses near the frontier of the Ag cloud

are close to the B cell founder hypersphere; while being able to escape B cell enclosure

with few mutations, these mutants risk being recognized by strain-specific clones as they

transect across the frontline. As a result, Ag removal is so rapid that B cells have hardly

evolved when escape mutants emerge outside the founder hypersphere (almost unchanged B

cell distribution, Fig. 2.3H and Fig. 2.13; rapid rise and fall of PN , Fig. 2.4A). Meanwhile,

Ag population is already too small to sustain GC reaction and AM essentially comes to a

halt (Fig. 2.4A right panel, flat PB due to lack of AM). This thus allows escape mutants

to expand unchecked, leading to a significant rebound. With a delay, this renewed supply

of mutated Ag boosts AM and selects broad lineages that evolve to acquire breadth and

eventually clear the virus (Fig. 2.14).

2.3.2.4 Epitope conservation determines the timing of viral rebound

When conserved residues make up a larger portion of the epitope (increasing nc; Fig. 2.4,

left to right), narrow response rises more slowly and reach a lower maximum, while broad

response, uncompromised by viral escape, gains stronger dominance toward viral clearance

(nc ≥ nb). In the absence of fully conserved targets, infections persist (nc < nb, left column).

At intermediate values of σA (Fig. 2.4B), dynamics and outcomes exhibit a non-monotonic

trend as nc increases: monotonic viral clearance occurs either when N-type clones are suffi-

ciently potent early on so they remove Ags before escape mutants arise (left panel, nc < nb),

or when B-type lineages have time to mature and clear Ags following their escape from

narrow lineages (right panel, nc > nb). In between (nc ∼ nb), however, neither narrow nor

broad clones are effective at clearing Ags but they suppress each other; rapid Ag removal

by specific clones leaves little time and stimuli to support breadth development, thus, viral

rebound ensues.

Interestingly, increasing nc leads to a shallower Ag population bottleneck and yet a slower

rebound (Fig. 2.4A, left to right; Fig. 2.5, yellow to green). This behavior reflects a separation

of timescales between the dominance of clones with different binding targets: weaker binding
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to variable residues early on reduces Ag removal thus yielding a shallower bottleneck, whereas

stronger binding to conserved residues later delays Ag revival; two stages are separated by

Ag escape before which little AM has taken place. Note, for a given nc, just as one would

expect, a deeper bottleneck indeed lasts longer (Fig. 2.5, same color, going up and to the

left). These results indicate that the conservation level of the viral epitope determines the

size and duration of Ag population bottleneck, and hence the timing of viral rebound.

2.3.3 Flexible molecular recognition drives viral extinction and bnAb develop-

ment

2.3.3.1 Footprint shift enables viral clearance

The clearance regime per se is not a surprise, if immune adaptation can outpace viral evolu-

tion via faster or larger mutations. It becomes more surprising as we rule out this possibility

by choosing mutation parameters that support stable persistence. In fact, predator-prey

cycles would be the only outcome even for a relatively conserved epitope, if binding foot-

print were fixed (Figs. 2.6A and 2.15). Ab footprint shift toward conserved viral residues

has been observed during HIV-bnAb development [54, 121], but how this occurs through

coevolution is unclear. Fig. 2.6B demonstrates that footprint shift retains descendants of

broad germline clones with fully conserved targets (blue bar), such that they can persist to

make up a substantial fraction of GC populations and clear the virus (Fig. 2.6D, blue band).

In contrast, without a flexible footprint (Fig. 2.6C), broad clones are quickly outcompeted by

strain-specific ones and lost once for all. Note, even in this case, despite that highly specific

clones (red band) dominate early on, lineages with relatively cross-reactive ancestors (purple

band) steadily grow and dominate at later times as Ags diversify. But, because truly broad

clones are permanently lost, GC populations only chase after escape viral mutants, leaving

an oscillatory signature in Ag population trajectories (Fig. 2.6A, black curve). Therefore, Ab

footprint shift enhances Ag removal by preserving broad precusors and promoting expansion

of cross-reactive descendants.
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2.3.3.2 Footprint shift opens novel pathways toward broad response

One might wonder, how can slowly evolving cross-reactive clones persist, in the face of strain-

specific competitors that are more numerous, potent and faster evolving? Our model suggests

an intriguing possibility: Physical optimization of binding — via adjusting BCR footprint

— not merely speeds up adaptation of intrinsically slow clones, but allows for a plastic

phenotype along a lineage. That is, shift between binding targets of different conservation

levels amounts to switch between states with different environmental sensitivity. Therefore,

even if outcompeted early on, cross-reactive (B-type) clones can “regenerate” from strain-

specific (N-type) ancestors, enabling sustained adaptation to diversifying Ags.

To quantify this intuition, we track the phenotypic identity of surviving B cells over the

course of coevolution. Fig. 2.7B presents the time-dependent ensemble-averaged composition

based on initial identity X (against founder virus) and current identity Y (against FDC Ags

encountered in current GC cycle) of individual cells; hence X→Y represents current Y-type

clones descending from an X-type germline precusor — one of four types of identity switch

(B→B, N→B, B→N, N→N). Over a wide range of initial Ag diversity, a common pattern

emerges: shortly after the response begins, B→B (blue) drops rapidly while B→N (red) and

N→N (coffee) grow; subsequently, N→B (green) and B→B (blue) rise to dominance, while

B→N and N→N fall minor. Accordingly, footprint shift opens multiple coexisting novel

pathways toward broad clones, with N→N→B and B→N→B being more prevalent than

B→B→B.

While cross-reactivity can be good for evolvability (capacity to adapt), it takes time and

the right conditions to itself evolve. These unexpected pathways suggest that spontaneous

(but not random) phenotype switch of individual cells — enabled by physical dynamics —

allows a cell population to fulfill conflicting demands through a separation of timescales:

switch to N-type early on meets the short-term need for GC survival under severe selection

pressure, and switch to B-type later sustains long-term adaptation toward greater breadth

and potency. Both switches are achieved by target shift that confers largest affinity gain

available. This is further supported by time-dependent distributions of mutation effect in fast
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(variable) and slow (conserved) dimensions (Fig. 2.16): early in response, a larger number

of beneficial mutations of bigger size exist in fast dimensions, hence switch to N-type is

favorable; at later times, adaptive changes of appreciable size continue to be available in

slow dimensions, while mutations in fast dimensions can no longer improve affinity, thus,

switch to B-type is selected. Consistently, crossing of mean affinities of B- and N-type cells

occurs right at the start of N→B switch (Fig. 2.7A, vertical line). Therefore, evolution drives

footprint shift and conversely, footprint shift opens new pathways and facilitates adaptation.

Interestingly, initial Ag diversity influences the relative abundance of pathways enabled by

footprint shift (Figs. 2.7, 2.17 and 2.18). At small σA, N→B pathway dominates (Figs. 2.7B

and 2.17 left, green bar), whereas large σA favors B→N→B pathway (Figs. 2.7B and 2.17

right, blue bar), indicating higher initial Ag diversity better preserves broad precusors. Both

pathways may contribute to the experimental observation that a fraction of strain-specific

precusors later gain breadth [84, 134, 135, 133]. In practice, B→N→B might be observed

as N→B due to the brief presence of broad precusors. Among pathways that both start

and end with broad clones, B→N→B is more abundant than B→B→B, in terms of the

fraction of cells in a single metapopulation (one simulation of subdivided GCs; see statistics

in Figs. 2.7C-D) and the fraction of metapopulations containing either pathway (Fig. 2.7E).

2.3.3.3 Footprint shift exploits potentiating variations

It is apparent from Fig. 2.7C that increasing initial Ag diversity σA (purple to red) accel-

erates the expansion of BNB lineages in GC populations, leading to faster viral clearance.

To address how σA affects the pace and efficacy of the BNB pathway, we trace the mu-

tational history along BNB lineages that survive until viral elimination, contrasting small

and large σA (Fig. 2.8). Here, a lineage includes a germline B cell and all its descendants;

Figs. 2.8A and 2.8B depict two typical lineage trees where nodes represent B cells colored

by phenotypic identity (red for N-type, blue for B-type), links colored red/blue indicate

affinity-altering mutations occurring in variable/conserved dimensions, and black arrows in

the latest generation mark B-type clones whose offspring last until virus depletion.
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With small σA (Fig. 2.8A), a B-type founder switches to N-type and remains N-type

for extended time before switching back to B-type. When σA is large (Fig. 2.8B), the

intermediate N-period is very brief before B-type clones take over. This contrast in N-period

duration is clearly seen from the trajectories of B-type fraction in a lineage (Fig. 2.8C) and

the statistics of N-period duration across lineages in many populations (Fig. 2.8D).

What drives an earlier N→B switch at a higher initial Ag diversity? Recall that at larger

σA, N-type clones have higher affinity early on and produce plasma cells more rapidly, leading

to faster Ag removal (Figs. 2.4B-D, right column). Rapid reduction in viral population, in

turn, makes it even harder to generate escape mutants, resulting in sooner extinction. Hence,

when σA is large, few beneficial mutations in conserved dimensions would suffice to clear the

virus. Meanwhile, only clones that improve fast enough can survive the fierce competition for

rapidly diminishing Ags. Taken together, at higher σA, fewer but larger beneficial mutations

accumulate in conserved subspaces within a shorter time (Figs. 2.8G and 2.8H), resulting in

sooner dominance of B-type clones and faster viral elimination.

To illustrate how footprint shift facilitates accumulation of adaptive changes that collab-

orate with breadth development, we present in Figs. 2.8E and 2.8F the optimal affinity of

a B cell (to encountered FDC Ags) among all possible binding subspaces (solid line) and

among conserved subspaces only (dashed line), along the long-lived branch marked in panels

A and B, respectively. This clearly shows that, breadth-conferring mutations accumulated in

conserved subspaces are conditionally neutral: they are neutral under the current condition

of selection (mutated residues being outside current contact region) but exhibit significant

gain in efficacy under new conditions (strongly diversified Ags). In this way, evolving in a

non-selecting environment allows “neutral” establishment of breadth-enhancing mutations

(stepwise affinity changes, Figs. 2.8E and 2.8F, dashed); even occasional affinity-reducing

mutations can be buffered when σA is small (Fig. 2.8E dashed curve, dip at an early time).

This is because, modestly diverse Ags induce weak specific response thus having prolonged

availability, which in turn tolerates slow adaptation of broad clones and permits a wider

range of paths (Fig. 2.19, A versus B).

Although a larger σA results in faster Ag clearance, this gain in speed comes at a cost:
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Ab quality is compromised due to limited evolution, since strong selection pressure (due

to rapid Ag consumption) disfavors slow accumulation of breath-conferring mutations. As

shown in Fig. 2.8I, both the affinity (solid) and prevalence (dashed) of bnAbs (affinity to

conserved targets being at least 6kBT ) fall with increasing σA (hastened AM, purple to red;

also see Fig. 2.20). An intermediate σA may balance speed and efficacy (grey, σA = 1); time

to clearance is halved with modest reduction in bnAb affinity (relative to σA = 0.5).

2.3.4 Functional role of B cell compartmentalization depends on Ag variability

GCs are dynamic microstructures where B cells evolve and Abs diversify. Multiphoton

imaging combined with single-cell sequencing reveals that multiple GCs form in parallel

during an immune response, housing modest B cell populations varying in clonal dynamics

and diversity [92]. A natural question is: What is the evolutionary advantage, if any, of

segregating into many small populations, relative to assembling few large compartments?

Theoretical and experimental works have suggested that population subdivision could

promote or inhibit adaptation depending on the level of epistasis [136, 137]; most of these

studies consider a constant environment. What if the environment responds to system evo-

lution? Our framework accounts for collective evolution of subdivided populations (GCs)

coupled by shared adaptive environments (evolving Ags) and, therefore, lets us examine func-

tional consequences of GC compartments on viral outcomes. It turns out that the answer

depends on epitope conservation: population subdivision can slow down viral escape if Ag

epitope is highly variable (nc < nb; Fig. 2.9B, red to purple), but may also delay clearance

if the binding target is relatively conserved (nc > nb; Fig. 2.9A).

In both clearance and persistence regimes, moderately diverse Ags create an effective

attractant gradient, drawing B cells toward the founder virus at the origin. If a fully con-

served binding target exists (nc > nb), Ags will remain fixed in the corresponding subspace.

Sooner clearance then solely relies on a faster and stronger convergence of B cells toward

the origin; this happens to fewer larger GCs, as seen from the radial distribution of plasma

cells strongly peaked near the origin (Fig. 2.9C, red histogram for a single GC) and the
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shape-space snapshots (insets: left, 100 GCs; right, 1 GC). This behavior results from global

competition for limited T cell help and rapid increase in selection pressure with decreasing

Ag abundance. Consequently, a large effective population size reduces the drift load so that

plasma cells are on average closer to the global fitness optimum (fixed at the origin). Thus,

as B cells coalesce into fewer larger GCs, Ab efficacy (quantified by time- and population-

averaged binding probability between plasma cells and Ags; see Appendices) rises and the

time to clearance falls (Fig. 2.9E).

Conversely, if Ags are highly variable (nc < nb), BCRs effective against all variants no

longer exist, and the optimal location in the shape space for Ag neutralization is no longer

fixed but moving with the evolving Ag distribution. In this case, few large B cell populations,

rapidly concentrated to the origin early on, are slow to redirect themselves when Ag mutants

emerge outside B cell enclosure (Fig. 2.9D); the resulting plasma cells are therefore ineffective

at neutralizing mutant Ags, yielding a rapid rebound following the bottleneck (Fig. 2.9B).

With many modest GCs, however, B cells carrying beneficial mutations are distributed

across GCs and expand to dominate locally. As such, population subdivision facilitates the

generation and maintenance of clonal diversity, enhancing the “mobility” of the collective

response. As a result, Abs produced are better able to contain viral mutants and slow the

escape (Fig. 2.9F).

In sum, few large GCs speed up global optimization toward a fixed target, whereas many

small GCs allow efficient clonal relocation in response to moving targets. Presumably, having

a range of GC sizes can strike a balance in meeting these needs. In addition, GC-to-GC

communication (e.g. via reactivation of migrating memory cells [126] or Ab feedback [138])

might provide a mechanism for regulating the effective population size.

2.4 Discussion

Highly mutable viruses are capable of repeatedly evading the host immune response by coe-

volving with it. Despite comparable pace to diversify and similar tactics to adapt, diverging

courses and outcomes may result. Identifying major antigenic determinants for the path and
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fate is key to predicting hence controlling the evolutionary future. This is in urgent need,

as an expanding variety of rapidly adapting pathogens (notably HIV, HCV, influenza and

malaria) defy universal vaccines.

Our stochastic model of coevolution describes the joint dynamics of virus and immunity

in a host, accounting for strongly coupled ecological and evolutionary components. We show

that distinct viral outcomes (persistence, clearance, and rebound) observed in different indi-

viduals emerge from a feedback between physical dynamics involved in molecular recognition

and ecological dynamics of co-adapting populations, linked by affinity-dependent mutual se-

lection. Without considering this feedback, clearance and rebound will not be possible.

We identify two antigenic properties that jointly control transitions between distinct

regimes: conservation level of viral epitope (nc) and Ag diversity at the onset of immune re-

sponse (σA); these factors determine the accessibility of different parts of the B cell repertoire

and, consequently, control the pace and efficacy of Ab response. By shaping the adaptive

dynamics of the Ag “resource”, fast arising narrow response governs when and what broad

response may subsequently evolve.

Recent studies [80, 81] report bnAb-mediated clearance of HCV infection in two human

subjects without treatment. In particular, one subject (designated C117, clearance subject)

exhibits monotonic decline in viral load to extinction, while the other (designated C110,

rebound subject) experiences a significant viral resurgence prior to eventual clearance. The

contrasting viral kinetics in clearance and rebound phases as predicted by our model closely

resemble those reported in the data. More importantly, our work provides a mechanistic

explanation for this pronounced difference. Our model predicts that, for a sufficiently con-

served epitope (nc ≥ nb), as initial Ag diversity exceeds a critical value, monotonic viral

clearance transitions to a distinctive rebound; a higher Ag diversity at the onset of Ab re-

sponse leads to a faster initial decline in viral load. Indeed, phylogenetic and genetic distance

analyses [80, 81] indicate that the rebound subject was infected with a larger diversity of

viral strains than the clearance subject; moreover, a faster fall of viral load was observed

in the former. In addition, our model suggests that a faster decline of Ag population in

early infection should result in a retarded accumulation of Ab breadth, because depletion of
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Ag stimuli halts AM, impeding the emergence and evolution of broad response. This may

explain the slower development of plasma breadth in the rebound subject [81]. Finally, an-

other observable consequence of the proposed mechanism is that the rapid fall in viral load

leading to extinction (in the clearance phase) is mediated by broad antibodies, whereas the

sharp drop toward Ag population bottleneck (in the rebound phase) is caused primarily by

strain-specific antibodies. This is supported by data [81]: plasma samples collected from the

clearance subject show similar neutralization profiles (patterns of relative potency against a

panel of HCV strains) to that of bnAbs. In contrast, plasma of the rebound subject is of

much lower neutralization efficacy than bnAbs prior to the viral bottleneck, indicating the

dominance of specific antibodies (from which viruses escape).

We propose that flexible molecular recognition allows for plastic phenotypes: A BCR can

search across a continuum of potential binding targets on the viral protein and dock at the

site of best complementarity; conservation level of thus identified binding target naturally

defines B-cell phenotype — broad clones primarily target conserved residues whereas narrow

clones chiefly bind variable elements. Provided such flexibility in recognition, phenotype can

spontaneously switch in a way that mitigates the tension in response to changing selective

forces. Related concepts have been discussed in the context of tradeoff evolution in changing

environments [139]. More broadly, our result suggests that physical dynamics may alter evo-

lutionary constraints, a mechanism expected to apply to other systems where biomolecular

binding mediates selection, such as the emergence of drug resistance and evolution of gene

regulatory elements.

While a fixed binding target results in viral persistence in line with previous studies, our

work suggests that a flexible binding footprint of BCRs enables clearance of antigenically

complex pathogens. On one hand, B cells can utilize affinity-enhancing mutations outside

current contact region while buffering affinity reduction within the contact, thus enhancing

the rate and size of favorable changes. On the other hand, target switch allows strain-specific

ancestors to generate cross-reactive descendants and hence adapt persistently to diversifying

Ags.

Shift of BCR footprint opens multiple novel pathways of breadth evolution that can be
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searched for using longitudinal phenotypic measurements: the BNB pathway preserves broad

precusors via an intermediate period of narrow phenotypes, whereas the NB pathway ex-

pands the range of precursors to strain-specific clones that later acquire breadth-conferring

mutations. During the N-period, beneficial variations accrue in conserved dimensions, which

potentiate later switch to broad phenotypes. Importantly, these conditionally neutral mu-

tations do not exacerbate selection pressure on the virus, thus prolonging the availability

of Ag stimuli. In this sense, “regeneration” of B-type clones relies on BCRs evolving in a

larger state space than where selection directly acts, so that lineages slowly accumulating

potentiating variations stand a chance to persist.

Last but not least, our result suggests that compartmentalizing AM into multiple GCs —

evolving separately but driving viral evolution collectively — may strike a balance between

quickly finding an optimal solution against conserved Ag and maintaining clonal diversity

to fend off pathogens with higher mutability.

Our approach employs an extended shape-space depiction of flexible molecular recogni-

tion. Different from classic models, our shape-space dimensions represent residue groups

constituting the viral epitope; this representation abstracts away atomic details while re-

taining features that emphasize the biomolecular basis of host-pathogen interactions: First,

receptors engage Ags in binding subspaces (actual contacts) but evolve in the full space

(potential binding surface). Second, speed of adaptation varies among phenotypic dimen-

sions, reflecting distinct accessibility and mutability of different parts of the epitope. Apart

from inheriting desired properties of the Fisher’s geometric model [140], including epistasis

and drift load, our coevolution model incorporates moving fitness optima (mutating Ag tar-

gets) and hence a dynamic distribution of mutation effect for a given receptor. In addition,

the “corralling” geometry with founder B cells enclosing viral Ags captures a slowing bnAb

evolution amid sustained viral evolution [141], as well as viral rebound kinetics [142, 80].

This framework broadly applies to coevolutionary processes in which binding affinity

constitutes a physical phenotype and evolution proceeds on similar timescales as ecological

dynamics — an under-explored regime of eco-evolutionary dynamics. Our results offer a

number of vaccine lessons: (1a) Create a diversity background early on such that lineages
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of different origins can succeed at various stages toward highly adapted states. (1b) Main-

tain a search space larger than the exact target, to encourage potentiating variations that

may appear neutral but can confer future advantage. In practice, these principles recom-

mend presentation of vaccine constructs with peripheral variable residues, in addition to

the conserved core of the target epitope. (2) Supply Ags at a modest yet sustained level,

because strong stimulation and rapid Ag consumption hasten AM and yield predominantly

low-quality B cells [143]. (3) Apply time-dependent selection pressure that first allows ac-

cess to diverse ancestors and paths and later filters out inferior lineages, keeping only those

capable of sustained adaptation under increasingly more severe selection; dynamic protocols

can potentially shorten paths to desired outcomes [144, 145].

Experiment indicates that memory B cells can be activated by Ag, reenter GCs, and

go through further AM [146]. Of particular interest is how memory reentry impacts GC

dynamics and maturation outcome. Extending our model (see Appendices for details), we

find that memory reentry, either by joining ongoing GCs (Fig. 2.23) or by seeding new

ones (Fig. 2.24), can facilitate the development of broad antibodies and, in turn, reduce the

likelihood and amplitude of viral rebound and accelerate viral clearance. In the meantime,

IgM antibodies, secreted by short-lived plasma cells and not subject to GC reactions, take

part in Ag removal before IgG antibodies emerge from AM. We show that an addition of

IgM antibodies not only enhances Ag removal toward the viral population bottleneck, but

it also aids in corralling escape mutants during rebound (Fig.2.25);

both lead to a higher chance of viral clearance in regimes with mixed outcomes. In

addition to B cells, T cells and innate immune cells likely play a role in clearing viruses.

Their influence is partially reflected in the initial Ag distribution: founder viruses are driven

to diversify by other immune pressures before B cell response comes into play. However, not

enough knowledge is yet available for modeling the full dynamics including T cell and innate

responses, which may well interact with B cell dynamics in complex ways.

Our model leaves out a number of biological factors of realism, including Ag transport

and recycling, cell migration within and between GCs, immune exhaustion and latent viral

reservoir, whose effects deserve focused future studies. Our model assumes optimal regulation
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of binding, sharp selection in T-help competition, and perfect conservation of core residues;

relaxing these assumptions could improve biological precision though is unlikely to alter

qualitative conclusions.

This work provides a caricature of viral-immune coevolution that highlights how physical

and ecological dynamics interplay to drive non-intuitive system-level behaviors. We hope

that it serves as a starting point for studying rapid eco-evolutionary dynamics, mediated by

biomolecular interactions, with feedback across scales.

2.5 Methods

2.5.1 Mutation of BCR and Ag

Upon each single mutation in a BCR, one coordinate is chosen from n dimensions uniformly

at random (k ∈ {1, 2, · · · , n}) and changed by an amount that follows a zero-mean Gaussian

distribution

xk → xk + δxk; δxk ∼ N (0,∆2
B,k). (2.5)

For a mutation in an Ag, one coordinate randomly chosen from nv variable dimensions

(k ∈ {1, 2, · · · , nv}) is altered according to

yk → yk + δyk; δyk ∼ N (0,∆2
Ag). (2.6)

Here the width of the Gaussian distributions characterizes the average magnitude of change

in the trait value caused by a mutation. This mutation step size differs between dimensions;

specifically, ∆B,k≥nv+1 < ∆B,k≤nv = ∆Ag, i.e., on average, mutations in the conserved/slow

dimensions (k ≥ nv + 1) have smaller effect than those in the variable dimensions (k ≤ nv),

reflecting a lower accessibility of the conserved core than surrounding variable elements in

the target epitope [96, 22].
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2.5.2 Simulating coevolution

2.5.2.1 Step 0: Initialization

(i) Generation of germline B cells

We assume all the germline B cells bind the founder virus with an equal reference affinity

Al∗ = 0 (i.e. barely meeting an activation threshold) in a randomly chosen optimal binding

subspace labeled by l∗. According to Eq.2.1, each germline B cell generated in this way resides

on a founder hypersphere of dimension nb and radius Rf =
√
nbAmax in its optimal binding

subspace; Amax denotes the maximum affinity at perfect match. Collectively, germline B cells

enclose initial Ag (see (iii) for their generation), as illustrated in Fig. 2.1B. In Appendices,

we consider germline B cells with a range of affinities for the founder virus, and show that

the qualitative results remain while the likelihood of viral clearance increases in place of viral

rebound (Fig. 2.26).

By definition, in any binding subspace other than the optimal one (l′ 6= l∗), local binding

affinity Al′ would be no greater than zero. Thus, we draw B-cell coordinates outside each

cell’s respective optimal subspace (i.e. outside the binding footprint) so that −Al′ follows

an exponential distribution with mean λ = 2, mimicking declining probabilities radially

outward from the founder hypersphere. In Appendices, we vary the value of λ and find that

increasing λ impedes the development of both narrow and broad Ab responses and slows

viral clearance (Fig. 2.27), since footprint shift becomes less likely to yield an affinity gain

or buffer an affinity loss.

(ii) GC compartmentalization

Distribute 5000 germline B cells thus generated randomly and evenly among a total num-

ber of NGC GCs, where they replicate without mutation until reaching the overall capacity

Kb = 106.

(iii) Generation of initial Ag

Ags begin to diversify ever since the founder virus is transmitted. By the time first

responsive B cells become activated, a cloud of variant Ags surrounding the infecting strain
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is developed. To model different levels of Ag diversity at the beginning of GC reactions, Ag

coordinates in the variable dimensions are drawn from a Gaussian distribution centered at

the origin with a width σA. Ag population starts at the capacity Ka = 105.

2.5.2.2 Step 1: Population dynamics of GC B cells

(i) Ag presentation in GCs: Ags are transported from circulation into each GC and presented

on follicular dendritic cells (FDCs), providing stimuli for B cell AM. In total Ka,GC = 105

Ags are distributed evenly among GCs. In each GC cycle, FDC Ags are updated with a

random subset of current plasma Ags.

(ii) Ag binding and internalization: In each GC cycle, a B cell randomly encounters 100

FDC Ags and internalizes them with a probability given by Eq. 2.3. Note that different

B cells may encounter different sets of FDC Ags. The time-dependent Ag concentration is

given by

CAg(t) = CAg,0
NAg(t)

Ka

, (2.7)

where NAg(t) represents the Ag population size at cycle t and Ka = 105 the Ag carrying

capacity.

(iii) Competition for limited T cell help: Rank surviving B cells in each GC by their

affinity averaged over encountered FDC Ags, and keep the top fraction fTfh while removing

the rest that fail to receive T cell signal and apoptose.

(iv) Memory differentiation: A fraction pmem = 5% of the remaining B cells differentiate

into memory cells and leave GC.

(v) Plasma cell differentiation: Among the remaining B cells whose average affinity is

above a threshold Apla = 4kBT , a fraction ppla = 5% differentiate into plasma cells and leave

GC.

(vi) B cell replication and mutation: Each remaining B cell divides into two daughter

cells that independently mutate with a probability µ = 0.5. If a mutation occurs, there is

a chance of plet = 0.3 that it is lethal and the daughter B cell is removed from GC. With a

probability of psil = 0.5, the mutation is silent and the daughter cell retains the shape-space
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coordinates of the parent cell. Otherwise the mutation alters affinity [147, 148, 105, 109, 111];

one of the shape-space coordinates will change according to Eq. 2.5.

(vii) GC reseeding: A GC ends when it either perishes or exceeds the initial population

size Kb/NGC [109, 111]. A new GC is seeded in the next cycle; reseeding includes generation

and replication of germline B cells as well as sampling of FDC Ags. This step ensures a

constant number of ongoing GCs.

2.5.2.3 Step 2: Accumulation of plasma and memory cells

We treat both memory and plasma cells as Ab-secreting cells that accumulate in the plasma

compartment and drive viral evolution, without explicitly accounting for differentiation of

memory cells into plasma cells upon Ag activation. In Appendices, we study the influence of

GC reentry or reseeding by activated memory cells and the effect of IgM antibodies secreted

by short-lived plasma cells. It has been reported that humans can maintain circulating

memory B cells for many decades after first exposure [149]. Hence, we ignore the intrinsic

decay of Ab-secreting cells; instead, cells in excess of a carrying capacity Kp = 106 of the

plasma compartment are randomly picked and removed.

2.5.2.4 Step 3: Population dynamics of Ag

(i) Neutralization: In every GC cycle, each Ag encounters antibodies secreted by 100 ran-

domly chosen Ab-secreting cells. An Ag is neutralized and removed from the simulation ac-

cording to the probability given by Eq. 2.4. Different Ags may encounter antibodies produced

by different subsets of Ab-secreting cells, which exhibit a time-dependent concentration

Cpla(t) = Cpla,0
Npla(t)

Kp

, (2.8)

where Npla(t) denotes the population size of plasma and memory cells combined at cycle t,

and Kp is the carrying capacity of these Ab-secreting cells.

(ii) Replication and mutation: Once every two GC cycles, surviving Ags replicate; during

replication, they mutate at a rate of 0.01 ∗ (2 ∗ nv/n)/virion/generation, so that when nv =
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Figure 2.1: Model: from physical space to shape space. (A) Overview of model compartments, where
key agents engage in cycles of stochastic reactions: AM — B cell proliferation and mutation in the dark
zone followed by affinity-dependent selection in the light zone — in multiple GCs seeded by germline B
cells, differentiation of mature B cells into Ab-secreting cells that exit GCs, replication-mutation-selection
of Ags in circulation, and sampling and presentation of Ags into GCs that fuel further AM. (B) Shape-space
representation of BCR-Ag interaction and coevolution. Germline B cells (blue ovals) are distributed on or
outside the founder hypersphere (blue circles delineating cross-sections), enclosing the Ags (red stars). Single
mutations manifest as jumps (colored arrows) with Gaussian distributed step size. B cells move slowly in
conserved dimensions where Ags are fixed at the origin (vertical), while moving fast in variable dimensions
along which Ags may escape (horizontal). A 3D binding subspace (nb = 3) is illustrated with two variable
(fast) dimensions and one conserved (slow) dimension. B cells (Ags) that get closer to (farther from) the
Ags (B cells) are preferentially selected.

n/2, it matches the observed rate [115]. Upon mutation, the shape-space coordinates of Ags

are altered according to Eq. 2.6.

(iii) Carrying capacity: Excess Ags beyond the capacity Ka are randomly chosen and

removed.

2.5.2.5 Step 4: Iteration

Repeat steps 1–3 until (a) Ag population falls below an extinction threshold Klow = 100, or

(b) a maximum duration of Tmax = 200 GC reaction cycles is reached.
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Figure 2.2: Shift of binding footprint alters the distribution of mutation effect. (A) Binding affinity
between Ag epitope ~y and BCR paratope ~x is determined by the binding footprint—the binding site with
the best complementarity (i.e. the nb-dimensional subspace in which the shape-space distance is shortest).
An initial configuration (lower left) has strongest binding in first nb dimensions (yellow boxes); adjacent
dimensions represent spatially proximal residue groups, here in total nv (nc) variable (conserved) ones.
Upon mutation in BCR or Ag (change in purple or green shape), whether within or outside the current
contact region (yellow interface), footprint may shift (top and lower right). Favorably, shift occurs from
variable (green) via mixed to conserved (red) parts of the epitope (solid arrows); direct shift to conserved
regions is unlikely (dashed arrow). (B) Distribution of mutation effect shown for binding of germline B
cells to the founder virus, with footprint in variable (left) or conserved (right) subspace before mutation,
and footprint shift being allowed (blue) or inhibited (yellow) upon mutation. The black curve indicates the
theoretical distribution for fixed footprint; see Appendices for derivation. nc = 3, nv = 5, and nb = 3.
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Figure 2.3: Distinct coevolutionary outcomes and patterns emerge at different combinations of
initial Ag diversity and epitope conservation. (A) Phase diagram of three coevolution outcomes: viral
clearance (magenta), rebound (grey), and persistence (blue). At high initial Ag diversity (large σA), both
clearance and rebound could happen in repeated simulations (each hybrid symbol indicating the proportion
of occurrence among 100 runs). (B, C) Population trajectories of Ags (B) and plasma cells (C) in three
phases, shown with mean±SD (shade) from 10 simulations in each case. Here and after, we measure time
in units of GCR cycles; one GCR cycle corresponds to 6 to 12 hours in real time. (D-I) Representative
population trajectories and shape-space configurations of Ags (red) and plasma cells (blue) in each phase.
(D, G) Persistence; nc = 2, σA = 0.5. (E, H) Rebound; nc = 3, σA = 2. (F, I) Clearance; nc = 3, σA = 1.
Snapshots in a binding subspace of nb = 3 dimensions are taken at time points marked by black dots in
(D–F). (G) and (H) illustrate Ag escape in a variable subspace; (I) demonstrates Ag clearance by bnAbs in
a conserved subspace. For visual clarity, a random subset of 5% of plasma cells and 25% of Ags are shown.
Shape-space coordinates are scaled by the radius Rf of the B cell founder hypersphere; black circles delineate
the cross-sections of founder sphere with three orthogonal planes intersecting at the origin.
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Figure 2.4: Transitions between distinct phases are governed by the timing and efficacy of strain-
specific and cross-reactive B cell responses. Representative trajectories of Ag population (black) and
average BCR-Ag binding probability (colored) for broad (B-type, colored solid; PB) and narrow (N-type,
colored dotted; PN ) B cell lineages under different combinations of epitope conservation (nc) and initial Ag
diversity (σA). Parameter choices correspond to the phase diagram in Fig.2.3A; left to right: nc = 2, 3, 4;
top to bottom: σA = 2, 1.5, 1, 0.5, 0. When nc = 2 (nc < nb, left column), there is no contribution from
B-type lineages (i.e. PB = 0), since fully conserved binding subspace does not exist.
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Figure 2.5: Epitope conservation controls the size and duration of Ag population bottleneck
in rebound phase. Stronger epitope conservation (larger nc) yields a shallower yet longer-lasting Ag
population bottleneck. Bottleneck starts when Ag population first drops to below 10% capacity and ends
when it recovers to above this level. Bottleneck size is defined by the time-averaged Ag count during the
bottleneck. 100 simulations (scatters) are performed for each nc value; corresponding histograms are shown
along the sides. Initial Ag diversity σA = 2.
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Figure 2.6: Footprint shift enables bnAb development and viral clearance. (A) Ag population
trajectories with (red) and without (black) shift in BCR binding footprint. Ag clearance only occurs if
footprint shift is allowed. (B) Evolved B cells are grouped based on binding footprint of their germline
ancestors against the founder virus; color indicates the number of conserved dimensions in the optimal
binding subspace. Data are collected at t = 100 (no footprint shift) or when Ag population drops to 10%
capacity (with footprint shift). B cells that initially target a fully conserved region (blue) only survive under
footprint shift. (A) and (B) are based on the same set of simulations. (C, D) Typical trajectories of GC
composition (fraction of three cell groups defined in panel B), when footprint is fixed (C) or adjustable (D).
nc = 4, σA = 1.
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Figure 2.7: Footprint shift opens novel pathways toward broad response. (A) Affinity trajectories of
B-type (solid) and N-type (dotted) clones under different initial Ag diversity. Vertical dashed lines mark the
time since when the mean affinity of B-type exceeds that of N-type. (B) Temporal evolution of ensemble-
averaged GC composition based on initial and current identity of individual cells, e.g. N→B represents
current B-type clones descending from an N-type germline ancestor; see Fig. 2.17 for absolute B cell counts
of each switch type. (A, B) Left to right: σA = 0.5, 1, 1.5. (C, D) Fraction of BNB (C) and BBB (D)
cells until viral clearance; see Fig. 2.18 for prevalence of other pathways. (E) Fraction of simulations (GC
ensembles) containing BBB or BNB lineages. Opaque: BBB, transparent: BNB. In all panels, data are
collected from the same 50 simulations for each σA value; purple for σA = 0.5, grey for σA = 1, and red for
σA = 1.5. nc = 4.
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Figure 2.8: Increasing initial Ag diversity speeds up expansion of BNB lineages at the cost of
bnAb efficacy. (A, B) Example B cell lineage trees typical of the BNB pathway under small (σA = 0.5) and
large (σA = 1.5) initial Ag diversity. A BNB lineage stems from a B-type founder (blue node in generation 0)
and undergoes an N-type dominated intermediate stage (takeover of red nodes) before switching back to B-
type dominance (regrowth of blue nodes). Shown are long-lived lineages responsible for viral clearance, where
the black arrow at the latest generation indicates the branch that lasts to the very end. Full tree structures
are presented only up to generation 10. The extended branch in (A) contains the earliest reappearing B-type
clone (at cycle 47) and mutations in conserved dimensions (blue links) leading to it. (C, D) Fraction of
B-type cells (mean±SD, panel C) and histogram for the duration of N-period (N-type fraction being above
50%, panel D) along long-lived BNB lineages for σA = 0.5 (purple) and σA = 1.5 (red), respectively. (E, F)
B cell affinity along the longest-lived branch (marked in A and B) until Ag clearance. Shown are the optimal
affinity among all binding subspaces (solid) and that among fully conserved subspaces only (dashed). (G,
H) Number (G) and size (H) of beneficial mutations in conserved subspaces during the N-period. (C, D)
and (G, H) are all based on the same 50 simulations for each σA value. (I) BnAb efficacy, quantified by
mean affinity to conserved targets (solid), final fraction among plasma cells (dotted) and time to clear Ag
(x axis) at different initial Ag diversity. A bnAb has an optimal binding affinity to conserved targets of at
least 6kBT . nc = 4.
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Figure 2.9: GC compartmentalization slows viral clearance or rebound depending on epitope
conservation. Population subdivision has different functional consequences in the presence (left column,
nc > nb) and absence (right column, nc < nb) of fully conserved binding targets. (A, B) A typical trajectory
of Ag population for each value of GC number. (C, D) Radial distribution of plasma cells in the optimal
binding subspace. Data are collected from simulations in (A) and (B), respectively, at the time when Ag
population drops to 10% capacity in the single-GC case. Insets show shape-space patterns for one GC (right)
and 100 GCs (left). Blue/red dots: plasma cells/Ags; black circles indicate the B cell founder hypersphere.
The same color scheme applies to panels (A–D). (E, F) Time to clearance (E) or rebound (F) (black) and
time-averaged effective plasma-Ag binding probability (blue) for different numbers of GCs. Time for Ag
recovery (F) spans between population size falling below 10% capacity and rising above 50% capacity. 20
simulations are performed for each GC number. σA = 1.
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APPENDIX

2.A Parameter choice

2.A.1 Dimensionality of binding subspace

There potentially is strong variability in what portion of the Ag-binding region of a BCR

determines its footprint on an Ag. When choosing the dimensionality nb of the binding

subspace, we took a structural study [150] as a reference, where binding configurations of a

germline Ab with diverse epitopes on multiple peptides were reported. Out of 26 Ab residues

involved in binding with these peptides, on average only 11 residues determine the footprint.

This led us to a choice with a similar proportion, i.e. nb/n ∼ 11/26, or nb = 3 given n = 8.

2.A.2 Energy scale and mutation step size

Like in [59], we choose Amax = 8kBT , so that the equilibrium constant exp(A/kBT )) for

binding to the founder virus can increase by roughly 3000-fold through AM. The mutation

step size ∆ is chosen such that a single mutation can typically change the BCR-Ag binding

affinity by 1–2 kBT .

2.A.3 Ag population size

We set Ag carrying capacity to 105, which is large enough to capture the variety of viral

load kinetics in vivo [151] while being computationally efficient. With a proper choice of the

concentration coefficients CPla,0 and CAg,0, observed viral-load variations up to three orders

of magnitude were reproduced in simulations.

Table 2.1: Simulation parameters in chapter 2

Parameter Notation Value Reference

Number of shape-space dimensions n 8 [59],[152]

Number of variable dimensions nv 4–6

Number of conserved dimensions nc 4–2
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Table 2.1 continued from previous page

Number of dimensions of BCR-Ag binding footprint nb 3

Maximum B cell affinity to the founder virus (kBT ) Amax 8 [59]

Radius of B cell founder hypersphere Rf 4.9

Average affinity advantage of germline B cells’

optimal footprint over other footprints (kBT )
λ 2

B cell carrying capacity Kb 106 [153]

Total number of distinct germline B cells 5000 [154]

Total number of FDC Ag Ka,GC 105

Number of FDC Ags each B cell encounters in a GC cycle 100

Fraction of GC B cells receiving T cell help fTfh 0.7 [59]

Probability of differentiation into memory cells pmem 0.05 [59]

Probability of differentiation into plasma cells ppla 0.05 [59]

Affinity threshold for plasma cell differentiation (kBT ) Apla 5

Probability of mutation in each daughter B cell µB 0.5 [155],[156]

Fraction of lethal BCR mutation plet 0.3 [155],[156]

Fraction of affinity-altering BCR mutation paa 0.2 [155],[156]

Fraction of silent BCR mutation psil 0.5 [155],[156]

Average B cell mutation step size in variable dimensions ∆B,v 2 [59]

Average B cell mutation step size in conserved dimensions ∆B,c 1

Initial size and capacity of Ag population Ka 105

Initial Ag diversity σA 0–2

Number of plasma cells each Ag encounters in each cycle 100

Probability of mutation per Ag per generation µAg 0.01nv/4 [24]

Average Ag mutation step size in variable dimensions ∆A 2

Extinction threshold of Ag population 100

Total number of GCs 1, 10, 100

Concentration coefficient of FDC Ag CAg,0 0.05

Concentration coefficient of Plasma BCR CPla,0 0.005

Simulation time span (GC cycle) Tmax 200

Affinity threshold of bnAbs (kBT ) 6
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2.B Distribution of mutation effect without footprint shift

Below we derive the theoretical distribution of mutation effect (Fig. 2.2, black curve). We

consider the change in binding affinity between germline B cells and the founder virus at the

shape-space origin, due to a single affinity-altering mutation. Each germline B cell targets

the founder virus in one of the n−nb+1 possible binding subspaces. Cells targeting the same

subspace are uniformly distributed on the surface of a nb-dimensional hypersphere centered

at the origin in that subspace, with a radius Rf =
√
nbAmax. We set n = 8, nb = 3, and

Amax = 8, so Rf ≈ 4.9.

Each affinity-altering mutation changes the shape-space coordinate in one randomly cho-

sen dimension k. Mutation step size δxk follows a centered Gaussian distribution, δxk ∼

N (0,∆2
B,k), where ∆B,k = 2 for mutations in variable dimensions (k = 1, 2, 3, ..., nv), and

∆B,k = 1 for those in conserved dimensions (k = nv + 1, ..., n).

Without footprint shift, mutations outside a germline B cell’s target binding subspace has

no effect on affinity (i.e., ∆A = 0). A mutation in the target binding subspace, which occurs

with probability nb/n, will change the cell’s coordinate xk in dimension k. The resulting

change in affinity can be calculated based on Eq.2.1

∆A(xk, δxk) = −(xk + δxk)
2 − x2

k

nb

= −2xk · δxk + (δxk)
2

nb

(2.9)

One can express xk in terms of ∆A and δxk, i.e. xk(∆A, δxk) = −nb∆A
2δxk
− δxk

2
.

The probability density of affinity change P (∆A) can be written in general as follows:

P (∆A) =
nb
n

∫ ∞
−∞

g(δxk)hX [xk(∆A, δxk)]dδxk (2.10)

Here, the prefactor ensures that only mutations in the target subspace are considered,

g(δxk) = 1√
2π∆B,k

exp(− δx2k
2∆2

B,k
) is the Gaussian distribution of mutation step size, and hX(xk)

is the probability density function of the coordinates of unmutated germline B cells.

To derive hX(xk), we consider a spherical coordinate system in the 3-dimensional binding

subspace and let the polar axis be along the dimension k in which the mutation takes place.
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Denoting by θ the polar angle of a germline B cell’s coordinates before mutation, we have

xk = Rf cos θ. Since germline B cells targeting this subspace are uniformly distributed on

the founder hypersphere, we have

Pr(θ < Θ < θ + dθ) =

∫ 2π

0
sin θdθdφ

4π
=

sin θdθ

2
(2.11)

which is normalized for θ ∈ [0, π]. The probability density hX(xk) for xk ∈ [−Rf , Rf ] thus

reads

hX(xk) = Pr(θ < Θ < θ + dθ)/|dxk|

=
sinθ

2
(Rfsinθ)

−1

=
1

2Rf

.

(2.12)

That is, germline coordinates are uniformly distributed on the interval xk ∈ [−Rf , Rf ] and

vanish outside this range, since germline B cells are right on the surface of the founder

hypersphere.

Substituting the expressions of g(δxk) and hX(xk) into Eq.2.10, we arrive at

P (∆A) =
nb

2Rfn
√

2π∆B,k

∫ ∞
−∞

exp(− δx2
k

2∆2
B,k

) I(−Rf ≤ −
nb∆A

2δxk
− δxk

2
≤ Rf ) dδxk. (2.13)

Here I(Y ) is the indicator function that takes value 1 if the condition Y is satisfied and takes

value 0 otherwise.

2.C Dependence of germline B cell affinity on initial Ag diversity

Below we show that the average binding affinity of germline B cells to initial Ag increases

with Ag diversity, σA, and the number of variable dimensions, nv. Considering Langmuir

binding isotherm, we calculate the “log-mean-exponential” affinity between a founder B cell

~x and initial Ag {~y}, i.e., ln〈exp[A(~x, ~y)]〉{~y}.

From Eq.2.2, we have

〈exp [A(~x, ~y)]〉{~y} = exp(Amax)〈exp

[
−
∑l∗(~x,~y)+nb−1

k=l∗(~x,~y)

(xk − yk)2

nb

]
〉{~y}

= exp(Amax)〈
∏l∗(~x,~y)+nb−1

k=l∗(~x,~y)
exp

[
−(xk − yk)2

nb

]
〉{~y},

(2.14)
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where l∗(~x, ~y) denotes the starting dimension of the optimal binding subspace between a

germline B cell ~x and an Ag ~y. When initial Ag diversity is moderate, we can assume that

the optimal subspaces (binding footprints) of germline B cells for diverse initial Ag are the

same as those for the founder virus at the origin, i.e., l∗(~x, ~y) = l∗(~x,~0) for all ~y. Note this is

only exact when σA = 0 and yields an affinity no greater than the actual value by imposing

a non-optimal binding subspace for finite σA.

As described in the Methods section in chapter 2, the probability distribution g(yk) of

the Ag coordinate in any variable dimension is Gaussian and becomes a Dirac delta function

in conserved dimensions. Thus, we can write g(yk) = 1√
2πσk

exp(− y2k
2σ2
k
), where σk = σA, if

1 ≤ k ≤ nv; σk → 0, if nv + 1 ≤ k ≤ n.

Eq.2.14 now becomes

〈exp [A(~x, ~y)]〉{~y} ≈ exp(Amax)〈
∏l∗(~x,~0)+nb−1

k=l∗(~x,~0)
exp

[
−(xk − yk)2

nb

]
〉{~y}

= exp(Amax)
∏l∗(~x,~0)+nb−1

k=l∗(~x,~0)

∫ ∞
−∞

exp

[
−(xk − yk)2

nb

]
g(yk)dyk

= exp(Amax) exp

[
−
∑l∗(~x,~0)+nb−1

k=l∗(~x,~0)

x2
k

2σ2
k + nb

]∏l∗(~x,~0)+nb−1

k=l∗(~x,~0)

1√
1 +

2σ2
k

nb

(2.15)

Since all germline B cells have equal affinity against the founder virus, it follows that

A(~x,~0) = Amax −
∑l∗(~x,~0)+nb−1

k=l∗(~x,~0)

x2
k

nb
≡ 0. (2.16)

Hence, ∑l∗(~x,~y)+nb−1

k=l∗(~x,~y)
x2
k ' nbAmax (2.17)

for any initial Ag ~y.

Considering target subspaces (binding footprints) being fully conserved or fully variable,

i.e. σk = 0 or σk = σA for all k (mixed subspace yielding a value bounded by these limits),

the log-mean-exponential affinity from Eq.2.15 becomes

ln〈exp[A(~x, ~y)]〉{~y} = Amax −
∑l∗(~x,~0)+nb−1

k=l∗(~x,~0)

[
x2
k

2σ2
k + nb

+
1

2
ln(1 +

2σ2
k

nb
)

]

= Amax −

 Amax

1 +
2σ2
k

nb

+
nb
2

ln(1 +
2σ2

k

nb
)

 (2.18)
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where we have used Eq.2.17. Note there is no explicit dependence on ~x, because both the

germline B cells and initial Ag are isotropic in a fully conserved or fully variable subspace.

When σk = σA > 0, it follows from Eq.2.18

d

dσA

[
ln〈exp[A(~x, ~y)]〉{~x,~y}

]
= 4σA

[
nbAmax

(2σ2
A + nb)2

− nb
2

1

2σ2
A + nb

]
=

4σAnb
(2σ2

A + nb)2

[
Amax −

1

2
(2σ2

A + nb)

]
> 0

(2.19)

as long as σA <
√
Amax − nb/2, which holds for the parameters used in our simulations,

Amax = 8, nb = 3, and σA ≤ 2. That is, the log-mean-exponential affinity between germline

B cells and initial Ag indeed increase with increasing σA. In addition, since σk ≡ 0 in

conserved dimensions, germline B cells targeting variable subspaces have a higher binding

affinity than those targeting conserved subspaces if σA > 0. Thus, increasing the number of

variable dimensions, nv, will increase the fraction of the former, and in turn, lead to higher

overall affinity of the germline population.

It is worth pointing out that the result that average initial BCR-Ag affinity increases

with σA reflects a simple geometric fact: as the the distribution widens around the shape-

space origin, they are getting closer to the enclosing B cell founder hypersphere from inside

(though remaining within the enclosure). Such geometric fact does not require the affinity

function to be quadratic in shape-space distances. A more general definition of affinity reads

Al(~x, ~y) ≡ Amax −
1

nb

∑l+nb−1

k=l
|xk − yk|q . (2.20)

It follows that Eq.2.15 now becomes

〈exp[A(~x, ~y)]〉{~y} ≈ exp(Amax)
∏l∗(~x,~0)+nb−1

k=l∗(~x,~0)

∫ ∞
−∞

exp

[
−|xk − yk|

q

nb

]
g(yk)dyk. (2.21)

Results for q = 1, 2, 3 are shown in Fig.2.10.

2.D Effective plasma-Ag binding probability

To characterize the overall efficacy of B cell response in viral suppression, we define an

effective plasma-Ag binding probability, Peff(ti, tf ), on the time interval [ti,tf ]. Specifically,
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Peff(ti, tf ) determines the total fold change in Ag population size, NAg, between ti and tf :

NAg(tf ) = NAg(ti) ∗ (1− Peff)tf−ti ∗ 2
tf−ti]

2 (2.22)

Here, 1−Peff indicates the effective probability of Ag survival in one cycle, and 2
tf−ti

2 accounts

for Ag replication once every other cycle (assuming first replication occurs at ti).

The actual dynamics is described by

NAg(tf ) = NAg(ti) ∗
tf−1∏
t=ti

[1− 〈PV (~y, t)〉~y] ∗ 2
tf−ti

2 (2.23)

where PV (~y, t) is the probability that Ag ~y will be neutralized by plasma BCR and 〈·〉~y

indicates an average over all Ags present at cycle t. Equating Eq. 2.22 and Eq. 2.23 leads to

Peff(ti, tf ) = 1− {
tf−1∏
t=ti

[1− 〈PV (~y, t)〉~y]}
1

tf−ti . (2.24)

Therefore, a larger Peff(ti, tf ) indicates a higher efficiency of Ag removal in a given time span

[ti, tf ].

2.E Availability of beneficial BCR mutations in slow (conserved)

and fast (variable) dimensions

Fig. 2.16 presents the distribution of mutation effect in fast (variable) and slow (conserved)

dimensions, for lineages with a B-type ancestor that survive until Ag clearance (like in

Fig. 2.8). Mutation effect ∆A is measured by mutation-induced changes in log-mean-

exponential affinity of a B cell to encountered FDC Ags, i.e.,

∆A = log〈exp[A(~x′, ~y)]〉 − log〈exp[A(~x, ~y)]〉. (2.25)

Here ~x and ~x′ are shape-space coordinates of a B cell before and after mutation, respectively;

〈·〉 denotes an average over FDC Ags {~y} that B cell ~x encounters prior to mutation. In the

case without footprint shift (yellow, “No FS”), binding footprints between B cells and FDC

Ags remain unchanged after mutation.
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As seen in Fig. 2.16, at earlier times, affinity improvement is larger for mutations in

fast dimensions, because of a larger mutation step size ∆B,v. Affinity improvement is further

enhanced by footprint shift (blue compared to yellow). These factors, combined with the fact

that initial BCR-Ag binding is stronger in fast dimensions when σA > 0, drive B→N switch

for higher affinity. However, beneficial mutations in slow dimensions remain available, while

those in fast dimensions are quickly depleted, partly because Ags can escape BCR recognition

in fast dimensions, but not in slow dimensions. This allows B cells to continuously improve

affinity through mutations in conserved dimensions and, in turn, drives N→B switch in

surviving lineages. Taken together, a B→N→B pathway toward breadth develops.

2.F Memory reentry into GCs promotes bnAb development and

enhances viral clearance

Experiment has suggested that memory B cells can be activated by Ag, reenter GCs, and

go through further AM. In particular, memory cells can either join ongoing GC reactions, or

seed new GCs as founders. Since the exact conditions of memory activation and GC reentry

are not well understood, we study both scenarios. In both cases, our model predicts that

memory reentry promotes the development of broad Ab response and, in turn, reduces the

likelihood and amplitude of viral rebound and accelerates viral clearance.

2.F.1 Memory cells reenter ongoing GCs

At each GC reaction cycle, a memory cell ~x in the plasma has the following probability to

be activated and join a randomly picked ongoing GC:

PM(~x, t) =
CAg(t)

∑
~y∈Y e

A(~x,~y)

1 + CAg(t)
∑

~y∈Y e
A(~x,~y)

· α. (2.26)

Here, the Langmuir isotherm determines the probability that the memory cell becomes ac-

tivated by a random subset Y of plasma Ag it encounters during cycle t. The constant

α ∈ [0, 1] denotes the fraction of activated memory cells that reenter an ongoing GC. The

actual value of α is unknown, and we examine the extreme case of strong memory reentry
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(α = 1) that sets an upper bound of the effect in our extended model.

With reactivated memory cells joining ongoing GCs, a notable change in the coevolu-

tionary outcome is that viral rebound turns into clearance, if the Ag epitope is sufficiently

conserved for bnAbs to develop, i.e. nc ≥ nb (Fig. 2.23A versus Fig. 2.3A; see Fig. 2.23B

for clearance time and Fig. 2.23C for viral load trajectories). While the total number of Ag-

removing cells in the plasma falls due to memory reentry (Fig. 2.23D), the overall quality of

the plasma rises since memory cells are of lower affinity than plasma cells (Fig. 2.23E).

On the one hand, the neutralization efficacy of narrow lineages (PN) is lower (Fig. 2.23F,

dashed lines), due primarily to the reduced size of the plasma pool (despite an increase in

their average binding affinity due to removal of memory cells; Fig. 2.23E). On the other hand,

broad lineages that arise following viral escape gain in binding potency (PB) compared to

without memory reentry (Fig. 2.23F, solid lines, t & 20). This is because, as memory cells

reenter GCs and go through further AM, both the quality and abundance of broad clones

increase in the plasma pool. As a result, rapid clearance without rebound becomes more

likely (Figs. 2.23B-C).

2.F.2 Memory cells seed new GCs

Once a GC collapses and vacates the follicle, a new one can be seeded therein. Assume a

fraction β of the founders are memory cells randomly drawn from the plasma pool and the

rest are germline B cells.

The effect of memory reseeding is most pronounced and interesting when (i) Ag popu-

lation goes through a bottleneck so GC reseeding will occur, and (ii) nc ≥ nb so broad Ab

response can develop (PB > 0). As the memory-founder fraction β increases from zero (fully

naive reseeding) to one (fully memory reseeding), the proportion of trajectories exhibiting

monotonic clearance without rebound increases from 20% to 100% when nc = 4 and σA = 2;

the proportion increases from 40% to 100% when nc = 3 and σA = 1.5. No monotonic

clearance is observed when nc = 3 and σA = 2, even with memory reseeding.

As we show in Fig 2.24, a larger fraction of memory founders (larger β) leads to an
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increasing likelihood that viral load remains below 10% of the initial level following the

bottleneck (panel A), since broad Ab response evolves faster during the bottleneck (panel C)

and more effectively suppresses or even prevents viral resurgence. This is intuitively expected:

since memory cells have gone through earlier rounds of AM, on average, newly seeded GCs

begin with a larger breadth than if starting anew from germline founders. Consequently,

virus populations get cleared within a shorter time (panel B). Note that a higher level of

naive reseeding (smaller β) results in a greater variability of clearance time (panel B).

2.G IgM antibodies aid in viral removal both prior to population

bottleneck and following escape

Apart from GC B cells, another Ag-consuming agent is IgM antibodies; they are secreted by

short-lived plasma cells that do not go through AM. These low-affinity IgM antibodies may

remove viruses before IgG antibodies are produced by GC reactions.

To study their influence on coevolutionary dynamics and outcomes, we introduce 105

IgM plasma cells (10% of plasma capacity), whose shape-space coordinates were gener-

ated the same way as germline B cells, before GC reactions start. We find that the ad-

dition of non-evolving IgM antibodies leads to a higher fraction of monotonic viral clearance

against rebound in regimes of mixed outcomes (Figs. 2.25A-B). This is achieved in two ways.

First, with IgM antibodies, the overall efficacy of specific antibodies (PN) increases initially

(Fig. 2.25D), driving a faster decline in viral load (Fig. 2.25C). Second, the drop in PN

following viral escape is reduced (Fig. 2.25D); unlike IgG antibodies that are drawn to the

founder viruses (via a self-generated Ag gradient in shape space), IgM antibodies remain in

the corralling configuration and, consequently, can intercept escape mutants.

The neutralization efficacy of broad lineages (PB) slightly decreases in the presence of

IgM antibodies (Fig. 2.25D), since the latter effectively dilute broad plasma cells, making it

less likely that viruses encounter broad antibodies in the plasma. Nonetheless, the overall

effectiveness of narrow and broad responses combined is enhanced both before and during

viral bottleneck, thereby promoting viral clearance.
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2.H Alternative positioning of germline B cells

So far we have assumed that all germline B cells have the same binding affinity — in their

respective optimal binding subspace — for the founder virus. In any non-optimal subspace,

the initial BCR-Ag binding affinity is lower and the amplitude of deviation follows an ex-

ponential distribution with mean λ (see Methods→Simulating coevolution→Step 0). Below

we show that qualitative results of coevolutionary dynamics and outcomes remain valid for

alternative assumptions for germline B cell affinity (Figs. 2.26 and 2.27). In particular, we

allow a range of founder affinities and vary the germline potency against non-optimal bind-

ing targets. We find that both only quantitatively modify the likelihood and speed of viral

clearance.

2.H.1 Differential germline affinities

To allow a range of initial affinities of germline B cells to the founder virus, we performed

simulations in which founder B cells {~x} assume Gaussian-distributed affinities {∆A(~x)},

with ∆A(~x) ∼ N (0, 1) sampled independently for each cell ~x. Accordingly, the fixed radius

of the founder hypersphere, Rf =
√
nbAmax, is now replaced by a cell-specific value Rf (~x) =√

nb(Amax −∆A(~x)).

With differential founder affinities, coevolutionary outcomes remain unchanged qualita-

tively (Fig .2.26A vs Fig. 2.3A), yet the proportion of monotonic viral clearance against

rebound is elevated. Because the most potent clones, now of higher affinity than in the

case of identical germline affinity, are preferentially expanded by selection, both narrow and

broad clones reach higher efficacy in removing viruses more rapidly (Fig. 2.26D). As a result,

the success rate of monotonic clearance is enhanced (Figs. 2.26A and 2.26B) and the mean

time to viral extinction shortened (Figs. 2.26B and 2.26C).
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Figure 2.10: Average binding affinity of founder B cells to initial Ag increases with Ag diversity
(σA) when diversity is modest. Curves, as given by Eqs. 2.18 and 2.21, terminate when σA reaches
the radius of the founder hypersphere, Rf = (nbAmax)1/q. Good agreement with simulations (symbols) is
achieved, even at moderately large σA. Here, nb = 3 and Amax = 8.

2.H.2 Varying germline quality against non-optimal binding sites

Next, we vary the affinity of germline B cells against the founder virus at non-optimal

binding sites (i.e. in non-optimal binding subspaces) by varying λ. As λ increases, lower

quality of binding to non-optimal targets makes it less likely that footprint shift can buffer

deleterious mutations within the optimal binding site or catch beneficial mutations outside.

Consequently, not only that narrow response becomes less effective (Fig. 2.27B, dashed

line), but the efficacy of subsequent broad response rises more slowly (Fig. 2.27B, solid line).

Therefore, bnAb development via footprint shift weakens and viral clearance by bnAbs slows

(Fig. 2.27A).
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Figure 2.11: Radial distribution of Ag, GC B cells and plasma cells in the persistence phase.
Driven by strain-specific GC B cells (blue), mutant Ag (red) emerge increasingly farther from the founder
strain at the origin that focuses plasma cells (green). Data are collected from the same simulation as shown
in Fig.2.3D, at time points marked therein and in the same subspace as in Fig.2.3G. Radial distance is
measured by r2/nb, where r is the Euclidean distance between an agent and the subspace origin; nb = 3 is
the dimensionality of binding subspace. nc = 2, σA = 0.5. The same legend applies to all panels.
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Figure 2.12: Radial distribution of Ag, GC B cells and plasma cells in the clearance phase.
Rapid convergence of GC B cells (blue) toward the origin in the conserved subspace leads to clearance of Ag
(red) soon afterward. Note that the plasma cell distribution develops a peak at the origin of the conserved
subspace (B) while remaining similar in the variable subspace (A) at later times. From the same simulation
as in Fig.2.3F at marked time points and in the same conserved subspace as in Fig.2.3I. (A)/(B): Radial
distribution in a fully variable/conserved subspace. nc = 3, σA = 1. The same legend applies to all panels.
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Figure 2.13: Radial distribution of Ag, GC B cells and plasma cells in the rebound phase. Ag
population goes through the bottleneck (t = 36), recovers to a high level (t = 100), and finally declines
toward extinction (t = 124). Ag (red) are capable of evading elimination by GC B cells (blue) in the variable
subspace (panel A) but remaining at the origin in the conserved subspace (panel B); the distribution of
plasma cells (green) has hardly changed in the variable subspace over this course. Same simulation as that
shown in Fig.2.3E and the same variable subspace as that in Fig.2.3H. nc = 3, σA = 2. The same legend
applies to all panels.
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Figure 2.14: Shape-space snapshots in the rebound phase, after recovering from population bot-
tleneck. Ag are eventually cleared as newly generated plasma cells converge to the origin in the conserved
subspace. Data are collected from the same simulations as those in Figs.2.3E and 2.3H. Panel A/B: configu-
rations of Ag (red) and plasma cells (blue) in a fully variable/conserved subspace. Top row: at t = 110, Ag
population peaks following recovery from the bottleneck; middle: at t = 124, Ag population just falls below
%50 of the peak value; bottom: Ag are close to extinction. Here nc = 3, σA = 2.
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Figure 2.15: Ag population trajectories in the rebound phase in the presence and absence of
footprint shift. Without footprint shift, Ag removal by plasma cells becomes ineffective, resulting in viral
persistence instead. Each curve depicts mean±SD over 5 simulations. nc = 4, σA = 2.
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Figure 2.16: Time-dependent distribution of mutation effect in fast (variable) and slow (con-
served) dimensions. Beneficial BCR mutations remain available in slow dimensions but are quickly de-
pleted in fast dimensions. Mutation size is measured by the difference in log-mean-exponential affinity of a
B cell to its encountered FDC Ag before and after a mutation (see Appendices text Section 5); a positive
value indicates a beneficial mutation. In the case of a fixed footprint (“No FS”, yellow), binding footprint is
unchanged following a mutation regardless of its potential effect. Affinity-optimizing footprint shift enables
the usage of mutations outside current contact and augments the beneficial effect (“FS”, blue). Data are
collected from long-lived lineages descending from B-type founders in repeated simulations, like in Fig.2.8.
Here, nc = 4, σA = 0.5 in (A) and σA = 1.5 in (B). The same color legend applies to all panels.
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Figure 2.17: Time evolution of absolute B cell count in each of four types of identity switch.
Switch types are defined based on the initial and current identity of individual cells, e.g. N→B represents
current B-type clones descending from an N-type germline ancestor. From the same simulations in Fig.2.7B.
nc = 4 in all panels.
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Figure 2.18: Prevalence of B cells taking B→N, N→B and N→N pathways of identity switch.
From the same simulations as in Fig.2.7. nc = 4. The same color legend applies to all panels.
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Figure 2.19: Binding affinity to conserved targets along the B→B lineages. (A) A modest initial
Ag diversity (σA = 0.5) prolongs AM and permits a wide range of paths (tolerating occasional deleterious
mutations). (B) A high initial Ag diversity (σA = 1.5) hastens maturation and yields a strong selection
pressure that narrows the viable paths. Each trajectory represents a single line of B cells that both starts
and ends as B-type. Data are from the same simulations as in Figs. 2.8G and 2.8H. nc = 4.
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Figure 2.20: Increasing initial Ag diversity speeds up accumulation of bnAbs and recovery of
B-type cells, at the expense of hastened AM and reduced bnAb prevalence upon clearance.
Affinity threshold of bnAbs (binding fully conserved targets) is set to 6kBT . From the same simulations in
Fig. 2.8C. nc = 4. The same color legend applies to all panels.
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Figure 2.21: Radial distribution of plasma cells during Ag population bottleneck at different
levels of GC compartmentalization. For fewer larger GCs (purple to red), plasma cells are more
concentrated toward the origin of the most conserved subspace (dimension 6 to 8). Data are taken from the
same simulations as in Fig. 2.9B; time points are at the beginning (A), the lowest point (B), and the recovery
stage (C) of the Ag population bottleneck, defined as when population size falls below 10% capacity, reaches
the minimum, and rises above 50% capacity, respectively, for one GC. Radial distance in dimension k is
measured by x2

k for each plasma cell ~x. nc = 2, σA = 1. The same legend applies to all panels.
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Figure 2.22: Radial distribution of Ag during population bottleneck at different levels of GC
compartmentalization. For fewer larger GCs (purple to red), Ag are driven farther away from the origin
in the variable dimension (dimension 6) of the most conserved subspace (dimension 6 to 8) during recovery
from the population bottleneck. Data are taken from the same simulations as in Fig. 2.9B; time points in A
to C are chosen like in Fig.2.21. Radial distance in dimension k is measured by y2

k for each circulating Ag ~y.
nc = 2, σA = 1. The same legend applies to all panels.
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Figure 2.23: Memory reentry into ongoing GCs promotes broad Ab response and turns viral
rebound into rapid clearance. (A) Coevolutionary outcomes with memory reentry. Yellow outlines
highlight changes compared to Fig. 2.3A; memory reentry turns mixed outcomes into rapid clearance. (B)
Time until viral clearance. Each symbol is an independent simulation; dashed lines indicate the mean value.
(C) Ag population trajectories. Each curve is one simulation. (D, E) Overall quantity (D) and quality (E)
of Ab-secreting cells (both plasma and memory cells are counted). (F) Efficacy of Ab response, measured by
plasma-Ag binding probabilities PB and PN for broad (B-type) and narrow (N-type) antibodies, respectively.
In (B–F), blue (black) indicates with (without) memory reentry. Data in (D–F) are plotted as mean ± std.
Maximum memory reentry (α = 1) in all panels. nc = 4, σA = 2.
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Figure 2.24: Memory reseeding of new GCs results in a faster development of broad response
and hence sooner viral clearance. A higher fraction β of memory cells among GC founders leads to
(A): reduced peak height or even prevention of Ag rebound: following the initial Ag population drop, Ag
remains below 10% of capacity in 20% → 100% of simulations as β increases from 0 to 1 (not shown). In
addition, higher β also leads to (B): earlier clearance of Ag, and (C) faster development of broad Ab response
(measured by the plasma-Ag binding probability PB). nc = 4, σA = 2. Data in (A)(C) are plotted as mean
± std. Horizontal dashed lines in (B) show the mean value.

66



A B

DC

With IgM

50% 70%

Time (GCR cycle) Time (GCR cycle)

C
le

a
ra

n
c
e

 t
im

e
 

(G
C

R
 c

y
c
le

)

Figure 2.25: IgM antibodies promote viral clearance by enhancing early removal and corralling
escape mutants. (A): Phase diagram of coevolution outcomes with IgM antibodies. Yellow marker outline
highlights the change to coevolution outcome compared with Fig. 2.3A. (B) The time to Ag clearance is
shorter with IgM antibodies. Horizontal dashed lines show the mean value averaged over an ensemble of
simulations. The percentages label the fraction of simulations with clearance instead of rebound. Percentages
label the fraction of simulations with clearance outcome. (C) Ag population trajectories. (D) Plasma-Ag
binding probabilities from broad (PB) and specific antibodies (PN ). Data in (D) are plotted as mean ± std.
nc=3, σA = 1.5 and the same color scheme is applied in (B-D).
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Figure 2.26: A wider range of founder affinities speeds up the development of both broad
and specific responses and, in turn, enhances viral clearance. (A): Phase diagram of coevolution
outcomes with Gaussian-distributed founder affinities. Yellow marker outlines highlight the changes to
coevolution outcome compared with Fig. 2.3A. (B) The time to Ag clearance is shorter with Gaussian-
distributed than identical founder affinities. Horizontal dashed lines show the mean value averaged over
an ensemble of simulations. Percentages label the fraction of simulations with clearance outcome. (C) Ag
population trajectories. (D) Both plasma-Ag binding probabilities from broad (PB) and specific antibodies
(PN ) grow faster with Gaussian-distributed founder affinities. Data in (D) are plotted as mean ± std. nc=3,
σA = 1.5 and the same color scheme is applied in (B-D).
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Figure 2.27: Higher germline quality at sub-optimal binding sites against the founder virus
(smaller λ) strengthens both broad and specific Ab responses and speeds viral clearance. (A),
(B) Time trajectories of Ag population size and plasma-Ag binding probabilities from broad (PB) and specific
antibodies (PN ) at different λ. Data are plotted as mean ± std and the same color scheme applies to both
panels nc = 4, σA = 1.5. In all other plots in this chapter λ = 2.
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CHAPTER 3

Optimal vaccination to elicit bnAbs as dynamic control

of eco-evolutionary adaptation

3.1 Abstract

Across diverse environments, generalist phenotypes remain potent, while specialist pheno-

types are fitter than generalists in a specific environment but maladaptive in others. The

development of generalists have great implications in disease prevention and treatment, but

the optimal selection force to control the generalist-specialist competition remains unknown.

Such is further complicated by the diverse interactions between a population’s ecological

and evolutionary dynamics, as both can act on comparable timescales. Here we explore the

optimal control rules to promote generalists during eco-evolutionary adaptation. We first

study the general principles to promote generalists in a minimal and biosystem-independent

model. Then we establish a specific model focusing on vaccine elicitation of bnAbs against

antigenically variable viruses. A trade-off between suppressing specialists and preserving

generalists is identified, and we show that time-varying selection outperforms constant selec-

tion by pursuing both ends of the trade-off sequentially in time. We also demonstrate that

optimally suppressing specialists can promote both generalist quantity as well as quality,

thus sparing the need for two distinct controls. On the contrary, in intraspecies competition

among generalist subtypes, a trade-off exists between generalists’ quantity and quality, thus

requiring different optimal control profiles. Overall, our findings highlight the importance

of feedback between ecology and evolution, illustrate principles for guiding generalists’ dy-

namics with time-varying selection in eco-evolutionary systems, and suggest new vaccination

protocols to elicit bnAbs that are amenable to experimental testing.
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3.2 Introduction

A biological system’s adaptation to selection is shaped by competition among species ([157,

158]). In the face of environment heterogeneity, generalists remain adapted to diverse en-

vironmental conditions; specialists, on the contrary, are fit in a specific environment but

are maladaptive in others. Prominent examples of generalists include bnAbs with high

breadth against highly mutable viruses such as HIV ([159, 160, 161]), HCV ([14, 18]) or

influenza([162, 163]), cancer cells/bacteria resistant to multiple drugs ([164, 165, 166]), multi-

host phages ([167, 168]), etc. The evolution of generalists thus have notable implications in

disease prevention and treatment, and the generalist-specialist competition has been under

extensive investigation. However, the selection force that could be applied to optimally

control the competition and develop generalists remains unclear.

A significant challenge in developing generalists is that they are “Jack of all trades

but master-of-none”: as a trade-off for generalists’ robust performance across diverse en-

vironments, in any particular environment they are outperformed by specialists. Such

performance-robustness trade-off has been observed in different biological systems, span-

ning cells ([169, 23]), viruses ([170]), bacteria ([171]), animals ([172, 173, 174, 175]), plants

([176]), and the source of the trade-off has been attributed to genetic constraints including

genetic-based fitness trade-off (antagonistic pleiotropy, [177, 178, 179]) or a maintenance

cost associated with generalism ([180, 181]). To counter this challenge, diverse environmen-

tal conditions, either temporally or spatially, has been applied to promote generalists. The

outcomes have been mixed across different biosystems ([182, 183]), suggesting that additional

factors should be considered when guiding generalist evolution.

In addition to the genetic-based trade-off, the coupling between evolution and ecology

complicates competition dynamics and its control, especially when the evolutionary and

ecological branches act on comparable time scales ([184, 185, 186, 187]). In such an eco-

evolutionary system, diverse feedback pathways exist between eco- and evo- branches. First,

density-dependent selection directly couples selection force with population abundance. Sec-

ond, a higher population abundance accelerates evolution due to higher population mutation
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rate ([188]) and more efficient elimination of deleterious mutations([189, 176]); Third, the

range of acceptable population abundance places constraints on viable selection force when

controlling a biological system. The generalist abundance should be kept above extinction

threshold at all times in order to ensure survival.

However, previous ecological or evolutionary studies have mostly assumed a separation

of timescales where eco- or evo- branch acts rapidly, while the other remains at (quasi)

equilibrium. Population genetics focuses on different genotypes’ relative abundance in a

population, while the total population size remains constant ([48, 49, 50, 51, 52, 53]); ecology

studies take a “gradualist” view instead ([190]), and considers evolution to be negligible when

studying population abundance ([191, 192]). On the contrary, the eco-evolutionary dynamics

have only been appreciated recently([193, 194, 195]). For example, it has been increasingly

recognized in the last three decades that evolution can occur sufficiently fast in a declining

population to allow recovery and save the population from extinction–a phenomenon known

as “environmental rescue” ([196, 190, 197]). Such is the case of B cell AM in GCs, a

rapid Darwinian selection process to improve B cell binding with Ag and is crucial for the

development of bnAbs. B cells survive AM as their binding strength can increase by three

orders of magnitude ([198]) from mutation-selection cycles and will otherwise go through

apoptosis in the absence of such evolution.

Control theory has been a useful tool in the field of biology and medicine for over half

a century, and has facilitated human understanding of host-pathogen interactions and im-

provement of disease treatment ([199, 200, 40]). For bnAbs elicitation by controlling vaccine

Ag, though, optimal control studies have been absent for two reasons. First, to cover the

vast immunological space of possible Ab and Ag configurations, agent-based models are pre-

dominantly used ([24, 156, 59, 60]) which are incompatible with existing optimal control

framework. In particular, while ordinary differential equations have successfully described B

cell evolution against a single Ag with optimal control theory applied ([45]), the same have

not been achieved if multiple Ag are presented to B cells: the multiple Ag are required to

provide a selective advantage to bnAbs precursors, but at the same time they also signifi-

cantly expands the state space of antibodies and Ag. Second, current vaccination protocols

72



involve multiple injections (“prime-boost” scheme,[55]) well separated in time (typically by

months, [56, 57, 58]) and a new set of B cells are recruited and replicate to form new GCs

after each injection. Therefore, the control over B cell dynamics during a continuous GC

reaction is limited by control’s low time resolution from discrete injections. Nevertheless,

the continuous delivery of vaccine Ag during a single GC reaction has been demonstrated

recently via osmotic pump technique ([63, 64]). This opens up a pathway towards more

time-sensitive control of B cells’ eco-evolutionary dynamics.

In this chapter, we seek to elucidate general principles on optimizing eco-evolutionary

adaptation by optimally controlling the selection strength, and also explore the application to

vaccination aiming for bnAbs. First, we introduce a minimal and generic model featuring eco-

evolutionary dynamics of generalist-specialist competition. Next, we focus on the context of

B cell AM against diverse viral mutants and establish a specific model based on its biological

details. The antigenic distance between vaccine virus strains (a proxy for selection strength)

is treated as control. By transforming the underlying agent-based model architecture into

a differential-equation description, we have successfully applied optimal control theory to

bnAbs elicitation by vaccination. To the best of our knowledge, this is the first study where

this is achieved.

We demonstrate that constant control is subject to a trade-off between preserving gener-

alists and suppressing specialists. The optimal time-varying control balances such trade-off

by achieving both ends sequentially in time. We also show that during interspecies generalist-

specialist competition, both generalist quantity and quality can be promoted through sup-

presing specialists and thus by similar control profiles, owing to eco-evolutionary feedback.

However, during intraspecies competition among generalist subtypes, generalist quantity and

quality are subject to a trade-off and each would be optimized by different control profiles.

In all, our study highlights the importance of eco-evolutionary feedback and illustrate

principles for optimally guiding the dynamics of eco-evolutionary systems. Our results also

suggest potential new vaccination protocols to elicit bnAbs that are amenable to experimental

testing.
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3.3 Model

3.3.1 Controlling generalist-specialist competition: a generic model

The generic picture of generalist-specialist competition is illustrated in our model schemat-

ics Fig.3.1A and 3.1B. With low selection pressure in a homogeneous environment, spe-

cialists have a higher fitness than generalists as generalists’ adaptation to heterogeneous

environments (“generality”) comes at a price of penalized fitness in a particular environ-

ment ([201, 202, 23, 182]). As a result, the generalists are outcompeted by specialists over

time. Conversely, at high selection pressure in a heterogeneous environment, the absolute

fitness of both species are lowered but generalists are less negatively affected and enjoy an

increased relative fitness. Generalists can thus take over the specialists. Hence, by control-

ling the selection strength through environmental heterogeneity, one can selectively promote

the generalist species.

We denote N`, Γ`, f` the abundance, mean quantitative trait and per capita birth rate

of species ` = s (specialists) or g (generalists), respectively. The eco-evolutionary dynamics

capturing the described control mechanism and generalist-specialist competition is given by

the stochastic differential equations (SDE) adapted from [203]:

Ṅg = [fg(Γg)− d− cNtot]Ng︸ ︷︷ ︸
logistic growth

− (1− ε)uNg︸ ︷︷ ︸
ctrl. induced death

+
√
Ng[fg(Γg) + d+ (1− ε)u+ cNtot]ξ1︸ ︷︷ ︸

demograph. noise

Ṅs = [fs(Γs)− d− cNtot]Ns − uNs

+
√
Ns[fs(Γs) + d+ u+ cNtot]ξ2

Γ̇g = 2Dg
∂fg
∂Γg

Ng︸ ︷︷ ︸
selection

+
√
Dgξ3︸ ︷︷ ︸

genetic drift

Γ̇s = 2Ds
∂fs
∂Γs

Ns +
√
Dsξ4

(3.1)

Here {ξi} are unit Gaussian white noises: 〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = δijδ(t − t′). The

deterministic portion of ecological dynamics for N` depends on birth rate f`, baseline death
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rate d, density-dependent death rate cNtot = c(Ns+Ng), and the control-induced death rate.

The control-induced death rate is proportional to the control variable 0 ≤ u(t) ≤ umax, which

is the quantification of selection strength. Generalists’ generality is measured by the constant

0 < ε < 1: larger ε means generalists are less susceptible to control u. The evolutionary

dynamics of Γ` depends on the fitness landscape f`(Γ`) ([203], also see Appendices), diffusion

constants D`, and is accelerated by a larger population size N` for faster generation of

mutations. To model the extinction of species `, Ṅ` and Γ̇` are assigned zero by rule in

Eq.3.1 when N` is less than extinction threshold Nc.

The effectiveness of the control function u: [0, T ]→ [0, umax] is measured by the ecological

or evolutionary objective indices

Jeco{u(t)} ≡
∫ T

0

Ng(t)
dt

T

Jevo{u(t)} ≡
∫ T

0

fg(t)
dt

T

(3.2)

that focus on generalist quantity and quality, respectively. The integrand is also treated

as zero when Ng < Nc to penalize generalist extinction. Using Hamilton-Jacobi-Bellman

(HJB) formalism the optimal control maximizing either objective can be solved numerically

(see Methods). Also see Methods and Appendices for details on the SDE formulation and

solutions for the stochastic optimal control.

3.3.2 Guiding affinity maturation (AM) towards generalists: a specific model

Guiding AM towards generalists: a specific model During AM of B cells in GCs, strain-

specific B cells (specialists) bind variable Ag epitopes, and Ag mutations on these epitopes

allow escape from strain-specific B cells. Cross-reactive B cells (generalists), on the contrary,

target conserved Ag epitopes. These epitopes include structures that are functionally im-

portant to the virus and are shared by viral mutants ([10, 61, 204, 205, 206]). Therefore, the

cross-reactive B cells remain potent against mutated viral strains. GC B cells are selected

based on their binding affinity with Ag and compete for finite amount of T cell help ([1]).

By controlling the composition of vaccine viral strains, we seek to frustrate the Ag binding

of specialists and promote the evolution and expansion of generalists.
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3.3.2.1 Vaccination protocol

The vaccination begins with a germline-targeting viral strain (“prime” strain) injected to

activate naive B cells as GC founders. This is followed by diverse viral strains (“boost”

strains) registered to guide B cell AM towards bnAbs ([207, 160, 208]), either through re-

peated injections or osmotic pumps. We consider a variable and a conserved epitope on

vaccine Ag as B cell binding targets, and B cells targeting the two epitopes are the “special-

ists” and “generalists”, respectively (Fig.3.1C). The conserved epitope contains conserved

residues that are shared among viral strains and are ideal target for bnAbs. These conserved

residues are shielded by variable residues on the same epitope, which act as a distraction

to the breadth development of generalists. Indeed, the germline version of mature bnAbs

have been reported to target variable Ag residues and gradually acquire breadth during AM

([62]). We also assume the two epitopes are structurally distinct, so B cells do not switch

their target epitope during AM ([209, 62, 18]).

3.3.2.2 String representation of B cells and viral strains

Based on [152, 46, 24], BCRs and viral epitopes are represented as strings (Fig. 3.10) of

length M = 20 and alphabet size K = 4. A B cell is encoded by one string ~b, while a viral

strain is encoded by two strings: (~av,~ac) for its variable and conserved epitopes, respectively.

Each string site represents a residue group included in BCR-virus binding. To reflect the

conserved residues common to viral strains, the last Mc sites of the conserved epitope string

~ac are “conserved sites” and are shared among all strains. The rest Mv = M −Mc sites of

~ac as well as all M sites of the variable epitope string ~av are “variable sites”, and may differ

between viral strains.

3.3.2.3 Controling antigenic distance between boost and prime strains

We assume that the boost strains at time t are designed and synthesized so that each

variable residue group is randomly mutated relative to the prime strain with probability Σ(t)
M

(0 ≤ Σ(t) ≤ M). Similar measure of antigenic difference has been applied to influenza data
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in [210]. In string representation, each variable string site from boost strains has a random

different letter than the prime strain with probability Σ(t)
M

. The Hamming distance between

the variable epitope string of prime and each boost strain follows a binomial distribution

with expected value M × Σ(t)
M

= Σ(t). Therefore, we call Σ(t) the antigenic distance of boost

strains and treat it as the control variable in vaccine design.

3.3.2.4 Affinity class description of GC B cells

In our string representation, BCR-virus binding affinity A is modeled as a function of BCR-

virus string matches (see Methods), which facilitates an affinity class description of B cell:

they are binned into affinity classes based on their string matches with the prime virus strain

and all B cells from the same affinity class have the same affinity against the prime strain.

In Appendices we also derive the average binding affinity between a B cell and boost viral

strains, based on the B cell affinity class and the antigenic distance Σ. Thus the affinity

classes describe not only BCR-prime binding, but also BCR-boost binding.

A considerable advantage of the affinity class description, compared with exhaustively

tracking all B cell strings, is the greatly reduced number of variables (from thousands of B

cell strings to dozens of affinity classes). This allows a tractable ordinary differential equation

(ODE) description of B cell dynamics when evolving against diverse Ag strains in GC, which

is also readily compatible with optimal control framework (see Methods). In Appendices we

also support our results from ODEs with stochastic agent-based simulations.

3.3.2.5 Dynamics of GC B cells

We denote the specialists and generalist populations with vectors ~x ∈ RM+1 and ~y ∈

R(Mv+1)(Mc+1), respectively. The components {xi} and {yi} are the number of specialists and

generalists in affinity class labeled by index i. For specialists, 1 ≤ i ≤M +1 relates to string

matches as m = i−1. For generalists, 1 ≤ i ≤ (Mv+1)(Mc+1) is a linear index of all general-

ist matching score pairs (0 ≤ mv ≤Mv, 0 ≤ mc ≤Mc). As i runs from 1 to (Mv+1)(Mc+1),

(mv,mc) = (0, 0), (1, 0), ..., (Mv, 0), (0, 1), (1, 1), ..., (Mv, 1), ..., (Mv − 1,Mc), (Mv,Mc).
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The GC B cell dynamics is then written as (adapted from [45]):

dsi
dt
≡ f si = kp si θ

s
i h

s
i (Σ) · (2Ms

ii − 1)︸ ︷︷ ︸
replication

+ kp
∑
j 6=i

sj θ
s
j h

s
j(Σ) · 2Ms

ij︸ ︷︷ ︸
mutation

− kp si θsi [1− hsi (Σ) +
|~x|+ |~y|
KB

]︸ ︷︷ ︸
apoptosis

(3.3)

where s = x, y for specialists and generalists, respectively.

The first line on the right-hand side of Eq.3.3 is B cell replication. kp is a rate constant

that sets the timescale of GC reactions. We set kp = 1 GC reaction cycle per time unit.

Since GC B cells go through 2-4 cycles per day ([1]), a typical GC reaction that lasts for

25-50 days ([59]) would span T ≈ 100 time unit. θsi is a step function of si: θ
s
i = 1 if si ≥ 1

and θsi = 0 otherwise. It indicates the existence of B cells of species s in class i and prevents

unrealistic growth from a fraction of a cell ([45, 211]). hsi is the probability for B cells of

species s = x, y and class i to internalize Ag presented on the follicular dendritic cells, which

serves as B cell fitness. The expression of hsi is given by the Langmuir isotherm:

hsi (Σ) =
CAg(t) e〈A

s
i (Σ)〉

1 + CAg(t) e〈A
s
i (Σ)〉 (3.4)

where CAg(t) is the total concentration of all viral strains in GC and 〈Asi (Σ)〉 is the log-mean-

exponential binding affinity between B cell of class i and boost strains of antigenic distance

Σ. The fitness hsi saturates at 1 when the enumerator of Eq.3.4 is large, which will weaken

the affinity discrimination of different B cell classes. Thus, at lower CAg the fitness hsi has a

stronger dependence on affinity 〈Asi (Σ)〉 and results in a stronger selection for high-affinity

B cells (Fig. 3.11), which is consistent with clinical observations ([212, 213]). The expression

for 〈Asi (Σ)〉 is derived in Appendices. In particular, as Σ increases the boost strains become

more distinct than the prime strain. Therefore B cells that bind strongly with the variable

residues of the prime strain (large m for specialists or large mv for generalists) are frustrated

while those bind strongly with the conserved residues (large mc for generalists) remain fit

(Fig. 3.12). Thus, a larger control Σ(t) corresponds to stronger selection pressure and grants
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a stronger selective advantage to generalists targeting conserved residues. Matrix Ms is the

mutation matrix and its element Ms
ij is the probability for a daughter B cell of species s to

be class i if its mother cell is class j (see Appendices for the construction of matrix Ms).

i = j represents cell replication and on average 2Ms
ii daughter cells of class i are created

while 1 mother cell of class i is lost.

The second line of Eq.3.3 is B cell mutation, where daughter B cells of class i are produced

when mother B cells of class j 6= i divide.

The third line of Eq.3.3 is B cell apoptosis, where 1 − hsi is the probability for B cells’

failure to internalize Ag and receive survival signal in GC reaction. The density-dependent

death term (|~x| + |~y|)/KB models B cells’ competition for finite T cell help by imposing a

soft capacity constraint. |~s| ≡
∑

i siθ
s
i (s = x, y) is the 1-d norm and constant KB is the

capacity.

3.3.2.6 Evaluation of generalist performance

To evaluate the generalist performance from different antigenic distance Σ(t), we define

an objective index Φ that accounts for both generalists’ ecology and evolution during GC

reaction:

Φ{Σ(t)} = γ

∫ T

0

∑
mc,i≥1 yi

KB

dt

T︸ ︷︷ ︸
Φeco

+ (1− γ)

∫ T

0

∑
mc,i≥1 yi ∗ eA

c(mc,i)

|~y| ∗ eAc(Mc)

dt

T︸ ︷︷ ︸
Φevo

(3.5)

The first integral Φeco measures generalist quantity with at least minimal conserved bind-

ing mc,i ≥ 1. The second integral Φevo quantifies average generalist cross-reactivity where

generalists are weighted by the exponential of their conserved-binding affinity Ac(mc,i) =

(mc,i/M)CMc

M
E (Eq.3.10). Note that for Φevo, generalists are effectively binned into “breadth

classes” as only the conserved binding score mc is distinguished between generalists while

variable binding score mv is not. Parameter 0 ≤ γ ≤ 1 tunes the focus of Φ between gen-

eralist quantity or quality: γ = 0 is entirely quality-/evo-oriented while γ = 1 is entirely
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quantity-/eco-oriented. Integral form is chosen for Φ as B cells constantly differentiate into

memory and plasma cells and exit GC during AM ([1]). We observe qualitatively similar

results if terminal values are evaluated instead.

3.4 Results

3.4.1 Insights from the generic model

3.4.1.1 Dynamic control balances generalist preservation and specialist sup-

pression

We solve for the optimal control u∗(Ns, Ng, fs, fg, t) maximizing generalist ecological or evolu-

tionary indices Jeco, Jevo (Eq.3.2) at different generality ε. Due to the linear control dynamics

in Eq.3.1, the optimal control is bang-bang: u∗ is either 0 or umax at all time t (also see Ap-

pendices). We then performed ensembles of 1000 SDE simulations at different ε following

the optimal control rule u∗ (Fig.3.2A).

Applying positive control have two opposing direct and indirect effects on generalist

growth. On one hand, control directly lowers the net growth rates of both generalists and

specialists. On the other hand, via suppressing specialists, control also indirectly benefits

generalists by reducing the competition they face. Correspondingly, a trade-off between

preserving generalists and suppressing specialists can be identified. The optimal control to

balance the trade-off is modulated by generality ε, as the control’s direct (and undesired)

effect on generalist growth is weaker at higher ε. As a result, different optimal control

behaviors can be observed depending on the value of ε in Fig.3.2A.

First, at low generality (Fig.3.2A left, ε = 0.1) the control remains off. In this case it is

not worthwhile to apply control to lower specialist fitness, when the control hurts generalists

nearly equally. Next, at high generality (Fig.3.2A right, ε = 0.9) the control remains on until

specialist are driven extinct. In this case the generalists are nearly immune to control, and

the benefit from suppressing specialists outweighs the direct cost to generalist fitness. Finally,

at intermediate generality (Fig.3.2A middle, ε = 0.5) the control is initially on, but switches
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off when both species are still present. This optimal switching time best promotes generalist

survival (Fig.3.2B), and delays generalist extinction if it occurs (Fig. 3.9). Specifically, when

the control is switched off late (Fig. 3.9, purple), excessively lowered generalist fitness leads to

early generalist extinction. On the contrary, when the control is switched off early (Fig. 3.9,

green), specialists benefit from lack of control and generalists are gradually outcompeted by

specialists. A balance between generalist survival and specialist suppression is thus struck

at the optimal switching time and best promotes generalist performance.

With the exception of low generality, the optimal control profile is time-varying to balance

the preservation of generalists and suppression of specialists. This is also confirmed in

Fig.3.2C where the ensemble average of objective index Jeco at optimal control outperforms

constant controls.

3.4.1.2 Generalist quantity and quality are both improved by suppressing spe-

cialists

Due to the positive feedback between population growth and trait evolution (Eq.3.1), im-

proving one process also promotes the other. Therefore, when the control optimally sup-

presses specialists and reduce competition faced by generalists, both generalist quantity and

quality benefit. Indeed, when the optimal control aims to maximize generalist evolutionary

index Jevo (Fig.3.2A, dashed black), the same types of control behaviors as those maximizing

Jeco (Fig.3.2A, solid black) are observed. This in turn leads to nearly identical generalist

performance between control profiles maximizing generalist quantity or quality (Fig.3.2D).

3.4.2 Promoting generalists with diverse viral strains during AM

3.4.2.1 Preserving generalists and suppressing specialists: a trade-off at con-

stant control

Now we focus on the specific context of AM of B cells during GC reactions. Fig.3.3 shows the

generalist performance when constant antigenic distance Σ is applied during GC reaction.
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This serves as a reference scenario when a single vaccine recipe is registered throughout a GC

reaction, when consecutive vaccine shots are temporally separated. ([59, 60]). The optimal

generalist performance is achieved at an intermediate level of Σ (Fig.3.3A). At low Σ . 6,

specialists outcompete generalists and dominate the GC (e.g., Fig.3.3C, Σ ≡ 0). Therefore

both generalists quantity and quality are poor. Such outcome is qualitatively consistent with

clinical observation from early HIV infections (less than 3 years post infection), when the

Ab response is predominantly strain-specific before further virus diversification has taken

place ([16, 214, 209]). As Σ increases, it suppress the specialists and provides a selective

advantage to generalists, leading to a generalist response that dominates GC (e.g., Fig.3.3C,

Σ ≡ 9). At even higher Σ & 12, however, both specialists and generalists are suppressed

by the strong selection pressure. This could result in an early extinction of generalists (e.g.,

Fig.3.3C, Σ ≡ 16) before any further generalist evolution and expansion can take place.

The distinct outcomes from different constant antigenic distance Σ reflect the trade-off

we identified from the generic model to launch a successful generalist response. Specifically,

first, the specialists are to be prevented from outcompeting generalists in the same GC.

This calls for a high antigenic distance Σ to frustrate the specialists and provide a selective

advantage to the generalists. Second, generalist founders are also susceptible to frustration

from Σ > 0 and generalists’ survival must be ensured so that they can eventually develop

high cross-reactivity. This calls for a low antigenic distance Σ to keep generalists from early

extinction. The opposing needs from both conditions thus leads to the intermediate optimal

level of constant Σ.

3.4.2.2 Low-to-high control both preserves generalists and suppresses special-

ists sequentially

In order to achieve a better generalist performance than the trade-off at constant antigenic

distance Σ would allow, we propose that a time-varying Σ(t) function could be applied

during GC reaction. In particular, a desirable vaccine scheme should start with low Σ(t)

to preserve generalists and allow their cross-reactivity mc to evolve; this is followed by high
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Σ(t) to suppress specialists and allow further generalist evolution and expansion.

To test this idea, we design a simple Σ(t) function that sharply switches from 0 to

Σmax > 0 at t = t1: Σ(t < t1) = 0, Σ(t ≥ t1) = Σmax. The diamond in Fig.3.3A shows

the result from optimal pair (Σ∗max, t∗1)=(16, 20) that maximizes Φevo. As expected, a better

performance than constant Σ is achieved (Fig.3.3A, Fig.3.14). Compared with constant Σ,

dynamic selection pressure allows for better generalist preservation during the low-Σ period

(Fig.3.3B, vertical axis). This then feedbacks onto faster evolution of generalist quality by

faster accumulation of beneficial mutations. Moreover, compared with the optimal constant

control Σ ≡ 9, a higher antigenic distance Σmax = 16 could be applied in the dynamic

scheme, even though constant Σ ≡ 16 would drive generalists to extinction. Altogether,

with the dynamics Σ(t), generalists gain an advantage in the competition and expand while

the specialists are excluded at a rate faster than constant Σ(t) could achieve (Fig.3.3C, right

two panels).

3.4.2.3 Optimal control decided by founder quality, vaccine protocol duration,

and emphasis on generalist quantity vs quality

Fig.3.4 shows the optimal antigenic distance Σ∗(t) solved using Pontryagin’s maximum prin-

ciple (see Methods and Appendices for details). We identify five different shapes of optimal

Σ∗(t) functions (Fig.3.4A). Example Σ∗(t) as well as B cell quantity and quality trajectories

are showcased in Figs.3.4B and 3.4C. Of note, the low-to-high switching function is naturally

recovered without making any a priori assumptions.

The different control shapes are determined by generalist founder quality mc, vaccination

protocol duration T , and also by the objective index (Φevo or Φeco) being maximized. Among

these, generalist founders’ quality mc is the most prominent factor. When founder quality

mc < 4, the optimized antigenic distance Σ∗(t) exhibits the signature low-to-high switching

behavior (Fig.3.4A, triangles). This can be interpreted as when GCs are seeded by naive

B cells with low cross-reactivity. However, if generalist founders already have high cross-

reactivity mc ≥ 4 (Fig.3.4A upper row, squares), the optimal solution is to turn on control
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from very beginning: when the generalist founders are already cross-reactive and resistant

to high antigenic distance, strong selection can be applied early to select for high-quality

generalists (high mc) without endangering generalist survival. Such can be the case if the

GCs are seeded by reactivated memory cells ([215]) that have already gone through previous

rounds of AM and acquired some cross-reactivity.

The objective index (Φevo or Φeco) affects the shape of optimized antigenic distance Σ∗(t)

at late time, when t is close to the vaccine protocol duration T . When maximizing the evo-

lutionary index Φevo, Σ∗(t) remains at high level once switched on. Such sustained duration

of high Σ∗(t) selects for more cross-reactive generalists even when specialists are suppressed

and no longer poses a threat to generalist survival (Fig.3.4C, solid), as competition remains

among different generalist classes. When maximizing the ecological index Φeco, however, the

selection pressure from diverse boost strains is relaxed after specialist suppression (Fig.3.4C

dashed, Fig. 3.16) to allow for higher generalist quantity at the cost of quality. Comparing

the AM outcome when maximizing either Φeco or Φev (Fig.3.4C) though, the difference is

small as both optimal control profiles promote generalist evolution and expansion through

suppressing specialists. Also, the on switch for eco-control slightly lags behind evo-control

to allow more generalist growth before the strong selection pressure is applied.

Vaccine protocol duration T affects the shape of optimal control in the limit of very short

protocol duration duration and low founder quality. In this regime, the optimal antigenic

distance to maximize Φeco is to apply minimal Σ(t) throughout (Fig.3.4A lower panel, circles).

The low quality generalists do not have a chance to prevail over specialists in such limited

timespan, even with time-varying antigenic distance. If diverse viral strains are applied, the

direct negative impact on generalist quantity will only outweigh the indirect benefit from

suppressing specialists, thus leading to a lower generalist quantity.
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3.4.2.4 Optimal control timespan balances generalist preservation and specialist

suppression

From Fig.3.4, the optimal antigenic distance Σ∗(t) exhibits two types of switching behaviors:

a low-to-high (“on”) switch for both evolutionary and ecological optimal controls, and a

high-to-low (“off”) switch only for ecological control. Two questions then rise: what decides

the optimal on and off switching times, and how would the generalist performance degrade

if the switching times deviate from their optimal values?

First, we look at the optimal on switch. In Fig.3.5 we demonstrate that the optimal on

switch strikes a balance between generalist preservation and specialist suppression. We focus

on the case of low generalist founder quality (Fig.3.5A blue, mc = 0 for generalist founders)

when the evolutionary objective Φevo is most sensitive to the timing t1 of on switch (Fig.3.5A

inset). An intermediate switching time leads to peak Φevo, whose value declines sharper with

an earlier non-optimal timing than a later timing.

To elucidate what makes the peak position in Fig.3.5A optimal, we track the composition

of generalists in time when the switching time is early, optimal, or late (Fig.3.5B). During

GC reaction, generalist mutants of increasingly higher cross-reactivity mc gradually emerge

and the progression is driven by an “avalanche” of mutation flux originating from founder

B cells (Fig.3.5B, purple to red). On one hand, compared with the optimal on time, earlier

switching time suppresses generalists’ quantity prematurely. This slows down their evolution

to higher quality (Fig.3.5B upper and middle panels, t = 20) and subsequent expansion after

the on switch. Too early a switching can even drive generalists to extinction (Fig.3.17A),

which accounts for the sharp decline of Φevo at early t1 in Fig.3.5A. On the other hand, if the

on switch is later than optimal, the generalists will temporarily have a quantity advantage

over the optimal switch (Fig.3.5B middle and lower panels, 20 ≤ t ≤ 40). However, without

the selection force for high cross-reactivity provided by high Σ, specialists gradually exclude

generalists in competition. As a result, both generalist quantity and quality are eventually

surpassed by the optimal Σ∗(t) (Fig.3.5B middle and lower panels, t ≥ 60).

In practice, it is essential to avoid the extinction of generalists due to applying high
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antigenic distance prematurely. Here we provide an estimator for the earliest viable on

switch that allows generalist survival. Such an estimator also provides a lower boundary for

the optimal switching time (Fig.3.5C): while the generalists barely survive the population

bottleneck with the earliest viable switch (Fig. 3.17B), a later optimal switch allows for

more generalist evolution and expansion before switching and, in turn, a faster recovery

from population bottleneck (Fig. 3.17C).

Such an estimator is based on the earliest emergence of self-sustainable generalist class

from GC reaction. During the avalanche of mutation flux following the onset of GC reaction,

a positive growth rate is required for the survival and subsequent evolution of the leading

generalist class with highest cross-reactivity mc. Based on Eq.3.3, we can classify the growth

rate f yi of generalist class i into intrinsic and extrinsic growth rates f yi,int and f yi,ext (Eq.3.13):

the intrinsic growth rate includes the replication and apoptosis (if failed to internalize Ag

during GC reaction cycle) of generalists in class i, which are independent from other B cells

present in GC. In contrast, the extrinsic growth rate includes the mutation influx from other

generalist classes j 6= i into class i, as well as apoptosis induced by competition. Thus, the

intrinsic growth rate is only a property of generalist class index i, while the extrinsic growth

rate depends on the entire GC B cell population. As B cell population size shrinks following

the onset of GC reaction, both the mutation flux as well as the competition among surviving

GC B cells weakens. Thus, we define the self-sustainable generalist class i by neglecting the

extrinsic growth rate and require the intrinsic growth rate f yi,int(yi,Σ = Σmax) > 0.

In turn, the emergence of self-sustainable generalists from evolution acts as our estimator

for earliest viable on switch (Fig.3.5C): the control should remain off (Σ(t) = 0) until the

self-sustainable generalists have evolved, and once evolved these generalists can rely on their

self-replication for survival after the on switch. Such an estimator depends only on the

existence of self-sustainable BCRs, thus it can be realized by isolating the plasma antibodies

and test their binding affinity to boost strains ex vivo. In particular, there is no need to

monitor the entire GC B cell population which is impractical. With parameters in Fig.3.5,

the self-sustainability condition f yi,int(yi,Σ = Σmax = 10) > 0 is first met for generalists with

mc ≥ 3 and an immediate on switch at t = 0 is viable if mc ≥ 2 for generalist founders
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(Fig.3.5C): self-sustainability is immediately met by the founders (when founder mc ≥ 3) or

the first mutants of improved mc (when founder mc = 2).

Second, we shift our scope to the optimal off switch for ecological objective Φeco. Like for

the on switch, it strikes the balance between generalist preservation and specialist suppression

, and an intermediate off time leads to the peak of objective index (Fig.3.6A).

We start with vaccine protocol duration T = 100 which corresponds to the typical GC

duration of 25-50 days. When the high antigenic distance is switched off at optimal timing

(Fig.3.6B, middle panel), the generalists already dominate the GC and have reached satu-

ration : the later is reflected by generalists’ nearly identical per-cell birth and death rates

(Fig.3.6C, middle panel; see Eq.3.14 in Methods for the equations of the two rates). After

the high antigenic distance is switched off, the generalist abundance further increases briefly

owing to relaxed selection, until a new saturation is reached. However, if the high antigenic

distance is switched off earlier than optimal, generalists’ advantage over specialists is lost

prematurely and specialists will take over again (Figs.3.6B and 3.6C, left panels). On the

contrary, when the high antigenic distance is switched off later than optimal (Figs.3.6B and

3.6C, right panels), the duration of relaxed selection after off switch is shorter than optimal,

which results in a lower value of Φeco.

When the vaccine protocol duration T is too short for generalist abundance to reach

saturation, the optimal off time becomes t∗2 . T to maintain suppression of specialists and

maximize generalist growth (Fig.3.6D). The high antigenic distance is only switched off near

the terminal time T to relax selection and achieve a final spike of generalist growth. For

very long T (T & 400, or 100-200 days), the high antigenic distance is only applied until

specialists are driven extinct (Fig.3.6D, horizontal dashed). This avoids specialists’ recovery

after off-switch while also allows relaxed selection on remaining generalists.
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3.4.2.5 Co-promotion of generalist quantity and quality at intermediate level

of competition

In Fig.3.4C, both generalist quantity and quality are promoted by similar optimal antigenic

distance Σ∗(t), which exhibits a switch from low Σ(t) = 0 to high Σ(t) = Σmax = 10 at nearly

identical timings. In addition, as we will show below, the co-promotion of both generalist

quantity and quality requires an intermediate competition strength, where the B cell capacity

KB in GC equals or is comparable with the initial B cell abundance 104 at GC reaction onset

(Fig.3.7A). This is also the capacity regime we believe to be most realistic: a few founder B

cells expand to an abundance limited by GC capacity before GC reaction cycle begins.

At intermediate competition strength, the optimal timings to switch on high antigenic

distance are nearly identical (Fig.3.7A) for both eco- and evo- objectives. When the high Σ(t)

is switched on, the generalists suffer from a reduced birth rate (Fig.3.7B) due to increased

selection strength. However, as generalist cross-reactivity improves, generalist birth rate

gradually recovers over time. In addition, the reduction in generalist birth rate is also

quickly compensated by the reduced death rate (birth rate exceeds death rate at t = 38), as

specialists are excluded under strong selection and ease the competition faced by generalists.

Overall, the indirect gain from the reduced death rate outweighs the direct loss from the

reduced birth rate with optimal control, and the net generalist growth rate is improved

compared with no control. To see this directly, one can compare the area between the birth

and death rate curves (which gives the integral of net growth rate) with and without control

(Fig.3.7B, solid v.s. dashed). The improved generalist quantity also positively feedbacks

onto accumulation of breadth-improving mutations, and the generalists with higher mc are

selected by high Σ(t), leading to co-improved generalist quality.

On the contrary, in weak competition regime (Fig.3.7A, KB & 104), the optimal timing to

switch on high antigenic distance for eco-objective Φeco is postponed as capacity increases,

while the on timing for evolutionary control remains unchanged. The delayed on switch

of ecological control is because the competition only becomes relevant when the total B

cell abundance has expanded to be comparable with capacity. In particular, in the limit of

88



extremely large capacityKB ≥ 1024, the optimal ecological control simply becomes Σ∗(t) ≡ 0.

This is the regime when the capacity KB has even exceeded the unrealistic B cell abundance

achieved in the absence of competition. If high Σ is applied for such large KB, the reduced

generalist death rate by reducing competition (which is nearly neglible) is simply insufficient

to compensate for the drop in generalist birth rate (Fig.3.7C). For evolutionary control,

however, a high Σ still selects for generalists of high cross-reactivity mc, and the same early

switching as intermediate KB remains optimal for generalist quality.

Finally, in strong competition regime (KB . 104), the generalist population quickly

shrinks and the generalists cannot accumulate enough mutations to improve cross-reactivity

mc. The generalists remain susceptible to strong selection and the elevated death rate does

not compensate the slow recovery of death rate if a high Σ is applied (Fig.3.7D dashed).

Thus, the optimal controls for both eco- and evo- objectives are Σ∗(t) ≡ 0 (Fig.3.7A) to

elongate generalist survival.

3.4.2.6 Intraspecies competition of generalists: quantity-quality trade-off

To better elicit bnAbs through vaccination, people have explored germline-targeting immuno-

gen designs to activate naive B cells that target conserved viral epitope ([216, 217, 218]). If

a GC is seeded by these generalist founders, then the interspecies competition between gen-

eralists and specialists is no longer a concern and AM will instead be driven by intraspecies

competition among different generalist B cells. We demonstrate in Fig.3.8 that different

control rules emerge in this regime as a trade-off now exists between generalist quantity and

quality. During competition among different generalists, diverse vaccine strains frustrate

the BCR binding with variable viral residues and preferentially selects for the generalists of

higher cross-reactivity mc. Thus, under constant antigenic distance the generalist quality

increases with Σ by filtering out lower-quality generalists, which reduces generalist quan-

tity: this results in the trade-off between generalist quantity and quality (negative slope in

Fig.3.8A, in contrast with the positive slope in Fig.3.3B for generalist-specialist competition).

The generalists’ quantity-quality trade off also applies to dynamic antigenic distances.
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While a low-to-high switching Σ(t) function still promotes generalist quality and outperform

constant Σ (Fig.3.8A; Fig.3.19A), the same dynamic Σ(t) function no longer also boasts a

high generalist quantity compared with constant Σ functions (Fig.3.8A; Fig.3.19B). More-

over, the optimized antigenic distance Σ∗(t) takes distinct shapes (Fig.3.8B) when the ob-

jective index Φ places different weight γ on generalist quantity (Eq.3.5). Specifically, a

low-to-high switching Σ∗(t) function still optimizes generalist quality (Fig.3.8B, red). How-

ever, Σ∗(t) ≡ 0 optimizes generalist quantity (Fig.3.8B, blue) as it allows free growth of

generalists though the selection force towards higher cross-reactivity is absent. As a result,

in generalist-generalist competition, Σ∗(t) functions optimized for different eco-/evo-focus

yield significantly different values of Φeco and Φevo (Fig.3.8C, black). In comparison, in

generalist-specialist competition both Φeco and Φevo are almost invariant from optimized

Σ∗(t) of different eco-/evo- focus (Fig.3.8C, blue; see Fig. 3.20 for corresponding optimal

Σ∗(t) functions).

3.5 Discussion

In this chapter, we elucidate the optimal control principles to guide generalist-specialist com-

petition in an eco-evolutionary system. We treat the selection pressure from environment

heterogeneity as control, and start by finding the optimal control in a minimal and generic

eco-evolutionary model of generalist-specialist competition without relying on specific bio-

logical context. Next we study in detail the AM of bnAbs during GC reaction, where the

competition between cross-reactive and strain-specific B cells are guided by time-varying

vaccine Ag.

In both models we demonstrate a trade-off between generalists’ absolute and relative

fitness. In the presence of environmental heterogeneity, the generalists are less negatively af-

fected than specialists, and thus have increased relative fitness at the cost of lowered absolute

fitness. This results in a counterintuitive strategy to promote generalist quantity: applying

strong control can improve generalists’ absolute fitness indirectly by suppressing specialist

abundance and reduce competition, even though the control also directly harms generalists’
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absolute fitness. The optimal timespan to apply control balances the two opposite effects, and

is decided by the generalists’ generality (robustness to environment heterogeneity): control

lasts longer when the generality is higher. In addition, both generalist quantity and quality

can be promoted by suppressing specialists due to the positive feedback between generalist

expansion and evolution. Since our generic model is independent of the underlying biological

details, we believe our conclusions are robust across biological systems.

Additional insights are gained from our GC reaction model, where we incorporate the

biological realism of AM process and consider the antigenic distance Σ(t) between prime and

boost viruses as control. First, we model the evolution of generality (B cell cross-reactivity)

over time, and this leads to two-way interactions with optimal control scheme. On one

hand, the evolution of B cell cross-reactivity results in a signature on-switch of control. In

particular, zero Σ(t) is first applied to preserve generalists when their cross-reactivity is still

low; a switch to high Σ(t) then follows to suppress specialists, after the generalists have

evolved to be self-sustainable at high Σ(t). On the other hand, the optimal control leads

to improved cross-reactivity over no-control scheme. That is, the robustness-performance

trade-off of generalists itself evolves over time and is modified by the application of control.

Second, we explicitly model the population structure of generalists and specialists, each

containing individual cells of different affinity classes. We find that a high Σ(t) not only

indirectly improves generalist quality through eco-evo feedback, but also directly selects

for high-quality generalists during intraspecies competition. In particular, we compare the

different outcomes from interspecies competition between generalists and specialists, and

from intraspecies competition among generalists. In interspecies competition, both generalist

quantity and quality are promoted by suppressing specialists and reducing competition, and

thus can be achieved by similar control function; in intraspecies competition, however, a

trade-off exists between generalist quantity and quality, as high Σ(t) directly selects for high-

quality generalists at the cost of removing low-quality ones. Thus in intraspecies competition,

generalist quantity and quality are promoted by distinct control profiles.

In a recent work ([219]), Sachdeva et al has highlighted the importance of environmental

timescale in deciding the fate of evolution outcome. Our results further support this notion
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by showing that a dynamic selection pressure outperforms constant selection pressure in

promoting generalist species in an eco-evolutionary system. In the specific context of AM,

our results show that the optimal vaccine Ag contents should be time-varying during a lasting

GC reaction and provide an increasing selection strength in time: this applies to both the

strain composition of vaccine Ag as well as to their concentration (Fig. 3.22).

This scenario of time-varying vaccine Ag during a lasting GC reaction distinguishes our

work from existing studies on bnAbs elicitation (e.g.,[220, 60]). In the previously-studied

scenario the vaccine injections are well separated in time, and later injections would initiate

new GC reactions that are seeded by previous memories. The vaccine strain composition

thus remains constant during each GC reaction and GC reactions terminate when Ag has run

out, either due to decay or consumption by B cells ([59, 60]). While an increasing selection

strength is advocated in both scenarios, we argue that the optimal vaccine Ag should be

time-varying within the timescope of a single GC reaction. It is especially so following the

first vaccine injection, when GCs are seeded by naive B cells with low cross-reactivity (lower

end of mc in Fig.3.4AB) instead of memory B cells.

When implementing the optimal dynamic vaccine Ag during an ongoing GC reaction, a

method of sustained Ag delivery is required to replenish the GC Ag’s decay and consumption.

This can be achieved with osmotic pumps ([221],[222]). Once implanted, they can provide a

prolonged drug release and the rate can be controlled by pump design. In [63], it has been

demonstrated that an extended Ag dosing profile can be achieved with osmotic pumps and

lead to improved Ab titer than one-time Ag delivery.

The biological details of Ag presentation and retention in GCs is not yet fully understood,

and this may hinder our ability to precisely control the Ag contents in GC. To begin with,

the decay rate of Ag in GC is not fully characterized, though there has been some evidence

on long-term Ag retention on follicular dendritic cells in GC ([223]). In addition, a delay

exists between the application of vaccine Ag and when they are eventually present in GC

and become available to B cells. There are experimental reports, though, that the Ag can

be detected in lymph nodes within only 4 hours after injection ([224]), which is shorter than

a GC reaction cycle. Besides, our results also suggest that the shape of our optimal vaccine
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Ag profile Σ∗(t) is robust: suboptimal Ag profiles with imprecise shape parameters can still

perform reasonably well compared with the optimal results (Fig.3.5, Fig. 3.16) as long as

the cross-reactive B cells are not driven to early extinction (Fig.3.5,Fig. 3.17A).

The design rationale of germline-activating Ag to better elicit bnAbs has been under ex-

tensive investigations. Our results underscore the importance of germline-activating Ag, as

GC founders’ target epitope will play an important role in deciding the optimal vaccine strat-

egy. On one hand, when germline-activating Ag recruit both B cells targeting variable and

conserved epitopes, diverse boost Ag suppress specialists and a simultaneous improvement

of generalist quantity and quality is possible. On the other hand, when germline-activating

Ag predominantly recruit B cells targeting conserved Ag epitope, exclusion by specialists is

no longer a concern and generalist survival becomes easier. However, since stronger Ag frus-

tration improve relative fitness of the more cross-reactive B cells at the cost of their absolute

fitness, one has to face a trade-off between optimizing generalist quantity or quality.

Finally, the coarse-grained nature of our models allow extension to broader context than

B cell AM. For example, to the eco-evolutionary dynamics and its intervention in bacteria,

cancer cell, or even macroscopic ecosystems.

3.6 Methods

3.6.1 Optimal control in the generic model

It is convenient to first introduce some shorthand notations and rewrite Eq.3.1 in a more

compact form:

χ̇ = p(χ, u) + ν(χ, u)ξ (3.6)

Here χ ≡ (Ns, Ng, fs, fg) ∈ R4×1 and ξ ≡ (ξ1, ξ2, ξ3, ξ4) ∈ R4×1 are the vectors of state vari-

ables and noises. p(χ, u) ≡ ((fs−d−u−cNtot)Ns, (fg−d−εu−cNtot)Ng, 2Ds
∂fs
∂Γs

Ns, 2Dg
∂fg
∂Γg

Ng) ∈

R4×1 is the deterministic component in Eq.3.1. Diagonal matrix ν(χ, u)

≡ Diag{
√
Ns[fs + d+ u+ cNtot],

√
Ng[fg + d+ εu+ cNtot],

√
Ds,

√
Dg} ∈ R4×4 denotes the

diffusive components in Eq.3.1.
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The optimal control policy u∗(Ns, Ng, fs, fg, t) = u∗(χ, t) is given by the HJB equation,

which can be derived following standard method (e.g.,see [225, 226]) and is also detailed in

Appendices. Here we present the final result. Denote R(χ, t) the integrand of the objective

index we seek to maximize in Eq.3.2. The optimal “cost-to-go” function V at intermediate

time t and state χ(t) is defined as:

V (χ(t), t) ≡ max
u(t→T )

〈
∫ T

t

R(χ(q))dq〉 (3.7)

with the maximized objective index maxu(0→T ) J = V (χ(0), t = 0). The HJB equation then

reads:

− ∂V

∂t
= max

u
[R(χ) +

4∑
i=1

pi(χ, u)
∂V

∂χi
+

1

2

4∑
i=1

ν2
ii(χ, u)

∂2V

∂χ2
i

] (3.8)

Once V is solved, the optimal control u∗(χ, t) can be found by maximizing the bracket in

Eq.3.8.

To numerically solve the HJB equation Eq.3.8, we employ the method detailed in [227]

to convert the partial differential equation into a set of ordinary differential equations. The

state space of χ is discretized and V (χ, t) at each discretized χ is considered as a unknown

function of time. The partial derivatives with respect to χ in Eq.3.8 are replaced by finite

differences. Eq.3.8 can then be solved by integrating it backward in time, starting from

terminal time T and terminal values V (χ, T ) = 0 for all states χ.

3.6.2 BCR-virus binding affinity in the GC reaction model

For a specialist B cell ~b
x

and a virus of variable and conserved string pair (~av,~ac), the binding

affinity is modeled as

Ax[~b
x
, (~av,~ac)] = Ax[m(~b

x
,~av)]

=
m(~b

x
,~av)

M
E

(3.9)

where the superscript x denotes specialists. E is an energy scaling constant and the matching

score m(~b
x
,~av) ≡

∑M
`=1 1(bx` = av` ) is the number of matching sites between two strings.
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The binding affinity between a generalist B cell ~b
y

and the virus is modeled as

Ay[~b
y
, (~av,~ac)] = Av[mv(~b

y
,~ac)] + Ac[mc(~b

y
,~ac)]

=
mv(~b

y
,~ac)

M
E︸ ︷︷ ︸

variable binding

+

[
mc(~b

y
,~ac)/Mc

]C
Mc

M
E︸ ︷︷ ︸

conserved binding

(3.10)

where the superscript y indicates generalists. Here the matching scores are defined as

mv(~b
y
,~ac) ≡

∑Mv

`=1 1(by` = ac`) and mc(~b
y
,~ac) ≡

∑M
`=Mv+1 1(by` = ac`): mv and mc are

the number of matching variable and conserved sites between the B cell ~b
y

and conserved

epitope string ~ac, respectively. Constant C > 1 penalizes the lower accessibility of conserved

viral residues ([22]). Eq.3.9 and 3.10 assume the binding affinity is a function of number of

string matches but is independent of their locations ([46, 228, 229, 156, 47]). This enables

the affinity class description of B cells since only the matching scores have to be tracked

instead of the full string contents.

3.6.3 Optimal control in the GC reaction model

We seek the optimal control function Σ∗: [0, T ] → [0,Σmax] to maximize the objective

index Φ{Σ(t)} (Eq.3.5), given initial conditions ~x(t = 0), ~y(t = 0) and vaccine protocol

duration T . Here we also assume a constant Ag concentration CAg during vaccination. In

Appendices we extend to simultaneous optimization of dynamic antigenic distance Σ(t) and

Ag concentration CAg(t) (Fig. 3.22). We choose Σmax = 10 during optimization. When

Σ = 10, on average Σ
M

= 50% of the variable residues differ between prime and boost viral

strains, which is higher than the viral diversity reported for influenza ([210]) or HIV ([230]).

Also see Appendices for even larger Σmax = M = 20 (Fig. 3.21).

For more compact notations, denote ~z ≡
(
~x
~y

)
∈ RM+1+(Mv+1)(Mc+1) as the population

vector of all B cells and ~f ≡
(
~fx

~fy

)
as the B cell growth rate given by Eq.3.3. Also denote

φ(~z) the integrand of objective index Φ in Eq.3.5, i.e., Φ =
∫ T

0
φ(~z) dt.

From the Pontryagin’s maximum principle (PMP) ([231]), we define the costate vec-

tor ~λ(t) with the same dimension as state vector ~z(t). The Hamiltonian H is defined as

H(~z, ~λ,Σ, CAg) ≡
∑

α λαfα(~z,Σ, CAg) + φ(~z), where the subscript α runs through all B cell
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classes.

The PMP requires the costate vector ~λ to obey the dynamics:

dλα
dt

= −∂H
∂zα

= −
∑
β

λβ
∂fβ(~z,Σ, CAg)

∂zα
− ∂φ(~z)

∂zα

(3.11)

with terminal condition ~λ(t = T ) = 0. Also according to PMP, the optimality of control

function Σ∗(t) requires its maximization of Hamiltonian H pointwise in time, i.e.,

Σ∗(t) = arg max
Σ′

H(~z(t), ~λ(t),Σ′, CAg), ∀t ∈ [0, T ]. (3.12)

For the control Σ∗(t) and corresponding state and costate variables ~z∗(t), ~λ∗(t) to be optimal,

Eq.3.3, 3.11, 3.12 all must be satisfied. The numerical solution can be found iteratively by

the method of successive approximations ([232, 45, 233], Fig. 3.15). See Appendices for

algorithm procedures.

3.6.4 Definition of self-sustainable generalists

From Eq.3.3, the growth rate dyi
dt

= f yi of generalist B cell class i can be grouped into intrinsic

and extrinsic terms:

f yi (~x, ~y,Σ) ≡ f yi,int(yi,Σ) + f yi,ext(~x, ~y,Σ)

= kpyiθ
y
i h

y
i (Σ) · (2My

ii − 1)− kpyiθyi [1− h
y
i (Σ)]︸ ︷︷ ︸

intrinsic: replication and selection

+ kp
∑
j 6=i

yjθj · hyj (Σ) · 2My
ij − kpyiθ

y
i

|~x|+ |~y|
KB︸ ︷︷ ︸

extrinsic: mutation influx and competition

(3.13)

The intrinsic growth rate describes the replication and apoptosis (if failed to internalize

Ag during GC reaction cycle) of generalists in class i, which are independent from other B

cells present in GC. In contrast, the extrinsic terms describe the mutation influx from other

generalist cell classes j 6= i into class i as well as apoptosis induced by competition.

The self-sustainability of generalist class i at antigenic distance Σ is defined by a pos-
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itive intrinsic growth rate: f yi,int(yi,Σ) > 0. In particular, we are concerned with the self-

sustainable generalists at high antigenic distance Σ = 10: f yi,int(yi,Σ = 10) > 0

3.6.5 Net per-cell growth rate of generalists

The net per-cell growth rate of generalist species 1
|~y|

d|~y|
dt

can be calculated from GC B cell

dynamics Eq.3.3 by summing over all generalist classes {yi}:

1

|~y|
d|~y|
dt

=
2kp
|~y|
∑
i

yiθ
y
i h

y
i (Σ) · (1− plet)︸ ︷︷ ︸

per-cell birth rate

− kp(1 +
|~x|+ |~y|
KB

)︸ ︷︷ ︸
per-cell death rate

(3.14)

Here |~y| =
∑

i yiθ
y
i is the total abundance of generalists. The constant probability of lethal

mutations plet (see Appendices for details) in Eq.3.14 comes from the conservation of prob-

ability plet +
∑

iM
y
ij = 1 for any generalist class j. The per-cell birth rate depends on

the generalists’ selection by Ag strains, reflected by the probability hyi (Σ) to internalize Ag

during GC reaction cycles. The per-cell death rate depends on the generalist-specialist com-

petition due to finite capacity KB. Note that the per-cell death rate does not depend on

hyi (Σ), since the B cell is always lost either if it dies by apoptosis during selection by Ag

(with rate kp(1− hyi )), or if it survives and is replaced by daughter cells after division (with

rate kph
y
i ).
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Figure 3.1: Model schematics: controlling specialist-generalist competition through different
strength of selection pressure. (A)(B): A generic framework. (A): Applying high selection pressure from
environmental heterogeneity as control lowers the absolute fitness of both species, but generalists are less
negatively affected. (B) Therefore at high selection pressure, generalists can gain a relative advantage and
outcompete the specialists. (C) A concrete model inspired by GC B cell evolution: specialist/generalist BCRs
recognize and bind the variable/conserved epitopes of different Ag strains. The Ag strain composition is
controlled by repeated injections or osmotic pumps and can change in time. Conserved Ag residues (light blue
blocks) as part of conserved epitope are shared among Ag strains while variable residues (colored triangles)
are strain-specific. Initially B cells are activated by a germline-activating (“prime”) strain (#0, yellow).
While specialist receptors bind stronger than generalists against this strain (thicker arrow), generalists have
a stronger binding against antigenically different (“boost”) strains (#1, 2 ...r...) due to their shared conserved
residues.
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Figure 3.2: Generalist quantity and quality are both improved by suppressing specialists and

are best promoted by dynamic selection. (A): Trajectories of population abundance ~N(t) and averaged
optimal control profile (solid) from repeated SDE simulations optimizing ecological index Jeco (Eq.3.2). Thick
blue/red lines show the population average. The averaged optimal control profile for evolutionary index Jevo

(dashed black) is nearly identical to ecological control. A small vertical shift is added to evolutionary
control to avoid overlapping. Initial condition is Ns = 7000, Ng = 3000, fs = fg = 0.8. Lower cutoff
is Nc = 1000 (thin horizontal dashed line). 1000 simulations are performed for population average and
plotted population trajectories are subsampled from 100 simulations for clarity. (B): Generalists survival
probability is the highest when the control switches at optimal timing. ∆t is the lag of control switch relative
to the optimal timing (see inset; green, red, purple trajectories corresponds to early, optimal, late switches,
respectively); ∆t > 0 (< 0) means late (early) switch. The fraction of simulations with surviving generalists
until terminal time T = 8 peaks at optimal off time (∆t = 0). ε = 0.5. 1000 simulations are performed
at each ∆t. Also see Fig. 3.9 for the time to generalist extinction when ∆t = −0.5, 0, 0.5 (green, red,
purple squares, respectively). (C): Constant control (gray) is outperformed by optimized dynamic control
(red). Among constant controls, maximum/intermediate/zero value is preferred at high/intermediate/low
generalists’ generality ε. 1000 simulations are performed at each data point. (D): The generalist ecological
and evolutionary indices Jeco and Jevo can be simultaneously promoted by either ecological or evolutionary
control. Data are from 1000 simulations in panel (A)(C) and with surviving generalists at terminal time
T . The fraction of simulations with survival generalists is < 1%, 19.9, and 100% when ε = 0.1, 0.5 and
0.9, respectively (not shown). For ε = 0.5 and 0.9, 50 simulations are subsampled and plotted for clarity.
Circles/crosses: control is optimized for generalist quality Jevo/quantity Jeco.
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Figure 3.3: Applying constant antigenic distance Σ is subject to a trade-off between suppressing
specialists and preserving generalists, and is outperformed by time-varying antigenic distance
Σ(t). (A) Final generalist quantity |~y| and quality 〈mc〉 at different constant antigenic distance Σ (solid
line). Σ increases in counterclockwise direction (blue→red). The optimum is at intermediate level of Σ. At
high constant Σ > 12.7 generalists go extinct, as represented by the gray circle at origin. Note the transition
to extinction is discontinuous in final generalist quantity: when Σ = 12.7 generalists barely avoid extinction
when their abundance is at the lowest, and then recover to over thousand cells at terminal time T . A better
performance than constant Σ is achieved with simple dynamical Σ(t) (black diamonds) that switches once
from 0 to Σmax = 16 at t1 = 20; the Σ level after switching and corresponding switching time are optimized
over (Σmax, t1) pairs. Inset: Generalists recover to initial abundance early at intermediate constant level
of Σ (solid line), and even earlier with the dynamic Σ(t) function (diamond). Also see Appendices for the
corresponding objective indices Φevo and Φeco from constant and dynamic Σ(t). (B) Phase trajectories of
generalist quantity |~y| and quality 〈mc〉 over time. Gray: constant Σ at low (Σ ≡ 0), intermediate (Σ ≡ 9),
or high level (Σ ≡ 16). red: dynamic Σ(t) function that switches from 0 to Σmax = 16 at t1 = 20 as in panel
A. Red arrow marks the direction of time. Markers show t = 0, 4, 8 along the trajectory at high constant
Σ ≡ 16 (gray diamonds) and t = 0, 20, 40, 60, 80, 100 along all others. (C) Time trajectories of generalist
(blue) and specialist (red) quantities corresponding to panel B. The dynamic Σ(t) function is shown with
black solid line in lower right subplot. In all panels, GC reaction starts with 104 B cells including |~x| = 7000
specialists (m = 8) and |~y| = 3000 generalists (mv = 6, mc = 2). Ag concentration CAg = 0.05, vaccine
protocol duration T = 100.
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Figure 3.4: Optimized antigenic distance Σ∗(t): distinct shapes depending on generalist founder
quality mc and vaccine protocol duration T . (A) Phase diagram of control shapes optimized by Pon-
tryagin’s maximum principle to maximize evolutionary or ecological objective Φevo/Φeco (Eq.3.5). Different
control shapes are labeled with markers (see legend for schematics; lower and upper dashed lines are guide-
lines for Σ(t) ≡ 0 and Σ(t) ≡ Σmax = 10, respectively). Marker color indicates the value of normalized

objective indices Φ̂evo/Φ̂eco by their maximum values at mc = 6 and T = 100. GC reaction starts with
104 B cells including |~x| = 7000 specialists and |~y| = 3000 generalists. Ag concentration CAg = 0.1. For
generalist founders mv = 6 and mc is as labeled; for specialist founders m = mv + mc. (B) Examples of
optimized antigenic distance Σ∗(t) for different founder quality mc and protocol duration T . A small vertical
shift is added to red and blue curves to avoid overlapping. (C) Time trajectories of B cell quantity (top)
and quality (bottom) with optimized Σ∗(t). Solid and dashed: Σ∗(t) optimizes Φevo and Φeco, respectively.
|~x| ≡

∑
i xiθ

x
i and |~y| ≡

∑
i yiθ

y
i (Eq.3.3) are the population sizes of specialists and generalists, respectively.

mc = 0 for generalist founders. Also see Appendices for similar results when maximal allowed Σmax > 10
(Fig. 3.21).
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Figure 3.5: Optimal timing to switch on high antigenic distance: a balance between early
generalist evolution and subsequent specialist suppression. (A) An intermediate time t1 to switch
on maximum antigenic distance Σmax (see inset for schematics) maximizes the evolutionary objective Φevo

for founder cross-reactivity mc ≤ 2. Blue circles mark the peak position (t1 = 24) and when quality objective
Φevo drops to 60% peak value (t1 = 10 and 86). (B) The cross-reactivity of generalists improve and these
high-quality generalists expand over time, which progress the fastest for optimal switching time. Generalists
are binned and counted based on their cross-reactivity mc. From top to bottom: the switching of Σ(t) is
early, optimal, and late, matching three blue circles in (A). Inset shows the corresponding antigenic distance
Σ(t) (black) and total generalist and specialist abundance |~y|, |~x| (blue and red, respectively). (C) The
emergence time of self-sustainable generalists predicts the earliest viable on-switch that avoids generalist
extinction; both timings also precede the optimal on-switch. The earliest viable switch is found by scanning
switching time t1 from zero and in increment of 1, until generalists can survive the population bottleneck;
the emergence time of self-sustainable generalists is found as when generalists that satisfy fyi,int|Σ=Σmax

> 0

have first evolved under Σ(t) ≡ 0. The self-sustainability condition is first met by generalists with mc ≥ 3.
Parameters and initial B cell abundance are the same as in Fig.3.4 except that vaccine protocol duration is
fixed as T = 100. For generalist founders mv = 6; mc is as labeled in panel (A)(C) and is zero in panel (B).
For specialist founders m = mv +mc.
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Figure 3.6: Optimal timing to switch off high antigenic distance: a balance between specialist
suppression and subsequent relaxation of generalist selection (A): Ecological objective Φeco as a
function of off-timing t2: an intermediate value is optimal. High antigenic distance is switched on at optimal
timing t∗1 that maximizes Φeco across all (t1, t2) pairs, and all curves start from t2 = t∗1. Also see inset of
panel (D) for control schematics. Σmax = 10. Red circles mark the parameters showcased in panel (B)(C).
(B) B cell population sizes and (C) generalist birth and death rates (Eq.3.14) when the control’s off timing
t2 is early (left, t2 = 20), optimal (middle, t2 = 61), or late (right, t2 = 90). Control function is shown
in black (D) The optimal off timing t∗2 as a function of generalist founder quality mc and vaccine protocol
duration T (colored solid). At small T , t∗2(T ) . T to maintain specialist suppression and thus maximized
generalist expansion. The gray dashed line plots t∗2 = T as a guideline to the eye. As T increases, t∗2(T )
gradually saturates at the time point when specialists are driven extinct (horizontal dashed). Parameters
and initial B cell abundance are the same as in Fig.3.5. For generalist founders mv = 6; mc is as labeled in
panels (A)(D), and is mc = 4 in panels (B)(C). For specialist founders m = mv +mc.
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Figure 3.7: Switching on high antigenic distance Σ simultaneously promotes both generalist
quantity and quality for realistic range of GC B cell capacity KB. (A): Optimal timing to switch
on/off high antigenic distance Σ(t) = Σmax to promote generalist quantity (ecological objective Φeco; see
Eq.3.5) or quality (evolutionary objective Φevo). Data in (A) are acquired by scanning through all pairs of
on and off timing between t = 0 and t = 100 (the vaccine protocol duration); the resolution is ∆t = 2. The
optimal control for KB ≤ 103 is Σ(t) ≡ 0 for both eco- and evo- objectives. (B)-(D) optimal (solid) and
example non-optimal (dashed) ecological controls (black) and corresponding generalist birth and death rates
(colored, Eq.3.14), for (B) realistic (104), (C) large (1026), and (D) small (103) capacities KB . The control
on and off timing pairs (t1, t2)=(28, 93) in panel (B), (75, N/A) in panel (C), and (30, 80) in panel (D).
Parameters and initial B cell abundance are the same as in Fig.3.5 except that capacity KB is as labeled.
For generalist founders mv = 6, mc = 0. For specialist founders m = 6.
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Figure 3.8: Intraspecies competition of generalists targeting the same conserved epitope: trade-
off between generalist quantity and quality (A) Final generalist quantity |~y| and quality 〈mc〉 for
different constant antigenic distance Σ (solid line), when the GC is founded only by generalists targeting
the conserved epitope. Σ increases in clockwise direction (blue→red). At high constant Σ > 13.9 generalists
go extinct, as represented by the gray circle at origin. The transition to extinction is discontinuous in final
generalist quantity for the same reason as in Fig.3.3A. Diamonds show the outcome of a simple dynamic Σ(t)
that switches once from 0 to Σmax = 18 at t1 = 23; the (Σmax, t1) pairs are optimized to maximize Φevo.
Generalist quantity and quality are negatively correlated as Σ increases from zero, indicated by the negative
slope before curves turn towards extinction. The dynamic Σ(t) function can thus no longer promote both
generalist quantity and quality compared with constant Σ as in Fig.3.3A. Parameters are the same as Fig.3.3
except that all 104 founders are generalists. Inset: Generalist population trajectories at different constant
Σ (colored) or dynamic Σ(t) (black). Also see Fig. 3.19 for the values of objective indices. (B) Optimized
antigenic distance Σ∗(t) from Pontryagin’s maximum principle for objective indices Φ = γΦeco + (1− γ)Φevo

(Eq.3.5) at different γ: more focus on generalist quantity is placed as γ increases from 0 (red, quality only) to
1 (blue, quantity only). A small vertical shift is added to all curves to avoid overlapping. Same parameters as
Fig.3.4B and 3.4C is used except all founders are generalists. See Appendices for optimized Σ∗(t) at different
γ for generalist-specialist competition (Fig. 3.20). (C) Normalized objective indices Φevo (solid) and Φeco

(dashed) when the optimal antigenic distance Σ∗(t) maximizes Φ = γΦeco + (1−γ)Φevo for different γ. Data
are rescaled by the maximum value for each curve so all data ≤ 1. Blue: generalist-specialist competition
where B cells target two distinct epitopes; black: intraspecies competition among generalists where all B
cells target the conserved epitope.
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APPENDIX

3.A Model formulation and control optimization

3.A.1 Generic model of eco-evolutionary dynamics of generalist-specialist com-

petition

In the generic model (Eq.3.1) we consider two species ` = g (generalist), s (specialist)

competing for finite resources. Their eco-evolutionary dynamics of population abundance

{N`} and mean trait {Γ`} is adapted from [203].

The ecological dynamics of N` depends on the birth rate f`, baseline death rate d, density-

dependent death rate cNtot = c(Ns + Ng) and the death rate u or εu from varied selection

strength. Compared with original formulation in [203], we include two coexisting species

coupled by finite capacity instead of one; our demographic noise is also proportional to the

sum of birth and death rates ([234, 235, 236, 237]), as in our formulation we do not constrain

the sum to be constant.

For the evolutionary dynamics of trait Γ`, the diffusion constant for species ` is decided

by D` = U`ε
2
` where U` is the total mutation rate and ε2` the mean squared effect of mutations

at genomic loci encoding the trait Γ` ([203]). Additionally, ecology feedbacks onto evolution

through population mutation rate, reflected by N` in the drift term. Finally, we define a

sigmoidal fitness landscape f`(Γ`) = fM
exp(Γ`)

1+exp(Γ`)
where constant fM is the maximum birth

rate. Such choice is motivated by the Langmuir isotherm in BCR-Ag binding and Γ` can be

interpreted as a proxy for binding affinity.

To emphasize the effect of ecological feedback on evolution, we set the initial birth rates

of generalists and specialists to be identical, and the initial abundance of generalists to be

lower than specialists. We also set the diffusion constants Dg = Ds. As such, according to

Eq.3.1, the difference in two species’ birth rates fg(t) and fs(t) will be solely due to ecological

feedback.

106



3.A.2 Derivation of Hamilton-Jacobi-Bellman equation for the generic model

By definition of Eq. 3.7, the optimal “cost-to-go” function V (χ(t), t) obeys a recurrence

relation for t < t′ < T (written in compact notation introduced in Eq. 3.6):

V (χ(t), t) = max
u(t→T )

〈
∫ t′

t

R(χ(q))dq +

∫ T

t′
R(χ(q))dq〉

= max
u(t→t′)

〈
∫ t′

t

R(χ(q))dq + max
u(t′→T )

〈
∫ T

t′
R(χ(q))dq〉〉

= max
u(t→t′)

〈V (χ(t′), t′) +

∫ t′

t

R(χ(q))dq〉

(3.15)

By choosing t′ = t + dt we can Taylor-expand V (χ(t′), t′) = V (χ(t + dt), t + dt). From

Eq. 3.6 and 3.7

V (χ(t+ dt)), t+ dt)) = V (χ(t), t) +
∂V

∂t
dt+ (

4∑
i=1

∂V

∂χi
pi)dt+

1

2
(

4∑
i=1

∂2V

∂χ2
i

ν2
ii)dt (3.16)

where we have used the fact that 〈dχi〉 = pidt and 〈dχidχj〉 = ν2
ijdt.

Plugging Eq.3.16 into Eq.3.15 and divide by dt, we have the HJB equation Eq.3.8. The

terminal values are V (χ, T ) = 0 for all χ by definition of Eq.3.7.

3.A.3 Construction of the mutation matrix M in AM model

We start with different types of B cell mutations and their and effect in our model. During

AM, a B cell mutation can be lethal with probability plet, affinity-altering with probability

paa, or silent with probability ps = 1 − plet − paa ([155, 156, 59]). For a lethal mutation,

the daughter B cell goes through apoptosis and is removed from GC. For an affinity-altering

mutation, the daughter B cell becomes a different affinity class than the mother cell. Specif-

ically, we assume an affinity-altering mutation affects one randomly chosen residue group

(i.e., effectively no mutation hotspot, [155, 156, 24, 47]) from the B cell complementarity-

determining region. As a result, a random site of the B cell string switches to a different

letter, picked randomly from the remaining (K − 1) letters in the alphabet. For a silent

mutation or in the absence of mutations, the B cell affinity class remains the same between

daughter and mother cells.
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Next, we define M̂x ∈ R(M+1)×(M+1) and M̂y ∈ R(Mv+1)(Mc+1)×(Mv+1)(Mc+1) as the muta-

tion matrices of affinity-altering mutations for specialist (s = x) and generalist (s = y) B

cells, respectively. The matrix element M̂s
ij is the probability for a daughter B cell to be

class i conditioned on an affinity-altering mutation, when the mother cell is of species s and

class j. Denote µ the mutation rate per daughter B cell per cell division during AM. The

mutation matrix Ms in Eq. 3.3 can be written in terms of M̂x as

Ms = paaµ M̂
s + (1− paaµ− pletµ)Is (3.17)

where Is is the identity matrix of same size as M̂s.

Finally, we find the matrix elements of M̂s
ij. For a specialist B cell of matching score

0 ≤ m ≤ M against prime virus, an affinity-altering mutation leads to one of the three

outcomes: (1): The mutation site matches the prime virus before mutation, then the match

will be destroyed after the B cell mutation. This occurs with probability Pr(m → m −

1|m, aa) = m
M

where aa denotes affinity-altering mutations; (2): The mutation site does not

match the prime virus before mutation, but a match is created after B cell mutation . This

occurs with probability Pr(m → m + 1|m, aa) = M−m
M

1
K−1

; (3): The mutation site does

not match the prime virus either before or after the mutation. This occurs with probability

Pr(m → m|m, aa) = M−m
M

(1 − 1
K−1

). The specialists’ matrix of affinity-altering mutations

M̂x can then be written as M̂x
ij = Pr(j− 1→ i− 1|j− 1, aa). M̂x is a tridiagonal matrix by

construction as M̂x
ij = 0 unless j = i or i± 1.

For generalists B cells, the affinity-altering mutation matrix M̂y can be built in the same

manner. Specifically, an affinity-altering mutation changes the matching score mv or mc

(but not both) by 0 or ±1. This leads to one of five possible outcomes with the following
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probabilities

Pr(mv → mv − 1,mc → mc|mv,mc, aa) =
mv

M

Pr(mv → mv + 1,mc → mc|mv,mc, aa) =
Mv −mv

M

1

K − 1

Pr(mv → mv,mc → mc − 1|mv,mc, aa) =
mc

M

Pr(mv → mv,mc → mc + 1|mv,mc, aa) =
Mc −mc

M

1

K − 1

Pr(mv → mv,mc → mc|mv,mc, aa) =
M −mv −mc

M
(1− 1

K − 1
)

(3.18)

If the affinity classes i of the daughter and j of mother generalist B cell belong to these

five scenarios, the matrix element M̂y
ij is given by the corresponding probability in Eq.3.18.

Otherwise the transition from class j to i cannot be achieved by a single mutation and

M̂y
ij = 0.

3.A.4 Deriving the average binding affinity between B cell and boost viruses

within affinity class formulation

Here we derive the log-mean-exponential binding affinity 〈Asi (Σ)〉 (Eq. 3.4) between B cell of

affinity class i and boost virus strains of antigenic distance Σ. Species s = x, y for specialists

and generalists, respectively. Denote the prime virus as variable and conserved epitope string

pair (~a0,v,~a0,c), and Na boost viruses as {(~ar,v,~ar,c)}, r = 1, 2, 3, ...Na.

First, consider a specialist B cell ~b
s

whose matching score against the prime virus is

m = m(~b
s
,~a0,v). At the m BCR-prime matching sites, the rth boost virus ~ar,v differs with

the prime virus ~a0,v by Σr
1 sites. Per definition of antigenic distance Σ, Σr

1 obeys a binomial

distribution with trial number m and probability of success Σ
M

: Σr
1 ∼ B(m, Σ

M
). At any

site ` among these Σr
1 sites, B cell ~b

s
will have a mismatch with the rth boost virus since

bs` = a0,v
` 6= ar,v` . Similarly, at the M −m sites where the B cell and prime virus mismatch,

the boost and prime viruses’ strings differ by Σr
2 sites with Σr

2 ∼ B(M −m, Σ
M

). At any site

` among these Σr
2 sites, with probability 1/(K − 1) the B cell matches the rth boost virus,

i.e., bs` = ar,v` 6= a0,v
` . That is, viral mutation from prime to boost viruses can create new

string matches with B cells. Denote ∆r the number of BCR-boost matches created in this
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way, then ∆r follows a binomial distribution with number of trials M −m and probability

of success Σ
M

1
K−1

: ∆r ∼ B(M −m, Σ
M

1
K−1

). In all, we have

mr ≡ m(~b
s
,~ar,v) = m− Σr

1 + ∆r (3.19)

Using the law of total probability, the probability mass function of mr is calculated as

Pr(mr = m′|m,Σ) =
∑
∆′

Pr(∆r = ∆′) · Pr[Σr
1 = ∆′ − (m′ −m)] (3.20)

and the binomial distributions of Σr
1 and ∆r can be plugged into Eq.3.20. From Eq.3.20

and the definition of affinity Eq. 3.9, we now can express the average binding affinity be-

tween a specialist B cell and boost viruses in our affinity class description, without explicit

dependence on the full specialist string ~bs:

e〈A
x
i (Σ)〉 = 〈eAx[~b

s
,(~ar,v ,~ar,c)]〉r = 〈e(mr/M)E〉mr

=
Na∑
r=1

cre(mr/M)E

≈
M∑

m′=0

Pr(mr = m′|m,Σ) e(m′/M)E

(3.21)

In Eq.3.21, specialist B cell class i is characterized by its string matches m with the prime

virus’ variable epitope string; {cr} are the mass fractions of all boost viruses with
∑Na

r=1 c
r =

1. We assume equal fraction of all strains: cr = 1/Na. In the last line of Eq.3.21 we replace

the average over all Na boost viruses with an ensemble average over all possible realizations

of boost virus at given Σ. This approximation is thus more accurate when more boost

strains are included in the vaccination. Stochastic agent-based simulations with Na = 5

(Fig.3.23) already confirms the existence of optimal intermediate on and off switching times

as predicted from affinity class formulations and the approximation for BCR-boost affinity

above.

Next, for a generalist ~b
g
, the same calculation can be repeated for the Mv variable sites

on the conserved epitope strings ~a0,c and {~ar,c}, r = 1, 2, ...Na. Note that a generalist always

has the same string matches mc against all prime and boost viruses at the Mc conserved sites,

since the conserved sites are shared among all prime and boost viruses. Denote (mv, mc)
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the generalist ~b
g
’s matching score with the prime virus. Similar to Eq.3.19 we have

mr
v ≡ mv(~b

g
,~ar,v) = mv − Σr

v,1 + ∆r
v

(3.22)

with Σr
v,1 ∼ B(mv,

Σ
M

) and ∆r
v ∼ B(Mv −mv,

Σ
M

1
K−1

). Using the law of total probability,

Pr(mr
v = m′v|mv,Σ) =

∑
∆′v

Pr(∆r
v = ∆′v) · Pr[Σr

v,1 = ∆′v − (m′v −mv)] (3.23)

From Eq. 3.10,

e〈A
y
i (Σ)〉 = 〈eAy [~b

g
,(~ar,v ,~ar,c)]〉 = 〈e(mrv/M)Ee(mc/Mc)C(Mc/M)E〉

= e(mc/Mc)C(Mc/M)E

Na∑
i=1

cre(mrv/M)E

≈ e(mc/Mc)C(Mc/M)E

Mv∑
m′v=0

Pr(mr
v = m′v|mv,Σ) e(m′v/M)E

(3.24)

which can be calculated numerically using Eq.3.23. Again, the average binding affinity

between the B cell and boost viruses depends on the B cell’s affinity class (characterized by

mv and mc for generalists), but not explicitly on the full string contents.

3.B Opposite selection force on variable residue binding when

antigenic distance Σ crosses a critical value M(1− 1/K)

In Fig.3.12 we plot probabilities hsi (Σ) (Eq. 3.4) for B cells of affinity class i to internalize

viruses of antigenic distance Σ. Species s = x, y for specialists and generalists, respectively.

An intriguing observation from Fig.3.12 is that when the boost viruses are similar with the

prime virus (Σ < Σc ≡ 15), B cells with stronger variable binding with the prime virus

also bind stronger with the boost viruses: fitness hsi (Σ) of B cells increases with m or mv;

however, when the boost strains are distinct enough with the prime virus (Σ > Σc = 15),

the selection force on the variable binding with prime virus is reversed and hsi (Σ) increases

with lowered m or mv. The later scenario resembles the “original antigenic sin” effect, in

that immune response mounted against a previously-encountered Ag is ineffective against

mutated Ag.
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We now prove that the critical antigenic distance Σc = M(1−1/K), where M and K are

string length and alphabetical size, respectively. When M = 20 and K = 4, M(1−1/K) = 15

matches exactly with Fig.3.12. Here only the calculation for specialist classes of different m

are demonstrated, as generalist classes of different mv can be treated in the same manner.

We start by rewriting Eq.3.19 as

mr = M − (M −m)− Σr
1 + ∆r

= M − [Σr
1 + (M −m−∆r)]

(3.25)

Recall in Eq.3.19 that Σr
1 ∼ B(m, Σ

M
) is the number of string sites where the B cell matches

the prime virus but mismatches the rth boost virus; ∆r ∼ B(M −m, Σ
M

1
K−1

) is the number

of string sites where the B cell mismatches with the prime virus but matches with the rth

boost virus. Since M −m is the total number of string mismatches between the B cell and

the prime virus, the last term M − m − ∆r in Eq.3.25 is then the number of string sites

where the B cell mismatches both the prime and the rth boost virus. As such, Eq.3.25 can

be interpreted as: number of BCR-boost string matches (mr) = total string length (M)

− number of string sites where BCR mismatches the boost virus but matches the prime

virus (Σr
1) − number of string sites where BCR mismatches both the boost and prime virus

(M −m−∆r).

Since the binomially-distributed ∆r is the number of successful trials out of (M − m)

repeated trials with success probability Σ
M

1
K−1

, (M−m−∆r) gives the number of failed trials

and is also binomially distributed: M−m−∆r ∼ B(M−m, 1− Σ
M

1
K−1

). In our string model,

a successful/failed trial corresponds to a BCR-boost string match/mismatch. Therefore, the

sum Σr
1 + (M −m−∆r) in the bracket of Eq.3.25 can be viewed mathematically as the total

number of successes from two independent sets of binomial experiments, with M trials in

total: the first set includes m trials and the success probability is Σ
M

; the second set includes

M −m trails and the success probability is 1− Σ
M

1
K−1

.

When Σ = M(1 − 1/K), Σ
M

= 1 − Σ
M

1
K−1

= 1 − 1
K

. That is, the two sets of binomial

experiments share the same success probability, and the total number of successes obeyes a

simple binomial distribution: Σr
1+(M−m−∆) ∼ B(m+M−m, 1− 1

K
) = B(M, 1− 1

K
). This
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combined with Eq.3.25 prove that the probability distribution of mr Pr(mr = m′|m,Σ =

M(1− 1/K)) is independent of m. In turn, specialists’ average BCR-boost binding affinity

〈Axi (Σ)〉 (Eq.3.21), as well as the probability hxi (Σ) to internalize boost Ag (Eq. 3.4), are

also independent of m.

Finally, when Σ > M(1−1/K), Σ
M
> 1− Σ

M
1

K−1
. That is, the success probability is higher

for Σr
1 ∼ B(m, Σ

M
) than for M −m −∆r ∼ B(M −m, 1 − Σ

M
1

K−1
). When m increases, the

binomial distribution for Σr
1 will include more trials and the distribution of Σr

1+(M−m−∆r)

will be more skewed towards higher values. Thus, from Eq.3.25 the distribution of mr will be

more skewed towards lower values. As a result, from Eq.3.21 the average BCR-boost binding

affinity 〈Axi (Σ)〉 decreases with m when Σ > M(1− 1/K). Similarly, 〈Axi (Σ)〉 increases with

m when Σ < M(1− 1/K), matching exactly with Fig.3.12.

3.C Equilibrium point of GC B cell dynamics shows the asymp-

totic effect of Ag concentration and antigenic distance

The equilibrium point ~zeqm(CAg,Σ) of GC B cells is defined as the solution to d~z/dt = 0,

where ~z ≡
(
~x
~y

)
∈ RM+1+(Mv+1)(Mc+1) is the B cell population vector including both specialists

~x and generalists ~y (see Methods). ~zeqm is the terminal state that the GC B cells will be

evolving towards in the asymptotic regime of t → ∞, given constant vaccine parameters

including the concentration CAg of Ag in GC and the antigenic distance Σ of boost viruses.

To solve for ~zeqm, we first rewrite the growth rates of specialists and generalists (Eq. 3.3)

together as

dzα
dt

=kp zα θα hα(CAg,Σ) · (2Mαα − 1)

+ kp
∑
β 6=α

zβ θβ hβ(CAg,Σ) · 2Mαβ

− kp zα θα [1− hα(CAg,Σ) +
|~z|
KB

]

(3.26)

where ~h ≡
(
~hx

~hy

)
and M ≡ ( Mx 0

0 My ) are the fitness function and mutation matrix for all GC

B cells, respectively. Both CAg and Σ enter Eq.3.26 through Ag internalization probability
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~h (Eq. 3.4).

By substituting Eq.3.26’s left-hand side with zero and by separating the linear and the

quadratic terms in ~z on the right-hand side, the equation d~z/dt = 0 can be rewritten in the

matrix form

L~z = (
kp
KB

|~z|)~z (3.27)

where L is a constant matrix: Lαβ = kp[2hβ(Σ)Mαβ − δαβ]. Note that we have removed the

non-linearity from step functions θα in Eq.3.26 by replacing them with constant 1, since B

cell classes below existence threshold (zα < 1) will have a negligible effect in deciding the

equilibrium point.

At equilibrium, total B cell number |~zeqm| is a constant as d~zeqm/dt = 0. From Eq.3.27,

for any nonzero equilibrium point ~zeqm, kp
KB
|~zeqm| should be an eigenvalue of matrix L, and

~zeqm is L’s corresponding eigenvector. The nonzero equilibrium point ~zeqm can thus be solved

numerically by the following steps:

(1): Find all the eigenvalues {Λ} of matrix L. Keep only the positive ones since 0 <

|~z| = ΛKB
kp

(2): Find corresponding eigenvectors {~v} and keep only those whose all components are

of the same sign or zero. This is because ~v is parallel to ~zeqm and all of ~zeqm’s components

are positive or zero.

(3): The remaining eigenvalue and eigenvector pairs {Λ, ~v} lead to nonzero equilibrium

points ~zeqm = ~v
|~v|

KB
kp

Λ.

Following these steps, at most two solutions are found for varied Ag concentration CAg

and antigenic distance Σ: one with only specialists and one only generalists—no coexistence

of the two species is identified at equilibrium.

Fig.3.13 plots the generalist population size |~y| and average conserved binding score 〈mc〉

at equilibrium. The generalist cross-reactivity 〈mc〉 improves at lower Ag concentration

CAg as the selection is stronger, and this comes at the cost of lowered generalist quantity.

Interestingly, at fixed CAg, the optimal generalist cross-reactivity at equilibrium peaks at

Σ = Σc = M(1 − 1/K) = 15: from Fig.3.12, generalists can reach higher fitness hy by
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evolving towards higher mv when Σ < Σc = 15, or towards lower mv when Σ > Σc (see

section 3.B). As a result, generalists of higher mc do not impose higher fitness than those of

lower mc as they can have different mv values, and the selection for high cross-reactivity mc is

thus not the most efficient. At Σ = Σc, however, there is no fitness improvement of generalists

from the evolution of variable binding mv, and the selection for high cross-reactivity mc is

the most efficient.

3.D Optimal antigenic distance at large Σmax > M(1− 1/K)

In this chapter we optimized antigenic distance Σ(t) when 0 ≤ Σ(t) ≤ Σmax = 10. This

corresponds to less than Σmax/M = 50% antigenic difference between the prime and boost

viruses, which is higher than the viral diversity reported for influenza ([210]) or HIV ([230]).

Here we demonstrate that when Σmax > M(1− 1/K) = 15, the optimal control still exhibits

the on switch from 0 to Σmax, and the high Σ(t) period lasts to suppress variable binding

and select for generalists of high cross-reactivity. Unlike when Σmax < M(1 − 1/K) = 15

though, we show that additional oscillations in Σ∗(t) further improves Φevo when Σmax >

M(1− 1/K) = 15 (Fig.3.21). Nevertheless, the additional oscillations only brings marginal

improvement over the simple switching Σ(t) function from zero to Σmax, and therefore does

not warrant applications when considering the significantly increased complexity to the vac-

cine protocol.

We employ a steepest ascent method (see Algorithm 2 for details) to find the optimal

antigenic distance that maximizes generalist evolutionary index Φevo for different Σmax and

T . Such method gives local optima Σ†(t) in the space of Σ(t) functions on a discretized

grid of antigenic distance Σ and time t. The switching antigenic functions from PMP are

reproduced at small Σmax < 15 (Fig.3.21B, lower panel). However, at large Σmax > 15

and long protocol duration T (Fig.3.21A, diamonds), our iteration algorithm based on PMP

(Algorithm 1 in Appendices) does not yield convergence while using the steepest ascent

method we are able to identify chattering behavior in the local optima Σ†(t) (Fig.3.21B,

upper panel). We speculate the chatterings ([238, 239, 240]) are what lead to numerical
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divergence in Algorithm 1.

As diverse boost viruses suppress variable binding and promote the evolution of generalist

cross-reactivity, it appears counter-intuitive at first that oscillations between Σ(t) = Σmax >

15 and Σ(t) = 0 would improve generalist quality. However, such improvement is indeed

confirmed when we compare the evolutionary index Φevo with or without oscillations, and

with different oscillation frequencies (Fig.3.21C). It also turns out that the intervals with

Σ(t) = Σmax should still dominate during chattering and last longer than the intervals with

Σ(t) = 0, so that a higher Φmax than no chattering can be achieved. That is, the optimal

antigenic distance Σ†(t) still maintains the overall switching shape as when Σmax < 15, and

is decorated with short intervals of Σ(t) = 0 after the on switch.

To understand the benefit of short intervals with Σ(t) = 0 after on switch, we track the

average number of generalist string matches 〈mv〉 and 〈mc〉 over time (Fig.3.21D). Before

high Σ(t) is first switched on (t < 50), Σ(t) = 0 and mv increases over time for stronger

variable binding. After switching, Σ(t) = 20 > M(1 − 1/K) = 15 and the selection force

on mv becomes the opposite: the generalist fitness is now higher with lower mv (see section

3.B). With the chattering between Σ(t) = 0 < 15 and Σ(t) = 20 > 15, the evolution of mv

towards higher fitness is frustrated by the opposite selection forces. As a result, generalists

with strong conserved binding (higher mc) are more preferred by selection which improves

generalist evolution. Finally, since such chatterings are caused by the opposite selection

forces on variable binding when Σ(t) crosses M(1 − 1/K) = 15, the chatterings will only

emerge when maximum allowed Σmax > 15.

3.E Simultaneous optimization of antigenic distance and Ag con-

centration

When designing a vaccine protocol, both the boost viral strain composition (Σ) and Ag

concentration in GC (CAg, which we assume to be proportional to the vaccine dosage ([59]))

can be dynamic. Extension of our model to simultaneous optimization of both parameters

is straightforward using PMP. To do this, in addition to the dynamics of state (Eq.3.26) and
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costate vectors (Eq. 3.11), simultaneous optimization of Hamiltonian H pointwise in time

by both optimal Σ∗(t) and C∗Ag(t) is required, i.e., Eq.3.12 is replaced by

(Σ∗(t), C∗Ag(t)) = arg max
(Σ′,C′Ag)

H(~z(t), ~λ(t),Σ′, C ′Ag),∀t ∈ [0, T ]. (3.28)

The method of successive approximation for numerically finding the optimal control (Algo-

rithm 1) still holds, while both Σ(t) and CAg(t) are updated in each iteration.

3.F Stochastic agent-based simulation of GC reaction

GC B cell dynamics written as ordinary differential equations (Eq. 3.3 or Eq.3.26) can be

interpreted as rate equations of cell division and apoptosis processes. Thus, Eq.3.26 can be

realized with stochastic agent-based simulations using Gillespie algorithm ([241]), and by

tracking full strings of B cells and viruses over time. This can also be complemented by

Tau-leaping ([242]) method to improve simulation efficiency.

To apply Gillespie algorithm to Eq.3.26, one has to find the B cell fitness h in a full string

representation. For a B cell ~b and Na viral strains a ≡ {(~ar,v,~ar,c)} (r = 1, 2, ...Na), the

BCR-virus binding affinities are found by counting the string matches for each BCR-virus

pair and plug into Eq. 3.9 or 3.10 for specialists or generalists, respectively. The fitness

h[~b, a(t)] can then be calculated as

h[~b, a(t)] =
[CAg(t)/Na]

∑Na
r=1 eA[~b,(~ar,v ,~ar,c)]

1 + [CAg(t)/Na]
∑Na

r=1 eA[~b,(~ar,v ,~ar,c)]
(3.29)

According to Eq.3.26, the cell division process for a B cell ~b :

~b→ ~b ′ +~b ′′ (3.30)

proceeds at rate kph[~b, a(t)]. Affinity-altering or lethal mutations can occur in each daughter

cell with probability paaµ or pletµ, respectively (Eq.3.17, also see section 3.A.3). In the event

of an affinity-altering mutation, a random string site of daughter B cell is mutated to a

random new letter; in the event of a lethal mutation, the daughter B cell is immediately

removed from simulation: ~b ′ (or~b ′′)→ ∅.
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The apoptosis process for a B cell ~b:

~b→ ∅ (3.31)

occurs at rate kp{1− h[~b, a(t)] + NB(t)
KB
}. NB(t) is the total number of B cells at time t.

Algorithm 1: Successive approximation algorithm for finding the optimal antigenic

distance from Pontryagin’s maximum principle

1 Step 1: Initialization

2 Trial control Σ0(t);

3 Iteration counter k = 0;

4 Iteration flag Next=true;

5 Step 2: Iterations

6 while Next do

7 k = k + 1;

8 Find ~zk by integrating d~zk

dt
= ~f(~zk,Σk) forward in time with ~zk(t = 0) = ~z0 fixed;

9 Find ~λk by integrating dλkα
dt

= −
∑

β λβ
∂fβ(~z,Σ)

∂zα
− ∂φ(~z)

∂zα
backward in time with

~λk(t = T ) = 0;

10 Find Σ̂k(t) = arg maxΣ′ H(~zk(t), ~λk(t),Σ′);

11 Find iteration error δ ≡
∫ T

0
|Σk − Σ̂k|dt

T

12 if δ < Tolerance or k > #MaxIterations then

13 Next=false;

14 else

15 Update the control function: Σk+1(t) = ρΣk(t) + (1− ρ)Σ̂k(t) with damping

constant ρ

16 end

17 end
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Algorithm 2: Steepest ascent algorithm for finding the local optima of antigenic

distance function

1 Step 1: Discretization of control

2 Antigenic distance values: [0,Σmax]→ 0, δΣ, 2δΣ, ...Σmax;

3 Time: [0, T ]→ [0, δt], [δt, 2δt], ... [T − δt, T ]; antigenic distance is constant on each

interval

4 Step 2: Iterations

5 Number of local optima found Num sol = 0;

6 while Num sol< 50 do

7 Randomly initialize trial antigenic distance Σ0(t) with discretized Σ and t in

Step 1;

8 Iteration counter k = 0;

9 Iteration flag Next=true;

10 while Next do

11 k = k + 1;

12 Solve B cell trajectories ~zk(t) for Σk(t) from Eq.3.26;

13 Find generalist evolutionary index Φk
evo from Eq. 3.5;

14 Enumerate all n = T
δt

Σmax

δΣ
“nearest neighbors” {Σ̃k,i(t)} (i = 1, 2, ...n) of the

current solution Σk(t): they differ with Σk(t) on exactly one discretized time

interval;

15 Solve B cell trajectories {~̃z
k,i

(t)} for all nearest neighbors {Σ̃k,i(t)};

16 Find generalist evolutionary indices {Φ̃k,i
evo} for all nearest neighbors {Σ̃k,i(t)};

17 if Φk
evo > maxi{Φ̃k,i

evo} then

18 Next=false;

19 Num sol=Num sol+1;

20 Record current Σk(t) as a local optimum;

21 else

22 Update the antigenic distance function: Σk+1(t) = Σ̃k,i∗(t) where

i∗ = arg maxi{Φ̃k,i
evo}

23 end

24 end

25 end
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Table 3.1: Simulation parameters in chapter 3

(parameters from generic/AM model are marked white/gray)

Parameter Value Description Reference or descriptions

d 1 Baseline death rate

c 1e− 4 Reciprocal of population capacity

fM 2 Maximum birth rate

Dg 4e− 5 Specialist trait diffusion constant

Ds 4e− 5 Specialist trait diffusion constant

uM 1 Maximum control strength

Nc 1000 Lower population threshold

M 20 B cell and virus string length [152, 46]

Mv 10
Number of variable sites

on conserved epitope string

Mc 10
Number of conserved sites

on conserved epitope string

K 4 String alphabet size [152, 46, 24]

kp 1 GC reaction rate
1 GC cycle (6-12h, [1])

per time unit

KB 10000 GC B cell capacity [153]

E 10 Affinity scaling constant

Exponential binding affinity can

improve by thousand-fold

([198, 243]) from founder to full string match

C 1.1
Constant in Eq. 3.10 that penalizes the

lower target accessibility of generalists

µ 0.5
Mutation probability per

daughter cell per division
[155, 156]

plet 0.3 Fraction of lethal BCR mutations [155, 156]

paa 0.2 Fraction of affinity-altering BCR mutations [155, 156]
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Figure 3.9: Generalists survive the longest at optimal control switch, related to Fig. 3.2B. Bar
colors match the colored squares in Fig. 3.2B. Red: switch is optimal (∆t = 0); green (purple): switched is
earlier(later) than optimal by |∆t| = 0.5. Data are collected from the same 1000 simulations as Fig. 3.2B
for each condition.
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Figure 3.10: Illustration of string representation: B cells and virus strains are encoded by strings of
length M . The last Mc sites (light blue boundary) on the conserved epitope strings are conserved among
viral strains while the first Mv = M −Mc sites are variable and strain-specific. A B cell’s matching score
is found by comparing with its target (variable or conserved) epitope string at each site and count the
matches; for generalists the matches from variable and conserved sites mv and mc are counted separately.
In the example illustration M = 6, Mv = Mc = 3. For the specialist B cell m = 4 against the prime strain
and mr = 1 against a boost strain; for generalist B cell mv = 1 against the prime strain and mr

v = 0 against
the boost strain; mc = 2 against both strains. String contents are coded by filling colors and matching sites
with B cells are marked by asterisks.
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Figure 3.11: B cell fitness h as a function of mean binding affinity 〈A〉 between the B cell and
boost Ag. At lower Ag concentration CAg, fitness h is more sensitive to binding affinity and the selection

for high-affinity B cell is thus stronger. Fitness is calculated as h =
CAgexp(〈A〉)

1+CAgexp(〈A〉) for both generalists and

specialists according to Eq. 3.4
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Figure 3.12: Fitness h of different B cell classes. (A)/(B): Fitness h as in Eq.3.4 for different special-
ist/generalist classes. At small antigenic distance Σ < 15 = M(1 − 1

K ), B cells that bind stronger with
the prime strain also binds stronger with the boost strains, so specialists/generalists with higher m/mv

have higher fitness. At large Σ > 15, boost strains are so distinct from the prime Ag that B cells binding
stronger with the prime Ag now binds weaker with the boost Ag; thus specialists/generalists with lower
m/mv have higher fitness. Regardless of Σ, stronger conserved binding (larger mc for generalists) always
promotes fitness. Total string length M = 20, alphabet size K = 4, Ag concentration CAg = 0.1. (C):
Geometric illustration of the opposite selection force on variable binding m/mv in panels (A)(B) when Σ
crosses critical value 15. Closer distance corresponds to smaller Hamming distance in string space. Boost
strains are distributed around a circle of radius Σ centered at the prime strain. At small Σ, B cell is on the
exterior of the circle and evolving closer to its center (prime) also means closer to its boundary (boost). At
large Σ, B cell is on the interior of the circle and evolving closer to the center (prime) now brings the B cells
further away from the boundary (boost).
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Figure 3.13: Generalist quality and quantity at equilibrium state with constant Ag concentration
CAg and antigenic distance Σ. (A)/(B): Generalist string matches and population size at equilibrium, for
different constant Σ and Ag concentration CAg. Stronger selection at lower CAg selects for higher generalist
quality 〈mc〉 at the cost of quantity. Note that from Fig.3.12, generalists are fitter with higher/lower mv

when Σ < 15 or > 15. Thus lower CAg selects for higher/lower 〈mv〉 when Σ < 15 or > 15.
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Figure 3.14: Intermediate constant antigenic distance leads to peak objective indices, and is
outperformed by dynamic antigenic distance function; related to Fig. 3.3. Evolutionary and
ecological objective indices Φevo and Φeco (Eq. 3.5) as a function of constant antigenic distance
Σ and Ag concentration CAg. Arrows on vertical axis show the results from the dynamic
switching Σ(t) function that maximizes Φevo when CAg = 0.05 (which correspond to the gray
diamond as in Fig. 3.3A).
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Figure 3.15: Evolution of control function and objective index during PMP optimization, related
to Fig. 3.4. (A): Control function Σ(t) over the iterations. (B): Values of iteration error and objective
index over the iterations. Error is as defined in Algorithm 1. Five rows correspond to five control shapes as
in Fig. 3.4A. From top to bottom the parameters and optimized objective indices from Fig. 3.4 are: mc =
0, T = 100, Φevo; mc = 4, T = 100, Φevo; mc = 0, T = 100, Φeco; mc = 4, T = 100, Φeco; mc = 0, T = 60,
Φeco.
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Figure 3.16: Objective indices’ dependence on control switching time and steepness at different
vaccine protocol duration T , related to Fig. 3.4. (A) Objective indices Φevo or Φeco as a function
of timings t1 ≤ t2 to turn on/off control Σmax (see the top schematics). Red lines show the optimal t∗2 for
each t1 and red dots mark the global optimal over (t1,t2) pairs. A peak of finite size surrounds the global
optimum and tolerate imprecision when switching on/off high Σ. (B) Objective indices Φevo or Φeco as a
function of the rising edge position t1 ≤ t′1 when transitioning from 0 to Σmax is linear instead of bang-bang
(see top schematics). Red line shows the optimal t′∗1 for each t1 and red dots mark the global optimal over
(t1, t′1) pairs. Like in (A), a peak of finite size surrounds the global optimum and tolerates imprecision when
switching on high control. Schematic insets of both panels showcase distinct shapes of optimal Σ(t) functions
which are consistent with PMP results in Figs.4A and 4B. CAg = 0.1, Σmax = 10, and initial conditions are
the same as Fig.fig:OptCtrlC.
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Figure 3.17: The earliest viable switch for generalist survival precedes the optimal switching
time, related to Fig. fig:SWTiming. Generalists’ composition and population size at different switching
times. Generalists are binned and counted based on their mc values at each plotted time point. (A) the
switching time t1 = 8 is premature when generalists remain at low abundance and quality, and eventually
go extinct; (B)the switching time t1 = 9 is the earliest viable switching time when generalists go through
a deep bottleneck and barely recover; (C) the switching time t1 = 24 is optimal when the generalists are
allowed enough time to evolve before Σmax is turned on, so that they go through a shallower bottleneck and
recover faster. Inset shows the corresponding antigenic distance function Σ(t) (black) and total generalist
and specialist population size |~y|, |~x| (blue and red, respectively). mc = 0 for generalist founders.
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Figure 3.18: Dependence of optimal control switching times t∗1 and t∗2 on vaccination protocol
duration T . (A) control maximizes generalist quality (Φevo); optimal off-timing is t∗2(T ) = T (not plotted).
(B) control maximizes generalist quantity (Φeco). The control schematic is shown in inset of panel B.
CAg = 0.1 and generalist founders’ mv = 6; mc are as labeled. Results are scanned among all (t∗1,t∗2) pairs
with time resolution ∆t = 1.
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Figure 3.19: Negatively correlated generalist quality and quantity when GC is only founded by
generalists, related to Fig. 3.8. Evolutionary and ecological objective indices Φevo and Φeco (Eq. 3.5)
as a function of constant antigenic distance Σ and Ag concentration CAg (solid). Parameters are the same
as in Fig. 3.8A. While generalists’ quality (Φevo) is promoted by an intermediate level of Σ, their quantity
(Φeco) is always higher at lower Σ. Arrows on vertical axis show the results from the dynamic switching Σ(t)
function that maximizes Φevo when CAg = 0.05 (which correspond to the gray diamond as in Fig. 3.6A).
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Figure 3.20: Optimized antigenic distance functions for different generalist ecologi-
cal/evolutionary focus in generalist-specialist competition, related to Fig. 3.8. Optimized anti-
genic distance functions Σ∗(t) from Pontryagin’s maximum principle maximizing Φ = γΦeco + (1 − γ)Φevo

(Eq. 3.5) for different weight γ: more focus is placed on generalist quantity (Φeco) as γ increases from 0 (red,
quality only) to 1 (blue, quantity only). A small vertical shift is added to all curves to avoid overlapping.
These Σ∗(t) functions are used to generate the data in blue in Fig. 3.8C.
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Figure 3.21: Oscillations between zero and large antigenic distance Σmax frustrate evolution of
variable binding mv and accelerate evolution of conserved binding mc. (A) Phase diagram of
control shapes optimized by steepest ascent method (see section 3.D) to maximize evolutionary objective
Φevo (Eq. 3.5). Different control shapes are labeled with markers: at extremely short T = 20 and with
large Σmax ≥ 12 (triangle), control first rises from zero to positive to select for high cross-reactivity mc, and
drops towards the end to slow down generalist extinction; at long T and with large Σmax ≥ 16 (diamonds),
control first rises from zero to Σmax, followed by oscillations between Σ(t) = Σmax and 0 (“chattering”);
at intermediate T the control rises from zero to Σmax. Marker color indicates the value of objective index
averaged over 50 local optima solutions, and is normalized by the maximum value when Σmax = 20 and
T = 200. GC reaction starts with 104 B cells including |~x| = 7000 specialists and |~y| = 3000 generalists. For
generalist founders mv = 6 and mc = 0; for specialist founders m = 6. CAg = 0.1. (B) Example local optima
of Σ(t) (left) and population trajectories (right) when T = 200 and Σmax = 20 (top) or 10 (bottom). The 50
local optima are ranked in descending order of Φevo, with the highest and lowest differ by less than 0.5%. The
population trajectories correspond to the best local optima of Σ(t). (C) Oscillations improve evolutionary
objective Φevo when the high-Σ period is longer than zero-Σ period (∆/δ ≥ 1). Antigenic distance functions
Σ(t) are shown as inset. The gray arrow on vertical axis marks the Φevo without oscillations in Σ(t),
i.e.,δ → 0. Σmax = 20, T = 200, δ = 5. t1 = 50 and t2 = 80 are from the local optima in panel (B).
(D) Oscillations between zero and large antigenic distance Σmax frustrate evolution of generalists’ variable
binding mv and thus accelerate evolution of conserved binding mc. Generalists evolve towards lower (higher)
mv for higher fitness when Σ(t) > 15 (< 15) (Fig.3.12B). The oscillations between Σ(t) = 20 and 0 thus lead
to opposite selection forces for mv and frustrate its evolution towards lower values. As a result generalists
with high mc are more preferred in selection. Solid/dashed: Σ(t) functions with/without oscillations (inset).
Parameters are the same as panel (C) with ∆/δ = 3.
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Figure 3.22: Reinforced selection pressure by simultaneously controlling antigenic distance Σ and
Ag concentration CAg. (A): Optimal control profiles when both Σ and CAg are treated as control variables.
The selection pressure shows the similar trend as when CAg is fixed: left panel: when maximizing generalist
quality (Φevo), selection pressure starts as minimum and later rises to maximum (by both maximizing Σ(t)
and minimizing CAg(t)); right panel: when maximizing generalist quantity (Φeco), selection pressure starts
as minimal, then rises to maximum, and finally drops to minimal again. (B): The generalist performance
with optimized CAg(t) (arrows next to respective axis) exceeds constant CAg (solid line). GC reaction starts
with 104 B cells including |~x| = 7000 specialists and |~y| = 3000 generalists. For generalist founders mv = 6
and mc = 0; for specialist founders m = 6. 0.05 ≤ CAg(t) ≤ 0.2 during optimization.
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Figure 3.23: Agent-based simulations confirm the optimal intermediate control switching time.
The objective indices Φevo (left) and Φeco (right) from stochastic agent-based simulations (see Appendices for
details) as a function of control switching times. (A) Control is switched on at different time t1 (see inset in
left panel). Both Φevo and Φeco peak at an intermediate timing of 30. (B) Control is switched off at different
time t2 (see inset in left panel). Φevo improves with later off time t2 but Φeco peaks at an intermediate timing
of 70. The on time is fixed as t∗1 = 28 from deterministic model results (Fig. 3.4C, Fig.3.16). GC reaction
starts with 104 B cells including |~x| = 7000 specialists (m = 6) and |~y| = 3000 generalists (mv = 6, mc = 0).
Number of Ag strains Na = 5, Ag concentration CAg = 0.1, vaccine protocol duration T = 100. Σmax = 10.
500 simulations are performed at each data point. Errorbars show 1 std.
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CHAPTER 4

Aging-induced fragility of the immune system

4.1 Abstract

The adaptive and innate branches of the vertebrate immune system work in close collab-

oration to protect organisms from harmful pathogens. As an organism ages its immune

system undergoes immunosenescence, characterized by declined performance or malfunc-

tion in either immune branch, which can lead to disease and death. In this study we de-

velop a mathematical model of the immune system that incorporates both the innate and

adaptive immune compartments, named the integrated immune branch (IIB) model, and

investigate how immune behavior changes in response to a sequence of pathogen encoun-

ters. We find that repeated pathogen exposures induce a fragility, in which exposure to

novel pathogens may cause the immune response to transition to a chronic inflammatory

state. The chronic inflammatory state of the IIB model is qualitatively consistent with “in-

flammaging,” a clinically-observed condition in which aged individuals experience chronic

low-grade inflammation even in the absence of pathogens. Thus, the IIB model quantita-

tively demonstrates how immunosenescence can manifest itself in the innate compartment

as inflammaging. In particular, the onset of a persistent inflammatory response strongly

depends on the history of encountered pathogens; the timing of its onset differs drastically

when the same set of infections occurs in a different order. Lastly, the coupling between

the two immune branches generates a trade-off between rapid pathogen clearance and a

delayed onset of immunosenescence. By considering complex feedbacks between immune

compartments, our work suggests potential mechanisms for immunosenescence and provides

a theoretical framework to account for clinical observations.
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4.2 Introduction

Infectious diseases as diverse as bacterial pneumonia, influenza, tuberculosis, herpes zoster,

and most recently COVID-19 have an increased morbidity and mortality among the elderly

[244, 245, 246, 247, 248, 249]. Especially in conjunction with global demographics that

broadly reflect increases in age across the world’s populations (both due to prolonged life ex-

pectancy and declining birth rates), the prevalence of disease among the elderly underscores

the need for a better understanding of how physiology changes with age [250]. In particular,

it is acutely important to identify the causes of immunosenescence, the readily observed yet

mechanistically vague deterioration of immune function in aged individuals.

The vertebrate immune system targets and clears pathogens through the collaborative

efforts of innate and adaptive immune responses: the innate immune system reacts quickly

and non-specifically to pathogenic threats, while the adaptive immune system acts more

slowly and generates a pathogen-specific response through clonal expansion of cognate T

and B lymphocytes. To orchestrate this division of responsibility, extensive bidirectional

interactions exist between the innate and adaptive immune compartments [251, 252, 253, 254,

255, 256]. For example, dendritic cells in the innate compartment mediate the presentation

of Ag to the adaptive compartment [257]. Conversely, T cells in the adaptive arm reduce

the production of inflammatory cytokines and thus limit tissue damage caused by the innate

immune response [68, 258, 259]. For example, experiments with nude mice (a mutant mouse

strain with low T cell levels) showed that death can ensue without this adaptive suppression

of inflammation [258, 259].

Immunosenescence manifests itself in both the innate and the adaptive immune branches.

In the adaptive branch aging is partially driven by thymus involution, which reduces the

output of new naive T cells [260, 261, 262]. Furthermore, a lifetime of persistent pathogen

exposures (e.g. chronic infections like cytomegalovirus) leads to oligoclonal expansion of

memory T cells specific to those pathogens. These physiological mechanisms lead to an

“imbalanced” repertoire of immune cells that is predominately populated by memory cells

specific to frequently encountered pathogens, which limit the ability of the adaptive branch
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to respond to novel pathogens. Indeed, the increased fraction of CD8+ T cells caused by

memory inflation has been associated with the immune risk phenotype (IRP), which has

been found to predict impaired immune function and mortality [263, 264, 32].

In the innate compartment, aging is associated with the development of a chronic low-

grade inflammatory response even in the absence of pathogen stimulation, called “inflammag-

ing” [31]. The elderly often experience CI and possess elevated levels of pro-inflammatory

cytokines [32, 265, 266, 267], which have been found to be strong predictors of mortality

(for example, interleukin 6 has been associated with the IRP) [32]. Prior theories suggest

that inflammaging is facilitated by long-lasting pathogen encounters, cell debris and stress,

and the reduced efficiency of the adaptive immune response [31, 268, 269]. Still, the mech-

anisms underlying the onset of inflammaging— and in particular its connection to aging in

the adaptive immune system— require further study.

In an earlier mathematical model of the adaptive immune response, Stromberg and Carl-

son found that repeated pathogen exposures could lead to an imbalanced immune repertoire

that was vulnerable to rare pathogens [270]. Around the same time, Reynolds et al. devel-

oped a model of the innate immune response immediately following a pathogen encounter.

Based on these earlier models, in this chapter we construct a mathematical model of the

coupled innate-adaptive immune system called the integrated immune branch model, and

demonstrate how immunosenescence can develop and trigger a chronic inflammatory re-

sponse. Here, as in the earlier adaptive immune model, the onset of immunosenescence

arises purely from an imbalanced immune repertoire, and occurs without any further as-

sumptions regarding the degradation of cellular function with age. The IIB model explicitly

incorporates the inflammatory response of the innate branch, T cell dynamics of the adaptive

branch, and innate-adaptive crosstalk. It recapitulates several clinically-observed signatures

of immunosenescence: the ratio of naive to memory cells decreases over time [271], repeated

exposure to chronic infections (e.g. human cytomegalovirus) induces immune fragility [272],

and this fragility is characterized by CI (“inflammaging”) [271, 32].

With the IIB model, we first characterize the dynamics and steady states of the immune

system in response to a single infection event. Then, the system is exposed to a series of
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pathogens that form an infection history. This sequence of infection events causes overspe-

cialization in the adaptive compartment and triggers CI. In particular, the order in which

infections are encountered strongly influences health outcomes, and can hasten or delay the

onset of CI.

Further, by tuning resource allocation in the adaptive compartment toward pathogen

clearance versus suppression of inflammation, crosstalks between immune compartments

may be directly manipulated. This manipulation reveals a trade-off between a delayed onset

of CI and rapid pathogen clearance. Our model provides a mechanistic explanation of how

accumulated pathogen exposures can cause immune fragility that leads to inflammaging

and immunosenescence, and may serve as a foundation for quantitative studies of immune

crosstalk and aging.

4.3 Mathematical model

Extensive mathematical and computational modeling efforts have been made to better under-

stand both the innate and adaptive branches of vertebrate immune system [40, 274, 275]. Ad-

ditionally, a rich literature exists regarding the inflammatory innate response [276, 277, 278,

279, 280] and the adaptive immune repertoire [281, 282, 283, 284]. In particular, Reynolds et

al. studied the positive feedback between activated phagocytes and collateral tissue damage

[273], and Stromberg and Carlson modeled the accumulated loss of memory cell diversity

over the course of a lifetime of infections [270]. In this study, we modify and synthesize

the models of Reynolds et al. and Stromberg and Carlson to develop an integrated immune

branch model, in which the innate and adaptive immune branches work collaboratively to

clear pathogens.

A schematic of the IIB model is depicted in Fig. 4.1, and a thorough accounting of the

individual components of the innate (pathogen Pi, phagocytes N∗, tissue damage D, and

anti-inflammatory cytokines CA) and adaptive (pathogen Pi, naive cells Ni, memory cells

Mi, and effector cells Ei) models is provided in Table 4.1. The coupled model is described

in full in Table 4.2, and parameter descriptions and values are provided in Table 4.3. For
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Figure 4.1: Schematic of the IIB model. An introduced pathogen prompts innate and adaptive immune

responses that seek to eliminate the pathogen. The innate response (green) is adapted from the model of

Reynolds et al. [273], in which the presence of a pathogen activates phagocytes that induce inflammation and

the subsequent production of anti-inflammatory cells. The adaptive immune response (magenta) is adapted

from the model of Stromberg and Carlson [270], in which presented pathogens (orange) activate naive and

memory T cells specific to that pathogen, causing them to divide into effector cells that target the pathogen.

In this model, the delay in the adaptive response due to Ag presentation is hard-coded via the compartments

P
(1)
i , P

(2)
i , and P

(3)
i using the linear chain technique. The state variables of this model are described in

Table 4.1, the model itself is given explicitly in Table 4.2, and the parameters of this model are provided in

Table 4.3.

more complete descriptions of the separate innate and adaptive immune models, we refer

the reader to the original publications [273, 270].

4.3.1 Innate immune response

In the model formulated by Reynolds et al. [273] (depicted in the green box of Fig. 4.1), once a

pathogen Pi is introduced, phagocytes N∗ (which include, e.g., neutrophils and macrophages)

are recruited to the site of the infection by activation or migration. These phagocytes kill the

pathogen Pi by phagocytosis, degranulation, or by creating neutrophil extracellular traps.

138



Notation Immune component Description

Pi Pathogen • Harmful exogenous stimulants (e.g., bacteria or viruses) that

activate an immune response

• Pathogen of shape i (shape space formulation)

N∗ Activated

phagocytes

• Phagocytes (which include neutrophils and macrophages) that are

activated by any pathogen Pi or by pro-inflammatory cytokines

• Responsible for removing pathogens Pi, but cause collateral tissue

damage D

D Tissue damage • Caused by activated phagocytes N∗

• Causes release of pro-inflammatory cytokines that recruit additional

phagocytes N∗

CA Anti-inflammatory

cytokines

• Small protein molecules that reduce the efficiency and recruitment

of activated phagocytes N∗

• Production encouraged by activated phagocytes N∗ and tissue dam-

age D, and also by effector cells E (innate-adaptive crosstalk)

Ni Naive cells • Mature T cells with receptor specificity represented by shape i that

are agnostic to previous pathogen encounters

• Divide and differentiate into memory Mi and effector Ei cells when

activated by pathogens Pi

• Subject to homeostasis control mechanisms

Mi Memory cells • Long-lived cells differentiated from naive cells Ni with the same

pathogen specificity

• Divide and differentiate into memory Mi and effector Ei cells when

activated by pathogens Pi

• Subject to homeostasis control mechanisms

Ei Effector cells • Short-lived cells differentiated from naive Ni and memory Mi cells

• Remove pathogen Pi and produces anti-inflammatory cytokines CA

Table 4.1: Major biological components in the IIB model. Model equations are provided in full in

Table 4.2.

At the same time, these phagocytes release inflammatory cytokines that induce inflammation

and tissue damage D in the host. Damaged tissue in turn releases additional inflammatory

cytokines, further promoting phagocyte activation. Following this initial inflammatory re-

sponse, a wave of anti-inflammatory cytokines CA is released to downregulate phagocyte

recruitment and to reduce inflammation and tissue damage.

The steady-state behavior of this model was investigated by Reynolds et al. [273], who

found that this formulation of the innate immune response led to three possible steady states:
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health, in which the pathogen is cleared and the phagocytes and tissue damage vanish;

septic death, in which the innate response is unable to clear the pathogen; and chronic

inflammation, in which the innate response clears the pathogen at the expense of inducing a

constant inflammatory response that fails to dissipate, even after pathogen clearance. In the

model’s original formulation this CI steady state was named aseptic death, but in this study

we allow for the possible interpretation of this steady state as “inflammaging,” which is not

necessarily fatal, rather than death [285, 286]. As we will show, the IIB model retains these

three steady states while introducing interplay between the non-specific innate response and

the specific adaptive response.

4.3.2 Adaptive immune response

The IIB model also incorporates the adaptive immune response (shown in the magenta box

of Fig. 4.1), which is based on the shape-space adaptive immune model of Stromberg and

Carlson [270]. By assigning discrete “shapes” to pathogen epitopes and adaptive immune

cells, this formulation allows pathogen-specific immune memory and immune responses to

be developed [287]. Thus, an introduced pathogen Pi of shape i induces an adaptive re-

sponse consisting of naive cells Ni, memory cells Mi, and effector cells Ei that all specifically

target the introduced pathogen. There are Smax available shapes. In the original model

of Stromberg and Carlson, pathogens Pi of shape i could interact with adaptive cells of

some different shape j with a lowered binding affinity, but in this study for computational

efficiency we require that adaptive responses be activated by a pathogen of identical shape.

The process of Ag presentation delays the activation of the adaptive immune response.

This phenomenon is encoded in the IIB model with the linear chain technique (shown in

the orange box of Fig. 4.1), in which the populations P
(1)
i , P

(2)
i , and P

(3)
i are intermediate

states during Ag presentation [288]. Eventually, the presented Ag P
(3)
i induces naive cells

Ni to divide into memory cells Mi and effector cells Ei; and memory cells Mi to divide

into additional memory cells Mi and effector cells Ei. Once created, these pathogen-specific

effector cells Ei work to clear the pathogen Pi.
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Equation Interpretation

dPi

dt
= kpgPi

(
1−
| #»P |
P∞

)
−

kpmsm

µm + kmp|
#»
P |
Pi

− kpnf(N∗)Pi − pγPiEi −∆ ∗ Pi

Pathogen Pi of shape i changes according to:
• logistic growth, carrying capacity P∞ (| · | denotes the 1-norm)
• inhibition by a non-local immune response
• clearance by innate phagocytes N∗, effect is mediated by anti-

inflammatory cytokines CA via f(·)
• clearance by adaptive effector cells Ei
• sequestration by dendritic cells for Ag presentation

dP
(1)
i

dt
= ∆

[
Pi − P

(1)
i

]
dP

(2)
i

dt
= ∆

[
P

(1)
i − P (2)

i

]
dP

(3)
i

dt
= ∆

[
P

(2)
i − P (3)

i

]
− βγP (3)

i (Ni +Mi)

• Ag presentation occurs with hard-coded delay (linear chain tech-
nique) of 3/∆ units of time on average required for a pathogen Pi

to transition to compartment P
(3)
i

• compartments P
(1, 2, 3)
i correspond to intermediate states during

Ag presentation

• once Ag arrives in compartment P
(3)
i it activates naive cells Ni and

memory cells Mi

dNi

dt
= −αγNiP

(3)
i + θN − δNNi

| # »
M |+ | #»N |
R0

Naive cells Ni of shape i change according to:
• division into effector cells Ei (with rate f) and memory cells Mi

(with rate 1− f)
• constant production at rate θN
• return to homeostatic equilibrium (timescale 1/δN )

dMi

dt
= (2− 2f)αγNiP

(3)
i

+ (1− 2f)αγMiP
(3)
i − δMMi

| # »
M |+ | #»N |
R0

Memory cells Mi of shape i change according to:
• division into effector cells Ei (with rate f) and memory cells Mi

(with rate 1− f)
• growth from naive and memory cell division
• decay at rate δM

dEi

dt
= 2fα(Mi +Ni)γP

(3)
i − δEEi

Effector cells Ei of shape i change according to:
• production by naive and memory cells proportional to Ag presen-

tation rate α
• decay at rate δE

dN∗

dt
=

snrR

µnr +R
− µnN∗

Innate phagocytes N∗ change according to:
• activation by the presence of other phagocytes, pathogen, or tissue

damage (encapsulated by R)
• decay at rate µn

dD

dt
= kdnfs(f(N∗, CA))− µdD

Tissue damage D changes according to:
• induced by activated phagocytes N∗, but ameliorated by the pres-

ence of anti-inflammatory cytokines CA via f(·)
• decay at rate µd

dCA

dt
= sc + kcn

f(N∗ + kcndD, CA)

1 + f(N∗ + kcndD, CA)
− µcCA

+ (1− p) kce
| #»E|

| #»E|+ E1/2

Anti-inflammatory cytokines CA change according to:
• production at constant rate sc
• production related to phagocyte and tissue damage levels
• decay at rate µc
• stimulation by effector cells | ~E|

R = f(knnN
∗ + knpP + kndD)

f(x, CA) =
x

1 +
(
CA
C∞

)2
fs(y) =

y6

x6dn + y6

• R is an aggregation of signals that trigger the innate immune re-
sponse

• f(x, CA) mediates the value of x according to the level of anti-
inflammation cytokines CA

• fs(y) was phenomenologically fit by Reynolds et al. in their original
formulation [273]

Table 4.2: Full equations of the IIB model that govern the dynamics of the immunological state
variables described in Table 4.1. A full list of parameter values and descriptions is given in Table 4.3

.

4.3.3 Integrated immune branch (IIB) model

The IIB model is described in full in Table 4.2, with descriptions and values of the parameters

given in Table 4.3. Next, we emphasize the modifications that synthesized the two separate

141



Parameter Value Description and dimension Source Parameter Value Description and dimension Source
kpg 0.6 pathogen logistic growth rate;

[T−1]
[273] P∞ 20 pathogen logistic carrying

capacity; [P ]
[273]

kpm 0.6 pathogen clearance rate by
nonspecific response; [T−1]

[273] sm 0.005 source rate of nonspecific
response; [T−1]

[273]

µm 0.002 decay rate of nonspecific
response; [T−1]

[273] kmp 0.01 rate of nonspecific exhaustion
per pathogen; [P−1T−1]

[273]

kpn 1.8 rate of pathogen clearance by
innate response;
[(N∗)−1T−1]

[273] γ 0.02 binding rate between
pathogens and adaptive cells of
the same type; [C−1T−1]

[270]

p 0.9 proportion of effector cell
resources allocated to
pathogen clearance;
[nondim.]

∆ 0.1 rate of Ag presentation; [T−1]

β 0.01 efficacy of P
(3)
j depletion by

Ag presentation;
[nondim.]

α 0.1 efficacy of adaptive cell
activation by Ag
presentation; [CP−1]

[270]

θN 5 naive cell creation rate;
[CT−1]

R0 7200 total naive and memory cell lo-
gistic carrying capacity; [C]

δN 0.025 naive cell homeostasis rate;
[T−1]

δM 4e-5 memory cell decay rate;
[T−1]

f 0.4 proportion of memory and
naive cells that divide into
effector cells; [nondim.]

[270] δE 0.05 effector cell decay rate; [T−1] [270]

snr 0.08 maximum phagocyte
recruitment rate; [N∗T−1]

[273] µnr 0.12 phagocyte recruitment
half-saturation constant;
[T−1]

[273]

µn 0.05 phagocyte decay rate; [T−1] [273] kdn 0.35 rate of tissue damage due
to phagocytes; [DT−1]

[273]

µd 0.02 tissue damage decay rate;
[T−1]

[273] sc 0.0125 source rate of
anti-inflammatory cytokines;
[CAT

−1]

[273]

kcn 0.04 maximum activation of
anti-inflammatory cytokines
by phagocytes and tissue
damage [CAT

−1]

[273] kcnd 48 conversion rate between
tissue damage and phagocyte
abundance; [N∗D−1]

[273]

µc 0.1 anti-inflammatory cytokine
decay rate; [T−1]

[273] knn 0.01 conversion rate between
phagocyte abundance and
aggregate innate response R;
[(N∗)−1T−1]

[273]

knp 0.1 conversion rate between
pathogen abundance and
aggregate innate response R;
[P−1T−1]

[273] knd 0.02 conversion rate between
tissue damage and aggregate
innate response R; [D−1T−1]

[273]

kce 0.4 maximum anti-inflammatory
cytokine production rate by
effector cells; [CAT

−1]

E1/2 10 half-saturation constant for
cytokine production by
effector cells; [C]

C∞ 0.28 scaling factor for
anti-inflammatory cytokine
abundance; [CA]

[273] xdn 0.06 phenomenologically-inferred
half-saturation constant;
[N∗]

[273]

Smax 36 number of pathogen shapes in
shape space; [nondim.]

[270]

Table 4.3: Typical parameters of the immune model in Table 4.2. The parameters listed in this
table are used to generate Fig. 4.5, while the other figures are created with slightly modified parameters as
detailed in the Appendices. Most innate parameters were originally described in the Reynolds et al. model
[273], while most adaptive parameters were originally described in the Stromberg and Carlson model [270].
Parameter values that are the same as those used in the original models are bold-faced. Dimensions are given
in square brackets, with [T ] denoting time, other symbols denoting the concentrations of their corresponding
immune variables, and [C] denoting concentrations of adaptive immune cells (i.e. naive cells Ni, memory
cells Mi, or effector cells Ei).

innate and adaptive immune models.

In the IIB model, the innate and adaptive components are linked in two ways. First, the
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two compartments are implicitly linked through the pathogen population: a higher pathogen

load Pi not only activates more phagocytes N∗ in the innate compartment, but also leads

to a higher rate of Ag presentation and subsequent activation of naive Ni, memory Mi, and

effector Ei cells. Thus, depletion of pathogen by either response (by phagocytes N∗ or by

effector cells Ei) affects both compartments.

Second, the two compartments are explicitly linked since effector cells Ei can create

anti-inflammatory cytokines CA that weaken the innate response. The suppression of in-

flammatory responses by effector cells has been observed experimentally [68, 258, 259]. In

the IIB model, effector cells are allocated either to clear pathogens or to promote the pro-

duction of anti-inflammatory cytokines, in proportion to p and 1 − p, respectively (dashed

line in Fig. 4.1). The pathogen removal efficiency p may be varied from 0 to 1, so that in the

limit that effector cells are solely responsible for pathogen clearance (p = 1) no additional

anti-inflammatory cytokines are produced. Therefore, the synthesized model is capable of

quantitatively comparing the two adaptive immune functions of pathogen clearance and

inflammation attenuation.

The IIB model introduces homeostatic constraints that regulate the capacity of naive

and memory cells. The rates of both homeostatic responses are dependent on the sum of the

bulk naive cell population | ~N | ≡
∑

iNi and the bulk memory cell population | ~M | ≡
∑

iMi.

In the process of clearing a pathogen, memory cells accumulate. Afterwards, to satisfy the

homeostatic constraints, naive cells must become less abundant than they were before the in-

fection. In the Appendices, we derive analytic approximations to the immune dynamics that

are generated by these homeostatic relaxations; when the timescale of pathogen clearance is

much shorter than the timescale of homeostatic relaxation, these expressions can be used as

part of a dynamic programming approach to significantly speed up numerical simulations.
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Figure 4.2: Pathogen abundance (orange, solid) is regulated by the innate and adaptive immune
responses in the IIB model. The clearance rates of the innate response (green dash-dotted, rate given
by kpnf(N∗)Pi) and the adaptive response (purple dashed, rate given by pγPiEi), as described in the dPi

dt
equation of Table 4.2, are plotted. The innate response is activated immediately, while the adaptive response

is delayed due to the Ag presentation process (encoded with the linear chain technique Pi → P
(1)
i → P

(2)
i →

P
(3)
i ). Ultimately the combined immune responses manage to clear the pathogen. The parameters used to

generate this figure are given in Table 4.3 and in Table 4.4 of the Appendices.

4.4 Results

4.4.1 Clearance of a single infection by the coupled immune response

In the IIB model, once a pathogen is introduced it initiates a cascade of immune responses

in the innate and adaptive compartments, and these responses combat the logistic growth

of the pathogen and attempt to drive it to extinction. Fig. 4.2 depicts a representative

pathogen encounter and clearance, and plots the pathogen abundance (orange) as well as

the pathogen clearance rates due to the adaptive effector cell (purple) and innate phagocyte

(green) responses given by the quantities pγPiEi and kpnf(N∗)Pi, respectively, as given in

Table 4.2. Note that the adaptive response is specific to the pathogen shape, while the

innate response is nonspecific. For clarity only the lumped contributions of the innate and

adaptive compartments to pathogen clearance are plotted in Fig. 4.2. The populations of
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every immunological variable are plotted for several scenarios in Fig. 4.3.

In Fig. 4.2 the logistic growth of the pathogen drives the initial pathogen spike, which

is mildly tempered by a non-local immune response as described by Reynolds et al. [273].

Phagocytes are immediately recruited and attack the pathogen, leading to the increase in

innate pathogen clearance (green). Simultaneously, the collateral tissue damage inflicted by

phagocytes causes the production of anti-inflammatory cytokines, which suppress further

phagocyte recruitment and tissue damage. Anti-inflammatory cytokines in conjunction with

a decreasing pathogen population cause the decrease in innate pathogen clearance. Once the

pathogen is presented to the adaptive immune branch— a delay that is hard-coded in the

IIB model with the auxiliary immunological variables P
(1)
i , P

(2)
i , and P

(3)
i — the naive and

memory cells specific to the presented Ag divide into effector cells. These effector cells subse-

quently contribute to the increase in adaptive pathogen clearance (purple). Ultimately, with

the given parameter values (provided in the Appendices) the innate and adaptive responses

overpower the pathogen and drive it to extinction. In the process, memory cells specific to

this pathogen shape proliferate and provide future protection in case the same pathogen is

faced again in the future, since the higher initial abundance of pathogen-specific memory

cells will result in a more immediate adaptive response.

4.4.2 Steady state analysis of the IIB model

The IIB model described in Table 4.2 exhibits steady states when the time derivatives of all

the populations vanish. This coupled model inherits many of the steady state characteristics

of the constituent innate and adaptive immune models. In particular, this model exhibits

steady states of (a) health, characterized by vanishing pathogen and immune response; (b)

chronic inflammation, in which the pathogen clears but the innate immune response is

sustained in a positive feedback loop; and (c) septic death, characterized by the chronic

presence of pathogen and activated immune responses. Realizations of these three steady

states are displayed in Fig. 4.3, and the parameter sets used to generate each outcome are

provided in Table 4.3 and in Table 4.4 of the Appendices. The steady states attained
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Figure 4.3: The IIB immune model exhibits (a) health, (b) chronic inflammation, and (c) septic
death steady states. Components of the adaptive response are plotted in purple, while components of
the innate response are plotted in green. (a) An inoculated pathogen activates phagocytes, which in turn
induce tissue damage. Following Ag presentation, naive cells divide into memory cells and effector cells.
The phagocytes and effector cells jointly suppress the pathogen, which goes extinct, and the tissue damage
gradually decays resulting in the health steady state. (b) The innate and adaptive immune responses clear
the pathogen, but in the process the innate response enters a positive feedback loop between phagocyte
recruitment and tissue damage leading to persistent tissue damage and phagocyte activation, called the
chronic inflammation steady state. (c) The innate and adaptive immune responses do not clear the pathogen,
leading to the septic death steady state characterized by the presence of pathogen and tissue damage. The
CI steady state was obtained with smaller innate clearance rate kpm and smaller tissue damage decay rate
µd than were used to obtain the health steady state. The septic death steady state was obtained with a
larger proportion of cognate cells that divide into effector cells f and a larger pathogen growth rate kpg than
were used to obtain the health steady state. Explicit values of the parameters used for each panel are given
in Table 4.3 and in Table 4.4 of the Appendices.

by the IIB model are sensitive to parameter values, and in Fig. 4.3 different steady states

were attained by varying the innate cell clearance rate kpm, the tissue damage decay rate

µd, the proportion f of cells that divide into effector cells, and the pathogen growth rate

kpg. In Fig. 4.4, phase diagrams demonstrate how different parameter regimes and initial

conditions lead to different steady states. To observe the presence of these steady states
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Figure 4.4: Phase diagram of immunological steady states as a function of naive cell and memory
cell initial conditions. In IIB model, the immune system can reach health, CI, or septic death steady state
following a pathogen encounter, depending on the level of cognate naive and memory cells when the pathogen
is introduced. The proportion f of cognate cells that divide into effector cells significantly influences the
steady-state phase diagram; in particular, septic death (red zone) can only occur for f ≥ 0.5. Results are
calculated in the absence of homeostatic response (θN = δN = δM = 0 in Table 4.2) during single infection
events and initial pathogen level is Pi = 1. Other parameters for generating the phase diagrams are as stated
in Table 4.2. Except in current figure, f = 0.4 is always used in this study.

mathematically, note that a quantity Pi may be factored out of the pathogen dynamics dPi
dt

,

from which it is clear that at steady state the pathogen population P̄i must either be 0 or

some nonzero quantity that satisfies 1
Pi

dPi
dt

= 0. The three steady states immediately follow

from the implications of choosing P̄i to be zero or non-zero.

(a) Health steady state— If P̄i = 0 at equilibrium, then the intermediate pathogen states

must vanish as well (P̄
(1)
i = P̄

(2)
i = P̄

(3)
i = 0). In the absence of presented Ag, the memory

cells Mi decay with timescale 1/δM . When this timescale is slow relative to the homeostatic

dynamics of the naive cells (whose dynamics are of timescale 1/δN), the naive cells Ni

tend towards their homeostatic equilibrium N̄i as described in Eq. 4.14 in the Appendices.

Lastly, all effector cells Ei decay with timescale 1/δE, which is assumed to be fast compared

to the naive and memory cell dynamics. Thus, in the absence of pathogen, the adaptive

immune response turns off and becomes dormant. In a steady state with P̄i = 0 the innate

immune response can either be “inactive” or it can be “active,” which lead to the steady

states of health or chronic inflammation, respectively. When the innate immune response
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is inactive, the activated phagocytes N∗ and tissue damage D are both zero. This implies

that the aggregate innate response R is zero as well. Lastly, in the absence of the innate

response and effector cells, anti-inflammatory cytokines equilibrate to a constant level. It is

straightforward to check that setting P̄i = N̄∗ = D̄ = 0 and C̄A = sc/µc leads to a steady

state in this model.

This health steady state is demonstrated numerically in Fig. 4.3a. In this figure, an initial

pathogen response activates innate (green) and adaptive (purple) responses that eventually

vanish. The naive and memory cells change over the course of the adaptive immune response,

and then remain at constant steady state values.

(b) CI steady state— When P̄i = 0 but the innate immune response is active, the model

reaches the CI steady state. This steady state is inherited from the Reynolds et al. innate

immune model [273], and occurs due to a positive feedback loop between tissue damageD and

phagocytes N∗ (as can be schematically understood based on Fig. 4.1). In particular, there

exist equilibrium quantities N̄∗ and D̄ that precisely balance the activation of phagocytes

and accumulation of tissue damage with their respective decays µnN̄
∗ and µdD̄. This CI

steady state is shown in Fig. 4.3b: the pathogen is cleared and effector cells dissipate, but

the innate response is perpetually sustained.

(c) Septic death steady state— Lastly, the steady state in which the pathogen population

is sustained is called septic death. For a steady state with nonzero pathogen P̄i, the values of

the intermediate pathogen states P̄
(1)
i , P̄

(2)
i , and P̄

(3)
i will be nonzero as well. Subsequently,

the presented pathogen P̄
(3)
i sustains the activation of naive, memory, and effector cells. In

the innate compartment, the nonzero pathogen presence implies a nonzero aggregate innate

response R̄, which implies a nonzero equilibrium population of phagocytes N̄∗, which in turn

implies a nonzero equilibrium population of tissue damage D̄. Therefore, the septic death

steady state is characterized by activity in both the innate and the adaptive immune com-

partments. Naive and memory cells of the adaptive compartment continue to predominantly

divide into effector cells; eventually all adaptive cells are exhausted and vanish while failing

to clear the pathogen. This steady state is depicted in Fig. 4.3c.
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The rest of this paper uses a parameter regime that does not exhibit the septic death

steady state: in particular, simulations of this paper set f (the proportion of cognate cells

that divide into effector cells) equal to 0.4, which causes memory cells to accumulate until

they are able to produce enough effector cells to suppress the pathogen. When f is larger

than 0.5 memory cells deplete over the course of an immune response, which can lead to

septic death. A phase diagram of steady state behaviors at different values of f for different

naive and memory cell initial conditions is plotted in Fig. 4.4. In particular, septic death is

only reachable when f ≥ 0.5: if f < 0.5 the number of memory cells will strictly increase

over time, eventually leading to a sufficiently strong adaptive immune response capable of

clearing any pathogen (and thus prohibiting septic death). In what follows, we focus on the

transition from health to CI, a process phenomenologically similar to inflammaging.

4.4.3 The onset of CI results from a fragility induced by a lifetime of infections

Next we consider the immunological consequences that result from encountering a sequence

of infection events. Infection sequences are composed of discrete infection events, and each

infection event consists of the time course following the encounter with a particular pathogen

shape until a steady state of the system (i.e. health, CI, or septic death) is reached. For each

infection event an immune response is generated by simulating the IIB model, given in Table

4.2. When pathogen encounters are evenly spaced in time, the number of infection events

acts as a measure of age. This infection sequence encodes a lifetime of infection events, is

different for different individuals, and serves as a vehicle with which to explore the variable

immunological outcomes experienced by different individuals over their lifetimes.

More concretely, the IIB model is simulated for ntot infections that are ∆T = 1000 time

units apart. The time ∆T is chosen to be sufficiently large so that the system reaches a

steady state between infection events (i.e., infection events are well separated in time). The

shape space in the IIB model is discrete, consisting of Smax = 36 available pathogen shapes.

For each infection event, the probability pi that a pathogen of shape i is encountered is given
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Figure 4.5: Timing of the transition to CI is highly variable and depends on previous pathogen
encounters. (a, b) Activity of the innate (green) and adaptive (purple) immune responses over the course
of 100 infection events for two different infection sequences drawn from the same statistical distribution.
These regularly-spaced infection events are used to measure the age of the immune system. As a proxy

for these responses, the average number of effector cells 〈E〉 ≡ 1
∆T

∫ t`+1

t`
| ~E(t)| dt and phagocytes 〈N∗〉 ≡

1
∆T

∫ t`+1

t`
N∗(t) dt for each infection event ` are plotted. The sharp transitions indicate the onset of the

CI state, and occur at the 57th and 82nd infection events, respectively. (c) An ensemble average of the
innate and adaptive immune responses over 1000 infection sequences (each drawn from the same pathogen
distribution) smooths the variability in transition timing, though the distribution of immune responses is
bimodal (c, inset). CI: chronic inflammation (d) The distribution of transition times to CI is concentrated at
earlier times (on average after 76 infections). (e) The accumulation of memory cells (blue) and depletion of
naive cells (black) drives immune fragility and vulnerability to new pathogen shapes (50 infection sequences
shown). These figures are generated with the parameters given in Table 4.3, and with randomly generated
pathogen sequences as described in Eq. 4.1.

by

pi = ζe−i/ξ, i = 1, 2, . . . , Smax, (4.1)

where ξ = 20/3 and ζ satisfies
∑Smax

i=1 pi = 1. This distribution allows for some pathogen

shapes to be more common than others, and is similar to the one originally used by Stromberg
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and Carlson [270]. A lifetime of infections is explicitly encoded in the infection sequence {S`},

where each S` is the pathogen shape encountered for the `th infection event. Then, for each

infection event ` = 1, 2, . . . , ntot, a single unit of pathogen PS` is added to the system at

time t` = 1000(` − 1). In the simulations used to create Figs. 4.5, 4.6, and 4.7, the system

is initialized with zero memory cells Mi(0) = 0 and a uniform distribution of naive cells

Ni(0) = 200 across all possible pathogen shapes i = 1, 2, . . . , Smax.

There are four important timescales in the IIB model: the time τinfec required for pathogen

clearance, the interval ∆T between infection events, and the timescales of naive and mem-

ory cell homeostasis control. Pathogen clearance is the fastest process, during which the

homeostasis control still has little effect, and its timescale is on the order of days [273].

The timescales of naive and memory cell homeostasis are characterized by the reciprocal of

their decay rates, given by 1/δN and 1/δM , respectively. Experimental data suggest their

orders as months [289] and decades or longer [290], respectively. Due to the longevity of

immune memory, the interval between infections ∆T was chosen to be much shorter than

the timescale of memory decay. Additionally, as in Stromberg and Carlson naive cells are

assumed to regenerate and equilibrate quickly relative to the rate at which infection events

occur [270]. Thus, between infection events the homeostatic naive cell population depends

on a slowly-decaying memory population. More explicitly, the four timescales in IIB model

are chosen to satisfy τinfec < 1/δN < ∆T � 1/δM .

As the immune system ages (i.e., over the course of an infection sequence), early infection

events (e.g. before the 50th infection event) are successfully cleared by the immune system,

and the system returns to the health steady state. However, for later infection events the

system fails to recover and instead transitions to the CI steady state, where it remains

thereafter. This age-driven, history-dependent transition to CI is qualitatively similar to

“inflammaging.”

Depending on the details of the infection sequence, the timing of the onset of CI is

highly variable. Two instances of the transition to CI, with different sequences of pathogen

encounters generated from the same statistical distribution of pathogen frequencies, are

displayed in Fig. 4.5a and Fig. 4.5b. The strengths of the adaptive (purple) and innate
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(green) responses during each infection event are plotted in Fig. 4.5a and Fig. 4.5b, quantified

by the average number of effector cells 〈E〉 and average number of phagocytes 〈N∗〉 over the

course of each infection, respectively. For the `th infection,

〈E〉 ≡ 1

∆T

∫ t`+1

t`

| ~E(t)| dt, and

〈N∗〉 ≡ 1

∆T

∫ t`+1

t`

N∗(t) dt,

(4.2)

where | ~E(t)| ≡
∑Smax

i=1 Ei(t), and t` is the starting time of the `th infection event. Once

the system attains the CI steady state the heightened inflammatory response will rapidly

clear pathogens in any future infection, thus limiting the activity of the adaptive response.

Accordingly, this leads to the sharp transition behavior of the two trajectories observed in

Fig. 4.5a and 4.5b. Therefore, the onset of CI causes the innate response to strengthen while

the adaptive response weakens.

When averaged over an ensemble of infection sequences, variability in the timing of the

sharp transition from health to CI smooths into the crossing displayed in Fig. 4.5c (though

the actual distribution of effector cells and phagocytes across infection sequences is bimodal,

as seen in the inset of Fig. 4.5c). This crossing behavior is consistent with a longitudinal study

of Swedish people, in which middle-aged people exhibited steady lymphocyte and neutrophil

counts over the three-year span of the study, while older people (>85 years of age) exhibited

significantly increased neutrophil counts and significantly decreased lymphocyte counts over

the same span [291]. In addition, people with an immune risk phenotype (IRP) (which

often precedes immune decline and death) commonly possess a weakened adaptive immune

repertoire and experience inflammaging [32]. Taking 〈E〉 and 〈N∗〉 as proxies for adaptive

and innate immune function, the age-dependent transition in the IIB model resembles the

shift in immune function experienced by people with an IRP.

The number of infection events that are encountered before CI is reached is plotted

as a distribution across 10,000 randomly-generated infection sequences in Fig. 4.5d. The

distribution in Fig. 4.5d decays approximately exponentially for large numbers of infection

events. Different choices of pathogen shape distributions result in different distributions of

transition times that are qualitatively similar but in general not exponentially distributed,
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as demonstrated in Fig. 4.8. Thus, the sequence of infection events is a significant driver of

variability in the timing of the transition to CI.

To identify the relationship between an infection sequence and the transition from health

to CI, we examine the effect of accumulated pathogen exposures on the bulk immune state

variables | # »

M | ≡
∑Smax

i=1 Mi and | #»N | ≡
∑Smax

i=1 Ni; see Fig. 4.5e. Over the course of an infection

sequence, memory cells are generated in response to new pathogen encounters at a faster rate

than their decay. When fewer novel pathogens are encountered, memory accumulation slows,

since previously encountered pathogens are cleared more quickly and adaptive immune cells

are stimulated for a shorter amount of time. As the memory cell repertoire grows, the naive

cell population shrinks according to the homeostatic constraints. Eventually, the immune

system develops a fragility to novel pathogens due to the depleted naive cell population

that results from aging; once this fragility is developed, CI will be triggered when any novel

pathogen is encountered.

4.4.4 The transition to CI is influenced by previous pathogen encounters

The disparate immunological outcomes of different individuals demonstrated in Fig. 4.5

are necessarily determined by the difference in their infection sequences, since the model

equations in Table 4.2 are otherwise deterministic. Until the transition to CI, the system

always returns to the health steady state. In the health steady state most immune variables

assume values that are independent of previous pathogen encounters; only the naive and

memory cell populations occupy values that are potentially different after each infection

event. Therefore different infection sequences lead to differences in memory and naive cell

populations, which in turn are directly responsible for the transition to CI.

In Fig. 4.6a, the number of cognate T cells (the sum of pathogen-specific naive and

memory cells NS` + MS`) at the beginning of each infection event ` are plotted for 1000

infection sequences, each consisting of 100 infection events sampled from the pathogen shape

distribution Eq. (4.1). Due to the accumulation of immune memory, the number of cognate

T cells specific to a pathogen shape will be greater if that pathogen has been previously
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encountered. To demonstrate this, the colored points in Fig. 4.6a encode the number of

times that a pathogen shape S` was encountered in the ` − 1 previous infection events. A

shorter time interval between infections of the same pathogen shape leads to less memory

decay and more cognate T cells specific to that pathogen, as shown in the black trajectories

in Fig. 4.6a. The average time before a pathogen shape is re-encountered is randomly

distributed, which causes the variability of each color band (computed from 1000 simulated

infection sequences). The number of cognate cells specific to novel pathogens is plotted

in blue: in this case no pathogen-specific memory cells exist, and so the cognate cell and

naive cell counts are the same. Therefore, the decline in the dark blue dots demonstrates

the gradual decay of naive cell counts over the course of an infection sequence (i.e., as the

immune system ages).

The infection events that trigger the transition to CI are indicated by the red circles in

Fig. 4.6a. These transitions always occur (i) in response to a novel pathogen shape (red

circles are laid on top of the blue band), and (ii) when the number of cognate naive cells

falls below a threshold (approximately 180 in Fig. 4.6a). When both conditions are met,

the adaptive immune response is low in magnitude and unable to produce sufficient anti-

inflammatory cytokines to suppress the innate immune branch. This weakened adaptive

immune response, itself a function of the infection sequence, is the principal driver of CI in

the IIB model. Accordingly, the IIB model exhibits a “robust yet fragile” behavior [270, 292]:

it is robust to frequently-encountered pathogens, yet fragile to novel pathogens.

4.4.5 Manipulating immune system fragility via synthetic infection sequences

To probe the variability in the timing of the transition to CI as the immune system ages, we

examine three synthetic infection sequences that are reorderings of an “authentic” infection

sequence sampled from Eq. (4.1). These sequences, showcased schematically in Fig. 4.6b and

detailed in the text below, deliberately structure the order of pathogen encounters to induce

different levels of fragility towards novel pathogen shapes. The synthetic and authentic

infection sequences affect the rate of memory cell accumulation and naive cell loss, and
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in turn, alter the timing of the onset of CI. An example authentic sequence, along with

its corresponding synthetic sequences, is illustrated in Fig. 4.6c. In Fig. 4.6d naive cell

statistics of 50 authentic infection sequences are compared with the statistics generated by

their synthetic counterparts.

In the clustered synthetic ordering (Fig. 4.6b-d, orange), the infection sequence is ordered

so that the most common pathogens are encountered first and the rarest pathogens are

encountered last. In this case, pathogens are immediately reencountered so memory cells do

not significantly decay between infections, and the accumulated immune memory causes an

accelerated immune response that generates fewer memory cells. Therefore, this reordering

is a lower bound for the naive cell loss rate. Indeed, the clustered sequence leads to the

slowest loss of naive cells among the authentic and synthetic sequences in Fig. 4.6d. The

clustered sequence provides reliable protection that delays the transition to CI until infection

89, compared with the authentic sequence that transitions after infection 66, as shown in

Fig. 4.6c.

In the cyclic synthetic ordering (Fig. 4.6b-d, yellow) infections are ordered so that all

available pathogen types are encountered as early as possible: in this ordering each pathogen

type is encountered once before any pathogen is encountered for the second time, then each

pathogen type is encountered twice before any pathogen is encountered for the third time,

and so on. Constantly encountering new pathogen types drives the accumulation of memory

cells and in turn naive cell loss at an accelerated rate. Thus the cyclic sequence yields an

upper bound for the naive cell loss rate, as in Fig. 4.6d. At the same time, since this synthetic

sequence is structured to front-load every pathogen type that can be encountered early in

the infection history, the generated memory cells eventually provide full protection against

each pathogen type, and the CI state never occurs, as in Fig. 4.6c. Thus, broad exposure

to pathogens early in an individual’s infection life history can provide adaptive-mediated

protection from CI in the IIB model.

Lastly, the incomplete cyclic synthetic ordering (Fig. 4.6b-d, purple) is similar in con-

struction to the cyclic ordering, except that one rare pathogen is intentionally omitted from

the initial pathogen cycles. Then, this pathogen is presented at a later time to trigger CI.
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The incomplete cyclic ordering induces a fragile immune response: naive cells deplete nearly

as quickly as for the cyclic ordering, and incomplete immune memory coverage causes vul-

nerability to novel pathogens. Thus, the onset of CI is accelerated in the incomplete cyclic

ordering, with the onset occurring during the 48th infection in Fig. 4.6c.

The clustered and cyclic synthetic immune histories demonstrate how some pathogen

sequences can delay the onset of CI, either by prolonging the abundance of naive cells or

by quickly acquiring full immune memory coverage across all pathogen shapes. In contrast,

the incomplete cyclic sequence demonstrates how pathogen sequences can induce immune

fragility, by quickly depleting naive cells while remaining vulnerable to novel pathogens;

alternatively, the incomplete cyclic sequence shows how the introduction of a new pathogen

species, either through mutation or migration to a new environment, can break existing

memory coverage and lead to immune fragility.

4.4.6 The adaptive immune response is subject to a trade-off between pathogen

clearance and suppressing inflammation

In the original adaptive immune model by Stromberg and Carlson [270], the sole function

of effector cells was to clear pathogens. However, the diverse repertoire of effector T cells—

including helper T cells, cytotoxic T cells, and regulatory T cells— can additionally exhibit

anti-inflammatory functions [256, 259, 293]. Incorporating these features in the IIB model

leads to a trade-off between pathogen clearance and inflammation suppression that can be

explored quantitatively.

Specifically, in the IIB model a proportion p of effector cells are allocated to pathogen

clearance (a responsibility of cytotoxic T cells with the aid of helper T cells [294]), while

a proportion 1 − p of effector cells are allocated to the production of anti-inflammatory

cytokines (a responsibility of regulatory T cells [293]). These dual functions are presented

schematically in Fig. 4.1 and explicitly in Table 4.2.

For smaller values of p, effector cells are increasingly used to combat inflammation, which

delays the onset of CI as demonstrated in Fig. 4.7a. On the other hand, at smaller values of
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p more resources are allocated to combat inflammation, so the diminished innate response

slows the rate of pathogen clearance. This is quantified in Fig. 4.7b, which plots an ensem-

ble average (across 1000 infection sequences) of the cumulative pathogen load L` for each

infection event: for the `th infection,

L` ≡
∫ t`+1

t`

PS`(t) dt, (4.3)

where S` is the pathogen shape and t` the starting time of the `th infection event. This

measure was originally introduced in Stromberg and Carlson [270] where it was called the

“loss function,” and we similarly use it here as a proxy for the damage the pathogen inflicts

during each infection event. In Fig. 4.7b, smaller values of p lead to greater cumulative

pathogen load for each infection event and vice versa.

Note that for p as large as 0.9 there is a further drop in L` for ` & 60 due to the onset of

the CI steady state in a larger proportion of individuals. Once the CI state is reached, the

non-zero activated phagocyte population N∗ rapidly responds to infection events, efficiently

clears pathogens, and returns to the CI steady state. In this sense, the onset of CI in aging

immune systems acts as a protective mechanism that shields the immune response from

future pathogen encounters and minimizes the damage that pathogen inflicts. Interpreted

biologically, it is advantageous for organisms to minimize cumulative pathogen load while

also avoiding the early onset of CI. Evolutionarily, these two opposing selection forces should

lead to an intermediate optimal p in which effector cells allocate resources both to pathogen

clearance and innate suppression.

4.5 Discussion

4.5.1 Immunosenescence as an emergent immune response

Though immunosenescence affects every aging individual, the mechanisms through which it

develops are not yet fully understood. In this study we demonstrate through quantitative

modeling how physiological markers of immunosenescence can arise from the accumulated

effect of pathogen encounters. In particular, clonal expansion and homeostatic maintenance
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lead to an increase in memory cells and a decrease in naive cells, which are qualitatively

consistent with their clinically-observed abundances [268]. Accumulated memory cells pro-

tect the immune system against previously-encountered pathogens, but the shrinkage in the

naive cell pool renders the immune system vulnerable to novel pathogens and is the key

indicator of immune system fragility. While a similar mechanism was demonstrated in the

model by Stromberg and Carlson [270], in their study the overspecialized immune reper-

toire led to increased cumulative pathogen load. In the IIB model, the acquired immune

fragility is characterized by a transition to a chronic inflammatory state, and the timing of

this transition is highly variable and depends on the infection history.

In addition to this mechanism of imbalanced immunological space, several other immune

functions vary with age and could play a role in the development of immunosenescence.

For example, clinical studies observed that the average cytotoxicity of natural killer cells

decreases with age [295, 296], cell signaling between immune cells can become impaired with

age [297], and thymus involution leads to decreased T cell production with age [298, 299]. The

current formulation of the IIB model exhibits an inflammaging-like behavior without taking

these additional factors into account. However, in future work physiological parameters of

the model could be used as a proxy for these observed behaviors: for example, the decreased

cytotoxicity of natural killer cells (which are innate) could be incorporated by decreasing

kpn with age, the impaired cell signaling in T cells (which are adaptive) could be achieved

by decreasing γ with age, or the reduced thymus output could be modeled by decreasing θN

with age. The calculated immune outcomes that result from these modifications could shed

light on the relative contributions to immunosenescence from memory-induced fragility in

the adaptive response, an impaired innate response, and an impaired adaptive response.

4.5.2 CI as inflammaging and the collaboration between innate and adaptive

responses

The CI steady state has two physiological interpretations. First, the runaway tissue damage

caused by the sustained inflammatory response may cause death in the host, as was implied
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by Reynolds et al. when they called this steady state “aseptic death.” Second, if the sustained

inflammatory response is relatively minor, the CI state can be interpreted as “inflammaging,”

a chronic low-grade inflammation that is common among the elderly [31]. In this study we

choose this second interpretation and construe the transition to the CI state as inflammaging.

Accordingly, the mechanisms of the IIB model that induce this transition might inform the

biological mechanisms that they emulate.

For example, recent work has suggested that the development of inflammaging might

be a result of immune system remodeling: as immunosenescence lessens the efficacy of the

adaptive immune response, the body relies on inflammaging for protection against pathogens

via the innate immune response [268]. Similarly, the adaptive response in the IIB model is

subject to a trade-off between clearing pathogens and suppressing inflammation. In part

based on recent work demonstrating that the adaptive response can act to suppress a haz-

ardous innate response [259], recent theories suggest that this suppression might have been

the evolutionary driver that promoted the development of an adaptive immune response

[258]. Correspondingly, in the IIB model when pathogens are introduced to a system in the

CI state, they are cleared almost immediately since the inflammatory response is already

primed.

Evolutionarily, the innate immune response preceded the creation of the adaptive re-

sponse [300]. This is consistent with the taxonomic complexity of organisms, in which inver-

tebrates possess only an innate response while vertebrates possess the additional capacity

for pathogen-specific immune memory [301]. Additionally, adaptive immune components are

dependent on innate cells— for example, the activation of an adaptive response through Ag

presentation relies on dendritic cells. The evolutionary drivers of the adaptive immune re-

sponse could be explored with immune models that quantify the added benefit of possessing

an adaptive immune system.
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4.5.3 Age-dependent strength of immune response

The efficiency of the human immune system changes in a non-monotonic manner as one ages:

it is weak in infancy and dependent on maternal antibodies; then it grows stronger as the

innate and adaptive responses mature and as immune memory is accumulated; and finally it

plummets in the elderly [302]. As people age, effector T cell levels drop, CI builds [32, 303],

and immune outcomes among the elderly become extremely variable [303].

In this work we present a potential mechanism for these clinically-observed aging trends,

driven by overspecialization of the adaptive immune repertoire. The accumulation of memory

cells initially strengthens the immune response against previously-encountered pathogens.

Eventually, memory cells become overspecialized and restrict the growth of naive cells, ren-

dering aged individuals vulnerable to rare pathogen types. In the IIB model the onset of

the CI state is variable, and dependent on the history of previous pathogen encounters. The

age-dependent immune system efficiency observed in the IIB model is consistent with the

previously mentioned clinically-observed immune behaviors.

4.5.4 Imprinting and vaccines

The shape space formulation of the adaptive immune response produces results that are

qualitatively similar to the clinically-observed behaviors of immune imprinting [304] and the

decreased efficacy of vaccines in the elderly [296]. Immune imprinting occurs when individuals

exhibit sustained memory to the pathogens they were exposed to early in their life. In the

IIB model naive cells are more abundant at the beginning of an infection sequence, and

as memory cells accumulate over time, homeostatic pressures drive down the population of

naive cells. Thus, during the first several infection events the larger naive cell pool will induce

a stronger adaptive response and therefore generate a stronger memory for encountered

pathogens. On the contrary, near the end of an infection sequence the diminished naive

pool will induce a weaker adaptive response to a novel pathogen, and generate a weaker

immune memory. If we interpret vaccination as an exposure to a novel pathogen, then the

clinically-observed characteristics of immune imprinting and vaccination in the elderly are
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qualitatively captured by the IIB model.

4.6 Conclusion

The progression towards immunosenescence is a dynamical process influenced by a lifetime of

pathogen encounters, physiological alterations, genetic factors, and general lifestyle choices.

This blend of factors makes it difficult to isolate and identify the most relevant causative

agents of immunosenescence. Therefore, mathematical models hold great utility in their

ability to probe the mechanisms of immunosenescence.

In this study we developed the IIB model, which incorporates the structure of the innate

and adaptive immune branches, and exhibits behaviors that are qualitatively consistent

with clinically-observed phenomena. We found that repeated pathogen encounters cause an

overspecialization of memory cells and depletion of naive cells as the immune system ages.

Over time these effects render the immune system fragile to novel pathogens, the encounter of

which will trigger an irreversible transition of the system to a CI state. By describing immune

dynamics with a mathematical model, we demonstrated how the feedback between innate

and adaptive immune responses could give rise to diverse immune courses and outcomes.

Going forward, experimental studies combined with knowledge-based quantitative models

will continue to illuminate the impact of aging on immune efficacy.
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Figure 4.6: Aging-induced transition to CI is driven by depletion of naive cells and lack of
protection from memory cells. The number of encountered infections is used as a proxy for the age of
the immune system. (a) The number of cognate T cells specific to a novel pathogen shape (equal to the sum
of naive and memory cells) is the key indicator for whether an infection event will trigger the CI steady state.
Here, cognate T cell counts specific to an encountered pathogen P` are plotted for each infection event ` across
20 infection sequences sampled from Eq. (4.1). The color of each point indicates the number of times that
the encountered pathogen P` has been previously encountered. The colored bands are generated from 1000
infection sequences, and envelope the observed cognate cell counts. The large red circles in the lower-right
corner mark the infections events that trigger CI across all 1000 infection sequences, which occur when a novel
pathogen is encountered after naive cells have been depleted below some threshold. A shorter time interval
between pathogen encounters of the same shape results in less memory cell decay and hence more cognate
T cells, and this effect causes the shape of the colored bands. (b) We consider three synthetic reorderings of
each “authentic” randomly generated pathogen sequence: the clustered sequence orders pathogens according
to their prevalence; the cyclic sequence orders them to ensure immediate exposure to all pathogen types;
and the incomplete cyclic sequence induces fragility by quickly depleting naive cells and then introducing a
novel pathogen. (c) The authentic sequence and three synthetic sequences transition to CI at different times
(black crosses). The pathogen shape distribution for this infection history (right histogram) is drawn from
the theoretical shape distribution (black line overlaid) given by Eq. (4.1). (d) The naive cell pool is depleted
at different rates depending on how infection events are ordered. Naive cell counts and their variation across
the 50 authentic sequences considered in panel (a) are shown for the three synthetic sequences. Error bars
for the timing of CI are 50% confidence intervals.
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Figure 4.7: Effector cells are subject to a trade-off between clearing pathogens and suppressing
inflammation as the immune system ages. (a) The onset of CI (histograms as in Fig. 4.6d) is delayed
for lower values of p, i.e. when the anti-inflammatory role of effector cells is increased. (b) The cumulative
pathogen load L` over the course of each infection event (averaged over 1000 infection sequences) is larger
for smaller values of p. The drop in L` after the 60th infection event for p = 0.9 is caused by the onset
of CI, which compensates for the overspecialized adaptive immune repertoire. To generate the statistics in
panel (a), the homeostatic parameters δN , δM , R0, and θN were modified to ensure that the timescales of
infection clearance and homeostatic response were separated enough for us to use the adaptive programming
method, as described in Table 4.4 of the Appendices. The simulations in panel (b) are generated with the
parameters given in Table 4.3.
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APPENDIX

4.A Immune response timescales in the IIB model

There are three principle timescales in the IIB model: a short timescale associated with

pathogen clearance by the immune response; a medium timescale associated with the home-

ostasis of naive cells; and a long timescale that describes the gradual attrition of memory

cells. When these three timescales are sufficiently separated, and when pathogen encoun-

ters are successfully cleared by the immune system, the full immune model in Table 4.2

may be considerably simplified by separating the innate and adaptive immune responses

from the effects of the homeostatic response on naive and memory cells. These analytic

approximations underpin the dynamic programming approach used to simulate Fig. 4.7a,

and explicitly inform how the populations of naive and memory cells change during the

homeostatic response.

4.A.1 Pathogen clearance (fast timescale)

First, when the immune response to a pathogen is much faster than any homeostatic contri-

butions, then the immune response to a pathogen infection of type Pi at time t′ is exclusively

a function of the naive and memory cell populations specific to that pathogen type at that

time, Ni(t
′) and Mi(t

′). In particular, this response is not a function of the bulk naive or

memory cell populations | ~N(t′)| or | ~M(t′)|, where | · | denotes the 1-norm. When a pathogen

is successfully cleared the immune system will return to a health steady state. In the ab-

sence of a homeostatic response, this steady state has unique equilibrium values for every

immunological variable except for the naive and memory cells ~N and ~M— at steady state,

the naive and memory cell populations are free to be any fixed value.
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4.A.2 Carrying capacity R0

In the IIB model the parameter R0 corresponds to the carrying capacity of naive and mem-

ory cells, which is why it appears in the homeostasis terms. In this study, simulations

typically are initialized with Ni(0) = R0/Smax, and Mi(0) = 0, for all pathogen shapes

i ∈ 1, . . . , Smax. We require this initial condition to be steady state of the system, which

requires the homeostatic response to vanish, so that

dNi

dt
= θN − δNNi

| ~M |+ | ~N |
R0

= θN − δN
R0

Smax

R0

R0

= 0. (4.4)

Thus, in order for this initial condition to be a steady state of the system, we require that

the parameter θN satisfies θN = δNR0/Smax.

4.A.3 Naive cell homeostasis (medium timescale)

Once the pathogen is cleared at some time t′′, say, the naive and memory cell populations

~N(t′′) and ~M(t′′) are driven by homeostasis to their equilibrium values, while all other

immunological variables remain fixed at their health state equilibrium values. Once the

pathogen has been cleared, and using θN = δNR0/Smax, the dynamics of the naive and

memory cells are given by

dNi

dt
= δN

[
R0

Smax
−Ni

| ~M |+ | ~N |
R0

]
, and

dMi

dt
= −δMMi

| ~M |+ | ~N |
R0

,

(4.5)

where as before | · | is the 1-norm. Explicitly, the assumption that naive cell homeostasis

is much faster than memory cell attrition is a statement that δN >> δM . Thus, on the

timescale of naive cells, the bulk population of memory cells | ~M | and the populations of

each shape of memory cell Mi are approximately constant.

The dynamics of the bulk naive cells | ~N | are given by

d| ~N |
dt

=
Smax∑
i=1

dNi

dt
= δN

[
R0 − | ~N |

| ~M |+ | ~N |
R0

]
. (4.6)
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We note that in the absence of any memory cells | ~M | = ~0, | ~N | = R0, which is how we

initially defined the carrying capacity R0. When memory cells are present at a presumed

constant abundance | ~M |, the steady state bulk population of naive cells | ~N |∗ is

| ~N |∗ =
−| ~M |+

√
| ~M |2 + 4R2

0

2
. (4.7)

The bulk dynamics | ~N(t)| in Eq. 4.6 starting from initial condition | ~N(0)| may be solved

analytically, with the solution

| ~N(t)| = |
~M |
2

−1 +

√
1 +

4R2
0

| ~M |2
tanh

(t+K)δN

√
| ~M |2
4R2

0

+ 1

 , (4.8)

where

K =
1

δN

√
1

1 + | ~M |2/(4R2
0)

tanh−1

[
| ~N(0)|+ | ~M |/2

R0

√
1

1 + | ~M |2/(4R2
0)

]
. (4.9)

If the number of pathogen shapes S is large, then any given infection will induce a relatively

small change in | ~N | (of order | ~N |/S). In this limit where an infection acts as a perturbation

away from the bulk naive cell equilibrium value, so that | ~N(t′′)| is close to | ~N |∗, these

dynamics may be approximated as

| ~N(t)| = | ~N |∗ −
(
| ~N |∗ − | ~N(0)|

)
exp

(
−δN
R0

(2| ~N |∗ + | ~M |) t
)
, (4.10)

where we use the approximation 1− tanh(x) ≈ 2e−2x for large x. Thus, the bulk naive cell

population approaches its equilibrium with timescale R0

δN (2| ~N |∗+| ~M |)
.

The individual naive cell types each obey dynamics

dNi

dt
= δN

[
R0

S
−Ni

| ~M |+ | ~N |
R0

]
. (4.11)

At steady state, assuming | ~M | is constant and | ~N | has reached equilibrium at | ~N |∗ =

−| ~M |+
√
| ~M |2+4R2

0

2
, the individual naive cells approach their equilibrium state N∗i at

N∗i =
2R2

0

S

(
| ~M |+

√
| ~M |2 + 4R2

0

) =
| ~N |∗

S
. (4.12)
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If the bulk dynamics are assumed to be at equilibrium | ~N(t)| = | ~N |∗, then the individual

dynamics Ni(t) in Eq. 4.11 starting from initial condition Ni(0) may be solved analytically

with the solution

Ni(t) = N∗i − (N∗i −Ni(0)) exp

(
−δN
R0

(| ~M |+ | ~N |∗) t
)
. (4.13)

Thus, in this approximation the individual naive cells approach their equilibrium with

timescale R0

δN (| ~M |+| ~N |∗)
.

By further assuming that | ~N(t)| is approximated by Eq. (4.10) and that the deviation of

bulk immune cells from their equilibrium | ~N |∗ − | ~N(0)| is small, the individual naive cells

may be analytically computed to first order in | ~N |∗ − | ~N(0)| as

Ni(t) = N∗i − (N∗i −Ni(0)) exp

(
−δN
R0

(| ~M |+ | ~N |∗) t
)

+
| ~N |∗ − | ~N(0)|

S

[
exp

(
−δN(| ~M |+ | ~N |∗)

R0

t

)
− exp

(
−δN(| ~M |+ 2| ~N |∗)

R0

t

)]
.

(4.14)

4.A.4 Memory cell homeostasis (long timescale)

On long timescales, the bulk and individual naive cell populations will reach their equilibrium

values at | ~N |∗ =
−| ~M |+

√
| ~M |2+4R2

0

2
and N∗i = | ~N |∗

S
. At this point, the dynamics of the bulk

memory cell populations will be given by

d| ~M |
dt

= − δM
2R0

| ~M |
(
| ~M |+

√
| ~M |2 + 4R2

0

)
. (4.15)

When | ~M |2 << 4R2
0, these dynamics reduce to

d| ~M |
dt

= − δM
2R0

| ~M |2 − δM | ~M |, (4.16)

which lead to bulk memory cell populations

| ~M(t)| = 2R0| ~M(0)|
(2R0 + | ~M(0)|)eδM t − | ~M(0)|

, (4.17)

indicating that the bulk memory cells vanish with time constant 1/δM . In the limit where

t << 1/δM , these dynamics further reduce to

| ~M(t)| = | ~M(0)|

[
1−

(
1 +
| ~M(0)|

2R0

)
δM t

]
(4.18)
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Individual memory cells have dynamics given by

dMi

dt
= −δMMi

| ~M |+ | ~N |
R0

, (4.19)

and after making the same assumptions that were used to approximate | ~M(t)|, the dynamics

of individual memory cells may be approximated as

dMi

dt
= Mi(0)

[
1−

(
1 +
| ~M(0)|

2R0

)
δM t

]
, (4.20)

indicating that individual memory cells decay at the same rate as bulk memory cells.

4.B Adaptive programming method for efficient simulation of im-

munological trajectories

To efficiently simulate the infection trajectories required to generate the histograms in

Fig. 4.7a, an adaptive programming method was implemented that leveraged the analytic

approximations in the previous section to the homeostatic dynamics of the IIB model. In

the absence of homeostatic effects (i.e., when δM = δN = 0), the immunological trajectory of

an initially healthy state exposed to a fixed quantity of encountered pathogen Pi will depend

only on the number of pathogen-specific memory and naive cells, Mi and Ni, respectively. If

the system returns to health, only the steady-state values of the pathogen-specific memory

and naive cells will have changed. Additionally, in the absence of homeostatic effects, there

is no crosstalk between memory and naive cells associated with different pathogen shapes.

Thus, in the dynamic programming method, we create a look-up table gridded by naive and

memory cell initial conditions (see Fig. 4.9 for a heat map representation of this look-up

table). Then, an instantiation of the IIB model is run for each combination of naive and

memory cell initial conditions, and the final naive and memory cell populations (and whether

the system enters the CI state) are recorded. In the look-up table used to create Fig. 4.7a,

naive and memory cell initial conditions were resolved to 7 cells, spanning from 0 cells to

1333 cells.

When the timescales of pathogen clearance and homeostasis are well separated, this

adaptive programming approach first approximates the time course of an infection event
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by looking up the predicted final naive and memory cell populations. Then, the analytic

homeostatic approximations detailed in the last section— in particular the approximation of

homeostatic naive cell dynamics Ni(t) given by Eq. 4.14, and the approximation of homeo-

static memory cell dynamics Mi(t) given by Eq. 4.20— are used to update every naive and

memory cell population. This process is repeated for each subsequent pathogen encounter.

Notably, once the look-up table is created, both of these steps (in terms of computational

complexity) are constant in time.
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Figure 4.8: The onset of CI for different pathogen shape distributions. In this chapter uses an
exponential pathogen shape distribution, given in Eq. 4.1, that produces a distribution of transition times
to CI displayed in Fig. 4.5d. Here, additional pathogen shape distributions beyond are explored (a, c, e,
g) that result in different distributions of transition times to CI (b, d, f, h). The four pathogen shape
distributions used are: (a, b) a truncated normal with a mean of 18 and standard deviation of 8; (c, d)
a truncated normal with a mean of 5 and standard deviation of 8; (e, f) a truncated normal with a mean
of 5 and standard deviation of 3; and (g, h) a uniform distribution. Notably, the qualitative shape of the
distribution of transition times to CI are similar regardless of pathogen shape distribution, although they
are in general not exponential. Simulations were efficiently run using an adaptive programming approach,
and each histogram contains the results from 15,000 simulations.
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Figure 4.9: A heatmap representation of the pathogen encounter lookup table generated by the
adaptive programming method. For an infection event in which 1 unit of pathogen is encountered, for
some pathogen-specific naive and memory cell initial conditions, this lookup table stores the number of (a)
naive cells and (b) memory cells that will exist following pathogen clearance. Panels (c) and (d) display
the change in naive and memory cell populations following an infection event. When the sum of the initial
populations of pathogen-specific naive and memory cells is too small, the system transitions into the CI state
(black triangle). For larger values of p, there are more naive and memory cell initial conditions that lead to
CI. In these simulations, S = Smax, the total number of pathogen shapes.

.
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Figure # Parameters values that differ from Table 4.2

Figure 2 Smax = 1, kpm = 1, µd = 0.05, γ = 1;

δN = δM = θN = 0 (no homeostatic response);

initial conditions P1(0) = 3, N1(0) = 10, M1(0) = 0

Figure 3a Smax = 1, kpm = 1, µd = 0.05;

δN = δM = θN = 0 (no homeostatic response);

initial conditions P1(0) = 10, N1(0) = 10, M1(0) = 0

Figure 3b Smax = 1, f = 0.7, kpg = 1.1, kdn = 0.07;

δN = δM = θN = 0 (no homeostatic response);

initial conditions P1(0) = 10, N1(0) = 10, M1(0) = 0

Figure 3c Smax = 1, kpg = 0.5;

δN = δM = θN = 0 (no homeostatic response);

initial conditions P1(0) = 10, N1(0) = 10, M1(0) = 0

Figure 7a δN = 5e−4, δM = 1e−7, R0 = 8000, θN = 0.11, p as in figure legend;

initial conditions Ni(0) = 222, Mi(0) = 0

Table 4.4: Parameters used to generate each figure in chapter 4 Most simulations in this chapter

were run using parameters as described in Table 4.2. In Figs.4.2,4.3,4.7, slightly modified parameters were

used, as described in this table. Figs.4.2 and 4.3 demonstrate the dynamics of a single infection event, and do

not include a homeostatic response. Fig. 4.7a was generated using the adaptive programming method, and

the homeostatic parameters δN , δM , R0, and θN were selected to ensure a separation of timescales between

the infection event, naive cell homeostasis, and memory cell homeostasis.
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CHAPTER 5

Conclusions and Discussions

Taken together, my dissertation has contributed towards understanding the immune system’s

evolution against diverse Ag. The studies presented cover both evolutions in natural and

controlled (through vaccination) scenarios, and both the timespan of single infections and

host lifetime. In particular, I have investigated (1) the determinants of coevolutionary out-

comes between immune system and highly-mutable pathogens, (2) viable vaccine strategies

to evolve bnAbs against these highly-mutable pathogens, and (3) consequences and corre-

sponding remedies of an aged immune repertoire, as a result of adapting to diverse pathogen

species over host lifetime.

Chapter 2 and 3 focus on the evolution of immune system against diverse variants of a

pathogen. Chapter 2 shows that in natural infections, conservation level and initial diversity

of Ag jointly determine the timing and efficacy of successive narrow and broad Ab responses,

which in turn accounts for the coevolutionary transition between viral persistence, clearance

and rebound. In particular, clearance of structurally complex Ag relies on Ab evolution in

a larger antigenic space than where selection directly acts; rebound highlights the impact of

feedback between ecology and rapid evolution. In addition, immune compartmentalization

can slow viral escape but may also delay clearance. This work illuminates that physical

dynamics can optimize molecular binding, and, by creating a plastic phenotype, modulate

evolutionary transitions of adapting populations. By facilitating the accumulation of poten-

tiating variations, it is possible to shortcut long paths toward highly adapted states. Chapter

3 shows that during vaccination, a trade-off exists between suppressing strain-specific anti-

bodies (“specialists”) and preserving broadly-neutralizing antibodies (“generalists”) within

a continuous GC reaction. Time-varying selection can pursue both ends of the tradeoff se-

173



quentially in time, thus outperforms constant selection. In particular, the optimal selection

force exhibits a signature low-to-high switch driven by the evolution of generalist breadth. In

addition, in generalist-specialist competition, optimally suppressing specialists can promote

both generalist quantity as well as quality, thus sparing the need for two distinct controls.

On the contrary, in intraspecies competition among generalist subclasses, a trade-off exists

between generalists’ quantity and quality, thus requiring different optimal control profiles.

Overall, this work highlights the importance of feedback between ecology and evolution dur-

ing bnAbs development, and illustrates optimal elicitation of bnAbs by applying time-varying

selection force. Vaccination protocols amenable to experimental testing are also proposed.

Chapter 4 studies the aging of immune repertoire as it adapts to diverse pathogen species

over host lifetime. Repeated pathogen encounters specialize the immune repertoire, which

becomes robust against frequent pathogens but fragile against rare pathogens. Mediated by

the collaboration between adaptive and innate immune branches, repertoire overspecializa-

tion eventually triggers a fragility where any encounter with a novel pathogen will cause the

system to irreversibly switch from health to CI. This transition is consistent with the onset of

“inflammaging”, a condition observed in aged individuals who experience chronic low-grade

inflammation even in the absence of pathogens. This work also predicts that the onset of CI

strongly depends on the history of encountered pathogens. In particular, the timing of onset

can be delayed drastically when the same set of infections is encountered in a clustered or

cyclic order, so as to prolong the abundance of naive cells or quickly acquire full immune

memory coverage across all pathogen species. Lastly, the coupling between the innate and

adaptive immune branches generates a trade-off between rapid pathogen clearance and a

delayed onset of immunosenescence. Together, this study suggests the evolution of immune

repertoire as a potential mechanism for immunosenescence and provides a theoretical frame-

work at the system level and on the scale of an organism’s lifetime to account for clinical

observations.

In conclusion, the research in the thesis examines the evolution of immune system

against diverse pathogens, illustrates its mechanisms, limitations, and corresponding reme-

dies through human intervention. Additional implications and potential future directions
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are discussed below.

5.1 Additional Ag escape mechanisms and its effect on immune-

Ag coevolution

In chapter 2, the red-queen dynamics between BCRs and highly-mutable pathogens is studied

in detail. In reality, highly-mutable pathogens, particularly HIV, also employ additional im-

mune evasion mechanisms besides rapid mutation. The effect of these additional mechanisms

on immune-Ag coevolution is worth investigation for a more comprehensive understanding of

immune system evolution, and in principle this can be achieved by expanding the coevolution

model in chapter 2 to account for the additional immune evasion mechanisms.

To begin with, HIV targets and destroys CD4+ T cells, which are a crucial component

of immune system and act as helpers to promote B cell Ab production. As a result, immune

function of those infected with HIV declines over time as CD4+ T cell count shrinks, and

eventually people are diagnosed with AIDS when their CD4+ T cell count drops below

a critical level of 200 cells/mm3. ([305]). If the viral damage on the immune function

is explicitly modeled, a narrow yet fast Ab response is expected to be more beneficial in

controlling the viral damage; this then better allows subsequent development of slow yet

broad Ab response and clearance of Ag.

In addition, HIV can create latent reservoirs in CD4+ T cells where viral genomes stay

dormant and no viral proteins are produced ([306, 307]). Such latent state can persist for

months or even years ([308, 309, 310, 311]). As a result, viral load can rebound even after the

actively-replicating viruses have been cleared. With the viral reservoir considered: (1) the

broad Ab response will be harder to develop as Ag escape mutants can stay latent without

providing a selection advantage to broad antibodies; (2) the resulting narrow Ab response is

expected to be less efficient when faced simultaneously with current Ag and Ag variants of

earlier time revived from a latent reservoir. Together the viral clearance is expected to be

more challenging.
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5.2 Degradation of immune cell efficiency with age and their effect

on repertoire evolution

Chapter 4 demonstrated an increasingly skewed immune repertoire with age as the reper-

toire adapts to diverse pathogen species over host lifetime. This eventually culminated in

immunosenescence, reflected by a transition from health to CI state even in the absence of

pathogens. In additional to the accumulating history of pathogen encounters, several other

immune functions vary with age and could play a role in the development of imbalanced

immunological space as well as the emergence of immunosenescence. For example, clinical

studies observed that cell signaling between immune cells can become impaired with age

([312]), and thymus involution leads to decreased T cell production with age ([299, 298]).

The current formulation of the IIB model in chapter 4 exhibits a skewed repertoire and an

inflammaging-like behavior without taking these additional factors into account. However,

in future work physiological parameters of the model could be used as a proxy for these

observed behaviors: for example, the impaired cell signaling in T cells could be achieved by

decreasing γ with age, or the reduced thymus output could be modeled by decreasing θN

with age. The calculated immune outcomes that result from these modifications could shed

light on their effect on repertoire evolution (for example, a reduced production of naive cells

is expected to accelerate the repertoire overspecialization), and also separate the relative

contributions to immunosenescence from memory-induced fragility in the adaptive response,

as opposed to from an impaired immune cell efficiency.

5.3 Evolution of immune system structure against diverse pathogens.

In foregoing chapters, the longest timescale studied is the host lifetime, during which the

adaptive immune repertoire evolves. On an even longer timescale spanning multiple host

generations, the structure of immune system itself also evolves in adaptation to the host

species’ diverse pathogenic environment. Therefore, insights on the evolutionary origin of

immune system structures can be gained by studying their functional benefits ([313, 314]),
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as the immune system structure has constantly been optimized by selection over deep-time

evolution.

By applying this methodology, the evolutionary origin of B cell compartmentalization

can be speculated from chapter 2. It was shown in chapter 2 that spatial separation of B

cells into parallel GCs have a two-fold effect on coevolutionary outcome: it slows down viral

escape if Ag epitope is highly variable, or delays clearance if the Ag epitope is relatively

conserved. When both types of Ag are present in the host species’ environment, a tradeoff

then emerges on the optimal number of GCs during pathogen encounter: a few large GCs

speed up clearance of pathogens with relatively conserved epitope, while many small GCs

allow efficient suppression of pathogens with highly variable epitope. The number of parallel

GCs in reality should achieve a balance so that the host remain fit against both types of

pathogens. Similarly, chapter 4 provides a potential explanation to the functional division

between cytotoxic and helper T cells vs regulatory T cells. While diverting more T cells into

the former group facilitates faster pathogen clearance, maintaining more regulatory T cells

help to rein in the excess innate immune response and delay the inflammaging transition.

Over deep-time scale, these two opposing selection forces should lead to a balanced distri-

bution where T cells allocate resources both to pathogen clearance and innate suppression.

On a further note, the emergence of adaptive immune system itself is an outcome of

evolution, which occurred approximately 500 million years ago in jawed fish ([315, 316]).

Evolutionarily the innate immune response preceded the creation of the adaptive response

([317]) and the adaptive immune components are dependent on innate cells- for example,

the activation of an adaptive response through Ag presentation relies on dendritic cells. The

evolutionary drivers of the adaptive immune response could thus be explored with immune

models that quantify the added benefit of possessing an adaptive immune system. The

comparison could be made by, for example, expanding on the IIB model in chapter 4 and

comparing the quantitative cost and gain associated with maintaining adaptive immune cells

against diverse pathogens.
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Sture Löfgren, Jan Ernerudh, Graham Pawelec, Frederick Ferguson, and Boo Johans-
son. The immune risk phenotype is associated with il-6 in the terminal decline stage:
findings from the swedish nona immune longitudinal study of very late life functioning.
Mechanisms of ageing and development, 127(8):695–704, 2006.

[33] Frederick G Ferguson, Anders Wikby, Pamela Maxson, Jadwiga Olsson, and Boo Jo-
hansson. Immune parameters in a longitudinal study of a very old population of
swedish people: a comparison between survivors and nonsurvivors. The Journals
of Gerontology Series A: Biological Sciences and Medical Sciences, 50(6):B378–B382,
1995.

180



[34] Anders Wikby, Pamela Maxson, Jadwiga Olsson, Boo Johansson, and Frederick G Fer-
guson. Changes in CD8 and CD4 lymphocyte subsets, T cell proliferation responses
and non-survival in the very old: the swedish longitudinal octo-immune study. Mech-
anisms of ageing and development, 102(2-3):187–198, 1998.

[35] Hillary Klonoff-Cohen, Elizabeth L Barrett-Connor, and Sharon L Edelstein. Albumin
levels as a predictor of mortality in the healthy elderly. Journal of clinical epidemiology,
45(3):207–212, 1992.

[36] Matty P Weijenberg, Edith JM Feskens, John HM Souverijn, and Daan Kromhout.
Serum albumin, coronary heart disease risk, and mortality in an elderly cohort. Epi-
demiology, pages 87–92, 1997.

[37] Alan S Perelson and Gerard Weisbuch. Immunology for physicists. Reviews of modern
physics, 69(4):1219, 1997.
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