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ABSTRACT OF THE DISSERTATION

Communication and Computationally Efficient Learning Algorithms

by

Osama Ashraf Hanna Habib

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2024

Professor Christina Panagio Fragouli, Chair

The growing availability of data and rapid advancements in machine learning are revolutioniz-

ing decision-making. Often, these data come from distributed devices with low computational

capabilities, connected to a central learner through communication constrained channels. As a

result, developing learning algorithms with low communication and computational demands is

increasingly attracting attention in the literature and in practice. In this thesis, we solve open

problems within this framework for three popular learning setups: Contextual Bandits, Multi-Modal

Representation Learning, and Classification. Contextual Bandits is an online learning problem

where an agent makes decisions based on contextual information and receives feedback (rewards)

for these decisions. The agent learns from past interactions to optimize future rewards. This problem

models various practical applications such as recommendation systems, clinical trials, and resource

allocations. This thesis offers the following contributions to this area. First, we propose a method

that uses only 3 bits to send each reward, even if the rewards take values from an infinite set, while

achieving (nearly) optimal learning performance. Second, we prove a surprising reduction from

contextual to non-contextual bandits (where only a single context is available for all users). This

allows to solve contextual bandits without the need to communicate the context, which can be

ii



communication heavy in many practical setups. The reduction provides a framework for developing

efficient contextual bandit algorithms by using the simpler algorithms proposed for non-contextual

bandits, leading to improved performance bounds in a number of setups such as contextual bandits

with sparse unknown parameters, misspecification, privacy constraints, adversarial corruption, and

many others. The reduction takes a step into solving multiple open problems in these setups. Lastly,

we introduce the first computationally efficient algorithm for contextual bandits with limited policy

switches, which is highly relevant to most practical scenarios. In most setups, the learner cannot

frequently update the policy due to communication or computation limits, or because of high

response rates, as in the case of clinical trials or recommendation systems. In the second setup,

Multi-Modal Representation Learning, the focus is in extracting common and private features from

multi-modal data, which is required for various applications such as vehicle tracking and medical

diagnosis from multi-modal sources, e.g., images, and audio. This thesis introduces the notion of

Common Information Dimension (CID), which quantifies continuous common information between

sources in terms of number of dimensions. Unlike existing bit-based measures that cannot deal with

continuous common information, CID provides a fundamental limit on the dimension of common

latent variables in multi-modal learning applications. We develop methods to compute CID for

distributions of interest to practical scenarios. Lastly, the Classification setup aims to compress

features that are collected at distributed nodes and sent to a central entity for classification. This

scenario is encountered by many machine learning applications including wireless cyberphysical

systems, immersive environments and supported health. This thesis proposes a compression scheme

tailored to classification tasks that allows the central entity to use an existing classifier that operates

transparently to the feature compression and maintains the (uncompressed) performance. Although

we prove the NP-hardness of finding the optimal compression scheme, we introduce a computa-

tionally efficient compression algorithms to approximately solve the problem. We experiment our

schemes in practical setups showing significant savings in both the communication and computation

costs while achieving state-of-the-art performance.
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CHAPTER 1

Introduction

Today, we have more data than ever, leading to big advancements in machine learning. In most

cases, this data comes from distributed small devices with low computational capabilities, connected

to a central learner through communication constrained channels. As a result, there is growing

interest in the literature in developing learning algorithms that require less communication and

computation. This setup is relevant in a variety of applications, such as recommendation systems,

supported health, clinical trials, a traffic management system directing drones, brain-to-computer

interface applications capturing brain signals via multiple electrodes, and many others. This thesis

addresses open problems within this framework for three popular learning setups: Contextual

Bandits, Multi-Modal Representation Learning, and Classification.

Part I of the thesis focuses on contextual bandits, where we propose reward and context

compression approaches while achieving the same learning performance as the uncompressed

algorithms. Additionally, we propose the first computationally efficient algorithm for contextual

bandits with limited policy switches. Towards achieving our results, we develop a reduction from

contextual to non-contextual bandits (where only a single context is available for all users), which

leads to improved regret bounds for contextual bandits in many setups.

Part II of the thesis focuses on multi-modal representation learning where the goal is to extract

common and private features from multi-modal data. The thesis introduces the notion of Common

Information Dimension (CID), which quantifies continuous common information between sources

in terms of number of dimensions. Unlike existing bit-based measures that cannot deal with

continuous common information, CID provides a fundamental limit on the dimension of common
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latent variables in multi-modal learning applications. We develop methods to compute CID for

distributions of interest to practical scenarios.

Part III of the thesis considers a classification setup aiming to compress features that are collected

at distributed nodes and sent to a central entity for classification. We propose a compression

scheme tailored to classification tasks that allows the central entity to use an existing classifier that

operates transparently to the feature compression and maintains the (uncompressed) performance.

Although we prove the NP-hardness of finding the optimal compression scheme, we introduce a

computationally efficient compression algorithms to approximately solve the problem.

Overview of Part I (Chapters 2-4): Contextual Bandits

Contextual Bandits is an online learning problem where an agent makes decisions based on contex-

tual information and receives feedback (rewards) for these decisions. The agent learns from past

interactions to optimize future rewards. This problem models various practical applications such as

recommendation systems, clinical trials, and resource allocations.

Chapter 2 of the thesis presents a reduction from contextual to non-contextual bandits. This

allows to solve contextual bandits without the need to communicate the context (communication

heavy) in many practical cases. The reduction provides a recipe for developing efficient contextual

bandit algorithms by using the simpler algorithms proposed for non-contextual bandits, leading

to improved performance bounds in a number of setups such as contextual bandits with sparse

unknown parameters, misspecification, privacy constraints, adversarial corruption, and many others.

The reduction takes steps into solving open problems in these setups. This chapter serves as a

basis for some techniques used in the following chapters. This work in this chapter is based on the

following publications:

• [HYF23] Hanna, Osama A., Lin Yang, and Christina Fragouli. "Contexts can be cheap:

Solving stochastic contextual bandits with linear bandit algorithms." The Thirty Sixth Annual

Conference on Learning Theory. PMLR, 2023.

• [HYF22a] Hanna, Osama, Lin Yang, and Christina Fragouli. "Learning from distributed users
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in contextual linear bandits without sharing the context." Advances in Neural Information

Processing Systems 35 (2022): 11049-11062.

Chapters 3 studies contextual bandits with limited policy switches. This is a restriction for many

real-world use cases due to computation or communication considerations, or may be imposed

by the nature of the application, as is the case in multi-stage clinical trials or online marketing

campaigns with high response rates, where it is not feasible to update the policy after each response.

Despite continuous effort in the literature, existing algorithms require exponential complexity. We

provide the first computationally efficient algorithm in this setup that achieves (nearly) optimal

regret and uses the smallest number of policy switches (up to a small constant factor). This work in

this chapter is based on the following publication:

• [HYF24] Hanna, Osama, Lin Yang, and Christina Fragouli. "Efficient batched algorithm for

contextual linear bandits with large action space via soft elimination." Advances in Neural

Information Processing Systems 36 (2024).

In chapter 4, we propose a reward compression scheme for distributed bandit applications. We

propose a method that uses only 3 bits to send each reward, even if the rewards take values from an

infinite set. The method can achieve the same learning performance as the best algorithm that uses

uncompressed rewards. This work in this chapter is based on the following publications:

• [HYF22b] Hanna, Osama A., Lin Yang, and Christina Fragouli. "Solving multi-arm bandit

using a few bits of communication." International Conference on Artificial Intelligence and

Statistics. PMLR, 2022.

• [HYF22c] Hanna, Osama A., Lin F. Yang, and Christina Fragouli. "Compression for multi-

arm bandits." IEEE Journal on Selected Areas in Information Theory 3.4 (2022): 773-788.

Overview of Part II (Chapter 5): Multi-Modal Representation Learning

The common randomness between dependent random variables is a fundamental problem in
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information theory and has ubiquitous applications in a number of areas, such as key generation in

cryptography, hypothesis testing in statistical inference, and multi-modal representation learning

in machine learning. Existing notions of common information only characterize the common

information in terms of bits which can be infinite whenever continuous random variables are involved.

Chapter 5 introduces the new notion of Common Information Dimension (CID) which characterizes

the amount of common information between random variables in terms of number of dimensions.

Our new metric sets a fundamental limit on the dimension of common latent variables in multi-

modal learning applications. We propose a method to compute the common information dimension

for a special class of distributions, that are of interest in practical applications. Additionally, we

show that the common information dimension characterizes the amount of randomness (in bits)

required to (approximately) distributedly simulate a pair of random variables with infinite common

information. The work in this chapter is based on the following publications:

• [HLD23] Hanna, Osama A., et al. "Common information dimension." 2023 IEEE Interna-

tional Symposium on Information Theory (ISIT). IEEE, 2023.

• [HLD24] Hanna, Osama A., et al. "On the Relation Between the Common Information

Dimension and Wyner Common Information." 2024 IEEE International Symposium on

Information Theory (ISIT). IEEE, 2024.

Overview of Part III (Chapter 6): Distributed Classification

Chapter 6 studies distributed feature quantization for data that is going to be used for classification.

This problem is often encountered in applications such as wireless cyberphysical systems, immersive

environments, and supported health. The goal is to enable a pretrained classifier at a central

node to carry out its classification on features that are gathered from distributed nodes through

communication constrained channels. Our main contributions in this chapter include: we prove

NP-hardness of finding optimal quantizers in the general case; we design an optimal scheme for a

special case; we propose quantization algorithms, that leverage discrete neural representations and

training data, and can be designed in polynomial-time for any number of features, any number of
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classes, and arbitrary division of features across the distributed nodes. We find that tailoring the

quantizers to the classification task can offer significant savings: as compared to alternatives, we

can achieve more than a factor of two reduction in terms of the number of bits communicated, for

the same classification accuracy. This work in this chapter is based on the following publication:

• [HES20] Hanna, Osama A., et al. "On distributed quantization for classification." IEEE

Journal on Selected Areas in Information Theory 1.1 (2020): 237-249.
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CHAPTER 2

A Reduction from Contextual to Linear Bandits

2.1 Summary

In this chapter, we address the stochastic contextual linear bandit problem, where a decision maker

is provided a context (a random set of actions drawn from a distribution). The expected reward of

each action is specified by the inner product of the action and an unknown parameter. The goal

is to design an algorithm that learns to play as close as possible to the unknown optimal policy

after a number of action plays. This problem is considered more challenging than the linear bandit

problem, which can be viewed as a contextual bandit problem with a fixed context. Surprisingly, in

this chapter, we show that the stochastic contextual problem can be solved as if it is a linear bandit

problem. In particular, we establish a novel reduction framework that converts every stochastic

contextual linear bandit instance to a linear bandit instance, when the context distribution is known.

When the context distribution is unknown, we establish an algorithm that reduces the stochastic

contextual instance to a sequence of linear bandit instances with small misspecifications and achieves

nearly the same worst-case regret bound as the algorithm that solves the misspecified linear bandit

instances. As a consequence, our results imply a O(d
√
T log T ) high-probability regret bound for

contextual linear bandits, making progress in resolving an open problem in [LWZ19, LWC21]. Our

reduction framework opens up a new way to approach stochastic contextual linear bandit problems,

and enables improved regret bounds in a number of instances including the batch setting, contextual

bandits with misspecifications, contextual bandits with sparse unknown parameters, and contextual

bandits with adversarial corruption.
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Algorithm Regret Bound Type Assumption/restriction

[APS11] O(d
√
T log T ) w.h.p.

[LWC21] O(d
√
T log Tpoly(log log T )) exp

[LWC21] O(d
√
T log Tpoly(log log T )) w.h.p.

Ours O(d
√
T log T ) w.h.p. stochastic context

[RYZ21] O(d
√

T log(d) log(T ) log log T ) exp batch learning with

Ours O(d
√
T log(T ) log log T ) w.h.p. O(log log T ) batches

[FGM20] O(d
√
T log T + ϵ

√
dT ) exp misspecified

Ours O(d
√
T log T + ϵ

√
dT log T ) w.h.p.

[FGM20] Õ(d4.5
√
T + d4C) w.h.p. adversarial corruption

Ours Õ(d
√
T + d3/2C) w.h.p.

[APS12] O(
√
dsT log T ) w.h.p. sparse

Ours O(
√
dsT log T ) w.h.p.

Ours O(
√
dsT log T log log T ) w.h.p. sparse with

O(log log T ) batches

Table 2.1: Comparison of best known in literature vs. our approach regret bounds. Here, d is the

model dimension, T is the time horizon, ϵ is an upper bound on the amount of misspecification,

C limits the power of adversary, s is an upper bound on the number of non-zero elements in the

unknown parameter, exp indicates a regret bound in expectation, w.h.p. indicates a regret bound

that holds with probability at least 1− 1/T , and Õ hides log factors.

2.2 Introduction

Linear bandit and contextual linear bandit problems are attracting extensive attention - for example,

more than 17, 000 papers appear when searching for “linear contextual bandit” on Google Scholar

during the last 5 years - as they enable to support impactful active learning applications through
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elegant formulations. In linear bandits, a learner at each time t ∈ [T ], where T is the time horizon,

pulls an arm at from a fixed action space A (that may be continuous or discrete), and receives

a reward rt = ⟨at, θ⋆⟩ + ηt, where θ⋆ is an unknown d-dimensional vector of parameters and ηt

is random noise. Contextual linear bandits add another layer of complexity by enabling at each

round the action space to be different to capture context; in this case, the learner at time t observes

an action space (context) At. That is, we can think of linear bandits as single-context contextual

bandits, observing At = A for all t. For example, while linear bandits are used in recommendation

systems where the set of actions is fixed and oblivious to the individual the recommendation is

addressed to, contextual linear bandits are used in personalized recommendations, where the action

space gets tailored to context attributes such as age, gender, income and interests of each individual.

It is not surprising that, although more limited in applications, linear bandits are much better

understood in theory than contextual linear bandits. Indeed, algorithms for linear bandits often

leverage the fixed action space property, and cannot be easily extended to contextual linear bandits.

To give a concrete example, the algorithm Phased Elimination (PE) [LSW20, VMK14] leverages

the fixed action space by exploring a (small) core set of actions to achieve good estimates of the

rewards for all actions. This algorithm achieves a high probability regret bound of O(d
√
T log T ).

Nevertheless, despite several attempts over the last decade [APS11,LWC21,LWZ19], the best known

regret upper bounds for contextual linear bandits have a log (or iterated log) multiplicative gap over

the O(d
√
T log T ) bound both in high probability and in expectation. Similarly, the best known

algorithms for several linear bandits problems (e.g., with misspecification, adversarial corruption,

and others [LSW20, FGM20, BLK21, WDZ22, RYZ21]), perform better (in the worst-case) than the

corresponding algorithms for contextual linear bandits.
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2.2.1 Our Results

The Reduction

We show in this chapter the surprising result that, provided the context comes from a distribution D
(stochastic context), contextual linear bandit problems can be reduced to solving (single context)

linear bandit problem when the context distributionD is known, and to linear bandits with Õ(1/
√
T )

misspecification when the distribution D is unknown. These results are presented in the following

informal theorems and their exact statements are given in Theorems 1, 2, and 21 in App. A.1.

Informal Statement of Theorem 1. For any contextual linear bandit instance I with known

context distribution D, there exists (constructively) a linear bandit instance L with the same action

dimension, and any algorithm solving L solves I with the same worst-case regret bound as L.

Informal Statement of Theorem 2. For any contextual linear bandit instance I with un-

known context distribution D, there exist (constructively) log T misspecified linear bandit instances

L1, ..., Llog T , where Li operates on part of the horizon of length Ti, has Õ(1/
√
Ti)-misspecification

and the same action dimension, and any algorithm solving L1, ..., Llog T solves I with the same

worst-case regret bound as L1, ..., Llog T .

Informal Statement of Theorem 21. For any contextual linear bandit instance I with unknown

context distribution D but where now the action space has a component-wise product structure,

there exists (constructively) a linear bandit instance L with double the action dimension of I , and

any algorithm solving L solves I with the same worst-case regret bound as L.

Stochastic contextual bandits encompass practical cases where the context is not selected

adversarially; in our example of personalized recommendations, the age, gender, income, come

from distributions. Our framework simplifies the contextual linear bandit problem and enables

to use any existing (or future) linear bandit algorithms to solve the contextual case. Moreover,

our results separate the case of stochastic contexts from the harder case of adversarial contexts

and explain why good results, which are not achievable for adversarial contexts, are possible for

stochastic contexts.
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Implications and Related Work

The equivalence we proved opens up a new way to approach stochastic contextual linear bandit

problems, and results in a number of new results or recovery of existing results in a simpler manner;

we next present some of these implications (summarized in Table 2.1) and their positioning with

respect to related work. In the discussion next, d is the model dimension and T is the time horizon.

These implications are stated formally and proved in Section 2.5.

• Tighter Regret Bounds. To the best of our knowledge, there is a gap in the regret bounds of

contextual linear bandits: the state-of-the-art lower bounds are, Ω(d
√
T ) for linear bandits [LS20]

and Ω(d
√
T log T ) for linear contextual bandit with adversarial contexts [LWZ19].

Our contribution [Corollary 2 in Section 2.5]. Our approach achieves a regret upper bound

O(d
√
T log T ) with high probability even when the action set is infinite. While it is not known if a

Ω(d
√
T log T ) lower bound holds for stochastic contexts, our result improves over state of the art

high probability bounds by at least a factor of
√
log T and matches the best known upper bound for

linear bandits.

Related Work. The best attempts of upper bounds are [APS11, LWC21, LWZ19]. In particu-

lar, [APS11] achieves a regret bound of O(d
√
T log T ) with high probability; [LWC21] achieves

O(d
√
T log Tpoly(log log T )) in expectation and O(d

√
T log Tpoly(log log T )) with high proba-

bility; and [LWZ19] achieves

O(d
√
T log Tpoly(log log(T ))) in expectation and only when the number of actions is finite and

bounded by 2d/2.

• Batch Learning. In batch learning, instead of observing the reward at the end of each round to

decide what action to play next, the learning agent is constrained to split the rounds into a fixed

number of M batches, use a predetermined policy within each batch, and it can only observe the

action outcomes and switch the policy at the end of each batch. This is a central problem in online
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learning [GHR19, PRC16, RYZ21, HZZ20] as limited policy adaptivity enables parallelism and

facilitates deployment of learning algorithms for large-scale models.

Our Contribution [Theorem 3 in Section 2.5]. Our batch algorithm for contextual linear bandits

achieves with high probability O(d
√
T log(T ) log log T ) regret bound for O(log log T ) batches, a

√
log d better than the in expectation regret bound in [RYZ21].

Related Work. A number of works have explored batched contextual linear bandits, both in adver-

sarial [APS11, HZZ20] and non-adversarial settings [RYZ21, ZJZ21]. The breakthrough work in

[RYZ21] achieved a nearly optimal in expectation regret upper bound O(d
√

T log d log(T ) log log T )

using O(log log T ) batches for the stochastic contexts setting. The near-optimality follows from

the result in [GHR19] which shows that Ω(log log T ) batches are required to achieve a O(
√
T )

worst-case regret bound for multi-armed bandits with a finite number of arms (this is a special case

of contextual linear bandits). If the contexts are chosen adversarially, Ω(
√
T ) batches are required

to achieve a O(
√
T ) regret bound [HZZ20].

• Misspecified Bandits. Linear bandit algorithms are designed under the assumption that the

expected rewards are perfectly linear functions of the actions; misspecified bandits relax this as-

sumption by considering perturbations of the linear model measured by the amount of deviation

in the expected rewards (we call the case ϵ-misspecification if the deviation is upper bounded by

ϵ). The non-linearity in the model enables to better capture real-world environments and is of high

interest in the literature [DKW19, CG13, LSW20, FGM20, GCG17, FR20].

Our Contribution [Theorem 4, 5 in Section 2.5]. We provide a regret bound of

O(d
√
T log T + ϵ

√
dT log T ) with high probability for contextual bandits with unknown misspecifi-

cation, and O(d
√
T log T + ϵ

√
dT ) with high probability for ϵ known. To the best of our knowledge,

these results offer the first optimal regret bounds for ϵ-misspecified contextual linear bandits, and

improve over existing literature for unknown ϵ by providing high probability bounds and improved

log factors. We also present the first nearly optimal algorithm for misspecified contextual linear

bandits with O(log T ) batches.
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Related Work. The work in [LSW20] shows that PE with modified confidence intervals achieves

the optimal regret bound of O(d
√
T log T + ϵ

√
dT ) with high probability (matching the Ω(ϵ

√
dT )

lower bound [LSW20]) for linear bandits with known ϵ misspecification. If ϵ is unknown, the

same algorithm was shown to achieve a regret bound of O(d
√
T log T + ϵ

√
dT log T ) with high

probability. The work in [ZLK20,LSW20] proposed variants of LinUCB that achieve a regret bound

of Õ(d
√
T + ϵ

√
dT )1 with high probability for contextual linear bandits with known ϵ. However,

changing action sets with unknown ϵ was left as an open problem. The works in [PPA20, FGM20]

made progress in answering this question by providing a regret bound of O(d
√
T log T + ϵ

√
dT ) in

expectation [FGM20]. However, improving the log factors in the first term and strengthening the

result to a high probability bound was unresolved. Due to the challenge that changing action sets

impose on the analysis, the techniques of [FGM20] cannot be directly extended to provide high

probability bounds on the regret. Our result of O(d
√
T log T + ϵ

√
dT log T ) regret removes the

√
log T factor from the first term and adds a log T factor in the second term; depending on the value

of ϵ this can lead to a tighter or looser bound.

• Bandits with Adversarial Corruption. Linear bandits with adversarial corruption recently

attracted significant interest [LSS21, CDJ21, JHL21, LLS19, BKS20, BLK21, LLW21, WDZ22] due

to the vulnerability of online learning applications to attacks. There are multiple adversarial models

that are proposed in the literature; here we consider a widely used model that assumes the adversary

knows the policy, and observes the history, but does not observe the current action before corrupting

the rewards.

Our Contribution [Theorem 6 in Section 2.5]. Our work provides the first algorithm for contex-

tual linear bandits that achieves a regret bound of Õ(d
√
T + d3/2C) with high probability for

unknown C, which upper bounds the total amount of corruption from the adversary. This im-

proves over the best known Õ(d4.5
√
T + d4C) bound for linear bandits with changing action sets

in [WDZ22]. We note that in our regret bound, while the dependency on d in the first term is nearly

1Here Õ hides log factors.

12



optimal, the dependency on d3/2 in the second term is not. However, we simplify the problem of

improving this dependency, as any algorithm that improves it for linear bandits will imply the same

improvement for contextual bandits with our reduction.

Related Work. The work in [BLK21] considers linear bandits with adversarial corruption and

achieves a regret bound of Õ(d
√
T +d3/2C) with high probability for known corruption level C and

a regret bound of Õ(d
√
T +d3/2C+C2) with high probability for a stronger adversary that observes

the current action and unknown corruption level C, while the work in [WDZ22] achieves a regret

bound of Õ(d
√
T + d3/2C) with high probability for unknown corruption C. These algorithms

have optimal dependency on T,C but it is not known if the d3/2 dependency is tight or not. The

work in [LLW21] improves the dependency on d for linearized corruption, by achieving a regret

bound of Õ(d
√
T + C) with high probability which is also nearly optimal [LLW21]. The proposed

algorithms and analysis rely on the assumption that the action set is fixed, and as far as we know

there are no known generalizations for changing action sets - beyond the work in [BLK21] that

considers changing action sets but imposes a strong assumption on the context distribution. The

work in [HZZ22] considers a stronger adversary, that observes the current action, and achieves an

Õ(d
√
T ) regret bound for unknown C ≤

√
T and linear regret otherwise. The first paper to prove a

regret bound with nearly optimal dependency on T,C for linear bandits with changing action sets

(linear contextual bandits) is [WDZ22] which achieves a regret bound of Õ(d4.5
√
T + d4C) with

high probability for unknown C. While the dependency on T,C is nearly optimal, the dependency

on d is clearly not - improving this was left as an open problem. Our results take a step in this

direction by removing a factor of d3.5 from the first term, by removing a factor of d2.5 from the

second term and by reducing the problem of further improving the dependency of d in the second

term to achieving this improvement over a linear bandit setup.

• Sparsity. High dimensional linear bandits with sparsity capture practical cases such as, when

there exist a large number of candidate features and limited information on which of them are

useful; use cases include personalized medicine and online advertising [BB20]. This setup results
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in sparsity in the unknown linear bandit parameters, which can be leveraged for more efficient

learning.

Our Contribution [Theorem 7 in Section 2.5]. Our work provides the first O(
√
dsT log T ) regret

bound with high probability for contextual linear bandits, improving a factor of
√
log T on the state

of the art, where s is an upper bound of the nonzero elements in the model.

Related Work. Due to its practical significance, a number of works have examined this setup

[LCS15, APS12, Ger11, CM12, CWF22, DWD22, JZJ22, HLD21, HLW20]. To the best of our

knowledge, the best known regret bound is O(
√
dsT log T ) with high probability [APS12]. While

this is shown to be nearly optimal [LS20], improving the log T factor was left as an open problem.

Our work resolves this.

2.2.2 Technical Overview

Our major technique innovation is in the conception and execution of a reduction from a stochastic

contextual linear bandit instance to a linear bandit instance. This reduction is made possible by

establishing a linear bandit action for each possible parameter θ of the contextual bandit instance.

In particular, for a given θ, we establish a new action g(θ) that is the expected best action (under the

distribution of the context At) with respect to the parameter θ, i.e., g(θ) = ED(argmaxã∈At⟨ã, θ⟩).
Note that g(θ) may not correspond to any valid action for the present context in the corresponding

contextual bandit instance. Yet, we show that if one plays an action argmaxã∈At⟨ã, θ⟩ that is optimal

with respect to θ, then the contextual bandit instance generates a linear reward with respect to

g(θ). Moreover, the linear bandit instances share the same optimal parameter θ⋆ as in the contextual

instance. Under standard boundedness assumptions of the contexts and actions, the reward noise in

the reduced linear instance and the contextual bandit instance also share a similar sub-Gaussian

tail. By mapping the linear bandit action g(θ) to the contextual bandit argmaxã∈At⟨ã, θ⟩ for any

context At and θ, any algorithm for the linear bandit problem can be immediately applied to solve

for the contextual bandit problem and suffer no additional regret in the worst-case.

The reduction becomes more challenging when the context distribution is unknown. One idea

14



is to estimate g(θ) for all possible θ. Unfortunately, doing so would require a large number of

samples resulting in unbounded regret. We resolve this issue by a batched approach where the

batches provide increasingly better estimates of g(θ). In each batch, we estimate g(θ) using all the

contexts generated in the previous batch. Note that this inevitably introduces error which ruins the

linearity of the collected reward from the contextual bandit instance. Hence, we can only apply

algorithms that are designed for misspecified linear bandits. Luckily, with a carefully designed

batch sequence, we show that a linear bandit algorithm that works for all misspecification levels

ϵ ∈ [1/
√
T , 1] can be applied to solve the contextual bandit instance. As it is hard to guarantee a

good estimate of g for all θ, we restrict our attention to a finite subset of the unknown parameter

set Θ (discretization) that is guaranteed to contain a good action. The amount of misspecification

is bounded using a union bound argument over the discretization of Θ. While the discretization

of Θ may eliminate the optimal arm and the function g is shown to be non-smooth, we show that

the function r(θ) = ⟨g(θ), θ⋆⟩ is smooth on a neighborhood of θ⋆. This is sufficient to show that if

discretized finely, the discrete set will contain a good arm. The final worst-case regret bound can be

controlled by the regret bound of the linear bandit algorithm and the batch lengths.

We next provide a high level explanation on why our reduction enables tighter regret bounds

for contextual linear bandits with stochastic contexts. Using the Phased Elimination algorithm

(PE) [LSW20] with modified confidence intervals to solve the misspecified linear bandit instance,

we prove a high probability bound of O(d
√
T log T ) on the regret of the contextual bandit problem

using our reduction. Existing analysis techniques for changing action sets suffer log factors due to

several reasons, such as bounding the radius of an ellipsoid that contains the unknown parameter

with high probability, bounding the regret by the radius of the ellipsoid, or summing the regret over

multiple episodes; in contrast, the log factors in our analysis appear only from a union bound used

to prove concentration of the estimated arm means with high probability.

The reduction also implies improved regret bounds for misspecified contextual linear bandits

by leveraging the optimal and nearly optimal regret bounds proved in the literature [LSW20] for

fixed action sets. This results in high probability bounds; as opposed to the best known results for
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changing action sets that add log factors and only hold in expectation. As the reduction introduces a

small Õ(1/
√
T ) misspecification, this adds to the possibly unknown misspecification ϵ. There is

a little subtlety here; some algorithms adapt to known ϵ better than the unknown case. To avoid

adding extra factors to the regret bounds by sub-optimal adaptation to the known Õ(1/
√
T ) part

of misspecification, we slightly modify existing algorithms to account for this. This is done by

increasing the number of times an arm is explored by a constant factor. Similarly, our results

allow to carry over the better regret bounds for linear bandits with adversarial corruption to the

contextual setting. This is achieved by modifying the algorithms for linear bandits with adversarial

corruption to account for the known misspecification added by our reduction.

Our reduction has a byproduct; it limits the size of available actions in each round to the

minimum between |A| and the size of the parameter set Θ (recall that we construct an action g(θ)

for each θ ∈ Θ). While in general a discretization of size TΩ(d) is required to guarantee a good action

in the discrete set, if the unknown parameter follows some structure, a discretization of smaller size

can be sufficient. For example, for contextual linear bandits with s-sparse unknown parameter,

we show that a discretization of size TO(s) is sufficient. This directly implies a high probability

O(
√
dsT log T ) regret bound as opposed to the best known O(

√
dsT log T ) bound [APS12] that

loses extra log factors due to solving a linear regression problem over the space of sparse unknown

parameters.

As it is enough to make only batch updates to our estimates of the actions g(θ), our algorithm

can be modified to provide improved regret bounds for contextual linear bandits with O(log log T )

batches. We use batch lengths that were introduced in [GHR19] which grow as T 1−2−m . In each

batch, as action set is fixed, we utilize elimination algorithms with the G-optimal design. However,

at batch m, the gaps of sub-optimal actions depend on the confidence of our estimates in batch

m− 1, which rely on the G-optimal design using the estimates of g from batch m− 2. As a result,

the regret in batch m can be at most the ratio between the length of batch m and batch m − 2.

Considering the growth rate of the batch lengths, this ratio can be large, especially in the first few

batches. To fix this, we modify the batch lengths to grow in length only at the batches with odd
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index, while even batches use the same length as the previous batch. Our algorithm results in an

O(d
√
T log T log log T ) regret bound using O(log log T ) batches, improving a

√
log d factor (that

appeared due to the distributional G-optimal design proposed in [RYZ21]) in the regret bound over

the best known result [RYZ21]. Our result also provides the first high probability bound under the

O(log log T ) batches limitation.

As a consequence of the batch learning result and the fact that our reduction can limit the action

set based on the size of Θ, we provide the first algorithm with O(log log T ) batches for the sparse

setting with a regret bounded by O(
√
dsT log T log log T ) with high probability, where s is the

sparsity parameter.

Chapter Organization

Section 2.3 describes our setup and reviews notation; Section 2.4 describes our reduction and main

theorems; App. A.1 describes a spacial case of the reduction; and Section 2.5 uses our reduction to

prove improved regret bounds for a number of stochastic linear bandit problems.

2.3 Model and Notations

Notation. We use the following notation throughout the chapter. For a vector X we use Xi to

denote the i-th element of the vector X . The set {1, ..., i} for i ∈ N, i > 0 is denoted by [i], where

N is the set of natural numbers. We say that y = O(f(x)) if there is x0 and a constant c such that

y ≤ cf(x) ∀x > x0; we also use Õ(f(x)) to omit log factors. A δ-net (with respect to norm-2)

of a set A ⊆ Rd for δ > 0 is any set B ⊆ Rd such that for every a ∈ A, there exists b ∈ B with

∥a− b∥2 ≤ δ, where R is the set of real numbers. For a set of sets S, ∪S denotes the union of all

elements in S. For a family of sets {Ai}ni=1 we use
∏n

i=1Ai = {(a1, ..., an)|ai ∈ Ai, ∀i ∈ [n]} to

denote the product set.

Contextual Linear Bandits. We consider a contextual linear bandit problem, where a learner
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interacts with an environment over a time horizon of length T . At time t ∈ [T ], the learner observes

a set of admissible arms At representing the context, pulls an arm at ∈ At, and receives a reward

rt = ⟨at, θ⋆⟩+ ηt, (2.1)

where the contextAt is generated from a distributionD (independently from other iterations), at is a

function of the historyHt = {A1, a1, r1, ...,At}, θ⋆ is an unknown parameter vector of dimension d,

and ηt is a random noise. Here, the noise ηt follows an unknown distribution that satisfies E[ηt|Ft] =

0, E[exp(ληt)|Ft] ≤ exp(λ2/2) ∀λ ∈ R (sub-Gaussian), where Ft = σ{A1, a1, r1, ...,At, at} is

the filtration of all historic information up to time t, and σ(X) is the σ-algebra generated by

X . We follow the standard assumptions that θ⋆ ∈ Θ ⊆ {θ| ∥θ∥2 ≤ 1}, ∥a∥2 ≤ 1 ∀a ∈ At

and ∀t ∈ [T ] almost surely. The learner adopts a policy π that maps the history up to time t,

(A1, a1, r1, ...,At−1, at−1, rt−1,At), to a probability distribution over At; we denote the policy

π(A1, a1, r1, ...,At−1, at−1, rt−1,At) at time t by πt(At). The goal of the learner is to minimize the

regret defined as

RT =
T∑
t=1

max
a∈At

⟨a, θ⋆⟩ − ⟨at, θ⋆⟩. (2.2)

In the next sections we assume for simplicity that for each θ ∈ Θ, there is a unique at ∈ At

that satisfies ⟨at, θ⟩ = supa∈At
⟨a, θ⟩ almost surely. This is to avoid dealing with approximations

and choice functions (if there are multiple optimal actions) in the description of our algorithms.

However, our results do not need this assumption, please see App. A.2.1.

Batch Learning. In this setting, the learner is allowed to change the policy πt only at M pre-

specified time slots 1 ≤ t(1), ..., t(M) ≤ T , where M is the number of batches.

Misspecified Linear Bandits. Here pulling an action a ∈ At generates a reward perturbed as

rt = ⟨a, θ⋆⟩+ ηt + f(a), (2.3)

where f is unknown perturbation function, θ⋆ is the unknown parameter vector, and ηt is a zero-mean

noise that is 1-subgaussian conditioned on the history. The amount of deviation in the rewards is

upper bounded by ϵ = supa∈∪Supp(D) |f(a)|, and ϵ is called the amount of misspecification, where D
is the context distribution and Supp(D) is the support set of D.
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Adversarial Corruption. We assume an adversary that operates as follows at each time t:

• The adversary observes the history of all past contexts A1, ...,At−1, actions a1, ..., at−1,

rewards r1, ..., rt−1, and previously corrupted rewards r̃1, ..., r̃t−1, together with the current

context At.

• The adversary decides on a corruption function ct : At → R that determines the amount of

corruption for each action.

• The learner observes the history of contexts A1, ...,At, actions a1, ..., at−1, and previously

corrupted rewards r̃1, ..., r̃t−1.

• The learner pulls arm at and observes reward r̃t = rt + ct(at), where ct(at) is the corruption

provided by the adversary.

Note that the true reward rt follows the linear bandits model, while the corrupted rewards do not

need to. We assume that the amount of corruption the adversary can inflict is bounded as

T∑
t=1

sup
a∈At

|ct(a)| ≤ C, (2.4)

where C is the maximum amount of corruption.

Sparsity. We here assume that the d-dimensional parameter vector θ⋆ in (2.1) is sparse, namely

∥θ⋆∥0 ≤ s for some known s ∈ [d], where ∥θ⋆∥0 denotes the norm-0 or cardinality of the vector θ⋆.

2.4 Reduction from Stochastic Contextual to Linear Bandits

2.4.1 Reduction for Known Context Distribution D

We construct a contextual linear bandit algorithmM that operates at a high level as follows. At

each time t, the learner:

Step 1 (plays): observes a set of actionsAt, uses θt (i.e., the current estimate of θ∗) to decide which
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action at ∈ At to play, and observes the associated reward rt;

Step 2 (learns): calculates θt+1, i.e., an updated estimate of θ∗.

In our reduction, we use a single-context algorithm Λ for learning the parameter θ⋆ in step 2, i.e.,

choose θt+1, and prove that we can achieve the same worst-case regret bound as Λ.

Fixed Action Space. We provide to the linear bandit algorithm Λ the fixed action space

X = {g(θ)|θ ∈ Θ}, where g(θ) = EAt∼D[argmax
a∈At

⟨a, θ⟩|θ]. (2.5)

That is, for each θ, we create an action g(θ) that is the expected best action (under the distribution

of the context D) with respect to the parameter θ. We illustrate using a simple example.

Example 1. Assume that we may observe one out of the two following action sets {[1], [−1]}, {[1]}
randomly with probability 1/2. The function g(θ) : R→ R can be calculated as follows

g(θ) =

 1 if θ ≥ 0

0 if θ < 0
(2.6)

and thus X = {[0], [1]}.

Reduction Algorithm. The algorithmM proceeds at each time t as follows:

1. The single context algorithm Λ decides to play an action xt ∈ X , using the history Λ observed.

This action is never actually played. Instead,M observes what action xt that Λ selected, and

uses a θt with xt = g(θt) as its current estimate of θ⋆, where ties are broken arbitrarily.

2. M observes At, plays the action at = argmaxa∈At ⟨a, θt⟩ and receives reward rt. It provides

this reward to Λ.

3. Λ assumes that the reward rt it received was generated according to the linear bandit model

rt = ⟨g(θt), θ⋆⟩+ η′t, and adds the action-reward pair (g(θt), rt) to its history.
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Note that the set of actions X we created contains actions that may not be part of the original

sets At’s; this is fine, since these actions are actually never played - they are used to simulate an

environment that enables Λ to correctly update its estimate of θ⋆. That is, although all actions

played come from the eligible sets At, all learning (updates on θt) is derived from the single context

algorithm Λ that never explicitly learns At. We also highlight that

Theorem 1. Let Λ be any algorithm for linear bandits and I be a contextual linear bandit instance

with stochastic contexts, unknown parameter θ⋆ and rewards rt generated as described in the

reduction algorithm described above. It holds that

• The reward rt is generated, by pulling the arm g(θt), from a linear bandit instance L with

action set X , and unknown parameter θ⋆.

• The reduction results in an algorithmM for contextual linear bandits such that with proba-

bility at least 1− δ we have

|RM
T (I)−RΛ

T (L)| ≤ c
√

T log(1/δ), (2.7)

where RΛ
T (L) is the regret of Λ over the constructed linear bandit instance L, RM

T (I) is the

regret of algorithmM over the instance I and c is a universal constant.

Proof Outline. The complete proof is provided in App. A; we here provide a brief outline. The

basic idea is to show that the action taken by algorithmM at time t is an unbiased estimate of g(θt),

then decompose RM
T (I) as

RM
T (I) =

T∑
t=1

⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩ − E[⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩]

+ E[⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|θt]− ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩+ ⟨g(θ⋆), θ⋆⟩ − ⟨g(θt), θ⋆⟩,

(2.8)

where the expectation is with respect to the randomness in the context generationAt. We then prove
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and use results such as ⟨g(θ′), θ′⟩ = maxθ∈Θ ⟨g(θ), θ′⟩, ∀ θ′ ∈ Θ, to arrive at

|RM
T (I)−RΛ

T (L)| ≤ |
T∑
t=1

⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩ − E[⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩]|

+ |
T∑
t=1

E[⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|θt]− ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|, (2.9)

Next, we show that the quantity

ΣT :=
T∑
t=1

E[⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|θt]− ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩

is a martingale (using that at is unbiased estimate of g(θt)) with a bounded difference (by bounded-

ness of Θ,At) and apply the Azuma–Hoeffding inequality to bound these terms with high probability.

To prove that the rewards rt come from a linear bandit instance L, we finally show that the reward rt

can be expressed as rt = ⟨g(θt), θ⋆⟩+ η′t, where η′t is a zero mean 1-sub-Gaussian noise conditioned

on the filtration of historic information θ1, ..., θt and rewards r1, ..., rt−1 of the instance L. □

Algorithm 1 Reduction from stochastic contexts to no context

1: Input: confidence parameter δ, phase lengths {t(m)}M+1
m=1 , and algorithm Λϵ for linear contextual

bandits with ϵ misspecification.

2: Initialize: g(1) : Θ′ → Rd randomly, ϵ1 = 1, and let X1 = {g(1)(θ)|θ ∈ Θ′}.
3:

4: for m = 1 : M do

5: for t = t(m) + 1, ..., t(m+1) do

6: Let g(m)(θt) ∈ Xm be the arm selected by Λϵm after observing rewards rt(m)+1, ..., rt−1.

7: Play arm at = argmaxa∈At ⟨a, θt⟩ and receive reward rt. Provide rt to Λϵm .

8: Update: g(m+1)(θ) = 1
t(m+1)

∑t(m+1)

t=1 argmaxa∈At ⟨a, θ⟩, Xm+1 = {g(m+1)(θ)|θ ∈ Θ′}, and

ϵm+1 = 2
√

log(M |Θ′|/δ)/t(m+1).
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2.4.2 Reduction for Unknown Context Distribution

As described in (2.5), calculating the function g(θ) requires knowledge of the distribution D. We do

not really need this knowledge; we prove it is sufficient to use empirical estimation of g(θ). As a

result, we prove that any stochastic linear contextual bandit instance, even for unknown context

distributions, can be reduced to a linear bandit instance albeit with a small misspecification.

Our basic approach follows the reduction in Section 2.4.1 but uses a sequence of functions g(m)

that approximate g increasingly well (as m increases). To do so, as it is hard to guarantee a good

estimate of g for all θ, we restrict our attention to a finite subset of Θ that is large enough to include a

good action. In particular, instead of considering actions in a continuous space Θ, we only consider a

finite subset of actions Θ′ ⊆ Θ, where Θ′ is an 1/T -net for Θ according to the norm-2 distance. We

divide the time horizon T into M epochs, each of duration Tm = t(m+1) − t(m), m = 1 . . .M . For

each epoch, we construct an empirical estimate of g as g(m)(θ) = 1
t(m)

∑t(m)

t=1 (argmaxa∈At ⟨a, θ⟩),
and calculate the set of actions Xm = {g(m)(θ)|θ ∈ Θ′}. We then use at each epoch a single context

algorithm as before, but we now provide at epoch m the fixed set of actions Xm for the algorithm to

choose from. As a result, the regret of the linear bandit problem is defined as

RΛϵ
T =

T∑
t=1

max
θ∈Θ′
⟨g(θ), θ⋆⟩ − ⟨g(θt), θ⋆⟩. (2.10)

Our algorithm relies on Λϵ, an algorithm for linear bandits with ϵ misspecification. The

misspecification reflects our confidence in our estimate of the function g, hence, decreases each

epoch. We start with a large value of the misspecification parameter ϵ1 = 1 and a random

initialization of the function g (which we cal g(1)), and hence random initialization of X denoted

X1. At time slot t of epoch m, the algorithm asks Λϵm for an action to play g(m)(θt) ∈ Xm given

the history of action and rewards {(g(m)(θi), ri)}t−1
i=t(m)+1

in epoch m only. The algorithm pulls the

action at = argmaxa∈At ⟨a, θt⟩ and observes rt. The reward rt is then passed to the algorithm

Λϵm . At the end of each epoch, the misspecification parameter, estimates g(m), and action set

Xm are updated. The pseudo-code of our reduction is provided in Algorithm 1, and the proof

in App. B. To achieve nearly optimal regret bounds, the misspecification ϵ need to be Õ(1/
√
T )

23



(recall the Ω(
√
dϵT ) regret lower bound [LSW20]). Attempting to use M = 2 to first estimate

g and then learn in the second epoch, would require the length of the first epoch to be Ω(T ), to

ensure the Õ(1/
√
T ) misspecification, resulting in linear regret. Instead, as we clarify next, we use

exponentially increasing epoch lengths to mix the learning with a gradual estimation of g resulting

in misspecification that is effectively Õ(1/
√
T ).

Theorem 2. Let Λϵ be an algorithm for linear bandits with ϵ misspecification and I be a contextual

linear bandit instance with stochastic contexts, unknown parameter θ⋆ and rewards rt are generated

as described in Algorithm 1. The following holds:

• Conditioned on Ht(m) = σ(A1, a1, r1, ...,At(m) , at(m) , rt(m)): in epoch m, the rewards rt

are generated, by pulling arm g(m)(θt), from a misspecified linear bandit instance Lm for

t = t(m) + 1, ..., t(m+1), action set Xm = {g(m)(θ)|θ ∈ Θ′}, unknown parameter θ⋆, mean

rewards ⟨g(θ), θ⋆⟩, and unknown misspecification ϵ′m.

• The misspecification ϵ′m is bounded by the known quantity ϵm with probability at least

1− cδ/M .

• With probability at least 1 − δ we have that |RT (I) −
∑M

m=1 R
Λϵm
Tm

(Lm)| ≤ c
√
T log(1/δ),

where RT (I) is the regret of Algorithm 1 over the instance I , RΛϵm
Tm

(Lm) is the regret of

algorithm Λϵm over the bandit instance Lm in phase m, Tm = t(m+1) − t(m), and c is a

universal constant.

As a consequence, we prove the following corollary in Section 2.5.1.

Corollary 1. For Algorithm 1 with t(m) = 2m−1 and Λϵ to be PE with modified confidence intervals

[LSW20], it holds that with probability at least 1− cδ we have that RT = O(d
√

T log(T/δ)).

In App. A.1 we describe an important special case where the reduction can be performed without

approximating g.
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2.4.3 Computational Complexity

In this subsection, we show that our reduction can be made computationally-efficient with the help of

optimization oracles and linear regression oracles [AK08, ZFL22], which are standard assumptions

when computation is a concern in bandit problems.

In particular, we are able to

• Efficiently construct a linear optimization oracle for the linear bandit instance Lm given a

linear optimization oracle for the original contextual bandit instance I . Together with the

linear regression oracle, this suffices to construct the linear bandit policy [AK08, DHK08,

BCK12, HK16, IHS19].

• Efficiently compute an inverse of the function g(m), which is performed in our reduction to

translate the linear bandit action to an action in the original instance.

Recall that a linear optimization oracle of the contextual bandit instance states that argmaxa∈At⟨a, θ⟩
can be efficiently solved for any contextAt. However, in the reduced bandit instance, we are solving

an optimization problem related to the reduced arms, Xm = {g(m)(θ)|θ ∈ Θ′}. In Lemma 1 in

the following subsection, we provide an efficient (approximate) optimization oracle for solving

argmaxx∈Xm⟨x, θ⟩ by applying a careful discretization of the set Θ. By storing g(m)(θ) for all the

arms pulled by the linear bandit algorithm, we can then apply the (efficient) regression oracle for

the original contextual bandit instance to get a regression oracle in the reduced instance.

If all actions played by the linear bandit algorithm are the output of the linear optimization

oracle for some θ [AK08, DHK08, IHS19], then from Lemma 1 in the following subsection, the

inversion of g(m)(θ) for the actions pulled by the linear bandit algorithm can be performed by

storing θ whenever the corresponding action g(m)(θ) is stored. This increases both the space and

time complexity only by a constant factor.
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2.4.4 Constructing the Optimization Oracle

In this subsection, we construct an efficient approximate linear optimization oracle over the set

Xm = {g(m)(θ)|θ ∈ Θ′}, defined in Algorithm 1. This construction relies on a linear optimization

oracle over the sets At, which we define next.

Definition 1. A linear optimization oracle for a set A is a function O(A; .) which takes as input

θ ∈ {a ∈ Rd|∥a∥2 ≤ 1} and outputs O(A; θ) ∈ A with ⟨O(A; θ), θ⟩ = supa∈A ⟨a, θ⟩.

We consider the following discretization of the set Θ that simplifies the construction of the

linear optimization oracle over Xm. The set Θ is discretized to Θ′ = {[θ]q|θ ∈ Θ}, where

[θ]q = q⌊θ
√
d/q⌋/

√
d and q is the discretization parameter. Note that for Θ ⊆ {a ∈ Rd|∥a∥2 ≤ 1},

the size of the set Θ′ can be bounded as |Θ′| ≤ Cd(1/q)4d+2, where C is a universal constant. The

following lemma shows that g(m)([θ/∥θ∥2]q) for sufficiently small q can be used as an approximate

linear optimization oracle over the set Xm. We observe that g(m) can be calculated by invoking the

linear optimization oracle of the contextual bandit instance at most T times.

Lemma 1. Consider a given m ∈ [M ] and let g(m)(θ) = 1
t(m)

∑t(m)

t=1 argmaxa∈At ⟨a, θ⟩, Xm =

{g(m)(θ)|θ ∈ Θ′}, where t(m) is the length of phase m and Θ′ = {[θ]q|θ ∈ Θ} is a discretization

of Θ, [θ]q = q⌊θ
√
d/q⌋/

√
d and q is the discretization parameter. For any θ ∈ {a ∈ Rd|∥a∥2 ≤

1}, ϵ ∈ R+, if q ≤ ϵ/2, we have that

⟨g(m)([θ/∥θ∥2]q), θ⟩ ≥ sup
a∈Xm

⟨a, θ⟩ − ϵ∥θ∥2. (2.11)

The proof is provided in App. A.4

2.5 Implications

2.5.1 Tighter Regret Bound for Contextual Linear Bandits

We here show that our reduction leads to the first O(d
√
T log T ) high probability upper bound for

linear bandits with changing action sets. We recall that in all our results, we only consider contextual
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linear bandits with unknown context distribution as described in Section 2.3. We rely on the Phased

Elimination (PE) [LSW20] as our linear bandit algorithm Λϵ. PE is the same as Algorithm 2, that

we will use next in the batched setting, except that X , g are fixed (recall that we apply PE within

an epoch that fixes the estimate of g). The parameter γm in Algorithm 2 is called the confidence

interval; we will specify its value in our theorems. In Algorithm 1, setting t(m) = 2m−1 and Λϵ to

be PE with modified confidence intervals [LSW20] to account for the misspecification we get the

following corollary.

Corollary 2. For Algorithm 1 with t(m) = 2m−1 and Λϵm to be PE with

γm = 6
√
d log(T |Θ′|/δ)/t(m) it holds that with probability at least 1 − cδ we have that RT ≤

c
√
dT log(T |Θ′|/δ).

Proof. Let the length of phase m be Tm = t(m+1) − t(m) = 2m−1. Conditioned on the event that the

misspecification in phase m is bounded by ϵm, PE with modified confidence intervals achieves a

regret RΛϵm
Tm

that is upper bounded by O(
√
dTm log(TmM |Θ′|/δ)) +

√
dTmϵm) with probability at

least 1− δ/M . Hence, by Proposition 3 and the union bound we have that it holds with probability

at least 1− cδ that

R
Λϵm
Tm
≤ c(

√
dTm log(T |Θ′|/δ) +

√
dTmϵm)∀m ∈ [M ], (2.12)

where we used the fact that Tm ≤ T,M ≤ T . Substituting the value of ϵm we get that the following

holds with probability at least 1− cδ

R
Λϵm
Tm
≤ c(

√
dTm log(T |Θ′|/δ) +

√
dTm

√
log(M |Θ′|/δ)

t(m)
)

= c(
√

dTm log(T |Θ′|/δ) +
√
dTm log(M |Θ′|/δ))∀m ∈ [M ]. (2.13)

Hence, using M ≤ T , we get that with probability at least 1− cδ we have

R
Λϵm
Tm
≤ c
√
dTm log(T |Θ′|/δ) (2.14)
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Substituting in Theorem 2, we get that with probability at least 1− cδ it holds that

RT ≤ c
√

T log T + c
√
d log(T |Θ′|/δ)

log T∑
m=1

√
Tm

≤ c′
√

dT log(T |Θ′|/δ)
log T∑
m=1

√
2m−log T

≤ c′
√

dT log(T |Θ′|/δ)
∞∑
i=0

√
2−i

≤ c′

1− 1/
√
2

√
dT log(T |Θ′|/δ). (2.15)

It is well known that if Θ ⊆ {a ∈ Rd|∥a∥2 ≤ 1}, then there is 1/T -net of Θ, Θ′, such that

|Θ′| ≤ (6T )d,Θ′ ⊆ Θ. This directly implies that RT = O(d
√
T log(T )) with probability at

least 1 − 1/T . This improves a factor of
√
log T log log T over [LWC21] and a factor of

√
log T

over [APS11].

2.5.2 Batch Learning

We here show that our reduction can be applied to improve the result of [RYZ21] for contextual

linear bandits with stochastic contexts by providing a regret upper bound of O(d
√
T log T log log T )

with high probability as opposed to the in expectation O(d
√
T log d log T log log T ) regret bound

in [RYZ21]. This can be achieved by replacing Λϵm with the G-optimal design policy constructed

using Xm. To compute t(i) we first define

um = T 1−2−m

,m = 1, ...,M/2. (2.16)

We let

t(m) = ⌊um//2+1⌋∀m ∈ [M ], t(M+1) = T. (2.17)

where // denotes integer division. For completeness, we include the pseudo-code in Algorithm 2.

The following result follows using Theorem 2.
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Theorem 3. For Algorithm 1 with M = 2 log log T (corresponds to 2 log log T + 1 batches), t(m)

given in (2.17) and Λϵm replaced by the G-optimal design policy constructed using Xm, it holds

that there is a constant c such that with probability at least 1− cδ, we have

RT ≤ c

√
dT log(

M |Θ′|
δ

) log log T. (2.18)

Proof. We first notice that for M = log log T , we have that um+1/
√
um =

√
T∀m ∈ [M − 1],

uM+1/
√
uM =

√
2T . Hence, we have that

um+1/
√
um ≤

√
2T∀m ∈ [M ]. (2.19)

We also have that um+1 ≥ um ∀m ≥ 1 (since um ≤ T ). The proof follows from the properties of

the G-optimal design together with the properties of g(m) in the proof of Theorem 2. The G-optimal

design ensures that for any θ ∈ Θ′ the following holds with probability at least 1− δ

|⟨g(m)(θ), θ̂m − θ⋆⟩| ≤ 2ϵ′m
√
d+

√
4d

Tm

log 1/δ, (2.20)

where ϵ′m = supθ∈Θ′ |⟨g(m)(θ)− g(θ), θ⋆⟩|. By the triangle inequality, we have that

|⟨g(m)(θ), θ̂m⟩ − ⟨g(θ), θ⋆⟩| ≤ 2ϵ′m
√
d+

√
4d

Tm

log 1/δ + |⟨g(m)(θ)− g(θ), θ⋆⟩|

≤ ϵ′m(2
√
d+ 1) +

√
4d

Tm

log 1/δ (2.21)

By Proposition 3 we have that ϵ′m ≤ ϵm∀m ∈ [M ] with probability at least 1 − δ. Hence, by the

union bound we have that the following holds with probability at least 1− δ

|⟨g(m)(θ), θ̂m⟩ − ⟨g(θ), θ⋆⟩| ≤ ϵm(2
√
d+ 1) +

√
4d

Tm

log(
M |Θ′|

δ
)∀θ ∈ Θ′∀m ∈ [M ]. (2.22)

Hence, with probability at least 1 − δ, the best arm is not eliminated and the arms that are not

eliminated at the end of batch m, will have a gap that is at most twice the confidence interval in (2.22),

otherwise, they satisfy the elimination criterion with θ⋆. Hence, the sum regret
∑M

m=1R
Λϵm
Tm

(Lm) is
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bounded as follows with probability at least 1− δ

M∑
m=1

R
Λϵm
Tm

(Lm) ≤
√
T + c′

M∑
m=1

ϵm(2
√
d+ 1)Tm+1 + c′

√
4d

Tm

log(
M |Θ′|

δ
)Tm+1

=
√
T + c

√
d log(

M |Θ′|
δ

)
M∑

m=1

Tm+1√
Tm−1

+
Tm+1√
Tm

(i)

≤
√
T + 2c

√
d log(

M |Θ′|
δ

)
M∑

m=1

Tm+1√
Tm−1

+
√
T

(ii)

≤
√
T + 2c

√
d log(

M |Θ′|
δ

)
M∑

m=1

√
T +
√
T

≤ c′′
√

dT log(
M |Θ′|

δ
) log log T, (2.23)

where (i) uses (2.19) and the fact that either Tm+1 ≤
√
2Tm or Tm+1 = Tm ≤

√
2TTm, and (ii)

follows from the fact that either (Tm = Tm−1 and Tm+1 ≤
√
2TTm) or (Tm ≤

√
2TTm−1 and

Tm+1 = Tm), hence, in both cases we have Tm+1 ≤
√
2TTm−1. The results follow by Theorem 2

and the union bound.

As in Section 2.5.1, this implies that RT = O(d
√

T log(T ) log log T ) with probability at least

1− 1/T , which strengthens the result in [RYZ21] to high probability result and also improves a

factor of log d in the regret bound. Moreover, as will be seen in the following appendices, if θ⋆ is

s-sparse, Theorem 3 implies a regret bound of O(
√
dsT log T log log T ) with probability at least

1− 1/T . To the best of our knowledge, this is the first nearly optimal algorithm for sparse unknown

parameters that uses O(log log T ) batches.

2.5.3 Misspecified Contextual Linear Bandits

Our reduction framework can be used to improve regret bounds for misspecified contextual linear

bandits. By noticing that for ϵ misspecified contextual linear bandits, the total amount of misspecifi-

cation in epoch m is bounded by ϵm + ϵ with high probability, the following result follows directly

from [LSW20].
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Algorithm 2 Batched algorithm for linear bandits with stochastic context

1: Input: confidence parameter δ, and phase lengths {t(m)}Mm=1.

2: Initialize: g(1) : Θ′ → Rd randomly, Θ1 = Θ′, and let X1 = {g(1)(θ)|θ ∈ Θ′}.
3: for m = 1 : M do

4: Find design ρ : Xm → [0, 1] with maxa∈Supp(ρ) ∥a∥2G−1(ρ) ≤ 2d, |Supp(ρ)| ≤ 4d log log d+

16, where G(ρ) =
∑

a∈Supp(ρ) ρ(a)aa
T .

5: Compute u(x) = ⌈ρ(x)Tm⌉ and u =
∑

x∈Supp(ρ) u(x).

6: Use the policy described by at = argmaxa∈At ⟨a, θ⟩ for u(g(m)(θ)) times for each θ ∈ Θm

with g(m)(θ) ∈ Supp(ρ).

7: θ̂m = (
∑

g∈Supp(ρ) u(g)gg
T )−1

∑u
i=1 rig

(m)(θi).

8: Update: Θm+1 =
{
θ ∈ Θm|maxθ′∈Θm ⟨θ̂m, g(m)(θ′)− g(m)(θ)⟩ ≤ γm

}
, γm =

10
√

d
Tm−1

log(M |Θ′|/δ).
9: Update: g(m+1)(θ) = 1

t(m+1)

∑t(m+1)

t=1 argmaxa∈At ⟨a, θ⟩, and Xm+1 = {g(m+1)(θ)|θ ∈ Θ′}.

Theorem 4. For contextual linear bandits with known misspecification that is bounded by ϵ,

Algorithm 1 with Λϵm being PE with γm = 6d
√
log(T )/Tm + ϵ

√
d achieves a regret bound

RT ≤ c(d
√
T log(T/δ) + ϵ

√
dT ) (2.24)

with probability at least 1− cδ.

If ϵ is unknown, [LSW20] showed that PE achieves a regret upper bounded by O(d
√

T log(T )+

ϵ
√
dT log T with high probability. We notice that the dependency on ϵ has an extra log T factor

as compared to the known misspecification result. To avoid adding the log T factor in the term

containing ϵm, we exploit the knowledge of ϵm to modify the confidence intervals in PE. We note that

following the same analysis in [LSW20] by replacing ϵ with ϵ+ ϵm results in the same concentration

of estimated means except for constant factors, which implies the following result.

Theorem 5. For contextual linear bandits with unknown misspecification that is bounded by ϵ,
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Algorithm 1 with Λϵm being PE with γm = 6d
√
log(T )/Tm achieves a regret bound

RT ≤ c(d
√

T log(T/δ) + ϵ
√
dT log T ) (2.25)

with probability at least 1− cδ.

Proof. The proof follows similar steps as in the proof of Proposition 5.1 in [LSW20] with different

constants due to the change in γm.

We note that as PE is performed in each epoch, the number of batches is Ω(log2 T ). However,

we constructed the algorithm this way only for simplicity. It is possible to perform PE once and

update the estimates of g at the end of each batch similar to Algorithm 2.

2.5.4 Bandits with Adversarial Corruption

Our reduction directly extends the results for linear bandits with adversarial corruption to the

contextual setting while maintaining the same regret bounds up to log factors. This leads to

Õ(d
√
T + d1.5C) high probability regret bound as opposed to the best known Õ(d4.5

√
T + d4C)

regret bound. It was shown in [BLK21] that PE with modified confidence intervals achieves an

Õ(d
√
T +d1.5C) high probability regret bound for unknown corruption C. A model selection based

approach in [FGM20] that uses PE as a subroutine is shown to generalize this result for unknown

C without changing the regret bound except for log factors. By adapting the confidence intervals

of PE to account for the known ϵm misspecification the Õ(d
√
T + d1.5C) high probability regret

bound extends for a model with O(
√

d log T/T ) misspecification and known corruption C. We

will modify the PE confidence interval to be

γm = 8d
√
log(T )/t(m) +

2C(4d log log d+ 18)

Tm

√
8d. (2.26)

The model selection approach in [FGM20] implies the following result.

Theorem 6. For contextual linear bandits with unknown corruption that is bounded by C, Algo-

rithm 1 with t(m) = 2m−1 and Λϵm being G-COBE in [FGM20] with PE, that uses γm in (2.26), as
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a subroutine, achieves

RT = Õ(d
√
T + d1.5C) (2.27)

with probability at least 1− c/T .

Proof. The proof follows by proving a regret bound for PE with the chosen γm for known C. Then

use the model selection result in [FGM20] to prove a regret bound for unknown C and finally apply

our main theorem to bound the final regret.

We notice that

|⟨g(m)(θ), θ̂m⟩ − ⟨g(θ), θ⋆⟩| ≤ |⟨g(m)(θ), θ̂m − θ⋆⟩|+ |⟨g(m)(θ)− g(θ), θ⋆⟩|. (2.28)

Using Lemma 1 in [BLK21] and equation (2.20) to bound the first term and Proposition 3 to bound

the second term, we obtain that |⟨g(m)(θ), θ̂m⟩−⟨g(θ), θ⋆⟩| ≤ γm/2 with probability at least 1−c/T .

A standard calculation in Theorem 1 in [BLK21] implies a regret bound of Õ(d
√
T + d1.5C) with

high probability. Hence, Theorem 4 in [WDZ22] implies a regret bound of Õ(d
√
T + d1.5C) with

high probability for G-COBE with unknown C. Applying Theorem 2 and proceeding as in equation

(2.15) concludes the proof.

2.5.5 Sparsity

For linear contextual bandits with s-sparse unknown parameter, our reduction can be used to prove

O(
√

dsT log(T )) regret bound with high probability as opposed to the best known O(
√
dsT log2 T )

regret bound. It is not hard to show that there is 1/T cover with size at most (6T )2s+1 in that case;

also proved below for completeness. The following result directly follows from Corollary 2.

Theorem 7. For Algorithm 1 with t(m) = 2m−1 and Λϵm to be PE with γm = 6
√

2ds log(T/δ)/t(m)

it holds that with probability at least 1− cδ we have that RT = O(
√

dsT log(T/δ)).

Proof. By Corollary 2, we only need to show that Θ contains an 1/T -net with size at most (6T )2s+1.

We have that there is 1/2T -net for {ϕ ∈ Rs|∥ϕ∥2 ≤ 1} with size at most (6T )s. To construct
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s-sparse vectors in Rd, there is
∑s

i=1

(
d
i

)
ways to choose the non-zero entries. This implies that the

set {θ ∈ Rd|∥θ∥2 ≤ 1, ∥θ∥0 ≤ s} has 1/2T -net N of size at most

|N | ≤ (6T )s
s∑

i=1

(
d

i

)
≤ (6T )s

s∑
i=1

di ≤ (6T )sds+1 ≤ (6T )2s+1. (2.29)

We next construct an 1/T -net that is subset of Θ (recall that this is required for Theorem 2). For

every x ∈ N , let Nx = {θ ∈ Θ|∥θ − x∥ ≤ 1/2T}. Let α : N → |N| be an ordering of the set N .

And letN ′ ⊆ N be defined asN ′ = {x ∈ N|Nx ̸⊆ ∪y:α(y)≤α(x)Ny}. Hence, {Nx|x ∈ N ′} is a set

of pairwise disjoint sets. By the axiom of choice, there is a set N ′′ such that N ′′ contains exactly

one element of each set Nx∀x ∈ N ′. By construction of N ′′ we have that N ′′ ⊆ Θ.

We also have that for each θ ∈ Θ, there is x ∈ N with ∥x − θ∥2 ≤ 1/2T . Then for each

y ∈ Nx, we have by the triangle inequality that ∥y − θ∥2 ≤ 1/T . By the definition of N ′, we have

that ∪N ′ = ∪z∈NNz. Then, by construction of N ′′, there is z ∈ N ′′ such that z ∈ Nx. Hence,

∥z − θ∥2 ≤ 1/T . This implies that N ′′ ⊆ Θ is an 1/T -net of Θ. We also have by construction that

also that |N ′′| ≤ |N | ≤ (6T )2s+1.

2.5.6 Structured Unknown Parameters

In some cases, the dimension d can be large but the unknown parameter is mapped from a small

space of dimension s. In particular let f : Rs → Rd be such that Θ ⊆ {f(ϕ)|∥ϕ∥2 ≤ 1} and

∥f(ϕ)− f(ϕ′)∥2 ≤ c∥ϕ− ϕ′∥2, (2.30)

where c is a universal constant. Finding an 1/T -net for Φ = {ϕ|f(ϕ) ∈ Θ} implies a c/T -net for Θ

with the same size. Since Φ ⊆ {ϕ ∈ Rs|∥ϕ∥2 ≤ 1}, we have that there is an 1/T -net for Φ that is

contained in Φ with size at most (6T )s. The following result immediately follows from Corollary 2.

Corollary 3. Under the considered structured unknown parameters assumption, Algorithm 1 with

t(m) = 2m−1 and Λϵm to be PE with γm = 6
√

ds log(T/δ)/t(m) satisfies that with probability at

least 1− cδ we have that RT = O(
√

dsT log(T/δ)).
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2.6 Context Compression in Distributed Contextual Bandits

We consider a setup where a central learner wishes to solve a contextual linear bandit problem

with the help of transient agents. That is, we assume that the agents are distributed and may not be

present for the whole duration of learning. The central learner, through the information it keeps,

could help passing by devices decide how to perform an action, for example: passing by drones

decide how to perform a manoeuver; agricultural robots decide what amounts of substances such as

pesticids to release; and passing by mobile devices decide which local restaurants to recommend.

A main challenge in these applications is the efficient communication of the context the agents

experience. More specifically, each time an agent joins, she receives from the central learner

information on the system, such as current estimates of the system parameters; she observes her

current context, selects and plays an action and collects the corresponding reward. Although the

distributed agent knows her context, the action she plays and the observed reward, the central

learner does not - and needs this information to update its estimate of the system parameters. The

context in particular can be communication heavy - in the examples we mentioned before, for

drones the context could be their navigation capabilities, physical attributes, and enviromental

factors such as wind speed; for agricultural robots, it could be images that indicate state of plants

and sensor measurements such as of soil consistency; for restaurant recommendations, it could be

the personal dietary preferences and restrictions, budget, and emotional state. Moreover, because

of geographical separation, the central learner may not have any other way to learn the context

beyond communication. Unlike the reward, that is usually a single scalar value, the context can be

represented by a vector of a large dimension d from an infinite alphabet, and thus, communicating

the context efficiently is heavily nontrivial.

The reduction algorithm in Section 2.4.1 and Theorem 1, imply that if the context distribution is

known, then the agent does not need to share any information about the context to the learner.

Remark 1. Knowledge of the context distribution is possible in practice, since many times the

context may be capturing well studied statistics (e.g., male or female, age, weight, income, race,
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dietary restrictions, emotional state, etc) - the advent of large data has made and will continue to

make such distributions available. Similarly, actions may be finite (eg., restaurants to visit) or well

described (e.g., released amounts of substances), and thus the distribution could be derived.

We developed a context compression scheme for the case of unknown distribution in [HYF22a].

However, the number of bits required is Θ(d), as opposed to zero bits for the known distribution

case.

In addition to communication constraints, not sharing information about the context provides

privacy benefits, as we have shown in [HGF24].

2.7 Conclusion and Open Research Directions

In this chapter, we presented a novel reduction from stochastic contextual linear bandit problems to

(fixed-context) linear bandit problems; our reduction explains why results, that are not achievable

for adversarial contexts, are possible for stochastic contextual bandits, and offers a framework that

can be leveraged to gain new algorithms and bounds for contextual linear bandit problems. We

illustrate the power of our approach by applying it to achieve improved bounds over a number of

cases; this is not an exhaustive list, and we hope that our approach will be a useful tool to researchers

in this field.

We leave the following as open problems:

• Improving the regret bound of the reduction from Õ(d
√
T ) to Õ(

√
dT logK) when the

number of actions at each iteration |At| ≤ K is small. The challenge is that the number of

actions of the reduced linear bandit problem |X | may be large, while |At| is small for all t.

• Extending the reduction to slowly varying context distributions, and to the linear Markov

decision processes (MDPs).

• Extending the reduction to non-linear contextual bandits.

36



CHAPTER 3

A Computationally-Efficient Algorithm for Batched Linear

Contextual Bandits

3.1 Summary

In this chapter, we provide the first efficient batched algorithm for contextual linear bandits with

large action spaces. Unlike existing batched algorithms that rely on action elimination, which are

not implementable for large action sets, our algorithm only uses a linear optimization oracle over

the action set to design the policy. The proposed algorithm achieves a regret upper bound Õ(
√
T )

with high probability, and uses O(log log T ) batches, matching the lower bound on the number of

batches [GHR19]. When specialized to linear bandits, our algorithm can achieve a high probability

gap-dependent regret bound of Õ(1/∆min) with the optimal log T number of batches, where ∆min

is the minimum reward gap between a suboptimal arm and the optimal. Our result is achieved via

the reduction introduced in Chapter 2, and a novel soft elimination approach, that entails “shaping"

the action sets at each batch so that we can efficiently identify (near) optimal actions.

3.2 Introduction

In numerous real-world use cases, the learner may be restricted to change the policy a limited (small)

number of times.This constraint may stem from factors such as computation or communication

considerations, or may be imposed by the nature of the application, as is the case in multi-stage

clinical trials or online marketing campaigns with high response rates, where it is not feasible to
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update the policy after each response. Similarly, the use of crowdsourcing platforms or the need to

conduct time-consuming simulations in reinforcement learning may require policies with limited

adaptivity. As a result, there has been significant interest in designing algorithms that can achieve

the optimal regret with limited policy switches [PRC16, AAA17, PAS18, GHR19, EKM21, JXX21,

RYZ21,HZZ20]. This setup is known as the batched contextual linear bandit problem: the T rounds

are partitioned into batches, and the learner can collect rewards and update the action selection

policy only at the end of each batch.

Large Action Space. Contextual linear bandit applications frequently need to explore an extremely

large (even continuous) set of actions, e.g., millions of products to be recommended. As other

examples, in the classical bandit problem of clinical trials, each decision involves selecting a

treatment option from a potentially infinite set of mixed treatments [Gro97]. In manufacturing

problems, the goal is often to maximize revenue by selecting from a very large set of decisions, with

the revenue associated with each decision being unknown [TVV04]. Additionally, in applications

where actions correspond to images in a database or high-dimensional embeddings of complex

documents like webpages, the set of actions can be vast [LCL10, ACE08]. As a result, there is a

strong interest in algorithms that can be efficiently implemented when the action space is large or

infinite [DHK08, AK08, HK16, YRS22, ZFL22].

While computationally-efficient batched algorithms exist for contextual linear bandits with

small action sets, and efficient ones that are not batched exist for contextual linear bandits with

large action sets, to date, there are no efficient batched algorithms that can handle large action

spaces. Existing batched algorithms for contextual linear bandits [RYZ21, HZZ20] rely on action

elimination that requires a linear scan of the action set; while efficient non-batched algorithms for

large action spaces do not extend to the batched setting [RYZ21, HZZ20] (see related work in the

following for more details).
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3.2.1 Our Contributions

In this chapter, we provide the first efficient batched algorithm for contextual linear bandits with

nearly optimal regret upper bound of Õ(d3/2
√
T ) with high probability, while using O(log log T )

batches, which matches the lower bound on the number of batches required to achieve
√
T -type

regret bounds [GHR19]. For linear bandits, our algorithm can attain a high probability gap-

dependent regret bound of Õ(d3/∆min) with the optimal log T number of batches [GHR19], where

∆min represents the minimum reward gap between a suboptimal arm and the optimal.

Our algorithm for linear bandits, that we term SoftBatch, builds on a form of “soft elimination”.

Our observation is that, a good algorithm should be able to approximate the gap ∆(a) between

each action a ∈ A and the optimal one with O(∆(a)) accuracy; and if we can do that, then we can

use this knowledge to limit the number of times we play suboptimal actions, as well as use this

knowledge to select which actions we want to play at all. As essentially all batched algorithms

do, at each batch we select and play (a small number of) actions that enable to estimate well the

unknown parameter vector without incurring large regret. In particular, for each batch, we choose

a set of well-behaved basis actions (e.g., a barycentric spanner [AK08]), established by calling

an optimization oracle polynomial times. However, instead of selecting at batch m, vectors from

the “true” action set A, we consider virtual “weighted” sets Ãm, where each action’s magnitude

is weighted inversely proportional to the estimated gap ∆(a), and select vectors guided by these

weighted action sets. Then we play each basis action a a number of times inversely proportional

to the square of the estimated gap ∆(a) to preserve small regret. This in return provides us an

accurate estimator for the optimal parameter by the benign properties of the basis actions. Thus

our approach implements a form of soft elimination (shaping) of the action set, where the actions

closest to the optimal become increasingly dominant. A crucial part in our design is that we never

actually calculate the gaps ∆(a) for all actions a ∈ A (only for the basis actions). The exploration

policy we propose uses solely a linear optimization oracle applied to the original action set.

Our contextual bandit algorithm utilizes the reduction technique in Chapter 2 to transform the
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problem into a linear bandit problem. We incorporate the reduction into our batched linear bandit

algorithm, by constructing an efficient linear optimization oracle for the exponentially large action

set in the reduced problem using a linear optimization oracle for the original action sets (contexts).

Our proof techniques may be of independent interest. We develop a novel approach to bound

regret in linear bandits, we design an efficient exploration policy using inverse squared gap weighting,

and a simple method to handle the case where the action set does not span Rd, where d is the problem

dimension. Our approach avoids the necessity of imposing assumptions, such as the one in [ZFL22],

which entails having a subset of d actions forming a matrix with determinant at least rd for a

constant r. These assumptions can be strong, particularly when dealing with changing action sets,

and may not hold after modifying the action set, for instance, by eliminating or weighting actions.

3.2.2 Related Work

Contextual linear and linear bandits have had significant impact both in theory and practice [APS11,

DHK08,LWZ19,LWC21,LS20, LCL10,TM17, ABC16,BBG12, CGL21]). The best performing

algorithms achieve a regret bound Õ(d
√
T )1 [APS11, DHK08], matching the regret lower bound

Ω(d
√
T ) [LS20]. The same algorithms achieve a nearly optimal regret upper bound Õ( d2

∆min
) if

the minimum gap of suboptimal arms is lower bounded by ∆min. However, the resulting policies

require updates at every time step and involve solving a non-convex optimization problem, which is

not practical for large action spaces [Sah74, DHK08].

Batched algorithms. Existing batched algorithms for contextual linear bandits [RYZ21, HZZ20,

HYF23] have achieved nearly optimal regret upper bounds of Õ(d
√
T ). However, these algorithms

rely on action elimination, which involves either performing a linear scan on the action set or

solving an optimization problem over the non-convex set of good (not eliminated) actions to

design and implement the policy at each time step. Similarly, batched algorithms for linear

bandits [LSW20, EKM21] also rely on action elimination. Although, unlike contextual bandits, the

1Õ hides log factors.
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elimination constraint in linear bandits can be linear, which can be exploited to efficiently compute

the policy (under certain assumptions) [AK08], resulting in an Õ(d3/2
√
T ) regret upper bound, it

requires solving an optimization problem over the action set with an elimination constraint. This

can be much harder than solving the optimization problem over the action set without additional

constraints for some sets, such as the non-convex set resulting from the reduction of contextual to

linear bandits in Chapter 2.

Efficient algorithms for large action spaces. There is a long line of work on efficient algorithms

for linear bandits that only rely on a linear optimization oracle over the action set [AK08, DHK08,

BCK12, HK16, IHS19]. However, these algorithms cannot be extended to the batched setting

without extra assumptions on the action set, and more importantly, they do not extend to the batched

contextual setting. Existing efficient algorithms for contextual linear bandits [AG13b, ZFL22,

DHK08] can achieve Õ(d3/2
√
T ) regret bound, but it remains unclear if they can be extended to

the batched setting, particularly given the challenge posed by changing action sets. Another line

of work attempts to design efficient algorithms using hashing-based methods to approximate the

maximum inner product [YRS22, JBN17], but these methods result in complexity that is sublinear

but still polynomial in the number of actions.

Table 3.1 summarizes how our results position w.r.t. related work.

3.3 Model and Notation

Notation. We use [n] for a natural number n to denote the set {1, · · · , n}; 1(E), for an event E, to

denote the indicator function which returns 1 if E holds and 0 otherwise; Br = {a ∈ Rd|∥a∥2 ≤ r}
to denote the ball of center 0 and radius r; Sr = {a ∈ Rd|∥a∥2 = r} to denote the sphere of center

0 and radius r; and ∥a∥V =
√
a⊤V a to denote the matrix norm of a vector a ∈ Rd with respect to

a positive semi-definite matrix V . Table B.1 in App. B.1 summarizes our notation.
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Algorithm Regret Bound Context Efficient Number of batches

[LSW20, EKM21] Õ(d
√
T ) % requires as-

sumptions

O(log T )

[AK08, DHK08,

BCK12, HK16, IHS19]

Õ(d
√
T ) % ✓ T

[APS11, DHK08] Õ(d
√
T ) ✓ % T

[RYZ21, HZZ20,

HYF23]

Õ(d
√
T ) ✓ % O(log log T )

[AG13b, ZFL22,

DHK08]

Õ(d3/2
√
T ) ✓ ✓ T

Chapter 3 Õ(d3/2
√
T ) ✓ ✓ O(log log T )

Table 3.1: Comparison with related work

Contextual Linear Bandits. We consider a contextual linear bandit problem over an horizon

of length T , where at each round t ∈ [T ], the learner receives a set of actions At ⊆ Rd sampled

from an unknown distribution D independently from other rounds. The learner plays an action

at ∈ At and receives a reward rt = ⟨at, θ⋆⟩+ ηt, where θ⋆ is an unknown system parameter vector

with θ⋆ ∈ Rd, and ηt is noise that is zero mean conditioned on the filtration of historic information

(A1, a1, r1, · · · ,At, at). The learner adopts a policy that maps the history (A1, a1, r1, · · · ,At) to a

distribution over the action set At, with the objective of minimizing the pseudo regret defined as

RT =
T∑
t=1

sup
a∈At

⟨a− at, θ⋆⟩. (3.1)

For simplicity, we assume that At is compact for all t ∈ [T ] almost surely, which ensures the

existence of an action aθ ∈ At that attains the supremum supa∈At
⟨a, θ⟩. Non-compact sets

can be handled using sufficiently small approximations. We also adopt the following standard

assumption [LS20].
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Assumption 1. (Boundedness.) θ⋆ ∈ B1, At ⊆ B1, and |rt| ≤ 1 almost surely ∀t ∈ [T ].

Linear Bandits. Recall from Chapter 2 that changing the action set over time enables to model

contextual information. If the action space is fixed, namely, At = A for for all t ∈ [T ], the

problem is known as Linear Bandits. For Linear Bandits, we denote an optimal action by a⋆ =

argmaxa∈A ⟨a, θ⋆⟩ and define the gap ∆a = ⟨a⋆ − a, θ⋆⟩ for all actions a ∈ A.

Batched Setting. In a batched setting, the learner is only allowed to change the policy at M

pre-chosen rounds, where M is the number of batches. Batch m includes Tm rounds, m ∈ [M ],

with
∑M

m=1 Tm = T . In each batch, the learner adopts a policy π that takes as input the action set

At along with all the previous history except for rewards observed in the current batch, and outputs

a distribution over the action set At. In particular, the rewards of the actions pulled in the current

batch are utilized solely to update the policy at the end of the batch.

Regularized least squares. Let {ai, ri}ni=1 be a sequence of n pulled actions and observed rewards

over n rounds. The regularized least squares estimate θ̂ of θ⋆ based on this action-reward sequence

can be calculated as

θ̂ = V −1

n∑
i=1

riai, (3.2)

where V = λI+
∑n

i=1 aia
⊤
i , and λ is the regularization parameter.

Goal. Our goal is to design efficient batched algorithms for Contextual Linear and Linear Bandits

with large (even infinite) action spaces that achieve (nearly) optimal regret.

We will do so by making use of the linear optimization oracles defined next.

Definition 2. A linear optimization oracle for a set A is a function O(A; .) which takes as input

θ ∈ B1 and outputs O(A; θ) ∈ A with ⟨O(A; θ), θ⟩ = supa∈A ⟨a, θ⟩. An approximate linear

optimization oracle with additive error at most ϵ for the set A is a function O+
ϵ (A; .) : B1 → A

that satisfies ⟨O+
ϵ (A; θ), θ⟩ ≥ supa∈A ⟨a, θ⟩ − ϵ, ∀θ ∈ B1. An approximate linear optimization

oracle with multiplicative error 0 < α < 1 for the set A is a function O×
α (A; .) : B1 → A that

satisfies ⟨O×
α (A; θ), θ⟩ ≥ (1− α) supa∈A ⟨a, θ⟩, ∀θ ∈ B1.
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Assumption 2. (Linear optimization oracle.) We assume that we can access a linear optimization

oracle O(At; .) for each set of actions At with running time at most Topt and space complexity

Mopt.

We note that assuming a linear optimization oracle over At is natural [AK08, DHK08, BCK12,

HK16, IHS19, ZFL22] since even if the learner perfectly learns the unknown parameter vector θ⋆,

the learner still needs to solve supa∈At
⟨a, θ⋆⟩ to minimize the regret in (3.1).

3.4 Efficient Soft Elimination Algorithm for Linear Bandits

In this section we propose and analyze an algorithm (which we call SoftBach and describe in

Algorithm 3) for linear bandits, that is, when At = A.

3.4.1 Main Result

The following two theorems, proved in App. B.4 and B.5, respectively, formally state that Algo-

rithm 3 achieves (nearly) optimal regret using M = ⌈log log T ⌉+ 1 batches with sample and time

complexities polynomial in d and linear in T . We provide the algorithm description in Section 3.4.2

and a proof outline in Section 3.4.2.

Theorem 8. Consider a linear bandit instance with action set A ⊆ Rd and horizon T . There exists

a universal constant C and a choice for the batch lengths such that Algorithm 3 finishes in at most

M = ⌈log log T ⌉+ 1 batches with regret bounded as

RT ≤ Cγ
√
T log log T with probability at least 1− δ, (3.3)

where γ = 8d
√

CL(log(1/δ) + log T ), CL = e8d and δ is a parameter. Moreover, if ∀a ∈ A with

∆a > 0 we have ∆a ≥ ∆min, then there exists a choice of batch lengths so that Algorithm 3 finishes

in at most M = log4 T batches with regret bounded as

RT ≤ C
γ2

∆min

log T with probability at least 1− δ. (3.4)
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Our regret bounds achieve nearly optimal dependency on T , and match the best known regret

bounds of Õ(d3/2
√
T ) for (unbatched) efficient contextual linear bandit algorithms [AG13b, ZFL22,

DHK08], while losing a
√
d factor when compared to the Ω(d

√
T ) lower bound [LS20]. This extra

√
d factor is due to relying on the best known method to design a notion of spanner of the set

of actions (as we explain in section 3.4.2) with radius
√
CL = O(

√
d) using linear optimization

oracles. Any future improvement that reduces the radius from O(
√
d) to O(1) will immediately

result in nearly optimal regret bounds for Algorithm 3. The following result upper bounds the time

and space complexity.

Theorem 9. Algorithm 3 finishes in Õ(Td2 + d4M + Toptd
3M) runtime and uses Õ(d2 +Mopt)

memory, where Topt,Mopt are the time and space complexity of the linear optimization oracle.

We observe that unlike algorithms that require a linear scan on the action set, our space and time

complexities are polynomial in the parameters d, T , and Topt.

3.4.2 SoftBatch (Algorithm 3) Description

Intuition. The main intuition behind SoftBatch is that, we do not need to necessarily eliminate

suboptimal actions; it suffices to be able to select and play a small set of unique actions Cm in each

batch m, that allows to estimate increasingly well the parameter vector θ∗ and the best action a⋆

while playing suboptimal actions for a small number of times. Our algorithm proposes a novel way

to select such sets Cm efficiently, through a form of “action set shaping" that we will describe in this

section. Additionally, to learn θ∗ while achieving a (nearly) optimal regret, SoftBatch plays each

action a ∈ Cm a number of times ∝ 1/∆2
a, where ∆a = ⟨a⋆ − a, θ⋆⟩ is the gap for action a (i.e.,

we play the suboptimal actions in Cm for a small number of times so as not to accumulate regret).

SoftBatch enables to estimate the gap ∆a within a constant factor for any action a (yet only does so

for a limited number of actions in each batch), and essentially uses the gaps ∆a as a guide on which

actions to play and for how many rounds each.

Steps. SoftBatch (Algorithm 1) takes as input the action set A ⊆ Rd, the horizon T , the number of
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Algorithm 3 [SoftBatch] A Batched Algorithm for Linear Bandits

1: Input: action setA ⊆ Rd, horizon T , number of batches M , batch lengths {Tm}Mm=1, confidence

parameter δ.

2: Let A′ = A ∪ B1/T , CL = e8d, γ = 8d
√

CL(log(1/δ) + log T ).

3: Initialize: θ1 = 0, a⋆1 is a random action in A, ∆1(a) = 1 ∀a ∈ A′, and T0 = 1.

4: for m = 1 : M do

5: Calculate {a1, . . . , ad} = LWS(A′, ηm =
√
Tm−1/(8γ), a

⋆
m, θm).

6: For the set {a1, . . . , ad} assign π(i) = 1
d
, ∀i ∈ [d].

7: for i = 1 : d do

8: If ai /∈ B1/T , calculate ∆m(ai) = ⟨a⋆m − ai, θm⟩ and pull it nm(i) =

⌈ π(i)Tm/8

(1+
√

Tm−1∆m(ai)/(8γ))2
⌉ times. go to step 10 if the number of pulls in the current batch reaches

Tm. Terminate Algorithm 3 if the total number of pulls reaches T .

9: Pull action a0 = a⋆m for max{0, Tm −
∑d

i=1 nm(i)} times.

10: Compute the regularized (with λ = 1) least squares estimator Vm = I +
∑Tm

i=1 ãiã
⊤
i and

θm+1 = V −1
m

∑Tm

i=1 riãi, and ãi is the action pulled in i-th round of the batch.

11: Update a⋆m+1 = O+
1
T

(A; θm+1).

batches M , and the batch lengths {Tm}Mm=1 , and operates as follows2.

In batch m, the algorithm starts with a current estimate of the parameter vector θ⋆, which we

call θm, and an estimate of the optimal action a⋆ which we call a⋆m; note that given these, we are

able to estimate for any action a ∈ A the gap ∆m(a) = ⟨a⋆m − a, θm⟩ (but we will only do so for

the actions the algorithm actually plays). The algorithm then calls LWS, a Linear Weighted Spanner

subroutine (described in Algorithm 2), that it feeds with an augmented action space A′ = A∪ B1/T
for reasons we will explain later. LWS selects d actions Cm = {a1, · · · , ad} to play in batch m (note

that some of these may belong to B1/T and will in this case not be played). Each of these d actions

ai is pulled nm(i) ∝ π(i)
∆m(ai)2

times, where π(.) is a uniform exploration distribution with value 1/d

2We discuss how to select M and {Tm} in App. B.4.
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for all the d actions. We show in the proof of Theorem 8 that
∑d

i=1 nm(i) ≤ Tm, ∀m ∈ [M ], with

high probability. To guarantee that the length of the batch is Tm, the algorithm pulls a⋆m for the

remaining rounds, if needed. At the end of the batch, the algorithm updates its estimate θm+1 of the

unknown parameter vector using regularized least squares.

The remaining core part of the algorithm to discuss is the subroutine LWS, and we do so next.

We start by providing our reasoning behind the LWS design.

The LWS Algorithm. Recall that we want LWS at each batch m to select d vectors {ai} ⊆ A′ such

that, by playing each nm(i) times, we can create a least-squares estimate θm+1 of θ∗ that allows an

accurate estimate of the product ⟨a, θ⋆⟩ for all a ∈ A. It is well-known (see [LS20]) that the error in

estimating ⟨a, θ⋆⟩ is proportional to ∥a∥V −1
m

, where Vm = I+
∑Tm

i=1 aia
⊤
i is the least squares matrix

we used to estimate θm+1. Thus, essentially we want LWS to select d vectors {ai} that maintain a

small ∥a∥V −1
m

for all actions a ∈ A3. We can do so using what is called a G-optimal design [KW60].

Definition 3. (G-optimal design) For any set A ⊆ Rd, a subset S ⊆ A, together with a distribution

π over S is said to be a C-approximate optimal design for A if for any a ∈ A

∥a∥2
V −1
π
≤ Cd, (3.5)

where Vπ =
∑

ai∈S π(i)aia
⊤
i

4. When C = 1 this is referred to as a G-optimal design.

Notice that if we were to play each action ai for nπ(i) times, then Vπ would be (approximately)

a normalized least squares matrix since Vπ + I/n = V /n, and hence, ∥a∥2V −1 ≤ ∥a∥2V −1
π

/n.

It is well-known that for any compact set, there exists a 1-approximate optimal design [KW60]

with |S| = d. However, computing an 1-approximate optimal design is NP-hard in general

[GLS12, SEF14], even for small action sets. Computing a 2-approximate optimal design can be

done in polynomial time [Tod16], but the complexity scales linearly with the size of the action

3Adding reward samples from the estimated best action a⋆m can only improve the least squares estimator.

4This summation assumes finiteness of the set S which suffices for our application.
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set. Instead, we adopt an approach introduced in [AK08], which efficiently constructs an O(
√
d)-

approximate optimal design using only a linear optimization oracle. This relies on the concept of a

barycentric spanner, which we define next.

Definition 4. (Barycentric spanner) For any set A ⊆ Rd, a subset S = {a1, · · · , ad} ⊆ A is said

to be a C-approximate barycentric spanner for A if any a ∈ A can be expressed as a linear

combination of vectors in S with coeficients in [−C,C].

It is easy to see that a C-approximate barycentric spanner together with a uniform distribu-

tion π(i) = 1/d results in a C
√
d-approximate optimal design [HK16, ZFL22]. And importantly, a

C-approximate barycentric spanner for a set A can be constructed using at most O(d2 logC d) calls

of a linear optimization oracle over the set A [HK16].

However, this is still not sufficient for us. Even though we can efficiently construct a C
√
d-

approximate optimal design forA, we do not want to pull these arms according to a uniform distribu-

tion; we want to pull action ai with estimated gap ∆m(ai) for

nm(i) = ⌈π(i)Tm/(1 +
√
Tm−1∆m(a)/(8γ))

2⌉ times to control the regret (which can be thought

of as using a weighted distribution5). But if we do not use the uniform distribution, the resulting

least squares matrix Vm may not satisfy that ∥a∥V −1
m

is sufficiently small for all actions a.

To account for this, instead of finding a C-approximate barycentric spanner for the set A, at

each batch m we consider a virtual action set Ãm, which we define as

Ãm = {ϕm(a)|a ∈ A}, ϕm(a) =
a

1 + ηm∆m(a)
, (3.6)

where ηm =
√
Tm−1/(8γ) and find actions {a1, · · · , ad} ∈ A such that {ϕm(ai)}di=1 forms a C-

approximate barycentric spanner for Ãm. The least squares matrix at batch m can be bounded

as

Vm = I+
d∑

i=0

ñm(i)aia
⊤
i ≥

d∑
i=1

π(i)Tm/8

(1 + ηm∆m(ai))2
aia

⊤
i =

d∑
i=1

π(i)
Tm

8
ϕm(ai)ϕm(ai)

⊤ (3.7)

5The technique of inverse gap weighting was employed in [AL99,ZFL22], albeit with a different weighting approach
using inverse gap instead of squared inverse gap, as utilized in our proposed schemes.
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with high probability6, where ñm(i) is the number of times action ai is played in batch m

and a0 = a⋆m. That is, playing actions {a1, · · · , ad} ∈ A for nm(i) times each, can equivalently

be thought of as playing actions {ϕ(a1), · · · , ϕ(ad)} ∈ Ãm for π(i)Tm times each; and since

{ϕ(a1), · · · , ϕ(ad)} form an approximate optimal design (through a barycentric spanner) for the set

Ãm, the resulting least squares matrix will lead to small ∥ϕm(a)∥V −1
m

values. In our proofs we show

that a small enough ∥ϕm(a)∥V −1
m

implies ∥a∥V −1
m

= O(∆a) as a result of the scaling in ϕ(a). We

prove in Lemma 16 in App. B.4 that this allows to estimate ∆a within a constant factor, which is all

we need.

Intuitively, the virtual set Ãm weighs the actions inversely proportional to the estimated gap

∆m(a) and batch length
√
Tm−1: the larger the gap and Tm−1, the smaller magnitude the corre-

sponding action has; this implements a form of soft elimination (shaping) of the action set, where

the actions closest to the optimal become increasingly dominant as the batch length increases while

the remaining fade out to zero. As a result, as m increases, the span of the optimal design focuses

on the space where actions have small gaps, allowing to better distinguish among them.

To complete SoftBach (Algorithm 1), one last step is missing. LWS (Algorithm 4) follows

standard steps (in Algorithm 4, see [AK08] for detailed explanation) to calculate the C-approximate

barycentric spanner for Ãm. But to follow these steps, it requires the ability to solve the non-

linear optimization problem supa∈A ⟨ϕm(a), θ⟩, since ϕm(a) = a/(1 +
√
Tm−1∆m(a)/(8γ)) is

nonlinear in a. To do so, we will use7 an approximate oracle with multiplicative error, that we term

LW-ArgMax and describe next.

LW-ArgMax Algorithm. LW-ArgMax (Algorithm 5) constructs an approximate oracle with

(1 − α)-multiplicative error for the optimization supa∈A ⟨ϕm(a), θ⟩. This is sufficient: we show

6We show in the proof of Theorem 8 that
∑d

i=1 nm(i) ≤ Tm∀m ∈ [M ] with high probability, hence, all the required
nm(i) action pulls can be finished within the batch.

7A related problem was faced in [ZFL22], but with a different function hence, the resulting strategy does not apply
in our case. Both [ZFL22] and our solution use the standard idea of line search, albeit with different steps and different
number of iterations. The proof that our line search provides an approximate optimization oracle turns out to be much
more involved than that of [ZFL22].
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Algorithm 4 Linear Weighted Spanner (LWS) Algorithm

1: Input: set of actions A, parameter η, estimated best action â, estimated parameter θ̂.

2: Initialize: ãi = ei, where ei is the i-th basis vector of dimension d. Let A = [ã1, · · · , ãd].
3: Let C = exp(1), ∆(a) = ⟨â− a, θ̂⟩, ϕ(a) = a/(1 + η∆(a)).

4: for i = 1, · · · , d do

5: Find θ with ⟨θ, ã⟩ = det(ã,A−i), ∀ã ∈ Rd.

6: a+ = LW-ArgMax(A; θ
∥θ∥2 , η, â, θ̂), a

− = LW-ArgMax(A; θ
∥θ∥2 , η, â,−θ̂).

7: ai = argmaxb∈{a+,a−} |⟨ϕ(b), θ⟩|, ãi = ϕ(ai).

8:

9: for i = 1, · · · , d do

10: Find θ with ⟨θ, ã⟩ = det(ã,A−i), ∀ã ∈ Rd.

11: a+ = LW-ArgMax(A; θ
∥θ∥2 , η, â, θ̂), a

− = LW-ArgMax(A; θ
∥θ∥2 , η, â,−θ̂).

12: a = argmaxb∈{a+,a−} |⟨ϕ(b), θ⟩|.
13: if |det((ϕ(a),A−i))| ≥ C|det(A)| then

14: ai = a, ãi = ϕ(a).

15: go to line 8.

16: Return: a1, · · · , ad.

in Lemma 3 that Algorithm 4 can use LW-ArgMax to compute a C/α-approximate barycentric

spanner for Ãm.

Recall that, before providing the action set A to Algorithm 4, SoftBatch extends to A′ =

A ∪ B1/T 8. This guarantees that: A′ spans Rd (required to find a barycentric spanner [AK08]), and

supa∈A′ ⟨a, θ⟩ ≥ 1/T for all θ with ∥θ∥2 = 1 which implies that any approximate optimization

oracle with additive error less than 1/(2T ) has multiplicative error of at most 1/2. The extension of

the set A results in the barycentric spanner possibly containing points not in A. However, we show

8The linear optimization problem maxa∈A′ ⟨a, θ⟩ can be solved by comparing maxa∈A ⟨a, θ⟩ and
maxa∈B1/T

⟨a, θ⟩ = 1/T .
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Algorithm 5 LW-ArgMax Algorithm

1: Input: set of actions A, θ ∈ S1, parameter η, estimated best action â, estimate θ̂, horizon T.

2: Let ∆(a) = ⟨â− a, θ̂⟩, ϕ(a) = a/(1 + η∆(a)).

3: Let W = 3 log T , N = 36W log2(T ), s = 1− 1/6 log T , ϵ′ = (1− exp(−1))/(12T 7+12 log T ).

4: Initialize z = 2W .

5: for i = 1, · · · , N + 1 do

6: θ̃ = (1 + 1/W )zθ + z1+1/Wηθ̂

7: ai = O+
ϵ′ (A; θ̃/∥θ̃∥2).

8: z ← zs.

9: Return: argmaxa∈{ai}Ni=1
⟨ϕ(a), θ⟩.

that removing these points only affects supa∈A ∥a∥V −1 by a constant factor, since B1/T has a small

radius. Extending the set A to A′ also handles the case where the span of A is smaller than Rd, that

was typically handled in literature by constructing a basis of A which can be complicated for some

sets.

LW-ArgMax then builds on the following observation (proved as part of the proof of Lemma 2):

argmax
a∈A′
⟨ϕ(a), θ⟩(⟨a, θ⟩)1/W = argmax

a∈A′
sup
z≥0

Lz(a), (3.8)

where Lz(a) = z ·(1+1/W ) ·⟨a, θ⟩−z1+1/W (1+η∆(a)) and ∆(a) = supb∈A ⟨b− a, θ⋆⟩ ∀a ∈ A′.

By choosing W to be large enough, the left hand side of (3.8) becomes a good approximation for

⟨ϕ(a), θ⟩. For a fixed z, the supremum on the right hand side of (3.8) reduces to a linear optimization

over the setA′ (that we solve using an approximate linear optimization oracle). Although the optimal

value of z is not known, it can be bounded (see equation (B.16) in App. B.2); thus LW-ArgMax

scans between upper and lower bounds on the optimal z with a constant multiplicative step. The

pseudo-code is provided in Algorithm 5.
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Proof Outline for Theorem 8

We start by proving that LW-ArgMax is an approximate linear optimization oracle for the set Ã
with 1− exp(−3) multiplicative error. The result is stated in Lemma 2 and proved in App. B.2.

Lemma 2. Let T ≥ 3, η ∈ R, â ∈ Rd, θ̂ ∈ BT be given parameters, and A be a given set. Let

∆(a), ϕ(a) denote ∆(a) = ⟨â− a, θ̂⟩, ϕ(a) = a/(1 + η∆(a)). If B1/T ⊆ A ⊆ B1, |η| ≤ T and

1/2 ≤ 1 + η∆(a) ≤ T 2, ∀a ∈ A, then for any θ ∈ S1, LW-ArgMax outputs an element a ∈ A
such that

⟨ϕ(a), θ⟩ ≥ exp(−3) sup
b∈{ϕ(b′)|b′∈A}

⟨b, θ⟩. (3.9)

The conditions of Lemma 2 are easy to verify for all batches m; namely, B1/T ⊆ A ⊆ B1 holds

as we extend the set of actions by adding B1/T before feeding it into Algorithm 5 and the condition

1/2 ≤ 1 + η∆(a) ≤ T 2, ∀a ∈ A is proved in Theorem 8 for all the inputs fed into Algorithm 5.

Given the result of Lemma 2, we next show that Algorithm 4 finds a C/α-approximate barycen-

tric spanner of the set Ãm, ∀m ∈ [M ]. This is done by slightly adapting the proof of Proposition

2.5 in [AK08] to work with approximate linear optimization oracles instead of exact oracles. The

result is stated in the following theorem and the proof is provided in App. B.3 for completeness.

Lemma 3. Let η ∈ R, â ∈ Rd, θ̂ ∈ Rd be given parameters, and A be a given set. Let ∆(a), ϕ(a)

denote ∆(a) = ⟨â− a, θ̂⟩, ϕ(a) = a/(1 + η∆(a)). Suppose that ⟨ϕ(LW-ArgMax(θ)), θ⟩ ≥
α supa∈A ⟨ϕ(a), θ⟩, then Algorithm 4 computes a C/α-approximate barycentric spanner for the set

Ã = {ϕ(a)|a ∈ A} with at most O(d2 logC(d/α)) calls to LW-ArgMax.

To build our regret bounds, we essentially prove that a number of pulls of ∝ π(i)
∆m(ai)2

for action

ai enables to estimate the gap ∆m(ai) within a constant factor of the real gap ∆ai . To do so, we start

by providing an error bound for estimating ⟨ϕm(a), θ⋆⟩ using standard sub-Gaussian concentration

inequalities. Then, through mathematical induction, we extend this bound to the error of the action

mean estimates ⟨a, θm⟩. Intuitively, if we believe that ⟨a, θm⟩ is a good estimate of ⟨a, θ⋆⟩ for all

actions, which implies ∆m(a) is a good estimate of ∆a at batch m, then even though the scale in
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ϕm+1 by ∆m(a), this property will continue to hold at batch m + 1. The constants multiplying

∆m(a) in ϕm are carefully designed to enable this. Finally, we show that the inverse squared gap

weighting of the distribution enables to tightly upper bound the regret. □

3.5 Algorithms for Contextual Linear Bandits

Our algorithm for contextual linear bandits is based on a technique proposed in Chapter 2, which

reduces the contextual linear to a linear bandit setting. However, we cannot directly apply the

reduction from Chapter 2 in Algorithm 3, as the reduction is not necessarily computationally

efficient. Instead, we build a new algorithm (see Algorithm 6) that incorporates reduction steps

within Algorithm 3. One challenge we encounter is the introduction of a large, non-convex action

set through the reduction process. To address this, we utilize the linear optimization oracle over the

new action set, proposed in Chapter 3, to ensure the efficiency of Algorithm 6. Additionally, the

reduction requires estimating the expected value of a function g, and we carefully design the batch

lengths to perform this estimation effectively.

We modify Algorithm 3 by adapting the action set in each batch based on the estimate of g,

i.e., the set Xm (note that we do not need to explicitly calculate the sets Xm). However, an issue

arises where the estimate of θ⋆ at batch m depends on the approximate optimal design from batch

m− 1, which employs the action set Xm−1 estimated from the contexts of batch m− 2. In the proof

of Theorem 10, we demonstrate that this leads to regret proportional to Tm/
√
Tm−2. If the batch

lengths grow rapidly, significant regret may occur. To mitigate this, we reduce the growth rate of

batch lengths by allowing them to increase only when m is odd (a similar technique was employed

in Chapter 2).

The pseudo-code for our algorithm for linear contextual bandits is provided in Algorithm 6. The

algorithm follows similar steps to Algorithm 3 with the following exceptions. The set of actions Xm

is updated (see step 14) in every batch using contexts observed in the previous batch. It is important

to note that these sets Xm (in steps 4 and 14) are never actually computed; the definitions are
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provided for notation purposes. We only need an approximate optimizer for the set Xm to construct

the approximate barycentric spanner in Algorithm 4. As shown in Lemma 1 in Chapter 2, g(m)([θ]q)

for sufficiently small q can serve as our approximate oracle. Furthermore, the computation of

g(m)([θ]q) can be performed using O(T ) calls to the linear optimization oracleO(At; .), hence, with

complexity of O(TTopt).

Additionally, we assume that LW-ArgMax (and LWS) returns for each ai the value θ(i) = [θ̃i]q.

Here, θ̃i is the input to the approximate linear optimization oracle which yielded the output ai. The

final difference from Algorithm 3 is that we do not play action ai for nm(i) times (note that ai

may not be in At); instead we play policy O(At; θ
(i)) for nm(i) times, where θ(i) is the parameter

associated with ai returned by LWS (Algorithm 4) as described earlier.

The following theorem describes our main result.

Theorem 10. Consider a contextual linear bandit instance with At generated from an unknown dis-

tribution D. There exists a universal constant C and choice for batch lengths such that Algorithm 6

finishes in O(log log T ) batches with regret upper bounded as

RT ≤ Cγ
√
T log log T

with probability at least 1− δ, where γ = 10
√

CLd(log(16M/δ) + 57d log2(6T )). Moreover, the

running time and space complexity are Õ(d4 + Toptd
3T ), Õ(d2 +Mopt) respectively.

To implement Algorithm 6 efficiently we need: (i) an approximate linear optimization oracle

for the set Xm with additive error at most ϵ = (1 − exp(−1))/(12T 7+12 log T ): it was shown in

Lemma 1 in Chapter 2 that g(m)([θ]q) can be used as our approximate oracle for q ≤ ϵ/2; and (ii) an

inverse of the function g(m) to find θt associated with g(m)(θt) to play the action at = O(At; θt):

we observe that all actions played by our algorithms (Algorithm 3 and 6) are the output of the

approximate optimization oracle for some θ; namely, for Algorithm 6 any pulled action is of the

9Recall that in the contextual setting we assume that LW-ArgMax (and LWS) returns for each ai the value
θ(i) = [θ̃i]q , where θ̃i is the input to the approximate linear optimization oracle that resulted in the output ai.
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Algorithm 6 Efficient Batched Algorithm for contextual linear bandits

1: Input: number of batches M , batch lengths {Tm}Mm=1, horizon T , confidence parameter δ, set

of unknown parameters Θ ⊆ B1, discretization parameter q.

2: Select modified batch lengths {τm}2Mm=1 to τm = Tm//2, where // is the integer division.

3: Let CL = exp(8)d, γ = 10
√
CLd(log(8M/δ) + 57d log2(6T )), τ−1 = τ0 = 1, Θ′ =

{[θ]q = ⌊θ/(
√
dq)⌋
√
dq|θ ∈ Θ}.

4: Let g(1) : Θ′ → Rd be defined as g(1)(θ) = 0, ∀θ ∈ Θ′, and let X1 = {g(1)(θ)|θ ∈ Θ′},X ′
1 =

X1 ∪ B1/T , ∆1(a) = 1 ∀a ∈ X ′
1.

5: Initialize: θ1 = 0, a⋆1 to be a random action in X1.

6: for m = 1 : 2M do

7: Calculate {ai, θ(i)}di=1 = LWS(X ′
m, ηm =

√
τm−2/(8γ), a

⋆
m, θm), where ai = g(m)(θ(i)).9

8: Let π(i) = 1/d ∀i ∈ [d], a0 = a⋆m = g(m)(θ(0)), where θ(0) = [θm]q = q⌊θm
√
d/q⌋/

√
d.

9: for i = 1 : d do

10: If ai /∈ B1/T , calculate ∆m(ai) = ⟨a⋆m − ai, θm⟩ and play a = O(At; θ
(i)), nm(i) =

⌈ π(i)τm/4
(1+

√
τm−1∆m(ai)/(8γ))2

⌉ times. go to step 12 if the number of pulls in the current batch reaches

τm. Terminate Algorithm 1 if the total number of pulls reaches T .

11: play a = O(At; θ
(0)) for max{0, τm −

∑d
i=1 nm(i)} times.

12: Compute the regularized (with λ = 1) least squares estimator Vm = I +
∑τm

i=1 aia
⊤
i and

θm+1 = V −1
m

∑τm
i=1 riai.

13: Update a⋆m+1 = O+
1/T (Xm; θm+1).

14: Let g(m+1)(θ) = 1
τm

∑
t∈Hm

O(At; θ), Xm+1 = {g(m+1)(θ)|θ ∈ Θ′},X ′
m+1 = Xm+1∪B1/T ,

where Hm is the set of indices of the rounds in batch m.

form g(m)([θ]q) for some input to the approximate oracle θ. Hence, the inversion of g(m) for the

actions pulled by Algorithm 6 can be performed by storing [θ]q whenever the action g(m)([θ]q) is

stored. This increases both the space and time complexity only by a constant factor.

Gap-dependent regret bounds for contextual linear bandits. The main difficulty in extending

55



the gap-dependent regret bounds in Theorem 8 to the contextual case is that a large minimum

action gap in the original action sets At does not imply a large gap in the reduced action set

X . As a simple example consider d = 1, θ⋆ = 1, and two action sets A1 = {−1, 1}, and

A2 = {−1}. At each iteration the learner receives the action set A1 with probability p and A2

with probability 1− p independently from other iterations. Recall that the action set in the reduced

instance X = {g(θ)|θ ∈ [−1, 1]}, where g(θ) = EA∼D[argmaxa∈A⟨a, θ⟩]. For θ ≥ 0 we have that

g(θ) = p(1)+ (1− p)(−1) = 2p− 1, while for θ < 0 we have g(θ) = p(−1)+ (1− p)(−1) = −1.

Then X = {−1, 2p− 1}. Therefore, the suboptimality gap is ∆min = (2p− 1)(1)− (−1)(1) = 2p

which can be arbitrarily small depending on p. Note that in the original contextual bandit instance,

the minimum gap is at least 2 for both action sets.

While it may be possible to provide gap dependent regret bounds for our algorithm in the

contextual case, this will require more sophisticated regret analysis that does not only rely on the

reduced linear bandit instance.

Numerical results. In App. B.7, we provide a numerical example to compare the computational

complexity of computing the exploration policy of our algorithm versus the complexity of computing

the policy in [ZJZ21].

3.6 Conclusion and Open Research Directions

In this chapter, we proposed the first efficient batched algorithm for contextual linear bandits with

large action spaces. Our algorithm achieves a high-probability regret upper bound of Õ(d
√
dT ),

uses O(log log T ) batches, and has a computational complexity that is linear in T and polynomial

in d.

Even though our algorithm for batched contextual linear bandits, and existing efficient non-

batched algorithms, achieve regret bounds with nearly optimal dependency on the time horizon T ,

they fail to achieve the optimal dependency on the dimension d. Improving the additional
√
d factor

in the regret bound of these efficient algorithms is an interesting and important open problem.
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CHAPTER 4

Reward Compression for Bandits

4.1 Summary

In this chapter we move from compressing contexts to compressing the rewards collected by the

distributed agents in the multi-armed bandit problem. Unlike compressing contexts, compressing

the reward is also needed in the unstructured multi-arm bandit problem (explained in this chapter).

Hence, this chapter considers the unstructured multi-arm bandit problem as well as the contextual

linear bandit problem.

By providing nearly matching upper and lower bounds, we tightly characterize the number of

bits needed per reward for the learner to accurately learn without suffering additional regret. In

particular, we establish a generic reward quantization algorithm, QuBan, that can be applied on top

of any (no-regret) MAB algorithm to form a new communication-efficient counterpart. QuBan

requires only a few (converging to as low as 3 bits as the number of iterations increases) bits to be

sent per reward while preserving the same regret bound as uncompressed rewards. Our lower bound

is established via constructing hard instances from a subgaussian distribution. Our theory is further

corraborated by numerical experiments.

4.2 Introduction

MAB systems in areas such as mobile healthcare, social decision-making and spectrum allocation

have already been implemented in a distributed manner, using limited bandwidth wireless links and
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simple sensors with low computational power [AMT11, BES13, BES14, MGP15, SFS18, DLL19].

Motivated from such communication constrained environments, in this chapter we explore compres-

sion schemes tailored to distributed MAB applications.

In the unstructured MAB problem, the set of actions is finite (k actions), and the action means

are arbitrary (i.e., may not follow a linear structure as in linear bandits).

Work on the unstructured multi-armed bandit (MAB) algorithms and their applications span

several decades, cultivating a rich literature that considers a variety of models and algorithmic

approaches [LS20]. MAB algorithms include explore-then-commit [Rob52, Ans63], ϵ-greedy

[ACF02], Thomson sampling [Tho33], and the upper confidence bound (UCB) [Lai87, ACF02],

to name a few. Under some assumptions on the reward distribution, the explore-then-commit and

ϵ-greedy algorithms achieve a regret bound∝ O(
√
T ), where T is number of steps the learner plays,

for the worst-case but known minimum reward gap1, while Thomson sampling and UCB achieve

a regret bound ∝ O(
√

T log(T )) without knowledge of the minimum means gap2. However, all

these works assume that the rewards can be communicated to the learner at full precision which can

be costly in communication-constrained setups. In this chapter we ask: is it possible to perform

efficient and effective bandit learning with only a few bits communicated per reward?

In particular, in this chapter we consider reward compression for the setup illustrated in Fig. 4.1,

where a central learner can directly communicate with a set of agents. We assume that agents can

observe and communicate rewards - but do not keep memory of past rewards. There are several

use cases where this setup can apply: the agent may be mobile (e.g., the central learner is a “traffic

policeman” that directs passing by small drones to perform manoeuvres and searches for best current

policies); they may be low complexity sensors (e.g., swarms of tiny robots such as RoboBees and

RoboFlies [WNW13], wearable -inside and outside the body- sensors, backscatterer and RFID

networks, IoT and embedded systems); or they may simply be willing to report a few rewards but

1The reward gap is defined to be the difference between the reward means of the best and second best arm.

2Variants of the UCB [AB09, DP16] can achieve regret ∝ O(
√
T ), but can be worse than UCB in some regimes

[LS20].
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Agents

Central learner

Figure 4.1: A central learner collects rewards from a set of agents. The agents can join and

leave at any time and hence can be different and unaware of the historical rewards, (i.e., they are

memoryless).

not to perform more involved cooperative operations.

Our main contribution is a set of upper and lower bounds on the required number of bits to

achieve the same (as in unquantized communication) regret bound up to a small constant factor. In

particular, our lower bound states that it is necessary to send at least 1.9 bits per reward to achieve a

regret bound within a factor of 1.5 from the regret bound of unquantized algorithms. Our upper

bounds state that, on average, 3.4 bits are sufficient to maintain a regret bound within a factor of 1.5

from the unquantized regret bound.

The upper bounds are proved constructively using a novel quantization scheme, that we term

QuBan, that is tailored to compressing MAB rewards, and can be applied on top of existing MAB

algorithms. QuBan only cares to maintain what matters to the MAB algorithm operation, namely

the ability to decide which is the best arm. At a high level, QuBan maps rewards to quantization

levels chosen to be dense around an estimate of the arm’s mean values and sparse otherwise. QuBan

employs a stochastic correction term that enables to convey an unbiased estimate of the rewards with

a small variance. It also introduces a simple novel rounding trick to guarantee that the quantization
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error is conditionally independent of the history given the current pulled arm index. This maintains

the Markov property which is crucial in the analysis of bandit algorithms and enables reusing the

same analysis methods as for unquantized rewards to bound the regret after quantization. Finally,

QuBan encodes the reward values that occur more frequently with shorter representations, in order

to reduce the number of bits communicated. Numerical results corroborate that QuBan, applied on

top of MAB algorithms such as UCB and ϵ-greedy, uses a few bits (as small as 3) to achieve the

same regret as unquantized communication.

4.2.1 Related Work

To the best of our knowledge, for the distributed dynamic model we consider, no scheme in

the literature can be used to solve the problem of maintaining a regret bound that matches the

unquantized regret bound, up to a small constant factor, while using a few bits of communication.

In the following, we distinguish our work from a representative sample of existing literature.

MAB algorithms. There is a long line of research in the literature about MAB algorithms. For

instance, explore-then-commit [Rob52, Ans63], ϵ-greedy [ACF02], Thomson sampling [Tho33],

the upper confidence bound [Lai87, ACF02] and its variant for contextual bandits [DHK08, LCL10].

Under the assumption that the reward distributions are 1-subgaussian, these algorithms provide a

worst-case regret bound that is almost O(
√
T ). The explore-then-commit regret is upper bounded by

C
√
T for bandits with 2 arms and known minimum means gap, while the regret of ϵ-greedy is upper

bounded by C ′√kT for k-armed bandits with knowledge of the minimum means gap, where C,C ′

are constants that do not depend on k, T [LS20]. Thomson sampling and UCB achieve a regret with

upper bound C
√

kT log(T ) for k-armed bandits, where C is a constant that does not depend on

k, T [RV14, AG12, AG13a, KR95, Agr95, ACF02]. Recall from Chapter 2 that for contextual linear

bandits, the best known (frequentist) regret upper bound is Õ(d
√
T ), where d is the dimension of

an unknown system parameter, achieved by LinUCB [LS20, DHK08]. This matches a lower bound

(for any algorithm) provided in [LWZ19] up to log factors. If focusing on Contextual Thompson
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sampling algorithm, the best known frequentist regret upper bound is Õ(d3/2
√
T ) [AG13b, AL17],

and the best known Bayesian regret upper bound is Õ(d
√
T ) [RV14]. These algorithms assume

access to a full precision reward at each iteration. Our goal is not to replace the existing MAB

algorithms to deal with quantized rewards; instead, we are interested in a general quantization

framework that can be applied on top of any existing (or future) MAB algorithm.

Compression for ML and distributed optimization. There is a number of research results targeting

reducing the communication cost of learning systems using compression. For instance, compression

is applied on gradient updates [SFD14, AGL17, MT20, HEF21]. Recent work has also looked at

compression for classification tasks [HES20]. However, compression schemes tailored to active

learning, such as MAB problems, have not been explored. Our quantization scheme can be

understood as a reward compression scheme that reduces the communication complexity for MABs.

The main difference between the quantization for MABs and for distributed learning is that the later

targets reducing the dependency of the number of bits and performance on the dimensionality of

bounded training data, which can be in the order of tens of millions. In contrast, the rewards of

MABs are scalars. The main challenge of our setting is to deal with a reward distribution that is

either unbounded or the upper bound on the reward is much larger than the noise variance, which

are typical in many MAB applications. This can be done by exploiting the fact that the rewards are

more likely to be picked from the arm that appear to be best. Such a property is not applicable in

the general distributed optimization setup and comes with new challenges as will discussed later.

Sample complexity. Compression is related to sample complexity [EMM02,MT04]: indeed, sending

a small number of samples, reduces the overall communication load. However, the question we ask

is different (and complementary): sample complexity asks how many (full precision) samples from

each distribution do we need to draw; we are asking, how many bits of each sample do we really

need to transmit, when we only care to decide the best arm and not to reconstruct the samples.

Distributed multi-agent MAB. Researchers have explored the distributed multi-agent MAB problem

with a single [AVW87] or multiple [SRJ17] decision makers; in these settings, distributed agents

pick arms under some constraints (all agents pick the same arm [SRJ17], at most one agent can
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pick the same arm at a time otherwise no reward is given [AMT11] and other constraints [Lan19]).

The agents cooperate to aggregate their observed rewards so as to jointly make a more informed

decision on the best arm. Most of the works do not take into account communication constraints, and

rather focus on cooperation/coordination schemes. Our setup is different: we have a single learner

(central server) and simple agents who do not learn (do not keep memory) but simply observe and

transmit rewards, one at a time. Our scheme can be potentially applied to these settings to reduce

communication cost.

Within this previous framework, some work considers “batched” rewards, where agents keep

their observed rewards in memory and communicate them infrequently, potentially summarizing

their findings and thus reducing the communication load [PRC16,EKM19,EMM06]. Such schemes

require agents to be present for the whole duration of learning, and can also not be implemented by

memory/computation limited agents.

Independently and in parallel to ours, the work in [VSS20] also considered MAB learning with

reduced number of bits, restricted in their case to UCB policies. Their main result shows that for

rewards supported on [0, 1], one bit of communication is sufficient; our work recovers this result

using a much simpler approach as a special case of Section 4.4. Additionally, our work applies on

top of any MAB algorithm, and for unbounded rewards.

Chapter Organization. Section 4.3 presents our model and notation; Section 4.4 looks at a

special case; Section 4.5 describes QuBan; Section 4.6 presents our main theorems and Section 4.7

provides numerical evaluation.

4.3 Model and Notation

MAB Framework. We consider a multi-armed bandit (MAB) problem over a horizon of size

T [Rob52]. At each iteration t = 1, ..., T , a learner chooses an arm (action) At from a set of armsAt

and receives a random reward rt distributed according to an unknown reward distribution with mean

µAt . The reward distributions are assumed to be σ2-subgaussian [BLM13]. The arm selected at time
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t depends on the previously selected arms and observed rewards A1, A1, r1, ...,At−1, At−1, rt−1,At.

The learner is interested in minimizing the expected regret RT = E[R′
T ], where R′

T is the regret

defined as

R′
T = ΣT

t=1(µ
∗
t − rt), (4.1)

where µ∗
t = maxA∈At µA. The expected regret captures the difference between the expected total

reward collected by the learner over T iterations and the reward if we would collect if we play the

arm with the maximum mean (optimal arm).

Notation. When the set of arms At is finite and does not depend on t: we denote the number of

arms by k = |At|, the best arm mean by µ∗, and the gap between the best arm and the arm-i mean

by ∆i := µ∗ − µi. If X, Y are random variables, we refer to the expectation of X , variance of

X , conditional expectation of X given Y , and conditional variance of X given Y as E[X], σ2(X),

E[X|Y ], and σ2(X|Y ) respectively.

System Setup. We are interested in a distributed setting, where a learner asks at each time a

potentially different agent to play the arm At; the agent observes the reward rt and conveys it to the

learner over a communication constrained channel, as depicted in Fig. 4.1. In our setup, each agent

needs to immediately communicate the observed reward (with no memory), using a quantization

scheme to reduce the communication cost. As learning progresses, the learner is allowed to refine

the quantization scheme by broadcasting parameters to the agents they may need. We do not

count these broadcast (downlink) transmissions in the communication cost since the learner has

no restrictions in its power. We stress again that the agents cannot store information of the reward

history since they may join and leave the system at any time. We thus opt to use a setting where the

agents have no memory. This setting allows to support applications with simple agents (e.g. RFID

applications and embedded systems).

Quantization. A quantizer consists of an encoder E : R→ S that maps R to a countable set S,

and a decoder D : S → R. At each time t, the agent that observes the reward rt transmits a finite

length binary sequence representing E(rt) to the learner which in turn decodes it using the decoder

D to obtain the quantized reward r̂t = D(E(rt)). The range of a decoder is referred to as the set
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of quantization levels; the encoding and decoding operation of a quantizer maps the reward to a

quantization level. We next describe a specific quantization module that we will use.

Stochastic Quantization (SQ). A stochastic quantizer that uses quantization levels in a set L,

which is a form of dithering [GS93, AGL17], consists of a randomized encoder EL and decoder DL

modules that can be described as following. The encoder EL, that uses the set of quantization levels

L = {ℓi}2Bi=1, takes as input a value x in [ℓ1, ℓ2B ]; it maps x to a level index described by B bits. The

decoder, that uses the set of quantization levels L = {ℓi}2Bi=1, takes as input an index in {1, ..., 2B},
and outputs the corresponding level value. Precisely,

i(x) = max{j|ℓj ≤ x and j < 2B},

EL(x) =

 i(x) with probability ℓi(x)+1−x

ℓi(x)+1−ℓi(x)

i(x) + 1 with probability x−ℓi(x)
ℓi(x)+1−ℓi(x)

,

DL(j) = ℓj, j ∈ {1, ..., 2B}. (4.2)

That is, if x is such that ℓi ≤ x < ℓi+1, then the index i is transmitted with probability ℓi+1−x
ℓi+1−ℓi

(and

x is decoded to be ℓi) while the index i+ 1 is transmitted with probability x−ℓi
ℓi+1−ℓi

(and x is decoded

to be ℓi+1).

The analysis of bandit algorithms leverages the fact that conditioned on At, the communicated

reward rt is an unbiased estimate of the mean µAt . It is not difficult to see that SQ preserves this

property, namely conditioned on At, it conveys to the learner an unbiased estimate of µAt .

Performance Metric BT , B̄(T ). Among the schemes that achieve a regret matching the unquantized

regret, up to a fixed small constant factor, our performance metrics are the instantaneous and average

number of communication bits per reward BT , and B̄(T ) respectively. Let Bt be the number of

bits used to transmit r̂t, and define the average number of bits after T iterations of the algorithm as

B̄(T ) =
∑T

t=1 Bt

T
. Our goal is to design quantization schemes that achieve expected regret matching

the expected regret of unquantized communication (up to a small constant factor) while using a

small number of bits BT , and B̄(T ).
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4.4 A Case Where 1 Bit is Sufficient

In this section we show that there exist some “easy" cases where we can use just one bit per

reward and a very simple quantization scheme. Note that one bit is a trivial lower bound on the

instantaneous number of bits communicated BT , since each agent needs to respond to the learner

for each observed reward. We also note that by definition of the average number of bits B̄T as the

average of B1, ..., BT , one bit is also a lower bound on the average number of bits. Consider the

case where the rewards are supported on [0, 1] and all reward distributions have the same variance σ

(but different means). Since rt ∈ [0, 1], its variance is upper bounded by 1
4
; we will here assume

this worst case variance σ2(rt|At) ≈ 1/43. We will use 1-bit Stochastic Quantization (SQ), as in

(4.2). The stochastic 1 bit quantizer takes rt as input and interprets it as probability: outputs 1 with

probability rt and 0 with probability 1− rt. Let r̂t be the (binary) quantized reward, we then have

that

E[r̂t|At] = E[E[r̂t|rt, At]|At] = E[rt|At] = µAt . (4.3)

Recall that for bandit algorithms the expected regret scales linearly with the variance. For exam-

ple, the UCB algorithm (c.f., [LS20]) with unquantized rewards, achieves RT ≤ Cσ
√
Tk log(T )

for a constant C that does not depend on k, T .

Proposition 1. UCB with rt ∈ [0, 1] that uses 1-bit SQ achieves a regret RT ≤ C
√
Tk log(T ).

Proof. The proof follows directly from the case of reward distributions that are supported on [0, 1]

in [ACF02]. It follows a standard analysis based on confidence intervals by bounding the regret

conditioning on the good event G = {|
∑t

i=1 ri1{Ai=At}∑t
i=1 1{Ai=At} − µAt | ≤ Clog(T )√∑t

i=1 1{Ai=At}
∀t = 1, ..., T}

which is shown to hold with probability at least 1− 1
T

. Assuming G, it can be shown that the total

number of pulls for an arm with gap ∆i, according to the UCB rule, is O( log(T )

∆2
i
) resulting in a regret

3A similar analysis extends, showing that UCB with 1-bit SQ achieves a regret within a small constant factor from
the unquantized regret, when the variances differ but they are all close to 1

4 .
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that is bounded as

RT ≤ E[R′
T |G] + E[R′

T |GC ]P[GC ]

≤ T∆+
∑

i:∆i>∆

Clog(T )

∆i

+ T
1

T
≤ T∆+

Ck log(T )

∆
+ 1. (4.4)

The result follow by maximizing over ∆.

Simulation results, in this section and Section 4.7, verify that, for rt ∈ [0, 1], 1-bit SQ performs

very close to unquantized rewards.

To motivate our general quantization scheme, we consider a case where 1-bit SQ results in a

potentially large performance loss. Assume that the variance, σ, is much smaller than the range

of rt: rt ∈ [−λ, λ] and σ = 1, where λ ≫ 1 is a parameter known to the learner. The 1-bit

SQ maps rt to either λ or −λ; it is not difficult to see that we still have E[r̂t|At] = µAt , but

RT ≤ Cλ
√

kT log(T ), where C is a constant that does not depend on T, k [ACF02]4. This

can be seen by observing that the expected regret can be written as RT =
∑T

t=1 E(µ∗
t − rt) =∑T

t=1 E(µ∗
t − r̂t) = 2λ

∑T
t=1 E(

(µ∗
t+

1
2
)−(r̂t+

1
2
)

2λ
), which transforms the problem to one with reward

distributions supported on [0, 1]. Thus the expected regret bound grows linearly with λ, which can

be arbitrarily large. In contrast, without quantization UCB achieves C ′√kT log(T ), where C ′ is

another constant of the same order of C.

Simulation results verify that the convergence to the unquantized case can be slow. Fig. 4.2

shows the regret of unquantized and 1-bit SQ with the UCB algorithm for the setup described

in Section 4.4 with σ = 1 and clipped reward distributions that have support only on an interval

[−λ, λ], for λ = 1 and 100 respectively. As discussed, we observe a regret penalty when λ≫ σ.

We take away the following observations:

• If the range λ is of the same order as the variance σ, 1-bit SQ is sufficient to preserve the regret

bound up to a small constant factor.

4We note that this bound cannot be improved using techniques in [ACF02], since it is possible that σ2(r̂t|At) = λ2

(e.g., if rt = 0 almost surely).
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Figure 4.2: Reward Compression Example: Regret versus number of iterations. We use σ = 1.

• If the range λ is much larger than σ, 1-bit SQ leads to a regret penalty proportional to λ
σ

; thus we

may want to only perform stochastic quantization within intervals of size similar to σ.

• In our discussion up to now we assumed that the rewards rt are bounded almost surely. This is not

true in general; we would like an algorithm that uses a small average number of bits even when the

reward distributions are unbounded.

In the next section we introduce QuBan, that achieves a small average number of bits in all of the

above cases.

4.5 QuBan: A General Quantizer for Bandit Rewards

In this section, we propose QuBan, an adaptive quantization scheme that can be applied on top of

any MAB algorithm. Our scheme maintains attractive properties (in particular, the Markov property,

unbiasedness, and bounded variance) for the quantized rewards that enable to retain the same regret

bound as unquantized communication for the vast majority of MAB algorithms, while using a few

bits for communication (simulation results show convergence to ∼ 3 bits per iteration for T that is

sufficiently large, see Section 4.7).
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Figure 4.3: Illustration of QuBan Algorithm. In the shown example, rt is mapped to a value of the

red dot (conveyed with the index It = 4), and stochastically to one of the two nearest quantization

levels depicted on the red line.

QuBan uses ideas that include: (i) centering the quantization scheme around a value that

is believed to be close to the picked arm mean in the majority of iterations; (ii) maintaining a

quantization error that is conditionally independent on previously observed rewards given the arm

selection, which is achieved by choosing the quantization center to be an integer value (illustrated

in more detail in the proof of Theorem 2); (iii) assigning shorter codes to the values near the

quantization center and otherwise longer codes to maintain a finite expected number of bits even

if the reward distribution has infinite support; and (iv) using stochastic quantization to convey an

unbiased estimate of the reward. We next describe QuBan in more detail.

QuBan Centers the Quantization Around a Value µ̂(t)

Recall that at time t the learner selects an action At and needs to convey the observed reward rt. As

we expect rt to be close to the mean µAt , we would like to use quantization levels that are dense

around µAt and sparse in other areas. Since µAt is unknown, we estimate it using some function of

the observed rewards that we term µ̂(t); we can think of µ̂(t) as specifying a “point" on the real line

around which we want to provide denser quantization.

Choices for µ̂(t). In this work, we analyze the following three choices for µ̂(t), the first two

applying to MAB with a finite fixed set of arms, while the third to linear bandits.

• Average arm point (Avg-arm-pt): µ̂(t) = µ̂At(t − 1). We use µ̂At(t − 1), the average of the

samples picked from arm At up to time t− 1, as an estimate of µAt .
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• Average point (Avg-pt): µ̂(t) = 1
t−1

∑t−1
j=1 r̂j (the average over all observed rewards). Here we

can think of 1
t−1

∑t−1
j=1 r̂j as an estimate of the mean of the best arm. Indeed, the average reward of

a well behaved algorithm will converge to the best mean reward.

These two choices of µ̂(t) give us flexibility to fit different regimes of MAB systems. In

particular, we expect the avg-arm-pt to be a better choice for a small number of arms k and MAB

algorithms that achieve good estimates of µAt (explore all arms sufficiently so that µ̂At(t − 1)

approaches µAt). However, since the first time an arm is pulled we do not have an estimate of its

mean, this results in possibly larger number of bits for the first pull; this penalty increases with

the number of arms k. As our analysis also shows (see Section 4.6), if k is large, acquiring good

estimates for all arms may be costly and not what good algorithms necessarily pursue; instead, the

avg-pt has a simpler implementation, as it only requires to keep track of a single number, and still

enables to distinguish well in the neighborhood of the best arm (connecting the number of bits to

the regret), which is essentially what we mostly want.

• Contextual bandit choice: µ̂(t) = ⟨θt, At⟩. Consider the widely used stochastic linear bandits

model in Section 4.3. We observe that linear bandit algorithms, such as contextual Thomson

sampling and LinUCB, choose a parameter θt believed to be close to the unknown parameter θ∗,

and pick an action based on θt. For example, LinUCB [DHK08] chooses a confidence set Ct with

center θt believed to contain θ∗ and picks an action At = argmaxa∈At maxθ∈Ct⟨θ, a⟩. Accordingly,

we propose to use µ̂(t) = ⟨θt, At⟩. We note that our intuition for the avg-pt choice does not work

for contextual bandits as it relies on that maxa∈At⟨θ∗, a⟩ is the same for all t, which might not hold

in general. Likewise, the avg-arm-pt choice will not work as the set of actions At can be infinite or

change with time.

We underline that the estimator µ̂(t) is only maintained at the learner’s side and is broadcasted

to the agents. As discussed before, this downlink communication is not counted as communication

cost.
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QuBan Components

As discussed, at iteration t, QuBan centers its quantization around the value µ̂(t). It then quantizes

the normalized reward r̄t = rt/Mt − ⌊µ̂(t)/Mt⌋ to one of the two values ⌊r̄t⌋, ⌈r̄t⌉, where Mt =

ϵσXt
5, ϵ is a parameter to control the regret vs number of bits trade-off as will be illustrated later

in this section, and {Xt}Ti=1 are independent samples from a 1
4
-subgaussian distribution satisfying

|Xt| ≥ 1 almost surely, e.g., we can use Xt = 1 almost surely6. If Xt is allowed to take larger values

with some probability, it will result in coarser quantization with some probability, and a smaller

number of bits. This introduces an error in estimating r̄t that is bounded by 1, which results in error

of at most Mt in estimating rt = Mt(r̄t + ⌊µ̂(t)/Mt⌋). This quantization is done in a randomized

way to convey an unbiased estimate of rt. The encoding of r̂t is a composition of: sign of r̄t, a

unary encoding of the least power of 2 below |r̄t| (denoted by 2It), and SQ for |r̄t| − 2It7. The unary

encoding of It consists of It zeros followed by 1 one. Both the unary encoding and the SQ use

O(log(r̄t)) bits. We recall that µ̂(t)
Mt

is believed to be close to rt
σ

in the majority of iterations resulting

in small values for log(r̄t).

The precise learner and agent operations used for QuBan are presented in pseudo-code in

Algorithms 7 and 8 (see Fig. 4.3 for an example), respectively. The learner at each iteration

broadcasts µ̂(t) and asks one of the agents available at time t to play an action At. Initially, since

we have no knowledge about µi, the learner assumes that µ̂(0) = 0. The agent that plays the action

uses the observed rt together with µ̂(t) it has received to transmit three values we term (bt, It, et),

to the learner, as described in Algorithm 2 using O(log(|r̄t|)) bits.

Rounding of µ̂(t)/Mt: the reason for choosing the quantization to be centered around ⌊µ̂(t)/Mt⌋
instead of µ̂(t)/Mt is to guarantee that the distance between rt and the two closest quantization

5The case where σ is unknown is discussed in Section 4.6.

6For our proofs we set Xt = 1 for simplicity; more sophisticated choices can further improve the upper bounds
such as Xt picked from a Gaussian distribution.

7Note that 0 ≤ |r̄t| − 2It ≤ 2It .
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Algorithm 7 Learner operation with input MAB algorithm Λ

1: Initialize: µ̂(1) = 0

2: for t = 1, ..., T do

3: Choose an action At based on the bandit

4: algorithm Λ and ask the next agent to play it

5: Send Mt
8, µ̂(t) to an agent

6: Receive the encoded reward (bt, It, ELt(et)) (see

7: Algorithm 8)

8: Decode r̂t:

9: if length(bt)≤ 3 then

10: r̂t can be decoded using a lookup table

11: else

12: Decode the sign, st, of ˆ̄rt from bt

13: Set ℓt to be the It-th element in the set

14: {0, 20, ...}
15: Set Lt = {ℓt, ℓt + 1, ...,max{2ℓt, ℓt + 1}}
16: Define e

(q)
t = DLt(ELt(et))

17: r̂t = (st(e
(q)
t + ℓt + 3.5st + 0.5) + ⌊µ̂(t)/Mt⌋)Mt

18: Calculate µ̂(t+ 1) (using one of the discussed

19: choices)

20: Update the parameters required by Λ
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Algorithm 8 Distributed Agent Operation

1: Inputs: rt, µ̂(t) and Mt

2: Set L = {⌊r̄t⌋, ⌈r̄t⌉}, ˆ̄rt = DL(EL(r̄t)), where r̄t = rt/Mt − ⌊µ̂(t)/Mt⌋.
3: Set bt with three bits to distinguish between the 8 cases: ˆ̄rt < −2, ˆ̄rt > 3, ˆ̄rt = i, i ∈
{−2,−1, 0, 1, 2, 3}. This implicitly encodes the sign of ˆ̄rt, which we denote st.

4: if |ˆ̄rt| > |a| and ˆ̄rta > 0, a ∈ {−2, 3} then

5: Augment bt with an extra one bit to indicate if |ˆ̄rt| = |a|+ 1 or |ˆ̄rt| > |a|+ 1.

6: if |ˆ̄rt| > |a|+ 1 then

7: Let L′ = {0, 20, ...}
8: Set ℓt = max{j ∈ L′|j ≤ |r̄t| − (|a|+ 1)}
9: Encode ℓt by It − 1 zeros followed by a one (unary coding), where It is the index of

10: ℓt in the set L′.

11: Let et = |r̄t| − (|a|+ 1)− ℓt

12: Set Lt = {ℓt, ℓt + 1, ...,max{2ℓt, ℓt + 1}}
13: Encode et using SQ to get ELt(et)

14: Transmit (bt, It, ELt(et))
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levels is independent of µ̂(t)9 (which is dependent on r̂1, ..., r̂t−1). As we discuss in the following

section, this preserves the Markov property (given At, the quantized reward r̂t is conditionally

independent on the history A1, r̂1, ..., At−1, r̂t−1), a property that is exploited in the analysis of

bandit algorithms to guarantee that |∑T
t=1 r̂t − µAt/T | approaches zero in some probabilistic sense

as T increases.

Sending the least power of 2 below r̄t: For simplicity we consider the case where r̄t ≥ 0. We note

that since it is possible for the decoded reward to take any value in the set {⌊ µ̂
Mt
⌋, ⌊ µ̂

Mt
⌋+ 1, ⌊ µ̂

Mt
⌋+

2...} (to guarantee the uniform upper bound on |ˆ̄rt− r̄t|), every value in that set needs to be encoded.

A good encoding strategy assigns shorter codes to the levels that are close to ⌊ µ̂
Mt
⌋ as they are

expected to occur more often. Hence, the best we can hope for is to encode rt using O(log( rt
Mt
−

⌊ µ̂
Mt
⌋) bits as it is quantized to either ⌊ rt

Mt
⌋ or ⌈ rt

Mt
⌉ and the quantization level at ⌊ rt

Mt
⌋ is encoded

using the largest number of bits among the levels in the set {⌊ µ̂
Mt
⌋, ⌊ µ̂

Mt
⌋ + 1, ⌊ µ̂

Mt
⌋ + 2..., ⌊ rt

Mt
⌋}.

As can be seen in Appendix C.2, sending the greatest power of 2 below r̄t then quantizing the

difference using SQ gives that rt is encoded using O(log( rt
Mt
− ⌊ µ̂

Mt
⌋) bits. This is achieved since It

is O(log( rt
Mt
− ⌊ µ̂

Mt
⌋) and the SQ uses 2It + 1 quantization levels. An alternative way to encode It

is using integer compression, or recursively applying our scheme by using unary coding to transmit

the largest I(2)t with 2I
(2)
t ≤ It and then encode the difference It − 2I

(2)
t using log(1 + 2I

(2)
t ) bits

noting that It − 2I
(2)
t ≤ 2I

(2)
t . This results in using O(log(log( rt

σ
− ⌊ µ̂

σ
⌋)) bits to encode It. We keep

the unary coding for It for simplicity and since it does not dominate the average number of bits.

Preserving regret bounds: The main reasons QuBan preserves existing regret bounds is that it

does not destroy the Markov property (as we prove in Appendix C.2) and it provides that |ˆ̄rt − r̄t| is
uniformly upper bounded. The later property implies that if given At, rt is conditionally integrable,

sub-exponential, sub-gaussian, or almost surely bounded, then Mt can be chosen such that given At,

r̂t is conditionally integrable, sub-exponential, sub-gaussian, or almost surely bounded respectively.

A widely used assumption is that given At, rt is conditionally sub-gaussian.

9As will be shown in App. C.1, centering the quantization around any integer value implies that the two closest
quantization levels to rt

Mt
are ⌊ rt

Mt
⌋, ⌈ rt

Mt
⌉.
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We observe that all the operations in QuBan can be performed in a constant time except steps

9, 13 in Algorithm 8 which require O(Bt) running time. As shown in Sections 4.6, 4.7, Bt is only a

few bits on average resulting in a linear amortized running time.

4.6 Upper and Lower Bounds

In this section we present an upper bound on the number of bits used by QuBan and show that it

provides properties for the quantized reward that result in a regret within a small constant factor

from the unquantized regret. We also present a lower bound, within 1.5 bits from the upper bound,

on the number of bits needed to satisfy the required properties. Before stating the results, we state

our assumptions.

Assumption 1. We assume that we are given:

(i) a MAB instance with σ2-subgaussian10 rewards where the Markov property holds: conditioned

on the action at time t, the current reward is conditionally independent on the history (past actions

and rewards).

(ii) a MAB algorithm Λ such that for any instance with σ2-subgaussian rewards, and time horizon

T , the algorithm’s expected regret (with unquantized rewards) is upper-bounded by RU
T .

We note that assumption (i) is standard for the analysis of MAB algorithms, while assumption

(ii) essentially only introduces notation.

4.6.1 Upper Bounds

The following proposition gives an upper bound on the regret after quantization, and shows that

for ϵ = 1, the regret is within a factor of 1.5 from the regret of the unquantized case. The proof is

provided in App. C.1.

10This is a standard assumption used for simplicity but is not required for our main results.

74



Proposition 1. Suppose Assumption 1 holds. Then, when we apply QuBan, the following hold:

1. Conditioned on At, the quantized reward r̂t is ((1+ ϵ
2
)σ)2-subgaussian, conditionally independent

on the history A1, r̂1, ..., At−1, r̂t−1 (Markov property), and satisfies E[r̂t|At] = µAt , |r̂t − rt| ≤
Mt almost surely (t = 1, . . . , T ).

2. The expected regret RT is bounded as RT ≤ (1 + ϵ
2
)RU

T , where ϵ is a parameter to control the

regret vs number of bits trade-off.

In the following we provide an upper bound on the expected average number of bits. We also

provide a high-probability upper bound on the instantaneous number of bits. For simplicity we

only consider the case where ϵ = 1 and discuss the other case in App. C.2. The proof is given

in App. C.2. At a high level, to upper bound the regret after quantization we show that QuBan

maintains a number of desirable properties for the quantized rewards, namely, unbiasedness, and

the fact that the quantized rewards are (1.5σ)2-subgaussian and satisfy the Markov property. To

upper bound the expected number of bits we use the fact that QuBan assigns short representations

for the rewards around an estimate of the mean, which we expect to see more frequently.

Theorem 11. Suppose Assumption 1 holds. Let ϵ = 1. There is a universal constant C such that:

1. For QuBan with µ̂(t) = µ̂At(t − 1) (avg-arm-pt), the average number of bits communicated

satisfies that E[B̄(T )] ≤ 3.4 + (C/T )
∑k

i=1 log(1 + |µi|/σ) + C/
√
T .

2. For QuBan with µ̂(t) = 1
t−1

∑t−1
j=1 r̂j (avg-pt), the average number of bits communicated satisfies

E[B̄(T )] ≤ 3.4 + C
T

(
1 + log(1 + |µ∗|

σ
) + RT

σ
+
∑T−1

t=1
Rt

(σt)

)
+ C/

√
T .

3. For QuBan with µ̂(t) = ⟨θt, At⟩ (stochastic linear bandit), the average number of bits communi-

cated satisfies that E[B̄](T ) ≤ 3.4 + CE[
∑T

t=1 |⟨θt − θ∗, At⟩|]/(σT ).

In App. C.2 we also provide almost surely bounds on the asymptotic average number of bits,

namely, limT→∞(1/T )
∑T

t=1Bt≤3.4 almost surely.

In the following we provide a high probability bound on the number of bits that QuBan uses in

each iteration. We analyze the performance for avg-arm-pt only; the other choices for µ̂(t) can be
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handled similarly.

Theorem 12. For a MAB instance with σ2-subgaussian rewards, QuBan with ϵ = 1, µ̂(t) =

µ̂At(t− 1) (avg-arm-pt), satisfies that for t with Tt(At) > 0, where Tt(i) is the number of pulls for

arm i prior to iteration t, with probability at least 1− 1
T

it holds that ∀t ≤ T :

Bt ≤ 4 + ⌈log(4 log(T ))⌉+ ⌈log log(4 log(T ))⌉. (4.5)

The proof is provided in App. C.3.

Remark 1. Using the previous lemma we can modify QuBan to have that (4.5) is satisfied almost

surely, by sending a random 1 bit when (4.5) is not satisfied. This will only add at most T
∑k

i=1 ∆i

regret with probability at most 1
T

. Hence, the expected regret is increased by at most a factor of 2.

Remark 2. Throughout the chapter, we assume a known upper bound on the noise variance.

However, it is not difficult to see that a variance estimate within a constant factor would suffice.

Running QuBan with an estimate σ′ that is possibly different from the true σ results in a degradation

in the regret by a factor of max{1, σ′

σ
} and increase in the communication by 2 log( σ

σ′ ) bits. An

optimistic estimate of the noise σ′ < σ results in finer quantization, hence, no degradation in the

regret at the cost of increasing the communication by 2 log( σ
σ′ ) bits.

4.6.2 Lower Bound

In this subsection we provide a lower bound showing that an average number of 1.9 bits per iteration

are required to maintain a sublinear regret and a (σ
2
)2-subgaussian quantization error, r̂t − rt. We

also show that the instantaneous number of bits cannot be almost surely bounded by a constant.

In our lower bound, we focus on prefix free codes [Cov99]; a similar analysis can be performed

for non-singular codes leading to different constants. We also note that our achievable scheme

(Algorithms 7, 8) provides a prefix-free code. We first state the following lemma which shows that

for the quantizer to preserve the sublinear regret of the bandit algorithm, Q needs to to satisfy that

E[Q(rt)|rt] = c1rt + c2, where c1, c2 are constants. Hence, by a proper shifting and scaling, the

quantizer Q can be made unbiased, i.e., satisfying E[Q(rt)|rt] = rt.
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Lemma 4. Let ALG be any algorithm for multi-arm bandits with sublinear regret and Q be (a

possibly randomized) quantizer. Let RT be the worst-case expected regret of ALG when using

rewards Q(r1), ..., Q(rt). If RT is sublinear in T , then Q satisfies

E[Q(rt)|rt] = c1rt + c2,

where c1, c2 are constants.

By the previous lemma, it suffices to only consider unbiased quantizers. We next state our lower

bound theorem.

Theorem 13. Any (possibly randomized) quantizer Q that uses prefix-free encoding and satisfies:

i. (Unbiased Property) E[Q(rt)|rt] = rt ,

ii. (SubGaussian Property) Conditioned on rt, Q(rt)− rt is (σ
2
)2-subgaussian (t = 1, . . . , T ),

we have that there exist (4σ)2-subgaussian reward distributions for which:

1. (∀b ∈ N) (∃t, δ > 0) such that P[Bt > b] > δ.

2. (∀t > 0) (∃T > t) such that E[B̄(T )] ≥ 1.9 bits.

The proofs are given in App. C.4.

4.6.3 Application to UCB, ϵ-greedy, and LinUCB

We here leverage Theorem 11 to derive bounds for three widely used MAB algorithms. We

highlight that although the regret bounds hide constant factors, these constants are within 1.5 of the

unquantized constants according to Theorem 11. The proofs are in App. C.5 for Corollaries 1 and 2

and in App. C.6 for Lemma 3.

Corollary 1. Assume we use QuBan with avg-pt on top of UCB [ACF02] with σ2-subgaussian

reward distributions. Then there is a constant C that does not depend on T and k such that

RT ≤ Cσ
√
Tk log(T ), E[B̄(T )] ≤ 3.4 + C

√
k log(T )/T .
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Figure 4.4: Regret versus number of iterations.

Corollary 2. Assume we use QuBan with avg-pt on top of ϵ-greedy [ACF02] with σ2-subgaussian

reward distributions and constant gaps ∆i ∀i. Let ϵt = min{1, Ck/(t∆2
min)}, where ∆min =

mini{∆i|∆i > 0} and C > 0 is a sufficiently large universal constant. Then there exists a

constant C ′ that does not depend on T and k such that RT ≤ C ′σk log(1 + T/k), E[B̄(T )] ≤
3.4 + C ′(k log2(T )/T + 1/

√
T ).

To simplify the expressions, we include the dependency on µ∗ and ∆i in the constant C for

Corollary 1 and respectively C ′ for Corollary 2.

Corollary 3. Assume we use QuBan on top of LinUCB [DHK08], then there is a constant C that

does not depend on T and d such that RT ≤ Cd
√
T log(T ), E[B̄(T )] ≤ 3.4 + C d log(T )√

T
.

4.7 Numerical Evaluation

We here present our numerical results.

Quantization Schemes. We compare QuBan against the baseline schemes described next.

Unquantized. Rewards are conveyed using the standard 32 bits representation.

r-bit SQ. We implement r-bit stochastic quantization, by using the quantizer described in Section 4.3,

with 2r levels uniformly dividing a range [−λ, λ].
QuBan. We implement QuBan with ϵ = Xt = 1.

MAB Algorithms. We use quantization on top of:
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Figure 4.5: Total number of bits versus regret per iteration.

(i) the UCB implementation in [LS20, chapter 8]. The UCB exploration constant is chosen to be σq,

an estimate of the standard deviation of the quantized reward distribution.

(ii) the ϵ-greedy algorithm in [LS20, chapter 6], where ϵt is set to be ϵt = min{1, Cσqk

t∆2
min
}.

(iii) the LinUCB algorithm for stochastic linear bandits in [LS20, chapter 19].

Synthetic Dataset:

MAB Setup. We simulate three cases. In each case we average over 10 runs of each experiment.

The parameters σq, C are determined by the underlying MAB algorithm we use. In our simulations,

we set σq to the variance of the quantized rewards (or best known upper bound), while C is chosen

to be the value resulting in best regret among {0, λ/100, ..., λ}.
• Setup 1: (Figs 4− 6(a)). We use k = 100, λ = 100, C = 10, the arms’ means are picked from

a Gaussian distribution with mean 0 and standard deviation 10 and the reward distributions are

conditionally Gaussian given the actions At with variance 0.1. The parameter σq is set to be 0.1 for

QuBan and 200/2r − 1 for the r-bit SQ.

• Setup 2: (Figs 4− 6(b)) This differs from the previous only in that the means are picked from a

Gaussian distribution with mean 95 and standard deviation 1 (leading to smaller ∆i).

• Setup 3: (Figs 4 − 6(c)). This is our contextual bandit setup. We use d = 20 dimensions, θ∗

picked uniformly at random from the surface of a radius 1 ball centered at the origin, and the noise ηt

is picked from a Gaussian distribution with zero mean and 0.1 variance. At each time t we construct
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Figure 4.6: Regret versus number of iterations.

the actions set At by sampling 5 actions uniformly at random from the surface of a radius 0.5 ball

centered at the origin independently of the previously sampled actions. We evaluate the regret and

the average number of bits used by QuBan as well as the 3 and 1 bit stochastic quantizers in the

interval [−10, 10] (the interval in which we observe the majority of rewards). These quantization

schemes are used on top of the LinUCB algorithm. The LinUCB exploration constant is chosen to

be σq, where σq is set to be 0.1 for QuBan and 20
2r−1

for the r-bit SQ.

Results. Fig. 4.4 plots the regret R′
T in (4.1) vs. the number of iterations, Fig. 4.5 plots R̂T

T
, the

regret per iteration, vs. the total number of bits communicated, Fig. 4.6 plots the regret versus

number of iterations, and Fig. 4.7 plots the average number of bits versus iterations. We find that:

• QuBan in all three setups offers minimal or no regret increase compared to the unquantized

rewards regret and achieves savings of tens of thousands of bits as compared to unquantized com-

munication.

• 1-bit SQ significantly diverges in most cases; 3-bit and 5-bit SQ show better performance yet still

not matching QuBan with a performance gap that increases when the arms means are closer (∆i

smaller), and hence, more difficult to distinguish.

• QuBan allows for more than 10x saving in the number of bits over the unquantized case to

achieve the same regret. In all three setups QuBan achieves E[B̄(T )] ≈ 3 (see Fig. 4.7).

• Both QuBan avg-pt and avg-arm-pt achieve the same regret (they are not distinguishable in

Fig. 4.4 and thus we use a common legend), yet avg-arm-pt uses a smaller number of bits when the
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Figure 4.7: Average number of bits versus iterations.

means of the arms tend to be well separated (Fig. 4.5(a)) while avg-pt uses a smaller number of bits

when they tend to be closer together (Fig. 4.5(b)). We also observe that the avg-pt tends to perform

better for a well-behaved bandit scheme, while the avg-arm-pt performs better when the algorithm

picks sub-optimal arms for many iterations (e.g., ϵ-greedy in Fig. 4.7(b)).

Cryptocurrency Returns Dataset:

MAB Setup. In this part we compare the performance of our scheme against 3-bit SQ using multiple

cryptocurrencies prices from binance.com in October 2021, where the reward is the investment

return. The action represents which cryptocurrency, among {Bitcoin, Ethereum, Dogecoin, and

Litecoin}, to buy then sell on the next day. The return for each currency is samples uniformly at

random from the daily returns in the month of October 2021.

Results. In Fig. 4.8 we plot the regret (daily return - optimal average return) versus the number of

iterations for the UCB algorithm using our quantization scheme and 3-bit SQ. We observe that the

performance of QuBan almost matches the unquantized performance (using ≈ 3 bits) while the

regret of 3-bit SQ is linear for the used number of iterations.
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Figure 4.8: Regret versus number of iterations for the cryptocurrency prices dataset.

4.8 Conclusion and Open Research Directions

In this chapter, we provided a generic framework, QuBan, to quantize rewards for MAB problems.

This framework can be used on top of nearly all the existing and future MAB algorithms, making

them attractive for distributed learning applications where communication can become a bottleneck.

We have demonstrated that, both in theory and by numerical experiments, QuBan can provide very

significant savings in terms of communication and barely affects the learning performance.

We identify several open research directions:

• How to close the gap between the upper and lower bounds on the number of bits, even in the

asymptotic regime?

• How to exploit memory? In the setup we consider, the remote agents are changing over

time, and thus they are essentially memoryless, i.e., a new agent does not know the history

information of previous agents.

• How to deal with heavy tailed noise?

Resolving such questions can offer additional benefits for communication-sensitive bandit learning

setups.
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CHAPTER 5

The Common Information Dimension

5.1 Summary

Quantifying the common information between random variables is a fundamental problem with

a long history in information theory. Traditionally, common information is measured in number

of bits and thus such measures are mostly informative when the common information is finite.

However, the common information between continuous variables can be infinite; in such cases,

a real-valued random vector W may be needed to represent the common information, and to be

used for instance for distributed simulation. In this chapter, we propose the concept of Common

Information Dimension (CID) with respect to a given class of functions F , defined as the minimum

dimension of a random vector W required to distributively simulate a set of random vectors

X1, · · · , Xn, such that W can be expressed as a function of X1, · · · , Xn using a member of F .

We compute the common information dimension for jointly Gaussian random vectors in a closed

form, with F being the linear functions class. We also analytically prove, under three different

formulations, that the growth rate of common information in the nearly infinite regime is determined

by the common information dimension, for the case of two Gaussian vectors.

5.2 Introduction

Quantifying the common information between random variables is a fundamental problem with a

long history in information theory [Wat60,GK73,Wyn75,Bel03,YLC17], and has found application

in diverse areas including source coding [GW74,XLC15,SG22], cryptography [AC93,AC98,Mau93,
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CN00] and multimodal learning [LYZ18,SDV21,RDN22,KAS23]. Multiple information theoretical

notions have been developed to measure the common randomness, for instance, Gács-Körner’s

common information [GK73], Wyner’s common information [Wyn75], common entropy [KLE14],

and coordination capacity [CPC10] (see also the monograph [YT22]); but as far as we know,

all of them measure common information in terms of bits. In this chapter, we introduce the

notion of common information dimension, that uses dimensionality instead of bits to quantify the

common randomness for continuous random variables, and establish a connection with the common

information.

We will illustrate the necessity of a new notion of common randomness through an example. Let

X = [X1, V ]⊤, Y = [Y1, V ]⊤ be two Gaussian random vectors with X1, Y1, V being independent

scalar variables. The common information between X and Y is captured by V , which is a continuous

scalar variable with infinite entropy - and thus the common information between X and Y , as

calculated for instance in [SC15], is also infinite. For general Gaussian random vectors, we

distinguish two cases: if rank(ΣX) + rank(ΣY ) = rank(Σ), where ΣX = E(XX⊤), ΣY =

E(Y Y ⊤) and Σ is the joint covariance matrix of the vector [X Y ], then the common information

can be described using a finite number of bits; while if rank(ΣX) + rank(ΣY ) > rank(Σ), the

common information measured in bits becomes infinite (in this second case, we say that X and Y

are jointly singular). To the best of our knowledge, there is no proposed metric that distinguishes

between different amounts of common information in the infinite bits regime.

Our observation is that, for the latter case, a real-valued random vector W may be needed

to represent the common randomness, and its dimension could provide guidance for practical

applications. This is akin to compressed sensing [Don06,CRT06], where we seek a low dimensional

representation in a high dimensional space.

Note that if we do not impose structural assumptions (on how W depends on variables

X1, . . . , Xn), the minimum dimension cannot exceed one. This is due to the existence of measurable

bijections between R and Rd for any d ≥ 1. However, these functions are not implementable and

unstable, as noted in [WV10], and hence, are not useful for applications. Therefore, regularity
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constraints on the common variable need to be considered. In particular, in our definition, we allow

for a restriction of the form W = g(X1, · · · , Xn) for some g ∈ F , where F is a given class of

functions. For example, F may be chosen to be the set of linear, or smooth functions. If F is chosen

to contain all possible functions, then the minimum dimension of W will be upper bounded by one,

as previously explained.

In addition to exploring what is the common information dimension of random variables, we

consider the regime where the common information between random variables can be (or can

approach) infinity and ask three questions: (1) How fast does the common information grow, from a

finite to an infinite number of bits, as the dependency between variables increases? (2) How well

can we “approximately" simulate a pair of random variables (X, Y ) using a finite number of shared

bits, even though their common randomness is infinite? and (3) If the target continuous random

variables are quantized into discrete values, how large is the resulting common information between

the quantized variables for a certain quantization resolution?

Contributions. Our main contributions in this chapter are as follows:

• We propose the concept of Common Information Dimension (CID), defined as the minimum

dimension of a random variable, with respect to a class of functions, required to distributively

simulate a set of random vectors X1, ..., Xn. We define the Rényi common information

dimension (RCID) as the minimum Rényi dimension of a random variable, with respect to a

class of functions, required to distributively simulate X1, ..., Xn. We define the Gács-Körner’s

common information dimension (GKCID) as the maximum Rényi dimension of a common

function that can be extracted from each random variable individually.

• We prove that for jointly Gaussian random vectors and F being the class of linear func-

tions, CID and RCID coincide, and GKCID is upper bounded by CID. Moreover, we give

closed-form solutions for the CID, RCID, and GKCID in such case and an efficient method

to construct W with the minimum dimension that enables the distributed simulation of

X1, · · · , Xn. These can be computed by examining ranks of covariance matrices.
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• We characterize the common information in the nearly infinite regime by considering a

sequence of nearly singular Gaussian pairs with decreasing distances to a jointly singular

target random variables X, Y . We prove in closed form that the common information of

such sequences grows proportionally to d(X, Y ), which establishes a link between common

information and the common information dimension.

• We define the approximate common information as the minimum amount of common infor-

mation between random variables that approximate a target distribution within a given error.

We prove that, in this case as well, the growth rate of the approximate common information

is proportional to the common information dimension. Our result quantifies the number of

shared bits needed to distributedly simulate jointly singular distributions within a desired

accuracy. We illustrate this through numerical evaluations in Section 5.7.

• Moreover, we show that the common information between a uniformly quantized pair of

Gaussian random variables also grows as a function of d(X, Y ). This result provides guidance

on the number of shared bits needed for the distributed simulation under different quantization

precisions.

Chapter organization. We review the related work and results on the common information of

Gaussian vectors in Section 5.3. We introduce the definitions of common information dimension in

Section 5.4. We present our results in calculating the common information dimension in Section 5.5.

We state our problem formulation and results in the asymptotic behavior of common information

in Section 5.6. We present our numerical evaluation in Section 5.7 and conclude the chapter in

Section 5.8. We include proof outlines in the chapter and detailed proofs in the Appendix.
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5.3 Related Work and Preliminaries

5.3.1 Common Information

Gács-Körner’s common information [GK73] and Wyner’s common information [Wyn75] are

perhaps the most classical notions of common information. Gács-Körner’s common information

is defined as the maximum number of bits per symbol of the information that can be individually

extracted from two dependent discrete variables X, Y , namely

CGK(X, Y ) := max
f,g:f(X)=g(Y )

H(f(X)), (5.1)

where f and g are deterministic functions. However, it is known from [GK73,Wit75] that CGK(X, Y )

equals zero except for one special case where X = (X ′, V ), Y = (Y ′, V ) and X ′, Y ′, V are

independent variables.

Wyner’s common information was originally defined for a pair of discrete sources (X, Y ) ∼ πXY

as

CWyner(X, Y ) := min
PWPX|WPY |W :PXY =πXY

I(X Y ;W ). (5.2)

Wyner [Wyn75] provided two operational interpretations. One is for the source coding problem:

the minimum common rate for the lossless source coding problem over the Gray-Wyner network,

subject to a sum rate constraint. The other is for the distributed simulation problem: the minimum

amount of shared randomness to simulate a given joint distribution πXY . Recently, the works

in [LXC10] and [CPC10] generalized Wyner’s common information to n discrete random variables

settings; and the works [VAR14, XLC15] and [LE17, YT20] generalized its interpretations to

continuous sources in lossy source coding and distributed simulation, respectively.

Wyner’s distributed simulation assumes codes of large block length (i.e., multi-shot) and

approximate generation: the relative entropy between the generated distribution and the target

distribution goes to zero as the block length goes to infinity. Kumar, Li and El Gamal [KLE14]

extended Wyner’s work to define the exact common information (also called common entropy)

which requires a single-shot (i.e., block length 1) and exact generation of πXY . The common entropy
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is defined as

G(X, Y ) := min
PWPX|WPY |W :PXY =πXY

H(W ). (5.3)

To generalize this to the multi-shot (asymptotic) setting, they also defined the exact common

information rate as

CExact(X,Y ) := lim
n→∞

1

n
G(Xn, Y n). (5.4)

The exact common information was extended to n continuous variables in [LE17], and was shown

to provide an upper bound on Wyner’s common information in [KLE14].

The calculation of Wyner’s common information and its variants are challenging in general

since it involves optimizing a concave function over a non-convex set. Therefore, closed-form

solutions are available only for special cases [Wyn75, Wit76]. In particular, for continuous sources,

closed-form solution is known only for Gaussian sources. [XLC15] calculated it for bivariate

Gaussian and the multivariate one with certain correlation structure, while [SC15] and [SG22]

extended it to a pair of Gaussian vectors. The general formula of Wyner’s common information

between Gaussian vectors X ∈ Rn and Y ∈ Rn is

CWyner(X, Y ) =
1

2

n∑
i=1

log
1 + ρi
1− ρi

, (5.5)

where ρi’s are the singular values of the normalized cross-covariance matrix Σ
−1/2
X ΣXYΣ

−1/2
Y ,

and Σ
−1/2
X ,Σ

−1/2
Y are defined using pseudo-inverse when needed. Observe that when X and Y

are jointly singular (i.e., (5.7) holds and thus ρi = 1 for some i in (5.5)), the Wyner’s common

information CWyner(X, Y ) is infinite.

Wyner also describes two natural relaxations in [Wyn75]: (i) one replaces the conditional

independence with a bounded conditional mutual information; (ii) the other allows a small distance

between the generated and the target distributions, measured by Kullback–Leibler (KL) divergence.

However, these were only analyzed in discrete settings. Recently, [SG22] studies the first relaxation

in the case of Gaussian random variables. However, this version of the relaxed common information

is still infinite when singular distributions are involved. In a separate study, [HLF22] explores a

related, but different, problem of exchanging a small number of bits to break/reduce the dependency
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between distributed source. On the other hand, this chapter considers relaxation (ii) (with a different

distance1) which allows an approximate generation when the sources can be continuous and the

distributions may be singular.

5.3.2 Dimension

In our work, we consider two notions of dimension: the number of elements of a vector and the

information dimension (also called Rényi dimension). The Rényi dimension is an information

measure for random vectors in Euclidean space that was proposed by Rényi in 1959 [Ren59]. It

characterizes the growth rate of the entropy of successively finer discretizations of random variables.

The Rényi dimension of a random vector W ∈ RdW is defined as (when the limit exists)

dR(W ) = lim
m→∞

H(⟨W ⟩m)
logm

, (5.6)

where ⟨W ⟩m is the element-wise discretization of W defined as ⟨W (i)⟩m = ⌊mW (i)⌋
m

and H(V ) is

the entropy of V . Wu and Verdú [WV10] interpreted the Rényi dimension as the fundamental limit

of almost lossless data compression for analog sources under regularity constraints that include

linearity of the compressor and Lipschitz continuity of the decompressor.

5.4 Notation and Model

Notation. We use boldface capital letters to represent matrices and use capital letters to represent

(vectors of) random variables, while P is specifically used to denote a probability distribution. For

a random (vector) variable X , we use dX to denote the number of its dimensions. For a matrix

M , we use r(M ) to denote the number of its rows. We use X = [X1, . . . , Xn] when Xi’s are

column vectors to refer to X = [X⊤
1 . . . X⊤

n ]
⊤. We use [X1 ⊥⊥ ... ⊥⊥ Xn|W ] to abbreviate that

X1, · · · , Xn are conditionally independent given W . The entropy of a random variable V is denoted

1Note that the KL divergence between any singular and non-singular distributions is always infinite, it is not suitable
for the task of approximating a singular distribution with a non-singular one.
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Figure 5.1: The one-shot exact version of (a) Wyner’s distributed simulation problem and (b)

Gács-Körner’s distributed randomness extraction problem.

as H(V ). For a discrete random variable H(V ) is defined as
∑

v∈Supp(V )−P(V = v) log2 P(V = v),

where Supp(V ) is the support of V . Since the quantities we are interested in are independent of the

choice of mean values, we assume without loss of generality that all variables have zero mean. For a

pair of zero-mean random variables (X, Y ), we use Σ =

 ΣX Σ⊤
XY

ΣXY ΣY

 to denote their covariance

matrix, where ΣX = E(XX⊤) and ΣY = E(Y Y ⊤) are the marginal covariance matrices, and

ΣXY = E(XY ⊤) is the cross-covariance matrix. We say that X , Y are jointly singular if

rank(Σ) < rank(ΣX) + rank(ΣY ). (5.7)

Our proofs show that we can assume without loss of generality that the marginal covariances are

non-singular.

Common Information Dimension (CID). We consider the one-shot exact version of the distributed

simulation problem in Fig. 5.1 (a), where n distributed nodes leverage the common randomness

(V,W ), in addition to their own local randomness, to simulate random vectors X1, · · · , Xn that

follow a given joint distribution πX1,··· ,Xn . We note that the distributed simulation is possible only

if X1, · · · , Xn are conditionally independent given (V,W ). Specifically, each node i generates Xi

according to a distribution PXi|(V,W ), and the joint distribution is required to satisfy πX1,··· ,Xn =

EV,W

[∏n
i=1 PXi|(V,W )

]
.

We assume that V is a (one-dimensional) random variable with finite entropy H(V ) < ∞,

and W ∈ RdW is a possibly continuous random vector of dimension dW that can be expressed as
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W = g(X1, . . . , Xn) for some function g in a given class of functions F . Our goal is to determine

the minimum dimension of W that is necessary to enable the distributed simulation. Note that we

allow for the finite entropy random variable V to not follow the F restriction, and thus the common

randomness needs to be expressed using a function in F only up to finite randomness. This allows

the common information dimension to be zero when a finite amount of randomness is sufficient for

the simulation, and avoids extra dimensions that may arise when this sufficient finite randomness

cannot be expressed using F .

Definition 5. The Common Information Dimension (CID) of random variables X1, · · · , Xn with

respect to a class of functions F , is defined as

dF(X1, · · · , Xn) = min{dW |W ∈ WF}, (5.8)

where

WF = {W | ∃V, g : R
∑n

i dXi → RdW ∈ F , such that

X1 ⊥⊥ ... ⊥⊥ Xn|(V,W ), H(V ) <∞, W = g(X1, · · · , Xn)}.

We next define the concept of the Rényi Common Information Dimension (RCID) by

replacing the dimension of W with the Renyi dimension described in (5.6).

Definition 6. The Rényi Common Information Dimension (RCID) of random variables X1, · · · , Xn

with respect to a class of functions F is defined as

dRF(X1, · · · , Xn) = inf{dR(W )|W ∈ WF}. (5.9)

Finally, we define the Gács-Körner’s Common Information Dimension (GKCID) (illustrated

in Fig. 5.1 (b)) for continuous random variables by replacing the entropy with the Rényi dimension

in the Gács-Körner’s common information definition. This measures the maximum dimension of a

vector W that can be extracted from each random variable individually, using a potentially different

function fi ∈ F .
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Definition 7. The Gács-Körner’s Common Information Dimension (GKCID) of random vari-

ables X1, · · · , Xn with respect to a class of functions F is defined as

dGK
F (X1, · · · , Xn) = sup

(∀i∈[n])W=fi(Xi),fi∈F
dR(W ), (5.10)

where the optimization is over W, {fi}ni=1.

5.5 CID, RCID and GKCID for Jointly Gaussian Random Variables

We note that although CID, RCID and GKCID are well-defined, it is not clear whether and how

they can be computed. In this section, we characterize the CID, RCID, and GKCID for an arbitrary

number of jointly Gaussian random variables when F is the class of linear functions. Our results

show that CID and RCID are equal and that CID, and RCID can be computed simply from ranks of

covariance matrices, while GKCID is not larger than CID.

5.5.1 Main Results

We consider a jointly Gaussian random vector X = [X1, · · · , Xn], where Xi ∈ RdXi , with covari-

ance matrix ΣX . We use ΣI|J for I, J ⊆ {1, · · · , n} to denote the conditional covariance matrix of

XI conditioned on XJ , where XI denotes the elements of X with indices in the set I . We also use

−I to denote the complement of set I in {1, · · · , n}. To simplify notation, we drop the parentheses

when listing the elements of the sets I, J . Also, as we only consider F being the class of linear

functions, we omit it in the subscripts.

5.5.1.1 CID of Jointly Gaussian Random Variables

Theorem 14 derives the CID for two jointly Gaussian random vectors X, Y in a closed form, with

F the class of linear functions.

Theorem 14. Let [X, Y ] be a jointly Gaussian random vector. Then, the common information

92



dimension between X, Y with respect to the class of linear functions equals

d(X, Y ) = rank(ΣX) + rank(ΣY )− rank(Σ).

Moreover, when ΣX ,ΣY are non-singular2, an W that satisfies the minimum in (5.8) is given by

W = NXX , where N =
[
NX −NY

]
is any basis of the row space of the matrix Σ.

Our result enables the simple calculation of CID with only the knowledge of covariance matrices.

The proof also provides methods to construct the pair (V,W ). This can be achieved by examining

the null space of (linear transformations of) the covariance matrix Σ. Theorem 15 extends the result

to arbitrary number of Gaussian random vectors.

Theorem 15. Let X = [X1, · · · , Xn] be a jointly Gaussian random vector. The common information

dimension between X1, · · · , Xn with respect to the class of linear functions is

d(X1, · · · , Xn) =
n∑

i=1

rank(Σ−i)− (n− 1)rank(Σ),

where Σ is the covariance matrix of X , and Σ−i is the covariance matrix of the random vector

[X1, · · · , Xi−1, Xi+1, · · · , Xn]. Moreover, a W that satisfies the minimum in (5.8) is given by

Algorithm 9.

5.5.1.2 RCID of Jointly Gaussian Random Variables

Our next result shows that for jointly Gaussian random variables RCID and CID are the same. The

proof is provided at the end of Appendix D.2.

Lemma 5. Let [X1, · · · , Xn] be a jointly Gaussian random vector. Then, the Rényi common

information dimension between X1, · · · , Xn with respect to the class of F of linear functions is

given by

dR(X1, · · · , Xn) = d(X1, · · · , Xn).

2Note that this can always be achieved by a linear transformation on X , and a linear transformation of Y .
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Algorithm 9 Algorithm to find (V,W )

1: for i = 1, · · · , n do

2: Find Ai, a basis of the row space of Σi|1:i−1.

3: Define Ui = AiXi (remove parts from Xi that can be obtained from previous

X1, · · · , Xi−1).

4: Find Bi, a basis of the row space of Σi+1:n|1:i−1.

5: Define Yi = Bi[Xi+1, · · · , Xn] (remove parts from [Xi+1, · · · , Xn] that can be obtained

from previous X1, · · · , Xi−1).

6: Find Ñi = [Ni N̄i], the null space of ΣUiYi
.

7: Let Zi = NiUi (the parts of Xi+1, · · · , Xn that can be obtained from Xi but cannot be

obtained from X1, · · · , Xi−1).

8: Let W = [Z1, · · · , Zn].

9: Find Ci: basis for the covariance matrix of Xi conditioned on W (the parts of Xi that cannot

be obtained from W ). Let Ti = CiXi.

10: Use [LE17] to get V that breaks the dependency of T1, · · · , Tn conditioned on W .

5.5.1.3 GKCID of Jointly Gaussian Random Variables

Theorem 16 states the closed-form solution for GKCID of jointly Gaussian random variables. The

proof of this theorem also gives an efficient method to construct W , given in (D.43) in Appendix D.3,

with the maximum information dimension.

Theorem 16. Let X = [X1, · · · , Xn] be a jointly Gaussian random vector. The GKCID between

X1, · · · , Xn with respect to the class of linear functions is given by

dGK(X1, · · · , Xn) = r(Σ̃)− rank(Σ̃), (5.11)
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where r(Σ̃) is the number of rows of Σ̃, with

Σ̃ =



ΣX′
1X

′
2

0 · · · 0

0 ΣX′
2X

′
3
· · · 0

· · ·
0 0 · · · ΣX′

n−1X
′
n

01 12 12 03 · · · 0n−1 0n

01 02 02 13 · · · 0n−1 0n

01 02 02 03 · · · 1n−1 0n


, (5.12)

X ′
i = FiXi,∀i ∈ [n], Fi is a basis of the row space of ΣXi

, 0i ∈ R1×dX′
i and 1i ∈ R1×dX′

i are all

zeros (and ones respectively) row vectors with the same dimension as X ′
i.

The following corollary follows from Theorems 15 and 16.

Corollary 4. For two jointly Gaussian random variables X1, X2 we have that d(X1, X2) =

dGK(X1, X2).

This result does not extend to more than two variables: as the following example shows, GKCID

can be strictly less than CID. We consider three random vectors X1, X2, X3 with non-zero variance,

X1 = X2 a.s., and X3, [X1, X2] independent. A W of dimension equal to dX1 is required to

break the dependency, hence, d(X1, X2, X3) = dX1 . However, as X3 is independent of X1, all

functions with f1(X1) = f3(X3) have zero entropy [GK73,Wit75], and zero information dimension.

Corollary 5 follows from the proof of Theorem 16 and Lemma 10.

Corollary 5. Let X = [X1, · · · , Xn] be jointly Gaussian vectors, then dGK(X1, · · · , Xn) ≤
d(X1, · · · , Xn).

5.5.2 Proofs of Theorem 14 and 15

• Theorem 14:
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Table 5.1: Table of notation for Theorem 14

Notation Definition

X, Y jointly Gaussian random vectors

Σ,ΣX ,ΣY covariance matrices of [X, Y ], X, Y respectively

N basis of the null space of Σ

NX ,NY N =
[
NX −NY

]
(5.13)

N ′
X ,N

′
Y basis of the complementary space of NX ,NY (5.14)

MX ,MY MX =

NX

N ′
X

 ,MY =

NY

N ′
Y

 (5.15)

Proof. We start by stating the following lemma that enables to discover deterministic relations

between X, Y by just examining the joint covariance matrix Σ. The proofs of all lemmas are in

Appendix D.1.

Lemma 6. Let X = [X1, X2, ..., Xn] be a dX-dimensional random vector, dX =
∑n

i=1 dXi
, with

zero mean and covariance matrix Σ. For any vectors a, b ∈ RdX , we have that

a⊤X = b⊤X almost surely, if and only if a⊤Σ = b⊤Σ.

Corollary 6. There is a subset I ⊆ {1, ..., dX} such that |I| = rank(ΣX), and XI ⊥⊥ Y |(V,W ) if

and only if X ⊥⊥ Y |(V,W ).

Therefore, without loss of generality, we assume that X and Y are non-singular, which implies

that dX = rank(ΣX), and dY = rank(ΣY ).

Let N ∈ Rr(N)×(dX+dY ) be a basis of the left null space of Σ. We next show some properties

for the matrix N that will help us to prove the theorem. By definition of N , we have the following
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facts

Fact 1. NΣ = 0. (5.16)

Fact 2. rank(N ) = dX + dY − rank(Σ) = rank(ΣX) + rank(ΣY )− rank(Σ). (5.17)

Using Lemma 6 and (5.16), we have that N
[
X⊤ Y ⊤

]⊤
= 0 almost surely. We partition N

as
[
NX −NY

]
, where NX ∈ Rr(N)×dX and NY ∈ Rr(N)×dY . Then we have that

NXX = NY Y. (5.18)

N is full-row-rank by definition; in the following, we show that NX (and similarly NY ) are also

full-row-rank.

Lemma 7. Let [X, Y ] be a random vector with covariance matrix Σ and N =
[
NX −NY

]
be a

basis for the null space of Σ, where N ∈ Rr(N)×(dX+dY ), NX ∈ Rr(N)×dX , and NY ∈ Rr(N)×dY .

If X and Y are non-singular (i.e., ΣX ,ΣY are full-rank), we have that

rank(NX) = rank(NY ) = rank(N ). (5.19)

Next, we define two square non-singular matrices MX and MY as MX =
[
N⊤

X N ′⊤
X

]⊤
∈

RdX×dX and MY =
[
N⊤

Y N ′⊤
Y

]⊤
∈ RdY ×dY , where N ′

X ,N
′
Y are a basis for the complementary

space of NX and NY , respectively. Lemma 8, and Lemma 9 show two properties of the quantities

MX ,MY ,N
′
X ,N

′
Y which we prove in the Appendix D.1.

Lemma 8. Let MX ∈ RdX×dX ,MY ∈ RdY ×dY be full-rank matrices, and X, Y, V,W be random

vectors of dimension dX , dY , dV , and dW respectively. We have that

MXX ⊥⊥MY Y |(V,W ) if and only if X ⊥⊥ Y |(V,W ).

Lemma 9. Let NX ,NY ,N
′
X ,N

′
Y be as defined in (5.13) and (5.14). Conditioned on NXX , we

have that
[
(N ′

XX)⊤ (N ′
Y Y )⊤

]⊤
has full-rank covariance matrix.
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We are now ready to prove Theorem 14. We first show that the common information dimension

is upper bounded as d(X, Y ) ≤ rank(ΣX) + rank(ΣY )− rank(Σ). Consider NXX as a possible

W . Conditioned on NXX , both NXX and NY Y are deterministic, since NXX = NY Y from

(5.18). Hence, conditioned on NXX , breaking the dependency between MXX and MY Y reduces

to breaking the dependency between N ′
XX and N ′

Y Y conditioned on NXX .

From Lemma 9, we have that conditioned on NXX ,
[
(N ′

XX)⊤ (N ′
Y Y )⊤

]⊤
is jointly Gaus-

sian with full-rank covariance matrix. Hence, by the result in [LE17], there is a VW with

H(VW ) < ∞ such that N ′
XX ⊥⊥ N ′

Y Y |(W,VW ), where W = NXX . Since the covariance

matrix of
[
(N ′

XX)⊤ (N ′
Y Y )⊤

]⊤
conditioned on NXX does not depend on the value of NXX

and is only a function of the covariance matrix of NXX , VW can be the same for all W , and we can

refer to VW as V . This shows that MXX ⊥⊥MY Y |(NXX, V ). By Lemma 8, X ⊥⊥ Y |(NXX, V ).

Thus,

d(X, Y ) ≤ dNXX
(i)
= rank(NX)

(5.19)
= rank(N )

(5.16)
= rank(ΣX) + rank(ΣY )− rank(Σ),

(5.20)

where (i) follows since NX is full rank by Lemma 7.

Next, we prove in Lemma 10 the other direction, that d(X, Y ) ≥ rank(N ). At the heart of the

lemma, we prove that if there is a common function that can be extracted from both X, Y , namely,

fX(X) = fY (Y ) a.s. for some fX , fY , then for (V,W ) to break the X, Y dependency, fX(X) (and

hence fY (Y )) is a deterministic function of (V,W ). We also show that if fX , fY are linear and

W = A
[
X⊤ Y ⊤

]⊤
for some A, then dW ≥ dfX(X).

Lemma 10. Let [X, Y ] be a jointly Gaussian random vector and V,W be random variables such

that W = A
[
X⊤ Y ⊤

]⊤
for some matrix A, H(V ) ≤ ∞ and X ⊥⊥ Y |(V,W ). Let matrix NX

be such that NXX is non-singular. If there exists matrix NY such that NXX = NY Y a.s., then

NXX = A′W a.s. for some matrix A′ and dW ≥ dNXX .

Proof. First, we show that NXX is a deterministic function of (V,W ). Suppose towards a contradic-

tion that there is a set S ⊆ Rr(N) such that 0 < P[NXX ∈ S|(V,W )] < 1. Since NXX = NY Y
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a.s., we have that

P[NXX ∈ S,NY Y ∈ SC |(V,W )] = 0, (5.21)

where SC is the complement of S. However, from 0 < P[NXX ∈ S|(V,W )] < 1 we get that

P[NXX ∈ S|(V,W )]P[NY Y ∈ SC |(V,W )]

= P[NXX ∈ S|(V,W )]P[NXX ∈ SC |(V,W )] ̸= 0.
(5.22)

This implies that

P[NXX ∈ S,NY Y ∈ SC |(V,W )]

̸= P[NXX ∈ S|(V,W )]P[NY Y ∈ SC |(V,W )].
(5.23)

However, as functions of independent random variables are independent, we have that NXX

and NY Y are conditionally independent given (V,W ); being projections of MXX,MY Y . This

contradicts (5.23).

This implies that for any S ⊆ Rr(N) we either have P[NXX ∈ S|(V,W )] = 1 or P[NXX ∈
S|(V,W )] = 0. We show next that this implies that NXX is a deterministic function of (V,W ).

As the interval from (−∞,∞) can be partitioned into countably many sets of the form (0 +

m, 1 + m], by countable additivity of measures we get that there is a cube of the form S =∏r(N)
i=1 (0 + mi, 1 + mi] that has P[NXX ∈ S|(V,W )] = 1. If we repeatedly halve one of the

largest dimensions of the cube we get a sequence of hyper-rectangles ... ⊆ R2 ⊆ R1 such that

P[NXX ∈ Ri|(V,W )] = 1,∀i = 1, 2, ... and ∩i∈NRi contains exactly one member. The last fact is

proved in the following. We notice that ∩i∈NRi contains at most one member because for any two

points x1, x2 ∈ Rr(N), there is some i such that the largest dimension ofRi is less than ∥x1 − x2∥2
which implies that at most one point of x1, x2 can be in Ri. It is also not possible that ∩i∈NRi is

empty as by the continuity from above of finite measures, we have that

P[NXX ∈ ∩i∈NRi|(V,W )] = 1. (5.24)

Therefore, ∩i∈NRi must contain a single member. Let us denote the unique point in ∩i∈NRi by

g(V,W ), where g is a deterministic function. Then, we have that P[NXX = g(V,W )|(V,W )] = 1.
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Hence, we have that

H(NXX|W ) ≤ H(NXX, V |W )

= H(NXX|(V,W )) +H(V |W )

= H(V |W ) ≤ H(V ) <∞. (5.25)

Since W = A
[
X⊤ Y ⊤

]⊤
, we have that (NXX,W ) follows a jointly Gaussian distribution. As a

result, conditioned on W , we have that NXX is also jointly Gaussian, whose entropy is either 0

(for zero variance) or∞. Based on (5.25), it must be that H(NXX|W ) = 0. Hence, we have that

NXX = BW , for some B ∈ Rrank(N)×dW . And as a result, NXΣX = BE(WX⊤). Then we

have that

rank(NXΣX)
(i)
= rank(NX)

(5.19)
= rank(N ) ≤ rank(B) ≤ dW , (5.26)

where (i) follows from the fact that NXX has full rank covariance matrix.

Combining (5.20) and (5.26), we conclude that

d(X, Y ) = rank(N ) = rank(ΣX) + rank(ΣY )− rank(Σ).

• Proof Outline of Theorem 15:

Proof. We here give a proof outline, and provide the complete proof in App. D.2. The main part of

the proof, illustrated in Algorithm 9, constructs variables Z = [Z1, · · · , Zn] that satisfy:

(i) Conditioned on Z, the dependency between X1, · · · , Xn can be broken using finite randomness

(see Lemma 20 in App. D.2 ). This is proved by showing that after eliminating from X the parts

that can be almost surely determined by Z, the remaining part is jointly non-singular Gaussian. This

shows that CID is upper bounded by the total number of dimensions of Z.

(ii) For any V,W that break the dependency between X1, · · · , Xn, we have that Z is a linear

function of W (see Lemma 21 in App. D.2 ). By showing that Z is a jointly non-singular Gaussian
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vector, we prove that the dimension of W is lower bounded by the dimension of Z, hence, CID is

lower bounded by the number of dimensions of Z.

We build Z sequentially as follows. Z1 represents the information that X1 contains about

[X2, · · · , Xn]; namely, the linearly independent dimensions of X2, · · · , Xn that can be determined

from X1. Then, Z2 contains the amount of information that X2 contains about X3, · · · , Xn that

X1 does not contain. Generally, Zi contains the information that Xi contains about Xi+1, · · · , Xn

which is not contained in any of the previous X1, · · · , Xi−1.

5.6 The relation between CID and Wyner’s Common Information

In this section, we restrict our attention to the case of two Gaussian random vectors, and formulate

three approximation problems, to investigate the asymptotic behavior of Wyner’s common informa-

tion in the (nearly) infinity regime. Our results indicate that the growth rates of the approximate

common information in all these scenarios are determined by the common information dimension.

Remark 2. We make two observations related to our formulations:

1) We restrict our attention to two Gaussian random vectors because, as mentioned before, the

calculation of Wyner’s common information is challenging, and the closed-form solution for

continuous random vectors (of arbitrary dimension) is only known for two Gaussian sources, while

a closed-form expression for multiple Gaussian sources remains open.

2) We do not consider the GK-version of the approximation problem since the GK common

information has an inherent discontinuity. In particular, it is easy to see that if the Gaussian

sources are singular, then the GK common information is infinite (as is the case for the Wyner as

well), however, if they are approximated by any non-singular Gaussian distribution, then the GK

common information of the approximate distribution is zero. Hence, the GK version of the common

information is not suitable for such approximations. Thus in this section, we exclusively focus on

the Wyner version. For simplicity, we drop the subscripts in CWyner(X, Y ) and use C(X, Y ) instead

to denote the Wyner’s common information.
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5.6.1 Problem Statements

5.6.1.1 Common information of nearly singular sources

This formulation aims to study the growth rate of the common information for a sequence of pairs

of random variables that approach joint singularity. In particular, let X, Y be Gaussian random

variables with rank(Σ) < rank(ΣX)+ rank(ΣY ), and hence, d(X, Y ) ≥ 1 and C(X, Y ) =∞. Let

{(Xϵ, Yϵ)}ϵ>0 be a sequence of Gaussian random variables satisfying

ΣXϵ = ΣX ,ΣYϵ = ΣY , and ∀ i, |ρi(ϵ)− σi| = ϵ, (5.27)

where {σi} and {ρi(ϵ)} are the singular values of Σ−1/2
X ΣXYΣ

−1/2
Y and Σ

−1/2
Xϵ

ΣXϵYϵΣ
−1/2
Yϵ

respec-

tively, in a decreasing order. These requirements ensure that (Xϵ, Yϵ) remain non-singular (and thus

have finite common information), while the joint distribution of (Xϵ, Yϵ) converges to that of X, Y

as ϵ ↓ 0.

Remark 3. The conditions in (5.27) force each singular value of Σ−1/2
Xϵ

ΣXϵYϵΣ
−1/2
Yϵ

to go to the

corresponding singular value of Σ−1/2
X ΣXYΣ

−1/2
Y at an identical rate ϵ. This enables us to study

how the common information increases as a function of ϵ. There exist however other cases where

the same results apply, and we next give two examples.

One case is when we have different convergence rates for each singular value. The second

condition in (5.27) can be replaced with ∀i, |ρi(ϵ) − σi| = aiϵ, where ai’s are constants with

different values. provided that these rates are of the same order, meaning that they differ only by a

multiplicative constant.

A second case is when we only approximate the singular values that equal to 1. Recall that

from (5.5), the common information is infinite when σi = 1 for some i. Consider a sequence of

covariance matrices that have singular values satisfying (5.27) when σi = 1 and share the same

singular values with the target distribution for all other indices, i.e., ρi = σi when σi ̸= 1. It is easy

to see that the same results we establish assuming the condition in (5.27) holds, also extend for the

described sequence as well.
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5.6.1.2 Approximate simulation

This formulation looks at approximating a pair of Gaussian random variables X, Y that are jointly

singular (C(X, Y ) =∞) with Gaussian random variables X̂, Ŷ that (i) are non-singular (C(X̂, Ŷ )

is finite) and (ii) have a distribution close to the distribution of X, Y . In other words, we ask,

if we are restricted to using a finite number of bits as common information, how well can we

(approximately) simulate X, Y .

We use the Frobenius-norm between covariance matrices to measure how close two Gaussian

distributions are. For some ϵ > 0, we define the ϵ-approximation common information as

Cϵ(X, Y ) := min
∥Σ−Σ̂∥F≤ϵ

C(X̂, Ŷ ), (5.28)

where the optimization is over all pairs (X̂, Ŷ ) with covariance matrix Σ̂ and ∥ · ∥F is the Frobenius

norm of a matrix.

Remark 4. The results on Cϵ(X, Y ) extend if we replace the Frobenius norm with any distribution

distance dist(XY, X̂Ŷ ) that satisfies a∥Σ− Σ̂∥F ≤ dist(XY, X̂Ŷ ) ≤ b∥Σ− Σ̂∥F for all Gaussian

variables XY, X̂Ŷ and some constants a and b.

Remark 5. Note that formulation 1 in (5.27) studies a more restricted set of sequences than the

sequences included in the feasible set of the optimization problem in (5.28). However, the result we

show for formulation 1 is stronger as it holds for all sequences that satisfy the condition in (5.27).

In contrast, the results in formulation 2 only hold for the sequence with the minimum common

information (that achieves the optimal value of the minimization problem). It can be easily shown

that there exist sequences in the feasible set of formulation 2 that have different asymptotics. For

example, if some singular values of the approximation matrix take the value 1 or approach 1 at a

rate different from Θ(ϵ)(e.g., ϵ2 or 2ϵ).
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5.6.1.3 Common information between quantized variables

In this formulation, we study Wyner’s common information between quantized continuous random

vectors. Let X and Y be a pair of jointly singular Gaussian random vectors with C(X, Y ) =∞. For

m > 0, we use ⟨X⟩m = [⟨X1⟩m, · · · , ⟨XdX ⟩m]⊤ and ⟨Y ⟩m = [⟨Y1⟩m, · · · , ⟨YdY ⟩m]⊤ to denote the

quantized X and Y , where the quantization operator on each element is defined as ⟨Xi⟩m = ⌊mXi⌋
m

and ⟨Yi⟩m = ⌊mYi⌋
m

. Note that C(⟨X⟩m, ⟨Y ⟩m) <∞ for all 0 < m <∞, and as m approaches∞,

⟨X⟩m and ⟨Y ⟩m converges to X and Y respectively. We are interested in the growth rate of their

common information C(⟨X⟩m, ⟨Y ⟩m).

5.6.2 Asymptotic Behavior of Wyner’s Common Information

In this section, we present our main results and proof outlines for the three formulations described

in Section 5.6.1. The detailed proofs are provided in Appendices D.5 and D.6.

Before stating our main results, we present two properties of covariance matrices and the

common information dimension, which are important to the proofs of Theorems 17 and 18. As

stated in (5.5) the common information is determined by the singular values of the normalized

cross-covariance matrix Σ
−1/2
X ΣXYΣ

−1/2
Y . Lemma 11 proves a bound on these singular values.

Lemma 11. Let X ∈ RdX and Y ∈ RdY be jointly Gaussian variables with covariance matrix

Σ =

 ΣX Σ⊤
XY

ΣXY ΣY

, and d = min{dX , dY }. Then the singular values of Σ
−1/2
X ΣXYΣ

−1/2
Y ,

denoted as {σi}di=1, satisfy

0 ≤ σi ≤ 1,∀i ∈ [d]. (5.29)

The following lemma shows the relationship between the common information dimension and

the singular values of Σ−1/2
X ΣXYΣ

−1/2
Y , which will enable us to connect the quantities C(Xϵ, Yϵ)

and Cϵ(X, Y ) with the common information dimension d(X, Y ).

Lemma 12. Assume X ∈ RdX , Y ∈ RdY are jointly Gaussian variables with covariance matrix
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Σ =

 ΣX Σ⊤
XY

ΣXY ΣY

, and {σi} are the singular values of Σ−1/2
X ΣXYΣ

−1/2
Y . Then the common

information dimension between X and Y , with respect to linear functions, satisfies

d(X, Y ) =

min{dX ,dY }∑
i=1

1{σi = 1}. (5.30)

5.6.2.1 Common information of nearly singular sources

We consider a sequence of pairs of Gaussian random variables {(Xϵ, Yϵ)}ϵ>0 satisfying (5.27). The

following result shows that the growth rate of the common information C(Xϵ, Yϵ) is determined by

the common information dimension d(X, Y ) with respect to linear functions.

Theorem 17. Let X ∈ RdX and Y ∈ RdY be a pair of jointly singular Gaussian variables, and

{(Xϵ, Yϵ)}ϵ>0 be a sequence as defined in (5.27). Then the common information C(Xϵ, Yϵ) satisfies

lim
ϵ↓0

C(Xϵ, Yϵ)
1
2
log(1

ϵ
)

= d(X, Y ). (5.31)

Proof Outline of Theorem 17:

Proof. The main technical challenge in proving Theorem 17 is the fact that there exist multiple

sequences of random variables Xϵ, Yϵ, with different values of C(Xϵ, Yϵ), that satisfy the constraints

in (5.27). To address this issue, we prove the result by deriving an upper and a lower bound on

C(Xϵ, Yϵ) that have the same asymptotic behavior.

The proof focuses on showing that limϵ↓0
C(Xϵ,Yϵ)
1
2
log( 1

ϵ
)
=
∑min{dX ,dY }

i 1{σi = 1}, where {σi} are

the singular values of the matrix Σ
−1/2
X ΣXYΣ

−1/2
Y . We prove this by providing an upper and lower

bound on C(Xϵ,Yϵ)
1
2
log( 1

ϵ
)

that have the same limit when ϵ ↓ 0. Then we relate
∑min{dX ,dY }

i 1{σi = 1} to

the common information dimension d(X, Y ) using Lemma 12.

105



5.6.2.2 Approximate simulation

The following result shows that the ϵ-approximation common information Cϵ(X, Y ), defined in

(5.28), for Gaussian variables grows at a rate determined by the common information dimension

d(X, Y ) with respect to linear functions.

Theorem 18. Let X ∈ RdX and Y ∈ RdY be a pair of jointly Gaussian random variables, then

lim
ϵ↓0

Cϵ(X, Y )
1
2
log(1

ϵ
)

= d(X, Y ). (5.32)

Proof Outline of Theorem 18:

Proof. The main technical challenge in proving Theorem 18 is the difficulty in finding a closed

form solution of the optimization problem defining Cϵ(X, Y ). To address this issue, we follow a

similar approach as in Theorem 17 by deriving an upper and a lower bound on Cϵ that have the

same asymptotics. However, it turns out that finding upper and lower bounds that have the same

asymptotics is more involved than in the case of Theorem 17.

The proof uses a pair of upper and lower bounds, derived as described next, to show that

limϵ↓0
C(Xϵ,Yϵ)
1
2
log( 1

ϵ
)

=
∑min{dX ,dY }

i 1{σi = 1}, where {σi} are the singular values of the matrix

Σ
−1/2
X ΣXYΣ

−1/2
Y . From Lemma 12, this concludes the proof of Theorem 18.

Upper Bound. As Cϵ(X, Y ) is the optimal value of a minimization problem, any feasible solution

provides an upper bound. To find a feasible solution we use ΣX̂ = ΣX ,ΣŶ = ΣY . Then, we

design the singular values of Σ−1/2

X̂
ΣX̂ŶΣ

−1/2

Ŷ
, denoted as {ρi}, as follows. We set ρi = σi when

σi ̸= 1. Recall that choosing a singular value to be 1 results in an infinite value for the common

information. Hence, when σi = 1 we choose ρi = 1− δ where δ is the largest value that does not

violate the constraint ∥Σ− Σ̂∥F ≤ ϵ.

Lower Bound. To find a lower bound, we relax the constraints set ∥Σ− Σ̂∥F ≤ ϵ, resulting in a

smaller optimal value, to make it possible to find a closed form solution of the problem. The proof

of the lower bound hinges on showing that ∥Σ− Σ̂∥F ≤ ϵ implies

∥Λ− Λ̂∥F ≤ cϵ, (5.33)
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where Λ = diag(σi), Λ̂ = diag(ρi) are matrices containing the singular values of Σ−1/2
X ΣXYΣ

−1/2
Y ,

Σ
−1/2

X̂
ΣX̂ŶΣ

−1/2

Ŷ
respectively, and c is a constant that may depend on ΣX ,ΣY . To further simplify

the problem, we remove from the objective function the terms corresponding to σi < 1, and also

remove the value log(1+ ρi) from each term (recall the common information in (5.5)). We note that

each term in the objective function is non-negative, and hence, removing terms will not increase the

optimal solution value. Furthermore, we expect the asymptotics of the common information to be

influenced by the singular values corresponding to σi = 1. This results in the following optimization

problem

min
ρ

1

2

∑
i:σi=1

log
1

1− ρi

s.t.
∑
i:σi=1

(σi − ρi)
2 ≤ ϵ2, 0 ≤ ρi ≤ 1,

which can be solved in a closed form using symmetry and concavity of the log function.

Remark 6. We note that we can efficiently construct random variables for each ϵ with common

information that has the asymptotic behavior in Theorem 2 (and thus can be used to approximate

the target singular distribution with (nearly) the smallest common information). A possible choice

is ΣX̂ = ΣX ,ΣŶ = ΣY ,Σ
−1/2

X̂
ΣX̂ŶΣ

−1/2

Ŷ
= U Λ̂V , where U, V are orthonormal matrices of the

singular value decomposition of Σ−1/2
X ΣXYΣ

−1/2
Y , and Λ̂ is given in (D.58) (Appendix D.6).

Remark 7. Why do these two theorems have the same bound? It may seem at first surprising

that even though C(Xϵ, Yϵ) and Cϵ(X, Y ) have different definitions, they both grow (nearly) as
1
2
d(X, Y ) log(1/ϵ). Indeed, as we observed in Remark 5 the feasible set defining Cϵ(X, Y ) in (5.28)

contains different sequences of random variables than those satisfying the conditions in (5.27).

However, the proof of Theorem 18 shows that the random variables which minimize the common

information satisfy a constraint similar to (5.27); namely, the singular values ρi corresponding to

σi = 1 have the same distance to 1, where σi and ρi are the singular value of Σ−1/2
X ΣXYΣ

−1/2
Y and

Σ
−1/2

X̂
ΣX̂ŶΣ

−1/2

Ŷ
respectively. Intuitively, to minimize the common information in (5.5), we need

ρi to be as far as possible from the value 1, however, the distance constraint in (5.28) restricts us

from choosing ρi too far from 1 whenever σi = 1. If one ρi is very close to 1, it will dominate
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the summation in (5.5) resulting in large common information. Hence, a good solution to (5.28)

distributes the distance budget ϵ evenly across the ρi’s corresponding to σi = 1.

Remark 8. Consider a machine that stores each real value in B bits using standard floating-point

representation. Such a type of machine can store numbers up to a precision3 of 2−B. Suppose that

we are interested in the distributed simulation of two random variables X, Y up to the maximum

machine precision. Our result indicates that the minimum amount of shared randomness between

the quantized X, Y is proportional to 1
2
log( 1

2−B )d(X, Y ) = 1
2
Bd(X, Y ) bits. As each variable

stores at most B bits, 1
2
d(X, Y ) variables (dimensions) are required to store the shared randomness

on such machines in order to perform the distributed simulation up to the required 2−B accuracy.

5.6.2.3 Common information between quantized variables

The following result shows that the Wyner’s common information between uniformly quantized

Gaussian random vectors also grows in proportion to the common information dimension, as the

quantization precision increases.

Theorem 19. Let X ∈ RdX and Y ∈ RdY be a pair of jointly singular Gaussian random vectors.

Then the common information between the quantized ⟨X⟩m and ⟨Y ⟩m satisfies

lim
m→∞

C(⟨X⟩m, ⟨Y ⟩m)
logm

= d(X, Y ), (5.34)

where d(X, Y ) is the common information dimension of X and Y with respect to the class of linear

functions.

Proof Outline of Theorem 19:

Proof. Since it is hard in general to directly solve Wyner’s common information even for discrete

variables [YT22], we prove the result through matching upper and lower bounds. First, we show

3Note that for any quantization scheme, there exists at least one input value such that the quantization error is greater
or equal to 2−B .
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that limm→∞
C(⟨X⟩m,⟨Y ⟩m)

logm
≥ d(X, Y ) using the inequality that mutual information is not larger than

the Wyner’s common information [Wyn75].

Next, we prove limm→∞
C(⟨X⟩m,⟨Y ⟩m)

logm
≤ d(X, Y ) as follows. Recall (from the proofs of

Lemma 11 and 12) that there exist invertible linear transformations TX and TY such that X = TXX
′

and Y = TY Y
′, where X ′ ∈ RdX and Y ′ ∈ RdY are another pair of Gaussian random vectors with

independent elements (i.e. their covariance matrices ΣX′ , ΣY ′ , and ΣX′Y ′ are all diagonal). We

first show that limm′→∞
C(⟨X′⟩m′ ,⟨Y ′⟩m′ )

logm′ ≤ d(X ′, Y ′). Note that d(X ′, Y ′) = d(X, Y ) since TX ,TY

are invertible transformations.

However, C(⟨X⟩m, ⟨Y ⟩m), C(⟨X ′⟩m, ⟨Y ′⟩m) may not be equal in general (note that

⟨TX⟨X ′⟩m⟩m ̸= ⟨TXX
′⟩m = ⟨X⟩m) (similarly for Y ′ and Y ). Our proof proceeds by showing

that limm→∞
C(⟨X⟩m,⟨Y ⟩m)

logm
≤ limm→∞

C(⟨X′⟩m,⟨Y ′⟩m)
logm′ . This is proved using the following ideas: (i)

limm→∞
C(⟨X′⟩m,⟨Y ′⟩m)

logm
= limm→∞

C(⟨X′⟩αm,⟨Y ′⟩αm)
logm

for any fixed α ∈ [0,∞] (ii) ⟨TX⟨X ′⟩αm⟩m =

⟨X⟩m and ⟨TY ⟨Y ′⟩αm⟩m = ⟨Y ⟩m can be achieved with high probability by choosing a large α.

5.7 Numerical Evaluation

In this section, we numerically verify the asymptotic behaviors of Cϵ(X, Y ), C(Xϵ, Yϵ) and

C(⟨X⟩m, ⟨Y ⟩m) defined in Section 5.6 through two setups. In the first setup, we examine the

growth rate of the approximate common information as a function of the approximation error ϵ (or

the quantization size m). We use the second setup to illustrate the linear relationship between the

approximate common information and common information dimension d(X, Y ).

In all simulation results below, we obtain the value of approximate common information as

follows:

• To measure C(Xϵ, Yϵ) (note that there exist multiple sequences4 {(Xϵ, Yϵ)}ϵ>0 that satisfy

the requirements in (5.27)), we choose two representative sequences and plot the results for

4Note that there are at most 2min{dX ,dY } (Xϵ, Yϵ) that satisfy (5.27), for each ϵ.
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both: {(Xϵ, Y ϵ)} which has the minimum common information among such sequences for

all ϵ > 0, and {(Xϵ, Y ϵ)} which has the maximum common information. We calculate the

C((Xϵ, Y ϵ)) and C(Xϵ, Y ϵ) using the closed-form solution in (5.5) [SC15].

• To calculate the ϵ-approximation common information Cϵ(X, Y ), we solve the optimization

problem in (5.28) numerically using SciPy [VGO20].

• For the C(⟨X⟩m, ⟨Y ⟩m), we use a pair of upper and lower bounds from the proof of Theo-

rem 19:

I(⟨X⟩m; ⟨Y ⟩m) ≤ C(⟨X⟩m, ⟨Y ⟩m) ≤
∑
X=Y

H(⟨Xi⟩m) +
∑
X ̸=Y

C(Xi, Yi).

In Figure 5.2 and 5.3, the exact value of C(⟨X⟩m, ⟨Y ⟩m) lies in the colored area in between.

5.7.1 Setup 1

We let X ∈ R4 and Y ∈ R4 be jointly Gaussian vectors with zero means and covariance matrices

ΣX ,ΣY =


1 0.5 0 0

0.5 1 0 0

0 0 1 0

0 0 0 1

 ,ΣXY =


1 0.5 0 0

0.5 1 0 0

0 0 1 0

0 0 0 0.3

 .

It is evident that X1 = Y1, X2 = Y2, X3 = Y3 almost surely, and rank(Σ) = 5 < rank(ΣX) +

rank(ΣY ), thus, X and Y are jointly singular.

Figure 5.2 illustrates the normalized common information Cϵ(X,Y )
1
2
log(1/ϵ)

, C(Xϵ,Yϵ)
1
2
log(1/ϵ)

and C(⟨X⟩m,⟨Y ⟩m)
log(m)

for the three formulations introduced in Section 5.6.1. They are plotted against the approxima-

tion error ϵ (or the quantization size m). We observe that both Cϵ(X,Y )
1
2
log(1/ϵ)

and C(Xϵ,Yϵ)
1
2
log(1/ϵ)

converge

to d(X, Y ) = rank(ΣX) + rank(ΣY ) − rank(Σ) = 3 as ϵ approaches 0. Similarly, C(⟨X⟩m,⟨Y ⟩m)
log(m)

converges to d(X, Y ) as m approaches∞. These verify our results in Section 5.6.2. Moreover, they

reach a value that is close to d(X, Y ) (e.g., a value < 4) quickly, even when ϵ is relatively large
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Figure 5.2: (a) the growth rate of Cϵ(X, Y ) and C(Xϵ, Yϵ); (b) the growth rate of C(⟨X⟩m, ⟨Y ⟩m).
(or m is relatively small). The trade-off between ϵ-approximate common information Cϵ(X, Y )

and error ϵ indicates that the common information dimension d(X, Y ) provides a theoretical limit

of distributed simulation, on the maximum achievable accuracy given a finite number of bits to

represent the common randomness; or equivalently, on the minimum number of bits required

for the shared randomness to achieve a target simulation accuracy. Similarly, the trade-off be-

tween C(⟨X⟩m, ⟨Y ⟩m) and the approximation precision m reflects the special case when uniform

quantization is applied to the target random variables.

5.7.2 Setup 2

In this example, we use X ∈ R7 and Y ∈ R7 with ΣX = ΣY = I7, while we choose cross-

covariance matrices ΣXY to be a diagonal matrix with d(X, Y ) number of diagonal elements set to

be 1 and the rest to be 0.5.

In Figure 5.3(a), we plot ϵ-approximate common information (i.e. the minimum number of

bits required to approximate X, Y ) versus different choices common information dimensions

d(X, Y ). We use two different levels of accuracy: ϵ = 2−5 and ϵ = 2−20. We observe that the

approximate common information grows linearly with the common information dimension d(X, Y ),

where the slope is given by 1
2
log(1/ϵ), as we also proved in Theorem 18. In addition, this plot

provides guidance on the minimum number of bits that need to be shared to perform the distribution

simulation within a given error. For instance, to simulate a target distribution with d(X, Y ) = 5, we
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Figure 5.3: Common information dimension d(X, Y ) vs (a) the ϵ-approximate common information

Cϵ(X, Y ); (b) the common information of quantized variables C(⟨X⟩m, ⟨Y ⟩m).
need to share 19 bits to achieve a relatively low 2−5 accuracy, or 53 bits to achieve a relatively high

2−20 accuracy.

In Figure 5.3(b), we plot the common information between quantized random variables ⟨X⟩m,

⟨Y ⟩m versus different values of common information dimension d(X, Y ). We consider 4 different

levels of quantization: m = 2k, where k ∈ {1, 2, 4, 8}. We observe that the approximate common

information grows linearly with the common information dimension d(X, Y ), and the slope is

roughly log(m) for large enough m, as we also proved in Theorem 19. Moreover, this plot specifies

the minimum number of bits needed to distributedly simulate target random variables that are

uniformed quantized into discrete values, with a known quantization precision.

5.8 Conclusion and Open Research Directions

In this chapter, we introduced the notion of CID which uses dimensions to measure the amount

of common information between random variables, that is infinite in bits. We provide a method

to compute CID for gaussian distributions and show that it characterizes the growth rate of the

common information in the nearly infinite regime.

We leave the following as open direction:

• How to compute CID for general distributions? In this chapter, we only compute CID for
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Gaussian distributions.

• A data-driven approach to compute CID. Our method to compute CID require the knowledge

of distribution; approximating CID using samples generated from the distribution is an

interesting open problem.
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CHAPTER 6

Distributed Feature Compression for Classification

6.1 Summary

We consider the problem of distributed feature quantization, where the goal is to enable a pretrained

classifier at a central node to carry out its classification on features that are gathered from dis-

tributed nodes through communication constrained channels. We propose the design of distributed

quantization schemes specifically tailored to the classification task: unlike quantization schemes

that help the central node reconstruct the original signal as accurately as possible, our focus is not

reconstruction accuracy, but instead correct classification. Our work does not make any a priori

distributional assumptions on the data, but instead uses training data for the quantizer design. Our

main contributions include: we prove NP-hardness of finding optimal quantizers in the general case;

we design an optimal scheme for a special case; we propose quantization algorithms, that leverage

discrete neural representations and training data, and can be designed in polynomial-time for any

number of features, any number of classes, and arbitrary division of features across the distributed

nodes. We find that tailoring the quantizers to the classification task can offer significant savings: as

compared to alternatives, we can achieve more than a factor of two reduction in terms of the number

of bits communicated, for the same classification accuracy.

6.2 Introduction

Quantization forms the core of almost all lossy data-compression algorithms, and is widely used

to reduce the number of bits required for storage and communication. These schemes optimize
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(a) Unquantized (b) Uniform (c) Uniform-measure (d) xor-like example

Figure 6.1: Quantization example and xor-like example.

a rate-distortion trade-off, where the goal is to represent data using a limited number of bits as

precisely as possible. Instead, in this work, we propose distributed quantization schemes tailored

to data that are going to be used for classification. That is, we explore the design of distributed

quantizers for a rate-classification error trade-off: our quantization schemes are not optimized for

reconstruction accuracy, but instead correct classification.

Fig. 6.1(a)-(c) illustrates the difference between the two aforementioned approaches. Given a

number of bits, we create a corresponding number of quantization regions in the space (3 bits/feature

= 23.23 = 64 regions in our example). Intuitively, for data reconstruction, we want to more finely

represent the regions of high signal concentration (Fig. 6.1(b)); for classification, we want to more

finely represent areas closer to the classification boundary where errors may happen (Fig. 6.1(c)).

In our work, we aim to design quantizers for the following generic scenario. A central entity

has access to a pretrained subdifferentiable classifier (e.g., a multilayer perceptron - MLP [CB15])

and wishes to apply that classifier on data features collected at K distributed sensor nodes. The

communication between the sensors and the central entity comes at a cost (is rate limited), and

thus it is expensive to send the measured features with full precision. Instead, each node employs a

distributed single-shot quantizer1, independently from other nodes, in order to encode its measure-

ments into bit representations that can be sent to the central entity efficiently as soon as sensed. We

emphasize that we do not make any a priori distributional assumptions on the data, as is common

1Single-shot means that we do not collect samples over time and jointly quantize them. Thus, a set of local features
observed at a node are quantized together whenever observed; motivated by delay requirement for classification.
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in many learning scenarios. Moreover, the data may be heterogeneous, from unknown composite

distributions (e.g., multimodal observations of sensors that capture video, sound, and radar signals).

We simply use training samples from the data to design the quantizers.

This scenario is motivated by many machine learning applications, that include wireless cyber-

physical systems, immersive environments and supported health. For example, in brain-to-computer

interface applications, multiple electrodes are placed around the brain to capture brain signals

which are used collectively as features to classify in what direction a person is trying to move

his hand [LN06]. Such features need to be quantized at the sensor peripheral nodes, and commu-

nicated through rate constrained channels to a central node for processing, so that classification

(and decisions based on it) can be done within a reasonable time of sensing. Other applications

where distributively generated features need to be quantized for communication include distributed

environment monitoring in sensor networks [OR11] and real-time control in Internet of Things

applications [FF20].

Our assumption of a pretrained classifier is motivated by the following practical considerations:

(i) we may not know the communication channel constraints when designing the classifier and

we may want to use the same classifier over systems with different communication channels; (ii)

we may not have access to the data used to train the classifier (e.g., we use a pretrained classifier

from cloud services such as Google Cloud [goo08] or Clarifai [cla]), but are able to personalize the

quantizers leveraging locally available data.

Contributions. We begin our formal study of the problem by proving that in general, it is NP-hard2

to design an optimal distributed quantization system tailored for classifying a given set of data points.

We also show that the problem is hard to approximate, therefore motivating alternate approaches to

the design, and empirical evaluations of proposed techniques.

Given the difficulty of designing the optimal quantization system, we propose a data-based

greedy quantization boundary insertion strategy, which we term GBI, which can be used for any

2This hardness is in terms of the problem parametrization, e.g., number of training points and the number of features.
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type of classifier, any number of features, any number of classes, and arbitrary division of features

across the distributed nodes. Operationally, GBI creates rectangular quantization regions by greedily

deciding how to divide the training data along each feature. We demonstrate that GBI has quadratic

complexity in the number of training samples and linear in the number of features.

To further reduce complexity and capture richer quantization boundaries (beyond rectangular),

we propose a (deep) learning based approach to design our quantizers that makes use of the

subdifferentiable nature of the classifier employed by the central node. This is inspired by the recent

success of learning discrete latent variables [OVK17,ROV19], joint source channel coding [CTW18]

and discrete representations for image compression [TSC17, BLS16, VKK16]. Our design can be

understood as a distributed discrete neural representation optimized for classification. We leverage

the GBI algorithm by making it a module within the discrete neural representation.

Through numerical evaluation, we show that for the same representation budget (number

of bits available at sensor nodes for each measurement), we can achieve four folds gains in

classification accuracy compared to approaches that try to learn discrete representations aimed

directly at reconstruction.

Our main contributions can thus be summarized as follows:

• We prove the NP-hardness and hardness to approximation for designing optimal distributed

quantizers for classification.

•We design optimal quantizers for linearly separable data and two features under some structural

restrictions.

•We propose a polynomial-complexity greedy quantization algorithm, GBI, optimized for classifi-

cation, that can be used for any number of features and any classifier.

•We propose a novel distributed discrete neural representation for classification, which can also be

combined with GBI.

•When compared with approaches for data reconstruction, we demonstrate benefits of 50% gain in

terms of classification accuracy for our proposed quantization approaches, on an sEMG dataset and

300% improvement on the CIFAR10 dataset.
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Chapter Organization. Section 6.3, reviews related work; Section 6.4 develops the notation

and problem framework; Section 6.5 proves the NP-hardness results; Section 6.6, introduces the

GBI algorithm; Section 6.7 proposes neural representation schemes; and Section 6.8 presents our

numerical evaluation.

6.3 Related Work

We will give representative examples of related literature to put our work in context, with an

organization around specific approaches/problems.

Distributed detection and hypothesis testing. The problem studied in this chapter is related to

distributed estimation and detection in communication-constrained networks, extensively studied in

the literature (see [CV07, Luo05] and references therein). Differently from our work, a common

assumption is that sensor measurements are independently distributed given the detection hypothesis,

and that these conditional distributions are known. In [LLG90], scalar quantization for distributed

hypothesis testing was studied, using known conditional distribution of features. In contrast to all

these works, we neither assume knowledge of the sensor measurements distribution, nor do we

make independence assumptions.

The information-theoretic study through error exponents where features are observed at different

nodes, is surveyed in [HA98]. Here, differently from our single-shot setup, an asymptotically

long sequence of i.i.d. time samples, from a fixed underlying (unknown) distribution, are jointly

compressed to distinguish between two hypotheses (e.g., testing for independence). There have also

been several recent works in information theory and machine learning on distributed probability

estimation, property testing and simulation [HOW18, DGL17, ACT18]. These works assume that

each node observes all features, and has access to independent samples from an unknown underlying

distribution. Distinct from this in our setup, each node observes subsets of (non-overlapping)

features, i.e., the observations at different nodes are not identically distributed.

Scalar and Vector quantization. In [Poo88, SMG13, MGV11] and references therein, a high-rate
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quantization theory is developed for computing known functions from distributed observations,

where the source distributions are known. For binary classification, the work in [BNO18] studies a

fundamental limit of designing a centralized deterministic scalar quantizer in terms of the maximum

mutual information that can be retained between the quantized features and classification labels

in the worst case. Designing centralized quantizers for classification can also be done using the

learning vector quantization (LVQ) [KHK96, SY96] and generalized vector quantization [RMR96]

frameworks, where a number of prototype classified vectors are defined and updated to reduce

misclassification error. In contrast, our problem requires decentralized quantization; the feature

space partitioning in the aforementioned approaches may not be decomposable into decision

boundaries applicable by distributed quantization.

Multi-terminal function computation. Rate-distortion literature has considered several related

problems, where asymptotically large number of samples are jointly represented; moreover these

problems assume that distribution of the sources are known. In the classical CEO problem [BZV96,

VB97, Ooh98, PTR04], a central node reconstructs a value from independently corrupted versions

measured at distributed sensors. Distributed compression for functional computation with distortion

has been studied in [Wag11, KP09, DSM10]. Our work focuses on single-shot quantization for a

priori unknown source distributions, without explicit knowledge of the classifier function.

Model Compression. Quantization is also used in inference tasks for model compression [ZYG17,

JKC18, WLC18, GLW19], with the goal to simplify implementation and reduce storage. How-

ever, differently from our work, the goal is to quantize the model operands rather than focus on

distributively quantizing the inputs to the model.

Decision stumps. A closely related algorithm that could be adapted to use for feature quantization

is AdaBoost [FS97, HRZ09] with decision stumps. In this case, the majority rule on the decision

stumps naturally partitions (quantizes) the space based on the number of stumps corresponding to

each feature. However, AdaBoost with decision stumps will not necessarily be able to return viable

quantizers in all cases. For example, if we consider labeled data points with an XOR pattern in R2

(centered at [-1,-1], [-1,1],[1,-1] and [1,1] as shown in Fig. 6.1(d)) then AdaBoost with stumps is
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not able to represent the XOR pattern in its decision regions [TDW14]. In contrast, it is not difficult

to see that two quantization boundaries at x1 = 0 and x2 = 0, respectively, are enough to allow a

good classifier to correctly classify the quantized points.

Latent variable models. Perhaps the closest approach to ours, are those of learning latent represen-

tations for data reconstruction. In variational autoencoders (VAEs) [KW13,HMP17,ZSE19,MRS19],

a continuous latent representation space is learned from the inputs, that can then be used to recon-

struct inputs or generate new data that follow the same distribution as the data in the training set.

In [OVK17], the authors present a new way of training VAEs to learn discrete latent space repre-

sentations, which naturally leads to a compression algorithm, since continuous (or full-precision)

inputs can be mapped to discrete latent representations typically using fewer bits. In [CTW18], the

authors also study the inference of discrete latent variables for joint source and channel coding. In

particular, discrete latent variables are learned such that they can be used for compression as in

VQ-VAEs; they are also robust to transmission over noisy discrete channels for reconstruction.

A main difference between these implementations and our setup is the distributed (decompos-

able) structure of our quantization system. In addition, it is intuitive to expect that reconstruction

may not yield the best classification results; what is perceived by the reconstruction loss as a good

approximation of the image might be inappropriate for a classifier as compared to the performance

of a classification tailored approach. We explore the latter point empirically in Section 6.8. There-

fore, our work can be thought of as an approach to distributed discrete (neural) representation

for classification. Recently, [AFD17] presented a variational approximation to the information

bottleneck method [TPB00] to design classifiers. However, differently from our work, it assumed a

centralized encoder and continuous latent variables.

6.4 Notation and Problem Formulation

Let X n be the n-dimensional space of possible input features (e.g., sensor measurements, images,

text, etc.) and Y be the set of possible classification classes over the space X n. We use x ∈ X n to
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Figure 6.2: An example for distributed quantization of features for classification with K = 4 nodes.

denote an n-dimensional input and y(x) ∈ Y to denote the class associated with x.

We consider a scenario where the features of x are not collected (sensed) all at the same entity

but instead at K distributed nodes. An example is shown in Fig. 6.2 for K = 4. In particular, node

k ∈ [1 : K] collects the vector of features xΩk
indexed by a set Ωk ⊆ [1 : n]. We assume that the

index sets {Ωk}Kk=1 are disjoint and their union is the set [1 : n]. We also assume that the feature

vector x is ordered such that x = [xΩ1 ,xΩ2 , · · · ,xΩK
]. We denote by XΩk

the space defined by the

features indexed by Ωk, with X n =
∏K

k=1XΩk
.

A central node wishes to classify the collected input features x using a pretrained subdifferen-

tiable3 classifier C(.) where

C(.) : X n → R|Y|, (6.1)

and the output class label ŷ(x) is given by

ŷ(x) = argmax
i∈[1:|Y|]

[C(x)]i. (6.2)

Note that ŷ(x) may be different than the true label y(x). With no communication constraints, node

k can perfectly convey xΩk
to the central node. Instead, we assume that node k is constrained to use

3By “subdifferentiable” classifier, we refer to a classifier that has non-trivial subgradient sets (i.e., non-empty
subgradient sets everywhere).
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Rk bits (much less than full precision). That is, node k uses a quantizer/encoder Ek, that takes as

input xΩk
and produces a discrete representation zk from an alphabetMk of size at most 2Rk , with

zk = Ek(xΩk
) : XΩk

→Mk, ∀k ∈ [1 : K]. (6.3)

Based on (6.3), we will denote the preimage of Ek as

E−1
k (zk) = {xΩk

∈ XΩk
|Ek(xΩk

) = zk}. (6.4)

Note that the computed zk depends only on xΩk
, the features available at node k. At the

central node, in order to apply the pretrained classifier C, a decoder D generates x̂ ∈ X n from

z = [z1, z2, · · · , zK ] and uses it as the input to C. The end-to-end operation, depicted in Fig. 6.2, is

given by (6.3) and

z = [z1, z2, · · · , zK ]

x̂ = D(z) :
K∏
k=1

Mk → X n, (6.5)

ŷ(x̂) = argmax
i∈[1:|Y|]

[C(x̂)]i.

We refer to a set of encoders E = {Ek}Kk=1 and a decoder D as a distributed quantization

system (E ,D). Ideally, we would like to use an (E ,D) system that minimizes the probability of

misclassification. That is, the encoders and decoder are the solution of the optimization problem

min
E,D:|Mk|≤2Rk

Ex,y(x)∼p(x,y(x))[I(ŷ(x̂) ̸= y(x))]

= min
E,D:|Mk|≤2Rk

Ex,y(x)∼p(x,y(x))[I(ŷ(D(E(x))) ̸=y(x))], (6.6)

where: (i) p(x, y(x)) is the input data distribution; (ii) ŷ(x̂) and x̂ are obtained from x using (6.3)

and (6.5); and in (iii) we used z = E(x) for brevity.

However, in this work we assume that the distribution p(x, y(x)) is not known: instead, we

are given a dataset T = {(x(i), y(x(i)))}Ni=1 which contains N independent samples drawn from
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Figure 6.3: Quantization example.

p(x, y(x)). Thus, we can only empirically approximate the expectation in (6.6) using the dataset T ,

and hence, our objective is to minimize the misclassification loss L(E ,D, T ), calculated as

L(E ,D, T ) = 1

N

N∑
i=1

[I(ŷ(x̂(i)) ̸= y(x(i)))]. (6.7)

In the rest of the chapter, we will say that a distributed quantization system (E ,D) is optimal, if the

encoders E = {Ek}Kk=1 and the decoder D are an optimal solution of the problem

min
E,D:|Mk|≤2Rk

L(E ,D, T ). (6.8)

Remark 3. Note that in (6.7), given a labeled dataset T , our objective is to minimize the empirical

probability of misclassifying the data points x(i) after quantization. Instead, if we are given a

local dataset of unlabeled data points, Tu = {x(i)}Ni=1, we could create a labeled dataset, T̂ =

{(x(i), ŷ(x)}Ni=1, by applying the pretrained classifier C on the local unlabeled data Tu. We can then

apply (6.7) - and the logic in the remainder of the chapter - on the data T̂ = {(x(i), ŷ(x)}Ni=1. In this

case, our objective is equivalent to keeping the classifier output consistent before and after applying

the distributed quantization system.

Remark 4. With no structural restrictions on the encoders E , it is possible to achieveL(E ,D, T ) = 0

almost-surely through over-fitting. For instance, if the distribution p(x) is a continuous distribution,

the probability that two data points have the same value for xΩk
is zero for any k. Thus, we can
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consider for example the first node (k = 1), and partition the space of xΩ1 into N disjoint regions

such that each region contains only one training data point. Then, for each region, the encoder

function E1(.) at node 1 can directly output the class y(x(i)) of the data point x(i) contained in that

region, then the decoder outputs a data point that is classified by the classifier to be y(x(i)). This

requires only log2(|Y|) bits. Hence, the rates [R1, ..., RK ] = [log2(|Y|), 0, ..., 0] are sufficient to

achieve L(E ,D, T )=0. Although such a quantization scheme will have zero loss when evaluated

on the dataset T , it would obviously handle out of sample points very poorly. To avoid this, we

restrict the preimage E−1
k (zk) to be the union of at most r XΩk

-bins, which are defined below.

Definition 1 (S-bin). We say that the set A ⊆ S is an S-bin if A is path-connected [Mun14] in S.

A set A is path-connected if and only if for every pair of points a, b ∈ A, there exists a path that

connects a, b which completely lies inside A. More formally, a set A is said to be path-connected if

and only if for every pair of points a, b ∈ A, there exists a continuous function f : [0, 1]→ A such

that f(0) = a and f(1) = b [Mun14].

By restricting the preimage of E−1
k (zk) to r ≪ N XΩk

-bins, we force Ek to assign the same zk

to a limited number of path-connected regions (earlier, these could be as many as the number of

data points from the same class). By doing so, the solution discussed above (where a single encoder

can fully carry the burden of classifying the data points) is eliminated.

We illustrate how the introduction of this restriction can reduce overfitting in the learned

quantization system through the example shown in Fig. 6.3. Fig. 6.3(a) depicts the underlying true

class function y(x) through colored regions of R2 and the sampled dataset T as points scattered in

the plot. Fig. 6.3(b) shows how an overfitting quantization system (as described in Remark 4) using

only x1 would approximate the underlying class function y. Note that, although the resulting system

provides poor approximation, it classifies the dataset points perfectly (given by the background

color in each region). Finally, Fig. 6.3(c) shows an example where each encoder Ek assigns at most

2 R-bins to the same zk. It is not difficult to see that although the illustrated quantization system

does misclassify some points in the dataset (decision given by the background in each region), it

gives a better approximation of y(x) outside the given dataset compared to the design in 6.3(b).
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A summary of the notation used throughout the chapter is given in Table 6.1.

Symbol Description Symbol Description

K Number of distributed

sensing nodes

Mk Set of possible values for zk

(def. (6.3))

n Number of features of data

point x

z Collection of encoder outputs

[z1, z2, · · · , zK ] (def. (6.5))

Y Set of possible classes M Set of possible values for z

(def. (6.5))

y True class label of data point

x

x̂ Reconstructed input from z

using D (def. (6.5))

Ωk Set of features at node k L(E ,D, T ) Empirical misclassification

loss (def. (6.7))

Rk Number of bits/data point at

node k

S-bin Path-connected subset of S
(def. Definition 1)

C Pretrained classifier

(def. (6.1))

pe Misclassification loss

threshold (def. Lemma 5)

ŷ Output class by classifier C
(def. (6.2))

d Set of boundaries used in

optimal on-the-line quantizer

Ek Encoder at node k (def. (6.3)) fk(·; θk) Neural network of neural

driven encoder Ek
E−1
k Preimage of Ek(def. (6.4)) Rmk Output space of neural

encoder fk (def. (6.15))

E Collection of encoders

{Ek}Kk=1

Qk Quantizer of neural driven

encoder Ek (def (6.15))

D Decoder at central node

(def. (6.5))

G Initial mapping of neural

driven decoder D
(def. (6.16))
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T Training dataset

{(x(i), y(x(i))}Ni=1

g(·;ϕ) Neural network of neural

driven decoder D
(def. (6.16))

N Number of data points in T Lc Misclassification loss for

neural based approach

(def. (6.18))

zk Output of encoder Ek
(def. (6.3))

Lq Quantization loss for neural

based approach (def. (6.20))

Table 6.1: Notation used throughout Chapter 6.

6.5 On the Complexity of Finding an Optimal Distributed Quantization

System

In this section we study the complexity of finding an optimal quantization system (E ,D) that

minimizes the loss in (6.8) over the dataset T . We first start by describing how to find an optimal

decoder D assuming that the optimal encoders E⋆ = {E⋆k}Kk=1 are given. We then discuss the

complexity of finding optimal encoders and show that the problem is NP-hard in all cases but one.

For the case where the problem is not NP-hard, we propose a polynomial-time algorithm to find the

optimal quantization system (encoders/decoder) under some structural restrictions on the encoders.

6.5.1 Optimal Decoder

Assuming that the optimal encoders E⋆ are given, we are interested in a decoder D⋆ that minimizes

the misclassification loss in (6.8). For brevity, let us denote the set of all possible encoded values
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z = E⋆(x) asM, i.e.,

z ∈M, where M =
K∏
k=1

Mk. (6.9)

The operation of the optimal decoder is described in the following lemma.

Lemma 4. For given fixed encoders E⋆, the optimal decoder D⋆ is defined by

D⋆(z)= x̂ s.t. ŷ(x̂)=argmax
c∈Y

∑
i:E⋆(x(i))=z

I
[
y(x(i))=c

]
, (6.10)

and ŷ, defined in (6.2), is the label output of classifier C for x̂.

Proof. The misclassification loss in (6.7) can be rewritten as

L(E⋆,D, T ) = 1

N

∑
z∈M

∑
i:E⋆(x(i))=z

I
[
y(x(i)) ̸= ŷ(D(z))

]
, (6.11)

where ŷ(D(z)) is obtained by (6.5). Since for a fixed z, D(z) only affects one term in the outer

summation in (6.11), each of the outer summation terms can be independently minimized by

choosing D⋆(z) to be a point x̂ ∈ X n satisfying

ŷ(x̂) = argmin
c∈Y

∑
i:E⋆(x(i))=z

I
[
y(x(i)) ̸= c

]

= argmin
c∈Y

N −
∑

i:E⋆(x(i))=z

I
[
y(x(i)) = c

]
= argmax

c∈Y

∑
i:E⋆(x(i))=z

I
[
y(x(i)) = c

]
. (6.12)

That is, x̂ = D⋆(z) can be any point in X n such that ŷ(x̂) (the decision of classifier C for x̂) is the

majority true label y(x) among the points of the dataset T that fall in E−1(z). For instance, in the

example shown in Fig. 6.3, if E⋆−1(z) has one “x” (blue) and two “o” (red) training points, any

point that the classifier C would classify to be “o” (red) can be selected as x̂ = D⋆(z). Thus, D⋆

manipulates the classifier C to output a classification that best serves the loss function in (6.11).

With the optimal decoder in mind, we are now ready to discuss the hardness of the problem of

finding the optimal encoders E in the following subsection.
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6.5.2 Hardness of Finding an Optimal Quantizer

Given a training dataset T = {(x(i), y(i))}Ni=1, our goal is to design an optimal distributed quantiza-

tion system (E ,D) which minimizes the misclassification loss in (6.7) for a given communication

budget of Rk bits per data point at each node k. We study four different cases of the problem:

(P1) For number of features n > 1, number of classes |Y| > 1, dataset T = {(x(i), y(i))}Ni=1 and

given {Rk}Kk=1: find the optimal (E , D) that minimizes the misclassification loss L(E ,D, T ),
assuming that E−1

k (zk) is the union of r < N XΩk
-bins.

(P2) Restricting (P1) to the case of linearly separable data.

(P3) Restricting (P1) so that E−1
k (zk) is a single XΩk

-bin.

(P4) Restricting (P3) to the case of linearly separable data.

Next, we prove that the first three problems for n > 1 and the last problem for n > 2 are

NP-hard and also prove their hardness of approximation. In the general case, as a result of the

hardness and hardness of approximation, we focus on finding heuristic approaches to find a good

distributed quantization solution that may not necessarily be optimal.

Remark 5. For problem (P4), we prove the hardness results for number of features n ≥ 3. In the

next subsection, we introduce optimal polynomial-time algorithm for the case n = 2 under some

structural restrictions on the encoders.

For all the problems, in order to prove the goal results, it is sufficient to consider prototype

settings with predefined number of features n, number of classes |Y|, number of nodes K, and

communication budget {Rk}Kk=1 and allow the size N of the dataset T to grow. It follows that the

general problems, which are expansions of these prototype problems, are also NP-hard. In particular,

in all cases, we assume that each distributed node quantizes only one feature (i.e., n = K) and the
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number of classes |Y| = 2. The remaining parameters are defined below for each problem

• (P1) & (P2) : n = K = 2, finite R1 and R2 →∞;

• (P3) : n = K = 2, finite R1 = R2; (6.13)

• (P4) : n = K = 3, R3 = 0 and finite R1 = R2.

We start by showing that, under polynomial-time reductions, the problem of finding the optimal

quantization system in (P1)- (P4) with the aforementioned parameters is equivalent to finding the

minimum number of bits {Rk}Kk=1 required for a particular fixed misclassification error pe. In

particular, the equivalence is summarized in the following lemma.

Lemma 5. For a fixed pe∈[0, 1] and number of classes |Y| = 2: (P1) - (P4) with parameters in

(6.13) are equivalent to (P1’) - (P4’) below under polynomial-time reductions:

(P1’) For number of features n = 2, R2 →∞, finding the minimum R1 for which L(E ,D, T ) < pe,

assuming that E−1
k (zk) is the union of r < N XΩk

-bins.

(P2’) Restriction of (P1’) to the case of linearly separable data.

(P3’) For number of features n = 2, finding the minimum R1 = R2 for which L(E ,D, T ) < pe,

assuming that E−1
k (zk) is a single XΩk

-bin.

(P4’) For number of features n=3, R3=0, finding the minimum R1 = R2 for which L(E ,D, T )<pe

for the case of linearly separable data, assuming that E−1
k (zk) is a single XΩk

-bin.

Proof. The proof is based on the observation that the loss L(E ,D, T ) can only take one of the N+1

values: 0, 1
N
, 2
N
, ..., N

N
, and 2R1 can only take values in [1 : N ]. Hence, if we have a polynomial-time

algorithm which solves problem (P1) in O(f(N)), then we can answer the mentioned question

in O(Nf(N)) by finding the minimum loss ∀R1 ∈ [log2(1), log(2), · · · , log2(N)] and pick the

smallest R1 for which the minimum achieved loss is less than pe. Similarly, if we have a polynomial-

time algorithm that answers this question, then we can solve problem (P1) in polynomial time.
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Hence, (P1’) and problem (P1) are equivalent under polynomial-time reduction. Following the

same logic, problem (P2) - (P4) are equivalent to (P2’) - (P4’).

Based on Lemma 5, the hardness results can now be proved by working directly with (P1’) -

(P4’). In particular, these problems are NP-hard as stated in the following theorem.

Theorem 20. For a fixed pe∈[0, 1] and number of classes |Y|=2, (P1’) - (P4’) are NP-hard.

Moreover, we have that

• Approximating 2Rk in problems (P1’), (P2’) within O(N1−ϵ) is NP-hard ∀ϵ > 0.

• Approximating 2Rk in problems (P3’), (P4’) within O(N
1
2
−ϵ) is NP-hard ∀ϵ > 0 assuming

the Small Set Expansion Hypothesis (SSEH) and that NP ⊈ BPP.

Proof. We prove each statement by reduction from an NP-Complete problem. In particular, we

prove the result for (P1’), (P2’) by reduction from the vertex coloring problem, and for (P3’), (P4’)

by reduction from the maximum balanced biclique problem. The proof is delegated to Appendix

E.4.

6.5.3 Optimal Quantizer for Linear Classifiers in 2D

In the previous section, we proved that, for problem (P4) when n > 3, it is NP-hard to find an

optimal quantization system. In this subsection, we propose an optimal polynomial-time algorithm

for (P4) when the number of features is n = 2 under some structural restrictions on the encoders.

Specifically, we consider a system with two distributed nodes. Each node k ∈ [1:2], observes one

feature xk, and aims to quantize xk using R bits. We assume that we have two classes (|Y| = 2) to

distinguish among and that the data is linearly separable, namely, C is a linear classifier with output

ŷ(x) = y(x). Moreover, without loss of generality, we assume that the features are scaled and

translated such that the line x1=x2 separates the data. This can be performed during encoding at

each distributed node and reverted in the decoder D at the central node. Note that in this case, since

XΩk
=R,∀k ∈ [1:2] and an R-bin is an interval [a, b] for some a, b, then the encoder/quantizer at node

130



20 10 0 10 20
x1

20

10

0

10

20

x 2

Figure 6.4: Example of on-the-line quantizer, where boundaries for x1 and x2 intersect along

the x1 = x2 line.

k divides XΩk
= R into 2R intervals by introducing the quantization boundaries (dk,1,· · ·, dk,2R−1).

We here further restrict our attention to the class of on-the-line quantizers, where the horizontal

and vertical lines defining dk,i meet along the line x1 = x2 (as in Fig. 6.4). In other words, nodes 1

and 2 use a common encoder design E1 = E2. This implies that d0,k=d1,k=dk, and thus we simply

need to find the 2R − 1 quantization boundaries (d1,· · ·, d2R−1).

Remark 6. Note that although dk can take any value in R, only 2N values can make a difference in

the misclassification loss in (6.7): the 2N values corresponding to either coordinate of the training

data points {x|(x, y(x)) ∈ T }. Indeed, these are the only boundaries that can change the bin to

which a training point belongs4.

To find the on-the-line optimal quantizer, we could simply do an exhaustive search over all

possible 2N values (recall Remark 6) that each of the boundaries dk can take which costs a

complexity of O
((

2N
2R

))
, which is not efficient. Instead, we use a recursive approach, that is based

on the following two key observations.

4If a point lies on a boundary, we assume it belongs to the bin preceding that boundary.
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Remark 7. The encoders/quantizers E1, E2 decompose R2 into 22R R2-bins. However, since the

data points are assumed to be linearly separable by the line x1 = x2, then we only need to consider

the R2-bins crossed by x1 = x2 as the sources of misclassification. In particular, any other R2-bin

is completely populated by data points from the same class.

Remark 8. Assume that a vector s lists the 2N possible boundary values in ascending order, i.e.,

sj ≤ si for all j ≤ i ≤ 2N . Let Tsi denote the subset of the dataset T such that both coordinates of

x are upper bounded by si, i.e.,

Tsi = {(x, y(x)) ∈ T |x1, x2 ≤ si}, ∀i ∈ [1 : 2N ]. (6.14)

Note that Tsj⊆Tsi ,∀i<j and that Ts2N=T . Then, the optimal quantizer with b boundaries on Tsi
shares b−1 boundaries with the optimal one with b−1 boundaries on Tsj for some j<i.

Remark 8 is restated and proved in Appendix E.1. Observations in Remark 7 and Remark 8

lead to a polynomial-time dynamic-programming algorithm to design the optimal quantization

boundaries (d1, · · · , d2R−1).

The algorithm’s pseudo code is given in Algorithm 10 and implements the following logic:

Given an ordered list of the possible 2N boundary values s, let E(si, b) be the minimum number of

misclassified points over the dataset subset Tsi when using b boundaries and A(si, b) be the set of

boundaries that achieve this. Then in each iteration i ∈ [1 : 2N ]:

1. Find E(si, b),∀b ∈ [1 : 2R − 1] by trying to augment A(sj, b − 1),∀j < i with one extra

boundary at sj (Remark 8). The additional number of misclassified points is only a result of

the points in {(x, y(x)) ∈ T |sj < x1 ≤ si, sj < x2 ≤ si} (Remark 7);

2. Retain the best augmentation A(si, b) to be used in the following iteration;

3. After 2N iteration, the optimal quantization boundaries are stored in A(s2N , 2
R − 1).

In the worst case the algorithm does 2N×2R iterations over the whole dataset T resulting in a

time-complexity of O(N22R). The optimality of Algorithm 10 is proved in Appendix E.1 by

proving the observation in Remark 8.
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Algorithm 10 Optimal on-the-line quantizer for linearly separable data in R2

Input: (a) Training set {(x(i), , y(x(i)))}Ni=1;

(b) Quantization bits/feature R;

(c) Ordered set s of potential boundaries.

By x ⪯ p we express that all elements in x are less than p; p ≺ x means they all exceed p

Output: Quantization boundaries (d1, d2, · · · , d2R−1) to use for features x1 and x2

Initialize:

E(s, 0)← min
c∈{1,2}

|{j|x(j) ⪯ s, y(j) = c}| for s ∈ s

for i ∈ [1 : |s|] do

for b ∈ [1 : 2R − 1] do

E(si, b)← min
ℓ<i

{
E(sℓ, b− 1)

+ min
c∈{1,2}

|{j|sℓ ≺ x(j) ⪯ si, y
(j) = c}|

}
ℓ⋆ ← index ℓ that gave the minimum value for E(si, b) in the previous expression

A(si, b)← A(sℓ⋆ , b− 1) ∪ {sℓ⋆}

return A(s|s|, 2R − 1)

In the following section, we introduce an approach for designing the encoders and decoder in a

more general setting, i.e., when data points are not necessarily linearly separable and the number of

nodes and features are ≥ 2.

6.6 Greedy Boundary Insertion (GBI) Quantizer

We refer the reader to Table 6.1 for the system notation used in this section. Here, we propose

our Greedy Boundary Insertion (GBI) algorithm to design encoders/quantizers Ek,∀k ∈ [1 : K],

that can be executed in polynomial-time in the dataset size N and the number of features n for

any number of classes. For the decoder D, we use the optimal decoder derived in Section 6.5.1.

GBI extends the intuition in the observations in Subsection 6.5.3 to a more general case, where the
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classifier is arbitrary, and where each distributed node k observes Ωk features and can have arbitrary

rate Rk. We design encoders/quantizers such that E−1
k (zk) (see (6.4)) is a single XΩk

-bin. Note

that, since we are not constrained to use the same boundaries for each feature as in the on-the-line

case, we consider N possible boundary values per feature, the values taken at that feature by the N

training points.

The logic behind GBI is as follows. GBI iteratively adds quantization boundaries selected

greedily: at each iteration it selects to add one of the possible N boundaries to one of the n

features, the one that minimizes the misclassification loss in (6.8) given the choice of boundaries

in the previous iterations5. A feature i can accept a new boundary, if i ∈ Ωk for some node k

and introducing a new boundary for feature i does not cause node k to have more than 2Rk R|Ωk|-

bins. The algorithm terminates when none of the features can accept a new boundary. If two or

more possible boundaries lead to the same loss (something that happened surprisingly often in our

experiments), then instead of breaking ties at random, it makes a significant performance difference

to break ties by using a non-linear criterion. This criterion penalizes a boundary that leaves Rn-bins

with high individual misclassification to correct classification ratio. This is discussed in more detail

in Appendix E.2.

The pseudo code for GBI is presented in Algorithm 11. The losses computed in Algorithm 11

assume that the optimal decoder (in Lemma 4) for the designed encoders is used.

Complexity of GBI. At each iteration of the algorithm, we compute the reduction in misclas-

sification error associated with every potential boundary and pick the boundary with the most

reduction. This involves O(N) operations per boundary. Thus to add a single boundary, O(nN2)

operations are needed in the worst-case. This results in time-complexity of O(nN22Rmax), where

Rmax = maxk Rk. Recall that our focus is on cases where the number of bits used are much lower

than required for full precision (32 bits). As a result, the contribution of Rk in the complexity term

can be subsumed into the notation O(nN2).

5Since GBI adds a boundary for one feature at a time, instead of a function of the features xΩk
, we end up with an

encoder of the form of a rectangular-grid, where each region is assigned to a value of zk.
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Algorithm 11 GBI Algorithm

Variables: •{d}nf=1 : Boundaries for feature f∈[1:n];
•Bk : Number of RΩk-bins used by node k ∈ [1:K] using boundaries {df}f∈Ωk

;

•L(d1, ...,dn) : misclassification loss using encoders defined by {d}nf=1;

•B̂k(f, {dj}j∈Ωk
) : New Bk, if a new boundary is added for feature f .

Input: (a) Training set {(x(i), y(x(i)))}Ni=1;

(b) Quantization bits/node Rk,∀k ∈ [1 : K].

Output: Boundaries df={df,1, df,2, · · · }, ∀f ∈ [1 : n]

Initialize:

1) sf ← {x(i)
f }Ni=1 (potential boundaries for feature f )

2) Bk = 0, ∀k ∈ [1 : K], df = ϕ, ∀f ∈ [1 : n]

while K={k : minf∈Ωk
B̂k(f, {dj}j∈Ωk

)≤2Rk} ≠ ϕ do

- Among ∀k ∈ K, find f̂ ∈ Ωk, d̂ ∈ sf̂ that minimizes L(d1, ...,df̂ ∪ d̂, ...,dn).

- Break ties using a non-linear criterion

(See Appendix E.2)

Update: df̂ ← df̂ ∪ {d̂}
Bk ← Bk +∆k(f̂ , {dj}j∈Ωk

),where f̂ ∈ Ωk

Remark 9. Despite the fact that GBI is a polynomial-time algorithm, we are interested in approaches

with linear complexity in N , as the number of available data points (as well as features) in a dataset

can be large. To overcome the effect of quadratic complexity in N , GBI can be applied stochastically

by randomly sampling a subset of the dataset T to use at each iteration (instead of evaluating the

decrease in misclassification over the whole dataset T ).

Remark 10. A possible drawback of GBI is that boundaries are directly introduced on the native

features without transformation. Thus, as aforementioned, the resulting encoder Ek at node k would

always have a rectangular grid structure where each area in the grid would be assigned to some zk.

It is not difficult to see that allowing a transformation on the features available at node k (i.e., Ωk),

can allow more elaborate encoder designs. We study how to design such a transformation before
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Distributed Quantization System

Figure 6.5: An example with K = 4 nodes showing the components of encoders and decoder.

applying GBI as part of the deep learning approach proposed in the following section.

6.7 Distributed Quantization for Classification Tasks Using Neural Repre-

sentations

In this section, we explore a learning based approach for the distributed quantization problem

introduced in Section 6.4. We consider a quantization system where the encoders {Ek}Kk=1 and

decoder D are neural networks, followed by a pretrained classifier C that is subdifferentiable.

The structure of the encoders and decoder is shown in Fig. 6.5. In particular, the encoder

Ek(·) is decomposed into a neural network parameterized by θk, which implements a function

fk(·; θk) : XΩk
→ Rmk , followed by a quantizer Qk : Rmk → Mk that maps the output of the

neural network to a discrete setMk ⊆ Rmk of size at most 2Rk . That is,

vk = fk(xk; θk) ∈ Rmk , ∀k ∈ [1 : K],

zk = Qk(vk), ∀k ∈ [1 : K]. (6.15)

Given z = [z1, z2, · · · , zK ] as input, the decoder D first applies an initial mapping G that takes

z to Rm, where m =
∑K

k=1mk. This serves as a combiner for the values {zk}Kk=1 received from

the different encoders. Afterwards, a neural network g(·;ϕ), parameterized by ϕ, is applied on the
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output of G (see Fig. 6.5) before feeding the output x̂ to the classifier C. Thus, we have

G :
K∏
k=1

Mk → Rm , g(·;ϕ) : Rm → X n

x̂ = D(z) = g(G(z);ϕ). (6.16)

Our objective is to minimize the misclassification loss

min
θk,Qk,G,ϕ

1

N

N∑
i=1

[I(ŷ(x̂(i)) ̸= y(x(i)))]. (6.17)

Instead of minimizing the 0/1 loss in (6.17), we construct a distribution from the output of

the classifier C using a softmax layer, and then apply the cross entropy (CE) loss to find the

maximum likelihood estimator of y(x) [Bis06] using the dataset T . Hence, our objective is to

minθk,Qk,G,ϕ {Lc}, where

Lc =
1

N

N∑
i=1

− log
(
softmax[C(x̂(i))]y(x(i))

)
, (6.18)

and [softmax(u)]j = exp(uj)/
∑|Y|

i=1 exp(ui).

We next discuss a challenge in applying standard backpropagation techniques for training our

neural networks. Since the classifier C is subdifferentiable, it is possible to compute the gradient

of the (CE) loss in (6.18) with respect to the decoder parameters ϕ. However, regardless of how

the quantizers Qk are designed, the only subgradient of the quantizers is all zeros. As a result, it is

not possible to apply backpropagation methods [OVK17, ROV19, STS19] to update the encoders

parameters {θk}Kk=1. In the following two subsections, we introduce two different approaches for

designing {Qk}Kk=1 and the combiner G, and discuss how to incorporate their design in the learning

framework of the neural network parameters {θk}Kk=1 and ϕ.

Remark 11. Note that we do not optimize the classifier C as it is assumed to be pretrained and fixed.

However, since the approaches discussed in this section are gradient-based, they can be directly

extended to the case where the classifier C is trainable as well, i.e., we can update the parameters of

the classifier C as we update the parameters of the networks fk and g of the encoders and decoders.
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In a preliminary work [EFD19], this has been shown to improve the performance of the trained

system as the end-to-end system could be adapted for the special partitioning of features in the

encoders.

6.7.1 Discrete Distributed Neural Representation for Classification:

In the first approach, we explicitly design the encoders to produce binary string representations of

zk. In particular, for each encoder Ek, the neural network fk(·; θk)outputs a vector with Rk entries

(mk=Rk), and we constrain the range of the elements of this vector to be in [−1,1]. We achieve

this by selecting the activations of the last layer of the neural network fk(·; θk) to be a function that

has the range [−1,1] (we used the tanh(.) function in our numerical evaluation). We then simply

quantize the output values, by applying the quantizer Qk as

Qk(u) = 2 ∗ I(u ≥ 0)− 1, ∀k ∈ [1 : K], (6.19)

where the indicator function I is applied elementwise. For the combiner G in the decoder we simply

use an identity function.

Remark 12. As discussed above theQk function prevents the backpropagation of the gradient to the

encoder network fk(·; θk). To alleviate this, a straight-through approach is to only use the quantizer

blocks in the forward pass and treat them as an identity during backpropagation [OVK17, STS19].

This approach works well in some applications [OVK17], however, we observed in our experiments

that such an approach prevented the encoder parameters {θk}Kk=1 from having meaningful gradient

updates, and the end-to-end system had a classification performance close to random guessing

in the CIFAR10 dataset. In particular, this can happen as when applying the chain rule during

backpropagation, we would like to have the derivative ∂Lc/∂vk to update the parameters θk, where

vk = fk(xΩk
; θk). Instead, the straight-through approach would use the gradient of a different point

in space
∇∂Lc

∂zk
=

∂Lc

∂(vk + (zk − vk))
,
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to update θk, where zk = Qk(vk) (as in Fig. 6.5). This can be very different from the intended

gradient depending on how Lc looks as a function of zk and how big is the second term (zk − vk).

As an illustration, if one choice of θk results in vk = 10−6 (very close to 0), it would get quantized to

zk = 1, resulting in quantization noise zk − vk = 1− 10−6; if a different θk results in vk being very

close to 1, it would again get quantized to 1, in this case with negligible quantization noise. Both

parameters θk would be updated by the same gradient, even though in the first case, vk was orders

of magnitude smaller. Thus, when skipping the quantizer in the backpropagation, the calculated

gradients may not be useful if the quantization noise is large.

Regularization for quantization: Based on the observation in Remark 12, we opted to facilitate

gradient-based optimization by dropping the quantizers blocks {Qk}Kk=1 during training (both in the

forward and backward passes) and instead nudge the network to naturally output values close to

quantized ones. In particular, we penalize the output values that are far from both −1 and +1, by

introducing an additional term to the loss in (6.18), termed quantization loss, and calculated as

Lq = − 1

KN

N∑
i=1

K∑
k=1

∥∥∥fk(x(i)
Ωk
; θk)

∥∥∥2
2
. (6.20)

Note that since we choose the activations of the last layer in each encoder to have the range [−1, 1],
Lq is minimized (achieves the optimal value −∑k Rk/K) only when fk(x

(i)
Ωk
; θk) ∈ {−1, 1}Rk

∀i ∈ [1 : N ], k ∈ [1 : K]. Thus, the total training loss becomes

L = Lc + βLq, (6.21)

where: (i) β is a hyperparameter that controls the contribution of Lq; and (ii) Lc is the misclassifica-

tion loss in (6.18).

For large enough β, minimizing L can be interpreted as minimizing the classification loss under

the constraint that the encoders outputs are very close to −1/1, which results in ∥fk(x(i)
Ωk
; θk) −

Qk(fk(x
(i)
Ωk
; θk))∥2 being very small. That is, the outputs without quantization differ by only a small

amount from the outputs with quantization which can be treated as negligible quantization noise

during testing.
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(a) without quantization loss (b) with quantization loss

Figure 6.6: Distribution of the decoder inputs after training for 50 epochs on the CIFAR10 dataset.

To illustrate the impact of the quantization loss on the distribution of the encoder outputs, Fig. 6.6

shows the empirical distribution of the encoders outputs after 50 training epochs on the CIFAR-10

dataset, with and without using Lq. While the classification loss tries to direct the parameters of the

encoders and decoder {θk}, ϕ to improve the classification accuracy, the quantization loss adjusts

the parameters to push the encoders outputs to be close to −1/1.

In the approach discussed in this subsection, we have integrated the quantization during the

training phase by modifying the loss function to favor models that have small added noise due to

quantization. Instead of modifying the objective function, in the following subsection, we introduce

a multi-phase approach, where we first learn continuous representations for classification and then

learn a quantizer on these continuous representations using our previously introduced GBI algorithm.

Remark 13. Note that the learning approach described in this subsection has computational

complexity O(N ∗ num_epochs), where num_epochs is typically much smaller than N .

6.7.2 Distributed Neural Representation Using GBI:

The main idea in this approach is to use the GBI algorithm to design the quantizers {Qk}Kk=1 and

the initial decoder G. We first use the neural network fk(·; θk) to map the features of node k from

xΩk
∈ R|Ωk| to vk ∈ Rmk . We select mk to be as small as possible while maintaining a good
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classification accuracy; that is, the networks fk(·; θk) essentially perform dimensionality reduction

at the encoders before applying the quantization step. We then apply GBI on the output of the

encoder neural network fk. The main benefit is that, by decreasing the number of dimensions of

the input to GBI algorithm, we alleviate the complexity of GBI, that grows with the number of

dimensions (see Section 6.6).

Given that the neural network fk(·; θk) is potentially a universal function approximator [Csa01],

it is not difficult to see that even using a naive uniform quantizerQk, we could potentially implement

any encoder Ek = Qk(fk(·; θk)) : R|Ωk| → Mk. Hence, ideally, the choice of the quantizer Qk

should not play a significant role. However, due to the fact that neural networks tend to work well

only if the initialization is close to a good solution, the choice of the quantizer becomes important.

In the following, we propose a method that operates in three phases:

Phase 1. We first train the encoders and decoder neural networks without any quantization units

(i.e., without Qk and G) until we get classification accuracy that is close to the classifier’s accuracy.

Note that for mk ≥ |Ωk|, we can reconstruct the classifier accuracy. Effectively, in this step, we are

following the example structure shown in Fig. 6.5, assuming the blocks Qk and G are identities.

Phase 2. With the parameters θk, ϕ learned in Phase 1, we now design the quantization components

{Qk}Kk=1 and G based on the outputs {vk} of the neural networks fk(·; θk). If the quantizer maps

data points that have different labels to the same quantized value, the quantized value cannot be

used to classify the points correctly. Hence, the objective of the quantizer is to map points that have

different labels to different quantized values. We do this by introducing boundaries in the space

using our GBI quantizer, described earlier in Section 6.6.

Phase 3. Finally, we continue training the encoders and decoder neural networks (fk and g) with

the quantizers designed in Phase 2. To do so we skip the quantizers blocks in the back propagation

and consider them only in the forward pass. We observed in our experiments that this skip does not

cause the network to behave randomly as the initialization is designed carefully. The parameters

learned in Phase 1 act as initializations for θk, ϕ in this phase. Phase 3 enables to fine tune the

network parameters given that we have already learned the quantizer components earlier in Phase 2.
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6.8 Experimental Evaluation

In this section, we present various experimental results, comparing the behaviour of our proposed

distributed quantization approaches with quantization approaches for reconstruction. We find that

tailoring the quantizers to the classification task can offer significant savings: we can achieve

more than a factor of two reduction in terms of the number of bits communicated, for the same

classification accuracy. Moreover, our algorithms retain reasonable classification performance even

when constrained to use a very small number of bits per encoder; for instance, for 2 bits per encoder,

we achieve approximately two to four times the classification accuracy of alternative approaches.

Additionally, we also compare to centralized quantization approaches for classification and show

that despite our distributed setup, we are still able to achieve a competitive performance in terms of

classification accuracy.

Note that although in the upcoming experiments, we uniformly use R bits/sample at each

encoder, the framework presented in Section 6.7 can be applied when the number of bits used by

each encoder are not equal.

6.8.1 Performance on Electromyography Sensor Measurements:

We start with experiments on a dataset of surface electromyographic (sEMG) signals [LKK18]. Each

data point represents measurements recorded from 8 sensors that are used to differentiate between

6 different hand gestures. For our classifier C, we use a Multi-Layer Perceptron (MLP) [Bis06]

architecture with fully connected layers of the form 8 − 100 − 200 − 200 − 200 − 6 and ReLu

activations. The classifier was pretrained on an unquantized training set of 15, 345 measurements,

and yielded a baseline accuracy of 98.66% on a test set of 6, 578 measurements.

For our distributed quantization framework, we assume that we have K = 4 encoders, where

each encoder has access to measurements from only two of the sensors (i.e., we have four feature

groups each consisting of two features). We use MLPs for our encoders and decoder, while the

quantizers are either trained using the quantization loss regularization (NN-REG) or with the GBI
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bits per encoder (R)

1 2 3 4 5

k-means [Mac67] 18.77% 44.18% 56.47% 66.71% 75.19%

NN-REG 54.50% 63.04% 82.90% 94.72% 97.73%

NN-GBI 55.49% 72.35% 91.12% 97.30% 98.21%

Table 6.2: Classification accuracy on the sEMG test set. Each system uses R bits per encoder,

K = 4 encoders and a pretrained classifier with 98.66% accuracy.

algorithm (NN-GBI) as described in Section 6.7. The hidden layers structures of encoders/decoders,

and the hyper parameters (learning rate and regularization weight β) are described in Appendix E.3.

Comparison with quantization for reconstruction. We demonstrate that our approaches achieve

competitive classification results with smaller number of bits as compared to distributed approaches

aiming at reconstructing the input. We compare against the k-means algorithm [Mac67] as a

representative for unsupervised vector quantization algorithms. In particular, in the sEMG dataset,

each k-means encoder maps a point in R2 to the nearest centroid point among 2R choices. The

decoder is treated as an identity in this case, that passes its input z vector to the classifier.

The results are shown in Table 6.2. We see that our approaches outperform the unsupervised

distributed quantization. For example, using 4 bits for each encoder, we can achieve a classification

accuracy of > 95% while the unsupervised approach achieves a performance of 66%.

Comparison with LVQ for classification. To benchmark the performance of our distributed quan-

tization system for classification against centralized approaches, a natural candidate for comparison

is the centralized Generalized Learning Vector Quantization approach (GLVQ) [SY96]. In this

case, the output of the algorithm is a Voronoi tessellation in the space, where each centroid is now

associated with a class. Thus, by mapping a point in space to its nearest centroid, a classification

is also performed by picking the class associated to the selected centroid. We compare the perfor-

mance of our distributed quantization approaches against the quantizer-classifier learned by the
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LVQ3 centralized quantizer [SY96] with learning rate 10−4 for 200 epochs. Since our distributed

quantization system with K = 4 encoders uses 2 bits per encoder, we allow LVQ3 to use 8 bits (i.e.,

64 centroids) to keep the total number of bits across the nodes constant. Our NN-GBI approach,

yielded 71.59% accuracy, while the centralized LVQ classifier gave an accuracy of 75.53%.

Although LVQ gives a better classification accuracy, the learned Voronoi boundaries are not

decomposable to be applied on distributed nodes. In particular, in the described setting, when

inspecting the values of the centroids learned by the LVQ algorithm, we found that although 28

centroids are used in R8, restricting the values of the centroids to any one dimension of the 8, gave

64 distinct values which would require each of the 4 encoders to at least use 8 bits to represent these

quantized values. Recall that from Table 6.2, we are able to achieve much higher accuracies than

75%, when only 5 bits are used at each encoder.

6.8.2 Performance on CIFAR10 Images:

In this set of experiments, we evaluate the performance of our proposed algorithms on the CIFAR10

dataset, where each input x is a 32×32×3 image. Each image in the CIFAR10 dataset is associated

with one of 10 classes. We assume a distributed quantization system with K = 4 distributed

encoders, that each have access to a quadrant of the image. For the classifier, we use a pretrained

VGG-13 classifier [SZ15] with 94.27% accuracy on the CIFAR10 test dataset.

Comparison to VQ-VAE. The VQ-VAE [OVK17] framework is used to learn discrete neural

representations of a dataset for reconstruction. We compare against this framework implemented

both in a centralized and a distributed fashion. In particular, for the centralized VQ-VAE, a single

encoder has access to the full image. We use the same VQ-VAE network structure from [OVK17]

for the CIFAR10 dataset and ensure that the total number of bits used by the VQ-VAE encoder is 4

times what our system would use for a single encoder. In the distributed setting, a VQ-VAE encoder

is applied on each image quadrant and then a common decoder is used for reconstruction. VQ-VAE

structures were trained with 2× 10−4 learning rate, 200 epochs and 64 batch size.
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bits per encoder (R)

1 2 3 4 5

VQ-VAE (C) 13.82% 14.36% 15.87% 17.52% 18.18%

VQ-VAE 10.12% 10.46% 11.03% 11.61% 12.28%

NN-REG 48.63% 63.32% 68.07% 73.43% 78.12%

NN-GBI 48.33% 60.88% 65.16% 71.57% 81.18%

Table 6.3: Classification accuracy on CIFAR10 test set. All distributed systems use R bits/encoder.

The centralized VQ-VAE system [VQ-VAE(C)] uses 4R bits at the single encoder.

The results are summarized in Table 6.3. We find that although VQ-VAE has shown great

success in reconstructing images from discrete representations, it does not perform well with a

low number of bits even in the centralized case. To get classification accuracy of around 50%, the

centralized VQ-VAE required 200 bits (equivalent to 50 bits/encoder in the distributed setting),

while our algorithms could get more than 70% accuracy with 3 bits per encoder.

6.9 Conclusion and Open Research Directions

In this chapter, we introduced the problem of data-driven distributed data quantization for classi-

fication. We proved that in many cases, designing an optimal quantization system is an NP-hard

problem that is also hard to approximate. For a case that is not NP-hard, we proposed an optimal

polynomial-time algorithm for designing the quantizer under some structural restrictions. For the

NP-hard cases, we proposed a polynomial time greedy approach and two learning based approaches.

Numerical results on the sEMG and CIFAR10 datasets6 indicate that tailoring the quantizers to

the classification task can offer significant savings: more (and in some cases much more) than a

factor of two reduction in the number of bits communicated, for the same classification accuracy.

6Follow up works validated our algorithms on other datasets [LHF23].
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Moreover, our algorithms retain reasonable classification performance even when constrained to

use a very small number of bits.

We leave the following as open direction:

• Developing an approach that can adapt to different levels of compression without the need to

retrain the encoders/decoders.

• How to design the encoders/decoders architectures for multi-modal datasets, e.g., speech, text,

and images?

• Adapting the schemes for other compression tasks, e.g., large model compression.
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APPENDIX A

Appendix for Chapter 2: A Reduction from Contextual to Linear

Bandits

A.1 Reduction When Context is a Product Set

Algorithm 12 Reduction from stochastic contexts to no context for product context sets
1: Input: an algorithm Λ for linear contextual bandits with action set

X = {a′ ∈ {0, 1}2d| a′2i−1 + a′2i = 1 ∀i ∈ [d]} (A.1)

2: for t = 1 : T do

3: Ask Λ for an arm to play a′t ∈ X given the history r1, ..., rt−1.

4: Play arm at with (at)i = max{a ∈ A(i)
t } if a′2i−1 = 1 and (at)i = min{a ∈ A(i)

t } otherwise.

Receive reward rt.

We here consider the special case where the action distribution D is unknown, but the action

space has a coordinate-wise product structure, i.e.,

Assumption 3. At =
∏d

i=1A
(i)
t , where A(i)

t ⊂ R.

This is an important hard instance that appears in many lower bounds [LS20]. We will show that in

this case, the d-dimensional stochastic contextual bandits can be reduced to a linear bandit problem

with no misspecification, although the distribution D is unknown, but where now the parameter

vector is over 2d dimensions.

147



The main idea of the reduction is that g(θ) can be factored into a coordinate-wise product

between an unknown vector that only depends on the context distribution and a known vector

that only depends on θ. The unknown vector can be incorporated with θ⋆ reducing the contextual

instance to a linear bandit instance but now with a different unknown parameter θ′⋆. In particular,

we can write ⟨g(θ), θ⋆⟩ = ⟨a′(θ), θ′⋆⟩, where a′(θ) is a vector in R2d that does not depend on the

distribution, and equals

(a′(θ))2i =

 1 if (θ)i < 0

0 otherwise
and (a′(θ))2i−1 = 1− (a′(θ))2i ∀i = 1, . . . , d, . (A.2)

Thus, we can follow the same reduction algorithm as in Section 2.4.1, but where now we call a

2d-dimensional linear bandit algorithm Λ and provide Λ with the fixed action set

X = {a′ ∈ {0, 1}2d| a′2i−1 + a′2i = 1 ∀i ∈ [d]} (A.3)

as the pseudocode Algorithm 12 describes.

Theorem 21. Let Λ be any algorithm for linear bandits, I be a contextual linear bandit instance

with stochastic contexts that satisfy Assumption 3 with unknown parameter θ⋆, and rt be the rewards

generated as described in Algorithm 12. It holds that

• The rewards rt are generated, by pulling arm a′t, from a linear bandit instance L with action set

X in (A.1), and unknown parameter θ′⋆ ∈ R2d with ∥θ′⋆∥2 ≤ 2.

• With probability at least 1− δ it holds that

|RT (I)−RΛ
T (L)| ≤ c

√
T log(1/δ), (A.4)

where RT (I) is the regret of Algorithm 12 over the instance I and RΛ
T (L) is the regret of algorithm

Λ over the instance L, and c is a universal constant.

Proof. The proof follows from Theorem 1 using the observation that

(g(θ))i =

 EA∼D[maxa∈A(a)i] if (θ)i > 0

EA∼D[mina∈A(a)i] if (θ)i < 0
. (A.5)
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and thus, given (A.3), we can define θ′⋆ ∈ R2d as

(θ′⋆)i =

 E[maxa∈A(a)(i+1)/2](θ⋆)(i+1)/2 if i is odd

E[mina∈A(a)⌊(i+1)/2⌋](θ⋆)⌊(i+1)/2⌋ if i is even.
(A.6)

By definition of a′(θ), θ′⋆, we have that ⟨g(θ), θ⋆⟩ = ⟨a′(θ), θ′⋆⟩. To see that ∥θ′⋆∥ ≤ 2, we

observe that
d∑

i=1

|(θ′⋆)2i−1| =
d∑

i=1

|E[max
a∈A

(a)i](θ⋆)i| ≤ ⟨|g(1/
√
d)|, |θ⋆|⟩ ≤ 1, (A.7)

where absolute value of a vector is defined as a vector with (|θ⋆|)i = |(θ⋆)i|. Similarly,∑d
i=1 |(θ′⋆)2i| ≤ 1. Hence, ∥θ′⋆∥2 ≤ ∥θ′⋆∥1 ≤ 2.

As before, to construct the linear bandit instance, we need rewards that follow the stochastic

linear bandits model. The result follows from Proposition 2 and the fact that ⟨g(θt), θ⋆⟩ = ⟨at, θ′⋆⟩.

A.2 Proof of Theorem 1: Reduction for Known Context Distribution

Theorem (Restatement of Theorem 1). Let Λ be any algorithm for linear bandits and I be a

contextual linear bandit instance with stochastic contexts, unknown parameter θ⋆ and rewards rt

generated as described in the reduction in Section 2.4.1. It holds that

• The reward rt is generated, by pulling the arm g(θt), from a linear bandit instance L with action

set X , and unknown parameter θ⋆.

• The reduction results in an algorithmM for contextual linear bandits such that with probability

at least 1− δ we have

|RM
T (I)−RΛ

T (L)| ≤ c
√

T log(1/δ), (A.8)

where RΛ
T (L) is the regret of Λ over the constructed linear bandit instance L, RM

T (I) is the regret

of algorithmM over the instance I and c is a universal constant.

Proof. Following the reduction described in the section, we start by showing that RΛ
T (L), the regret

of the algorithm Λ on a linear bandit instance, is at most Õ(
√
T ) away from RM

T (I) with high
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probability. Recall that the regret RΛ
T (L) is defined as

RΛ
T (L) =

T∑
t=1

max
θ∈Θ
⟨g(θ), θ⋆⟩ − ⟨g(θt), θ⋆⟩. (A.9)

We notice that the function g depends on the context distribution D. In the following we assume

for simplicity that for each θ ∈ Θ, there is a unique at ∈ At that satisfies ⟨at, θ⟩ = supa∈At
⟨a, θ⟩

almost surely. We discuss how to remove this assumption at the end of the proof.

The regret RM
T (I) of the contextual algorithm can be decomposed as

RM
T (I) =

T∑
t=1

⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩ − ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩

=
T∑
t=1

⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩ − ⟨E[argmax
a∈At

⟨a, θ⋆⟩], θ⋆⟩

+ ⟨E[argmax
a∈At

⟨a, θt⟩|θt], θ⋆⟩ − ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩

+ ⟨E[argmax
a∈At

⟨a, θ⋆⟩], θ⋆⟩ − ⟨E[argmax
a∈At

⟨a, θt⟩|θt], θ⋆⟩

=
T∑
t=1

⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩ − E[⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩]

+ E[⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|θt]− ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩

+ ⟨g(θ⋆), θ⋆⟩ − ⟨g(θt), θ⋆⟩, (A.10)

where the expectation is with respect to the randomness in the context generation At. In the

following we will first show that ⟨g(θ⋆), θ⋆⟩ = maxθ∈Θ′ ⟨g(θ), θ⋆⟩.

Indeed,we observe that ∀θ′, θ′′ ∈ Θ we have

max
θ∈Θ
⟨g(θ), θ′⟩ ≥ ⟨g(θ′), θ′⟩ = E[max

a∈At

⟨a, θ′⟩]

≥ E[⟨argmax
a∈At

⟨a, θ′′⟩, θ′⟩] = ⟨g(θ′′), θ′⟩. (A.11)

The above inequalities have to be met with equality since we can select θ′′ = argmaxθ∈Θ ⟨g(θ), θ′⟩
making the first and last terms equal. Hence, we have proved that

⟨g(θ′), θ′⟩ = max
θ∈Θ
⟨g(θ), θ′⟩, ∀ θ′ ∈ Θ. (A.12)
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Substituting in the last line of (A.10) using the triangle inequality, we get that

|RM
T (I)−RΛ

T (L)|
(i)
= |

T∑
t=1

⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩ − E[⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩]

+ E[⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|θt]− ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|

≤ |
T∑
t=1

⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩ − E[⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩]|

+ |
T∑
t=1

E[⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|θt]− ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|, (A.13)

where (i) follows by definition of RΛ
T (L) and (A.12).

We next bound the quantity

ΣT :=
T∑
t=1

E[⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|θt]− ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩. (A.14)

Let F ′
t = σ{θ1, r1, ..., θt} be the filtration of all historic information of the linear bandit problem up

to time t. we notice that

E[Σt|F ′
t] = E[Σt−1|F ′

t] + E[E[⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|θt]|F ′
t]− E[⟨argmax

a∈At

⟨a, θt⟩, θ⋆⟩|F ′
t]

= Σt−1. (A.15)

Hence, Σt is a martingale with a bounded difference (by boundedness of Θ,At). By Azuma–Hoeffding

inequality [Wai19], we have that |ΣT | ≤ c
√
T log 1/δ with probability at least 1 − δ

2
. For com-

pleteness, we state a special case of the Azuma-Hoeffding inequality at the end of our proof. The

summation Σ′
T =

∑T
t=1 ⟨argmaxa∈At ⟨a, θ⋆⟩, θ⋆⟩ − E[⟨argmaxa∈At ⟨a, θ⋆⟩, θ⋆⟩] can be bounded

similarly. Hence, by (A.13), we have that with probability at least 1− δ

|RM
T (I)−RΛ

T (L)| ≤ c
√

T log 1/δ. (A.16)

We have shown that the regret of Algorithm 1 over the instance I is O(
√
T log 1/δ) away from

RΛ
T (L) with probability at least 1 − δ. It remains to show that the rewards rt generated by the

described interaction with the instance I , are generated from L by the interaction of algorithm Λ.
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Proposition 2. The reward rt can be rewritten as

rt = ⟨g(θt), θ⋆⟩+ η′t, (A.17)

where E[η′t|F ′
t] = 0,E[exp(λη′t)|F ′

t] ≤ exp(2λ2) ∀λ ∈ R, and where F ′
t = σ{θ1, r1, ..., θt} is the

filtration of historic information up to time t.

Proof. We have that

rt = ⟨at, θ⋆⟩+ ηt = ⟨argmax
b∈At

⟨b, θt⟩, θ⋆⟩+ ηt

= ⟨g(θt), θ⋆⟩+
(
ηt + ⟨argmax

b∈At

⟨b, θt⟩, θ⋆⟩ − ⟨g(θt), θ⋆⟩
)
. (A.18)

We let η′t = ηt+⟨argmaxb∈At ⟨b, θt⟩, θ⋆⟩−⟨g(θt), θ⋆⟩. The proof that E[η′t|Ft] = 0 follows similarly

to (A.15)

E[η′t|Ft] = E[ηt|Ft] + E[⟨argmax
b∈At

⟨b, θt⟩, θ⋆⟩ − ⟨g(θt), θ⋆⟩|Ft]

= E[⟨argmax
b∈At

⟨b, θt⟩, θ⋆⟩ − ⟨g(θt), θ⋆⟩|θt] = 0. (A.19)

Lastly, E[exp(λη′t)|Ft] ≤ exp(2λ2)∀λ ∈ R follows by boundedness of η′t which follows by

boundedness of ηt,Θ,At.

This concludes the proof.

Lemma 13. [Azuma’s Inequality [Wai19]] Let Σ0,Σ1, ... be a martingale with respect to filtration

F0,F1, ... such that |Σi − Σi−1| ≤ c almost surely. Then for all ϵ > 0, we have that

P[|Σn − Σ0| > ϵ] ≤ 2 exp(− ϵ2

2nc2
). (A.20)

A.2.1 When supa∈At
⟨a, θ⟩ is not Unique

One solution is to choose at as any action ⟨at, θ⟩ ≥ supa∈At
⟨a, θ⟩ − δ for some δ > 0. The error

arising from performing this step can be controlled by δ, e.g., by setting δ = exp(−T ). Our proofs
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will follow by choosing at as described above, using any deterministic or random choice function,

as long as the action at is measurable.

A.3 Proof of Theorem 2: Reduction for Unknown Context Distribution

Theorem (Restatement of Theorem 2). Let Λϵ be an algorithm for linear bandits with ϵ misspecifi-

cation and I be a contextual linear bandit instance with stochastic contexts, unknown parameter θ⋆

and rewards rt are generated as described in Algorithm 1. The following holds:

• Conditioned on Ht(m) = σ(A1, a1, r1, ...,At(m) , at(m) , rt(m)): in epoch m, the rewards rt are

generated, by pulling arm g(m)(θt), from a misspecified linear bandit instance Lm for t =

t(m) + 1, ..., t(m+1), action set Xm = {g(m)(θ)|θ ∈ Θ′}, unknown parameter θ⋆, mean rewards

⟨g(θ), θ⋆⟩, and unknown misspecification ϵ′m.

• The misspecification ϵ′m is bounded by the known quantity ϵm with probability at least 1− cδ/M .

•With probability at least 1− δ we have that |RT (I)−
∑M

m=1R
Λϵm
Tm

(Lm)| ≤ c
√

T log(1/δ), where

RT (I) is the regret of Algorithm 1 over the instance I , RΛϵm
Tm

(Lm) is the regret of algorithm Λϵm

over the bandit instance Lm in phase m, Tm = t(m+1) − t(m), and c is a universal constant.

Proof. Let Lm be a bandit instance with actions Xm = ⟨g(m)(θ)|θ ∈ Θ′⟩ indexed by the set Θ′,

mean rewards ⟨g(θ), θ⋆⟩∀θ ∈ Θ′, and t ∈ {t(m) + 1, ..., t(m+1)}. Let

Ht(m) = σ{A1, a1, r1, ...,At(m) , at(m) , rt(m)}

be the filtration of all historic information before epoch m. Note that g(m) is defined in line 7 of

Algorithm 1 and is the empirical estimate of g using historyHt(m) , hence, g(m) isHt(m)-predictable.

Conditioned onHt(m) , we have that Lm is a misspecified linear bandit instance with misspecification,

ϵ′m = supθ∈Θ′ ⟨g(θ)− g(m)(θ), θ⋆⟩. And the regret of the algorithm Λϵm over Lm is the random

quantity

R
Λϵm
Tm

(Lm) :=
t(m+1)∑

t=t(m)+1

max
θ∈Θ′
⟨g(θ), θ⋆⟩ − ⟨g(θt), θ⋆⟩.
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As we have shown in Proposition 2, conditioned onHt(m) , rt is generated from Lm by pulling arm

g(m)(θt). Define the event Em = {ϵ′m > ϵm} be the bad event that the random quantity ϵ′m is greater

than ϵm defined in Algorithm 1. We will show in Proposition 3 that
∑M

m=1 P[Em] ≤ δ.

We next bound the regret of Algorithm 1 in terms of the random quantities {RΛϵm
Tm

(Lm)}Mm=1.

By choosing δ sufficiently small, it it will be enough to bound R
Λϵm
Tm

(Lm) conditioned onHt(m) and

the good event Gm = {ϵ′m ≤ ϵm}. Let us define the random quantity RΛϵ
T (Lϵ) =

∑M
m=1R

Λϵm
Tm

(Lm).

We show that RΛϵ
T (Lϵ) is at most Õ(

√
T ) away from RM

T with high probability. By definition of

R
Λϵm
Tm

(Lm) we have that

RΛϵ
T (Lϵ) =

T∑
t=1

max
θ∈Θ′
⟨g(θ), θ⋆⟩ − ⟨g(θt), θ⋆⟩. (A.21)

As in the proof of Theorem 1, we assume for simplicity that for each θ ∈ Θ, there is a unique

at ∈ At that satisfies ⟨at, θ⟩ = supa∈At
⟨a, θ⟩ almost surely. This can be relaxed in the same way as

in Theorem 1.

Recall that L is the linear bandit instance in Theorem 1 with access to the function g, and actions

in X = {g(θ)|θ ∈ Θ}. The regret RM
T (I) of the contextual algorithm can be bounded as

|RM
T (I)−RΛϵ

T (Lϵ)| ≤ |RM
T (I)−RΛ

T (L)|+ |RΛ
T (L)−RΛϵ

T (Lϵ)|, (A.22)

where RΛ
T (L) is defined as follows

RΛ
T (L) =

T∑
t=1

max
θ∈Θ
⟨g(θ), θ⋆⟩ − ⟨g(θt), θ⋆⟩,

and {θt} are the actions played by {Λϵm}. The first term in (A.22) is bounded in Theorem 1. In the

following, we focus on bounding |RΛ
T (L)−RΛϵ

T (Lϵ)|. To that end, we first show that

|⟨g(θ⋆), θ⋆⟩ −max
θ∈Θ′
⟨g(θ), θ⋆⟩| ≤ 2/T. (A.23)

We recall from (A.12) that

⟨g(θ′), θ′⟩ = max
θ∈Θ
⟨g(θ), θ′⟩, ∀ θ′ ∈ Θ. (A.24)
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From 1/T -net properties, we also have that there exists ϕ ∈ Θ′ such that ∥θ⋆ − ϕ∥2 ≤ 1/T . Hence,

max
θ∈Θ′
⟨g(θ), θ⋆⟩

(i)

≤ max
θ∈Θ
⟨g(θ), θ⋆⟩

(ii)
= ⟨g(θ⋆), θ⋆⟩

(iii)

≤ ⟨g(θ⋆), ϕ⟩+ 1/T

≤ max
θ∈Θ
⟨g(θ), ϕ⟩+ 1/T

(iv)
= ⟨g(ϕ), ϕ⟩+ 1/T

(v)

≤ ⟨g(ϕ), θ⋆⟩+ 2/T

(vi)

≤ max
θ∈Θ′
⟨g(θ), θ⋆⟩+ 2/T, (A.25)

where (i) follows from Θ′ ⊆ Θ, (ii) follows from (A.12), (iii) follows from ⟨g(θ⋆), θ⋆ − ϕ⟩ ≤
∥g(θ⋆)∥2∥θ⋆ − ϕ∥2 ≤ 1/T , (iv) follows from (A.12), (v) follows as in (iii), and (vi) follows from

ϕ ∈ Θ′. Eq. (A.23) follows. Note that in this part it is important to have Θ′ ⊆ Θ.

As a result |RΛ
T (L)−RΛϵ

T (Lϵ)| can be bounded as

|RΛ
T (L)−RΛϵ

T (Lϵ)| = |
T∑
t=1

max
θ∈Θ′
⟨g(θ), θ⋆⟩ −max

θ∈Θ
⟨g(θ), θ⋆⟩|

≤
T∑
t=1

|max
θ∈Θ′
⟨g(θ), θ⋆⟩ −max

θ∈Θ
⟨g(θ), θ⋆⟩|

(i)

≤ 2, (A.26)

where (i) follows uses (A.23) and (A.12).

Hence, by (A.22), Theorem 1, (A.26) and union bound, we have that with probability at least

1− δ

|RM
T (I)−RΛϵ

T (Lϵ)| ≤ c
√

T log 1/δ. (A.27)

Since RΛϵ
T (Lϵ) =

∑M
m=1R

Λϵm
Tm

(Lm), we have proved the second part of the theorem. It remains to

show that in each epoch m the rewards rt are generated from the for linear bandit instance Lm and

to bound the amount of misspecification. By Proposition 2, it suffices to show the following.

Proposition 3. For each m ∈ [M ], we have that with probability at least 1− δ/M it holds that

|⟨g(θ), θ′⟩ − ⟨g(m)(θ), θ′⟩| ≤ 2

√
log(2M |Θ′|/δ)

t(m)
∀θ ∈ Θ′, θ′ ∈ Θ. (A.28)
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Proof. Since for a fixed θ′ we have that ⟨argmaxa∈At ⟨a, θ⟩, θ′⟩ is 1/4-subgaussian with mean

⟨g(θ), θ′⟩, we have that with probability at least 1− δ
M |Θ′|2 it holds that

|⟨g(θ), θ′⟩ − ⟨g(m)(θ), θ′⟩| = |⟨g(θ), θ′⟩ − 1

t(m+1)

t(m+1)∑
t=1

⟨argmax
a∈At

⟨a, θ⟩, θ′⟩|

≤ 2

√
log(2M |Θ′|/δ)

t(m)
. (A.29)

By the union bound, the following holds with probability at least 1− δ/M

|⟨g(θ), θ′⟩ − ⟨g(m)(θ), θ′⟩| ≤ 2

√
log(2M |Θ′|/δ)

t(m)
∀θ, θ′ ∈ Θ′. (A.30)

Let us pick arbitrary θ ∈ Θ′, θ′ ∈ Θ. We have that there is ϕ′ ∈ Θ′ such that ∥θ′ − ϕ′∥2 ≤ 1/T .

Hence, by Cauchy-Schwartz and the triangle inequality, we have that the following holds with

probability at least 1− δ/M

|⟨g(θ), θ′⟩ − ⟨g(m)(θ), θ′⟩| ≤ |⟨g(θ), ϕ′⟩ − ⟨g(m)(θ), ϕ′⟩|+ 2

T

≤ 2

√
log(2M |Θ′|/δ)

t(m)
+

2

T
∀θ ∈ Θ′, θ′ ∈ Θ. (A.31)

This concludes the proof.

A.4 Proof of Lemma 1: Computational Complexity

Lemma. Consider a given m ∈ [M ] and let g(m)(θ) = 1
t(m)

∑t(m)

t=1 argmaxa∈At ⟨a, θ⟩, Xm =

{g(m)(θ)|θ ∈ Θ′}, where t(m) is the length of phase m and Θ′ = {[θ]q|θ ∈ Θ} is a discretization

of Θ, [θ]q = q⌊θ
√
d/q⌋/

√
d and q is the discretization parameter. For any θ ∈ {a ∈ Rd|∥a∥2 ≤

1}, ϵ ∈ R+, if q ≤ ϵ/2, we have that

⟨g(m)([θ/∥θ∥2]q), θ⟩ ≥ sup
a∈Xm

⟨a, θ⟩ − ϵ∥θ∥2. (A.32)
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Proof. We first observe that

0 ≤ θ − [θ]q = θ − ⌊θ
√
d/q⌋√
d/q

≤ q/
√
d1. (A.33)

It follows that ∥θ − [θ]q∥2 ≤ q. We notice that

⟨g(m)(θ), θ⟩ = 1

t(m)

t(m)∑
t=1

⟨O(At; θ), θ⟩ ≥
1

t(m)

t(m)∑
t=1

⟨O(At; θ
′), θ⟩

= ⟨g(m)(θ′), θ⟩, ∀θ′ ∈ Θ. (A.34)

Hence,

⟨g(m)(θ), θ⟩ ≥ sup
θ′∈Θ′
⟨g(m)(θ′), θ⟩. (A.35)

We also have that

⟨g(m)([θ]q), θ⟩ = ⟨g(m)([θ]q), [θ]q⟩+ ⟨g(m)([θ]q), θ − [θ]q⟩

≥ ⟨g(m)([θ]q), [θ]q⟩ − ∥g(m)([θ]q)∥2∥θ − [θ]q∥2

≥ ⟨g(m)([θ]q), [θ]q⟩ − q

(i)

≥ ⟨g(m)(θ), [θ]q⟩ − q

≥ ⟨g(m)(θ), θ⟩ − ∥g(m)(θ)∥2∥θ − [θ]q∥2 − q

≥ ⟨g(m)(θ), θ⟩ − 2q
(ii)

≥ sup
θ′∈Θ′
⟨g(m)(θ′), θ⟩ − 2q = sup

a∈Xm

⟨a, θ⟩ − 2q, (A.36)

where (i) and (ii) follow from (A.35). As (A.36) holds ∀θ ∈ Rd, we get that

⟨g(m)([θ/∥θ∥2]q), θ/∥θ∥2⟩ ≥ sup
a∈Xm

⟨a, θ

∥θ∥2
⟩ − 2q =

supa∈Xm
⟨a, θ⟩

∥θ∥2
− 2q. (A.37)

It follows that

⟨g(m)([θ/∥θ∥2]q), θ⟩ ≥ sup
a∈Xm

⟨a, θ⟩ − 2q∥θ∥2. (A.38)
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APPENDIX B

Appendix for Chapter 3: A Computationally-Efficient Algorithm

for Batched Linear Contextual Bandits

B.1 Table of Notations

The notations of Chapter 3 are collected in Table B.1.

Symbol Description

T time horizon

θ⋆ unknown parameter vector in Rd

A action set if fixed over time

d dimension of actions and unknown parameter

µa mean of arm a: ⟨a, θ⋆⟩
a⋆ best action: argmaxa∈A µa

∆a gap: µa⋆ − µa

∆min minimum gap: infa∈A:∆a>0∆a

O(A; .) linear optimization oracle for the set A
O+

ϵ (A; .) approximate linear optimization oracle with additive error ϵ for the set A
O×

α (A; .) approximate linear optimization oracle with multiplicative error α for the set A
Topt time complexity of optimization oracle O(A; .)
Mopt space complexity of optimization oracle O(A; .)
at pulled action at time t

158



RT regret:
∑T

t=1∆at

ηt noise at time t

rt reward at time t

M number of batches

Tm length of batch m

Hm set of time slots for batch m

λ least squares regularization parameter

Vm least squares matrix at batch m: λI+
∑

t∈Hm
ata

⊤
t

θm+1 least squares estimate at end of batch m: V −1
m

∑
t∈Hm

rtat

a⋆m estimates best action at batch m: O+
1/T (A; θm)

∆m(a) estimated gap at batch m: ⟨a⋆m − a, θm⟩
CL approximate optimal design parameter: e8d

γ 2d
√

CL(log(1/δ) + log T )

ϕm(a) scaled action at batch m: a

1+
√

Tm−1∆m(a)/(8γ)

A′ extended action set: A′ = A ∪ B1/T
Ãm weighted action set: {ϕm(a)|a ∈ A′}
δ confidence parameter

Cm set of size d such that {ϕm(a)|a ∈ Cm} is a barycentric spanner for Ãm

W parameter: 3 log T

C universal constant

Br {a ∈ Rd|∥a∥2 ≤ r}
Sr {a ∈ Rd|∥a∥2 = r}
∥a∥V

√
a⊤V a

1(E) indicator function: returns 1 if E holds and 0 otherwise

[n], n ∈ N {1, · · · , n}

Table B.1: Table with notation for the linear bandit setting
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B.2 Proof of Lemma 2: Approximate Inverse Gap Weighted Optimization

Lemma. Let T ≥ 3, η ∈ R, â ∈ Rd, θ̂ ∈ BT be given parameters, and A be a given set. Let

∆(a), ϕ(a) denote ∆(a) = ⟨â− a, θ̂⟩, ϕ(a) = a/(1 + η∆(a)). If B1/T ⊆ A ⊆ B1, |η| ≤ T and

1/2 ≤ 1 + η∆(a) ≤ T 2, ∀a ∈ A, then for any θ ∈ S1, LW-ArgMax (Algorithm 5) outputs an

element a ∈ A such that

⟨ϕ(a), θ⟩ ≥ exp(−3) sup
b∈{ϕ(b′)|b′∈A}

⟨b, θ⟩. (B.1)

Proof. To simplify notations we define the modified gap as

∆̃(a) := 1 + η∆(a). (B.2)

We also define the function Lz : A → R as

Lz(a) = (1 + 1/W )z⟨a, θ⟩ − z1+1/W ∆̃(a), (B.3)

where W is a parameter and we have set it to 3 log T . The main part of the proof shows that the

optimizer of Lz for some z is an optimizer of ⟨ϕ(a), θ⟩(⟨a, θ⟩)1/W , which, as we also prove,

is a good approximation of ⟨ϕ(a), θ⟩ for W = 3 log T . Towards that we first aim to show

supa∈A ⟨ϕ(a), θ⟩(⟨a, θ⟩)1/W = (W supa∈A,z≥0 Lz(a))
1/W . The following boundedness properties

will be repeatedly used in the proof

|⟨a, θ⟩| ≤ ∥a∥2∥θ∥2 ≤ 1 (B.4)

and by assumption we have that the modified gap can be bounded as

1/2 ≤ ∆̃(a) ≤ T 2. (B.5)

We start by proving the following property about the function Lz.

Claim 1.

sup
z≥0

Lz(a) =

 1
W
(⟨ϕ(a), θ⟩)W ⟨a, θ⟩ if ⟨a, θ⟩ ≥ 0

0 otherwise.
(B.6)
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Proof. We notice the following fact about the function Lz. For any a ∈ A with ⟨a, θ⟩ ≥ 0 we have

that Lz(a) is a concave function of z for z ≥ 0, hence, by setting the derivative to 0, we observe that

sup
z≥0

Lz(a) =
1

W

(⟨a, θ⟩
∆̃(a)

)W

⟨a, θ⟩, (B.7)

where the supremum is attained by

za =

(⟨a, θ⟩
∆̃(a)

)W

. (B.8)

We also notice that for any a ∈ A with ⟨a, θ⟩ < 0, since for all a ∈ A, ∆̃(a) ≥ 0 we have that

sup
z≥0

Lz(a) = 0, (B.9)

where the supremum is attained by za = 0. The result follows by combining (B.7) and (B.9).

The following fact follows from Claim 1.

Claim 2.

sup
a∈A
⟨ϕ(a), θ⟩⟨a, θ⟩1/W = (W sup

a∈A,z≥0
Lz(a))

1/W . (B.10)

Proof. We notice that since ∥θ/T∥2 = 1/T since ∥θ∥2 = 1 by assumption. Then θ/T ∈ B1/T ⊆ A.

We also have that ⟨θ/T, θ⟩ = 1/T > 0, hence, from Claim 1 we have

sup
a∈A:⟨a,θ⟩≥0

sup
z≥0

Lz(a) ≥ sup
z≥0

Lz(θ/T )
(i)
=

1

W

(⟨θ/T, θ⟩
∆̃(θ/T )

)W

⟨θ/T, θ⟩
(ii)

≥ 1

W

(
1/T

T 2

)W

/T>0,

(B.11)

where (i) follows from Claim 1 and (ii) uses ∆̃(a) ≤ T 2. It follows from (B.6) that

sup
a∈A,z≥0

Lz(a) = max

{
0, sup

a∈A:⟨a,θ⟩≥0

sup
z≥0

Lz(a)

}
= sup

a∈A:⟨a,θ⟩≥0

sup
z≥0

Lz(a)

= sup
a∈A:⟨a,θ⟩≥0

1

W

(⟨a, θ⟩
∆̃(a)

)W

⟨a, θ⟩. (B.12)

Moreover we have that 1
W

(
⟨a,θ⟩
∆̃(a)

)W
⟨a, θ⟩ ≤ 0 whenever ⟨a, θ⟩ ≤ 0. We can also see that

sup
a∈A:⟨a,θ⟩≥0

1

W

(⟨a, θ⟩
∆̃(a)

)W

⟨a, θ⟩ > 0 (B.13)
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by noticing that θ/T ∈ A and has a positive objective value. Hence, we have that

sup
a∈A,z≥0

Lz(a) = sup
a∈A:⟨a,θ⟩≥0

1

W

(⟨a, θ⟩
∆̃(a)

)W

⟨a, θ⟩ = sup
a∈A

1

W

(⟨a, θ⟩
∆̃(a)

)W

⟨a, θ⟩. (B.14)

It follows that

sup
a∈A
⟨ϕ(a), θ⟩⟨a, θ⟩1/W = (W sup

a∈A,z≥0
Lz(a))

1/W . (B.15)

In the following we assume that supa∈A ⟨ϕ(a), θ⟩⟨a, θ⟩1/W is attained by some b⋆ ∈ A and also

that supa∈A ⟨ϕ(a), θ⟩ is attained by some a⋆ ∈ A. The proofs can be extended to the case where the

supremums are not attained by using sufficiently small approximation.

The proof continues as following

• We show that the algorithm uses zi that is close to zb⋆ = (⟨ϕ(b⋆), θ⟩)W (the optimizer of

Lz(b
⋆) in (B.8)) in some iteration i.

• We show that the solution of supa∈A Lzi(a), namely ã satisfying Lzi(ã) = supa∈A Lzi(a), is

an approximate optimizer of the function ⟨ϕ(a), θ⟩⟨a, θ⟩1/W .

• We finally show that an approximate optimizer of ⟨ϕ(a), θ⟩⟨a, θ⟩1/W is also an approximate

optimizer of ⟨ϕ(a), θ⟩.

Towards the first step, we start by finding an upper and lower bound on zb⋆ = (⟨ϕ(b⋆), θ⟩)W . From

(B.4) and (B.5), we have that

2W ≥ zb⋆ = (⟨ϕ(b⋆), θ⟩)W
(i)

≥ (⟨ϕ(b⋆), θ⟩⟨b⋆, θ⟩1/W )W

(ii)

≥ (⟨ϕ(θ/T ), θ⟩⟨θ/T, θ⟩1/W )W

=
1/T 1+W

∆̃(θ/T )
≥ 1

T 3+W
, (B.16)

where (i) follows from |⟨b⋆, θ⟩| ≤ 1 and ⟨ϕ(b⋆), θ⟩ > 0 (see (B.13)), and (ii) follows by definition

of b⋆ as the maximizer of ⟨ϕ(a), θ⟩⟨a, θ⟩1/W over the set A and the fact that θ/T ∈ B1/T ⊆ A.
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Then, we find an upper and lower bound on the values of z used by the algorithm. Recall that

Algorithm 5 starts with z = 2W where W = 3 log T and decreases z with a factor of s = 1− 1
6 log T

for N = 36W log2 T iterations. We have that

2W sN = 2W (1− 1

6 log T
)N ≤ exp(W −N/(6 log T )) = exp(W (1− 6 log T ))

≤ exp(−3W log(T )) =
1

T 3W
≤ 1

T 3+W
(B.17)

From (B.16), (B.17), the fact that Algorithm 5 starts with z = 2W and decreases z by a factor of

s = 1− 1
6 log T

each step, it follows that there is an iteration i with

szb⋆ ≤ zi ≤ zb⋆ , (B.18)

where zi is the value of the variable z in iteration i. Now we consider the function Lzi . We aim to

show that an approximate optimizer of Lzi is an approximate optimizer of ⟨ϕ(a), θ⟩⟨a, θ⟩1/W . This

is proved in the following lemma.

Lemma 14. Consider given η ∈ R, θ ∈ Rd, θ̂ ∈ Rd, â ∈ Rd and let W = 3 log T,∆(a) =

⟨â− a, θ̂⟩, ∆̃(a) = 1 + η∆(a), ϕ(a) = a/∆̃(a), Lz(a) = (1 + 1/W )z⟨a, θ⟩ − z1+1/W ∆̃(a).

Let i be an iteration of Algorithm 5 with szb⋆ ≤ zi ≤ zb⋆ . If B1/T ⊆ A ⊆ B1 and 1/2 ≤ ∆̃(a) ≤
T 2 ∀a ∈ A, then we have that

⟨ϕ(ai), θ⟩⟨ai, θ⟩1/W ≥ exp(−1) sup
b∈A
⟨ϕ(b), θ⟩⟨b, θ⟩1/W , (B.19)

where ai is the approximate optimizer defined in step 7 of Algorithm 5 at iteration i.

Proof. To utilize Claim 1 to relate the optimizer of Lzi to the optimizer of ⟨ϕ(a), θ⟩⟨a, θ⟩1/W , we

first show that supa∈A Lzi(a) > 0. We have that (recall that b⋆ is the optimizer of ⟨ϕ(a), θ⟩⟨a, θ⟩1/W )

Lzi(b
⋆) = (1 + 1/W )zi⟨b⋆, θ⟩ − z

1+1/W
i ∆̃(b⋆)

(i)

≥ (1 + 1/W )szb⋆⟨b⋆, θ⟩ − z
1+1/W
b⋆ ∆̃(b⋆)

(ii)
= (⟨ϕ(b⋆), θ⟩⟨b⋆, θ⟩1/W )W ((1 + 1/W )s− 1), (B.20)
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where (i) follows from ⟨b⋆, θ⟩ > 0 (see (B.13)) and ∆̃(b⋆) ≥ 0, and (ii) follows by substituting

zb⋆ = (⟨b⋆, θ⟩/∆̃(b⋆))W . We denote

β := (1 + 1/W )s− 1. (B.21)

We next lower bound β as follows (recall that T ≥ 3 and s = 1− 1/6 log T )

(Wβ)1/W = (1/2− 1/(6 log T ))1/(3 log T ) ≥ (1/4)1/(3 log T ) ≥ exp(−0.5/ log T ) ≥ exp(−0.5).
(B.22)

It follows that

β ≥ exp(−0.5W )/(W ) ≥ 1/(3T 2), (B.23)

where the last inequality uses T ≥ 3, hence, log T ≤
√
T . Substituting in (B.20) we get that

sup
b∈A

Lzi(b) ≥ Lzi(b
⋆) ≥ (⟨ϕ(b⋆), θ⟩⟨b⋆, θ⟩1/W )W

3T 2
≥ 1

3T 2+12 log T
, (B.24)

where the last inequality follows by definition of b⋆ as the maximizer of ⟨ϕ(a), θ⟩⟨a, θ⟩1/W over the

set A and the fact that θ/T ∈ B1/T ⊆ A. In the algorithm, we do not construct an optimizer for Lzi ;

instead we use an approximate optimizer ai of the linear function given in step 7 of Algorithm 5. In

the following we will use (B.24) to show that Lzi(ai) > 0. We notice that

Lzi(b) = (1 + 1/W )zi⟨b, θ⟩ − z
1+1/W
i (1 + η⟨â− b, θ̂⟩)

= ⟨b, (1 + 1/W )ziθ + z
1+1/W
i ηθ̂⟩ − z

1+1/W
i (1 + η⟨â, θ̂⟩)

= ⟨b, θ̃i⟩ − z
1+1/W
i (1 + η⟨â, θ̂⟩), (B.25)

where θ̃i = (1+1/W )ziθ+z
1+1/W
i ηθ̂. It follows that supb∈A Lzi(b) = (supb∈A ⟨b, θ̃i⟩)−z1+1/W

i (1+

η⟨â, θ̂⟩). Hence, by definition of ai in Algorithm 5 we get that

Lzi(ai) ≥ sup
b∈A

Lzi(b)−
1− exp(−1)
12T 7+12 log T

∥θ̃i∥2
(i)

≥ sup
b∈A

Lzi(b)−
1− exp(−1)
3T 2+12 log T

(ii)

≥ sup
b∈A

Lzi(b)− (1− exp(−1)) sup
b∈A

Lzi(b)
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= exp(−1) sup
b∈A

Lzi(b), (B.26)

where (i) follows from ∥θ̃i∥2 ≤ (1+ 1/W )zi∥θ∥2+ |η|z1+1/W
i ∥θ̂∥2 ≤ 2T 22W+1 ≤ 4T 5 (recall that

|η| ≤ T, θ̂ ∈ BT and zi ≤ 2W , W = 3 log T ) and (ii) follows from (B.24). It follows from (B.24)

that Lzi(ai) > 0. Hence, from (B.6) we get that ⟨ai, θ⟩ ≥ 0. From (B.6) again it follows that

1

W

(⟨ai, θ⟩
∆̃(ai)

)W

⟨ai, θ⟩ = sup
z≥0

Lz(ai) ≥ Lzi(ai)

(i)

≥ exp(−1) sup
b∈A

Lzi(b)

≥ exp(−1)Lzi(b
⋆)

(ii)

≥ exp(−1)(⟨ϕ(b⋆), θ⟩⟨b⋆, θ⟩1/W )Wβ (B.27)

where (i) follows from (B.26) and (ii) follows from (B.20). Hence, we have that

⟨ϕ(ai), θ⟩⟨ai, θ⟩1/W ≥ exp(−1/W )⟨ϕ(b⋆), θ⟩⟨b⋆, θ⟩1/W (Wβ)1/W

≥ exp(−0.5)⟨ϕ(b⋆), θ⟩⟨b⋆, θ⟩1/W (Wβ)1/W

(i)

≥ exp(−1)⟨ϕ(b⋆), θ⟩⟨b⋆, θ⟩1/W , (B.28)

where (i) follows from (B.22).

The last part of the proof shows that an approximate optimizer for ⟨ϕ(a), θ⟩⟨a, θ⟩1/W is also

an approximate optimizer for ⟨ϕ(a), θ⟩. We lower bound ⟨ϕ(ai), θ⟩ as follows (recall that a⋆ is the

optimizer of ⟨ϕ(a), θ⟩)

⟨ϕ(ai), θ⟩
⟨ϕ(a⋆), θ⟩ =

⟨ϕ(ai), θ⟩⟨ai, θ⟩1/W

⟨ϕ(a⋆), θ⟩⟨a⋆, θ⟩1/W
(
⟨a⋆, θ⟩
⟨ai, θ⟩

)1/W

(i)

≥ exp(−1) ⟨ϕ(b
⋆), θ⟩⟨b⋆, θ⟩1/W

⟨ϕ(a⋆), θ⟩⟨a⋆, θ⟩1/W
(
⟨a⋆, θ⟩
⟨ai, θ⟩

)1/W

(ii)

≥ exp(−1)(⟨a
⋆, θ⟩
⟨ai, θ⟩

)1/W

(iii)

≥ exp(−1)⟨a⋆, θ⟩1/W = exp(−1)⟨ϕ(a⋆), θ⟩1/W ∆̃(a⋆)1/W

(iv)

≥ exp(−1)⟨ϕ(a⋆), θ⟩1/W0.51/W
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≥ exp(−1.5)⟨ϕ(a⋆), θ⟩1/W

(v)

≥ exp(−1.5)⟨ϕ(θ/T ), θ⟩1/W = exp(−1.5)( 1/T

∆̃(θ/T )
)1/W

(vi)

≥ exp(−1.5)
(
1/T

T 2

)1/W

= exp(−1.5− 3 log T/W ) = exp(−2.5). (B.29)

where (i) follows from Lemma 14, (ii) follows by definition of b⋆ as the maximizer of ⟨ϕ(a), θ⟩
⟨a, θ⟩1/W , (iii) follows from ⟨a⋆, θ⟩ > 0, ⟨ai, θ⟩ > 0 and |⟨ai, θ⟩| ≤ 1, (iv) follows from (B.5),

(v) uses the fact that θ/T ∈ A and definition of a⋆ to attain the supremum of ⟨ϕ(a), θ⟩, and (vi)

follows from (B.5). The proof is concluded by noticing that ai is one of the candidates in the return

statement of Algorithm 5, hence, if a is the output of Algorithm 5, then ⟨ϕ(a), θ⟩ ≥ ⟨ϕ(ai), θ⟩ ≥
exp(−3)⟨ϕ(a⋆), θ⟩, where the last inequality follows from (B.29).

B.3 Proof of Lemma 3: Barycentric Spanner

We here prove that Algorithm 2 can efficiently find a barycentric spanner.

Lemma 2. Let η ∈ R, â ∈ Rd, θ̂ ∈ Rd be given parameters, and A be a given set. Let ∆(a), ϕ(a)

denote ∆(a) = ⟨â− a, θ̂⟩, ϕ(a) = a/(1 + η∆(a)). Suppose that for any θ ∈ S1, LW-ArgMax

(Algorithm 5) with inputs A, θ, η, â, θ̂, outputs aθ ∈ A with ⟨ϕ(aθ), θ⟩ ≥ α supa∈A ⟨ϕ(a), θ⟩, then

Algorithm 4 computes a C/α-approximate barycentric spanner for the set Ã = {ϕ(a)|a ∈ A} with

at most O(d2 logC(d/α)) calls to LW-ArgMax.

Proof. The proof is a simple modification of the proof of Proposition 2.5 in [AK08]; the difference

is that we replace exact linear optimization oracles with approximate ones, and show that the

resulting vectors still have the good properties we want.

We note that Lemma 2 holds for any generic action set A used to call Algorithm 2; however,

since Algorithm 1 calls Algorithm 2 (and Algorithm 3) with input action set A′, for consistency

we will use A′ as the input action set in the following, e.g., we interpret the lemma statement
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assumption as:

⟨ϕ(LW-ArgMax(θ)), θ⟩ ≥ α sup
a∈A′
⟨ϕ(a), θ⟩.

From this asumption and the fact that maxa∈Ã |⟨a, θ⟩| = max{maxa∈Ã ⟨a, θ⟩,maxa∈Ã ⟨a,−θ⟩},
we have that step 7 (and similarly step 12) in Algorithm 4 outputs a with

|⟨ϕ(a), θ⟩| ≥ α sup
ã∈Ã
|⟨ã, θ⟩|, for some 0 < α < 1. (B.30)

We next show that if Algorithm 4 terminates then {ϕ(a1), · · · , ϕ(ad)} is a C/α-approximate

barycentric spanner. We have that if there exists a′ ∈ A′ with |det((ϕ(a′),A−i))| ≥ C/α|det(A)|
for some i, then from (B.30), in step 12 we have an a with |det((ϕ(a),A−i))| ≥ C|det(A)|, hence,

the algorithm will continue. As a result when Algorithm 4 terminates we have that

sup
a∈Ã
|det((a,A−i))| ≤ C/α|det(A)|, ∀i ∈ [d]. (B.31)

In the proof of Lemma 2 we showed that supa∈Ã ⟨a, θ⟩ > 0, ∀θ ̸= 0. This shows that at every step

of Algorithm 4, the matrix A has non-zero determinent. Hence, {a1, · · · , ad} span Rd. As a result

for any ã ∈ Ã we have that ã =
∑d

i=1wiai for some {wi}di=1. We have that

|det(ã,A−i)| = |det(
d∑

i=1

wiai,A−i)| = |wi||det(A)|. (B.32)

Hence, from (B.31) we get that

|wi| ≤ C/α. (B.33)

This implies that {ϕ(a1), · · · , ϕ(ad)} is a C/α-approximate barycentric spanner for Ã. It remains

to show that Algorithm 4 terminates in O(d2 logC d) iterations. The number of iterations of the first

for loop is d. To bound the number of iterations of the second for loop, we notice that for each

repetition of the for loop (which takes at most d iterations), det(A) increases by a factor of C. Let

Mi = [ã1, · · · , ãi, ei+1, · · · , ed] be the value of the matrix A at the end of the i-th iteration of the

first for loop. As the determinant of A increases by at least factor of C each repetition, then if N is

the number of repetitions of the second for loop, we have that CN ≤ |det(A)/det(Md)|, where A

is the matrix at the end of the N -th repetition of the second for loop. Hence, to prove the theorem it
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suffices to show that |det(A)/det(Md)| ≤ (1/α)ddd/2. Let uT
i = e⊤i M

−1
i and define U to be the

matrix whose i-th row is ui. We observe that

⟨ui, a⟩ =
det(a,M ′

−i)

det(Mi)
, ∀a ∈ Ã, (B.34)

by noticing that both sides are linear functions of a and equality holds for all columns of Mi which

form a basis for Rd. It follows from (B.30) that |u⊤
i a| ≤ 1/α. As each entry of UA is u⊤

i a for

some i ∈ [d], a ∈ Ã, all the entries of UA lie in [−1/α, 1/α]. Hence, det(UA) ≤ (1/α)ddd/2 as

the determinant of a matrix is upper bounded by the product of the L2-norms of its columns. We

also notice that if Md = [ã1, · · · , ãd], then by definition of ui we have ⟨ui, ãj⟩ is zero if j < i,

and ⟨ui, ãi⟩ = 1, ∀i ∈ [d]. Hence, UMd is upper triangular matrix with unit diagonal, implying

det(UMd) = 1. We have that

det(A)

det(Md)
=

det(UA)

det(UMd)
≤ (1/α)ddd/2. (B.35)

This conlcudes the proof.

B.4 Proof of Theorem 8: Regret Analysis for Linear Bandits

Theorem 1. Consider a linear bandit instance with action set A ⊆ Rd and horizon T . There exists

a universal constant C and a choice for the batch lengths such that Algorithm 3 finishes in at most

M = ⌈log log T ⌉+ 1 batches with regret bounded as

RT ≤ Cγ
√
T log log T with probability at least 1− δ, (B.36)

where γ = 8d
√

CL(log(1/δ) + log T ), CL = e8d and δ is a parameter. Moreover, if for any a ∈ A
with ∆a > 0 we have ∆a ≥ ∆min, then there exists a choice of batch lengths so that Algorithm 3

finishes in at most M = log4 T batches with regret bounded as

RT ≤ C
γ2

∆min

log T with probability at least 1− δ. (B.37)

Proof. Note that in Algorithm 3, we end batch m if the total number of pulls reaches Tm. Hence, it

is not guaranteed that the number of pulls for arm ai in batch m reaches nm(i), which complicates
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the analysis of the concentration for the least squares estimate parameters. To handle this, we first

analyze a variant of Algorithm 3 that completes all nm(i) pulls for each action ai, i ∈ [d]. We bound

the regret of the variant algorithm when a good event G̃ (that we define later) holds, and show that

P[G̃] ≥ 1− δ. Then, we show that conditioned on G̃, it holds that
∑d

i=1 nm(i) ≤ Tm, for all batches

m ∈ [M ] (see (B.68)), which implies that Algorithm 3 coincides with the variant algorithm on G̃ in

this case. In the following, we refer to the variant algorithm as Algorithm 3 for simplicity.

To invoke Lemma 2, and hence, Lemma 3, we first verify that the conditions of Lemma 2 hold

for all batches m. We note that as a result of using the definition of a⋆m = O+
1/T (A; θm), due to the

use of an approximate oracle and doing the maximization only over A (not the bigger set A′), the

value of ∆m(a) can be negative, however, by definition of ∆m = ⟨a⋆m − ai, θm⟩ and the fact that

A′ = A ∪ B1/T , we have that

∆m(a) ≥ −1/T, ∀a ∈ A′. (B.38)

Hence, we have that

1/2
(i)

≤ 1− ηm/T
(ii)

≤ 1 + ηm∆m(a)

(iii)

≤ 1 + 2ηmT
(iv)

≤ T 2 (B.39)

where (i) follows from ηm =
√
Tm−1/(8γ) ≤

√
T/(8γ), (ii) follows from (B.38), (iii) follows

from |θm| = |V −1
m−1

∑Tm−1

t=1 ãtrt| ≤
∑Tm−1

t=1 ∥ãtrt∥2 ≤ T since Vm ≥ I , |rt| ≤ 1, ∥ãt∥2 ≤ 1 (recall

that Vm = I +
∑d

i=0 nm−1(i)aia
⊤
i 1[ai /∈ B1/T ], ãt is the pulled action at the t-th iteration of the

previous batch, nm−1(i) is the number of pulls for action ai in the previous batch, {ai}di=1 is the set

of actions for the approximate optimal design from previous batch), and (iv) uses ηm ≤
√
T/(8γ).

This shows that Lemma 2 applies to all calls to Algorithm 5, hence, Lemma 3; namely in each

batch m ≥ 2, Algorithm 4 finds an exp(4) (C = exp(1), α = exp(−3)) barycentric spanner of

the set {ϕm(a)|a ∈ A′}. For the first batch, we note that Algorithm 3 and Algorithm 4 do not use

the same action gaps. Algorithm 4 uses θ1 = 0 and thus uses ∆(a) = 0 and ϕ(a) = a. Hence, it

finds C1, an exp(4)-barycentric spanner of A′. Algorithm 3 sets ∆1(a) = 1, ∀a ∈ A′, and thus

Ã1 = {ca|a ∈ A′}, c = 1/(1 + 1/(8γ)) is a scaled version of A′. Hence, {ϕ1(a) = ca|a ∈ C1} is a
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barycentric spanner for Ã1 as well. Thus we conclude that for m = 1 as well as all other m ∈ [M ],

{ϕm(a)|a ∈ Cm} is a barycentric spanner for Ãm.

We next prove the following lemma that shows the concentration of the estimates ⟨ϕm(a), θm+1⟩,
∀a ∈ A′.

Lemma 15. Let T ≥ 2, and θm+1 be the regularized least squares estimate of θ⋆ at the end of batch

m in Algorithm 3. Let the event G be the event

G : |⟨ϕm(a), θm+1 − θ⋆⟩| ≤ γ/
√
Tm, ∀a ∈ A′,m ∈ [M ], (B.40)

where γ = 8d
√
CL(log(1/δ) + log T ). Then, we have that P[G] ≥ 1− δ.

Proof. We note that the regularized least squares matrix Vm+1 at the end of batch m can be bounded

as (recall that the considered variant of Algorithm 3 finishes all nm(i) pulls ∀i ∈ [d] and ∀m ∈ [M ])

Vm+1 ≥ λI +
d∑

i=1

⌈ π(i)Tm/8

(1 +
√
Tm−1∆m(ai)/(8γ))2

⌉aia⊤i 1[ai /∈ B1/T ]

≥ λI +
d∑

i=1

π(i)Tm/8

(1 +
√
Tm−1∆m(ai)/(8γ))2

aia
⊤
i 1[ai /∈ B1/T ]

= λI +
d∑

i=1

π(i)
Tm

8
ϕm(ai)ϕm(ai)

⊤1[ai /∈ B1/T ]

= λI +
d∑

i=1

π(i)
Tm

8
ϕm(ai)ϕm(ai)

⊤ −E, (B.41)

where E =
∑d

i=1 π(i)Tmϕm(ai)ϕm(ai)
⊤1[ai ∈ B1/T ]. Hence, using (B.38), for any a ∈ B1/T , T ≥

2 we have that

∥ϕm(a)∥2 =
∥a∥2

1 + ∆m(a)
≤ 1/T

1− 1/T
≤ 2/T. (B.42)

As a result we have that for any T ≥ 2, a ∈ Rd with ∥a∥2 ≤ 1

a⊤Ea =
d∑

i=1

π(i)
Tm

8
a⊤ϕm(ai)ϕm(ai)

⊤a1[ai ∈ B1/T ] ≤
d∑

i=1

π(i)
Tm

8
∥a∥22∥ϕm(ai)∥221[ai ∈ B1/T ]

≤
d∑

i=1

π(i)/T ≤ 1/T. (B.43)
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From (B.43) and (B.41) we get that for T ≥ 2

Vm+1 ≥ λI +
d∑

i=1

π(i)
Tm

8
ϕm(ai)ϕm(ai)

⊤ −E ≥ λI +
d∑

i=1

π(i)
Tm

8
ϕm(ai)ϕm(ai)

⊤ − 1/TI

(i)
= (1− 1/T )I +

Tm

8
Vπ,m ≥

Tm

8
Vπ,m, (B.44)

where (i) follows from λ = 1 and

Vπ,m =
d∑

i=1

π(i)ϕm(ai)ϕm(ai)
⊤. (B.45)

By Cauchy-Schwartz inequality we have that

|⟨ϕm(a), θm+1 − θ⋆⟩| ≤ ∥ϕm(a)∥V −1
m+1
∥θm+1 − θ⋆∥Vm+1

(i)

≤
∥ϕm(a)∥V −1

π,m√
Tm/8

∥θm+1 − θ⋆∥Vm+1

(ii)

≤ 2
√

2CLd/Tm∥θm+1 − θ⋆∥Vm+1 , (B.46)

where (i) follows from (B.44), and (ii) follows from the fact that {ϕm(ai), π(i)}di=1 is a CL-

approximate design for Ã. By Theorem 20.5 in [LS20], we have that with probability at least 1− δ

it holds that

∥θm+1 − θ⋆∥Vm+1 ≤ 2
√

log(1/δ) + d log T , ∀m ∈ [M ]. (B.47)

Combining with (B.46) we get that the next inequality holds with probability at least 1− δ

|⟨ϕm(a), θm+1 − θ⋆⟩| ≤ 4d
√
2CL(log(1/δ) + log T )/Tm, ∀m ∈ [M ]. (B.48)

Corollary 7 follows from Lemma 15 and the fact that 1 + ηm∆m(a) ≥ 1 − 1/
√
T > 0 for

T > 1.

Corollary 7. Let T ≥ 2, and θm+1 be the regularized least squares estimate of θ⋆ at the end of

batch m in Algorithm 3. The following event holds with probability at least 1− δ

G ′ : |⟨a, θm+1⟩ − µa| ≤
γ√
Tm

+
∆m(a)

8

√
Tm−1

Tm

, ∀a ∈ A′,m ∈ [M ], (B.49)

where γ = 8d
√
CL(log(1/δ) + log T ) and µa = ⟨a, θ∗⟩.
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We introduce the definition of the gap ∆a on the set A′ as follows

∆a = sup
b∈A
⟨b, θ⋆⟩ − ⟨a, θ⋆⟩, ∀a ∈ A′. (B.50)

We note that with this definition ∆a may be negative for some a ∈ A′ as the supremum is taken

over the smaller set A. However, we have that ∀a ∈ A′

∆a ≥ min{0, sup
b∈A
⟨b, θ⋆⟩ − sup

u∈B1/T

⟨u, θ⋆⟩} ≥ −1/T. (B.51)

We also have that

∆a ≤ max{1, sup
b∈A
⟨b, θ⋆⟩ − inf

u∈B1/T

⟨u, θ⋆⟩} ≤ 1 + 1/T. (B.52)

We can now prove the following lemma about the concentration of ∆m(a).

Lemma 16. Suppose that G ′ holds and assume Tm ≥ Tm−1, ∀m ∈ [M ], then we have that the

following events hold

G̃m : −4 γ√
Tm−1

+
1

2
∆a ≤ ∆m(a) ≤ 2∆a + 4

γ√
Tm−1

, ∀a ∈ A′, ∀m ∈M. (B.53)

Proof. We prove the statement by induction on m. For m = 1 we have that for any a ∈ A′

−4 γ√
Tm−1

+
1

2
∆a

(i)
= −4γ +

1

2
∆a ≤

1

2
∆a

(ii)

≤ 1

2
(1 + 1/T )

(iii)

≤ ∆1(a)

(iv)

≤ 4γ − 2/T
(v)

≤ 4γ + 2∆a = 4
γ√
Tm−1

+ 2∆a

(B.54)

where (i) uses T0 = 1, (ii) follows from (B.52), (iii) follows from ∆1(a) = 1, (iv) uses γ ≥ 1,

and (v) follows from (B.51). Now suppose that G̃m holds. We need to show that G̃m+1 holds. We

have that for any a ∈ A′

∆m+1(a) = ⟨a⋆m+1 − a, θm+1⟩
(i)

≤ µa⋆m+1
− µa + 2

γ√
Tm

+ (
∆m(a

⋆
m+1)

8
+

∆m(a)

8
)

√
Tm−1

Tm

172



= ∆a −∆a⋆m+1
+ 2

γ√
Tm

+ (
∆m(a

⋆
m+1)

8
+

∆m(a)

8
)

√
Tm−1

Tm

(ii)

≤ ∆a −∆a⋆m+1
+ 2

γ√
Tm

+ (
2∆a⋆m+1

+ 4 γ√
Tm−1

8
+

2∆a + 4 γ√
Tm−1

8
)

√
Tm−1

Tm

= ∆a −∆a⋆m+1
+ 3

γ√
Tm

+ (
∆a⋆m+1

4
+

∆a

4
)

√
Tm−1

Tm

= 2∆a + 3
γ√
Tm

+∆a(1/4

√
Tm−1

Tm

− 1) + ∆a⋆m+1
(1/4

√
Tm−1

Tm

− 1), (B.55)

where (i) follows from G ′, and (ii) follows by the induction hypothesis. We have that if ∆a ≥ 0,

then

∆a(1/4

√
Tm−1

Tm

− 1)
(i)

≤ ∆a(1/4− 1) ≤ 0, (B.56)

where (i) uses the fact that Tm ≥ Tm−1. If ∆a < 0, then

∆a(1/4

√
Tm−1

Tm

− 1) ≤ −∆a

(i)

≤ 1/T, (B.57)

where (i) follows from (B.51). Hence, from (B.56) and (B.57) we get that

∆a(1/4

√
Tm−1

Tm

− 1) ≤ 1/T. (B.58)

Similarly, we have

∆a⋆m+1
(1/4

√
Tm−1

Tm

− 1) ≤ 1/T. (B.59)

Substituting from (B.58) and (B.59) in (B.55) we get that

∆m+1(a) ≤ 2∆a + 3
γ√
Tm

+ 2/T ≤ 2∆a + 4
γ√
Tm

, (B.60)

where the last inequality uses Tm ≤ T and γ ≥ 2. We next prove a lower bound on ∆m+1(a). In

the following we assume that supa∈A µa is attained by a⋆ ∈ A, and supa∈A′ ⟨a, θm+1⟩ is attained

by ã⋆m+1 ∈ A′. The proof can be easily extended when the supremums are not attained by using a

small approximation and taking the limit. We have that for any a ∈ A′

∆m+1(a) = ⟨a⋆m+1 − a, θm+1⟩ ≥ ⟨ã⋆m+1 − a, θm+1⟩ − 1/T ≥ ⟨a⋆ − a, θm+1⟩ − 1/T

(i)

≥ µa⋆ − µa − 2
γ√
Tm

− (
∆m(a

⋆)

8
+

∆m(a)

8
)

√
Tm−1

Tm

− 1/T
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= ∆a − 2
γ√
Tm

− (
∆m(a

⋆)

8
+

∆m(a)

8
)

√
Tm−1

Tm

− 1/T

(ii)

≥ ∆a − 2
γ√
Tm

− (
2∆a⋆ + 4 γ√

Tm−1

8
+

2∆a + 4 γ√
Tm−1

8
)

√
Tm−1

Tm

− 1/T

= ∆a − 3
γ√
Tm

− ∆a

4

√
Tm−1

Tm

− 1/T =
1

2
∆a − 3

γ√
Tm

+∆a(
1

2
− 1

4

√
Tm−1

Tm

)− 1/T.

(B.61)

where (i) follows from G ′, and (ii) follows by the induction hypothesis. We have that if ∆a ≥ 0,

then

∆a(
1

2
− 1

4

√
Tm−1

Tm

)
(i)

≥ 1

4
∆a ≥ 0, (B.62)

where (i) follows from Tm ≥ Tm−1. If ∆a ≤ 0, then

∆a(
1

2
− 1

4

√
Tm−1

Tm

)≥1

2
∆a ≥ −

1

2
1/T. (B.63)

Substituting from (B.62) and (B.63) in (B.61) we get that

∆m+1(a) ≥
1

2
∆a − 3

γ√
Tm

− 2/T ≥ 1

2
∆a − 4

γ√
Tm

, (B.64)

where the last inequality uses Tm ≤ T and γ ≥ 2. Combining (B.60) and (B.64) we get that G̃m+1

holds. We conclude by induction that G̃m holds for all m ∈ [M ].

We are now ready to prove the regret bound. We first upper bound the regret in batch m

R(m) =
∑
t∈Hm

sup
a∈A

µa − µat , (B.65)

where Hm is the set of time slots for batch m, and at is the action pulled at time t. The following

lemma gives a bound on R(m).

Lemma 17. Suppose that G̃m holds, then we have that

R(m) ≤ d+ 1 +
68γTm√
Tm−1

. (B.66)

Moreover, if ∀a ∈ A with ∆a > 0 we have ∆a ≥ ∆min then

R(m) ≤ d+ 1 +
544γ2Tm

∆minTm−1

. (B.67)
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If T1 ≥ 2d then
d∑

i=1

nm(i) ≤ Tm. (B.68)

Proof. Let {ϕm(ai), π(i)}di=1 be the CL-approximate design at batch m and a0 = a⋆m. The regret at

batch m can be bounded as

R(m) ≤ Tm∆a0 +
d∑

i=1

nm(ai)∆ai1[ai /∈ B1/T ] (B.69)

We first modify the first term in (B.69) to put it in the same form of the terms inside the summation.

Towards that, we expand the definition of nm(i) to include a0 by letting π(0) = 16 (nm(0) and π(0)

are values used only for analysis and may not reflect the actual number of pulls for action a0) and

nm(0) = ⌈
π(0)Tm/8

(1 +
√
Tm−1∆m(a0)/(8γ))2

⌉. (B.70)

By definition of a0 = a⋆m we also have that ∆m(a0) ≤ 1/T . Hence, we have that

1

(1 +
√
Tm−1∆m(a0)/(8γ))2

≥ 1/2. (B.71)

Substituting in (B.69), and using π(0) = 16, we get that

R(m) ≤
d∑

i=0

nm(ai)∆ai1[ai /∈ B1/T ] (B.72)

We notice that on G̃m we have

nm(i) = ⌈
π(i)Tm/8

(1 +
√
Tm−1∆m(ai)/(8γ))2

⌉ ≤ 1 +
π(i)Tm/8

(1 +
√
Tm−1∆m(ai)/(8γ))2

≤ 1 +
π(i)Tm/8

(1 +
√
Tm−1(1/2∆ai − 4γ/

√
Tm−1)/(8γ))2

= 1 +
π(i)Tm/8

(1/2 + 1/16
√
Tm−1∆ai/γ)

2
(B.73)

This implies that

nm(i) ≤ 1 + min{Tm/2,
32γ2Tm

Tm−1∆2
ai

}π(i) (B.74)
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The last part of the lemma follows from (B.74) since
∑d

i=1 nm(i) ≤ d + Tm/2
∑d

i=1 π(i) =

d+Tm/2 ≤ Tm, where the last inequality follows from T1 ≥ 2d. Substituting in (B.72), we get that

R(m) ≤
d∑

i=0

nm(ai)∆ai1[ai /∈ B1/T ]

≤ d+ 1 +
d∑

i=0

π(i)min{∆aiTm/2,
32γ2Tm

∆aiTm−1

}1[ai /∈ B1/T ] (B.75)

Hence, we have that

R(m) ≤ d+ 1 +
d∑

i=0

π(i) sup
∆ai≥0

min{∆aiTm/2,
32γ2Tm

∆aiTm−1

}1[ai /∈ B1/T ]

≤ d+ 1 + sup
∆≥0

min{∆Tm/2,
32γ2Tm

∆Tm−1

}
d∑

i=0

π(i)

= d+ 1 + 17 sup
∆≥0

min{∆Tm/2,
32γ2Tm

∆Tm−1

}. (B.76)

We have that min{∆Tm/2,
32γ2Tm

∆Tm−1
} is maximized when ∆Tm/2 = 32γ2Tm

∆Tm−1
, hence, when ∆ =

8γ√
Tm−1

. Substituting in (B.76) we get that

R(m) ≤ d+ 1 +
68γTm√
Tm−1

. (B.77)

To prove the gap dependent bound on R(m) we start from (B.75). We have that if ∆a ≥ ∆min∀a ∈
A : ∆a > 0, then

R(m) ≤ d+ 1 +
d∑

i=0

π(i)min{∆aiTm/2,
32γ2Tm

∆aiTm−1

}1[ai /∈ B1/T ]

≤ d+ 1 +
32γ2Tm

∆minTm−1

d∑
i=0

π(i)

≤ d+ 1 +
544γ2Tm

∆minTm−1

(B.78)

This concludes the proof of the lemma.

To combine the regret across different batches we notice that since
∑M

m=1 Tm ≥ T , Algorithm 3

will finish in at most M batches. The following result follows from Lemma 17.
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Lemma 18. Suppose Tm ≥ Tm−1,∀m ∈ [M ],
∑M

m=1 Tm ≥ T and T0 = 1, T1 ≥ 2d, then there

exists a universal constant C such that with probability at least 1− δ the regret of Algorithm 3 is

bounded as

RT ≤ C

M∑
m=1

γTm√
Tm−1

, (B.79)

where γ = 8d
√

CL(log(1/δ) + log T ). Moreover, if ∀a ∈ A with ∆a > 0 we have ∆a ≥ ∆min

then with probability at least 1− δ the regret of Algorithm 3 is bounded as

RT ≤ C
M∑

m=1

γ2Tm

∆minTm−1

. (B.80)

Finally, we use the two sets of batch lengths proposed in [GHR19]. The first set of batch lengths

is suitable for worst case regret bounds. We choose the following batch lengths {Tm}:

Tm = max{⌊T 1−2−m⌋, 2d},m ∈ [M − 1], TM = T,M = ⌈log log T ⌉+ 1. (B.81)

We note that
∑M

m=1 Tm ≥ T , however, Algorithm 3 finishes whenever the number of rounds reaches

T , hence, the number of batches is upper bounded by M . We also notice that T1 ≥ 2d, Tm ≥
Tm−1∀m ∈ [M ]. To prove the first regret bound we observe that for T ≥ 2 and 2 ≤ m ≤ M − 1

we have

Tm√
Tm−1

≤ ⌊T 1−2−m⌋√
⌊T 1−2−m+1⌋

≤ T 1−2−m√
⌊T 1−2−m+1⌋

=

√
T
√
T 1−2−m+1√

⌊T 1−2−m+1⌋
≤ 2
√
T . (B.82)

We also have that
TM√
TM−1

=
T

⌊T 1−2− log log T ⌋ =
T

⌊T/2⌋ ≤ 4. (B.83)

Hence, in all cases we have Tm√
Tm−1

≤ 4
√
T . The regret bound follows by noticing that the regret of

the first batch can be bounded by T1 ≤ max{2d,
√
T + 1} and substituting in (B.79).

The second set of batch lengths {Tm} is suitable for gap dependent regret bounds. We choose

the following batch lengths

Tm = d4m,m ∈ [M ],M = ⌈log4 T ⌉. (B.84)
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We notice T1 ≥ 2d, Tm ≥ Tm−1∀m ∈ [M ],
∑M

m=1 Tm ≥ T (Algorithm 3 finishes whenever the

number of rounds reaches T , hence, the number of batches is upper bounded by M ). The gap

dependent regret bound directly follows by substituting the batch lengths from (B.84) in (B.80).

B.5 Proof of Theorem 9: Complexity of Algorithm 3

Theorem. Algorithm 3 finishes in Õ(Td2 + d4M + Toptd
3M) runtime and uses Õ(d2 +Mopt)

memory, where Topt,Mopt are the time and space complexity of the linear optimzation oracle for the

action set A.

Proof. We notice that the runtime and space complexity of LW-ArgMax is

TLW-ArgMax = O((d+ Topt) log
3 T ),MLW-ArgMax = O(d log3 T +Mopt). (B.85)

We next upper bound the complexity of Algorithm 4. As the matrix A is invertible in all iterations,

we can use the rank-one update formula of the determinent [Mey00] to perform steps 5 and 10 in

O(d) runtime and O(d2) space complexity. Namely

det(a,A−i) = det(A+ (a− ai)e
⊤
i ) = det(A)(1 + e⊤i A

−1(a− ai))

= ⟨a, det(A)(A−1)⊤ei⟩+ det(A)(1− e⊤i A
−1ai)

= ⟨a, det(A)(A−1)⊤ei⟩, (B.86)

where the last step follows by noticing that the formula is valid for a = 0, ãi is the i-th column of

A. This requires the inverse of matrix A which can be computed using rank-one updates in O(d2)

time and O(d2) space [SM50]

(A+ (a− ãi)e
⊤
i )

−1 = A−1 − A−1(a− ãi)e
⊤
i A

−1

1 + eiA−1(a− ãi)
. (B.87)

We notice that for each repetition of the second for loop, A−1 is updated once while det(A) can be

updated at most d times. Hence, the time and space complexity of one repetition of the for loop in

Algorithm 4 is O(TLW-ArgMaxd+ d2), O(MLW-ArgMax + d2) respectively. By Lemma 3, the for loops
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is repeated at most O(d2 log d) times. Hence, the time and space complexity of Algorithm 4 can be

bounded as

TLWS = O
(
(d4 + Toptd

3) log d log3 T
)
,MLWS = O

(
d2 log3 T +Mopt

)
. (B.88)

We next upper bound the time and space complexity of Algorithm 3.

• The time and space complexity of finding the barycentric spanner in step 5 is TLWS,MLWS

respectively.

• The computation of the least squares matrix requires O(Tmd
2) time and O(d2) space, while

its inversion requires O(d3) runtime. Hence, θm can be computed in O(Tmd
2 + d3) time and

O(d2) space.

• Computing the estimated best action in step 11 requires Topt,Mopt time and space respectively.

Hence, in total Algorithm 3 runtime is O(Td2 + (d4 + Toptd
3)M log d log3 T ) while the space

complexity is O
(
d2 log3 T +Mopt

)
.

B.6 Proof of Theorem 10: Regret Analysis for Contextual Bandits

Theorem 3. Consider a contextual linear bandit instance with At generated from an unknown

distribution D. There exists a universal constant C and a choice for batch lengths such that

Algorithm 6 , with q = (1− exp(−1))/(24T 7+12 log T ), finishes in O(log log T ) batches with regret

upper bounded as

RT ≤ Cγ
√
T log log T

with probability at least 1− 2δ, where γ = 10
√

CLd(log(8M/δ) + 57d log2(6T )). Moreover, the

running time and space complexity are Õ(d4 + Toptd
3T ) and Õ(d2 +Mopt), respectively.

Proof. Recall that at each round t, Algorithm 6 pulls action at associated with a value θt (see step 7

in Algorithm 6). To upper bound the regret, we follow a technique proposed in [HYF23] by first
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upper bounding the quantity

RL
T =

T∑
t=1

sup
θ∈Θ
⟨g(θ)− g(θt), θ⋆⟩ (B.89)

which can be thought of as the regret of the algorithm on a reduced linear bandit instance [HYF23].

Then we can use Theorem 1 in [HYF23] which states that |RT−RL
T | = Õ(

√
T ) with high probability

to upper bound the regret RT .

As in the proof of Theorem 8 instead of analyzing Algorithm 6 which ends batch m if the total

number of pulls reaches Tm, we analyze a variant algorithm that completes all the required pulls of

the actions in the barycentric spanner. We bound the regret of the variant algorithm when a good

event G̃ (that we define later) holds, and show that P[G̃] ≥ 1− δ. Then, we show that conditioned

on G̃, it holds that
∑d

i=1 nm(i) ≤ τm, for all batches m ∈ [2M ] (see (B.101)), which implies that

Algorithm 6 coincides with the variant algorithm on G̃ in this case. We also refer to the variant

algorithm as Algorithm 6 for simplicity.

Recall that

g(θ) = EA∼D[O(A; θ)], g(m)(θ) =
1

|Hm−1|
∑

t∈Hm−1

O(At; θ),Xm = {g(m)(θ)|θ ∈ Θ′}, (B.90)

where Hm is the set of indices for the rounds in batch m and Θ′ = {[θ]q|θ ∈ Θ} is a dis-

cretization of Θ, [θ]q = q⌊θ
√
d/q⌋/

√
d and q is the discretization parameter. Recall also that

Vm is the regularized least squares matrix in step 12 of Algorithm 6 with λ = 1, and de-

note ϵm = supθ′∈Θ′,θ∈Θ |⟨gm(θ′)− g(θ′), θ⟩| in the extended reals R ∪ {∞}. We also denote

ϵ(t) = ⟨g(θ(t))− g(m)(θ(t)), θ⋆⟩, where g(m)(θ(t)) ∈ Xm, rt are the action and reward at iteration t

of batch m. We first upper bound the error in estimating µg(θ′) = ⟨g(θ′), θ⋆⟩ for an action g(θ′) at

the end of batch m for θ′ ∈ Θ′. We have that for any a ∈ Rd, |⟨a, θm+1 − θ⋆⟩| can be decomposed

as

|⟨a, θm+1 − θ⋆⟩| = |⟨a,V −1
m

τm∑
t=1

rtat − θ⋆⟩|
(i)
= |⟨a,V −1

m

τm∑
t=1

(θ⊤⋆ g(θ
(t)) + η′t)g

(m)(θ(t))− θ⋆⟩|

= |⟨a,V −1
m

τm∑
t=1

(θ⊤⋆ g
(m)(θ(t)) + ϵ(t) + η′t)g

(m)(θ(t))− θ⋆⟩|
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= |⟨a,V −1
m

(
(Vm − I)θ⋆ +

τm∑
t=1

(ϵ(t) + η′t)g
(m)(θ(t))

)
− θ⋆⟩|

= |⟨a,−V −1
m θ⋆ + V −1

m

τm∑
t=1

(ϵ(t) + η′t)g
(m)(θ(t))⟩|

≤ |⟨a,−V −1
m θ⋆⟩|+ |⟨a,V −1

m

τm∑
t=1

ϵ(t)g(m)(θ(t))⟩|

+ |⟨a,V −1
m

τm∑
t=1

η′tg
(m)(θ(t))⟩|

≤ ∥a∥V −1
m
∥θ⋆∥V −1

m
+ |⟨a,V −1

m

τm∑
t=1

ϵ(t)g(m)(θ(t))⟩|

+ |⟨a,V −1
m

τm∑
t=1

η′tg
(m)(θ(t))⟩|

(ii)

≤ ∥a∥V −1
m

+ |⟨a,V −1
m

τm∑
t=1

ϵ(t)g(m)(θ(t))⟩|+ |⟨a,V −1
m

τm∑
t=1

η′tg
(m)(θ(t))⟩|, (B.91)

where (i) follows from Theorem 1 in [HYF23], η′t is a zero mean noise conditioned on the filtration

of history and θ(t) and (ii) uses Vm ≥ I . We next bound the term |⟨a,V −1
m

∑
t∈Hm

ϵ(t)g(m)(θ(t))⟩|.
We have that

|⟨a,V −1
m

τm∑
t=1

ϵ(t)g(m)(θ(t))⟩| ≤

√√√√τm

τm∑
t=1

ϵ(t)2a⊤V −1
m g(m)(θ(t))g(m)(θ(t))⊤V −1

m a

(i)

≤ ϵm

√√√√τm

τm∑
t=1

a⊤V −1
m g(m)(θ(t))g(m)(θ(t))⊤V −1

m a

≤ ϵm
√

τma⊤V −1
m (Vm − I)V −1

m a

≤ ϵm
√

τm(∥a∥2V −1
m
− ∥a∥2

V −2
m

) ≤ ϵm
√
τm(∥a∥2V −1

m
− ∥a∥2

V −2
m

)

≤ ϵm
√

τm(∥a∥2V −1
m
− ∥a∥2

V −2
m

) ≤ ϵm
√
τm∥a∥2V −1

m
, (B.92)

where (i) follows by the definition of ϵm = supθ′∈Θ′,θ∈Θ |⟨gm(θ′)− g(θ′), θ⟩| and ϵ(t) = ⟨g(θ(t))
− g(m)(θ(t)), θ⋆⟩. We have from Theorem 2 in [HYF23] that the following event holds with
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probability at least 1− δ/(4M)

Gϵm : ϵm ≤ 2

√
log(8M |Θ′|/δ)

τm−1

. (B.93)

We also have that from eq. (20.2) of [LS20] the following event holds with probability at least

1− δ/(4M)

Gηm : |⟨a,V −1
m

τm∑
t=1

η′tg
(m)(θ(t))⟩ ≤

√√√√2
τm∑
t=1

(a⊤V −1
m g(m)(θ(t)))2 log(4M |Θ′|/δ)

(i)

≤
√
2∥a∥2

V −1
m

log(4M |Θ′|/δ)∀a ∈ X̃m, (B.94)

where (i) follows by expanding (a⊤V −1
m g(m)(θ(t)))2 as in (B.92). From Lemma 1 we have that

for q = (1 − e−1)/(24T 7+12 log T ), the function g(m)([θ]q) is an approximate linear optimization

oracle with additive gap at most (1− e−1)/(12T 7+12 log T ). Hence, using Lemma 21 and Lemma 3,

Algorithm 4 finds a set Cm such that {ϕm(a)|a ∈ Cm} is an e8 approximate spanner for X̃m.

By the properties of the CL-approximate design, similar to (B.44) we have that ∥ϕm(a)∥V −1
m
≤√

CLd/τm∀a ∈ X ′
m, where CL = e8d. Hence, substituting from (B.92), (B.93) and (B.94) in (B.91)

we get that the following holds on Gηm ∩ Gϵm

|⟨ϕm(a), θm+1 − θ⋆⟩| ≤
√

CLd/τm + 4

√
CLd log(8M |Θ′|/δ)

τm−1

≤ 5

√
CLd log(8M |Θ′|/δ)

τm−1

∀a ∈ X ′
m.

(B.95)

We notice that for q = (1 − e−1)/(24T 7+12 log T ), we have that |Θ′| ≤ 6T 3d(7+12 log T ). Hence,

log |Θ′| ≤ 57d log2(6T ). Hence, CLd log(8M |Θ′|/δ) = CLd(log(8M/δ) + 57d log2(6T )). Substi-

tuting in (B.95) we get that the following holds on Gηm ∩ Gϵm

|⟨ϕm(a), θm+1 − θ⋆⟩| ≤ 5

√
CLd(log(8M/δ) + 57d log2(6T ))/τm−1 ≤

γ/2√
τm−1

. (B.96)

By definition of ϕm it follows that the following holds on Gηm ∩ Gϵm

|⟨a, θm+1 − θ⋆⟩| ≤
γ/2√
τm−1

+
∆m(a)

8

√
τm−2

τm−1

∀a ∈ X ′
m. (B.97)

1The verification of the conditions stated in Lemma 2 is equivalent to the verification conducted at the beginning of
the proof of Theorem 8.
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Hence, by definition of Gϵm in (B.93) the following holds on Gηm ∩ Gϵm

|⟨a, θm+1⟩ − µa| ≤ |⟨a, θm+1 − θ⋆⟩|+ |⟨a, θ⋆⟩ − µa|

≤ γ/2√
τm−1

+
∆m(a)

8

√
τm−2

τm−1

+ ϵm

≤ γ√
τm−1

+
∆m(a)

8

√
τm−2

τm−1

∀a ∈ X ′
m. (B.98)

We recall that P[Gϵm] ≥ 1 − δ/(4M), P[Gηm] ≥ 1 − δ/(4M). Hence, by the union bound we

have that

P[G̃] ≥ 1− δ, G̃ = ∩m∈[2M ](Gηm ∩ Gϵm) (B.99)

Then, following the proof of Lemma 16 by replacing every τm with τm−1 and every τm−1 with τm−2

we get that the following event hold on G̃

−4 γ√
τm−2

+
1

2
∆a ≤ ∆m(a) ≤ 2∆a + 4

γ√
τm−2

∀a ∈ A′∀m ∈M. (B.100)

Hence, following the same steps as in Lemma 17 we get that there is a universal constant C such

that the following holds on G̃

RL
T ≤ C

2M∑
m=1

γτm√
τm−2

= C
2M∑
m=1

γTm//2√
Tm//2−1

,
d∑

i=1

nm(i) ≤ τm, (B.101)

where RL
T is the regret of the algorithm on the linear bandit instance defined in (B.89). Using the

batch lengths in (B.81), we get, from (B.82), that the following holds on G̃

RL
T ≤ 8Cγ

√
TM (B.102)

From Theorem 1 in [HYF23] we have that |RL
T − RT | ≤

√
T log(T/δ) with probability at least

1− δ. By the union bound and triangle inequality it follows that

RT ≤ 16Cγ
√
TM (B.103)

with probability at least 1− 2δ.

The complexity result follows from Theorem 9 by observing that computing g(m)([θ]q) (our

approximate oracle) requires at most T calls to O(At; .). Hence, the time and space complexity of

Algorithm 6 are O((d4 + Toptd
3T )M log d log3 T ) and O

(
d2 log3 T +Mopt

)
, respectively.
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Figure B.1: Complexity of computing our exploration policy versus the state of the art complexity.

B.7 Numerical Comparison of Complexity of Our Scheme

In this appendix we present a small experiment to compare the computational complexity of

computing the exploration policy of Algorithm 6 versus the complexity of computing the policy

in [ZJZ21] (complexity of one batch). We do not consider other batched algorithms such as [RYZ21]

since they are not feasible to implement even for a small number of actions. We used d = 5

dimensions and a batch of size 100 iterations. For simplicity we use a fixed action set (unit sphere),

however, this knowledge is not revealed to the algorithms, i.e., the algorithms assume that the action

set may change over time. As the policy of [ZJZ21] requires to solve a non-convex optimization

problem, it is not feasible to implement it for infinite number of actions. Instead, we solve the

optimization problem over a finite subset of k actions sampled uniformly at random from the

action set. In contrast, our algorithm can be directly applied for the infinite action set, hence, the

computational complexity will not depend on k. In Fig. B.1, we plot the time complexity versus the

sampled number of actions (on Intel(R) Xeon(R) CPU @ 2.20GHz, 56MB cache). We observe that

for moderately large number of actions, our algorithm achieves significant savings in computational
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complexity as compared to the scheme of [ZJZ21].
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APPENDIX C

Appendix for Chapter 4: Reward Compression for Bandits

C.1 Proof of Proposition 1: Properties of the Quantized Rewards

Proof. We start by proving that r̂t is an unbiased estimate of µAt . If −3 ≤ rt ≤ −4, we have that r̂t

takes the value ⌈rt⌉ with probability rt − ⌊rt⌋, and the value ⌊rt⌋ with probability ⌈rt⌉ − rt. Hence,

E[r̂t|rt] = rt. For all the other cases we have that

E[r̂t|rt] = E[Mt(st(e
(q)
t + ℓt + 3.5st + 0.5) + ⌊ µ̂(t)

Mt

⌋)|rt]

= E[MtE[st(e(q)t + ℓt + 3.5st + 0.5) + ⌊ µ̂(t)
Mt

⌋

+ stℓt|rt, µ̂(t),Mt]|rt]
(i)
= E

[
Mt

(
rt
Mt

− ⌊ µ̂(t)
Mt

⌋+ st(−[3.5st + 0.5 + ℓt]

+stℓt + 3.5st + 0.5) + ⌊ µ̂(t)
Mt

⌋
)
|rt
]

= rt, (C.1)

where (i) follows from the fact that the stochastic quantization (SQ) that we use gives an unbiased

estimate of the input. We note that from Algorithm 8, et encodes |r̄t| − (|a| + 1) − ℓt, where

|a|+ 1 = 3 when st = −1, and |a|+ 1 = 4 when st = 1, i.e., |a|+ 1 = 3.5st + 0.5. Hence, in all

cases we have that

E[r̂t|At] = E[E[r̂t|rt, At]|At] = E[E[r̂t|rt]|At]

= E[rt|At] = µAt (C.2)
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The bound on |rt − r̂t| follows from the fact that the distance between the quantization levels

for which we use the randomized quantization is 1, hence, in all cases we have that

1 ≥ |ste(q)t − (
rt
Mt

− ⌊ µ̂(t)
Mt

⌋ − stℓt)| =
|r̂t − rt|

Mt

. (C.3)

We note that this implies

E[|r̂t − µAt |2|At] = E[|r̂t − rt + rt − µAt |2|At]

= E[|r̂t − rt|2|At] + E[|rt − µAt |2|At]

+ 2E[(rt − µAt)(r̂t − rt)|At]

≤ (1 + ϵ2)σ2

+ 2E[(rt − µAt)E[(r̂t − rt)|At, rt]|At]

= (1 + ϵ2)σ2. (C.4)

To see that conditioned on At, r̂t is conditionally independent on the history A1, r̂1, ..., At−1, r̂t−1,

we notice that since we replace µ̂(t)
Mt

by an integer, ⌊ µ̂(t)
Mt
⌋ and since the distance between the

quantization levels is 1, we have that the two nearest quantization levels to rt
Mt

are at ⌊ rt
Mt
⌋, ⌈ rt

Mt
⌉.

Hence, conditioned on Mt, r̂t takes the value Mt⌈ rt
Mt
⌉ with probability rt

Mt
− ⌊ rt

Mt
⌋, and the value

Mt⌊ rt
Mt
⌋ with probability ⌈ rt

Mt
⌉ − rt

Mt
. This shows that despite the fact that the encoding of r̂t is a

function of r1, ..., rt, the value of r̂t is a function of rt only, since Mt is generated independently of

the history. As a result, given At, r̂t is conditionally independent on the history A1, r̂1, ..., At−1, r̂t−1.

The fact that r̂t is subgaussian can be proven by Cauchy-Schwartz

E[eλ(r̂t−µAt )|At] = E[eλ(r̂t−rt+rt−µAt )|At]

≤ E[epλ(r̂t−rt)|At]
1
p

E[e(1−p)λ(rt−µAt )|At]
1

1−p

≤ eλ
2 σ2(1+ ϵ

2 )2

2 , (C.5)

where p = 1+2
ϵ
. To bound the expected regret after quantization we observe that RT =

∑T
t=1 E(µ∗

t−
rt) =

∑T
t=1 E(µ∗

t − r̂t) = (1 + ϵ
2
)
∑T

t=1 E(
µ∗
t−r̂t
1+ ϵ

2
). We have that r̂t

(1+ ϵ
2
)

is σ2-subgaussian. Applying

187



the bandit algorithm using r̂t
(1+ ϵ

2
)

results in
∑T

t=1 E(
µ∗
t−r̂t

(1+ ϵ
2
)
) ≤ RU

T ({∆i/(1 +
ϵ
2
)}), hence

RT ≤ (1 +
ϵ

2
)RU

T ({∆i/(1 +
ϵ

2
)}). (C.6)

C.2 Proof of Theorem 11: Upper Bounds on the Number of Bits

Proof. We have that Bt can be bounded as

Bt ≤ 3 + 1[
rt
Mt

− ⌊ µ̂(t)
Mt

⌋ > 3] + 1[⌊ µ̂(t)
Mt

⌋ − rt
Mt

> 2]

+ 2(1[
rt
Mt

− ⌊ µ̂(t)
Mt

⌋ > 4]⌈log( rt
Mt

− ⌊ µ̂(t)
Mt

⌋ − 3)⌉)

+ 2(1[⌊ µ̂(t)
Mt

⌋ − rt
Mt

> 3]⌈log(⌊ µ̂(t)
Mt

⌋ − rt
Mt

− 2)⌉)

≤ 3 + 1[| rt
Mt

− µ̂(t)

Mt

| > 2] + 2(1[| rt
Mt

− µ̂(t)

Mt

| > 3])

+ 2(1[| rt
Mt

− µ̂(t)

Mt

| > 3]log(| rt
Mt

− µ̂(t)

Mt

| − 2)). (C.7)

Hence for each δ > 0, we have

Bt ≤ 3 + 1[|rt − µAt

σ
| > 2(1− δ)] + 1[|µAt − µ̂(t)

σ
| > 2δ]

+ 2(1[|rt − µAt

σ
| > 3(1− δ)] + 1[|µAt − µ̂(t)

σ
| > 3δ])

+ 2(1[|rt − µAt

σ
| > 3])log(|rt − µ̂(t)

σ
| − 2). (C.8)

Taking the expectation of both sides, we get that

E[Bt] ≤ 3 + P[|rt − µAt

σ
| > 2(1− δ)]

+ P[|µAt − µ̂(t)

σ
| > 2δ]

+ 2(P[|rt − µAt

σ
| > 3(1− δ)]

+ P[|µAt − µ̂(t)

σ
| > 3δ])
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+ 2E[(1[|rt − µAt

σ
| > 3])log(|rt − µ̂(t)

σ
| − 2)]. (C.9)

Hence, there are universal constants C, C ′ such that

E[Bt] ≤ 3.32 + C ′E[|µAt − µ̂(t)

σ
|]

+ 2E[1[| rt
Mt

− µ̂(t)

Mt

| > 3](| rt
Mt

− µ̂(t)

Mt

| − 3)]

≤ 3.32 + C ′E[|µAt − µ̂(t)

σ
|]

+ 2E[1[|rt − µAt

σ
| > 3(1− δ)]||rt − µAt

σ
| − 3|]

+ 2E[1[|µAt − µ̂(t)

σ
| > 3δ]||rt − µAt

σ
| − 3|]

+ 2E[|µAt − µ̂(t)

σ
|]

≤ 3.32 + (C ′ + 2)E[|µAt − µ̂(t)

σ
|]

+ 2
∞∑
i=3

|i(1− δ)− 3|P[|µAt − µ̂(t)

σ
| > i(1− δ)]

+ 2E[1[|µAt − µ̂(t)

σ
| > 3δ]]E[||rt − µAt

σ
| − 3|]

+ 2E[|µAt − µ̂(t)

σ
|]

≤ 3.4 + CE[|µAt − µ̂(t)

σ
|] (C.10)

From (C.8), E[|rt − µAt |2|At] ≤ σ2, Markov property and the strong law of large numbers for

martingales, we also have that there is a universal constant C such that

lim
T→∞

1

T

T∑
t=1

Bt ≤ 3.4 + lim
T→∞

C

T

T∑
t=1

|µAt − µ̂(t)

σ
| almost surely. (C.11)

It then remains to analyze |µAt − µ̂(t)| for the three proposed choices of µ̂(t).

• avg-pt (µ̂(t) = 1
t−1

∑t−1
j=1 r̂j):

We have that for t > 1

|µAt − µ̂(t)|
σ

≤ |µAt − µ∗|
σ

+
|µ∗ − µ̂(t)|

σ
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=
∆At

σ
+ |
∑t−1

j=1 µ
∗ − µAj

+ µAj
− r̂j

(t− 1)σ
|

≤ ∆At

σ
+ |
∑t−1

j=1 µ
∗ − µAj

(t− 1)σ
|

+ |
∑t−1

j=1 µAj
− r̂j

(t− 1)σ
|

=
∆At

σ
+

∑k
i=1∆iTi(t− 1)

(t− 1)σ

+ |
∑t−1

j=1 µAj
− r̂j

(t− 1)σ
|. (C.12)

For t = 1 we have

|µAt − µ̂(t)|
σ

≤ |µAt − µ∗|
σ

+
|µ∗ − µ̂(t)|

σ

=
∆A1

σ
+
|µ∗|
σ

. (C.13)

We then have that

1

T

T∑
t=1

log(1+|µAt − µ̂(t)

σ
|) ≤ log(1 + |µ∗|

σ
)

Tσ

+
1

T

T∑
t=1

log(1 +
∆At

σ
)

+
1

T

T∑
t=2

log(1 +

∑k
i=1 ∆iTi(t− 1)

(t− 1)σ
)

+ log(1 + |
∑t−1

j=1 µAj
− r̂j

(t− 1)σ
|)

≤ log(1 + |µ∗|
σ
)

Tσ
+

1

T

(∑k
i=1 ∆iTi(T )

σ

+
T−1∑
t=1

∑k
i=1∆iTi(t)

tσ
+ |
∑t

j=1 µAj
− r̂j

tσ
|
)
. (C.14)

We have that since E[|rt − µAt |2|At] ≤ σ2, and Markov property, then by the strong law of large

numbers for martingales limt→∞

∑t−1
j=1 µAj

−r̂j

(t−1)σ
= 0 almost surely. We then have that if the limit of
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average regret is 0 almost surely (or in probability), then from (C.11) and (C.14) we get that

lim
T→∞

1

T

T∑
t=1

Bt≤3.4 almost surely (or in probability). (C.15)

By observing that we can generate a long sequence of rewards from each arm before the process

starts and since E[|rt − µAt|2|At] ≤ σ2, then by the triangle inequality we have that

1

T

T∑
t=1

E[|
∑t−1

j=1 µAj
− r̂j

(t− 1)σ
|]

(i)

≤ 2

T

T∑
t=1

1√
t

=
2

T

T∑
t=1

1√
t

≤ 2

T
(1 +

∫ T

t=1

1√
t
dt)

≤ 4√
T
, (C.16)

where (i) follows from the fact that µAj
− r̂j, µAi

− r̂i are uncorrelated for all i < j since

E[(µAj
− r̂j)(µAi

− r̂i)]

= E[E[(µAj
− r̂j)(µAi

− r̂i)|Aj, Ai, r̂i]] = 0. (C.17)

We conclude that there is a universal constant C such that

B̂(T ) ≤ 3.4 + (C/T ) (1 + log(1 + |µ∗|/σ)

+RT/σ +
T−1∑
t=1

Rt/(σt)

)
+ C/

√
T (C.18)

• avg-arm-pt (µ̂(t) = µ̂At(t− 1)):

We have that for TAt(t− 1) > 0

|µAt − µ̂(t)|
σ

= |
∑t−1

j=1(µAt − r̂j)1(Aj = At)

TAt(t− 1)σ
|. (C.19)

For TAt(t− 1) = 0, we have that µ̂(t) = 0. Then

1

T

T∑
t=1

E[log(1 +
|µAt − µ̂(t)|

σ
)]
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(i)

≤ 1

T

k∑
i=1

log(1 +
|µi|
σ

) +
2

T

T∑
t=1

1√
t

(ii)

≤ 1

T

k∑
i=1

log(1 +
|µi|
σ

) +
4√
T

(C.20)

where (ii) is as in (C.16), and (i) can be seen by observing that we can generate a long sequence of

rewards from each arm before the process starts, from the fact that r̂j−µAj
, r̂i−µAi

are uncorrelated

for all i ̸= j and since E[|rt − µAt |2|At] ≤ σ2.

We conclude that there is a universal constant C such that

B̂(T ) ≤ 3.4 +
C

T

k∑
i=1

log(1 +
|µi|
σ

) +
C√
T
. (C.21)

The fact that limT→∞
1
T

∑T
t=1 Bt≤3.4 almost surely, can be seen using the strong law of large

numbers by observing that we can generate a long sequence of rewards from each arm before the

process starts, the number of arms is finite, and if limT→∞ Ti(T ) <∞ then the contribution of arm

i in the number of bits decays to zero almost surely as T →∞.

• stochastic linear bandits (µ̂(t) = ⟨θt, At⟩):
The results follow directly from (C.8), (C.10), (C.11) and choice of µ̂(t).

For the case where ϵ ̸= 1, it is easy to see that for small values of ϵ, the number of transmitted

bits increases by 2 log(1
ϵ
) bits. This can be further decreased to log(1

ϵ
) + log(log(1

ϵ
)) bits using the

encoding in Section 4.5.

C.3 Proof of Theorem 12: High Probability Bound on the Number of Bits

From Section 4.5, we have that

Bt ≤ 3 + 1[
rt
Mt

− ⌊ µ̂(t)
Mt

⌋ > 3] + 1[⌊ µ̂(t)
Mt

⌋ − rt
Mt

> 2]

+ 1[
rt
Mt

− ⌊ µ̂(t)
Mt

⌋ > 4]

(
⌈log( rt

Mt

− ⌊ µ̂(t)
Mt

⌋ − 3)⌉

+⌈log(log( rt
Mt

− ⌊ µ̂(t)
Mt

⌋ − 3))⌉
)
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+ 1[⌊ µ̂(t)
Mt

⌋ − rt
Mt

> 3]

(
⌈log(⌊ µ̂(t)

Mt

⌋ − rt
Mt

− 2)⌉

+⌈log(log(⌊ µ̂(t)
Mt

⌋ − rt
Mt

− 2))⌉
)

≤ 4 + log(
µ̂(t)

σ
− rt

σ
− 2) + log(log(

µ̂(t)

σ
− rt

σ
− 2)). (C.22)

Let the event G be that ∀t ∈ {1, ..., T} : |rt − µAt | ≤ σ
√
4 log(T ). From the subgaussian

assumption and applying the union bound we have that

P[G] > 1−
T∑
t=1

e−2 log(T ). (C.23)

We have that if G holds then for t with Tt(At) > 0, we have that |µ̂(t)− µAt| ≤ σ, |rt − µAt | ≤ σ.

Hence, |µ̂(t)− rt| ≤ 2σ. Substituting in (C.22), we get the desired result.

C.4 Proofs of Lemma 4 and Theorem 13: The Lower Bound

C.4.1 Proof of Lemma 4

Proof. To simplify notation, we omit the time index t and only mention it when it is necessary.

Let P, P ′ denote reward distributions with means µ1 and µ2, respectively. We have that, for any

given quantizer Q, either:

Case 1: ∀ P, P ′ with µ1 ̸= µ2, we have that EP [Q(r)] ̸= EP ′ [Q(r)]; or

Case 2: ∃ P, P ′ with µ1 ̸= µ2, and EP [Q(r)] = EP ′ [Q(r)].

We will first show that any quantizer Q satisfying Case 1 must saisfy E[Q(r)|r] = c1r + c2

for some constants c1, c2. To do so, we first construct distributions P and P ′ as follows. Let

{xi, pi, p
′
i}3i=1 be real values such that x1 ̸= x2,

∑3
i=1 pi =

∑3
i=1 p

′
i = 1 and pi, p′i ≥ 0, ∀ i ∈

{1, 2, 3}. We design P to be the distribution of a random variable that takes the value xi with

probability pi, and P ′ be the distribution of a random variable that takes the value xi with probability

p′i for i = 1, 2, 3.

For Case 1, it is necessary that EP [Q(r)] = EP ′ [Q(r)] only if
∑3

i=1 pixi =
∑3

i=1 p
′
ixi. Or
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equivalently,

3∑
i=1

(pi − p′i)E[Q(r)|r = xi] = 0 only if
3∑

i=1

(pi − p′i)xi = 0. (C.24)

This implies that the right null space of the matrix

E =

E[Q(r)|r = x1] E[Q(r)|r = x2] E[Q(r)|r = x3]

1 1 1


is subset of the right null space of the matrix

X =

x1 x2 x3

1 1 1


(note that

∑
i(pi − p′i) = 0). This is because for any vector a in the nullspace of E, there exist

vectors p,p′ such that p,p′ ≥ 0, 1⊤p = 1⊤p′ = 1, and a = c(p − p′) for some constant c; in

particular, p = a+

1⊤a+ ,p
′ = |a−|

1⊤|a−| , where a+ is the same as a with the negative entries replaced by

zeros, while in a− the positive entries of a are replaced by zeros. Note that 1⊤a+ = 1T |a−| since a

is in the right null space of E, hence, 1⊤a = 0. Thus, by (C.24), the same vector a also belongs in

the nullspace of X.

We also observe that since x1 ̸= x2 and E[Q(r)|r = x1] ̸= E[Q(r)|r = x2] (as we assumed in

Case 1); hence the ranks of E and X equal to 2. Therefore the dimension of the right null space of

each of the matrices E,X is exactly one. This, together with the fact that the right null space of E

is a subset of the right null space of X, imply that the right null spaces of these two matrices are

exactly the same (and one-dimensional). We note that the right null space of X includes the vector

a =


x3+x2

x1−x2

x3+x1

x2−x1

1

 .

Hence, we have that Ea = 0 which implies that (from the first row of Ea = 0)

E[Q(r)|r = x3] =

(
E[Q(r)|r = x1]− E[Q(r)|r = x2]

x2 − x1

)
x3
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+
x2E[Q(r)|r = x1]− x1E[Q(r)|r = x2]

x2 − x1

As x3 was arbitrary, we have that, for all x ∈ R

E[Q(r)|r = x] = c1x+ c2,

where c1 =
E[Q(r)|r=x1]−E[Q(r)|r=x2]

x1−x2
, c2 =

x2E[Q(r)|r=x1]−x1E[Q(r)|r=x2]
x1−x2

. This completes the proof for

Case 1.

For Case 2, if we consider a MAB instance with two arms with distributions P, P ′ that witness

the property in Case 2, then even if we have infinite samples from the quantization scheme we

cannot achieve better than O(|µ1 − µ2|T ) regret.

C.4.2 Proof of Theorem 13

Proof. To simplify notation, we omit the time index t and only mention it when it is necessary.

Normalizing the rewards by σ, it suffices to consider the case where σ = 1.

We first show that it suffices to consider schemes with deterministic quantization levels. Let us

consider a quantizer Q with encoder E : R→ N and decoder D : N→ R, where E , D can both be

random. We note that as D is allowed to be random, the set of quantization levels is now random.

Let us consider a new decoder D′ defined as

D′(i) = E[D(i)]. (C.25)

We now consider the quantizer Q′ defined by E , D′ as an encoder-decoder pair. We note that

the decoder D′ is a deterministic function, hence, the set of quantization levels for the quantizer

Q′ is deterministic. We will show that: (a) E[Q(rt)|rt] = E[Q′(rt)|rt] and (b) if Q results in

sub-Gaussian quantized rewards conditioned on rt, then Q′ also results in sub-Gaussian quantized

rewards conditioned on rt with the same sub-Gaussian parameter as Q. Properties (a) and (b) will

allow us to switch D with D′ in the rest of our proofs without affecting the encoder E (hence without

affecting the number of bits). To show E[Q(rt)|rt] = E[Q′(rt)|rt], we observe that

E[Q(rt)|rt] = E[D(E(rt))|rt] = E[E[D(i)|rt, E(rt) = i]|rt]
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= E[D′(E(rt))|rt] = E[Q′(rt)|rt]. (C.26)

To show the second property we observe that

E[ exp (λ(Q(rt)− E[Q(rt)|rt]))|rt, E(rt)]
(i)
= E[exp (λ(Q′(rt)− E[Q(rt)|rt]))|rt, E(rt)]

E[exp (λ(Q(rt)−Q′(rt)))|rt, E(rt)]
(ii)

≥ E[exp (λ(Q′(rt)− E[Q(rt)|rt]))|rt, E(rt)]

exp (λE[(Q(rt)−Q′(rt))|rt, E(rt)])

= E[exp (λ(Q′(rt)− E[Q(rt)|rt]))|rt, E(rt)]

exp (λE[(D(E(rt))−D′(E(rt)))|rt, E(rt)])
(iii)
= E[exp (λ(Q′(rt)− E[Q(rt)|rt]))|rt, E(rt)]

(iv)
= E[exp (λ(Q′(rt)− E[Q′(rt)|rt]))|rt, E(rt)] (C.27)

where (i) follows by the fact that Q′(rt) = D′(E(rt)) is a deterministic function of E(rt), (ii)
follows by Jensen’s inequality and non-negativity of the exp function, (iii) follows by definition of

D′, and (iv) follows from (C.26). By taking the conditional expectation given rt of both sides in

(C.27) we get that

E[ exp (λ(Q(rt)− E[Q(rt)|rt]))|rt]

≥ E[exp (λ(Q′(rt)− E[Q′(rt)|rt]))|rt]. (C.28)

Proof of Statetment 1 &2 in Theorem 13 To prove 1,2, we consider the following distribution

that takes values on 2z∀z ∈ Z with

P[rt = 2z] =


P[N (0, (4σ)2) ∈ [2z, 2(z + 1)]] if z > 0

P[N (0, (4σ)2) ∈ [2(z − 1), 2z]] if z < 0

P[N (0, (4σ)2) ∈ [−2, 2]] if z = 0,

(C.29)
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Figure C.1: Illustration of reward distribution.

where N (0, (4σ)2) is a random variable with Gaussian distribution with zero mean and standard

deviation 4σ. An illustration of the distribution is depicted in Fig. C.1.

By construction of the distribution, we have that rt is (4σ)2-subGaussian, since every value in

the Gaussian distribution is mapped to one that is closer to the mean in the distribution of rt. We

next prove 1. Suppose towards a contradiction that ∃b, t such that P[BT ≤ b] = 1∀T > t. Pick

T arbitrary large, we have that b can describe at most 2b quantization levels. We note that the

maximum distance between any consecutive quantization levels cannot exceed 4, lest there is a

reward r, that is in the middle of the two quantization levels, mapped to r̂ with |r̂ − r| ≥ 2 almost

surely which violates the fact that P[|r̂ − r| ≥ 2|r = z] ≤ exp(− 22

2(σ/2)2
) < 1 for some z given by

the subGaussian concentration of assumption (ii). Hence, either the interval (−∞,−4(2b + 1)] or

the interval [4(2b + 1),∞) will have no quantization levels. We assume without loss of generality

that the interval [4(2b + 1),∞) has no quantization levels. Hence, all the values in that interval

will be mapped to values in (−∞, 4(2b + 1)). We notice that for the described reward, the interval

(−∞, 4(2b + 1)) has non-zero probability. This contradicts assumption (i) (unbiasedness).

We next prove 2. Let Gt be the event that |Q(rt) − rt| ≤ 1. We observe that by assumption

(ii), since r̂t − rt is (σ
2
)2-subGaussian, we have that P[Gt|rt] ≥ 1− 2e−2 ≥ 0.729. Let us consider

the intervals of the form [2i − 1, 2i + 1]∀i ∈ Z. As we proved above, it is sufficient to consider

quantization schemes with deterministic quantization levels. Let ℓi(t) be the minimum length of a
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quantization level in the interval [2i− 1, 2i+ 1]. We have that

E[Bt] =
∑
i∈Z

P[rt = 2i]E[Bt|rt = 2i]

≥
∑
i∈Z

P[rt = 2i]P[Gt|rt = 2i]E[Bt|rt = 2i, Gt]

≥
∑
i∈Z

P[rt = 2i]P[Gt|rt = 2i]ℓi

≥
∑

|i|≤4,i∈Z
P[rt = i]P[Gt|rt = 2i]ℓi

≥ 0.729min
{ℓi}

∑
|i|≤4,i∈Z

P[rt = 2i]ℓi. (C.30)

We also notice that as the code is prefix free, then if we restrict the code over a subset of quantization

levels, it is still prefix free. It follows that the lengths ℓi need to satisfy the tree inequality [Cov99],

namely,
∑

|i|≤4,i∈Z 2−ℓi ≤ 1. Hence, we have that the code that minimizes (C.30) is Huffman

code [Cov99]. Performing Huffman code with the weights in (C.30) gives the following code

lengths for ℓ−4, ..., ℓ4 respectively: 6, 5, 4, 3, 1, 3, 4, 4, 6. Substituting in (C.30) gives E[Bt] ≥
0.729min{ℓi}

∑
|i|≤4,i∈Z P[rt = i]ℓi ≥ 1.9.

C.5 Proofs of Corollaries 1, 2

The expected regret bounds follow directly from Theorem 11. To bound the average number of bits

used for the avg-pt, we only need to bound the decay rate of 1
T

∑T−1
t=1

Rt

σt
.

Corollary 1:

From Theorem 11 and [ACF02], we have that for QuBan with UCB, there is a constant C such

that RT ≤ Cσ
√

kT log(T ). Then,

1

T

T−1∑
t=1

Rt

σt
≤ C

1

T

T∑
t=1

√
kt log(t)

t

≤ C
√
k log(T )

T

T∑
t=1

1√
t
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≤ C
√
k log(T )

T
(1 +

∫ T

t=1

1√
t
)

≤ C
√

k log(T )T . (C.31)

Corollary 2:

From Theorem 11 and [ACF02], we have that for QuBan with ϵ-greedy, there is a constant C such

that RT ≤ Cσk log(1 + T
k
). Then,

1

T

T−1∑
t=1

Rt

σt
≤ Ck

T

T−1∑
t=1

log(1 + t)

t

≤ Ck log(1 + T )

T

T−1∑
t=1

1

t

≤ Ck log(1 + T )

T
(1 +

∫ T−1

1

1

t
)

≤ Ck(log(1 + T ))2

T
. (C.32)

C.6 Proof of Corollary 3

We observe that the LinUCB parameters, βt, can be chosen such that maxt∈{1,...,T} supa∈At
⟨θt −

θ∗, a⟩ ≤
√
βT . Hence, by Cauchy–Schwarz we have that

T∑
t=1

|⟨θt − θ∗, At⟩| ≤

√√√√T
T∑
t=1

|⟨θt − θ∗, At⟩|2

≤

√√√√T

T∑
t=1

min{βT , ⟨θt − θ∗, At⟩2}. (C.33)

The proof of the expected regret and average number of bits bounds then follows as in [LS20,

Theorem 19.2] using Theorem 11.
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APPENDIX D

Appendix for Chapter 5: The Common Information Dimension

D.1 Proofs of lemmas in Theorem 14

Lemma 6. Let X = [X1, X2, ..., Xn] be a dX-dimensional random vector, dX =
∑n

i=1 dXi
, with

zero mean and covariance matrix Σ. For any vectors a, b ∈ RdX , we have that

a⊤X = b⊤X almost surely, if and only if a⊤Σ = b⊤Σ.

Proof. If a⊤X = b⊤X almost surely, the multiplying both sides by X⊤ and taking expectation gives

a⊤Σ = b⊤Σ. It remains to show the other direction; namely, if a⊤Σ = b⊤Σ, then a⊤X = b⊤X

almost surely. We have that the second moment of (a⊤ − b⊤)X is given by

E[((a− b)⊤X)2] = E[(a− b)⊤XX⊤(a− b)]

= (a− b)⊤Σ(a− b) = 0. (D.1)

It follows that (a− b)⊤X = 0 almost surely.

Corollary 6. There is a subset I ⊆ {1, ..., dX} such that |I| = rank(ΣX), and XI ⊥⊥ Y |(V,W ) if

and only if X ⊥⊥ Y |(V,W ).

Proof. By Lemma 6, there is a subset I ⊆ {1, ..., dX} such that |I| = rank(ΣX), and X = BXI

for some B ∈ Rdx×|I|. Then we have that XI ⊥⊥ Y |(V,W ) if and only if X ⊥⊥ Y |(V,W ).

Lemma 7. Let [X, Y ] be a random vector with covariance matrix Σ and N =
[
NX −NY

]
be a

basis for the null space of Σ, where N ∈ Rr(N)×(dX+dY ), NX ∈ Rr(N)×dX , and NY ∈ Rr(N)×dY .
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If X and Y are non-singular (i.e., ΣX ,ΣY are full-rank), we have that

rank(NX) = rank(NY ) = rank(N ). (5.19)

Proof. Suppose towards a contradiction that NX is not full-row-rank. Hence, there exists b ̸= 0

such that b⊤NX = 0. As N is full-row-rank, we have that b⊤NY ̸= 0. From equation (5.18) we

have that b⊤NY Y = b⊤NXX . Hence, we have that b⊤NY Y = 0, and b⊤NY ̸= 0. As a result,

by Lemma 6, we have b⊤NYΣY = 0, b⊤NY ̸= 0, which contradicts our assumption that ΣY is

full-rank. Therefore, it has to hold that rank(NX) = rank(NY ) = rank(N ).

Lemma 8. Let MX ∈ RdX×dX ,MY ∈ RdY ×dY be full-rank matrices, and X, Y, V,W be random

vectors of dimension dX , dY , dV , and dW respectively. We have that

MXX ⊥⊥MY Y |(V,W ) if and only if X ⊥⊥ Y |(V,W ).

Proof. Since MX and MY are full-rank, the corresponding linear mappings are one-to-one. If

X, Y are conditionally independent given (V,W ), then for any sets SX ,SY , we have that

P[MXX ∈ SX ,MY Y ∈ SY |(V,W )] (D.2)

= P[X ∈M−1
X SX , Y ∈M−1

Y SY |(V,W )]

= P[X ∈M−1
X SX |(V,W )]P[Y ∈M−1

Y SY |(V,W )]

= P[MXX ∈ SX |(V,W )]P[MY Y ∈ SY |(V,W )], (D.3)

where M−1
X SX = {M−1

X x|x ∈ SX} and M−1
Y SY is defined similarly. This shows that MXX

and MY Y are conditionally independent given (V,W ). The proof of the other direction that

MXX ⊥⊥MY Y |(V,W ) implies X ⊥⊥ Y |(V,W ) is similar.

The following lemma is utilized in the proof of Lemma 9.

Lemma 19. Define N ′
X , MY as in (5.14) and (5.15). Then

∄ a, b such that a ̸= 0 and a⊤N ′
XX = b⊤MY Y.
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Proof. Suppose towards a contradiction that ∃ a, b such that a ̸= 0 and a⊤N ′
XX = b⊤MY Y .

Then, we can extend N by adding the following row
[
a⊤N ′

X −b⊤MY

]
, which is linearly

independent on rows of N because N ′
X is the complementary row space of NX and N =[

NX −NY

]
. This contradicts the fact that N is a basis for the null space of ΣX,Y .

Lemma 9. Let NX ,NY ,N
′
X ,N

′
Y be as defined in (5.13) and (5.14). Conditioned on NXX , we

have that
[
(N ′

XX)⊤ (N ′
Y Y )⊤

]⊤
has full-rank covariance matrix.

Proof. Suppose towards a contradiction that there is a ̸= 0 such that a⊤Σ′
|NXX = 0, where

Σ′
|NXX is the covariance matrix of

N ′
XX

N ′
Y Y

 conditioned on NXX . Since the mean of

N ′
XX

N ′
Y Y


conditioned on NXX is a linear function of NXX (say the conditional mean is BNXX), then, by

Lemma 6 we have that

a⊤(

N ′
XX

N ′
Y Y

−BNXX) = 0 almost surely.

Let us partition a as a =

aX

aY

. Using the fact that NXX = NY Y we get that

a⊤
XN

′
XX = b⊤

NY Y

N ′
Y Y

 = b⊤MY Y,

where b =

B⊤a

−aY

, which contradicts Lemma 19.

D.2 Proof of Theorem 15

Theorem 15. Let X = [X1, · · · , Xn] be a jointly Gaussian random vector. The common information

dimension between X1, · · · , Xn with respect to the class of linear functions is

d(X1, · · · , Xn) =
n∑

i=1

rank(Σ−i)− (n− 1)rank(Σ),
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Table D.1: Table of notation for proof of Theorem 15

Notation Definition

Ai basis of the row space of Σi|1:i−1 (D.4)

Bi basis of the row space of Σi+1:n|1:i−1 (D.5)

Ui Ui = AiXi (D.6)

Yi Yi = Bi[X
⊤
i+1 · · · X⊤

n ]
⊤ (D.7)

Ñi basis of the null space of ΣUi,Yi|X1,··· ,Xi−1
, (D.8)

Ñi ∈ Rr(Ñi)×(r(Ui)+r(Yi))

Ni, N̄i partition Ñi as [Ni N̄i] (D.9)

Ni ∈ Rr(Ñi)×r(Ui) N̄i ∈ Rr(Ñi)×r(Yi)

Zi Zi = NiUi (D.10)

Ci basis of the row space of ΣXi|Z1,··· ,Zn (D.11)

Ti Ti = CiXi (D.12)

where Σ is the covariance matrix of X , and Σ−i is the covariance matrix of the random vector

[X1, · · · , Xi−1, Xi+1, · · · , Xn]. Moreover, a W that satisfies the minimum in (5.8) is given by

Algorithm 9.

Proof. Consider the quantities defined in Table D.1; the proof logic proceeds as follows. We se-

quentially extract the common information between the Xi by constructing a sequence of variables

Zi, where Zi contains the amount of information that Xi contains about Xi+1, · · · , Xn and that

X1, · · · , Xi−1 does not contain. We recall from the proof of Theorem 14 that: (i) to remove the

parts of Xi that can be determined by X1, · · · , Xi−1, we can consider AiXi, where Ai is a basis for

the row space of ΣXi|X1,··· ,Xi−1
(Lemma 6); and (ii) to find the common information between two
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non-singular Gaussian random variables X, Y , we need to consider the null space of ΣXY ((5.20)

and (5.26)). We utilize this in the following to build Z:

• To get the common information between X1 and X2, · · · , Xn; we first remove the singular part of

X1 by linearly transforming X1 using a matrix A1 that captures the non-singular part of X1. We

denote the resulting vector variable by U1.

• Similarly, we remove the singular part of [X2, · · · , Xn] using a matrix B1 to produce Y1.

•We then argue (using (ii)) that the parts of X2, · · · , Xn that can be determined from X1 (common

information), denoted as Z1, can be obtained from the null space of ΣU1Y1 .

• To obtain Z2 which contains the amount of information that X2 contains about X3, · · · , Xn that

X1 does not contain: we first eliminate the parts of X2 that can be obtained from X1. We argue (as

described in (i)) using Lemma 6, that the vectors in the null space of ΣX2|X1 are precisely the linear

combinations of X2 that can be obtained from X1. Hence, we remove the parts of X2 that can be

obtained from X1 using a matrix A2 that captures the non-singular part of the matrix ΣX2|X1 , to

obtain U2.

• Similarly, we remove the parts of [X3, · · · , Xn] that can be obtained from X1 using a matrix B2

to produce Y2.

• Similar to Z1, the desired Z2 can then be obtain from the null space of ΣU2Y2 .

More generally, to obtain Zi which contains the amount of information that Xi contains about

Xi+1, · · · , Xn that X1, · · · , Xi−1 does not contain: we first eliminate the parts of Xi that can be

obtained from X1, · · · , Xi−1. This is done using a matrix Ai that captures the non-singular part of

the matrix ΣXi|X1,··· ,Xi−1
, to obtain Ui. Similarly, we remove the parts of [Xi+1, · · · , Xn] that can

be obtained from X1, · · · , Xi−1 using a matrix Bi to produce Yi. Then, Zi can be obtained from

the null space of ΣUiYi
. The method of constructing (V,W ) that break the dependency between

X1, · · · , Xn, where H(V ) < ∞ and W has minimum dimension is summarized in Algorithm 9.

The main part of our proof shows that Z = [Z1, · · · , Zn] is sufficient to break the dependency

between X1, · · · , Xn up to finite randomness (Lemma 20), and that Z is also a necessary part of
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every W that breaks the dependency up to finite randomness and hence dW ≥ dZ (Lemma 21).

We next formally prove our result. We state and prove two properties of the quantities in

Table D.1. The first property is that the conditional covariance matrix ΣT1,··· ,Tn|Z1,··· ,Zn is full-rank,

where Ti, defined in (D.12), can be thought of as the part of Xi that cannot be expressed as a

deterministic function of Z1, · · · , Zn.

Lemma 20. The conditional covariance matrix of T = [T1, · · · , Tn] conditioned on Z = [Z1, · · · , Zn],

namely, ΣT |Z is non-singular, where Ti is defined in (D.12) and Zi is defined in (D.10).

Proof. Suppose towards a contradiction that there exists a ̸= 0 such that a⊤ΣT |Z = 0. Let us

partition a as [a1, · · · ,an], where ai ∈ RdTi . Let j denote the largest index for which aj ̸= 0. By

Lemma 6, we have that

a⊤T = a′⊤Z almost surely, (D.13)

for some vector a′. We recall that by definition of Ti, Zi in (D.12) and (D.10), they are linear

functions of Xi. Also, by definition of j as the largest index with aj ̸= 0, we have that Tj+1, · · · , Tn

do not appear in (D.13); only Zj+1, · · · , Zn appear. By expanding Ti, Zi for i < j as linear functions

of Xi, we get that there exist vectors e1, e2, c1, c2, c3 such that

a⊤
j Tj + c⊤1 [Z

⊤
j+1 · · · Z⊤

n ]
⊤

= e⊤
1 Xj + e⊤

2 [X
⊤
j+1 · · · X⊤

n ]
⊤

= c⊤2 Xj−1 + c⊤3 [X1 · · · Xj−2]
⊤ almost surely.

(D.14)

We want to show that Xj−1 can be replaced by Zj−1 in the previous equation (after possibly changing

c2, c3). In particular, we want to show that there exist vectors c̃2, c̃3 such that

a⊤
j Tj + c⊤1 [Z

⊤
j+1 · · · Z⊤

n ]
⊤ = c̃⊤2 Zj−1 + c̃⊤3 [X

⊤
1 · · · X⊤

j−2]
⊤ almost surely. (D.15)

We have three possible cases:

(i) c2 is in the left null space of Σ(j−1)|1:(j−2): It follows from Lemma 6 that c⊤2 Xj−1 is a linear

function of X1, · · · , Xj−2. Hence, it can be replaced by a linear function of X1, · · · , Xj−2 in (D.14),
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and (D.15) holds with c̃2 = 0.

(ii) [e1 e2] is in the left null space of Σj:n|1:(j−2): It follows from Lemma 6 that

e⊤
1 Xj + e⊤

2 [X
⊤
j+1 · · · X⊤

n ]
⊤ is a linear function of X1, · · · , Xj−2. Hence, (D.15) holds again

with c̃2 = 0.

(iii) c2 is in the row space of Σ(j−1)|1:(j−2) and [e1 e2] is in the row space of Σj:n|1:(j−2): by defini-

tion of Aj−1,Bj−1 in (D.4) and (D.5), it follows that c⊤2 = c̄⊤2 Aj−1 and [e⊤
1 e⊤

2 ]
⊤ = ē⊤Bj−1 for

some c̄, ē. Thus

ē⊤Yj−1 = e⊤
1 Xj + e⊤

2 [X
⊤
j+1 · · · X⊤

n ]
⊤

= c̄⊤2 Uj−1 + c⊤3 [X
⊤
1 · · · X⊤

j−2]
⊤ almost surely. (D.16)

By Lemma 6 it follows that [−c̄⊤2 ē⊤] is in the left null space of ΣUj−1,Yj−1|X1,··· ,Xj−2
. By

definition of Nj−1 in (D.9) it follows that c̄2 is in the row space of Nj−1. Hence, we have that there

is c̄3 such that

e⊤
1 Xj + e⊤

2 [X
⊤
j+1 · · · X⊤

n ]
⊤

= c̄⊤3 Nj−1Uj−1 + c⊤3 [X
⊤
1 · · · X⊤

j−2]
⊤

= c̄⊤3 Zj−1 + c⊤3 [X
⊤
1 · · · X⊤

j−2]
⊤ almost surely, (D.17)

where the last equality follows by the definition of Zj−1 = Nj−1Uj−1 in (D.10). Substituting in

(D.14) it follows that there are vectors c̃2, c̃3 such that

a⊤
j Tj + c⊤1 [Z

⊤
j+1 · · · Z⊤

n ]
⊤ = c̃⊤2 Zj−1 + c̃⊤3 [X

⊤
1 · · · X⊤

j−2]
⊤ almost surely. (D.18)

Equivalently, there are vectors c̃2, c̃3 such that

a⊤
j Tj + c⊤1 [Z

⊤
j+1 · · · Z⊤

n ]
⊤ − c̃⊤2 Zj−1 = c̃⊤3 [X

⊤
1 · · · X⊤

j−2]
⊤ almost surely. (D.19)

Applying the same result j − 2 times, it follows that X1 · · · , Xj−2 can be replaced by Z1 · · · , Zj−2.

Equivalently, there is a vector c such that

a⊤
j Tj = c⊤Z almost surely. (D.20)
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This contradicts the fact that Tj = CjXj where Cj is a basis of the row space of ΣXi|Z1,··· ,Zn (recall

that aj ̸= 0). This concludes the proof that the conditional covariance matrix of T conditioned on

Z is non-singular.

By definition of Ti = CiXi in (D.12), where Ci is a basis for the row space of ΣXi|Z1,··· ,Zn ,

it follows that conditioned on Z1, · · · , Zn, Xi can be obtained from Ti. Hence, conditioned on

Z1, · · · , Zn, breaking the dependency between X1, · · · , Xn reduces to breaking the dependency

between T1, · · · , Tn. From Lemma 20, we have that conditioned on Z, T is jointly Gaussian with

full-rank covariance matrix. Hence, by the result in [LE17], there is a VZ with H(VZ) <∞ such

that T1 ⊥⊥ · · · ⊥⊥ Tn|(Z, VZ), and hence, X1 ⊥⊥ · · · ⊥⊥ Xn|(Z, VZ). Since the covariance matrix

of T conditioned on Z does not depend on the value of Z and is only a function of the covariance

matrix of Z, then VZ can be chosen the same for all Z. Hence, we can refer to VZ as V , which gives

that X1 ⊥⊥ · · · ⊥⊥ Xn|(Z, V ). This shows that

d(X1, · · · , Xn) ≤
n∑

i=1

dZi
. (D.21)

We next prove a second property that the quantities defined in Table D.1 satisfy, that ΣZ is a

full-rank covariance matrix.

Lemma 21. The covariance matrix ΣZ of Z = [Z1, · · · , Zn], where Zi is defined in (D.10) is

full-rank.

Proof. Suppose towards a contradiction that ΣZ is not full-rank and pick a vector a ̸= 0 in the null

space of ΣZ . Partition a as [a1, · · · ,an], where ai ∈ RdZi . Let j be the largest index with aj ̸= 0.

By definition of Zi in (D.10) as linear function of Xi, we get that there is a vector b such that

a⊤
j Zj = b⊤[X⊤

1 · · · X⊤
j−1]

⊤ almost surely. (D.22)

Substituting for Zj using (D.10) we get that

(a⊤
j Nj)Uj = b⊤[X⊤

1 · · · X⊤
j−1]

⊤ almost surely. (D.23)
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We notice by definition of Ui, Yi in (D.5) and (D.6) that ΣUi|X1,··· ,Xi−1
and ΣYi|X1,··· ,Xi−1

are both

full-rank. By Lemma 7, we also get that Nj is full-rank. Hence, the vector a⊤
j Nj ̸= 0. By (D.23)

and Lemma 6 the vector a⊤
j Nj ̸= 0 is in the null space of ΣUi|X1,··· ,Xi−1

which contradicts the fact

that the matrix is full rank. We conclude that ΣZ is full rank.

We notice that by definition of Ni in (D.9) and Lemma 6, we have that NiUi + N̂iYi =

A[X⊤
1 · · · X⊤

i−1]
⊤ a.s. for some matrix A, hence, Zi = NiUi = A′X−i a.s. for some matrix A′

(as both Yi, [X1, · · · , Xi−1] do not include Xi). By Lemma 10, as Zi = A′X−i a.s., then, if (V,W )

breaks the dependency between X1, · · · , Xn, we must have that Zi is a deterministic function of

(V,W ) for all i. And hence, similar to (5.25), we get that

Z = BW almost surely, (D.24)

for some matrix B. Next, by multiplying both sides by Z⊤ and taking the expectation we get that

ΣZ = BE[WZ⊤]. (D.25)

Hence, we have that
n∑

i=1

dZi

(i)
= rank(ΣZ) ≤ rank(B) ≤ dW , (D.26)

where (i) follows from Lemma 21. As V,W are arbitrary inW , we have that

d(X1, · · · , Xn) ≥
n∑

i=1

dZi
. (D.27)

Combining (D.21) and (D.27), it follows that

d(X1, · · · , Xn) =
n∑

i=1

dZi
. (D.28)

We notice that by definition of Zi in (D.10) we have that

dZi
= rank(Σi|1:i−1) + rank(Σi+1:n|1:i−1)− rank(Σi:n|1:i−1). (D.29)

To further simplify this expression, we state and prove the following property about the rank of the

conditional covariance matrix ΣX|Y for two random vectors X, Y .
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Proposition 4. Let (X,Y) be a pair of jointly Gaussian random variables. We have that

rank(ΣX|Y ) = rank(Σ)− rank(ΣY ), (D.30)

where Σ,ΣY ,ΣX|Y are the covariance matrices of [X, Y ], Y and X conditioned on Y respectively.

Proof. For a vector a ̸= 0 to be in the null space of ΣX|Y , we have by Lemma 6 that

a⊤X = b⊤Y almost surely (D.31)

for some vector b. Without loss of generality we assume that ΣY is full rank, otherwise by Lemma 6

we can replace Y with Y ′ = BY , where B is a matrix containing basis for the row space of ΣY .

Hence, we may assume without loss of generality that

dY = rank(ΣY ) (D.32)

Let N denote the basis of the covariance matrix Σ,

N = [N
r(N)×dX
X N

r(N)×dX
Y ]. (D.33)

Similarly to Lemma 7, we get that ΣY full rank implies that

NX is full row rank (D.34)

We also notice by (D.31) that the rank of NX is the dimension of the null space of ΣX|Y . This is

because from (D.31), [a b] is in the null space of Σ (by Lemma 6), hence, a is in the row space

of NX by definition of NX in (D.33); conversely, every vector in the row space of NX satisfies

(D.31) for some b (also by definition of NX). Hence, by noticing that the dimension of the null

space of ΣX|Y is d− rank(ΣX|Y ) we get that

dX − rank(ΣX|Y ) = rank(NX)
(D.34)
= rank(N ) = dX + dY − rank(Σ).

It follows that

rank(ΣX|Y ) = rank(Σ)− dY
(D.32)
= rank(Σ)− rank(ΣY ).
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By substituting (D.29) in (D.28) we get that

d(X1, · · · , Xn) =
n∑

i=1

dZi
=

n∑
i=1

(
rank(Σi|1:i−1) + rank(Σi+1:n|1:i−1)− rank(Σi:n|1:i−1)

)
(i)
=

n∑
i=1

(rank(Σ1:i)− rank(Σ1:i−1) + rank(Σ−i)− rank(Σ1:i−1)− rank(Σ) + rank(Σ1:i−1))

(ii)
= rank(Σ) +

(
n∑

i=1

rank(Σ−i)

)
− (n) rank(Σ)

=

(
n∑

i=1

rank(Σ−i)

)
− (n− 1)rank(Σ),

(D.35)

where (i) follows by Proposition 4, and (ii) follows from the fact that the first two terms inside the

summation form a telescopic summation.

Complexity of Computing W . It is easy to see that every step (finding row space, inverse, matrix

multiplication and summations) in the for loop in Algorithm 9 can be performed in O((
∑n

i=1 dXi
)3).

It follows that the overall time complexity of computing W is O((
∑n

i=1 dXi
)4).

Corollary 8. The time complexity of computing W in Algorithm 9 is O((
∑n

i=1 dXi
)4).

Lemma 5. Let [X1, · · · , Xn] be a jointly Gaussian random vector. Then, the Rényi common

information dimension between X1, · · · , Xn with respect to the class of F of linear functions is

given by

dR(X1, · · · , Xn) = d(X1, · · · , Xn).

Proof. Let W be such that W ∈ W and dW = d(X1, · · · , Xn). As W ∈ W , we have that W is a

linear function of [X1, · · · , Xn], hence, it is jointly Gaussian. Then, we have that dR(W ) ≤ dW

[Ren59]. This shows that

dR(X1, · · · , Xn) ≤ d(X1, · · · , Xn). (D.36)

To show that dR(X1, · · · , Xn) ≥ d(X1, · · · , Xn), we first observe that for every W ∈ W , we have

that dR(W ) ∈ N, hence, the infimum in the definition of dR(X1, · · · , Xn) can be replaced by a
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minimum. Then there exists W such that W ∈ W and dR(W ) = dR(X1, · · · , Xn). As W ∈ W ,

we have that W is jointly Gaussian. By Lemma 6, we have that there is I ⊆ {1, ..., dW} such that

WI has a non-singular covariance matrix and W = BWI for some matrix B. By construction

of WI we have that dR(WI) ≤ dR(W ). Hence, without loss of generality, we assume that ΣW is

non-singular, otherwise, we can replace W by WI . We also note that since Σ
1/2
W W has independent

entries, we have that dR(W ) = dR(Σ
1/2
W W ) = dW [Ren59]. This shows that

d(X1, · · · , Xn) ≤ dR(X1, · · · , Xn). (D.37)

Combining (D.36) and (D.37) concludes the proof.

D.3 Proof of Theorem 16

Theorem 16. Let X = [X1, · · · , Xn] be a jointly Gaussian random vector. The GKCID between

X1, · · · , Xn with respect to the class of linear functions is given by

dGK(X1, · · · , Xn) = r(Σ̃)− rank(Σ̃), (5.11)

where r(Σ̃) is the number of rows of Σ̃, with

Σ̃ =



ΣX′
1X

′
2

0 · · · 0

0 ΣX′
2X

′
3
· · · 0

· · ·
0 0 · · · ΣX′

n−1X
′
n

01 12 12 03 · · · 0n−1 0n

01 02 02 13 · · · 0n−1 0n

01 02 02 03 · · · 1n−1 0n


, (5.12)

X ′
i = FiXi,∀i ∈ [n], Fi is a basis of the row space of ΣXi

, 0i ∈ R1×dX′
i and 1i ∈ R1×dX′

i are all

zeros (and ones respectively) row vectors with the same dimension as X ′
i.
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Proof. Let NΣ̃ be the right null space of the matrix Σ̃. We will show that

rank(NΣ̃) = dGK(X1, · · · , Xn). As in the proof of Lemma 5, we observe that for every W

in the optimization set, we have that dR(W ) ∈ N. We also note that dGK(X1, · · · , Xn) ≤ dX1 .

Hence, the supremum in the definition of dGK is attainable; namely, there exists W, f1, · · · , fn
with W = fi(Xi),∀i ∈ [n] and dR(W ) = dGK(X1, · · · , Xn). As fi is linear, we have that W

is jointly Gaussian. By Lemma 6, we have that there is I ⊆ {1, ..., dW} such that WI has a

non-singular covariance matrix and W = GWI for some matrix G. By construction of WI we

have that dR(WI) ≤ dR(W ). Hence, without loss of generality, we assume that ΣW is non-

singular, otherwise, we can replace W by WI . We also note that since Σ
1/2
W W has independent

entries, we have that dR(W ) = dR(Σ
1/2
W W ) = dW [Ren59]. This shows that there is W with

dW = dGK(X1, · · · , Xn) and matrices K1, · · · ,Kn such that W = K1X1 = · · · = KnXn almost

surely and W is non-singular, hence, Ki is full row rank for each i. Hence, the matrix

NW =
[
K1 −K2 K2 −K3 K3 · · · Kn−1 −Kn

]
(D.38)

is in the null space of Σ̃ by Lemma 6. As K1 is full row rank, we get that NW is full row rank,

hence,

rank(NΣ̃) ≥ rank(NW ) = r(NW ) = dGK(X1, · · · , Xn). (D.39)

It remains to show that rank(NΣ̃) ≤ dGK(X1, · · · , Xn). Let us partition NΣ̃ (recall that N is the

basis for the left null space of Σ̃) as

NΣ̃ =
[
N

r(N)×dX′
1

1 N
r(N)×dX′

2
2 · · · N

r(N)×dX′
n

n

]
. (D.40)

By Lemma 6 we get that the following is a common function

W = N1F1X1 = −N2F2X2 = · · · = (−1)n+1NnFnXn. (D.41)

Hence, by definition of dGK we get that

dGK(X1, · · · , Xn) ≥ dR(W ) (D.42)
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where the common function of variable Xi achieving this is

W = (−1)i+1NiFiXi. (D.43)

We observe that if a⊤N1 = 0 for some vector a, then by (D.41) we have that a⊤NiX
′
i = 0,∀i ∈ [n].

As X ′
i has non-singular covariance matrix by construction, we get that a⊤Ni = 0,∀i ∈ [n], hence,

a⊤N = 0. As NΣ̃ is full row rank, we conclude that a = 0. This shows that aTN1 = 0 if and

only if a = 0, hence, N1 is full row rank.

We notice that since X ′
1 = F1X1 has non-singular covariance matrix and N1 is full row rank,

then W has a non-singular covariance matrix. Hence, we have that dW = dR(W ), hence from

(D.42) we get that

dGK(X1, · · · , Xn) ≥ dW = r(N1) = rank(NΣ̃) (D.44)

From (D.39) and (D.44) we get that

dGK(X1, · · · , Xn) = rank(NΣ̃) = r(Σ̃)− rank(Σ̃). (D.45)

D.4 Proofs of Lemma 11 and Lemma 12

In this section, we give the proofs of the following two properties of covariance matrices and the

common information, which are used in both Theorems 17 and 18.

Lemma 11. Let X ∈ RdX and Y ∈ RdY be jointly Gaussian variables with covariance matrix

Σ =

 ΣX Σ⊤
XY

ΣXY ΣY

, and d = min{dX , dY }. Then the singular values of Σ
−1/2
X ΣXYΣ

−1/2
Y ,

denoted as {σi}di=1, satisfy

0 ≤ σi ≤ 1,∀i ∈ [d]. (5.29)

Proof. Note that singular values are non-negative. In the following, we show σi, ρi ≤ 1. Let

UΛV ⊤ be the singular value decomposition of Σ−1/2
X ΣXYΣ

−1/2
Y , where Λ = diag(ρ1, · · · , ρd).
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We denote X ′ = U⊤Σ−1/2
X X , and Y ′ = V ⊤Σ−1/2

Y Y , rX = rank(ΣX) and rY = rank(ΣY ). Then

the covariance matrix Σ′ of X ′, Y ′ are given by

ΣX′ =

IrX 0

0 0

 ,ΣY ′ =

IrY 0

0 0

 ,ΣX′Y ′ = Λ.

For i ≤ min{rX , rY }, we have that σi = 0. By Cauchy-Schwarz inequality, if i ≤ min{rX , rY },
we have that σ2

i = cov(X ′
i, Y

′
i )

2 ≤ var(X ′
i)var(Y ′

i ) = 1.

Lemma 12. Assume X ∈ RdX , Y ∈ RdY are jointly Gaussian variables with covariance matrix

Σ =

 ΣX Σ⊤
XY

ΣXY ΣY

, and {σi} are the singular values of Σ−1/2
X ΣXYΣ

−1/2
Y . Then the common

information dimension between X and Y , with respect to linear functions, satisfies

d(X, Y ) =

min{dX ,dY }∑
i=1

1{σi = 1}. (5.30)

Proof. Similar to the proof of Lemma 11, let UΛV ⊤ be the singular value decomposition of

Σ
−1/2
X ΣXYΣ

−1/2
Y , where Λ = diag(ρ1, · · · , ρd). We let X ′ = U⊤Σ−1/2

X X , and Y ′ = V ⊤Σ−1/2
Y Y ,

rX = rank(ΣX) and rY = rank(ΣY ). Then the covariance matrix Σ′ of X ′, Y ′ are given by

ΣX′ =

IrX 0

0 0

 ,ΣY ′ =

IrY 0

0 0

 ,ΣX′Y ′ = Λ.

We notice that the rank of the covariance matrix rank(Σ′) = rX + rY −
∑min{dX ,dY }

i 1{σi = 1}. By

Theorem 14, we have that d(X ′, Y ′) = rank(ΣX′)+ rank(ΣY ′)− rank(Σ′) =
∑min{dX ,dY }

i 1{σi =

1}. Since one-to-one transformations preserve the ranks of covariance matrices, d(X, Y ) =

d(X ′, Y ′) =
∑min{dX ,dY }

i 1{σi = 1}.

D.5 Proof of Theorem 17

Theorem 17. Let X ∈ RdX and Y ∈ RdY be a pair of jointly singular Gaussian variables, and

{(Xϵ, Yϵ)}ϵ>0 be a sequence as defined in (5.27). Then the common information C(Xϵ, Yϵ) satisfies

lim
ϵ↓0

C(Xϵ, Yϵ)
1
2
log(1

ϵ
)

= d(X, Y ). (5.31)
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Proof. Let d = min{dX , dY }. We use {σi}di=1 and {ρi(ϵ)}di=1 to denote the singular values of

Σ
−1/2
X ΣXYΣ

−1/2
Y and Σ

−1/2
Xϵ

ΣXϵYϵΣ
−1/2
Yϵ

, respectively, in a decreasing order. As definition (5.27)

requires that |ρi(ϵ)− σi| = ϵ, and from Lemma 11 we have that 0 ≤ ρi(ϵ) ≤ 1, then ρi(ϵ) = 1− ϵ

whenever σi = 1. Let k =
∑d

i 1{σi = 1} and l = argmax{σi|∀i : σi ̸= 1}. Since we assume {σi}
are in decreasing order, l = k + 1. Recall that

C(Xϵ, Yϵ) =
1

2

d∑
i=1

log
1 + ρi(ϵ)

1− ρi(ϵ)
(D.46)

Since 1+ρi(ϵ)
1−ρi(ϵ)

≥ 0 and is an increasing function of ρi(ϵ), then for ϵ ≤ (1− σl)/2 we have that

k

2
log

2− ϵ

ϵ
≤ C(Xϵ, Yϵ) ≤

k

2
log

2− ϵ

ϵ
+

d− k

2
log

1 + σl + ϵ

1− σl − ϵ
(D.47)

It follows that

lim
ϵ↓0

C(Xϵ, Yϵ)
1
2
log(1/ϵ)

= lim
ϵ↓0

k
2
log 2−ϵ

ϵ
1
2
log(1/ϵ)

= lim
ϵ↓0

k log 1
ϵ

log(1/ϵ)
= k (D.48)

As Lemma 12 proves that k = d(X, Y ), this concludes the proof of Theorem 17.

D.6 Proof of Theorem 18

Theorem 18. Let X ∈ RdX and Y ∈ RdY be a pair of jointly Gaussian random variables, then

lim
ϵ↓0

Cϵ(X, Y )
1
2
log(1

ϵ
)

= d(X, Y ). (5.32)

Proof. We recall that Cϵ(X, Y ) is defined as the optimal value of the optimization problem

min
Σ̂

C(X̂, Ŷ )

s.t. ∥Σ− Σ̂∥F ≤ ϵ.

(D.49)

Due to the difficulty in finding a closed-form solution of the optimization problem, we instead

derive an upper and a lower bound on Cϵ(X, Y ) that have the same asymptotic behaviors.

Upper bound. We derive the upper bound by constructing a feasible solution. We first choose

the marginal covariance matrices to be ΣX̂ = ΣX ,ΣŶ = ΣY . In the following, we provide our

choice for the cross-covariance matrix ΣX̂,Ŷ .
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Let UΛV ⊤, ÛΛ̂V̂ ⊤ denote the singular value decompositions of Σ
−1/2
X ΣXYΣ

−1/2
Y and

Σ
−1/2
X ΣX̂ŶΣ

−1/2
Y respectively, where Λ, Λ̂ are diagonal matrices containing the singular val-

ues, and U , Û ,V , V̂ are orthonormal matrices. We choose Û = U and V̂ = V . Then

∥U(Λ − Λ̂)V ⊤∥F = ∥Λ − Λ̂∥F , because the Frobenius norm is unitary invariant. If we let

s = ∥Σ1/2
X ∥F∥Σ

1/2
Y ∥F , by Cauchy–Schwarz inequality of the Frobenius norm, we have that

∥ΣX̂Ŷ −ΣXY ∥F = ∥Σ1/2
X (Λ− Λ̂)Σ

1/2
Y ∥F

≤ s∥(Λ− Λ̂)∥F .
(D.50)

Hence, choosing Λ̂ satisfying ∥Λ− Λ̂∥F ≤ 1
s
ϵ provides a feasible solution. Among all such values

of Λ̂, we choose the one minimizing the common information C(X̂, Ŷ ). In particular, we choose Λ̂

to be the solution of

S ϵ
s
(X, Y ) := min

∥Λ−Λ̂∥F≤ 1
s
ϵ
C(X̂, Ŷ ) (D.51)

As a result, we get that

Cϵ(X, Y ) ≤ S ϵ
s
(X, Y ). (D.52)

In the following, we provide a lower bound on Cϵ(X, Y ) using Sϵ(X, Y ). We analyze the asymptotic

behavior of Sϵ(X, Y ) at the end of the proof.

Lower bound. Next, we derive a lower bound on the optimal objective. Note that the marginal

distributions of X and Y might also be singular (i.e., rank(ΣX) < dX and rank(ΣY ) < dY ). In

this case, there exist one-to-one transformations X ′ = PXX and Y ′ = PY Y (with rows from the

Identity Matrix) that select a subset of elements in X and Y such that ΣX′ and ΣY ′ are full-rank.

If we also apply the same transformation X̂ ′ = PXX̂ and Ŷ ′ = PY Ŷ , then C(X̂ ′, Ŷ ′) = C(X̂, Ŷ )

because common information is preserved under one-to-one linear transformations [SC15]. Then

the objective of (D.49) remains the same and the constraints are relaxed, therefore solving the

problem (D.49) on X ′, Y ′ would give a lower bound on Cϵ(X, Y ). In the remaining part of the

proof, we assume without loss of generality that ΣX and ΣY are full-rank.

The proof relies on relaxing the constraints in (D.49) to result in a smaller optimal value. The
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first relaxation we make is the following

min
Σ̂

C(X̂, Ŷ ) (D.53)

s.t. ∥ΣX −ΣX̂∥F ≤ ϵ

∥ΣY −ΣŶ ∥F ≤ ϵ

∥ΣXY −ΣX̂Ŷ ∥F ≤ ϵ. (D.54)

In the following, we further relax the last constraint (D.54) to a bound on the difference between

the singular values using the following lemma, which will be proved in the end of this section.

Lemma 22. If covariance matrices satisfy ∥ΣX − ΣX̂∥F ≤ ϵ,∥ΣY − ΣŶ ∥F ≤ ϵ, and ∥ΣXY −
ΣX̂Ŷ ∥F ≤ ϵ, then

∥Λ− Λ̂∥F ≤ cϵ, for some constant c.

As a result, the following optimization problem has a larger feasible set, hence, lower optimal

value

Scϵ(X, Y ) := min
∥Λ−Λ̂∥F≤cϵ

C(X̂, Ŷ ) (D.55)

Combining with (D.52), we have shown that

Scϵ(X, Y ) ≤ Cϵ(X, Y ) ≤ S ϵ
s
(X, Y ). (D.56)

Asymptotic behavior of Sϵ. In the following, we analyze the asymptotic behavior of Sϵ. Let

d = min{dX , dY }, and Λ = diag{σ1, σ2, · · · , σd}, Λ̂ = diag{ρ1, ρ2, · · · , ρd} with σ1 ≥ σ2 ≥
· · · ≥ σd and ρ1 ≥ ρ2 ≥ · · · ≥ ρd. By Lemma 11, we have that 0 ≤ σi, ρi ≤ 1. Then Sϵ(X, Y ) can

be rewritten as

min
ρ

1

2

d∑
i=1

log
1 + ρi
1− ρi

s.t.
d∑

i=1

(σi − ρi)
2 ≤ ϵ2; 0 ≤ ρi ≤ 1,∀i ∈ [d].

(D.57)
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Next, let k =
∑d

i 1{σi = 1}, we will show that limϵ↓0
Sϵ(X,Y )
1
2
log(1/ϵ)

= k using upper and lower

bounds. Define ρ̃ ∈ Rd as

ρ̃i =


σi, if σi ̸= 1

1− ϵ√
k
, if σi = 1.

(D.58)

Since ρ̃ is a feasible solution of problem (D.57), we have that Sϵ(X, Y ) ≤ 1
2

∑d
i=1 log

1+ρ̃i
1−ρ̃i

. Then

we have

lim
ϵ↓0

Sϵ(X, Y ) ≤ lim
ϵ↓0

∑d
i=1 log

1
1−ρ̃i

log(1/ϵ)
+

∑d
i=1 log (1 + ρ̃i)

log(1/ϵ)

= lim
ϵ↓0

∑d
i=1 log

1
1−ρ̃i

log(1/ϵ)

= lim
ϵ↓0

∑
i:σi=1 log

√
k
ϵ
+
∑

i:σi ̸=1 log
1

1−σi

log(1/ϵ)

= lim
ϵ↓0

k log
√
k
ϵ

log(1/ϵ)
= k

(D.59)

To derive the lower bound, we consider the following variant optimization problem

min
ρ

1

2

∑
i:σi=1

log
1

1− ρi

s.t.
∑
i:σi=1

(σi − ρi)
2 ≤ ϵ2; 0 ≤ ρi ≤ 1,∀i ∈ [d]

(D.60)

where the feasible set is relaxed, hence, gives a smaller optimal value, and the objective function is

the sum of a subset of the terms in (D.57). Since log 1+ρi
1−ρi
≥ 0 and log(1 + ρi) ≥ 0, ∀ρi, the optimal

value of problem (D.60) is a lower bound on Sϵ(X, Y ).

In the following, we solve problem (D.60) and show that the optimal solution ρ∗i = ρ̃i. First, we

observe that by Jensen’s inequality, for all ρi in the feasible set of problem (D.60),

−
∑
i:σi=1

log (1− ρi)
2 ≥ −k log(

∑
i:σi=1(1− ρi)

2

k
)
(a)

≥ −k log(1− ρ̃i)
2, (D.61)

where the inequality (a) follows from the fact that ρi is in the feasible set of Problem (D.60). This

shows that ρ∗i = ρ̃i is an optimal solution for Problem (D.60). This shows that 1
2

∑
i:σi=1 log

1
1−ρ̃i
≤
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Sϵ(X, Y ). Using the similar calculations as in (D.59) , we can also obtain that

lim
ϵ↓0

Sϵ(X, Y )
1
2
log(1/ϵ)

≥ k (D.62)

Combining (D.59), (D.62) and (D.56), we have shown that

lim
ϵ↓0

Cϵ(X, Y )
1
2
log(1/ϵ)

= k. (D.63)

Applying Lemma 12, we can now conclude that

lim
ϵ↓0

Cϵ(X, Y )
1
2
log(1/ϵ)

= d(X, Y ) (D.64)

Lemma 22. If covariance matrices satisfy ∥ΣX − ΣX̂∥F ≤ ϵ,∥ΣY − ΣŶ ∥F ≤ ϵ, and ∥ΣXY −
ΣX̂Ŷ ∥F ≤ ϵ, then

∥Λ− Λ̂∥F ≤ cϵ, for some constant c.

Proof. In this proof, we use c to denote a general-purpose constant that depends on ΣX ,ΣY . With

abuse of notation, c may refer to different values in different equations. Recall that Λ and Λ̂ are

the diagonal matrices containing the singular values of Σ−1/2
X ΣXYΣ

−1/2
Y and Σ

−1/2

X̂
ΣX̂ŶΣ

−1/2

Ŷ

respectively. We notice that

∥Λ− Λ̂∥F ≤ ∥Σ−1/2
X ΣXYΣ

−1/2
Y −Σ

−1/2

X̂
ΣX̂ŶΣ

−1/2

Ŷ
∥F (D.65)

≤ ∥(Σ−1/2
X −Σ

−1/2

X̂
)ΣXYΣ

−1/2
Y ∥F + ∥Σ−1/2

X̂
(ΣXYΣ

−1/2
Y −ΣX̂ŶΣ

−1/2

Ŷ
)∥F (D.66)

≤ ∥Σ−1/2
X −Σ

−1/2

X̂
∥F∥ΣXY ∥F∥Σ−1/2

Y ∥F + ∥Σ−1/2

X̂
∥F∥ΣXYΣ

−1/2
Y −ΣX̂ŶΣ

−1/2

Ŷ
∥F

(D.67)

≤ ∥Σ−1/2
X −Σ

−1/2

X̂
∥F∥ΣXY ∥F∥Σ−1/2

Y ∥F + ∥Σ−1/2

X̂
∥F∥(ΣXY −ΣX̂Ŷ )Σ

−1/2
Y ∥F

+ ∥Σ−1/2

X̂
∥F∥ΣX̂Ŷ (Σ

−1/2
Y −Σ

−1/2

Ŷ
)∥F (D.68)

≤ ∥Σ−1/2
X −Σ

−1/2

X̂
∥F∥ΣXY ∥F∥Σ−1/2

Y ∥F + ∥Σ−1/2

X̂
∥F∥ΣXY −ΣX̂Ŷ ∥F∥Σ

−1/2
Y ∥F

+ ∥Σ−1/2

X̂
∥F∥ΣX̂Ŷ ∥F∥Σ

−1/2
Y −Σ

−1/2

Ŷ
∥F (D.69)
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≤ c∥Σ−1/2
X −Σ

−1/2

X̂
∥F + cϵ∥Σ−1/2

X̂
∥F + ∥Σ−1/2

X̂
∥F∥ΣX̂Ŷ ∥F∥Σ

−1/2
Y −Σ

−1/2

Ŷ
∥F ,
(D.70)

where c is a constant that may depend on ΣX ,ΣY ,ΣXY , (D.65) uses Von Neumann’s trace in-

equality [Von37], (D.66) is obtained by subtracting and adding Σ
−1/2

X̂
ΣXYΣ

−1/2
Y then applying the

triangle inequality, similarly, (D.68) is obtained by subtracting and adding ΣX̂ŶΣ
−1/2
Y , (D.67) and

(D.69) use the Cauchy–Schwarz inequality, and (D.70) uses the bound ∥ΣXY −ΣX̂Ŷ ∥F ≤ ϵ.

In the following, we will bound each term in (D.70). We first show that ∥Σ−1/2

X̂
∥F is bounded.

We have that

∥Σ−1/2

X̂
∥F ≤

√
dXσdX (ΣX̂)

−1/2, (D.71)

where σdX (ΣX̂) denote the smallest singular value of the matrix ΣX̂ . From the bound ∥ΣXY −
ΣX̂Ŷ ∥F ≤ ϵ, we have that

σdX (ΣX̂) ≥ σdX (ΣX)− ϵ ≥ σdX (ΣX)/2 (D.72)

for ϵ ≤ σdX (ΣX)/2. Hence, we have that

∥Σ−1/2

X̂
∥F ≤ c, (D.73)

where c is a constant that may depend on ΣX ,ΣY ,ΣXY . Similarly,

∥Σ−1

X̂
∥F ≤ c. (D.74)

By the triangle inequality, we also have that

∥ΣX̂Ŷ ∥F ≤ ∥ΣXY ∥F + ∥ΣXY −ΣX̂Ŷ ∥F ≤ c. (D.75)

Substituting in (D.70) we get that

∥Λ− Λ̂∥F ≤ c(ϵ+ ∥Σ−1/2
X −Σ

−1/2

X̂
∥F + ∥Σ−1/2

Y −Σ
−1/2

Ŷ
∥F ). (D.76)

It remains to bound ∥Σ−1/2

X̂
−Σ

−1/2
X ∥F , and similarly ∥Σ−1/2

Ŷ
−Σ

−1/2
Y ∥F . We have that

Σ
−1/2
X −Σ

−1/2

X̂
= Σ

−1/2
X (Σ

1/2
X −Σ

1/2

X̂
)Σ

−1/2

X̂
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= Σ
−1/2
X (ΣX −ΣX̂)(Σ

1/2
X +Σ

1/2

X̂
)−1Σ

−1/2

X̂
. (D.77)

Hence, we have that

∥Σ−1/2
X −Σ

−1/2

X̂
∥F ≤ ∥Σ−1/2

X ∥F∥ΣX −ΣX̂∥F∥(Σ
1/2
X +Σ

1/2

X̂
)−1∥F∥Σ−1/2

X̂
∥F

≤ cϵ/
√

σdX (ΣX). (D.78)

Similarly, we have that ∥Σ−1/2
Y −Σ

−1/2

Ŷ
∥F ≤ cϵ. Substituting in (D.76) we get that

∥Λ− Λ̂∥F ≤ cϵ. (D.79)

D.7 Proof of Theorem 19

Theorem 19. Let X ∈ RdX and Y ∈ RdY be a pair of jointly singular Gaussian random vectors.

Then the common information between the quantized ⟨X⟩m and ⟨Y ⟩m satisfies

lim
m→∞

C(⟨X⟩m, ⟨Y ⟩m)
logm

= d(X, Y ), (5.34)

where d(X, Y ) is the common information dimension of X and Y with respect to the class of linear

functions.

Proof. Since it is hard in general to directly solve Wyner’s common information even for dis-

crete variables, we prove the result by matching upper and lower bounds. First, we show that

limm→∞
C(⟨X⟩m,⟨Y ⟩m)

logm
≥ d(X, Y ) using the property that mutual information is a lower bound of

Wyner’s common information [Wyn75]. Following the definition of mutual information and the
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Rényi dimension in (5.6), we can derive that

lim
m→∞

C(⟨X⟩m, ⟨Y ⟩m)
logm

≥ lim
m→∞

I(⟨X⟩m; ⟨Y ⟩m)
logm

= lim
m→∞

H(⟨X⟩m)
logm

+ lim
m→∞

H(⟨Y ⟩m)
logm

− lim
m→∞

H(⟨X⟩m, ⟨Y ⟩m)
logm

= dR(X) + dR(Y )− dR(X, Y )

[Ren59]
= rank(ΣX) + rank(ΣY )− rank(Σ)

= d(X, Y ),

(D.80)

where the last equality is proved in our Theorem 14.

Next, we show that limm→∞
C(⟨X⟩m,⟨Y ⟩m)

logm
≤ d(X, Y ). Recall (from the proofs of Lemma 11 and

12) that there exist invertible linear transformations TX and TY such that X = TXX
′ and Y = TY Y

′,

where X ′ ∈ RdX and Y ′ ∈ RdY are another pair of Gaussian random vectors with independent

elements (i.e. their covariance matrices ΣX′ , ΣY ′ , and ΣX′Y ′ are all diagonal). Note that C(X, Y ) =

C(X ′, Y ′) and d(X, Y ) = d(X ′, Y ′) since TX and TY are invertible transformations. However,

C(⟨X⟩m, ⟨Y ⟩m) ̸= C(⟨X ′⟩m, ⟨Y ′⟩m), because ⟨TX⟨X ′⟩m′⟩m ̸= ⟨TXX
′⟩m = ⟨X⟩m can happen

(similarly for Y ′ and Y ).

In the remaining of the proof, we will first show in Proposition 5 that limm→∞
C(⟨X′⟩m,⟨Y ′⟩m)

logm
≤

d(X ′, Y ′) because of the special structure of the covariance matrices ΣX′ and ΣY ′ . Then we will

show that limm→∞
C(⟨X⟩m,⟨Y ⟩m)

logm
≤ limm→∞

C(⟨X′⟩m,⟨Y ′⟩m)
logm

.

Proposition 5. Let {(Xi, Yi)}n be independent pairs of Gaussian random variables with n <∞,

then

lim
m→∞

C(⟨X⟩m, ⟨Y ⟩m)
logm

≤ d(X, Y ) (D.81)
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Proof.

lim
m→∞

C(⟨X⟩m, ⟨Y ⟩m)
logm

(i)
= lim

m→∞

∑n
i=1C(⟨Xi⟩m, ⟨Yi⟩m)

logm

= lim
m→∞

∑
i:Xi=Yi

C(⟨Xi⟩m, ⟨Yi⟩m) +
∑

i:Xi ̸=Yi
C(⟨Xi⟩m, ⟨Yi⟩m)

logm
(ii)

≤ lim
m→∞

∑
i:Xi=Yi

H(⟨Xi⟩m) +
∑

i:Xi ̸=Yi
c

logm
(iii)
= d(X, Y ),

(D.82)

where the c is an absolute constant. The equality (i) is because {(Xi, Yi)}n are independent pairs;

the inequality (ii) is due to the property that C(⟨Xi⟩m, ⟨Yi⟩m) ≤ min{H(⟨Xi⟩m), H(⟨Yi⟩m)} and

(5.5); and the last equality (iii) follows the definition of Rényi dimension (5.6) and Theorem 14

Let m′ = αm. To connect C(⟨X⟩m, ⟨Y ⟩m) and C(⟨X ′⟩αm, ⟨Y ′⟩αm), we focus on two subsets

Am = {x ∈ RdX : ⟨TX⟨x⟩αm⟩m = ⟨TXx⟩m} and Bm = {y ∈ RdY : ⟨TY ⟨y⟩αm⟩m = ⟨TY y⟩m}.
We also define an indicator variable Zm as follows:

Zm =


1, if X ′ ∈ Am and Y ′ ∈ Bm,

0, otherwise.
(D.83)

We consider the conditional common information [LW16] C(⟨X⟩m, ⟨Y ⟩m|Zm) that is defined as

C(⟨X⟩m, ⟨Y ⟩m|Zm) := min
⟨X⟩m−(WZm,Zm)−⟨Y ⟩m

I(⟨X⟩m ⟨Y ⟩m;WZm|Zm). (D.84)

We can use it to upper bound the common information as follows. Recall from (5.2), the common

information is defined as

C(⟨X⟩m, ⟨Y ⟩m) := min
⟨X⟩m−Wm−⟨Y ⟩m

I(⟨X⟩m ⟨Y ⟩m;Wm)

Let W ∗
Zm be the optimal solution of C(⟨X⟩m, ⟨Y ⟩m|Zm). (W ∗

Zm, Zm) is a feasible solution of

C(⟨X⟩m, ⟨Y ⟩m) that satisfies ⟨X⟩m − (W ∗
Zm, Zm)− ⟨Y ⟩m and

I(⟨X⟩m ⟨Y ⟩m;W ∗
Zm, Zm) = I(⟨X⟩m ⟨Y ⟩m;Zm) + I(⟨X⟩m ⟨Y ⟩m;W ∗

Zm | Zm)

≤ H(Zm) + I(⟨X⟩m ⟨Y ⟩m;W ∗
Zm | Zm).

(D.85)
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Therefore, we have

C(⟨X⟩m, ⟨Y ⟩m) ≤C(⟨X⟩m, ⟨Y ⟩m|Zm) +H(Zm)

=C(⟨X⟩m, ⟨Y ⟩m|Zm = 1)P(Zm = 1) + C(⟨X⟩m, ⟨Y ⟩m|Zm = 0)P(Zm = 0)

+H(Zm),

(D.86)

where the equality expands the definition of conditional common information.

Since we are interested in the asymptotic behavior of C(⟨X⟩m, ⟨Y ⟩m), we divide both sides of

(D.86) by logm and take the limit of m→∞. In the following, we examine the limit of each term

on the right-hand side. First, we have that

lim
m→∞

C(⟨X⟩m, ⟨Y ⟩m|Zm = 1)P(Zm = 1)

logm

(i)

≤ lim
m→∞

C(⟨X⟩m, ⟨Y ⟩m|Zm = 1)

logm

(ii)
= lim

m→∞
C(⟨TX⟨X ′⟩αm⟩m, ⟨TY ⟨Y ′⟩αm⟩m|Zm = 1)

logm
(iii)

≤ lim
m→∞

C(⟨TX⟨X ′⟩αm⟩m, ⟨TY ⟨Y ′⟩αm⟩m)
logm

(iv)

≤ lim
m→∞

C(⟨X ′⟩αm, ⟨Y ′⟩αm)
logm

Proposition 5
≤ d(X, Y ),

(D.87)

where the inequality (i) follows that P(Zm = 1) ≤ 1; the equality (ii) is due to the fact that

Zm = 1 implies that X ′ ∈ Am and Y ′ ∈ Bm; the inequality (iii) is because if ⟨TX⟨X ′⟩αm⟩m −
W − ⟨TY ⟨Y ′⟩αm⟩m forms a Markov chain for some random variable W , then conditioned on the

event that Zm = 1, ⟨TX⟨X ′⟩αm⟩m −W − ⟨TY ⟨Y ′⟩αm⟩m also forms a Markov chain (one proof can

be found in Lemma 12 in [YT20]); the inequality (iv) follows the data processing inequality of

common information and the last inequality applies Proposition 5. Using one of the basic properties

of Wyner’s common information and the definition of the Rényi dimension (5.6), we also have that

lim
m→∞

C(⟨X⟩m, ⟨Y ⟩m|Zm = 0)

logm
≤ lim

m→∞
min{H(⟨X⟩m), H(⟨Y ⟩m)}

logm

= min{dR(X), dR(Y )}.
(D.88)
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And we upper bound the limit of the probability P(Zm = 0) in Lemma 23 below, which we will

prove after this Theorem.

Lemma 23. For random variables X, Y,X ′, Y ′ and set Am,Bm defined as above, we denote

t = max{max{|(TX)i,j|,∀i, j ∈ [dX ]},max{|(TY )i,j|,∀i, j ∈ [dY ]}}, and d = max{dX , dY }. We

have that

lim
m→∞

P(Zm = 0) ≤ 4td2

α
, (D.89)

In addition, since Zm is a binary variable, H(Zm) ≤ 1 and limm→∞
H(Zm)
logm

= 0. Combining

with (D.86),(D.87),(D.88) and Lemma 23, we have that for all α > 0

lim
m→∞

C(⟨X⟩m, ⟨Y ⟩m)
logm

≤ d(X, Y ) + min{dR(X), dR(Y )} · 4td
2

α
(D.90)

As this holds for all α > 0 taking the limit of α to infinity, we get limα→∞
4td2

α
= 0, and thus obtain

that

lim
m→∞

C(⟨X⟩m, ⟨Y ⟩m)
logm

≤ d(X, Y ). (D.91)

Therefore, combining with (D.80), we can conclude that

lim
m→∞

C(⟨X⟩m, ⟨Y ⟩m)
logm

= d(X, Y ). (D.92)

Lemma 23. For random variables X, Y,X ′, Y ′ and set Am,Bm defined as above, we denote

t = max{max{|(TX)i,j|,∀i, j ∈ [dX ]},max{|(TY )i,j|,∀i, j ∈ [dY ]}}, and d = max{dX , dY }. We

have that

lim
m→∞

P(Zm = 0) ≤ 4td2

α
, (D.89)

Proof. Since the quantization is element-wise and ⟨X ′
i⟩αm =

⌊αmX′
i⌋

αm
, we know that |⟨X ′

i⟩αm−X ′
i| ≤

1
αm

. Now for all i ∈ [dX ], we can bound the imprecision of transformation caused by quantization
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as follows:
|(TX < X ′ >αm)i −Xi| = |(TX)i(< X ′ >αm −X ′)|

≤
dX∑
j=1

|(TX)ij|| < X ′
j >αm −X ′

j|

≤ tdX
αm
≤ td

αm
.

(D.93)

Similarly, for all i ∈ [dY ], we can bound |(TY < Y ′ >αm)i − Yi| ≤ td
αm

.

Let { k
m
}k∈Z denote the sequence of quantization boundaries of ⟨Xi⟩m and ⟨Yi⟩m. We define the

set Cm = {x ∈ R : ∃k ∈ Z, s.t. x ∈ [ k
m
+ td

αm
, k+1

m
− td

αm
]}. We observe that if Xi ∈ Cm for some

k ∈ Z, then

(TX < X ′ >αm)i −
k

m
≥ Xi −

k

m
− |(TX < X ′ >αm)i −Xi| ≥ 0, (D.94)

where the second inequality is due to the assumption that Xi ∈ [ k
m
+ td

αm
, k+1

m
− td

αm
] and (D.93).

Similarly k+1
m
− (TX < X ′ >αm)i ≥ 0, which implies that ⟨(TX⟨X ′⟩αm)i⟩m = ⟨(TXX

′)i⟩m.

Therefore, we have that {∀i ∈ [dX ], Xi ∈ Cm and ∀i ∈ [dY ], Yi ∈ Cm} ⊂ {X ′ ∈ Am and Y ′ ∈
Bm} = {Zm = 1}, and

P(Zm = 0) ≤ P({∪i∈[dX ]Xi ∈ Ccm} ∪ {∪i∈[dY ]Yi ∈ Ccm})

≤
dX∑
i=1

P(Xi ∈ Ccm) +
dY∑
i=1

P(Yi ∈ Ccm)
(D.95)

Taking X1 as an example, we next show that limm→∞ P(X1 ∈ Ccm) ≤ 2td
α

. For k ∈ Z, we use

f̄k(X1) and fk(X1) denote the maximum and minimum values of the probability density f(X1) in

the range [ k
m
, k+1

m
]. We can write each term in the summation as

P(X1 ∈ Cc) =
∑
k∈Z

P(X1 ∈ Cc|X1 ∈ [
k

m
,
k + 1

m
])P(X1 ∈ [

k

m
,
k + 1

m
])

=
∑
k∈Z

P(Xi ∈ [ k
m
, k
m
+ td

αm
] ∪ [k+1

m
− td

αm
, k+1

m
])

P(Xi ∈ [ k
m
, k+1

m
])

P(Xi ∈ [
k

m
,
k + 1

m
])

≤
∑
k∈Z

2tdm · f̄k(X1)

αm · fk(X1)
P(Xi ∈ [

k

m
,
k + 1

m
]).

(D.96)
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Since f(X1) is a continuous function, limm→∞
f̄k(X1)
fk(X1)

= 1 for all k ∈ Z. Then we can bound the

limit as limm→∞ P(Xi ∈ Cc) ≤ 2td
α

∑
k∈Z P(Xi ∈ [ k

m
, k+1

m
]) = 2td

α
. Similar computation extends to

all elements of X and Y . Plugging this result into (D.95), we can conclude that

lim
m→∞

P(Zm = 0) ≤ (dX + dY )
2td

α
=

4td2

α
. (D.97)
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APPENDIX E

Appendix for Chapter 6: Distributed Feature Compression for

Classification

E.1 On-the-Line Optimality

In this appendix, we prove the optimality of Algorithm 10 under the considered restriction (horizontal

and vertical lines defining dk,i meet along the line x1 = x2) and assuming that the data points are

linearly separable and scaled such that the line x1 = x2 separates the data.

We prove by induction that ∀k ∈ [1 : 2N ]: at the k-th iteration of the algorithm, it finds

the optimal quantization boundaries considering only the points Tsk = {(x, y(x)) ∈ T |x1, x2 ≤
sk}, ∀b ∈ [1 : 2R − 1], where sk is the k-th smallest element in the set of possible boundaries s.

• At the first iteration, there is only one possible position for all the boundaries, s1. Hence,

at the first iteration the algorithm finds the optimal quantization boundaries considering the

points Tsk , ∀b ∈ [1 : 2R − 1].

• Assuming that at iteration k the algorithm finds the optimal quantization boundaries consider-

ing the points Tsk , we show that it finds the optimal quantization boundaries considering the

points Tsk+1
at iteration k + 1, ∀b ∈ [1 : 2R − 1].

At iteration k + 1, the only possible positions for the first boundary before sk+1 are the

k positions s1, s2, ..., sk. Therefore, to find the optimal boundaries at iteration k + 1, we

can condition on the position of the first boundary before sk+1, and then optimize over this

position. Conditioned on the position of the first boundary before sk+1 being at sℓ, the updated
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loss function can be expressed as

LB∪sℓ(E , Tsk+1
)

= LB(E , Tsℓ) + min
c∈{1,2}

|{j|sℓ ≺ x(j) ⪯ sk+1, y
(j)=c}|,

where LB(E , Tsℓ) is the loss L(E ,D, Tsℓ) when using the boundaries in the set B, and B is

the set of boundaries in the region of the space defined by x ∈ R2 : x ⪯ sℓ, |B ∪ sℓ| = b.

This is, as we discussed in Chapter 6, due to the fact that the misclassified points contributing

to the quantizer loss can only lie in the 2-dimensional intervals crossed by the line x1 = x2.

Which is because any other interval lies on one side of the line that separates the points, hence,

contains points from only one class. Minimizing over all the possible values for sℓ, B we get

E(sk+1, b) = min
B,ℓ:|B|≤b−1,ℓ<k+1

{LB(E , Tsℓ)

+ min
c∈{1,2}

|{j|sℓ≺x(j)⪯sk+1, y
(j) = c}|}.

We can observe that only the first term in the previous minimization depends on B, hence, we

can optimize over B first, which gives

E(sk+1, b) = min
ℓ<k+1

{
E(sℓ, b− 1)

+ min
c∈{1,2}

|{j|sℓ≺x(j)⪯sk+1, y
(j)= c}|

}
,

which is the update rule used in the algorithm. Hence, the boundaries corresponding to

E(sℓ∗ , b − 1) along with the boundary at sℓ∗ are the optimal boundaries at iteration k + 1,

where

ℓ∗ = argmin
ℓ<k+1

{
E(sℓ, b− 1)

+ min
c∈{1,2}

|{j|sℓ ≺ x(j) ⪯ sk+1, y
(j) = c}|

}
.
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E.2 Discussion on Breaking Ties in GBI: The Purity Criterion

In this section we illustrate what we call the purity criterion which is used to break ties in GBI. If

it happens that two or more possible boundaries lead to the same quantizer loss (something that

happened surprisingly often in our experiments), it makes a significant performance difference to

add the boundary that looks ahead to allow future boundaries to further decrease the loss. The

intuition behind this is the following: for a tie, we have a fixed number of misclassified points;

what matters for the algorithm performance is that the misclassified points are in bins that can

be more easily partitioned to bins that contains no misclassification in a next iteration. This was

more likely to happen in our experiments (and small examples) if a bin that has misclassified

points contained a number of majority class points that was just slightly higher than that of

the misclassified classes. Formally, let H be an Rn-bin and let T be the set of training points

{(x(i), y(x(i))}. Define, B(H, T ) := 0, if if all points in H are of the same class. Otherwise,

B(H, T ) := max
c∈C
|{(x, y(x))∈T ∩H s.t. y(x)=c}|.

B(H, T ) counts the number of points of the majority class in H when there is at least two

or more classes represented in H , and is zero otherwise. For a particular set of boundaries that

partition Rn into the Rn-bins {Hk}Mk=1, we want to minimize the purity criterion defined as

U({Hk}Mk=1, T ) :=
∑M

k=1B(Hk, T )2
N

,

where the term B(Hk, T )2 penalizes bins with more majority points. U({Hk}Mk=1, T ) is minimized

when the correctly classified points represent a weak majority in the bins that have misclassification.

This allows for the bins that have misclassification to be easily partitioned to bins that have no

misclassification in a following iteration. For illustration, consider the example shown in Fig. E.1.

In this example all the potential boundaries 1 , 2 , 3 , 4 result in the same value for the quantizer

loss. However, it is clear that, unlike boundaries 3 , 4 , if we pick boundaries 1 , 2 , this allows

for the separation of the “o” points (red) from the “x” points (blue) in the next iteration. The

purity criterion chooses boundary 2 as shown by the values in Fig. E.1. This choice separates the

maximum number of “x” points from the bin that have misclassification. Note that, a power greater
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Figure E.1: Illustration of the purity criterion.

than 1, hence a function with slope that increases when we move away from zero, is needed in the

purity criterion to highly penalize the bins that have misclassification having high concentration of

majority class points, which prevents isolating the misclassified points in the following iterations. If

we use a power of 1, the purity criterion is reduced to the quantizer loss. In our case we use a power

of 2.

E.3 Parameters of Trained Models for Experimental Evaluation

In this appendix, we describe the structure of the encoders/decoders neural networks and parameters

used in the experimental results for each dataset.

E.3.1 sEMG Dataset:

The structures of the neural networks used by the encoders fk(·; θk) and decoder g(·;ϕ) are given in

Table E.1.

• General parameters. The distributed quantization system was trained using Adam optimizer

with learning rate 10−3 for 300 epochs. The parameters of the pretrained classifier C were frozen

(not updated) during the learning phase.

• NN-REG. For our approach in Section 6.7.1, we chose the regularization parameter β through
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Table E.1: Structure of the encoder neural networks fk(·; θk) and the decoder neural network g(·;ϕ)
used for the sEMG dataset.

Encoder neural network fk(·; θk), ∀k ∈ [1 : 4]

Index Layer Type Output size

1 FC-Relu 90

2 FC-Relu 170

3 FC-Batchnorm-Tanh # of bits per encoder

Decoder neural network g(·;ϕ)

Index Layer Type Output size

1 FC-Relu 170

2 FC-Relu 90

3 FC 8

5-fold cross validation out of possible parameter values {0, 0.1, · · · , 2}. The chosen regularization

parameter is β = 1.4.

• NN-GBI. For our approach in Section 6.7.2, the output of the last layer in the encoder was

chosen to be 1 when applying Phase 1 (refer to Section 6.7.2). When applying GBI, a batch size of

300 data points was used in each iteration of the GBI algorithm. After designing the quantizer with

GBI, the network is trained for an extra 20 epochs with the quantizer in Phase 3.

E.3.2 CIFAR10 Dataset:

The structures of the neural networks used by the encoders fk(·; θk) and decoder g(·;ϕ) are given in

Table E.2 and Table E.3, respectively.

• General parameters. The distributed quantization system was trained using Adam optimizer
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with learning rate 10−3 for 200 epochs. The parameters of the pretrained classifier C were frozen

(not updated) during the learning phase.

• NN-REG. The chosen regularization parameter is β = 0.25.

• NN-GBI. For our approach in Section 6.7.2, the output of the last layer in the encoder was

chosen to be 5 when applying Phase 1 (refer to Section 6.7.2). When applying GBI, a batch size of

300 data points was used in each iteration of the GBI algorithm. After designing the quantizer with

GBI, the network is trained for an extra 50 epochs with the quantizer in Phase 3.

Table E.2: Structure of encoder neural networks fk(·; θk) used for CIFAR-10 dataset with R bits.

Index
Layer

Type

Output

size

Input

channels

Output

channels
Kernel/Stride/Pad

1 Conv-Relu - 3 64 3/1/1

2 Conv-Relu - 64 64 3/1/1

3 Maxpool - - - 2/2/1

4 Conv-Relu - 64 128 3/1/1

5 Conv-Relu - 128 128 3/1/1

6 Maxpool - - - 2/2/1

7 FC-Tanh R - - -

E.4 Proof of Theorem 20: NP-Hardness and Hardness of Approximation

NP-Hardness of (P1’) and (P2’)

In this subsection, we prove that (P1’), (P2’) are NP-hard. We start with (P2’). Since (P2’) is a

special case of (P1’); it follows that (P1’) is NP-hard. We prove hardness of (P2’) by reduction

from the Chromatic Number problem. In particular, we show that any instance of the Chromatic
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Table E.3: Structure of decoder neural network g(·;ϕ) used for CIFAR-10 dataset. We use the

shorthand CT-R-B = ConvTranspose-Relu-Batchnorm.

Index
Layer

Type

Output

size

Input

channels

Output

channels
Kernel/Stride/Pad

1 FC-Relu 80 - - -

2 CT-R-B - 5 5 4/2/1

3 CT-R-B - 5 5 4/2/1

4 CT-R-B - 5 5 4/2/1

5 Conv - 5 3 5/1/2

Number problem can be reduced to an instance of problem (P2’) in polynomial time. The decision

version of the Chromatic Number problem is on Karp’s list of NP-complete problems [Kar72].

Let us consider an undirected graph G. We denote the set of vertices and edges of G by V,E

respectively, and assume that the vertices are labeled by numbers 1, 2, ..., |V |. Since the graph is

undirected, we assume without loss of generality that the vertices pair corresponding to each edge

is ordered such that if (q1, q2) ∈ E, then q1 > q2. We will see that this assumption, ensures that we

can construct a linearly separable dataset as required in problem (P2’).

We construct two matrices {Fi}1i=0, Fi ∈ R|E|×|V | that represent the set of edges E, by Algorithm

13. We can think of the matrices {Fi}1i=0 as a decomposed version of the incidence matrix, where

Algorithm 13 Incidence matrices
0: Initialize the entries of Fi ∈ R|E|×|V |, i ∈ {0, 1} with all zeros. k = 1.

∀(q1, q2) ∈ E , do the following two steps:

1: Put [F0]kq1 = 1, [F1]kq2 = 1.

2: k=k+1.

for each edge, one endpoint is represented in F0 and the other endpoint is represented in F1. As an
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illustrative example, we consider the graph in Fig. E.2. The corresponding matrices are given by

F0 =



0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1

0 1 0 0 0



, F1 =



1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0



. (E.1)

If two vertices are colored with the same color, we update the matrices {Fi}1i=0 by replacing the

columns that correspond to the vertices colored with the same color, with their sum. For example,

if vertices 1, 2 are assigned the same color, we update each matrix Fi by replacing the first two

columns with their sum, which results in

F
′

0 =



0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

1 0 0 0



, F
′

1 =



1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

1 0 0 0



. (E.2)

We notice that a coloring is valid (no two vertices connected with an edge are assigned the same

color) if and only if the updated matrices satisfy that ∀k ∈ [1 : |E|], ∀q ∈ [1 : V ′], ∀i ∈ {0, 1}, we

have

[F
′

i ]kq ̸= 0 =⇒ [F
′

1−i]kq = 0, (E.3)

where V ′ is the number of columns of the matrix F
′
0 or F ′

1. In the above example, the property in
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Figure E.2: Graph with edges represented by the matrices in (E.1).

(E.3) is not satisfied since, [F ′
i ]80 = 1, [F

′
1−i]81 = 1. This is because the vertices 1, 2, which are

assigned the same color, are connected with an edge.

Hence, the Chromatic Number of the graph is the minimum number of columns of matrices

{F ′
i }1i=0 that satisfy the property in (E.3) and are constructed according to the following rules:

• Any set of columns in the matrix Fi can be replaced by their sum, i = 0, 1.

• If the set of columns indexed by I in Fi are replaced with their sum, then the set of columns

indexed by I in F1−i are replaced with their sum, i = 0, 1, i.e., exactly the same operations

done on F0 are done on F1 and vice versa.

The next step is to consider an instance from the problem (P2’), and show that it is equivalent to

the problem of finding the minimum number of columns of the matrices {F ′
i }1i=0. To that end, we

consider a dataset, with two classes, namely Y = {0, 1}, and two features x1, x2. The dataset is

constructed based on the matrices {Fi}1i=0 by Algorithm 14.

Algorithm 14 Reduction from vertex coloring problem
0: Start with k = 1.

∀(q1, q2) ∈ E , do the following two steps:

1: Put a training point that belong to class 0 at x1 = q1, x2 =
q1+q2

2
,

and a training point that belong to class 1 at x1 = q2, x2 =
q1+q2

2
.

2: k=k+1.
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Figure E.3: Training data corresponding to {Fi} in (E.1).

Note that under the assumption q1 > q2, the point (x1, x2) = (q1,
q1+q2

2
) lies on the right side

of the line x1 = x2, while the point (x1, x2) = (q2,
q1+q2

2
) lies on the left side of the line x1 = x2.

Hence, all the points that belong to class 0 lie on the right side of the line x1 = x2, and all the points

that belong to class 1 lie on the left side of the line x1 = x2. That is, the constructed dataset is

linearly separable by the line x1 = x2.

For the constructed dataset, we want to answer the following question: for R2 →∞, what is

the minimum R1 for which L(E ,D, T ) < 1
2
?

As an example, consider the matrices {Fi}1i=0 in (E.1), the constructed dataset is given in

Fig. E.3.

Assume that we want to find the minimum R1 for which L(E ,D, T ) < 1
2
. If 2R1 ≥ 5, then

we do not need to do quantization and can send x1 as it is. In this case we have L(E ,D, T ) = 0.

Now, assume that 2R1 = 4, then we have only 4 values to send to represent x1, i.e., E1(x1) ∈ [1 : 4].

Hence, the quantizer has to map two different values of x1 to the same quantized value, i.e.,

∃x(1)
1 , x

(2)
1 : x

(1)
1 ̸= x

(2)
1 , E1(x(1)

1 ) = E1(x(2)
1 ). The matrices {F ′

i } are constructed from {Fi}
such that if the encoder maps a set of x1 values to the same encoded value, we replace the

corresponding columns with their sum. For instance, assume that the encoder maps the values
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x1 = 1, x1 = 2 to the same quantized value. Based on this, we update each matrix Fi by

replacing the first two columns with their sum, which results in the matrices in (E.2). Since

this encoder maps the two points (1, 1.5), (2, 1.5), which belong to different classes, to the same

encoded value, we have L(E ,D, T ) =
∑l2

k=1

∑l1−1
q=1 minj{[F ′

j ]kq} = 1 > 1
2
. So, this encoder

does not satisfy L(E ,D, T ) < 1
2
. The reason for this is that the updated matrices do not satisfy:

∀k ∈ [1 : |E|]∀q ∈ [1 : |V ′|]∀i ∈ {0, 1} [F ′
i ]kq ̸= 0 =⇒ [F

′
1−i]kq = 0. Note that the matrices

constructed by Algorithm 13 satisfy the following properties

• Every row in Fi has exactly one non-zero entry.

• If [Fi]kq ̸= 0, then [F1−i]kq = 0.

• All the non-zero entries have value 1.

It is easy to observe that for all matrices satisfying the three properties mentioned above,L(E ,D, T ) <
1
2

if and only if the encoder E satisfies:

∀q1∀q2 : q1, q2 ∈ dom(E1), q1 ̸= q2, E1(q1) = E1(q2),

∀k ∈ [1 : |E|],∀i ∈ {0, 1}, we have that,

[Fi]kq1 + [Fi]kq2 ̸= 0 =⇒ [F1−i]kq1 + [F1−i]kq2 = 0.

Hence, the min{2R1|L(E ,D, T ) < 1
2
} is the minimum number of columns of matrices {F ′

i }1i=0 that

satisfy the property in (E.3) and are constructed according to the following rules:

• Any set of columns in the matrix Fi can be replaced by their sum, i = 0, 1.

• If the set of columns indexed by I in Fi are replaced with their sum, then the set of columns

indexed by I in F1−i are replaced with their sum, i = {0, 1}, i.e., exactly the same operations

done on F0 are done on F1 and vice versa.

This shows that X (G) = min{2R1|L(E ,D, TG) < 1
2
}, where X (G) is the chromatic number of the

graph G, and TG is the dataset constructed by Algorithm 14.
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Note that the maximum number of x1 values that are encoded to the same value is |V |, i.e.,

E1(z1) is the union of at most |V | R-bins. Hence, r is chosen to be r = |V |. This concludes the

proof that problem (P2’) is NP-hard.

NP-hardness of (P3’):

In this subsection, we prove that (P3’) is NP-hard. For reference, we restate the statement of (P3’)

below:

(P3’) : For n = 2 features, |Y| = 2 classes, find the minimum R1 = R2 bits for which

L(E ,D, T ) < pe, assuming that E−1
k (zk) is a single XΩk

-bin.

To prove that (P3’) is NP-hard, we show that the maximum Balanced Complete Bipartite

Subgraph (BCBS) problem [ADL94] can be reduced to (P3’) in polynomial-time. The maximum

BCBS problem is defined below.

Definition 2. (maximum BCBS) Given a balanced bipartite graph G = (V1, V2, E): find the

maximum size, in terms of number of vertices, of a balanced bi-clique in G1.

The maximum BCBS problem is known to be NP-hard as proved in [ADL94].

As an example, we first consider an instance of (P3’) and show that it is equivalent to an instance

of the BCBS problem. Then, we show how to reduce any instance of the BCBS problem to an

instance of (P3’) in polynomial time.

Consider the training data shown in Fig. E.4 for which we want to answer the question in (P3’).

If two values of xi are encoded to the same message we say that they are combined. To minimize

R1, R2, we want to combine as many values of x1, x2 as possible while satisfying L(E ,D, T ) < 1
N

.

We notice the following:

1By a balanced bipartite graph G, we mean that |V1| = |V2|.
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Figure E.4: Training data used to prove (P3’).

1. The only way to satisfy L(E ,D, T ) < 1
N

is to make L(E ,D, T ) = 0. Hence, we can combine

values of x1, x2 as long as all the bins only have training points that belong to the same class.

2. Since (P3’) assumes E−1
k (zk) is a single XΩk

-bin, then quantization of x1 (resp., x2) in TG
is equivalent to combining adjacent columns (resp., rows) in the dataset. Combining non-

adjacent columns (resp., rows) is not allowed as it will not result in a single bin as assumed

by (P3’). Recall that we say that two values of x1 (resp., x2), i.e., columns (resp., rows) are

combined, if they are assigned to the same z1 (resp., z2). For example, we can combine the

values x1 = 1, x1 = 2, x1 = 2.5, but we cannot combine x1 = 1, x1 = 2.5 without combining

x1 = 2 with them, because x1 = 1, x1 = 2.5 are not adjacent.
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3. From Fig. E.4, we notice that the values of xi /∈ Z, cannot be combined with any adjacent

value of xi,∀i ∈ {1, 2}, because combining them results in bins having points that belong to

different classes. These values also prevent us from combining any two values of xi that are

on different sides from a value xi /∈ Z, since the combined values has to be adjacent. For this

reason, we call the training points with feature values xi /∈ Z (surrounded by rectangles in the

figure), guard points. Having this, the only possible values to combine are xi = a, xi = a+1

for some odd number a. Hence, the problem reduces to deciding whether xi = a should be

combined with xi = a+ 1 or not ∀a ∈ {1, 3, 5}.

We can also notice from the figure that if we, for example, combine the values x1 = 1, x1 = 2,

then we cannot combine the values x2 = 3, x2 = 4, because this results in the two training points

(1, 3), (2, 4), which belong to different classes, being assigned to the same bin. Now it is clear that

this instance of the problem of finding the minimum number of bins for which L(E ,D, T ) < 1
N

is

equivalent to finding the maximum size of the balanced complete bipartite subgraph for the graph G
constructed in the following way:

• There is a vertex in the upper side of the bipartite graph corresponding to each value x1 =

a,∀a ∈ {1, 3, 5}, and a vertex in the lower side corresponding to each value x2 = b,∀b ∈
{1, 3, 5}.

• There is an edge between the vertex corresponding to x1 = a in the upper side and the

vertex corresponding x2 = b in the lower side if and only if the two training data points

(a, b), (a+ 1, b+ 1) belong to the same class.

Fig. E.5 shows the constructed graph corresponding to the dataset in Fig. E.4. Combining the values

x1 = a, x1 = a + 1 corresponds to having the vertex corresponding to x1 = a belonging to the

maximum balanced complete bipartite subgraph. For instance, as we mentioned above combining

the values x1 = 1, x1 = 2, implies that we cannot combine the values x2 = 3, x2 = 4; similarly in

the graph in Fig. E.5, having the vertex corresponding to x1 = 1 in the set of vertices of a balanced
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Figure E.5: Equivalent BCBS problem graph for the training data in Fig. E.4.

complete bipartite subgraph implies that the vertex corresponding to x2 = 3 does not belong to that

set.

Next, we describe an algorithm to reduce any instance from the BCBS problem to (P3’). We

assume without loss of generality that every vertex is connected to at least one other vertex. We

discuss at the end of this subsection how to deal with vertices that are not connected to any other

vertex. We also assume that the vertices of the upper and lower side of the bipartite graph are

labeled by numbers from 1, ...,Mi, where M1,M2 are the number of vertices in the upper and lower

side of the bipartite graph respectively. The pseudo-code is provided in Algorithm 15.

Applying Algorithm 15 on the graph in Fig. E.5, results in the training data plotted in Fig. E.4.

As explained in the example above, by construction of the guard points in Step 4 in Algorithm 15,

they cannot be combined with any adjacent points. Moreover they prevent combining any points

except for xi = a, xi = a+ 1 for some odd a. In addition, as also explained in the example above,

by construction of the points in steps 2, 3, vertices i, j can both belong to a biclique if and only

if both x1 = 2i − 1, x1 = 2i and x2 = 2j − 1, x2 = 2j can be combined. This implies that any

biclique of size W implies a quantization scheme with rate 2R1 = 2R2 = 3|V | − 1−W , where |V |
is the number of vertices in the graph (note that the guard points add |V | − 1 values to each axis)

and vice versa. Hence, the two problems are equivalent.

If there is a vertex that is not connected to any other vertex in the graph, it is easy to add points

(similar to the guard points) that cannot be combined with any adjacent points to represent such

vertex. This concludes the proof of NP-hardness of (P3’).
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Algorithm 15 Reduction from the BCBS problem to (P3’)
1: for all pairs of vertices pair of vertices in different sides (i, j) ∈ [1 : M1]× [1 : M2] do

2: If there is an edge connecting i, j: put two training points that belong to class 0 one at

(2i− 1, 2j − 1) and one at (2i, 2j).

3: If no edge between i, j: put a point from class 1 at (2i− 1, 2j − 1) and a point from class 0

at (2i, 2j).

4: Put the guard points as follows:

5: for all vertices i ∈ [2 : M1] in the upper part of the graph do

6: Find any vertex j ∈ [1 : M2] from the lower side which is connected with vertex i2.

7: Put two points that belong to class 1, one at (2i− 1.5, 2j − 1) and another at (2i− 1.5, 2j).

8: Similarly:

9: for all vertices j ∈ [2 : M2] in the lower part of the graph do

10: Find any vertex i ∈ [1 : M1] from the upper side which is connected with vertex j.

11: Put two point that belong to class 1, one at (2i− 1, 2j − 1.5) and another at (2i, 2j − 1.5).

NP-Hardness of (P4’)

To prove (P4’), we notice the following. Consider a training dataset with n = 3 features, where the

training data points have arbitrary values for features x1, x2, while feature x3 takes values x3 = −1
for all points that belong to class 0 and x3 = 1 for all points that belong to class 1. Such training data

points are linearly separable by the hyperplane x3 = 0. However, if R3 = 0, we cannot send any

information based on feature 3, hence, we have to only consider the projection of the training data

on features x1, x2 ignoring feature x3. This shows that problem (P3’) is a special case of problem

(P4’). For instance, we can have a training dataset that have values for features x1, x2 generated

based on the method used to prove (P3’), while feature x3 takes x3 = −1 for all points that belong

to class 0 and x3 = 1 for all points that belong to class 1. It follows that problem (P4’) is NP-hard.
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Hardness of Approximation

From the proof of (P1’),(P2’), we can see that a polynomial-time algorithm that approximates 2R1

for problem (P1’) or (P2’) within O(N1−ϵ) for some ϵ > 0 can be used to approximate the chromatic

number within O(N1−ϵ) in polynomial time, since the chromatic number problem is polynomial-

time reducible to problem (P1’) or (P2’) with X (G) = min 2R1 , and number of training points

equal to the number of vertices in the graph. However, it was shown in [Zuc06] that approximating

the chromatic number within O(N1−ϵ) is NP-hard ∀ϵ > 0.

Similarly, from the proof of (P3’),(P4’), we can see that a polynomial-time algorithm that

approximates 2R for problem (P3’) or (P4’) within a factor of O(N
1
2
−ϵ) for some ϵ > 0 can be used

to approximate the BCBS within a factor of O(N1−ϵ) in polynomial time. The fraction 1
2

in the

exponent is because the BCBS problem is polynomial-time reducible to problem (P3’) or (P4’)

with number of training points in the order of the square of the number of vertices in the graph. It

was shown in [Man17] that approximating the BCBS within O(N1−ϵ) is NP-hard ∀ϵ > 0 assuming

the Small Set Expansion Hypothesis (SSEH) and that NP ⊈ BPP.
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