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14Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA

Abstract
We sequenced exomes from more than 2,500 simplex families each having a child with an autistic 
spectrum disorder (ASD). By comparing affected to unaffected siblings, we estimate that 13% of 
de novo (DN) missense mutations and 42% of DN likely gene-disrupting (LGD) mutations 
contribute to 12% and 9% of diagnoses, respectively. Including copy number variants, coding DN 
mutations contribute to about 30% of all simplex and 45% of female diagnoses. Virtually all LGD 
mutations occur opposite wild-type alleles. LGD targets in affected females significantly overlap 
the targets in males of lower IQ, but neither overlaps significantly with targets in males of higher 
IQ. We estimate that LGD mutation in about 400 genes can contribute to the joint class of affected 
females and males of lower IQ, with an overlapping and similar number of genes vulnerable to 
causative missense mutation. LGD targets in the joint class overlap with published targets for 
intellectual disability and schizophrenia, and are enriched for chromatin modifiers, FMRP-
associated genes and embryonically expressed genes. Virtually all significance for the latter comes 
from affected females.

Introduction
ASD is characterized by impaired social interaction and communication, repetitive behavior 
and restricted interests. It has a strong male bias, especially in high-functioning affecteds. 
The contribution from transmission has long been suspected from increased sibling risk1, but 
more recently the role of germline de novo (DN) mutation has been established, first from 
large scale copy number variation (CNV) in simplex families2–5, and subsequently from 
exome sequencing. The smaller DN variants observed by DNA sequencing pinpoint 
candidate gene targets6–8. These developments have promoted a new model for causation, 
and re-evaluation of sibling risk9,10.

We report here whole exome sequencing of the Simons Simplex Collection (SSC)11 and an 
extensive list of DN mutated targets, including 27 recurrent LGD (nonsense, frameshift and 
splice site) targets. The size and uniformity of this study allow an unprecedented evaluation 
of genetic vulnerability to ASD. We subdivide target sets by mutation type (missense and 
LGD) and affected child status (gender and nonverbal IQ, to which we refer throughout as 
simply “IQ”), and explore the overlap between target sets and their enrichment for certain 
gene categories. We make estimates of the number of genes vulnerable to a given mutation 
type and the proportion of simplex autism resulting from DN mutation for each affected 
subpopulation.

Results
SSC sequencing and validation

We report on 2,517 of ~2,800 SSC families including ~800 previously published6–8. We 
sequenced 2,508 affected children, 1,911 unaffected siblings and the parents of each family. 
Within the SSC, the overall gender bias in affecteds, 7 males to 1 female, is nearly twice that 
typically reported. Exomes were analyzed at Cold Spring Harbor Laboratory (CSHL), Yale 
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School of Medicine, and University of Washington (Extended Data Figs. 1 and 2, 
Supplementary Table 1). Pipelines were blind with respect to affected status. For uniformity, 
all data were reanalyzed with the CSHL pipeline, allowing comparison of analysis tools. All 
calls were validated or strongly supported, as listed (Supplementary Table 2) and described 
(Methods).

DN mutation rates, contribution and targets of de novo mutation

For greatest precision we measured DN rates in quad familes (one affected and one 
unaffected child) over genomic positions at which all family members had ≥40× sequence 
coverage (Methods, Supplementary Table 3). This ‘joint 40× region’ in the SSC was 32 Gbp 
in total, or 48% of the targeted exome, from 1,867 quads. DN events were shared by siblings 
1% of the time (Supplementary Table 2); and 1% of mutations had nearby nucleotide 
positions altered, presumably by single mutagenic events (Supplementary Table 4)12–14. The 
overall rate of base substitution is 1.8*10−8 (±10−9) per base pair (Supplementary Table 5).

Rates of DN synonymous mutation in affected (0.34 per child) and unaffected siblings (0.33 
per child) do not differ significantly (Fig. 1). By contrast, LGD mutations occur at 
significantly higher rates in affected vs. unaffected siblings (Fig. 1, Extended Data Fig. 3). 
The rate of LGDs is 0.12 in unaffected siblings and 0.21 in affected probands, an 
‘ascertainment differential’ of 0.21–0.12 = 0.09 (p-value 2*10−5). Thus, we estimate ~42% 
(0.09/0.21) of LGD events in probands contribute to ASD diagnoses. For DN missense, the 
rate is 0.82 for unaffected siblings and 0.94 for affected probands, an ascertainment 
differential of 0.12 (p-value 0.01). We estimate only ~13% (0.12/0.94) of DN missense 
events in probands contribute to ASD diagnoses. There is a wide confidence interval for the 
missense ascertainment differential (Supplementary Table 6); for this reason, we consider 
primarily the LGD events for our analysis and look upon missense data as supporting.

To identify gene targets for DN mutation, we examined all family data including trios. We 
provide a complete list of all mutations (Supplementary Table 2) along with the number of 
mutations of each type in each gene (Supplementary Table 7). 391 DN LGD mutations in 
353 target genes were identified and validated in autism probands. 27 target genes were 
recurrent (Fig. 2). Among 1,500 missense targets in probands, 145 were recurrent.

We examined all alleles transmitted opposite a DN LGD target. We saw no instance in 391 
observations in which the allele opposite an LGD target carried a rare transmitted LGD 
variant (in <1% of parental exomes), and only four in which such an allele carried a rare 
missense variant. Thus, the DN mutations do not generally cause homozygous loss-of-
function of their target (Supplementary Table 8).

Confirming previous results7,8,15, a DN mutation occurs three times as often on the paternal 
background as the maternal, and mutation rates rise with age of either parent (Extended Data 
Fig. 4, Methods). The latter may provide a partial explanation for increased autism rates in 
children born of older parents.
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Functional clustering in target genes

Previous studies presented evidence of functional clustering in targets of DN LGD mutation 
in affected individuals6–8,16. Our larger dataset was examined with an improved null ‘length 
model’ for mutation in which the probability of DN mutation in a gene is proportional to its 
length (Methods, Extended Data Fig. 5). We tested for enrichment within DN LGD and 
missense targets in probands and siblings for six gene classes, those: 1) that are FMRP 
targets, with transcripts bound by the fragile X mental retardation protein8,17; 2) encoding 
chromatin modifiers; 3) expressed preferentially in embryos18,19; 4) that encode 
postsynaptic density proteins20; 5) that are essential21; and 6) identified as Mendelian 
disease genes22 (Table 1, Supplementary Table 6, Methods). These data provide the 
strongest evidence yet for overlap of DN LGD targets in affected probands with FMRP 
targets (55 observed vs. 34.1 expected; p-value 4*10−4) and chromatin modifiers (26 
observed vs. 11.8 expected; p-value 3*10−4). We also observed signal from mutation in 
genes expressed in embryonic development23 (65 observed vs. 45.0 expected; p-value 
2*10−3). The latter signal comes mainly from the small number of female affecteds (23 
observed vs. 8.5 expected from 67 LGD targets; p-value 5*10−6). The 27 genes with 
recurrent LGDs show strong enrichment for FMRP targets (14 observed vs. 2.6 expected; p-
value 4*10−8) and chromatin modifiers (6 observed vs. 0.9 expected; p-value 2*10−4). In 
contrast, no significant enrichment for these gene sets is seen for the DN LGD targets in 
unaffected siblings.

The 1,500 DN missense targets in probands are also enriched for FMRP targets and 
embryonically expressed genes. We observe 171 FMRP targets (144.8 expected; p-value 
0.03), and 220 embryonically expressed genes (191.4 expected; p-value 0.03). As before, the 
signal for embryonically expressed genes comes almost entirely from the small number of 
female affecteds (48 observed, 31.1 expected from 244 targets; p-value 0.002). With the 
exception of chromatin modifiers, contributory DN missense and LGD mutations tend to 
strike similar functional classes of genes.

De novo mutation and IQ

Higher IQ probands are heavily skewed towards males24. For further analyses, we chose to 
divide the affected male population roughly in half into higher and lower IQ sets. We 
investigated whether higher IQ (>90) males comprise a population with a distinguishable 
genetic signature. There is a decreased ascertainment differential for DN LGD mutations in 
male children with higher IQ relative to other affecteds (Extended Data Fig. 3, 
Supplementary Table 6). This is not statistically significant over the joint 40× region. 
However, over the entire data set, the drop in IQ is 5 points for males with DN LGD 
mutation compared to those without mutation (p-value 0.01; Fig. 2). Mean IQ of affected 
males with recurrent DN LGDs drops 20 points (p-value 0.00001, Fig. 2). Significance is 
also evident as we examine targets by functional class. Males with LGD mutations in FMRP 
targets have an average 14-point drop (p-value 0.001). This trend continues with LGD 
targets in the other functional classes—chromatin modifiers and embryonically expressed 
genes—but with reduced significance. We observe little signal from DN missense mutation, 
even in recurrent targets, either because these events are less likely to contribute or they are 
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less severe. Female probands show the same trends as males, but as they comprise a smaller 
population, the significance is weak (Fig. 2).

Further evidence for a distinguishable signature among the higher IQ comes from the 
functional enrichment within DN target gene sets. LGD targets in females are enriched for 
all three functional gene classes. LGD targets in lower IQ affected males are significantly 
enriched for the FMRP-associated and chromatin modifier gene classes (Supplementary 
Table 6). However, for LGD targets in higher IQ males we see no statistically significant 
enrichment for any of the gene categories.

Overlaps between targets in groups of children and types of mutation

We partitioned children into four primary groups, unaffected siblings, affected females, 
affected males with higher IQ, and affected males with lower IQ. We analyzed these and 
various combinations for three types of DN mutations: LGDs, missense and synonymous 
(Supplementary Table 6). Targets of synonymous mutations in all children and targets of 
LGD and missense mutations in unaffected siblings have no significant overlap with targets 
from any other group. We see no significant overlap between targets in higher IQ males with 
targets from other groups. In strong contrast, the 67 LGD targets from affected females 
overlap significantly with the 166 LGD targets from lower IQ affected males (10 observed, 
1.3 expected, p-value 7*10−7). We therefore refer to the group of lower IQ males and 
affected females as a ‘joint’ class. In this class, the 874 missense and 223 LGD targets also 
overlap significantly (39 observed, 22.1 expected, p-value 0.0008). Thus, not only do 
missense and LGD mutation target genes with shared functionality, the same genes are 
sometimes targeted.

Number of vulnerable genes

Our analysis of functional clustering and overlaps within target classes suggests that the 
mutations ascertained in probands target restricted sets of vulnerable genes. We next sought 
evidence for excess recurrence of targets. We first examined synonymous mutations and 
mutations in unaffected children. Among the 647 synonymous events in probands, there are 
25 gene targets found in more than one child, close to the null expectation of 19.9 (p-value 
0.13). Recurrent LGD (n=3/179 events) or missense targets (70/1,143 events) in unaffected 
siblings are also close to null expectations (p-value 0.2 and p-value 0.04, respectively). In 
affected males with higher IQ there are no excess recurrent targets among 137 LGDs 
mutations (2 observed, 1.0 expected, p-value 0.3) or among 728 missense mutations (26 
observed, 24.7 expected, p-value 0.4). In contrast, among probands the number of recurrent 
LGD (n=27/391 events) and missense targets (145/1,675 events) are not compatible with the 
null expectation of 7.6 (p<0.0001) and 115.0 (p-value 0.001), respectively. Given these 
findings, as well as the lack of overlap between targets of higher and lower IQ males, we 
focused on the joint class of female probands and affected males of lower IQ. For the joint 
class, there were 22 recurrent LGD targets among 254 events with 3.3 expected (p-value 
<0.0001). For the 944 missense events, 60 recurrent targets are observed with 40.2 expected 
(p-value 0.0005).
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We next used recurrence analysis and the length model to estimate the number of vulnerable 
genes (Fig. 3) and the probability that a recurrent mutation of a given type is contributory 
(Methods). The most likely number of genes vulnerable to DN mutations in the joint class is 
estimated to be 387 for LGD targets with a 95% credibility interval (CI) of (149, 915), and 
404 for DN missense targets (CI: (71, 3050)). From the length model and our estimate that 
only 42% of LGD mutations are contributory, we have 90% confidence that a given LGD 
mutation contributes to autism in a gene recurrently hit by an LGD mutation (Methods). By 
the same methods, we compute 35% confidence in contribution from missense mutations in 
recurrent targets. Using existing models for prioritizing targets7, we list all targets of 
recurrent DN coding mutation according to their rank (Supplementary Table 9).

Discussion
The SSC was assembled with the explicit hypothesis that finding targets of DN mutation 
would be a path to gene discovery. We now have 353 candidate LGD gene targets, 27 genes 
recurrently hit by LGD events, and 145 recurrent missense targets, each with about 40%, 
90% and 35% chance of being contributory, respectively.

We use the ascertainment differential as an estimate of contribution. The sum of the 
ascertainment differentials for missense, nonsense, consensus splice site disruption and 
frameshift DN mutations is 0.21 per affected child. Adding 0.06, the ascertainment 
differential from large DN CNVs2,3, brings the total to 0.27 (Fig. 4). Excluding higher IQ 
males, the value is 0.33. In affected females it is 0.45. This is a conservative estimate for the 
role of DN mutation in the SSC families because we have not yet ascertained intermediate-
size DN CNVs, copy-neutral rearrangements, regulatory mutations or mutations of 
noncoding genes.

Although the SSC is a simplex collection, it is likely only marginally depleted for high-risk 
families because small brood size prevents the birth of multiple affected children, especially 
if the unaffected sibling is female. We estimate10 and confirm9 by gender bias in unaffected 
siblings (1400 females and 1264 males, p-value 0.0089) that ~40% of the SSC families are 
high-risk. In a simple genetic model, DN mutation plays no role in high-risk families but is 
obligatory for low risk families10, so DN mutation would contribute to ~60% of the SSC. 
The sum of the ascertainment differential for all observable DN types in all the probands is 
about 30%, about half of that. If the number of unobserved and consequential DN mutations 
is similar to the number of observed and consequential DN exome mutations, the actual 
contribution is not far from that predicted by this simple model.

Targets and cognitive defects

We examined the incidence and targets of DN LGD mutations for children with lower and 
higher IQs. Affected children with higher IQs have a greater incidence of LGD mutations 
than unaffected siblings, but a lower incidence than affected females or males with lower IQ. 
Moreover, there are few recurrently hit genes among the DN LGD targets of affected males 
with higher IQ, and little overlap with the DN LGD targets of affected males with lower IQ 
or females. LGD targets in higher IQ males are not enriched for the FMRP-associated genes. 
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These observations suggest a different distribution of genetic mechanisms causing ASD in 
higher IQ males.

We can examine overlap between LGD targets for autism, with published targets for 
intellectual disability (ID) and schizophrenia (Scz)25–29. We applied our length model for 
mutation incidence and found significant overlap of ID and Scz targets with ASD targets 
(Table 1), but only in the joint class of affected males with lower IQ and females 
(Supplementary Table 6). The overlap can have many explanations: diagnostic conflation; 
pleiotropy for the same mutation; different consequences for different mutations in the same 
gene; and varying genetic or environmental background. The DN targets of affected males 
with higher IQ do not overlap these sets, again suggesting distinct mechanisms.

Properties of target classes

This study is sufficiently large and uniform to enable inferences about targets, distinguished 
by mutation types, properties of affected children and target functions. We observe a 
significant contribution from missense mutations, with an overall magnitude comparable to 
that from LGD mutations. Both LGD and missense mutation targets are enriched in the same 
functional gene sets, especially among lower IQ males (Supplementary Table 6). Excluding 
higher IQ males, we estimate the most likely number of genes vulnerable to LGDs is ~400, 
with a similar number genes vulnerable to missense. The two sets overlap substantially.

Targets in autism are enriched in certain functional categories, providing deeper support for 
previously published observations6–8. FMRP-associated genes and chromatin modifiers are 
prominent targets in all groups except higher IQ males. The former are thought to function 
in neuroplasticity. Embryonically expressed genes are significantly enriched as LGD or 
missense targets, but only in females. Enrichment in these genes may reflect that these 
contributory mutations cause alterations before a female protective effect takes place.

Recurrent LGD targets encode receptors, ion channels and synaptic proteins likely to 
function directly in neuro-circuitry (e.g. SCN2A, GRIN2B and RIMS1), but also proteins 
functioning in cytoskeletal remodeling (e.g. ANK2 and MED13L) and transcriptional 
regulation. Chromodomain helicase gene family members carry many recurrent LGDs. The 
most frequently hit gene is CHD8 (ref. 30), followed by CHD2 (3 LGDs) and four other 
members (1 LGD each) of that family. CHD8 is a transcriptional regulator thought to be 
important for suppression of the Wnt-beta-catenin signaling pathway through histone H1 
recruitment31. Another intriguing target is the protein kinase DYRK1A, hit four times and 
located in the Down syndrome critical region7.

Gene vulnerability and molecular mechanisms

We cannot determine the penetrance of specific mutations observed here, as we do not see 
them often enough in an unselected population. Nevertheless, we introduce the term ‘gene 
vulnerability’ as the probability that a given type of mutation in a given gene contributes to a 
given condition. Genes with non-zero vulnerability define the vulnerable class. We can 
extend this concept to ‘class vulnerability’, defined as the mean gene vulnerability over a 
class of genes. Mathematically, class vulnerability V is computed by solving the following 
equation for V:
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F * A = P *H *V (EQ 1)

where F is the prevalence of the condition, A is the ascertainment differential for DN 
mutations of a given type in the gene class, P is the expected proportion of the population 
with DN mutations of that given type, and H is the probability that such mutations hit the 
gene class.

We can compute a distribution of class vulnerability for all vulnerable genes targeted by a 
given mutational type (Methods) because F, A, and P have empirically sampled distributions 
and H has a distribution inferred from the total length of the gene class. The distribution of 
class vulnerability for DN LGDs in males with lower IQ has a mode around 0.4 (Fig. 3). In 
other words, ~40% of DN LGDs in vulnerable genes in a male contribute to diagnoses of 
lower IQ ASD. Similarly, ~10% of missense mutations in vulnerable genes contribute to 
diagnoses of lower IQ autism (Fig. 3). The mode for LGD vulnerability in females is four-
fold lower than for lower IQ males, mainly because the prevalence is four-fold lower. 
Reduced penetrance in females is not well understood, but may be consequent to sexually 
dimorphic development. Support for this is seen in the relative enrichment of embryonically 
expressed genes as targets in females.

Partial gene vulnerability can be explained in several ways: some LGD mutations result in 
autism, some have little effect, and some produce other diagnoses or even lethality. 
Regardless, many LGD mutations will strongly predispose to ASD. We expect this to be 
reflected in decreased functional variation in the human gene pool, as we have previously 
shown for FMRP-associated genes8.

Given our analysis of gene vulnerability and the lack of evidence for compound 
heterozygosity, damage to a single allele will often have severe consequences for 
development. What underlies vulnerability to haploinsufficiency? Half the normal gene 
dosage can result in half the level of gene products, and there are many examples where 
physiology requires proper dosage32–37. Also, having two copies of a gene will reduce 
variability of expression38. With only one functional allele, there could be increased 
variation in levels of expression, including dangerously low levels at critical moments in 
lineage development, altering the composition of tissues. Monoallelic expression also needs 
to be considered39. Finally, some truncation events might lead to dominant negative alleles.

Present and future implications

From the clinical perspective, early diagnosis and family counseling are complicated if there 
are hundreds of genetic targets, especially if few are known with certainty. Sequencing of 
more cohorts is thus clearly warranted. From the therapeutic perspective, the good news is 
that in almost all cases DN mutations occur in probands in whom a normal allele is also 
present. It is theoretically possible that enhancing activity of the remaining alleles might 
alleviate symptoms. So in our view, the long-term prognosis for treating ASD is positive. 
Moreover, ASD targets overlap with targets for intellectual disability and schizophrenia, so 
mechanism-based treatments might work for different diagnostic categories. In the 
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intermediate term, functional clustering suggests that treatments might be tailored to a 
smaller number of convergent pathways.

Methods
Sample collection

The majority of the families (2,517) came from current or former members of the Simons 
Simplex Collection (SSC). The SSC was assembled at 13 clinical centers, accompanied by 
detailed and standardized phenotypic analysis as reported previously11. Multiple IQ 
measures (verbal, nonverbal and full spectrum) were recorded; in this work, we stratified 
probands by nonverbal IQ, which we refer to as simply “IQ” throughout the text. Families 
with single probands and unaffected siblings were preferentially recruited, whereas families 
with two probands were specifically excluded11. Families from two associated collections 
were also sequenced: the Simons Ancillary Collection (SAC, n=123), and the Simons Twin 
Collection (STC, n=13). The SAC includes families that failed inclusion criteria for the 
SSC, typically because a parent, sibling or second- or third-degree relative of the affected 
participant has been diagnosed with ASD, or for cases in which the proband’s ASD 
diagnosis was questionable. The STC consists of families of monozygotic twins in which at 
least one co-twin is affected by ASD. The institutional review boards of Cold Spring Harbor 
Laboratory, Yale Medical Center and University of Washington, Seattle approved this study. 
Written informed consent from all subjects was obtained by SFARI. Blood samples were 
drawn from parents and children (affected and unaffected) and sent to the Rutgers University 
Cell and DNA Repository (RUCDR) for DNA preparation. DNAs from 2,517 families (of 
~2,800 total in the SSC) were used in this study. Results from 774 of the SSC families 
included here were published in earlier work6–8. The samples were split across the three 
centers: Cold Spring Harbor Laboratory (CSHL), the Department of Genetics at the Yale 
School of Medicine (YALE), and Department of Genome Sciences at the University of 
Washington (UW). The split was not uniform with respect to number of families or the 
proportions of 1) female probands and 2) probands with lower IQ (Extended Data Fig. 2, 
Supplementary Table 1). A number of families were sequenced at multiple centers, with 24 
families sequenced in all three centers (Extended Data Fig. 1, Supplementary Table 1).

Exome capture, sequencing and validation

The three centers differed in the precise exome capture platform, read length and validation 
protocols.

CSHL—The protocols described in Iossifov et al.8 were applied to the families newly 
sequenced at CSHL. Briefly, SeqCap EZ Human Exome Library v2.0 (Roche NimbleGen) 
reagents were used with a custom barcoding protocol that enabled simultaneous exome 
enrichment of ≤4 genomes and the sequencing of ≤8 individuals per Illumina HiSeq 2000 
lane. All exome sequencing was performed using paired-end 100-bp reads. All strong and 
weak LGD candidate variants as well as additional variants from families sequenced at 
CSHL were subjected to experimental validation. Gene-specific primers were designed for 
PCR amplification of candidate SNVs and indels, and amplicons were pooled and sequenced 
on an Illumina MiSeq. Approximately 100 variants were validated per lane with paired-end 
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150-bp reads. Where possible, the parental origin was determined by phasing of linked 
transmitted SNVs.

UW—Samples were captured and sequenced by one of three methods. In the pilot set (19 
quads), samples were captured using SeqCap EZ Human Exome Library v1.0 (Roche 
NimbleGen) reagents (UW-M1)7,40. The remaining samples were captured using SeqCap EZ 
Human Exome Library v2.0 (Roche NimbleGen) reagents7. Newly sequenced samples were 
either processed as in O’Roak et al.7 (UW-M2) or with a modified (UW-M3) protocol 
(Supplementary Table 10). For UW-M2, single-plex captures and single-plex sequencing 
runs (non-pooled) were performed as described previously7. For UW-M3, single-plex 
capture was performed as in UW-M2; however, in the post-capture PCR, an 8-bp index 
barcode was added. Post-PCR libraries were quantified and pooled in sets of ~96. These 
pools were then sequenced on the Illumina MiSeq platform to evaluated library complexity 
and sample distribution. Pools were rebalanced based on performance, then sequenced 
across multiple HiSeq 2000 lanes using paired-end 50-bp reads. Additional lanes were added 
until samples reached target coverage (20×: ~80%; 8×: ~90%). If additional coverage was 
required for some samples, subpools were also generated. For samples processed with UW-
M1 and UW-M2, predicted de novo calls were validated using standard PCR and Sanger 
sequencing7. For UW-M3 processed samples, custom MIP (Molecular Inversion Probe) 
capture probes were designed with targeting arms flanking regions of interest. Probes were 
designed without or with degenerate tags, and pools of ~50–100 probes were generated30,41. 
As described earlier41, sets of families (~96 samples) were captured using these pools with 
50–100 ng of genomic DNA as template. Capture products were then pooled and sequenced 
on an Illumina MiSeq. Candidate sites failing MIP QC or capture, or showing evidence of 
significant shifts in allele balance, were validated using the standard PCR/Sanger method. If 
sites repeatedly failed the assay, they were discarded. Novel sites called by the CSHL 
pipeline were validated using the same methods as UW-M3.

YALE—Whole blood-derived genomic DNA was enriched for exonic sequences using 
SeqCap EZ Human Exome Library v2.0 (Roche NimbleGen) reagents. All family members 
were barcoded and each pool of four samples was sequenced using 75-bp paired-end reads 
on single lanes of the Illumina HiSeq 2000 instrument. Where possible, all four family 
members were sequenced on the same lane to minimize batch effects. All strong and weak 
LGD candidate variants from the CSHL pipeline, along with an additional set of LGD 
candidates from the Yale pipeline, were subjected to experimental validation as follows: 
variant-specific primers were designed for PCR amplification of candidate SNVs and indels 
from all family members, and amplicons were sent for Sanger sequencing.

Sequence Analysis Pipelines

Sequence data were interpreted as family genotypes using pipeline tools at each respective 
data center. Almost all of the data were reanalyzed with the CSHL pipeline. We show the 
coverage (Extended Data Fig. 6) and yields (Extended Data Fig. 7) for de novo calls from 
each center. The 24 families sequenced at all three centers demonstrated good agreement 
between pipelines and platforms (Supplementary Tables 11 and 12).
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The analysis pipelines generated candidate de novo events, defined as variants present in the 
child and absent in both parents. We filtered out variants seen frequently in the parents of the 
collection (allele frequency >0.3%), reasoning that most of these would be false positives 
due to uneven coverage in a parent. Candidates generated by local pipelines or by the 
common CSHL pipeline were validated at the respective centers with re-sequencing and 
2,504 were verified. In our final call set, we include all verified calls from each center, and 
omit any call that was rejected. In addition, because almost all (1,640 of 1,644) strong point 
mutations generated by the common CSHL pipeline were verified when successfully tested 
(Supplementary Table 11), such strong candidates are included in our call set even if the 
validation test failed or if the candidate event was not tested. All frameshift mutations were 
validated, and we exclude all that were rejected. All de novo calls used in the subsequent 
analysis, along with their validation status, are listed in the Events Table (Supplementary 
Table 2). Pipelines for analysis and validation were blind with respect to affected and 
unaffected status.

CSHL (uniform) pipeline—Sequence data from the three centers were analyzed with the 
computational pipeline described in Iossifov et al.8 In brief, the Illumina analysis pipeline 
(CASAVA 1.8) was used for base calls, and custom software was used to de-multiplex reads 
and trim barcodes from CSHL derived data. Data from Yale and UW were de-multiplexed at 
the respective centers prior to analysis through the CSHL pipeline. BWA42 was used to align 
sequence reads to the hg19 reference genome, and both Picard (http://
picard.sourceforge.net/) and GATK43 were used for marking PCR duplicates, family-based 
sequence realignment and quality score recalibration. As described previously, a 
multinomial model-based family genotyper was used to generate candidate SNV and indel 
‘Mendel violators,’ each annotated with: 1) a confidence score (denovoScr) that reflects the 
posterior probability of Mendel violation at the locus; 2) a goodness-of-fit-score (chi2Score) 
showing the degree to which the assumptions of the multinomial model are applicable to the 
observed data; 3) counts of reads per allele and per family member; and 4) allele frequency 
and noise rates for the candidate position based on the whole collection. Candidates SNVs 
with denovoScr ≥60 and chi2Score >0.0001 were labeled ‘strong’ provided that the position 
was not polymorphic or noisy in the population, and that the parents were homozygous for 
the reference allele.

For SNVs, a cutoff denovoScr value of 60 was dictated by the desire to keep false positives 
to a minimum, and was chosen after computing the proportion of de novo candidates that 
appear at polymorphic loci (a surrogate for false positives) as a function of the score (see the 
Supplement of Iossifov et al.8). The low false positive rate (<5%) was also confirmed 
through experimental validation (Supplementary Table 11). In addition, we observe that only 
1% of DN mutations are shared between two siblings (Supplementary Table 2), putting a 3% 
cap on false positives due to failure to correctly observe parents. At stringent thresholds the 
false negative rate is generally high, but through simulations we determined that, even with 
stringent thresholds, regions with deep coverage (40× or higher joint coverage) had low 
false negative rates (<5%).

Indels were treated differently than SNVs. The multinomial model assumes a small allele 
bias, appropriate when calling SNVs, but not for de novo indels—particularly for long 
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events (>10 bp). To address this, cutoffs for ‘strong’ indels were lowered (denovoScr >30 
and chi2Score >10−9). To reduce noise, we added requirements for ‘clean’ read counts: 
parents were not allowed to have any reads containing the candidate indel, and were 
required to have at least 15 reads supporting the reference allele. At least one of the children 
had to have ≥6 reads with the candidate variant, and those reads had to comprise ≥5% of 
reads. Experimental validation demonstrated that the false positive rate in the strong indels 
is <10%, and simulations for indels without extreme allele bias (the majority of those <10 
bp) reveal that the false negative rate in well-covered regions (40×) is <5%.

All ‘strong’ SNVs and indels are reported here unless rejected by validation. To address the 
high false negative rates, we defined a class of ‘weak’ SNV and indels drawn from 
thresholds lower than strong candidates. All weak LGD candidates were subjected to 
validation, and only those successfully validated are reported. In addition, during method 
development (e.g. Scalpel44 or through manual inspection), we validated a large number of 
candidates that did not meet even the weak definition. Candidate variants found as valid 
under these circumstances are reported here and labeled as “not called.” This label is also 
used when the CSHL uniform pipeline missed a call from the UW and YALE data that was 
successfully validated.

UW pipeline—All samples using UW-M1 and UW-M2 protocols were processed as 
described earlier7. For UW-M3, updated versions of BWA (0.5.9-r16), Picard-tools (1.48) 
and GATK (1.0-6125) were used. GATK’s Unified Genotyper was used in single sample 
mode with filter flags (AB >0.75, low quality, QD <5.0, QUAL ≤50.0) and in parallel with 
the SAMtools pipeline as described previously40. Only positions with ≥8-fold coverage were 
considered. Child genotype calls were compared to the parental genotypes to identify 
possible de novo events. Predicted DN SNVs were analyzed against a set of 946 exomes to 
remove recurrent artifacts and likely undercalled sites. Indels were also called with the 
GATK Unified Genotyper and SAMtools45, and included only those with ≥25% of reads 
showing a variant at a minimum depth of 8×. These were then filtered against a larger set of 
1,779 exomes (as with SNVs). Those sites passing (i.e. not present) in the exome screen and 
also not present in multiple UW-M3 processed families were manually evaluated by 
inspecting alignments in the Integrative Genomics Viewer (http://
www.broadinstitute.org/igv/home). Sites with obvious misalignments (e.g. non-gapped 
indels or soft-clipped only reads) were removed. Moreover, if reads supporting the predicted 
DN mutation were present in ≥5% of 20 (or more) reads in one of the parents, the site was 
excluded. For sites with lower coverage, a variant was excluded if present in ≥10% (e.g. 
1/10 or 2/20) of parent reads or (for quads) if at least one variant read was present in one 
parent and the other child.

Yale pipeline—The Yale data were analyzed as described in Sanders et al.6 Briefly, 
CASAVA 1.8 was used for demultiplexing and base calling, reads were aligned to hg19 with 
BWA42, and SAMtools45 was used for marking PCR duplicates and genotyping. In-house 
scripts were used for family-based assessment of de novo mutations and annotation against 
genes and the exome variant server (varianttools.sourceforge.net/Annotation/EVS).
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Recurrence and overlaps

Null models for target overlaps and recurrence—We introduce the term mutation-
child-type to refer to a set of events of a certain mutational type (e.g. missense or LGD) in 
children of a certain type (e.g. male affecteds with higher IQ or unaffected siblings). We 
observe target enrichment in gene classes, and document overlaps and recurrence between 
and within mutation-child-types. To measure significance, we use a null model in which the 
probability that a gene is hit by mutation is proportional to its length, a model supported by 
observation (Extended Data Fig. 5). We examine the distributions of lengths of gene targets 
of de novo synonymous, missense and LGD mutation in affected children and siblings. 
These distributions are compared to simulations of genes picked at random or in proportion 
to their length. The data fit well with the model that mutation frequency is linearly 
dependent on gene length. The group with the largest deviation from this rule is the set of 
DN targets in affected children, both for missense (p-value 0.001) and for LGDs (p-value 
0.001, Supplementary Table 13). These p-values are defined as the probability that the 
median length of the target class can arise under the null model, and are computed by 
simulations of equal number of genes weighted by length. While the deviation is statistically 
significant, it is of such a minor amount that we ignore it for the null model.

Measuring overlaps—We test for overlaps between targets of a given mutation-child-
type and other sets of genes (e.g. overlap of DN LGD targets in affected girls with FMRP-
associated genes) as well as overlaps between targets of two different mutation-child-types 
(e.g. overlap between the targets of DN missense in all probands and the targets of DN 
LGDs in all probands). In both cases, observed overlaps are compared to those expected 
under the length-based null model discussed above.

Let T be the targets of mutation of a given type in a child of a given type, S a predefined 
gene set, and O the intersection of T and S. We ask for any gene G that carries a single 
mutation, what the probability p(S) is that the mutation (and hence G) falls in S. We estimate 
p(S) by collapsing all recurrent hits to one, and applying the length-based null model to S. 
Thus p(S) is the ratio of (1), the sum of exome-captured lengths of the genes of S, divided 
by (2), the sum of the exome-captured lengths of all genes. Supplementary Table 7 shows 
the length of the captured portion of all genes in the exome we analyze. Using “‖” to 
designate the number of members in a set, we then perform a two-sided binomial test of |O| 
outcomes in |T| opportunities given the probability of success p(S).

When we test overlaps between targets of two different mutation-child-types, we take one of 
the targets as T and compare the other targets as S. However, before constructing T and S, 
we cleanup targets shared by T and S that result from mutations shared between siblings in 
the same family, or from multiple mutations of different types affecting a single gene in one 
child. We then apply the method of the paragraph above. Finally, we reverse the procedure 
for creating of S and T, and report both results (Supplementary Table 6).

Test for excessive recurrence—If we have R recurrent genes in K events in a 
mutation-child-type class, we test for excess recurrence by comparing R to the number of 
recurrent genes expected under the gene length-based null model. We build the expectation 
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by performing 10,000 simulations. In each simulation, we sample K genes with replacement 
where the probability of sampling a gene is proportional to its length. We then count the 
number of recurrences.

Estimation of the number of vulnerable genes—To estimate the number of 
vulnerable genes for a given mutation-child-type, we start with the observed number of 
events (K), the observed number of recurrent events (R), the estimated posterior 
distributions for the rates of mutations of the given type in the ascertained (Mdist) and for 
the unaffected (Pdist) population. We then explore possible number of vulnerable genes (T) 
from 1 to 4000. For each T, we estimate (through a simulation described in the next 
paragraph) the likelihood L(T) = P(R|T, Mdist, Pdist, K). Assuming all numbers of 
vulnerable genes from 1 to 4000 are equally likely, we compute a posterior distribution of 
the number of genes p(T) proportional to L(T) and determine the maximum value and 95% 
confidence intervals.

To estimate the likelihood, L(T) = P(R|T, Mdist, Pdist, K), we perform 10,000 simulations 
for every T. In each simulation:

1. We randomly select T distinct vulnerable genes from all genes, without respect to 
length. Unlike mutation, which strikes a gene according to its length, we assume 
that the chance a gene can cause autism if mutated is independent of its length.

2. We select the number N of contributory events by sampling from a binomial 
distribution Binom(K, A/M), where P a randomly selected rate from Pdist, M is a 
randomly selected from Mdist, A=M-P is a sampled ascertainment differential, and 
A/M is an estimate of the proportion of contributory events.

3. We simulate N contributory mutation events by selecting N events with 
replacement from the T vulnerable genes proportional to their length.

4. To simulate random events, we select K-N genes from all well-covered genes with 
replacement proportional to their length.

5. We record the number of recurrent events in the K selected events from above.

We set L(T)= P(R|T, Mdist, Pdist, K) to be the proportion of simulations in which the 
number of recurrent events is exactly R. P(T) is obtained by normalizing L(T). For every 
simulation in which the number of recurrent events is exactly R, we also record 1) the 
proportion of contributory events among the recurrent events and 2) the vulnerability point 
estimate as discussed in the next section.

Vulnerability—We use the equation described in the text:F * A = P *H *V (Eq 1)

where F is the prevalence of the given condition in the population, A is the ascertainment 
differential for DN mutations of a given type in persons ascertained for that condition, P is 
the expected proportion of the population with such DN mutations, H is the probability that 
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such a mutation hits the target, and V is the mean class vulnerability. These variables are in 
fact random variables with empirically derived distributions.

We first demonstrate the method for computing the class vulnerability point estimate for 
genes vulnerable to LGD mutations for the ASD males of lower IQ, assuming that the 
variables are fixed. One in 75 males is diagnosed with autism, and we estimate (from 
empirically derived gender biases) that 3/4 of these males are of lower IQ, yielding a 
prevalence F = 1/100. From our study, 0.23 of these have an LGD. Because the expected 
proportion of people with a DN LGD mutation is P = 0.11, only A = 0.12 of this 
subpopulation have an LGD in a vulnerable gene that contributes to ascertainment. Thus 
F*A = 1.2*10−3 is the proportion of males that have lower IQ and autism resulting at least 
partially from a DN LGD. This proportion is also given by P*H*V where H is the 
probability that the LGD hits within the genes vulnerable to LGD mutations, and V is the 
mean class vulnerability for these genes. P, as already stated, is 0.11. We have computed the 
number of genes vulnerable to LGD mutations, N, for the affected males with lower IQ to be 
about 400 genes (Supplementary Table 6). Assuming membership in the target class is 
independent of gene length, and about 20,000 genes, we calculate H = 400/20,000 = 0.02, 
and solve V to be 0.55.

We assume the following prevalence: F=1/75 for ASD in males, F=1/100 for ASD with 
lower IQ in males, F=1/300 for ASD with higher IQ in males, and F=1/300 for ASD in girls. 
A and P are empirically derived gamma distributions from the sampled Poisson rates of DN 
LGD mutations in affected and unaffected siblings. By keeping the observed number of 
LGD events and the observed proportion of LGD events constant, we sample from the 
distribution of target number N and the distributions on A and P as described in the previous 
section. We set H to be the ratio of the total length of uniformly sampled vulnerable genes to 
the total length of the analyzed captured exome, and compute a vulnerability point estimate 
as described just above. These sampled values are displayed in Fig. 3 lower panel. The mode 
for V is 0.4 for males of lower IQ.

Parental age and phasing of DN mutations—We used two different strategies for 
modeling the relationship between rates of DN substitutions and the ages of the parents.

The first strategy does not depend on knowledge of the parent of origin for DN substitutions, 
which we do not know for the vast majority of DN substitutions. Because the ages of the 
mother and the father are strongly correlated, we can effectively use this strategy only to 
explore the relationship between the father’s age and the rates of DN substitutions. Over 
probands and siblings in the 40×-joint family target, we model the number of mutations per 
child as sampled from a Poisson distribution with rate Rc=Tc*(A*Fc+B), where Rc is the 
rate of DN substitutions per child, Fc is the age of the father at the birth of the child, Tc is the 
ratio of the length of the 40×-target in that child to the total exome length, and A and B are 
whole population parameters, estimated by maximizing the likelihood over all children.

The second strategy is applicable only to DN mutations for which we have successfully 
‘phased’ the parent of origin by proximity to a linked polymorphism. For each parental 
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gender, we separately perform a two-sided one-sample t-test to compare the parental ages of 
each phased DN mutation to the mean of parental ages in our population.

DN substitutions increase ~0.4 per paternal decade (Extended Data Fig. 4), consistent with 
previous studies15 and the increase in autism as a function of paternal age46,47. Where we 
could determine parental phase, DN substitutions arose more frequently in the paternal (287) 
than in the maternal (80) background. Among phased DN events, the mean age at birth was 
34.6 for the father and 32.0 years for the mother, whereas the respective mean ages were 
33.2 and 31.1 years for fathers and mothers in the whole population (p-values of 0.0001 and 
0.047, respectively, that these differences arise by chance).

Gene class definition—For determining overlap with de novo mutations, functional gene 
classes were defined as follows. “FMRP” are genes encoding transcripts that bind to 
FMRP17. “Chromatin” indicates chromatin modifiers as defined by GO (http://
www.geneontology.org/). “PSD” is a set of genes encoding proteins that have been 
identified in postsynaptic densities20. “Mendelian” represent positionally identified human 
disease genes22, and “Essential” genes are human orthologues of mouse genes associated 
with lethality in the Mouse Genome Database21. “dn LGD (Scz)” are de novo LGDs in 
schizophrenia26,48,49 and “dn LGD (ID)” are de novo LGDs in intellectual disability25,29.

“Embryonic” genes are those expressed in post-mortem human embryonic brains19, derived 
from downloaded expression data18 (http://www.brainspan.org/static/download.html). This 
data set provides normalized expression levels for ~17,000 genes across brain regions from 
36 individuals, 18 of which were from embryos. Each brain was further subdivided into 14 
anatomical regions for a total of 508 regions. We computed correlation values for the 17,000 
genes, and generated a graph by connecting genes that had correlations >0.85, then 
identified connected components and averaged the expression of genes within these 
components as a function of the annotated age of the brain and by region. Each region is 
sorted first by age, then by type (Extended Data Fig. 8). The averaged normalized 
expression of the 1,912 genes in the first component decreases after birth, and hence we call 
this set embryonic.

Supplementary Table 7 shows the genes in the eight functional classes that are within the 
captured exome regions and were used in all analyses.

Extended Data

Extended Data Figure 1. Number of families sequenced by center
The numbers of families sequenced at the three centers are plotted as a Venn diagram. 
Families sequenced at more than one center are indicated by the overlapping regions 
between circles. CSHL: Cold Spring Harbor Laboratory; UW: University of Washington, 
Seattle; YALE: Yale Medical Center.

Iossifov et al. Page 16

Nature. Author manuscript; available in PMC 2015 May 13.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

AHFormatter

EVALUATION

AH Formatter V6.2 MR6 (Evaluation)  http://www.antennahouse.com/

http://www.geneontology.org/
http://www.geneontology.org/
http://www.brainspan.org/static/download.html
http://www.antennahouse.com/


Extended Data Figure 2. SSC sequencing by pedigree type and nonverbal IQ
A summary of all SSC families sequenced is indicated across the “ALL” row. Numbers of 
SSC families with complete exome sequencing data are displayed by center in the following 
rows (see Extended Data Figure 1 legend for center designations). The top number in entries 
under the “Families” column indicates the total number of families sequenced, and the 
number in parentheses below indicates the total number of individuals. Family pedigree 
structures are shown across the top row with gender indicated by shape (square for male, 
circle for female) and affected status indicated by color (white for unaffected, gray for 
affected). Distributions of non-verbal IQ within each cohort are shown for male probands 
(blue) and female probands (red).

Extended Data Figure 3. Rates of de novo LGD and missense mutations in the SSC by child 
status
On the left we show the LGD rate per child in six types of children, labeled on the X-axis, 
defined by their affected status, gender, and non-verbal IQ. We test for equal rates for every 
pair of child types and we show the ones with p-value >0.05 with thin lines on the top of the 
figure. Although not significant, the rates in affected females and in affected males of lower 
nvIQ are larger than the rate in males of higher nvIQ. On the right, we show the missense 
rates per child for the same six groups of children.

Extended Data Figure 4. Paternal age and de novo mutation rate at child birth
Distribution of paternal age at birth of children (top) and rates of de novo mutation in 
offspring as a function of paternal age are shown (bottom). Children were ordered by 
paternal age at birth and split into 20 groups of similar size, as shown in the lower panel. 
The red curve shows the mean observed rates of de novo exomic substitutions in each of the 
20 groups, with the×coordinate equal to the mean each of the fathers’ ages within each 
group. The blue line shows a linear fit to the observed rates. The dotted green line represents 
de novo mutation rates from whole genome sequencing data (Kong et al., Nature 488, 471–
475, 2012) scaled to rates per exome based on representation in the SeqCap EZ Human 
Exome Library v2.0 (Roche NimbleGen).

Extended Data Figure 5. Coding region size distribution for query sets of genes
PDFs and CDFs (right bottom panel) of the distributions of the coding region length in base 
pairs of five sets of genes: a set of 1200 genes picked uniformly from the set of exome-
targeted genes (blue); a separate set of 1200 genes picked with probabilities proportional to 
length of the coding region (green); the set of gene targets of neutral mutations, including 1) 
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synonymous mutations in probands and siblings and 2) missense mutation in siblings (red); 
genes with de novo missense mutations in probands (cyan); and genes with de novo LGDs 
in probands (magenta). Black within the histograms shows the distribution of lengths of the 
recurrently hit genes from each class. Coding region length distribution under a uniform 
model does not fit the lengths of the genes with observed mutations, and genes with LGD 
mutations are longer than predicted by a simple length-based model (bottom right).

Extended Data Figure 6. Distributions of sequencing depth
Distributions of sequencing depth (number of sequence reads covering a given genomic 
position) per person per position for the three sequencing centers are plotted. Center 
designations are as in Extended Data Figure 1.

Extended Data Figure 7. Yield of de novo LGD and missense mutations
We plot the yield of de novo LGD and missense mutations per sequencing center 
(designations as in Extended Data Figure 1). In each case we show the number of mutations 
we expect to see based on the estimated rates per child, indicated by the numbers above the 
bars. We also show what percentage of the expected number we have observed. Black refers 
to strong calls in the 40× target, gray refers to strong calls outside of 40× target, and 
magenta refers to weak (but valid) calls. The white region represents the difference between 
the expected and observed numbers of variants.

Extended Data Figure 8. Categorization of embryonically expressed genes
We downloaded expression data (Kang, H. J. et al. Nature 478, 483–489, 2011) from http://
www.brainspan.org/static/download.html. The data set provides normalized expression 
levels for ~17,000 genes across brain regions from 36 individuals, 18 of which were from 
embryos. Each brain was further subdivided into 14 anatomical regions for a total of 508 
regions. We computed correlation values for the 17,000 genes, and generated a graph by 
connecting genes that had correlations >0.85. We then identified connected components and 
averaged the expression of genes within these components as a function of the annotated age 
of the brain and by region. Each region is sorted first by age, then by type. The averaged 
normalized expression of the 1,912 genes in the first component decreases after birth, and 
hence we call this set “embryonic.” See Supplementary Table 7 for the list of embryonic 
genes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Rates of de novo events by mutational type in the SSC
Rates per child are estimated from the 40× joint coverage target region, then extrapolated for 
the entire exome. Mutation types are displayed by class, and the combined rate for all LGDs 
is shown at the bottom right. For each event type, the significance between probands and 
unaffected is given.
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Fig. 2. Recurrently hit genes and non-verbal intelligence quotient (IQ)
Affected females account for 13.5% of the SSC with mean IQ of 78, whereas affected males 
have mean IQ of 86 (upper panel, p-value 10−7 by Student's t-test). The vertical dashed line 
indicates an IQ of 90. The middle panel (left) shows IQ for affected children with LGD 
mutations in genes hit recurrently (right). Recurrently mutated genes are clustered into four 
categories as shown. The last four columns give overall numbers of DN LGD and missense 
(MS) mutations. In the bottom panel, we consider eight classes of DN mutations: all LGDs, 
recurrent LGDs, LGDs in FMRP targets (FXG), LGDs in chromatin modifiers (CHM), 
LGDs in embryonically expressed genes (EMB), all missense mutations, recurrent missense 
mutations and synonymous mutations. Probands are divided by the presence of DN 
mutations and gender. Means, 95% confidence intervals and p values (Student's t-test) are 
shown.
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Fig. 3. Number of vulnerable genes and class vulnerability
We assume the property of being vulnerable gene is independent of gene length, but the 
probability of being hit by mutation is proportional to gene length. We use the observed rates 
of mutation of a given type in specified populations and number of recurrent mutations to 
estimate the number of genes vulnerable to those mutations (top). The degrees of 
vulnerability in those classes are the distributions shown in the lower panel (Methods).
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Fig. 4. Estimated contributions of CNVs, LGDs and missense DN mutations to simplex ASD
Ascertainment differentials for three types of DN mutation (CNVs, LGDs and Missense) are 
interpreted as a measure of ‘Contribution,’ the percent of probands in whom the mutation 
contributed to diagnosis. We combine the three mutation types in ‘Total’ on the assumption 
of additivity. We present this measure for ‘All’ probands and selected subpopulations as 
indicated. We also show the expected contribution of all DN mutation in a simplex 
collection computed from a simple genetic model9 (‘Model’). Error bars represent 95% 
credibility intervals.
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