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Abstract

A Micro-Mechanically Based Continuum Model for Strain-Induced Crystallization in
Natural Rubber

by

Sunny Jigger Mistry

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Sanjay Govindjee, Co-Chair

Professor Panayiotis Papadopoulos, Co-chair

Recent experimental results show that strain-induced crystallization can substantially
improve the crack growth resistance of natural rubber. While this might suggest superior
designs of tires or other industrial applications where elastomers are used, a more thorough
understanding of the underlying physics of strain-induced crystallization in natural rubber
has to be developed before any design process can be started. The objective of this work is to
develop a computationally-accessible micro-mechanically based continuum model, which is
able to predict the macroscopic behavior of strain crystallizing natural rubber. While several
researchers have developed micro-mechanical models of partially crystallized polymer chains,
their results mainly give qualitative agreement with experimental data due to a lack of good
micro-macro transition theories or the lack of computational power. However, recent devel-
opments in multiscale modeling in polymers provide new tools to continue this early work.
In this thesis, a new model is proposed to model strain-induced crystallization in natural
rubber. To this end, a micro-mechanical model of a constrained partially crystallized poly-
mer chain with an extended-chain crystal is derived and connected to the macroscopic level
using the non-affine micro-sphere model. On the macroscopic level, a thermodynamically
consistent framework for strain-crystallizing materials is developed, and a description of the
crystallization kinetics is introduced. For that matter, an evolution law for crystallization
based on the gradient of the macroscopic Helmholtz free energy function (chemical potential)
in combination with a simple threshold function is used. A numerical implementation of the
model is proposed and its predictive performance assessed using published data.
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Chapter 1

Introduction

Historically, the prediction of a material’s behavior is closely related to expensive lab-
oratory equipment. However with the comparatively cheap computational power readily
available nowadays, numerical methods play an increasingly significant role in the modeling
of a wide range of materials. Of particular interest are materials where the macroscopic
behavior is driven by the formation and evolution of microstructure. Being able to predict
the physics of the microstructure and its macroscopic effects is crucial to the thorough un-
derstanding of the material and to the design of new tailored materials. The goal of this
thesis is to develop a computationally-accessible micro-mechanically motivated constitutive
model for strain-induced crystallization in natural rubber.

1.1 Motivation

The study of strain-induced crystallization (SIC) in natural rubber (NR) dates back
almost a century to Katz (1925). Using X-ray diffraction, he discovered that NR undergoes
a transformation from an initially amorphous solid state to a semi-crystalline state when
subjected to strain. Ever since, SIC in NR has been a topic within the complex subject
of rubber elasticity, not only because NR is widely used in industrial applications such as
tires, seals, and medical devices, but also because its study might deepen the understanding
of the Mullins’ effect (Govindjee and Simo, 1991) and provide additional insight into the
superior crack growth resistance of natural rubber (Le Cam and Toussaint, 2010). Despite
this apparent significance, only scant work has been done in the development of a micro-
mechanically based continuum model of SIC in NR.

The phenomenon of SIC in NR can be observed and measured in several different ways. In
(Gent, 1954) the author uses a hydrostatic weighing technique (Gee et al., 1950) to measure
the decrease in volume of a vulcanized rubber sample when it is stretched. Thereby the
volume reduction is identified to be proportional to the evolution of the degree of crystallinity
in the material. A 1% change in volume is determined to occur for 11.7% crystallinity by
comparing it with early X-ray scattering results from Goppel (1949a,b); Arlman (1949);
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Figure 1.1: Typical experimental results (taken from Albouy et al. (2005)) for a vulcanized
natural rubber sample: (left) the typical stress-stretch hysteresis loop for uniaxial loading
cycles; (right) the degree of crystallinity χ measured using an in-situ synchrotron wide-angle
X-ray diffraction method.

Goppel, J.M. and Arlman, J.J. (1949); Arlman and Goppel (1951). Another approach is
chosen by Wildschut (1946), where stress-relaxation at a constant stretch is measured as a
function of decreasing temperature. The author observes that the stress-relaxation can be
used as a measure for the degree of crystallinity. Both of the suggested techniques proved
to be rather time consuming and only provided coarse measures of crystallinity.

The state of the art in measuring degrees of crystallinity today are in-situ synchrotron
wide-angle X-ray diffraction methods as used in Toki et al. (2000); Murakami et al. (2002);
Toki et al. (2003); Trabelsi et al. (2003); Toki et al. (2005); Chenal et al. (2007). In Figure
1.1, experimental results from Albouy et al. (2005) are shown to point out some typical
features of the macroscopic behavior of vulcanized natural rubber. The stress-strain curves
show a characteristic hysteresis loop consisting of S-shaped loading/unloading curves and an
upturn in stress towards higher stretches. The degree of crystallinity only starts evolving at
stretches of around 4 and reaches maximum levels of 20% to 25%.

On the microscopic scale, NR consists of highly flexible, mobile and long polymer chains
that build random network microstructures through cross-links, when vulcanized. SIC from
that perspective can be seen in the following way: When a stretch is applied on the macro-
scopic scale, the polymer chains in the network start to stretch as well and start aligning
occasionally, building crystalline structures. The higher the applied stretch will be, the more
chains will build regular aligned crystal structures. A sketch of this strain-induced change
of microstructure is shown in Figure 1.2. It is also important to note that this crystallizing
process is observed at room temperature.

The task at hand for this thesis is to predict the behavior of SIC in NR as shown in
Figure 1.1 by connecting the microscopic and the macroscopic viewpoints. The focus hereby
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Figure 1.2: Sketch of SIC in NR for part of a typical random network microstructure: when a
stretch is applied to a undeformed amorphous solid state (left), polymer chains start aligning
and building crystalline structures at room temperature.

is on modeling the evolution of the microstructure and linking it to its macroscopic behavior
in a thermodynamically consistent and computationally accessible way.

1.2 State of the Art

In order to develop a model of SIC in NR that takes advantage of the evolution of the
microstructure to predict the macroscopic behavior, the following three equally important
parts have to be considered:

1. A micro-mechanical model of a partially crystallized polymer chain (see Figure 1.2).

2. A description of the crystallization kinetics in polymers, i.e. the time evolution of the
degree of crystallinity within the material (see right plot in Figure 1.1).

3. A micro-to-macro transition that connects micro-kinematic variables of the single chain
with macroscopic continuum deformation measures.

While extensive work has been done on each of the separate parts, very little work has been
done in combining them into a multiscale model. Thus, the main contributions to each of
the three parts are summarized next.

The cornerstone of modeling SIC was laid by Flory’s statistical mechanical theory of
extended chain crystallization (Flory, 1947). In this theory he uses a Gaussian distribution
function to model the partially crystallized polymer chains and assumes that the crystallized
part of the chain is oriented in the direction of stretch. There is no evolution of the degree
of crystallinity involved, since equilibrium crystallization is assumed. All the relations in
Flory’s model are derived for uniaxial loading using an affine deformation assumption, which
is known to result in inaccurate predictions for large deformations. Some years later, Gaylord
(1976) and Gaylord and Lohse (1976) developed an improved theory of SIC with two modified
assumptions. Unlike Flory, the authors took chain folding into account, which adds insight
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about crystal morphologies and orientation, and used a non-Gaussian distribution function
derived by Wang and Guth (1952) to model the polymer chains. At the same time another
model was proposed by Smith (1976). He relaxed Flory’s condition that the extended crystal
has to be oriented in the direction of stretch by saying that the direction a chain takes
through a crystal is determined by the first few links of a chain entrapped within the crystal
itself. Even though all of the above mentioned models have good qualitative agreement
with experimental data, they are not able to fully reproduce the behavior as shown in
Figure 1.1. The reasons for this are two fold. First, all of the models assume equilibrium
crystallization and thus do not consider the time evolution of crystallinity. Second, all
of them lack a satisfactory micro-to-macro transition, which accurately models the random
network microstructure of NR. However, all of them share the fact that they develop detailed
micro-mechanical models of a partially crystallized polymer chains.

Crystallization kinetics itself is a widely studied phenomenon, e.g. in the study of phase
changes in metals. Roughly speaking there are three different approaches. One of the most
extensively used approaches to describe the process of crystallization is the model of Avrami
(1939, 1940, 1941). Based on geometric considerations of nucleation and crystal growth, the
equation of Avrami is given by the exponential law ω ∝ 1− e−kVt , where ω is the degree of
crystallinity, k is the average density of nuclei, and Vt is the volume a crystal would occupy
after a time t. Here Vt depends on the growth rate and the shape of the crystal. Some
years later a similar equation was obtained by Evans (1945) and applied to temperature-
induced crystallization of Nylon 6,6 by Allen (1952). Gent (1954) was the first to extend
the treatment of Avrami to stretched natural rubber vulcanizates and approximate the time
functions governing crystal growth. A second and widely used approach is taken by Becker
(1938), Turnbull and Fisher (1949), and Hoffman and Weeks (1962). They use an Arrhenius
equation to describe the crystallization process, ω̇ ∝ exp (−∆F/(kBT )), where ω̇ is the rate
of crystallization and ∆F the free energy change upon crystallization. A third approach
first discussed for polymer crystallization by Roe and Krigbaum (1965) is based on a micro-
mechanical model of a partially crystallized polymer chain and uses its free energy gradient
(chemical potential) ω̇ ∝ −∂F/∂ω as the driving force for crystallization. All of the three
mentioned models have in common that they regard crystallization as a subject in itself and
thus do not conisder its effects on the macorscopic scale for natural rubber.

The lack of a satisfactory micro-to-macro transition has also been a challenging topic
within the micro-mechanically based modeling of rubber elasticity. A good overview of con-
stitutive models can be found in Boyce and Arruda (2000). More recently Miehe, Goktepe,
and Lulei (2004) have extended the micro-plane model of Bazant and Oh (1985) to the
so-called non-affine micro-sphere model of rubber elasticity. This is a microscopically moti-
vated finite deformation model for rubberlike materials. The model combines three special
features: Firstly, it includes a non-affine stretch component, where micro and macro stretches
are linked through a fluctuation field on a micro-sphere. The fluctuation field itself is deter-
mined by a minimization of the macroscopic free energy. Secondly, polymer cross-links and
entanglements are also considered using the so-called tube model of rubber elasticity, where
the movement of a single chain is restricted by a tube-like constraint (Doi and Edwards,
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1986). Thirdly, since closed-form solutions to the averaging integrals over a sphere are not
available, a 21-point integration scheme, as derived in the original micro-plane model of
Bazant and Oh (1985), is used.

1.3 Outline

The objective of this work is to leverage these ideas and develop a computationally-
accessible micro-mechanically based continuum model, that is able to predict the macroscopic
behavior of NR as shown in Figure 1.1. The organization of the presented thesis is as follows.
In Chapter 2 the basic concepts of continuum mechanics that build the macroscopic frame-
work for the modeling process in mind, are outlined. In particular, key deformation measures
are introduced, balance principles derived, and the Second Law of Thermodynamics is dis-
cussed. Chapter 3 presents the fundamentals of statistical mechanics, providing the tools to
physically understand and mathematically model polymeric materials from a microstructural
point of view. Chapter 4 shows how to connect macroscopic deformation measures with
kinematic variables of a random network microstructure of polymers, and provides a way to
incorporate microstructural information about polymer chains into a continuum constitutive
relation for rubberlike materials using the non-affine micro-sphere model. In Chapter 5 all
the previously introduced ideas are used to propose a new model for SIC in NR. In partic-
ular, on the microscopic level, the free energy of an unconstrained semi-crystalline polymer
chain with extended crystals is derived and connected to the macroscopic level using the
non-affine micro-sphere model. On the macroscopic level, a thermodynamically consistent
framework for strain-crystallizing materials is developed, and an evolution law for the degree
of crystallinity based on the macroscopic Helmholtz free energy is introduced, where the free
energy gradient is used as a driving force. Moreover, a threshold function for the evolution
law inspired by phase change evolution in martensitic alloys (Govindjee and Miehe, 2001)
is introduced. Finally in Chapter 6, a computationally-accessible algorithmic setting of
the proposed model is laid out, and its predictive performance is assessed by using pub-
lished data. Moreover, the physical meaning of the model parameters are emphasized in a
comparison to the recent work of Kroon (2010).
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Chapter 2

Continuum Mechanics

In this chapter, the basic concepts of continuum mechanics will be introduced. This
review is not intended to be comprehensive, but rather meant to introduce the relevant
notation and set the framework for the following chapters. The material treated here is
mainly based on the lecture notes of Govindjee (2006), Papadopoulos (2013) and Naghdi
(2001). For a more thorough treatment of the subject matter the reader is referred to the
works by Chadwick (1999), Gurtin (1982), Ogden (1997), or Holzapfel (2000). The more
advanced reader interested in the mathematical foundations of mechanics and its connection
to geometry is referred to the monographs by Truesdell and Toupin (1960), Truesdell and
Noll (1965), Bishop and Goldberg (2012), and Marsden and Hughes (1994).

2.1 Kinematics of Deformation

Kinematics is “the branch of mechanics concerned with the motion of objects without
reference to the forces which cause the motion.”1 To this end the notion of bodies, configu-
rations, their associated motions and deformation measures will be discussed here.

2.1.1 Description of Motion

Let a continuum body B be defined as a collection of infinitely many material particles2

(or material points or particles) P ∈ B and let a subset of B be denoted by S. Furthermore,
let x be the point in the three-dimensional Euclidean point space E3 occupied by a particle
P ∈ B at time t ∈ R+, and let x be its location relative to a fixed origin O in the vector space
E3. This assignment of particles P ∈ B to position vectors in E3 is called a configuration

1“kinematics”. Oxford Dictionaries. Oxford University Press.http://www.oxforddictionaries.com/
us/definition/english/kinematics (accessed November 18, 2013).

2This term should not be confused with a point mass in the Newtonian sense.
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Figure 2.1: Mapping of a physical body B to its reference configuration R0 at time t0 with
positions X and its current configuration R at time t with positions x.

mapping (or configuration) of B at time t and is described by an invertible relation

χ̄ : (P, t) ∈ B × R+ → E3, (2.1)

such that
x = χ̄(P, t) = χ̄t(P ). (2.2)

Given χ̄t, the body B may be mapped to its configuration Rt = χ̄t(B, t) at time t. Similarly,
S ⊂ B can be mapped to its configuration Pt = χ̄t(S, t). Since the configuration mapping
χ̄t is invertible, the position x = χ̄t(P ) ∈ Rt can uniquely be associated to a particle P ∈ B
according to P = χ̄−1

t (x) and the interpenetration of particles (matter) is excluded. The
motion of the body B can thus be defined as a one parameter family of configurations Rt

represented by χ̄t. This description however is of limited use because there is no straight-
forward way of labeling the particles of the body. A more useful description of the motion
of B is found by looking at two of its configurations.

Let the configuration of the body B at an arbitrary time t0 be denoted as the reference
configuration R0 := χ̄t0(B), also referred to as the Lagrangian configuration. Similarly,
let the configuration at time t be denoted as the current configuration R := Rt = χ̄t(B)
(and likewise P := Pt = χ̄t(S)), also termed spatial or Eulerian configuration. The points
occupied by a particle P ∈ B can then be labeled by the referential position X := χ̄t0(P ) ∈
R0 and the current position x := χ̄t(P ) ∈ R, respectively. By exploiting the invertibility of
χ̄t0 , the motion of a body can also be described by a mapping χt between χ̄t0(P ) and χ̄t(P )
as

x = χ̄t(P ) = χ̄(χ̄−1
t0
(X), t) =: χ(X, t) = χt(X). (2.3)
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The so-called deformation map χt

χt(X) :=

{
E3 × R+ → E3

(X, t) 7→ x = χt(X),
(2.4)

represents the referential or Lagrangian description of the body motion and maps a referen-
tial position X ∈ R0 of a particle P ∈ B to the current position x ∈ R at time t, see Figure
2.1. Also note the invertibility of the mapping χ

X = χ̄t0(P ) = χ̄t0(χ̄
−1
t (x)) = χ−1

t (x). (2.5)

To further distinguish between referential and spatial quantities, let {E1,E2,E3} and
{e1, e2, e3} be fixed right-hand orthonormal bases for the reference and the current config-
uration, respectively. Using these bases, the position vectors X and x, and the motion χt

can be expressed as

X = XAEA, x = xiei, and xiei = χi(XAEA, t)ei, (2.6)

where the Einstein summation convention is used. The velocity and acceleration vectors are
given by

v =
∂χ(X, t)

∂t
, a =

∂2χ(X, t)

∂t2
, (2.7)

respectively. With the definition of the body motion (2.4) at hand, fundamental finite
deformation measures can be introduced.

2.1.2 Deformation Measures

The key deformation measure used in finite deformation kinematics is the deformation
gradient. It is defined as the gradient of the deformation map (2.4) with respect to the
reference position X ∈ R0,

F :=
∂χ(X, t)

∂X
=
∂χi(XB, t)

∂XA

ei ⊗ EA = FiAei ⊗ EA, (2.8)

which can also be written as F = Grad(χt) = ∇Xχt. Since the motion χt is invertible, the
inverse ∇xχ

−1
t (x) = F(X, t)−1 exists3 and detF ̸= 0 has to be satisfied. The deformation

gradient F can be considered as a linear map of a differential material line element4 dX in the
reference configuration into another differential line element dx in the current configuration.
A simple application of the chain rule can establish this,

dx =
∂χ(X, t)

∂X
dX = FdX. (2.9)

3Can be shown using the inverse function theorem from Rudin (1976, Chapter 9).
4A volume, surface, or curve which consists of the same material points in all configurations is called

material.
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Typically, dX will stretch and rotate to dx when F is applied. In order to extract stretch-
related information from F, the splits dX = MdS and dx = mds are introduced, where
essentially dX and dx are decomposed into its unit directions M and m, and lengths dS and
ds, respectively. This allows the stretch of an infinitesimal line element dX to be defined as
λ = ds

dS
. Using the stretch λ, (2.9) can be rewritten as

dx = FdX = FMdS = mds, (2.10)

and thus
λm = FM. (2.11)

The stretch can then easily be extracted by

(λm) · (λm) = λ2(m ·m) = λ2 = (FM) · (FM)

= M · (F⊤F)M

= M ·CM,

(2.12)

where C is the right Cauchy-Green tensor, defined as

C := F⊤F = FiAFiB EA ⊗ EB = CAB EA ⊗ EB. (2.13)

The symmetric and positive-definite kinematic measure C allows the determination of the
stretch λ of an infinitesimal material line element dX, given its direction M.

Another important kinematic quantity is found, when the difference in the squares of the
lengths of dX and dx is considered,

ds2 − dS2 = (dx · dx)− (dX · dX)

= (FdX) · (FdX)− (dX · dX)

= dX · (F⊤F) dX− (dX · dX)

= dX · (C) dX− (dX · dX)

= dX · (C− I) dX

= dX · 2E dX,

(2.14)

where

E :=
1

2
(C− I) =

1

2
(F⊤F− I) =

1

2
(FiAFiB − δAB)EA ⊗ EB (2.15)

is the Green-Lagrange strain tensor 5. Note that the tensor E is symmetric and vanishes,
when the body is not undergoing any deformation (F = I) or when F is a rotation (F⊤F = I).
To summarize, neither C nor E provide information about the rotation of dX. In order to

5It is also sometimes referred to as the Green-St.Venant strain tensor.
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have a quantity that yields rotation-related information based on F, the polar decomposition
theorem is used. It states that any invertible tensor F can be uniquely decomposed into

F = RU = RiBUBA ei ⊗ EA, (2.16)

where R is an orthogonal tensor (R⊤R = RR⊤ = I) and U is a symmetric positive definite
tensor. Combining the polar decomposition theorem and the definition of C (2.13) yields
the relation

C = F⊤F = (RU)⊤(RU) = U⊤R⊤RU = U2, (2.17)

where U is called the right stretch tensor. This relation implies that U can also be used to
determine the stretch of dX. Since U =

√
C, the rotation R of an infinitesimal material line

element dX can simply extracted by R = FU−1.
Once the deformation gradient F (the mapping of dX into dx) is defined, two other funda-

mental maps can be introduced. To this end, consider the transformation of an infinitesimal
material volume element dV in the reference configuration to its spatial counterpart dv,
where dV and dv denote the volume of the parallelepipeds

dV = dX1 · (dX2 × dX3) and dv = dx1 · (dx2 × dx3). (2.18)

Each dXi gets mapped according to (2.9) as dxi = FdXi. Thus using the triple product, dv
is rewritten as

dv = dx1 · (dx2 × dx3)

= (FdX1) · ((FdX2)× (FdX3))

= det
[
[FiAdX

1
A], [FiAdX

2
A], [FiAdX

3
A]
]

= det
[
FiA[dX

1
A, dX

2
A, dX

3
A]
]

= (detF) det
[
[dX1

A], [dX
2
A], [dX

3
A]
]

=: J dV,

(2.19)

where J is defined as
J = detF (2.20)

and referred to as volume map. If one assumes by convention that dV > 0 (and J > 0), then
dv < 0 cannot be reached by a continuous motion starting in the reference configuration
(since J would have to go through 0, which would violate the assumption of invertibility).
Hence, for the motion to be physically admissible, in addition to detF ̸= 0,

J = detF > 0 (2.21)

has to hold true. A motion is called isochoric (or volume-preserving) if J = 1 for all dV at
all times.
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Next, consider the transformation of an infinitesimal material surface element dA in the
reference configuration to its current image da, where dA and da denote the surface area of
the parallelograms defined by

dA = dX1 × dX2 = NdA and da = dx1 × dx2 = nda. (2.22)

The vectors N and n are the unit normals to the corresponding surface elements. Using
(2.19), for any dX with N · dX > 0 it follows that

dv = dx · (dx1 × dx2) = dx · nda = (FdX) · nda
= J dV = JdX · (dX1 × dX2) = JdX · (NdA),

(2.23)

which implies
(FdX) · nda = JdX · (NdA). (2.24)

Since the above equation holds for any infinitesimal material line element dX, one may write

nda = JF−⊤NdA, (2.25)

a result known as Nanson’s formula, where the quantity JF−⊤ is called the co-factor of the
deformation gradient or cof F and acts as a normal map. Moreover, dotting each side with
itself and taking the square root leads to

|da|
|dA|

= J
√

N · (C−1N), (2.26)

which is a measure for the change in area, also called the area stretch.

2.1.3 Superposed Rigid-Body Motion

A motion of the body B is called rigid if the distance between any two material points
stays the same at all times. Let X and Y be two position vectors of material points in
the reference configuration, and denote their current counterparts by x = χ(X, t) and y =
χ(Y , t). Moreover, define another invertible motion χ+ with x+ = χ+(X, t) ∈ R+ and
y+ = χ+(Y , t) ∈ R+, such that χ and χ+ only differ by a rigid-body motion. Notice by
looking at Figure 2.2, that

x+ = χ+(X, t) = χ+(χ−1
t (x), t) = χ̄+(x, t) = χ̄+(χt(X), t),

y+ = χ+(Y , t) = χ+(χ−1
t (y), t) = χ̄+(y, t) = χ̄+(χt(Y ), t),

(2.27)

and that the superposed motion χ̄+(x, t) is also invertible for fixed t.
Since the configurations R and R+ only differ by a rigid-body motion,

(x− y) · (x− y) = (x+ − y+) · (x+ − y+)

=
[
χ̄+(x, t)− χ̄+(y, t)

]
·
[
χ̄+(x, t)− χ̄+(y, t)

]
,

(2.28)
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Figure 2.2: Configurations associated with the motions χ, χ+, and the superposed rigid
motion χ̄+.

has to hold for all x, y in R at time t. Taking derivatives of (2.28) with respect to x and
then y, yields [

∂χ̄+(x, t)

∂x

]⊤
=

[
∂χ̄+(y, t)

∂y

]−1

. (2.29)

Since x and y are chosen independently, the left- and the right-hand side of (2.29) can only
be a function of time, thus[

∂χ̄+(x, t)

∂x

]⊤
=

[
∂χ̄+(y, t)

∂y

]−1

= Q⊤(t). (2.30)

One can then conclude that
∂χ̄+

(x,t)

∂x
=

∂χ̄+
(y,t)

∂y = Q(t), and that Q(t) is an orthogonal

tensor with Q⊤(t)Q(t) = I. In order to figure out if Q(t) is proper or improper orthogonal,
observe that

F+ =
∂χ+

∂X
=
∂χ+

∂x

∂χ

∂X
= QF. (2.31)

Since the determinants of both F and F+ have to be positive by (2.21), detQ has to be
positive as well, thus detQ = 1 and Q is proper orthogonal. From (2.30) it can be concluded
that

x+ = χ̄+(x, t) = Q(t)x+ c(t), (2.32)

which is the general form of the superposed rigid motion.

Remark 2.1. Another way of looking at the motions χ and χ+ is to regard them as the
motions of a body recorded by two observers (see e.g. Holzapfel (2000, Chap. 5)). The recorded
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motions will differ by a rigid motion (2.32), which represents the relative motion of the two
observers to each other.

2.2 Basic Physical Principles

In this section the fundamental balance laws including the conservation of mass, and
balance of linear momentum, angular momentum and energy are introduced. These laws
must be satisfied at all times and are required to set up initial boundary value problems in
thermomechanics. In order to derive these balance laws, the divergence theorem and the
Reynolds’ transport theorem are reviewed first.

2.2.1 Divergence Theorem

Let P0 ⊆ R0 be a bounded closed region with a smooth boundary ∂P0, and define a
vector function per unit reference area v(X) : P0 → E3. Then, the divergence of v satisfies∫

P0

Div (v(X)) dV =

∫
∂P0

v(X) ·N dA =

∫
∂P0

v(X) · dA, (2.33)

where N is the outward normal vector to the surface ∂P0 and where Div (v(X)) :=
tr(Grad(v(X))) = ∇X · v(X) = ∂vA/∂XA. Equation (2.33) is known as the classical diver-
gence theorem (or Gauss’ divergence theorem) and relates the flux of v through the surface
∂P0 to the behavior of v in P0. For a second order tensor function T : P0 → L(E3, E3) the
theorem would read∫

P0

Div (T(X)) dV =

∫
∂P0

T(X)N dA =

∫
∂P0

T(X) dA, (2.34)

where Div(T(X)) = (∂TAB/∂XB)EA. In the general case of a k-th order Tensor TIJ...P the
integral theorem in component form (for the sake of clarity) is given by∫

P0

TIJ...P,Q dV =

∫
∂P0

TIJ...PNQ dA, (2.35)

where NQ are the components of the normal vector to ∂P0.

2.2.2 Reynolds’ Transport Theorem

Let the particles occupying the region P0 ⊆ R0 with the boundary ∂P0 at time t0 occupy
the closed and bounded region P ⊆ R with the smooth boundary ∂P at time t, see Figure
2.3. Moreover, let ϕ be a scalar field defined by a referential or a spatial function

ϕ = ϕ̂(X, t) = ϕ̃(x, t), (2.36)
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Figure 2.3: Region P0 ⊆ R0 with the boundary ∂P0 at time t0 and its spatial counterpart
P ⊆ R and ∂P at time t.

where both ϕ̂ and ϕ̃ are continuously differentiable in both variables. When discussing
balance laws, the ability to manipulate material time derivatives of volume integrals defined
in a subset P of the current configuration R is crucial. The Reynolds’s transport theorem
provides exactly that. Namely, it states that

d

dt

∫
P
ϕ̃ dv =

∫
P

(
ϕ̇+ ϕ̃ div v

)
dv, (2.37)

which can be proven by the usual approach of mapping the integral on the left-hand side to
the (fixed) reference configuration, interchanging the differentiation and integration opera-
tions, evaluating the integrand, and then mapping the integral back to the current configu-
ration. The Reynolds’ transport theorem (2.37) can also be restated in various forms,

d

dt

∫
P
ϕ̃ dv =

∫
P

(
ϕ̇+ ϕ̃ div v

)
dv

=

∫
P

[
∂ϕ̃

∂t
+
∂ϕ̃

∂x
· v + ϕ̃ div v

]
dv

=

∫
P

[
∂ϕ̃

∂t
+ div(ϕ̃v)

]
dv

=

∫
P

∂ϕ̃

∂t
dv +

∫
∂P
ϕ̃v · n da,

(2.38)

where the divergence theorem (2.33) was used in the last step. Note that (2.37) and (2.38)
work for vector and tensor functions without any changes.

2.2.3 Conservation of Mass

The mass m(S) of any part S of the body B is defined in terms of the referential mass
density ρ0 = ρ0(X, t) as

m(S) =
∫
P0

ρ0 dV, (2.39)
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where P0 is the region occupied by S in the reference configuration. Alternatively, in terms
of the spatial mass density ρ(x, t), the mass is defined as

m(S) =
∫
P
ρ dv, (2.40)

where P is the region occupied by S in the current configuration. The conservation of mass
states that for any part S of the body B, the mass m(S) remains constant at all times, and
hence

d

dt
m(S) = d

dt

∫
P
ρ dv = 0. (2.41)

This equation is an integral or global form of the conservation of mass in the spatial descrip-
tion. A simple application of the Reynold’s transport theorem (2.38) then yields,∫

P
(ρ̇+ ρ div v) dv = 0, (2.42)

and using the localization theorem (see e.g. Gurtin et al. (2010, Chap.153)), it can be rewrit-
ten in a local form as,

ρ̇+ ρ div v = 0, (2.43)

also known as the “continuity” equation.
A global form of the balance of mass in the referential description can be obtained by

using (2.40), (2.39), and (2.19)

m(S) =
∫
P
ρ dv =

∫
P0

ρJ dV =

∫
P0

ρ0 dV, (2.44)

from which it follows that ∫
P0

(ρJ − ρ0) dV. (2.45)

Localization of this equation yields the local form of mass conservation in referential descrip-
tion,

ρ0 = ρJ. (2.46)

2.2.4 Balance of Linear Momentum

The linear momentum of any part S of the body B is defined in terms of the velocity
(2.7) as ∫

P
ρv dv, (2.47)

where P is the region occupied by S in the current configuration. In order to formulate the
balance law, two types of external forces acting on S at any time t are admitted: (i) body
forces per unit mass (e.g. gravitational, magnetic) denoted by b = b(x, t), which are exerted
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on the interior of S, and (ii) contact forces per unit area t = t(x, t;n) = t(n)(x, t), which
act on the boundary surface ∂S and depend on the outward unit normal n to that surface6.
These contact forces are also referred to as the traction vectors or stress vectors. Similar to
(i) and (ii), body couples (per unit mass) and surface couples (per unit area) could also be
introduced, but they are typically omitted in classical continuum mechanics.

The balance of linear momentum states that the material derivative of the linear mo-
mentum of S at a time t is equal to the total external force acting on it at that time.
Mathematically the postulate reads

d

dt

∫
P
ρv dv =

∫
P
ρb dv +

∫
∂P

t(n) da, (2.48)

which can be rewritten using Reynold’s theorem (2.38) and the balance of mass (2.43) as,∫
P
ρa dv =

∫
P
ρb dv +

∫
∂P

t(n) da. (2.49)

In the special case where the acceleration a vanishes, the balance of linear momentum
simply says that the sum of all external forces has to vanish, which leads to the classical
mechanical equilibrium of statics.

Remark 2.2. Throughout this thesis, quasistatic conditions will be assumed. This means
that any type of loads are applied very slowly such that the body can be assumed to be in
mechanical equilibrium at all times. In terms of the motion of the body, this assumption
means that the inertial terms in (2.49) can be neglected,

a =
∂2χ(X, t)

∂t2
≈ 0. (2.50)

For the sake of consistency, all the derivations in this chapter are carried out including the
inertial terms.

2.2.5 Balance of Angular Momentum

The angular momentum of any part S of the body B with respect to the origin in E3 is
defined in terms of the velocity (2.7) and the position vector x (2.6) as∫

P
x× ρv dv, (2.51)

where P is the region occupied by S in the current configuration. The balance of angular
momentum then states that the rate of change of the angular momentum of S at a time t

6The dependence of the contact forces on the position and the normal vector is also known as Cauchy’s
hypothesis.
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is equal to the moment of all external force acting on it at that time. Mathematically the
postulate reads

d

dt

∫
P
x× ρv dv =

∫
P
x× ρb dv +

∫
∂P

x× t(n) da, (2.52)

which can be rewritten using Reynold’s theorem (2.38) and the balance of mass (2.43) as,∫
P
x× ρa dv =

∫
P
x× ρb dv +

∫
∂P

x× t(n) da. (2.53)

The two balance laws (2.49) and (2.53) are also referred to as Euler’s laws.
Again, in the special case where the acceleration a vanishes, the balance of angular

momentum simply says that the sum of all external moments has to vanish, which leads to
the classical mechanical equilibrium of statics.

2.2.6 Stress Vector and Stress Tensor

In order to find the local forms of the two preceding balance laws (2.49) and (2.53), the
contact force terms have to be written as volume integrals. This can be achieved by way
of Cauchy’s lemma and Cauchy’s theorem. Cauchy’s lemma states that the stress vectors
acting on opposite sides of the same surface at a point are equal in magnitude and opposite
in direction,

t(x, t : n) = −t(x, t : −n). (2.54)

Even though this lemma looks very similar to Newton’s third law in particle mechanics
(action-reaction principle), Cauchy’s lemma can be derived from the linear momentum bal-
ance (see e.g. Gurtin (1982, Chap. 5)) and is thus not a principle.

Furthermore, Cauchy’s theorem then states that at every point on S, the spatial traction
vector is a linear map of the corresponding outward unit normal,

t(n)(x, t) = T(x, t)n(x, t), (2.55)

where the tensorT is called the Cauchy stress tensor. The theorem can be proven using linear
momentum balance (2.49) and Cauchy’s lemma (2.54) (see e.g. Gurtin et al. (2010, §19.5),
or Gurtin (1982, §14)). While the spatial traction vector t measures current force per unit of
current area da, it is also possible and desirable to resolve the current traction vector on the
reference area dA. To this end, a (nominal) traction vector p = p(X, t;N) = p(N)(X, t) is
introduced measuring the current force per unit reference area dA. The spatial and nominal
traction are then related by

df = t(n) da = p(N) dA, (2.56)

where df is the current force. Similarly to Cauchy’s theorem, it can immediately be concluded
that

p(N)(X, t) = P(X, t)N(X), (2.57)
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where P(X, t) is called the first Piola-Kirchhoff stress and N is the reference unit normal.
Using (2.56) with (2.55) and (2.57), and recalling Nanson’s formula (2.25) yields the relation

PN dA = Tn da = TJF−⊤N dA, (2.58)

such that
JT = PF⊤. (2.59)

Returning to the global form of linear momentum balance (2.49), the contact force term
can easily be rewritten as a volume integral by using Cauchy’s theorem (2.55) and applying
the divergence theorem (2.34), leading to∫

P
(ρa− ρb− divT) dv = 0. (2.60)

The local form in the spatial description then reads,

divT+ ρb = ρa ⇔ Tjl,l + ρbj = ρaj. (2.61)

By the same token, the global form of angular momentum balance (2.53) can be written in
index notation as ∫

P
Tjieijk + xieijk (Tjl,l + ρbj − ρaj) dv = 0. (2.62)

Recalling the local form of linear momentum balance (2.61), the local form of the angular
momentum balance in the spatial description reads,

Tjieijk = 0 ⇔ T = T⊤. (2.63)

In order to derive the equivalent statements in the reference configuration, the balance
laws (2.49) and (2.53) have to be pulled back by applying (2.19), (2.46), and (2.56), leading
to ∫

P0

ρ0a dV =

∫
P0

ρ0b dV +

∫
∂P0

p(N) dA, (2.64)

and ∫
P0

x× ρ0a dV =

∫
P0

x× ρ0b dV +

∫
∂P0

x× p(N) dA. (2.65)

The local forms in the referential description are then derived in the same way as in the
corresponding spatial description by applying (2.57) and (2.34) to (2.64), resulting in∫

P0

(ρ0a− ρ0b−DivP) dV = 0, (2.66)

and its local counterpart

DivP+ ρ0b = ρ0a ⇔ PjA,A + ρ0bj = ρ0aj. (2.67)
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By the same token, the global form of angular momentum balance (2.65) can be written in
index notation as ∫

P0

FiAPjAeijk + xieijk (PjA,A + ρ0bj − ρ0aj) dV = 0, (2.68)

and localized to yield,
FiAPjAeijk = 0 ⇔ FP⊤ = PF⊤. (2.69)

2.2.7 Balance of Energy

In order to account for the interconvertibility of mechanical work and heat, the balance
of energy, also referred to as the First Law of Thermodynamics, has to be introduced. It
states that the time rate of change of the total energy K(P) +U(P) is equal to the the sum
of the work rate R(P) and the rate of heating H(P),

d

dt
[K(P) + U(P)] = R(P) +H(P). (2.70)

The kinetic energy of S occupying P is defined as K(P) =
∫
P

1
2
ρv · v dv, and its stored

internal energy is denoted by U(P) =
∫
P ρϵ dv, where an internal energy per unit mass

ϵ = ϵ(x, t) is assumed to exist. The rate of work done by all external forces is defined as
R(P) =

∫
P ρb · v dv +

∫
∂P t · v da, and the rate of heating H(P) =

∫
P ρr dv −

∫
∂P q · n da

is composed of the heat supply per unit mass r = r(x, t) and the outward normal heat flow7

q(x, t) · n. The global balance in the current configuration (2.70), can be localized using
(2.19), (2.46), (2.34), and (2.61), resulting in

ρϵ̇ = T ·D+ ρr − div q, (2.71)

where D is defined as the symmetric part of the velocity gradient L := ∇xv. Through
a similar derivation, the first law of thermodynamics can be reformulated in the reference
configuration as

ρ0ϵ̇ = S · Ė+ ρ0r −Div q0, (2.72)

where q0 = qJ · F−⊤ and the symmetric second Piola-Kirchhoff stress

S = S⊤ := F−1P = JF−1TF−⊤ (2.73)

are used. Note that the stress power term T ·D is transformed as∫
P
T ·D dv =

∫
P
T ·L dv =

∫
P

(
1

J
PF⊤

)
·L dv =

∫
P0

(
PF⊤) ·L dV

=

∫
P0

tr
[(
PF⊤)L⊤] dV =

∫
P0

tr
[
P(LF)⊤

]
dV =

∫
P0

tr
[
PḞ⊤

]
dV

=

∫
P0

P · Ḟ dV,

(2.74)

7The existence of the heat flux vector q can be proven using a tetrahedron argument as used in Cauchy’s
theorem.
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and, ∫
P
T ·D dv =

∫
P0

P · Ḟ dV =

∫
P0

(FS) · Ḟ dV =

∫
P0

S · (F⊤Ḟ) dV

=

∫
P0

S · 1
2
(Ḟ⊤F+ F⊤Ḟ) dV

=

∫
P0

S · 1
2
Ċ dV =

∫
P0

S · Ė dV.

(2.75)

2.2.8 Summary

Before the Second Law of Thermodynamics and considerations associated with it are
introduced in the next section, kinematic definitions and balance principles in the referential
description under quasistatic conditions are briefly summarized:

The deformation map and the deformation gradient

x = χt(X) and F = ∇Xχt

The conservation of mass
ρ0 = ρJ

The balance of linear momentum

DivP+ ρ0b = 0

The balance of angular momentum

FP⊤ = PF⊤

The balance of energy
ρ0ϵ̇ = ρ0r −Div q0 + S · Ė

Box 2.1: Summary of kinematic definitions and balance principles.

2.3 Thermoelasticity

A very popular approach to introduce thermoelasticity is discussed in Coleman and Noll
(1963), where entropy is simply admitted as a primitive variable and then subjected to
the Clausius-Duhem inequality. In a similar fashion, Green and Naghdi (1977) also admits
entropy and postulates a balance of entropy. In both cases, no prescription to physically
determine the entropy is offered. However, Serrin (1996), Rivlin (1973, 1975); Rivlin et al.
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(1997), and Casey and Krishnaswamy (1998) take an approach where entropy is not a priori
assumed to exist and construct an entropy function, which helps to add meaning to a rather
abstract quantity. The notion of entropy will be discussed from a microscopic point of view
in Section 3.2.4. In this section the main ideas from Casey (1998) for thermoelastic materials
are introduced.

In addition to the equations summarized in Box 2.1, let the absolute temperature history
of the body B be described by the function

T = Θ(X, t) ≥ 0 ∀ t, (2.76)

with the pair (χ,Θ) being called a process. Moreover, let a thermoelastic material be given
by the constitutive equations

ϵ = ϵ̂(E, T ), S = Ŝ(E, T ), q0 = q̂0(E, T, g0), (2.77)

where g0 = GradT = ∂Θ/∂X. It is assumed that q̂0 satisfies the condition

q̂0(E, T, 0) = 0, (2.78)

and that for any fixed value of the temperature, the stress-strain relation is invertible, yielding
the form

E = Ê(S, T ). (2.79)

The pair (E, T ) can be viewed as a point in a seven-dimensional Euclidean vector space,
called the strain-temperature space, and likewise, the pair (S, T ) can be viewed as a point
in the seven-dimensional stress-temperature space. As time advances, both pairs trace out
curves in their corresponding spaces.

In order to derive an entropy function, let the body undergo a homothermal process from
an arbitrary time t0(< t) to t. Since g0 = 0 in such a process, the heat flux vanishes
according to (2.78). Therefore, the balance of energy from Box 2.1 reduces to

ρ0ϵ̇ = ρ0r + S · Ė (homothermal process). (2.80)

As a next step, the Clausius integral is assumed to be path-independent in strain-temperature
space, ∫ t

t0

r

T
dt =

∫ t

t0

1

T

{
ϵ̇− S · Ė

ρ0

}
dt, (2.81)

which is also referred to as “Part I” of the Second Law of Thermodynamics. This allows the
definition of a function S = Ŝ(E, T ) with Ŝ(0, T0) = 0 and ϵ̂(0, T0) = 0, such that

Ṡ =
r

T
=

1

T

{
ϵ̇− S · Ė

ρ0

}
(2.82)
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for homothermal processes. By additionally introducing a Helmholtz free energy function

ψ = ψ̂(E, T ) = ϵ− S T, (2.83)

the Gibbs equation can be deduced from (2.82) and (2.83) as

ρ0ψ̇ = S · Ė− ρ0S Ṫ . (2.84)

Thus, assuming the path-independency of the Clausius integral and any homothermal pro-
cess,

ρ0

(
∂ψ̂

∂T
+ S

)
Ṫ +

(
ρ0
∂ψ̂

∂E
− S

)
· Ė = 0. (2.85)

Since this equality holds for all values of Ė and Ṫ ,

S = Ŝ(E, T ) = −∂ψ̂
∂T

(E, T ), (2.86)

and

S = Ŝ(E, T ) = ρ0
∂ψ̂

∂E
(E, T ), (2.87)

which are known as the Gibbs relations8. Even if an arbitrary process of a thermoelastic ma-
terial is considered (i.e. not homothermal anymore), at each point in the strain-temperature
space the constructed entropy function Ŝ(E, T ) and Helmholtz free energy ψ̂(E, T ) can be
evaluated. Moreover, the Gibbs relations continue to hold since they do not depend on g0.
The balance of energy from Box 2.1 can then be rewritten as

ρ0Ṡ T = ρ0r −Div q0, (2.88)

which is often referred to as the balance of entropy, but it really is an energy equation.
Once an entropy function is constructed, “Part II” of the Second Law of Thermodynamics

can be used by invoking an inequality associated with entropy change. In this case, the
version by Clausius-Duhem is adopted,

ρ0Ṡ T ≥ ρ0r −Div q0 +
q0 · g0

T
. (2.89)

Combining this inequality with the balance of entropy (2.88) yields the classical heat con-
duction inequality for thermoelastic materials

−q0 · g0 ≥ 0. (2.90)

Remark 2.3. Throughout this thesis, processes are assumed to be isothermal. This assump-
tion means that the temperature distribution of the body B is kept at a constant temperature T0
through heat exchange with a infinite ambient heat bath of constant temperature T0, yielding

Θ(X, t) = T0 = const. ⇒ Θ̇(X, t) = 0 and GradΘ(X, t) = 0. (2.91)

8If the right Cauchy-Green tensor C is used in (2.77) instead of E, then the Gibbs relation for the stress

would read S = Ŝ(C, T ) = 2ρ0
∂ψ̂
∂C (C, T )
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2.4 Constitutive Relations

The equations summarized in Box 2.1 are fundamental in describing kinematics, balance
principles and kinetics, and hold for any classical continuum at all times. However, these
equations do not characterize the type of material the body is made out of. A quick look at
the number of equations of the system summarized in Box 2.1

deformation gradient F = ∇Xχt → 9 equations

balance of linear momentum DivP+ ρ0b = 0 → 3 equations

balance of angular momentum FP⊤ = PF⊤ → 3 equations

→ 15 equations

(2.92)
and its unknowns

deformation map χt → 3 unknowns

deformation gradient F → 9 unknowns

Piola-Kirchhoff stress P → 9 unknowns

→ 21 unknowns (2.93)

reveals that the system is short of 6 equations to fully determine a material response. Hence
it is necessary to provide 6 more equations in the form of constitutive laws, which describe
the material of interest. Typically such constitutive equations are functional relationships
that relate stress components to strain measures (or their histories or rates).

In order to have thermodynamically consistent constitutive relations, the previous section
shows that an additional constitutive law for the Helmholtz free energy ψ has to be specified.
Moreover, all the constitutive laws have to be consistent with “Part II” of the Second Law
of Thermodynamics (2.89), and they also have to be invariant under superposed rigid-body
motions (2.32) (which is also often referred to as the principle of material objectivity.

There is an enormous amount of constitutive theories around that model all types of
material behavior, be it elastic, plastic, viscoelastic, isotropic, anisotropic, etc. However
the majority of the theories follow a so-called phenomenological approach, which tries to
fit mathematical equations to experimental data obtained at the macroscopic level. The
phenomenological approach however, does not relate the continuum deformation mechanisms
to the microscopic structure of the material. Since the main goal of this work is to find a
microscopically based continuum constitutive law, Chapter 3 will deal with the modeling of
materials on a microscale, Chapter 4 with the transition from the microscale back to the
macroscale for rubber-like materials, and Chapter 5 will take all these ideas and set up a
constitutive model that allows the prediction of evolution of strain-induced crystallization
in natural rubber.
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Chapter 3

Statistical Mechanics

It is well-known that a macroscopic system is a collection of atoms or molecules whose
motion is governed by some laws (e.g. Newton’s laws) with appropriate interparticle inter-
actions. However, it is immensely difficult to determine the state of the macroscopic system
by finding out positions and momenta of all its atoms because of three reasons. The first
obvious difficulty is the enormous number of degrees of freedom in a macroscopic system
(e.g. one cubic centimeter of iron roughly contains 9 · 1022 atoms and thus has 5.4 · 1023
degrees of freedom). Secondly, it is currently not possible to determine the initial conditions
for each and every atom in the system which constitutes a lack of information. Thirdly, the
exact nature of the interparticle interactions is also not known. In order to circumvent this
problem of partial information and too many degrees of freedom, statistical principles are
used to give answers in an average sense.

While the previous chapter provides a framework for the mechanical behavior of solids
from the continuum (or macroscopic) viewpoint, this chapter introduces some basic concepts
of statistical mechanics to motivate the macroscopic behavior from the atomistic (or micro-
scopic) viewpoint. The material treated here mainly follows Weiner (1983) and the lecture
notes of Govindjee (2007). For additional thorough treatments of the subject the reader is
referred to Chandler (1987) and Reif (1965). The more advanced reader interested in the
foundations of statistical mechanics is referred to the works by Khinchin (2013), Landau and
Lifshitz (1980), Gibbs (2010), and Penrose (1979).

3.1 Concepts of Classical Statistical Mechanics

As the name suggests, classical statistical mechanics combines concepts from classical me-
chanics and statistical principles. In this section the basic notions of Hamiltonian mechanics,
phase functions, time averages, microcanonical and canonical distributions are introduced.
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3.1.1 Hamiltonian Mechanics

The typical formulation of classical mechanics used in the subject of statistical mechanics
is Hamiltonian mechanics. In Hamiltonian mechanics the state of a mechanical system at
time t with N particles and n = 3N degrees of freedom is described by all its positions qi
and momenta pi

y = (q, p) = (q1, . . . , qn, p1, . . . , pn) ∈ Γ, (3.1)

where Γ is a 2n-dimensional Euclidean space called phase space which consist of all possible
states of the system. The evolution of this system is then governed by Hamilton’s equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (1 ≤ i ≤ n), (3.2)

where H(q, p) is the Hamiltonian function (or simply Hamiltonian). It maps states (or
points) y = (q, p) in the phase space to the real numbers

H : Γ → R, (3.3)

and represents the total energy of a system in state (q, p). Since the system in (3.2) only
contains first order equations, the given values of (q, p) for some time t = t0, determine the
states of the system at any other time t. The curve in phase space that is then uniquely
described by this initial state is called a trajectory of the system. In general, the Hamiltonian
of a system will not only depend on the microscopic positions and momenta, but also on
macroscopic controlling parameters of kinematic or kinetic nature. A kinematic example
would be the volume of a gas in a cylinder closed by a movable piston. Generally the
macroscopic controlling parameters will be denoted as A1, . . . ,Aν in the kinematic case and
F1, . . . ,Fν in the kinetic case. The Hamiltonian can then be written as

H = H(q, p ;A) = H(q, p ;A1, . . . ,Aν), or

H = H(q, p ;F) = H(q, p ;F1, . . . ,Fν).
(3.4)

However, in this section the controlling parameters are considered fixed and are thus omitted
in the Hamiltonian.

3.1.2 Phase Functions and Time Averages

A phase function of a system of particles with n degrees of freedom is defined as any of
its properties whose value at a time t is completely determined by its positions and momenta
in its phase space (also referred to as the microstate of the system at time t). Thus it can be
written as1 F (q1, . . . , qn, p1, . . . , pn) = F (q, p). Straightforward examples of phase functions

1Phase functions in general will also depend on the macroscopic controlling parameters, but they are
assumed to be constant in this section and are therefore omitted here.
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are the kinetic energy of a system, K(p) = 1
2

∑n
i=1 p

2
i /mi, or the total energy of the system,

H(q, p). It is well known that the value of a phase function will fluctuate wildly while the
system follows a trajectory in phase space given by (3.2). The period of such fluctuations
is typically on the order of picoseconds. Thus, any measurement on a macroscopic time
interval will be a time average of the phase function

F̂ = lim
T→∞

1

T

∫ T

0

F (q(t), p(t)) dt. (3.5)

As mentioned in the introduction to this chapter, the calculation of the trajectory (q(t), p(t))
in phase space is an impossible task, because of the system’s large number of degrees of free-
dom, the lack of information about initial conditions, and the unknown nature of interparticle
interactions. However, this problem can be circumvented by the following postulate: For
any given system with positions and momenta (q, p) and a corresponding phase space Γ, it
is possible to find a so-called distribution function ρ(q, p) with the property,

ρ ≥ 0, (3.6)

and the normalization condition ∫
Γ

ρ(q, p) dq dp = 1, (3.7)

such that for any phase function of the system,

F̄ :=

∫
Γ

F (q, p) ρ(q, p) dq dp = F̂ , (3.8)

where F̄ is called the phase average of the phase function. It is crucial to note that (3.8)
states that the phase average and the time average for any phase function of the system are
equal. Such a system is said to be ergodic2.

In order to gain a better understanding of ρ(q, p) for an ergodic system, consider the
phase function

F (q, p) :=

{
1 if (q, p) ∈ D

0 if (q, p) /∈ D,
(3.9)

where D is any region in Γ. Then,

F̄ =

∫
Γ

F (q, p) ρ(q, p) dq dp =

∫
D

ρ(q, p) dq dp, (3.10)

and

F̂ = lim
T→∞

1

T

∫ T

0

F (q(t), p(t)) dt =:
tD
T
, (3.11)

2For a detailed study of the ergodic hypothesis, see Penrose (1979).
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Figure 3.1: Isolated system A+B with crystal A and gaseous ambient B.

where tD/T is the fraction of time the system spends in region D. Using ergodicity, it follows
that

tD
T

=

∫
D

ρ(q, p) dq dp. (3.12)

In other words, the integral of ρ(q, p) over an arbitrary region D ∈ Γ describes the fraction
of time spent in that region. Moreover, the distribution function ρ(q, p) will in general also
depend on macroscopic controlling parameters.

The ergodic hypothesis (3.8) is a very important tool in that it allows the calculation
of any phase function’s time average (3.5), which corresponds to the measured macroscopic
value of a microscopic property, solely by a volume integral. Thus, it is essential to deter-
mine the explicit form of the distribution function for a system under certain macroscopic
conditions. In order to achieve this, first, the phase space dynamics of an isolated3 system
containing a crystal (system A) and a gaseous ambient (system B) are considered (see Figure
3.1) and its corresponding distribution function derived. Second, the distribution function
for the isolated system A+B is used to derive the distribution function for a single system
A interacting with a surrounding ambient.

3.1.3 Characteristics of Phase Space

3.1.3.1 Liouville’s Theorem

In statistical mechanics a single system is also often referred to as a replica, and a collec-
tion of replicas of a given system is then called an ensemble, where every replica is governed
by the same Hamiltonian.

Liouville’s theorem comes in two forms. The first form is a global statement and the
second form is a local statement. The first form states that the motion in its phase space

3An isolated system has a Hamiltonian that only depends on the positions and momenta of the system
itself.
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of an ensemble of replicas of an isolated Hamiltonian system is volume preserving. To prove
this consider a collection of replicas occupying a region D0 at time t0 with coordinates
Y = y(t0) = (q(t0), p(t0)). At a later time t, this ensemble will occupy the region Dt with
the coordinates y(t). The rate of change of the volume of Dt can then be written as

d

dt
vol(Dt) =

d

dt

∫
Dt

dy

=
d

dt

∫
D0

det

(
∂yi
∂YJ

)
dY

=

∫
D0

det

(
∂yi
∂YJ

)(
∂YK
∂yj

)
∂ẏj
∂YK

dY

=

∫
Dt

(
∂ẏj
∂yj

)
dy,

(3.13)

which has the same appearance as the statement J̇ = J div v in continuum mechanics but
with the Einstein summation convention ranging from 1 to 2n. Returning to the (q, p)
notation, the integrand of the right-hand side of (3.13) yields

∂ẏj
∂yj

=
n∑

j=1

∂q̇j
∂qj

+
∂ṗj
∂pj

=
n∑

j=1

∂2H

∂pj ∂qj
− ∂2H

∂qj ∂pj
= 0, (3.14)

where Hamilton’s equations (3.2) and sufficient smoothness of H are used. This completes
the proof of the first form of Liouville’s theorem.

The second form of Liouville’s theorem states that ρ is constant along the trajectory of
an isolated system in phase space. As before, consider a region D0 occupied by an ensemble
of replicas at time t0. At a later time t, these replicas will occupy the region Dt. Noting
that the fraction of time spent in D0 and Dt is the same, (3.12) can be used to write

0 =
d

dt

∫
Dt

ρ(y) dy

=
d

dt

∫
D0

ρ(y) det

(
∂yi
∂YJ

)
dY

=

∫
D0

dρ

dt
(y) det

(
∂yi
∂YJ

)
+ ρ(y)

d

dt

{
det

(
∂yi
∂YJ

)}
dY

=

∫
D0

dρ

dt
(y) det

(
∂yi
∂YJ

)
dY

=

∫
Dt

dρ

dt
(y) dy,

(3.15)

which has the same appearance as the balance of mass (2.43) in continuum mechanics with
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div v = 0. Since Dt is arbitrary, (3.15) yields

0 =
dρ

dt
=
∂ρ

∂t
+

n∑
i=1

∂ρ

∂qi

∂qi
∂t

+
∂ρ

∂pi

∂pi
∂t

=
∂ρ

∂t
+

n∑
i=1

∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi

=:
∂ρ

∂t
+ {ρ,H} ,

(3.16)

where the Poisson bracket {ρ,H} was introduced.

Remark 3.1. In general the Poisson bracket of any two functions over phase space is defined
as

{F,G} =
n∑

i=1

∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi
, (3.17)

and it is skew-symmetric, {F,G} = −{G,F}.

Remark 3.2. For a function over the phase space which does not explicitly depend on time,
F : Γ → R, the following holds

dF

dt
= {F,H} . (3.18)

Remark 3.3. Statistical equilibrium (or equilibrium) of an ensemble of replicas is defined
by the condition

∂ρ

∂t
= 0 or {ρ,H} = 0. (3.19)

Therefore one has statistical equilibrium when the distribution function at any point in phase
space remains constant. Throughout this work the equilibrium condition will be assumed (i.e.
no explicit time dependence of ρ). The term ∂ρ/∂t in (3.16) is just kept to retain the clarity
of the derivation.

3.1.3.2 Constant Energy Surfaces

The rate of change of the Hamiltonian H(q, p) along the trajectory of an isolated system
is given by

dH

dt
= {H,H} = 0, (3.20)

where (3.2) and the remarks above were used. This result means that H(q, p) = E is a
constant along the trajectory of an isolated system, and that the trajectory is confined to
the (2n− 1) -dimensional hypersurface S = S(E) defined by H(q, p) = E.
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3.1.3.3 Metrically Indecomposable Energy Surfaces

A constant energy surface S(E) is said to be metrically indecomposable if it cannot be
represented as a sum of of two regions S1 and S2 with nonzero areas

S = S1 + S2, (3.21)

such that a trajectory that starts in S1 remains in S1 for all time and a trajectory that begins
in S2 always stays in S2.

3.1.4 Microcanonical Distribution

Recall that for an isolated system as in Figure 3.1 the Hamiltonian H(y) and the distribu-
tion function ρ(y) are constant along its trajectory. Moreover, the evolution of the trajectory
is required to remain within the hypersurface S(E) = {y |H(y) = E}. If the hypersurface
S(E) is metrically indecomposable and ρ(y) is assumed to be continuous on S(E), then one
can prove4 that ρ(y) = C, a constant, on S(E) and zero otherwise. Thus, the microcanonical
distribution (or microcanonical ensemble) is defined by the following limit

ρ(y) := lim
∆→0


1

V (E +∆)− V (E)
if E ≤ H(y) ≤ E +∆

0 otherwise,

(3.22)

where V (E) denotes the volume of the set VE defined by

VE := {y : H(y) ≤ E} . (3.23)

For any phase function F (y) the phase average F̄ can now be computed using (3.8) and
(3.22),

F̄ = lim
∆→0

[∫
VE+∆

ρF dy −
∫
VE

ρF dy

]

=
lim∆→0

[∫
VE+∆

F dy −
∫
VE
F dy

]
/∆

lim∆→0

[∫
VE+∆

dy −
∫
VE

dy
]
/∆

=
d
dE

∫
VE
F dy

d
dE
V (E)

=
1

Ω(E)

d

dE

∫
VE

F dy,

(3.24)

4See Khinchin (2013, §6) or Weiner (1983, §2.5).
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where Ω(E) is called the structure function of the system and is defined as

Ω(E) :=
d

dE
V (E) = V ′(E). (3.25)

Remark 3.4. In the special case where phase functions only depend on H(y), that is F (y) =
F (H(y)), volume integrals over phase space can be simplified to∫

VE

F (y) dy =

∫ E

0

F (Ê)V ′(Ê) dÊ =

∫ E

0

F (Ê)Ω(Ê)dÊ. (3.26)

3.1.5 Systems in Weak Interaction

The Hamiltonian for an isolated system as in Figure 3.1 can be written as

HA+B(yA, yB) = HA(yA) +HB(yB) +HAB(yA, yB), (3.27)

where yA and yB denote the positions and momenta of systems A and B. The Hamiltonians
HA(yA) and HB(yB) describe the systems A and B separately, and HAB(yA, yB) describes
the interaction of the two systems.

The systems A and B are said to be in weak interaction if the interaction Hamiltonian
HAB can be neglected for the purpose of integrating over phase space. Only for that specific
use of the Hamiltonian, HA+B can be simplified to

HA+B(yA, yB) = HA(yA) +HB(yB). (3.28)

3.1.5.1 Structure Function of Systems in Weak Interaction

In order to calculate the structure function of the system A+B in weak interaction, the
volume VE(A+B) of the region

V A+B
E = {(yA, yB) : HA(yA) +HB(yB) ≤ E} (3.29)

has to be calculated and then differentiated with respect to the total energy E. The volume
can be expressed as

VE(A+B) =

∫
V A
E

∫
V B
E−HA(yA)

dyB dyA =

∫
V A
E

VB(E −HA(yA)) dyA, (3.30)

which can be rewritten using (3.26) as

VE(A+B) =

∫ E

0

VB(E − EA)ΩA(EA) dEA. (3.31)

A differentiation with respect to E then yields

ΩE(A+B) =

∫ E

0

ΩB(E − EA)ΩA(EA) dEA, (3.32)

which states that the structure function of the system A+B in weak interaction is equal to
the convolution of the structure functions of A and B.
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3.1.5.2 Distribution Function for Component of an Isolated System

Until now, only the distribution function of the isolated system A + B (3.22) has been
considered. The goal within this section however is to find the distribution function for a
single component A (orB) of the system. This can be achieved by integrating the distribution
function ρA+B over ΓB

ρA(yA) =

∫
ΓB

ρA+B dyB. (3.33)

To this end, a characteristic function ϕ(yA) is defined as

ϕ(yA) :=

{
1 for yA ∈MA

0 for yA /∈MA,
(3.34)

where MA is an arbitrary region in V A
E . Using ϕ(yA), (3.33), and (3.24) one can write∫

MA

ρA(yA) dyA =

∫
ΓA

ϕ(yA)ρA(yA) dyA

=

∫
ΓA

ϕ(yA)

(∫
ΓB

ρA+B(yA, yB) dyB

)
dyA

=

∫
ΓA+B

ϕ(yA)ρA+B(yA, yB) dyB dyA

=
1

ΩA+B(E)

d

dE

∫
V A+B
E

ϕ(yA) dyB dyA

=
1

ΩA+B(E)

d

dE

∫
V A
E

ϕ(yA)

∫
VE−HA(yA)

dyB dyA

=
1

ΩA+B(E)

d

dE

∫
V A
E

ϕ(yA)VB(E −HA(yA)) dyA

=
1

ΩA+B(E)

d

dE

∫
MA

VB(E −HA(yA)) dyA

=

∫
MA

ΩB(E −HA(yA))

ΩA+B(E)
dyA.

(3.35)

Since the region MA is arbitrary it can be concluded that,

ρA(yA) :=


ΩB(E −HA(yA))

ΩA+B(E)
for yA ∈ V A

E

0 for yA /∈ V A
E .

(3.36)
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Using (3.26) and (3.32), the normalization condition (3.7) can be checked easily∫
ΓA

ρA(yA) dyA =

∫
V A
E

ρA(yA) dyA

=

∫ E

0

ρA(yA)ΩA(ÊA) dÊA

=
1

ΩA+B

∫ E

0

ΩB(E − ÊA)ΩA(ÊA) dÊA = 1.

(3.37)

Thus, (3.36) is the distribution function for a single component of an isolated system A+B
with fixed total energy E.

3.1.6 Canonical Distribution

Isolated systems A+B with constant total energy as discussed until now are very idealized
systems. Every actual physical system will have an exchange of energy with its surroundings
to some extent. One way to get a bit closer to reality is to let the degrees of freedom of
system B go to infinity and view the system A as part of a much larger system A+B. In this
case the system A can exchange energy with system B, which constitutes its surrounding.
In order to arrive at the distribution function for such a system A, let B be an ideal gas with
n/3 atoms with atomic mass m confined to a box of edge L and assume weak interaction
between A and B. The Hamiltonian of B then reads

HB(q, p) = χB(q) +
1

2m

n∑
i=1

p2i , (3.38)

where the potential χB(q) is given by

χB(q) =

{
0 if particle inside the box

∞ if particle outside the box,
(3.39)

representing the effect of the confining box. Next, consider the volume VB(E) of the region
V B
E defined by HB ≤ E, which is needed to calculate the structure function ΩB(E). The

volume can be calculated as the product of an n-dimensional hypercube of edge L in q-space,
and an n-dimensional hypersphere of radius

√
2mE in p-space

VB(E) = Ln · π
n/2(

√
2mE)n

(n/2)!
= C0E

n/2, (3.40)

where all the constants are combined into C0. Taking a derivative of the volume with respect
to E yields the structure function

ΩB(E) =
n

2
C0E

n/2−1. (3.41)
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To continue, the distribution function in (3.36) is rewritten as

ρA(yA) =
ΩB(E −HA(yA))

ΩA+B(E)
· ΩB(E)

ΩB(E)
= C

ΩB(E −HA(yA))

ΩB(E)
, (3.42)

where C = ΩB(E)/ΩA+B(E) is independent of yA. A substitution of (3.41) into (3.42) results
in

ρA(yA) = C

(
1− HA(yA)

E

)(n/2)−1

. (3.43)

Before the limit of this expression for n → ∞ is taken, an important quantity used to
characterize the ambient B is introduced: the energy of A + B per number of degree of
freedom of B,

θ

2
:=

E

n
. (3.44)

Using this definition of θ, the limit of (3.42) works out to be

lim
n→∞

C

(
1− 2HA(yA)

θn

)(n/2)−1

= Ce−HA(yA)/θ. (3.45)

Thus, the distribution function for a system A in weak interaction with a large system B
can be written as

ρA(yA) = Ce−HA(yA)/θ (3.46)

and is called a canonical distribution (or canonical ensemble).

3.2 Corresponding Concepts in Thermoelasticity and

Statistical Mechanics

In this section the canonical and microcanonical distribution functions will be used to
motivate macroscopic concepts introduced in Sections 2.2.7 and 2.3 from an atomistic point
of view. To this end, the canonical ensemble (3.46) will be rewritten as

ρ(q, p;A, θ) = exp

{
ψ −H(q, p;A)

θ

}
, (3.47)

where ψ can be determined from the normalization condition and will depend on the macro-
scopic kinematic controlling parameters A1, . . . ,Aν (or the conjugate generalized forces
F1, . . . ,Fν) and θ. Moreover, for specific macroscopic quantities, for example, Fα(A, θ),
the corresponding microscopic phase functions will be denoted as Fm

α (q, p), with m referring
to microscopic.
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3.2.1 Temperature

Consider three systems: a system A in equilibrium with its ambient and described by

ρA(yA;AA, θA) = exp

{
ψA −H(yA;AA)

θA

}
, (3.48)

a second system B in equilibrium with its ambient and described by

ρA(yB;AB, θB) = exp

{
ψB −H(yB;AB)

θB

}
, (3.49)

and a third system composed of A and B in equilibrium with an ambient described by

ρA+B = exp

{
ψA+B −HA+B(yA, yB;AA,AB)

θA+B

}
. (3.50)

System A is said to be in thermal equilibrium with system B if,

ρA · ρB = ρA+B. (3.51)

By plugging in the distribution functions, the condition above can be rewritten as

HA+B

θA+B

=
HA

θA
+
HB

θB
. (3.52)

Moreover, if a weak interaction between A and B is assumed (3.28), the thermal equilibrium
condition reads,

HA +HB

θA+B

=
HA

θA
+
HB

θB
. (3.53)

Since HA and HB are independent, the condition can only be satisfied if

θA+B = θA = θB, (3.54)

holds true for all values of yA and yB. Thus it is clear that the microscopic parameter θ
functions like macroscopic temperature.

3.2.2 Quasi-Static Process

The concept of a quasi-static process from a macroscopic point of view is based on the
idea that any mechanical loads Aα(t) (or Fα(t)) or thermal loads θ(t) are applied very
slowly such that the body is in a state of equilibrium for all t. The microscopic analog of a
quasi-static process is found by assuming that the canonical distribution

ρ(q, p;A(t), θ(t)) = exp

{
ψ −H(q, p;A(t))

θ(t)

}
, (3.55)

can be applied for all t, where t represents a macroscopic time scale.
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3.2.3 Balance of Energy

The macroscopic balance of energy (2.71) is often mentioned in thermodynamics text-
books as

dU = dQ+ dW, (3.56)

where dU corresponds to ρϵ̇, dQ to ρr − divq, and dW to T · D. In order to identify
corresponding microscopic quantities, the focus will be on quasi-static adiabatic (dQ = 0)
processes. The statistical mechanical analog is an isolated system with a constant total
energy H(q, p;A) = E, driven by the macroscopic functions Aα(t), E(t). Such a system will
be described by a microcanonical ensemble ρmc(q, p;A, E) that is normalized to unity when
integrated over the constant energy surface S(E;A)∫

S(E,A)

ρmc(q, p;A, E) dS = 1. (3.57)

Furthermore, let the phase function for the generalized forces Fα (conjugate to Aα) be
defined as5

Fm
α (q, p;A) =

∂H

∂Aα

(q, p;A), α = 1 . . . , ν. (3.58)

The rate of work done on the isolated system during a quasi-static process can then be
written as

Ẇ = FαȦα

=

∫
S(E;A)

Fm
α ρmc dS · Ȧα

=

∫
S(E;A)

∂H

∂Aα

Ȧαρmc dS

=

∫
S(E;A)

Ḣρmc dS,

(3.59)

where Ḣ = (∂H/∂Aα)Ȧα is the rate of change of H at fixed (q, p) and the implied Einstein
summation convention is ranging from 1 to ν.

Moreover, let the phase average of H with respect to ρmc be denoted as

H̄(A, E) =

∫
S(E,A)

H(q, p;A)ρmc(q, p;A, E) dS. (3.60)

5The definition is motivated by the fact that the change in total energy due to an incremental change in
the controllable parameters dAα at fixed (q, p) should be equal to the work done by the generalized forces
Fm
α . A simple chain rule yields dH = ∂H

∂Aα
dAα = Fm

α dAα, and thus Fm
α = ∂H

∂Aα
.
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Then, the differentiation of H̄ with respect to t gives

d

dt
H̄ = ˙̄H =

d

dt

∫
S(E;A)

Hρmc dS

=

∫
S(E;A)

Ḣρmc dS + E
d

dt

∫
S(E;A)

ρmc dS

=

∫
S(E;A)

Ḣρmc dS,

(3.61)

where the normalization condition (3.57) was used in the last step. Thus, combining (3.56),
(3.59), and (3.61) yields

Ẇ = U̇ = ˙̄H =

∫
S(E;A)

Ḣρmc dS (3.62)

during an adiabatic quasi-static process. This leads to the conclusion that the Hamiltonian
H(q, p;A) acts as the microscopic counterpart to the internal energy, that is,

Um(q, p;A) := H(q, p;A). (3.63)

Since a phase function is generally independent of the type of ensemble used, the internal
energy for a canonical ensemble can also be calculated using (3.63).

Next, consider a system in equilibrium with an ambient at temperature θ undergoing a
quasi-static process described by Aα(t), θ(t). Such a system will be governed by a canonical
distribution ρ(q, p;A, θ). Using the fact that the phase average of the Hamiltonian H(q, p;A)
gives the internal energy U(A, θ), one can write

U̇ =
d

dt

∫
Γ

Hρdq dp

=

∫
Γ

Ḣρ+Hρ̇ dq dp

=

∫
Γ

∂H

∂Aα

Ȧαρ+Hρ̇ dq dp

=

∫
Γ

Fm
α Ȧαρ+Hρ̇ dq dp

= Ȧα

∫
Γ

Fm
α ρ dq dp+

∫
Γ

Hρ̇ dq dp

= AαḞα +

∫
Γ

Hρ̇ dq dp = Ẇ +

∫
Γ

Hρ̇ dq dp.

(3.64)

Thus, comparing (3.56) and the last line in (3.64) yields

Q̇ =

∫
Γ

Hρ̇ dq dp, (3.65)
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which means that heat transfer on a microscopic scale is the changing of the distribution of
the system in phase space. On the other hand, it is seen from (3.62), that mechanical work
is done because of a change of the Hamiltonian at a given point in phase space.

Remark 3.5. In the case of a microcanonical distribution, it can be shown using Liouville’s
theorem that the heat flow (3.65) reduces to zero,

ρ̇ = 0 ⇒ Q̇ = 0, (3.66)

which is consistent with the adiabatic assumption.

3.2.4 Second Law of Thermodynamics

3.2.4.1 Entropy

The key concept to explain the second law of thermodynamics, as mentioned in Section
2.3, is entropy. From the macroscopic point of view it is frequently introduced as

dS :=
dQ

T
or Q̇ = T Ṡ, (3.67)

for quasi-static processes, with S denoting the entropy and T an absolute temperature scale,
such that S = 0 at absolute zero (compare with (2.81) and (2.82)). In order to identify
corresponding microscopic quantities, consider again a system in equilibrium with an ambient
at temperature θ undergoing a quasi-static process described by Aα(t), θ(t) and define the
index of probability as

η(q, p; A, θ) = ψ(A, θ)−H(q, p;A)

θ
(3.68)

such that the canonical ensemble can be rewritten as

ρ(q, p; A, θ) = exp {η(q, p; A, θ)}. (3.69)

Using the normalization condition (3.7), observe that

d

dt

∫
Γ

eη dy =

∫
Γ

η̇eη dy = 0, (3.70)

and thus

˙̄η
d

dt
η̄ =

d

dt

∫
Γ

ηeη dy =

∫
Γ

η̇eη + ηη̇eη dy =

∫
Γ

ηη̇eη dy. (3.71)

Going back to the heat flow (3.65), it is rewritten as

Q̇ =

∫
Γ

Hρ̇ dy =

∫
Γ

Hη̇eη dy =

∫
Γ

(H − ψ) η̇eη dy = −
∫
Γ

ηθη̇eη dy = −θ ˙̄η (3.72)
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using (3.68) the fact that ψ = ψ(A, θ), and thus∫
Γ

ψη̇eη dy = ψ

∫
Γ

η̇eη dy = 0. (3.73)

Comparing (3.67) and (3.72), it is clear that θ corresponds to an absolute temperature
scale and η̄ to entropy. Usually the conversion used for the temperature is θ = kT where
k = 1.38× 10−23J/K is known as Boltzmann’s constant. It immediately follows that

η̄(A, T ) = −S(A, T )
k

or S(A, T ) = −k
∫
Γ

ρ ln ρ dy, (3.74)

and that the microscopic phase function for entropy reads

Sm(q, p; A, θ) = −k ln ρ. (3.75)

3.2.4.2 Helmholtz Free Energy

The analog of the Helmholtz free energy in statistical mechanics is obtained by taking
the phase average of both sides of (3.68), leading to

η̄(A, T ) = ψ(A, T )− H̄(A, T )
kT

=
ψ(A, T )− U(A, T )

kT
, (3.76)

where (3.63) was used, and equating it with (3.74), yielding

ψ(A, T ) = U(A, T )− TS(A, T ). (3.77)

This relationship identifies the normalization constant ψ as the Helmholtz free energy func-
tion.

3.2.5 Partition Function

3.2.5.1 Definition

Recall the normalization condition (3.7)∫
Γ

exp

{
ψ −H

kT

}
dy = 1 (3.78)

and rewrite it using the Helmholtz free energy (3.77) as

exp

{
− ψ

kT

}
=

∫
Γ

exp

{
− H

kT

}
dy (3.79)

or
ψ(A, T ) = −kT lnZ(A, T ), (3.80)
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where

Z(A, T ) =
∫
Γ

exp

{
−H(q, p; A)

kT

}
dy. (3.81)

The function Z(A, T ) is called the partition function of the system and it plays a fundamental
role in connecting the macroscopic behavior of the system with its microscopic model, as is
seen in (3.80). Heuristically speaking the partition function is proportional to the volume of
accessible microstates in phase space for a given temperature and a set of given controllable
parameters.

3.2.5.2 Useful Results and Notation

Some useful expressions introduced in this chapter are rewritten here in terms of the
partition function (3.81), highlighting its important role.

Canonical Distribution The canonical distribution is often written in terms of the par-
tition function as

ρ =
1

Z
exp {−βH}, (3.82)

where the common notation β = 1/(kT ) is used.

Mean Energy The phase average of the Hamiltonian can then be written as

H̄ =
1

Z

∫
Γ

He−βH dy = − 1

Z

∂

∂β

∫
Γ

e−βH dy = − ∂

∂β
lnZ. (3.83)

Entropy The entropy as mentioned in (3.74) can also be written in terms of the partition
function as

S = −k
∫
Γ

ρ
ψ −H

kT
dy = −ψ

T
+
H̄

T
= k lnZ − 1

T

∂

∂β
lnZ. (3.84)

Conjugate Forces The phase average of the phase functions for generalized forces Fα as
introduced in (3.58) can be written as

Fα =
1

Z

∫
Γ

∂H

∂Aα

e−βH dy

=
1

Z

(
− 1

β

)
∂

∂Aα

∫
Γ

e−βH dy

= − 1

β

∂

∂Aα

lnZ =
∂

∂Aα

ψ.

(3.85)
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Canonical Strain Ensemble When generalized displacements are used as controllable
parameters in the Hamiltonian, the notation HA(q, p;A) is used and the corresponding
canonical distribution

ρA(q, p;A, T ) = exp
ψA −HA(q, p;A)

kT
(3.86)

is referred to as the canonical strain ensemble (or just strain ensemble).

Canonical Stress Ensemble When generalized forces are used as controllable parame-
ters in the Hamiltonian, the notation HF(q, p;F) is used and the corresponding canonical
distribution

ρF(q, p;F , T ) = exp
ψF −HF(q, p;F)

kT
(3.87)

is referred to as the canonical stress ensemble (or just stress ensemble).

3.3 Rubber Elasticity

In this section the concepts of equilibrium statistical mechanics introduced so far are
used to study the thermoelastic behavior of amorphous polymeric solids (or elastomers)
from the atomistic point of view. Very frequently this topic is also simply referred to as
rubber elasticity6. Typically, rubber elastic materials are characterized by the following four
observations, provided that the temperature is above a critical temperature7:

1. Rubber shows a large extensibility ranging from 500%− 1000%.

2. Rubber has a low modulus of elasticity ranging from 100kPa− 100MPa.

3. Rubber contracts upon heating (and expands upon cooling).

4. Rubber releases heat when stretched.

The key to understanding and modeling rubber elastic materials is the fact that, unlike
in crystalline solids, there is no potential energy stored in stretched covalent bonds, and
thus there is no internal energy8 contribution. However, due to the atomistic nature of
rubberlike materials, the main contribution comes from changes in entropy. This section
will deal with the atomistic structure of single long-chain molecules (also called polymers)
and provide derivations of well-known one-dimensional and three-dimensional chain models
clarifying the role of entropy.

6Some of the standard works in the field of rubber elasticity are Flory (1953, 1969); Treloar (1975).
7The critical temperature is called the glass transition temperature and it is different for each elastomer.

Below this temperature, elastomers transition into a hard and brittle state and their behavior becomes
glasslike.

8At very high strains internal energy comes into play again.
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3.3.1 Atomistic Structure of Long-Chain Molecules

Long-chain molecules in rubber elastic materials mainly consist of carbon atoms which are
held together by covalent bonds. In the simplest case of a long-chain molecule, polyethylene,
the single carbon-carbon covalent bonds are 1.54Å long and the bond angles (angles between
two successive bonds) have a value of 109.5◦, as shown in Figure 3.2. The chemical formula

Figure 3.2: Atomistic structure of a polyethylene molecule with bond length and bond angle
for carbon-carbon bonds: the black dots represent the carbon atoms, the smaller hollow dots
represent hydrogen atoms, and the covalent bonds are shown as solid lines.

of polyethylene is generally written as CH3 − [CH2]n − CH3, where n is the number of CH2

units (or monomers). Typically the number of monomers in long-chain molecules ranges
from 102 to 104. The resulting chain of carbon atoms is then called the backbone and the
hydrogen atoms are referred to as side groups. Oftentimes, different polymer chains only
differ in the type of side groups but have the same backbone.

Figure 3.3: Rotation of a backbone atom around bond 4− 5 with a constant bond angle.

Covalent bonds between carbon atoms are known to be very strong and highly directional.
This means that any small changes in the minimum-energy bond length or the minimum-
energy bond angle would result in a large increase of the potential energy of interactions of the
backbone atoms. However, there are still a lot of different atomic configurations possible in
long-chain molecules while keeping the bond lengths and bond angles constant. By rotating
atoms around their dihedral angle, as shown in Figure 3.3, many different configurations can
be obtained. The potential energy of interaction of the backbone atoms is independent of the
dihedral angle. Only the side groups of the long-chain-molecules interact with neighboring
side groups and give a contribution to the potential energy of the chain depending on the
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Figure 3.4: One-dimensional freely jointed chain with link length a, end-to-end length l, and
generalized coordinates q1 = 1, q2 = 1, q3 = −1, q4 = 1, q5 = 1, and qn = 1.

dihedral angle. However, for the sake of simplicity, in the following derivations of the one-
dimensional and three-dimensional polymer models, the rotational energy barrier around the
dihedral angle due to side group interactions will not be considered.

3.3.2 One-Dimensional Polymer Model

In order to start a more quantitative discussion about modeling of long-chain molecules, a
highly idealized model is considered here, the so-called one-dimensional freely jointed chain.
In this model, a polymer is viewed as a one-dimensional chain consisting of n rigid links
of length a connected by hinges. The hinges are only allowed to be fully opened or fully
closed such that the chain is always oriented along a straight line. A configuration of the
chain can then be defined by a sequence of generalized coordinates qj, j = 1, . . . , n, where
qj ∈ {+1,−1} as shown in Figure 3.4.

The end-to-end length l is considered a controllable kinematical parameter of the system
and has to be an integer multiple of a. The potential energy of the chain is then written as

V (q1, . . . , qn; l) =

{
0 if

∑n
j=1 aqj = l (if compatible with l)

∞ if
∑n

j=1 aqj ̸= l (if compatible with l).
(3.88)

Since no other contributions to the Hamiltonian are considered, the canonical phase space
distribution results in

ρ (q1, . . . , qn; l, T ) = Ce−V/kT =

{
C if

∑n
j=1 aqj = l

0 if
∑n

j=1 aqj ̸= l.
(3.89)

In this system, points in phase space are defined by a sequence of discrete values q =
(q1, . . . , qn), which means that any integration over the phase space will be written as a
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summation. The normalization condition (3.7) then takes the form∑
q

ρ(q; l, T ) = 1, (3.90)

which results in the normalization constant C

C =
1

Ω(l)
, (3.91)

where Ω(l) is the number of configurations of the chain compatible with the end-to-end
length l.

The expression for the entropy (3.74) is then also written as a sum for this system

S(l) = −k
∑
q

ρ ln ρ

= −k
∑

q comp. l

1

Ω(l)
ln

1

Ω(l)

= k lnΩ(l).

(3.92)

With the entropy at hand, the Helmholtz free energy (3.77) and the generalized force (3.85)
are given as a function of the generalized displacement l as

ψ(l, T ) = U − TS(l) and f =
∂ψ(l, T )

∂l
, (3.93)

where f denotes the corresponding generalized force. Since the internal energy of this system
does not depend on l, the force required to keep the end-to-end length at l is

f =
∂ψ

∂l
= −kT ∂

∂l
lnΩ(l). (3.94)

In order to calculate the number of compatible configurations Ω(l), let n+ be the number
of qj = +1 steps and n− the number of qj = −1 steps. Compatibility with the end-to-end
length yields

l = (n+ − n−)a and n = n+ + n−, (3.95)

which can be solved for

n+ =
1

2

(
n+

l

a

)
n− =

1

2

(
n− l

a

)
.

(3.96)

The total number of ways of picking n+ steps from n is then equal to the number of com-
patible configurations Ω(l) (

n

n+

)
=

n!

n+!n−!
= Ω(l), (3.97)
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and thus,

Ω(l) =
n!(

1
2

(
n+ l

a

))
!
(
1
2

(
n− l

a

))
!

=
Γ(n+ 1)

Γ
(
1
2

(
n+ l

a

)
+ 1
)
Γ
(
1
2

(
n− l

a

)
+ 1
) , (3.98)

where the gamma function Γ(n) = (n − 1)! is introduced. Using (3.94), the force-extension
relation (3.94) reads

f =
kT

2a

(
Γ′(1

2

(
n+ l

a

)
+ 1)

Γ(1
2

(
n+ l

a

)
+ 1)

−
Γ′(1

2

(
n− l

a

)
+ 1)

Γ(1
2

(
n− l

a

)
+ 1)

)
. (3.99)

Remark 3.6. For large values of n, n+, and n−, which characterize a long chain that is far
from a fully extended state, the previous result (3.99) is simplified using the approximation

lnn! =
n∑

i=1

ln i ≈
∫ n

1

lnx dx = n lnn− n+ 1, (3.100)

such that

lnΩ(l) ≈ (n lnn− n+ 1)− (n+ lnn+ − n+ + 1)− (n− lnn− − n− + 1), (3.101)

which yields

f =
kT

2a

(
ln

1 + l
na

1− l
na

)
≈ kT

na2
l for

l

na
≪ 1. (3.102)

This force-extension relation is plotted in Figure 3.5, where two things should be noted.
Firstly, the non-linear graph ends where the full extension of the chain l = na is reached.
In reality it should not end at this point, because the stretching of the covalent bonds would
start there. Secondly, if the temperature increases, the force required to maintain a certain
end-to-end length increases as well. Thus at a fixed force, a temperature rise would lead to
a contraction in length.

3.3.2.1 Random Walk Interpretation

Another common way of modeling long-chain molecules is by using the mathematical
concept of a random walk. For a one-dimensional polymer model, a random walk starting
at x = 0 and taking steps of length a in either the positive x or the negative x direction
with equal probability is considered. The quantity of interest of this random walk is the
probability of ending up at a position x = l after n steps.

Observe that a single sequence of n steps has the probability of (1
2
)n. Thus, all the

compatible sequences will have the probability of(
1

2

)n
n!

n+!n−!
, (3.103)
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Figure 3.5: The solid line shows the full force-extension relation for a one-dimensional poly-
mer model, the dashed line shows the linear approximation from (3.102).

which can be used to write a probability density as a function of n+ as

p(n+) dn+ =

(
1

2

)n
n!

n+!n−!
dn+. (3.104)

From the compatibility equation in (3.96) it can be be seen that dn+ = 1
2a
dl, and thus using

(3.98), the probability density can be written as

p(n+) dn+ =

(
1

2

)n

Ω(l)
dl

2a
. (3.105)

This leads to the desired probability density (probability per unit distance)

p(l;n) = Ω(l)
1

2n+1a
. (3.106)

Again, for long chains far from a fully extended state, i.e. n≪ 1 and l/(na) ≫ 1 in case
of the random walk, Stirling’s approximation

lnn! ≈ (n+
1

2
) lnn− n+

1

2
ln 2π (3.107)

can be used in combination with

ln
1

2

(
n± l

a

)
∼= ± l

na
− l2

2n2a2
+ ln

n

2
(3.108)
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to obtain the probability density as

p(l;n) =
1√

2πna2
e−

l2

2na2 , (3.109)

where (
√
2πna2)−1 is the normalization constant. This well-known probability distribution is

a Gaussian distribution (or normal distribution) with a mean value of ⟨l⟩ = 0 and a variance
of ⟨l2⟩ = na2.

The Gaussian distribution can also be used to calculate a force-extension relation. To
this end, solve (3.106) for Ω(l) and plug it into (3.94) yielding

f(l) = −kT ∂

∂l
lnΩ(l) = −kT ∂

∂l
ln 2n+1ap(l)

= −kT ∂

∂l

(
ln p(l) + ln 2n+1a

)
= −kT ∂

∂l
ln p(l)

=
kT

na2
l,

(3.110)

which is the exact same relation as calculated in (3.102).

3.3.3 Three-Dimensional Polymer Model

Before a three-dimensional model for long-chain molecules is derived, the convolution
theorem for Fourier transforms is briefly introduced, since it constitutes an important tool
in the study of three-dimensional random walks.

3.3.3.1 Convolution Theorem

Let x1 and x2 be two independent continuous random variables with probability distri-
bution functions p1(x1) and p2(x2), where −∞ < x1, x2 < ∞. Moreover, let y be another
random variable defined by y = x1 + x2. The probability distribution function p(y) is then
given by

p(y) =

∫ ∞

−∞
p1(x1)p2(y − x1) dx1, (3.111)

which is the convolution of p1(x1) and p2(x2). Similarly, let P1(η), P2(η) be the Fourier
transforms of p1(x1) and p2(x2) defined by

Pj(η) =

∫ ∞

−∞
e−iηypj(y) dy, (3.112)

and its inverse being

pj(y) =
1

2π

∫ ∞

−∞
eiηyPj(η) dη. (3.113)
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The convolution theorem then states that the Fourier transform of a convolution is the
product of the Fourier transforms, and thus

P (η) = P1(η)P2(η). (3.114)

A simple extension of this result for the case of y = x1 + . . . + xn, where x1, . . . , xn are n
independent random variables with probability distributions pj(xj), yields

P (η) =
n∏

j=1

Pj(η), (3.115)

with Pj(η) being the Fourier transform of pj(xj). In the case of identical probability distri-
butions pj(xj) = p1(xj), j = 1, . . . , n

P (η) = [P1(η)]
n . (3.116)

In the case of three-dimensional random variables r1, . . . , rn, all having the same proba-
bility distribution function p1(rj), j = 1, . . . , n, let r be the sum of all the random variables

r = r1 + r2 + . . .+ rn, (3.117)

and p(r) its probability distribution. Using the three-dimensional Fourier transform

P (ρ) =

∫
R3

e−iρ·rp(r) dr, (3.118)

with the inverse

p(r) =
1

(2π)3

∫
R3

eiρ·rP (ρ) dρ, (3.119)

p(r) can be calculated by setting

P (ρ) = [P1(ρ)]
n . (3.120)

3.3.3.2 Freely Jointed Chain

As in the one-dimensional case, a three-dimensional model for long-chain molecules con-
sists of n freely jointed links a. The goal is to find the distribution function p(r) of the
end-to-end length r of the chain. Using the random walk analogy, the problem can be seen
as taking n steps of length a, with the direction of each step being uniformly distributed on
a sphere of radius a. Thus for one step, the probability distribution takes the form

p1(r1) =
1

4πa2
δ(r1 − a), (3.121)

where r1 = |r1|, and δ(x) is a Dirac delta function. Also note that p1(r1) satisfies the
normalization condition

∫
R3 p1(r1) dr1.
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The Fourier transform of p1(r1) can then be calculated as

P1(ρ) =
1

4πa2

∫
R3

e−iρ·r1δ(r1 − a) dr1

=
1

4πa2

∫ 2π

0

dϕ

∫ ∞

0

dr1

∫ π

0

e−iρr1 cos θδ(r1 − a)r2 sin θ dθ

=

(
sin ρa

ρa

)
,

(3.122)

where ρ = |ρ| and the direction of ρ is taken as the polar axis with θ being the angle between
ρ and r1. By using (3.120), it follows that

P (ρ) =

(
sin ρa

ρa

)n

. (3.123)

The distribution function p(r) of the end-to-end length r of the chain is then found by using
the inverse Fourier transform,

p(r) =
1

(2π)3

∫
R3

eiρ·r
(
sin ρa

ρa

)n

dρ, (3.124)

which can be reduced to an integral over ρ by using r as polar axis

p(r) =
1

2π2r

∫ ∞

0

sin ρr

(
sin ρa

ρa

)n

ρ dρ. (3.125)

Since the probability distribution only depends on the length of r, it is spherically symmetric.
For large values of n, and when the chain is far from a fully extended state, the probability
distribution for a freely jointed chain in three dimension can be approximated (see e.g. Weiner
(1983, §5.5)) by

p(r) =

[
3

2πna2

]3/2
exp

{
− 3r2

2na2

}
, (3.126)

which is again a Gaussian distribution, as already seen in the one-dimensional case (3.109).
If the procedure from (3.110) is generalized for three-dimensional chains, the force-extension
relation can be calculated as

f(r) = −kT ∂

∂r
ln p(r) =

3kT

na2
r, (3.127)

and is plotted in Figure 3.6. This three dimensional linear force-extension relation is well
known and often referred to as a linear entropic spring. However, at high levels of stretch,
that is when the end-to-end length approaches the fully extended state, the force-extension
relation shows a non-linear behavior, where a characteristic upturn due to the limited ex-
tensibility of polymer chains is observable (Mark, 1981). For the one-dimensional case the
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Figure 3.6: The dashed line shows the force-extension relation for the freely jointed three-
dimensional chain with a Gaussian distribution (3.126), where r pointing is the x-direction.
The solid line shows the force-extension relation for the non-Gaussian distribution (3.128),
with n = 6.

non-linear behavior was already observed in Figure 3.5. In order to capture this stiffening be-
havior at high stretches in three-dimensions, an approximation of the probability distribution
function (3.125) of the form

p(r) =

[
3

2πna2

]3/2
exp

{
− 3r2

2na2

}{
1− 3

4n
+

3r2

2n2a2
− 9r4

20n3a4

}
(3.128)

is derived in Wang and Guth (1952). The force extension-relation for this non-Gaussian
distribution function ends up being

f(r) = −kT ∂

∂r
ln p(r) =

kT

na2

(
3 + 4

15− 9
(

r
na

)2
n

15− 20n− 30
(

r
na

)2
n+ 9

(
r
na

)4
n2

)
r, (3.129)

and is plotted in Figure 3.6 for n = 6.
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Chapter 4

Micro–Macro Mechanics

When dealing with the mechanical behavior of rubber-like materials, the microscopic
modeling of a single long-chain molecule is not enough to fully capture their characteristic
S-shaped uniaxial stress response on a macroscopic scale (see Figure 1.1). The reason is
that when polymer chains are vulcanized (or cured), cross-links at random point along the
chains are formed that tie two chains together, resulting in a random polymer network
microstructure as shown in Figures 1.2 and 4.1. The portion of the chains between the
cross-links typically consist of 100 to 1000 links, depending on the degree of vulcanization.
In addition, these three-dimensional amorphous networks contain many defects, such as
entanglements, loose ends, closed loops, and interlooping of chains.

Figure 4.1: Random network microstructure of a continuous rubber elastic solid B at a
material point P consisting of cross-linked polymer chains (white solid lines) with end-to-
end vectors (black arrows) plotted for four random chains.

If an amorphous solid is deformed on the macroscopic scale, the average end-to-end length
of chains between cross-links will change in some way on the microscopic scale. Thus, in
order to achieve an accurate macroscopic stress-strain response for rubber elastic materials,
a micro-macro transition connecting the micro-kinematic variables of the single-chain models
and the continuum deformation measures has to be constructed, by modeling the polymer
network microstructure.
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This chapter will show how a simple model of a long-chain molecule can be incorporated
into a network microstructure model leading to a continuum constitutive relation for rubber-
like materials. The ideas of this micro-macro approach are based on the non-affine micro-
sphere model of Miehe et al. (2004).

4.1 Macroscopic Setting of Model

On the macroscopic (continuum) scale the model assumes a Helmholtz free energy func-
tion per unit volume that depends on the right Cauchy-Green deformation tensor

Ψ = Ψ(C). (4.1)

Following the argument as outlined in Section 2.3, the second Piola-Kirchhoff is given by

S = 2
∂Ψ(C)

∂C
. (4.2)

Note that no dependency on the temperature is mentioned because isothermal conditions
are assumed.

Following common practice for isothermal finite strain elasticity, a decoupling of the
Helmholtz free energy function into volumetric and isochoric parts is introduced by use of
the unimodular part of the deformation gradient as proposed by Flory (1961),

F̄ := J−1/3F, J = detF, (4.3)

and using the form
Ψ = Ψvol(J) + Ψ̄

(
C̄
)
, C̄ = F̄T F̄, (4.4)

with volumetric and isochoric contributions to the free energy function. Applying (4.2) to the
decoupled macroscopic free energy leads to the standard result in compressible hyperelasticity
(see e.g. Holzapfel (2000, Chap. 6))

S = JΨ′
vol(J)C

−1 + J−2/3

(
I− 1

3
C−1 ⊗C

)
: 2
∂Ψ̄(C̄)

∂C̄
, (4.5)

where the fourth-order unit tensor is given as

I =
1

2
(δikδjl + δilδjk) ei ⊗ ej ⊗ ek ⊗ el. (4.6)

The volumetric response Ψvol(J) can be any scalar valued function which is strictly convex,
has unbounded value as J → 0 and J → ∞, and has a unique minimum at J = 1. The
isochoric response of the material, Ψ̄

(
C̄
)
, contains the microstructural details and is de-

veloped in the next two sections. First, a micro-mechanical model of a constrained single
long-chain molecule is considered, and then the polymer network structure is modeled using
the non-affine micro-sphere model, which provides a bridge between the microscopic and the
macroscopic scale.
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4.2 Micro-Mechanical Setting of Model

In order to develop an expression for the total free energy ψ on the micro-mechanical
scale, two contributions are taken into account. Firstly, an unconstrained single chain model
as derived in Section 3.3.3 is considered. Secondly, in order to account for hindrances to the
motion of a single chain within a polymer network, the chain is assumed to be confined to
a tube (Miehe et al., 2004). To this end, an additive split of the total free energy ψ into a
contribution due to the unconstrained single chain ψf , and a contribution due to the tube
constraint ψc

ψ = ψf + ψc, (4.7)

is assumed. The analytical expressions for the free energy of an unconstrained single chain
ψf and the free energy of the tube constraint ψc are developed next.

4.2.1 Free energy of an unconstrained single chain

In order to find the free energy of an unconstrained single chain, it is assumed that the
single chain is long and far from its fully extended state. Thus, the Gaussian distribution
(3.126) as derived in Section 3.3.3 is used,

pf (r) =

[
3

2πNa2

] 3
2

exp

{
− 3r2

2Na2

}
, (4.8)

where b denotes the link length and N the total number of links. The free energy is then
found by combining (3.94) and (3.110) as

ψf (r) = −kT ln p(r). (4.9)

Introducing the micro-kinematic stretch λ defined by

λ :=
r

r0
, r0 =

√
Na; λ ∈

[
0,
√
N
)
, (4.10)

the free energy can be written as

ψf (λ) =
3

2
kTλ2 + ψf0, (4.11)

where ψf0 is a constant.

4.2.2 Free energy due to tube constraint

The free energy of the unconstrained single chain in (4.11) does not consider the fact that
the motion of a chain in a network is restricted by neighboring chains. In order to take this
type of hindered motion of a chain in a network into account, the single chain is assumed
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Figure 4.2: Single chain confined to a tube of diameter d, with its ends fixed at the center
of the tube ends, and an end-to-end vector r.

to be confined to a tube of constant diameter d, as depicted in Figure 4.2. Following Miehe
et al. (2004), in order to calculate the free energy due to the tube constraint, the probability
density is introduced as

pc(ν) = p0 exp

[
−α
(
r0
d0

)2

ν

]
, (4.12)

where p0 is a normalization constant, α is a numerical factor which depends on the tube
geometry, and the dimensionless kinematic variable ν is the micro-kinematic tube area con-
traction and is defined as

ν :=

(
d0
d

)2

, ν ∈ (0,∞) , (4.13)

with d0 being the initial diameter of the tube and d the current diameter. By the same token
as (4.9), the tube constraint free energy reduces to

ψc (ν) = αkTN

(
a

d0

)2

ν + ψc0, (4.14)

where ψc0 is a constant.

4.3 Micro-macro transition

The main idea in the non-affine micro-sphere model is to connect the micro-kinematic
variables through an averaging over a unit sphere to macro-kinematic quantities. To this end,
the random three-dimensional network microstructure at a material point P , that contains
many chains between cross-links with end-to-end vectors pointing in every possible direction,
is statistically described by a collection of unit end-to-end orientation vectors M that are
uniformly distributed on a unit sphere S0 as shown in Figure 4.3. The unit sphere S0 can be
seen as a representative volume element (RVE) containing the distribution of the end-to-end
vectors, and the averaging over the distribution can be interpreted as a homogenization of
any microscopic network property yielding the macroscopic counterpart.

In this section the polymer network model based on the non-affine micro-sphere model
is developed. Given the analytical expressions for the total free energy on the microscale

ψ (λ, ν) = ψf (λ) + ψc (ν) , (4.15)
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Figure 4.3: The non-affine micro-sphere model: the random network microstructure at a
material point P is statistically described by a collection of unit end-to-end orientation
vectors M that are uniformly distributed on a unit sphere S0; the unit sphere S0 is then
deformed in a non-affine way according to λ =

⟨
λ̄
⟩
p
; the dashed line in the deformed sphere

S represents the undeformed unit sphere S0.

the goal is to find the isochoric contribution to the total macroscopic free energy (4.4). The
additive split of the microscopic free energy ψ motivates the following macroscopic split of
energy

Ψ̄
(
C̄
)
= Ψ̄f

(
C̄
)
+ Ψ̄c

(
C̄
)
. (4.16)

To connect the two expressions, a relationship between the micro-kinematic variables λ and
ν and macro-kinematic variables like C̄ or F̄ has to be established. In the following two
sections the core result of the non-affine micro-sphere model Miehe et al. (2004) is used to
link the kinematic variables on the different scales and find the desired macroscopic free
energies.

4.3.1 Non-affine network model for the unconstrained single
chain

Let a macro-stretch λ̄, induced on the undeformed sphere S0 by C̄ in the direction of a
sphere orientation vector M, be defined by

λ̄(M) =
√

M · C̄M, M ·M = 1. (4.17)

In order to find the link between the micro-stretch λ of the unconstrained single chain and
the macro-stretch λ̄, allow λ to fluctuate around λ̄ according to

λ(M) = λ̄(M)f(M), (4.18)

where f is a stretch-fluctuation field defined on the unit sphere S0. In an affine model the
value of f would be unity in all unit sphere directions. However, in the non-affine model, f
needs to be determined; this is accomplished by requiring the following constraint to hold

⟨λ⟩p =
⟨
λ̄
⟩
p
, (4.19)
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where ⟨·⟩p is the p-root average over the unit sphere S0

⟨·⟩p =
(

1

|S0|

∫
S0

(·)p dA

) 1
p

, |S0| = 4π, (4.20)

and p is a model parameter of the micro-macro transition scheme. The macroscopic free
energy for an unconstrained single chain is then determined by minimizing its averaged mi-
croscopic free energy contribution over the unit sphere

⟨
nDψf

(
λ̄f
)⟩

subject to the constraint
(4.19),

Ψ̄f

(
C̄
)
= sup

κ
inf
f

{⟨
nDψf

(
λ̄f
)⟩

− κ
(⟨
λ̄f
⟩
p
−
⟨
λ̄
⟩
p

)}
, (4.21)

where ⟨·⟩ := ⟨·⟩1 is an integration over the unit sphere, κ a Lagrange multiplier for the
constraint (4.19), and nD is the number of chains in the polymer network per unit volume.
The necessary condition for the minimization problem is

nD

∂ψf

(
λ̄f
)

∂λ
− κ

(⟨
λ̄f
⟩
p

)(1−p) (
λ̄f
)(p−1)

= 0, (4.22)

which can be rewritten as

κ = nD

∂ψf

(
λ̄f
)

∂λ

(⟨
λ̄f
⟩
p

)(p−1) (
λ̄f
)(1−p)

, (4.23)

where κ is constant on the sphere. A non-trivial solution can only be derived if λ = λ̄f is
constant. Thus, we find the simple result

λ =
⟨
λ̄
⟩
p
, (4.24)

and the macroscopic free energy contribution from the unconstrained single chain reads

Ψ̄f

(
C̄
)
= nDψf

(⟨
λ̄
⟩
p
;ω
)
. (4.25)

The result in (4.24) states that the micro-stretches in all the unit sphere directions are
constant and equal to the p-root average of the macro-stretches as shown in Figure 4.3.
Taking a step back in the level of abstraction and looking at a network of chains at a
material point P , this statement implies that all the different end-to-end vectors of chains
between cross-links are stretched by the same amount no matter how the continuum body
B is deformed (compare with Figures 4.1 and 4.3).

4.3.2 Non-affine network model for the tube constraint

Let a macro-area stretch ν̄ on the undeformed sphere S0 be defined by

ν̄(N) =
√

N · C̄−1N, N ·N = 1, (4.26)
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with N being a unit normal vector to an area element on the undeformed sphere. In order
to introduce a non-affine relationship between the micro-tube area contraction ν as defined
in (4.13) and the macro-area stretch ν̄ the power law of Miehe et al. (2004) is used

ν(N) = (ν̄(N))q . (4.27)

Since the micro-area stretches actually depend on the different normals of the unit sphere,
the macroscopic energy contribution is obtained by integrating all microscopic energy con-
tributions (4.14) over the sphere as,

Ψ̄c

(
C̄
)
= ⟨nDψc (ν̄

q)⟩ , (4.28)

where q is a model parameter.

4.4 Macroscopic material response and summary

Now that all the micro- and macro-kinematic measures are connected, and the micro-
scopic energy contributions are averaged over the unit sphere yielding the macroscopic ener-
gies, the overall stress response (4.5) can be computed. In this section the derivatives needed
for that response are calculated and the model parameters briefly summarized.

4.4.1 Derivatives

The non-affine contributions from the unconstrained single chain and the tube constraint
can be assembled into the overall isochoric response of the material as follows,

Ψ̄
(
C̄
)
= nDψf

(⟨
λ̄
⟩
p

)
+ ⟨nDψc (ν̄

q)⟩ . (4.29)

In order to calculate the second Piola-Kirchhoff stress tensor as given in (4.5), the following
derivative is needed,

∂Ψ̄(C̄)

∂C̄
=
∂Ψ̄f (C̄)

∂C̄
+
∂Ψ̄c(C̄)

∂C̄
. (4.30)

Using the result in (4.24), (4.18), and the chain rule, the contribution from the unconstrained
single chain ends up being(

∂Ψ̄f

∂C̄

)
kl

=

(
∂ψf

∂λ

∂λ

∂λ̄

∂λ̄

∂C̄

)
kl

= nD
∂ψf

∂λ
λ1−p

⟨
λ̄p−2MkMl

⟩
, (4.31)

and using (4.27) and (4.26), the non-affine tube constraint contribution results in(
∂Ψ̄c

∂C̄

)
kl

=

(
∂ψc

∂ν

∂ν

∂ν̄

∂ν̄

∂C̄

)
kl

= −
⟨
nD

∂ψc

∂ν
qν̄q−21

4

(
C−1

ik C
−1
lj + C−1

il C
−1
kj

)
NiNj

⟩
. (4.32)
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The only derivatives left to evaluate are ∂ψf/∂λ from (4.31) and ∂ψc/∂ν from (4.32). Using
(4.11), the partial derivative reads

nD
∂ψf

∂λ
= 3µλ, µ := nDkT, (4.33)

where µ, the effective shear modulus is introduced. Using (4.14)

nD
∂ψc

∂ν
= µNU, U := α

(
a

d0

)2

, (4.34)

where U is the effective tube geometry parameter.

4.4.2 Model summary

The non-affine micro-sphere model has a total of five material parameters. The material
parameters µ, N , and U appear in (4.33) and (4.34) and basically define the microscopic
response of the constrained polymer chain. The material parameters p and q appear in (4.24)
and (4.27) and define the non-affine character of the network model. All the five parameters
are summarized in Table 4.1, where also rough descriptions of their phenomenological effects
on stress-strain curves are provided.

# Parameter Name Eq. Effect

1 µ := nDkT Shear modulus (4.33) Ground state stiffness
2 N Number of chain segments (4.8) Chain locking response
3 p Non-affine stretch parameter (4.19) 3D locking characteristic

4 U := α (a/d0)
2 Tube geometry parameter (4.34) Additional constraint stiffness

5 q Non-affine tube parameter (4.27) Shape of constraint stress

Table 4.1: Material parameters of the non-affine micro-sphere model.
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Chapter 5

Micro-Mechanically Based Continuum
Model for Strain-Induced
Crystallization in Natural Rubber

The three previous chapters describing continuum mechanics, statistical mechanics, and
micro-macro mechanics set the stage for this chapter. A fully thermodynamically consistent
and micro-mechanically based constitutive law for strain-induced crystallization in natural
rubber is developed in three steps. As a first step, a thermodynamically consistent macro-
scopic framework including evolution of the degree of crystallinity is developed. Secondly, a
microscopic model of a partially crystalline chain is derived, and as a last step, the non-affine
micro-sphere model is applied to connect the two scales1.

5.1 Macroscopic Setting of Model

In the experimental results shown in Chapter 1, it can be seen that the stress-strain curves
for natural rubber form a hysteresis loop and that the measured degree of crystallinity only
starts evolving after a certain level of stretch is reached. In order to model this dissipative
behavior on a macroscopic scale, the mathematical framework developed for elastic-thermo-
plastic materials by Casey (1998) is specialized to the case of strain-crystallizing materials.

5.1.1 Thermomechanical Development

In the development of this thermodynamically consistent framework, strain-crystallizing
materials are conceptually seen as a one-parameter family of thermoelastic materials as
introduced in Section 2.3. To this end, let P be a point in strain-temperature space defined
by the pair (E, T ) of a body B at material point X and time t. P is called a thermo-elastic

1This chapter follows the ideas the author recently published in Mistry and Govindjee (2014).
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point if and only if there exists an open set U containing P , such that on U , the constitutive
equations (2.77) hold. Moreover, let E denote the thermoelastic region in strain-temperature
space defined by the maximal open set U containing the point P . The region E is assumed
to be simply connected and enclosed by a smooth orientable hypersurface ∂E , called the
transformation surface.

Generally, changing the strain and temperature at X will yield a new thermoelastic
region and result in new constitutive equations of type (2.77). It is assumed that this family
of thermoelastic materials is parametrized by a scalar variable ω, describing the degree of
crystallinity in the material as can be measured by experiments (see Chapter 1).

To this end, let the macroscopic response functions for internal energy, stress, and heat
flux of the strain-crystallizing material be,

ϵ = ϵ̂(E, T ;ω), S = Ŝ(E, T ;ω), q0 = q̂0(E, T, g0;ω). (5.1)

For each fixed value of ω, (5.1) define a unique thermoelastic material, (2.78) will hold, and
an inverse of the stress response will exist:

E = Ê(S, T ;ω). (5.2)

Moreover, it is assumed that the hypersurface ∂E at a fixed ω is determined by means
of a transformation function g(E, T ;ω), as all the points in strain-temperature space that
satisfy

g(E, T ;ω) = 0. (5.3)

Points on the transformation surface will be referred to as a strain-crystallizing point. The
yield function is chosen such that points inside the thermoelastic region are characterized by
g < 0. In addition, the quantity

ĝ =
∂g

E
· Ė+

∂g

∂T
Ṫ , (5.4)

called a loading indicator, is introduced to define the following loading criteria:

(i) g < 0 : thermoelastic point,

(ii) g = 0, ĝ < 0 : unloading from a strain-crystallizing point,

(iii) g = 0, ĝ = 0 : neutral loading from a strain-crystallizing point,

(iv) g = 0, ĝ > 0 : loading from a strain-crystallizing point.

(5.5)

For the cases (i) to (iii) it assumed that

ω̇ = 0. (5.6)

In the case of (iv), it is assumed that loading from a strain-crystallizing point leads to
strain-crystallizing point, which implies that if

g = 0, ĝ > 0 ⇒ ġ = 0 (5.7)
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also known as the consistency condition. In general, it will be assumed that material deriva-
tive of ω will only depend on the variables (E, T ;ω), i.e. there is no rate dependency.

In order to get a thermodynamically consistent material response, an entropy function
is constructed using the same steps as in Section 2.3 next. To this end, let a homothermal
process occur at a fixed ω for g ≤ 0 and ĝ ≤ 0. Since in that case (5.6) holds, the full
energy balance from Box 2.1 will reduce to (2.80). By invoking “Part I” of the Second Law
of Thermodynamics (2.81), a family of thermoelastic entropy functions parametrized by ω
can be written as

S = Ŝ(E, T ;ω), (5.8)

where the arbitrary integration constants for each thermoelastic material are assumed to be
zero. Also, note that for homothermal processes at fixed ω, (2.82) holds. This allows the
definition of a Helmholtz free energy

ψ = ψ̂(E, T ;ω) = ϵ− ST (5.9)

as in (2.83). Thus, since (2.84), (2.85), (2.86), and (2.87) all hold for homothermal processes
at fixed ω, it can be concluded that

S = Ŝ(E, T ;ω) = −∂ψ̂
∂T

(E, T ;ω), (5.10)

and

S = Ŝ(E, T ;ω) = ρ0
∂ψ̂

∂E
(E, T ;ω), (5.11)

at fixed ω. The relations (5.10) and (5.11) hold for all thermoelastic processes at fixed ω
since there is no dependency on g0. Moreover they also hold when ω is changing, because
both functions are independent of ω̇. Thus, (5.10) and (5.11) constitute an extension of the
Gibbs relations to strain-crystallizing materials.

As a last step, consider an arbitrary strain-crystallizing process. Combining the definition
of the Helmholtz free energy function (5.9) with the balance of energy in Box 2.1 yields

ρ0

{
ṠT + SṪ +

∂ψ̂

E
· Ė+

∂ψ̂

∂T
Ṫ +

∂ψ̂

∂ω
ω̇

}
= ρ0r −Div q0 + S · Ė. (5.12)

By using (5.10) and (5.11), it can be reduced to

ρ0ṠT = ρ0r −Div q0 − ρ0
∂ψ̂

∂ω
ω̇. (5.13)

Note that when loading is not occurring (i.e. ω̇ = 0), (5.13) reduces to (2.88). Assuming now
that the Clausius-Duhem inequality (2.89) holds for strain-crystallizing materials, by virtue
of (5.13) it will follow that

−ρ0
∂ψ̂

∂ω
ω̇ − q0 · g0

T
≥ 0. (5.14)
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If a homothermal strain-crystallizing process is taken, the inequality above will read

ρ0
∂ψ̂

∂ω
ω̇ ≤ 0. (5.15)

Since none of the terms in (5.15) depend on the temperature gradient, nor on Ė or Ṫ , the
inequality holds for all processes and loading conditions.

As noted before, (5.13) boils down to (2.88) for thermoelastic processes in strain-
crystallizing materials, and (2.89) leads to (2.90), which will then hold for a fixed ω. Finally,
since none of the quantities in (2.90) depend on Ė or Ṫ , it will hold for a changing ω as well.

5.1.2 Crystallization Kinetics in Polymers

The goal of crystallization kinetics is to find constitutive functions for ω̇ and g, which to-
gether describe the time evolution of the degree of crystallinity in the material on a macroscale
(as seen in Figure 1.1).

On the microscale, there are two mechanisms that drive the evolution of the degree of
crystallinity in natural rubber. The first mechanism assumes that there are a fixed amount of
nuclei in the amorphous polymer and the increase in crystallinity stems from crystal growth,
which is supported by Chenal et al. (2007). The second mechanism assumes the size of
the crystallites to be more or less constant, but suggests a growth in crystallinity through
formation of nuclei, which is supported by Murakami et al. (2002). Since the research on this
topic as to which mechanism is driving the crystallinity is not conclusive, the first mechanism
will be considered for the purpose of the modeling task at hand.

In (Roe and Krigbaum, 1965), the first mechanism of growing crystals is treated by
considering a partially crystallized polymer chain from a statistical mechanics point of view.
The theory proposes that the driving force for the crystallization comes from the change in
free energy of the system that accompanies the increase of the degree of crystallinity, or the
free energy gradient.

This idea of a chemical potential on the microscopic scale is applied to the macroscopic
framework by assuming that the evolution of the degree of crystallinity ω is governed by the
macroscopic Helmholtz free energy function (5.9) as

ω̇ = −A∂ψ̂
∂ω

, A ≥ 0, (5.16)

where the condition A ≥ 0 follows immediately from (5.15). The degree of crystallinity
however, can only evolve once a certain chemical potential threshold is reached. In order to
incorporate this into the model, a chemical potential “threshold function” of the form

g =

∣∣∣∣∣∂ψ̂∂ω
∣∣∣∣∣− (gc + γω) ≤ 0, (5.17)
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is introduced, where gc ≥ 0 denoting a critical chemical potential value (threshold at zero
degree of crystallinity) and γ a threshold evolution parameter (hardening/softening) are
material constants. With these two constitutive equations defined, the only thing left to
do is to specify the Helmholtz free energy function (5.9). The idea here is again to base
that energy on a micro-mechanical model and average it using the micro-sphere model as
introduced in Chapter 4. Before continuing with the micro-mechanical setting of the model,
the key macroscopic equations are briefly summarized next.

5.1.3 Summary

In order to differentiate between microscopic and macroscopic free energies, boldface
letters are used for the latter. Moreover, since isothermal condition are assumed, the depen-
dency of the functional relationships on T will be dropped. Then, by virtue of (5.9), let the
model assume a Helmholtz free energy function per unit volume that depends on the right
Cauchy-Green deformation tensor C and a measure of the degree of crystallinity ω

Ψ = Ψ(C;ω) . (5.18)

Following the argument as outlined in Section 5.1.1 leading to (5.11), the second Piola-
Kirchhoff is given by

S = 2
∂Ψ(C;ω)

∂C
. (5.19)

A decoupling of the free energy function (5.18) into volumetric and isochoric parts is intro-
duced based on the same reasoning as for the split in (4.4),

Ψ = Ψvol(J) + Ψ̄
(
C̄;ω

)
, (5.20)

and leads to an analogous result as in (4.5)

S = JΨ′
vol(J)C

−1 + J−2/3

(
I− 1

3
C−1 ⊗C

)
: 2
∂Ψ̄(C̄;ω)

∂C̄
. (5.21)

The evolution of the degree of crystallinity is chosen to be governed by the macroscopic
free energy function by setting the rate of the degree of crystallinity to

ω̇ = −A∂Ψ(C;ω)

∂ω
, A ≥ 0, (5.22)

where the free energy gradient acts as a driving force for the crystallinity as discussed in
Section 5.1.2. In addition, a chemical potential threshold acting as a yield function of the
form

g =

∣∣∣∣∂Ψ(C;ω)

∂ω

∣∣∣∣− (gc + γω), (5.23)
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is used to model the crystallization kinetics, with gc ≥ 0 and γ being material parameters
as already described. The associated loading and unloading conditions from (5.5) can then
be summarized in the form of Kuhn-Tucker conditions as

A ≥ 0, g ≤ 0, Ag = 0. (5.24)

These conditions mean that when the material is crystallizing A > 0, g = 0 has to hold, and
on the other hand when g < 0, no crystallization can take place since A = 0 has to hold.
Moreover, the consistency condition in (5.7) states that when the material is crystallizing,

ġ = 0, for A > 0, (5.25)

has to hold, meaning that loading from strain-crystallizing point will lead to another strain-
crystallizing point.

Since the volumetric response Ψvol(J) can be any scalar function satisfying the condi-
tions noted in the paragraph immediately following (4.5), only the isochoric response of the
material, Ψ̄

(
C̄;ω

)
is left to be determined. In the next two sections, this isochoric response

is developed by first considering a micro-mechanical model of a partially crystalline chain
and then bridging scales using the non-affine micro-sphere model.

5.2 Micro-mechanical setting of model

In order to develop an expression for the total free energy ψ on the micro-mechanical scale
that incorporates crystallization of polymer chains, two contributions are taken into account
following the example in Section 4.2. The first contribution will be from the tube constraint
dealing with the hindered motion of a polymer chain in a network as introduced in Section
4.2.2. However, for the second contribution, the classical statistical mechanical treatment of
polymers (see Section 3.3) will have to be slightly modified. Instead of a fully amorphous
polymer chain, an unconstrained semi-crystalline polymer chain will be considered. To this
end, an additive split of the total free energy ψ into a contribution due to the unconstrained
partially crystallized single chain ψf , and the contribution due to the tube constraint ψc as
given in (4.14),

ψ = ψf + ψc, (5.26)

is assumed. In the following subsection an analytical expressions for the free energy of an
unconstrained partially crystallized single chain ψf is developed.

5.2.1 Free energy of an unconstrained partially crystallized
single chain

In order to set up the free energy of an unconstrained partially crystallized single chain
ψf , an approach by Smith (1976) can be adapted. Crystallization is assumed to happen as
depicted in Figure 5.1, where the chain has a rigid extended crystal part, two amorphous
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Figure 5.1: Schematic of a partially crystallized chain between two cross-links with end-
to-end vectors of the two amorphous subchains r1, r2, the crystal vector l, and the chain
end-to-end vector r.

subparts, and is composed of N links each of length a. The amorphous subchains r1 and r2
consist of N1 and N2 links, and the crystallized part of the chain contains n links, such that
|l| = na and N1+N2 = N −n. Since the crystal within the chain is assumed to be rigid, the
free energy only consists of two contributions: a pure thermodynamic part and an elastic
part

ψf := −∆Hu

(
1− T

T 0
m

)
Nω +∆Fe, (5.27)

where ∆Hu is the heat of fusion per link, T 0
m is the crystallization temperature, ∆Fe is the

elastic contribution, and the parameter ω is the microscopic degree of crystallinity defined
as

ω :=
n

N
, ω ∈ [0, 1] . (5.28)

Note that ∆Hu represents, in the spirit of Flory (1947), the total (internal) energy to bring a
link into the crystal. This includes both the traditional energy of fusion as well as amorphous-
crystalline interface energies (which are expected to be small). The heat of fusion is an
admittedly crude modeling device and properly should be viewed as an effective material
parameter.

In order to calculate ∆Fe, the overall probability density pf of the conformation in Figure
5.1 is calculated as the product of the two probability densities p1 and p2 of the amorphous
subchains

pf (r1, r2) := p1 (r1) p2 (r2) . (5.29)

Using the kinematic relation r2 = (r− l)− r1, r2 is eliminated from pf (r1, r2), resulting in

p̂f (r1, r) := pf (r1, (r− l)− r1) . (5.30)
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Since r1 is unknown, it is eliminated by integrating p̂f (r1, r) over all possible values of r1 for
fixed r and l. Thus, we get

p̃f (r) :=

∫
R3

p̂f (r1, r) dr1. (5.31)

Here, p̃f is the probability density of the conformation in Figure 5.1, irrespective of the values
of r1 and r2 in (5.29). Both, the Gaussian (3.126) and the non-Gaussian (3.128) probability
densities are considered in what follows. For the Gaussian model, where the probability
densities for the amorphous subchains p1 and p2 are Gaussian, a straightforward calculation
leads to

p̃f (r) =

(
3

2Na2π (1− ω)

)3/2

exp

[
− 3 (r− l)2

2Na2 (1− ω)

]
. (5.32)

Assuming that the crystal l has the same direction as r, the probability density can be
rewritten as

p̄f (λ;ω) =

(
3

2Na2π (1− ω)

)3/2

exp

−3
(
λ−

√
Nω
)2

2 (1− ω)

 , (5.33)

where the micro-kinematic stretch λ is defined as

λ :=
r

r0
, r0 =

√
Na; λ ∈

[
0,
√
N
)
. (5.34)

Thus, combining (4.9) and (5.33), the elastic contribution reads

∆Fe = −kT ln (p̄f (λ;ω)) , (5.35)

and the free energy of an unconstrained partially crystallized chain (5.27) has the form

ψf (λ;ω) := −∆Hu

(
1− T

T 0
m

)
Nω− 3kT

2

ln( 3

2Na2π (1− ω)

)
−

(
λ−

√
Nω
)2

(1− ω)

 . (5.36)
The derivation of the results for the Non-Gaussian model, where the probability density for
the amorphous subchains is non-Gaussian (3.128), is more involved and the expression for
p̄f can be found in the Appendix A.1.

Remark 5.1. The probability density in (5.33) is invariant with respect to changes in po-
sition of the extended chain crystal within the single chain. This translational invariance
implies that the partially crystallized chain model in Figure 5.1 is equivalent to a single
chain consisting of a crystalline part and only one amorphous part.

Remark 5.2. It should be noted that no straining of the crystal is permitted in the model.
In natural rubber, our system of interest, crystallinity is rarely greater than 20%. Thus the
crystals, which are substantially stiffer than the surrounding amorphous material, experience
low (relative) loads and store little strain energy as the bulk of the motion is accommodated
by the softer surrounding material.
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5.3 Micro-macro transition

Given the analytical expressions for the total free energy on the microscale from (4.14)
and (5.36) as

ψ (λ, ν;ω) = ψf (λ;ω) + ψc (ν) , (5.37)

the isochoric contribution to the total macroscopic free energy (5.20) is calculated next. The
additive split of the microscopic free energy ψ motivates the following macroscopic split
energy

Ψ̄
(
C̄;ω

)
= Ψ̄f

(
C̄;ω

)
+ Ψ̄c

(
C̄
)
. (5.38)

To connect the two expressions, a relationship between the micro-kinematic variables λ and
ν and macro-kinematic variables like C̄ or F̄ has to be established. In order to bridge these
scales, the idea of the non-affine micro-sphere model as outlined in Section 4.3 is applied to a
partially crystallized chain. It is important to note here that the variable ω is assumed to be a
measure of the degree of crystallinity on the microscale as well as on the macroscale, and thus
an identity map for its micro-macro transition is assumed (see Section 5.3.2 for a remark on
this strong assumption of isotropy). In the following subsection a non-affine network model
for the unconstrained partially crystallized chain is developed. The macroscopic contribution
of the non-affine network model for the tube constraint stays identical to (4.28), with the
non-affine relationship (4.27).

5.3.1 Non-affine network model for the unconstrained partially
crystallized chain

In Section 4.3.1 the non-affine relation between microscopic stretches λ and macroscopic
stretches λ̄ is determined by applying the principle of minimal free energy to the undeformed
micro-sphere S0 as shown in Figure 4.3. The same approach is chosen for the unconstrained
partially crystallized chain. To this end, let the micro-stretches λ vary depending on the
unit sphere direction M according to

λ(M) = λ̄(M)f(M), (5.39)

where f is a stretch-fluctuation field that will be determined by the free energy minimization.
However, it is assumed that the p-root average (4.20) over S0 of the micro stretches and the
macro-stretches are the same, which adds the following constraint to the minimization ahead:

⟨λ⟩p =
⟨
λ̄
⟩
p
, (5.40)

where p is a model parameter. The macroscopic free energy and the fluctuation field f for
an unconstrained partially crystallized material are then determined by the minimization

Ψ̄f

(
C̄;ω

)
= sup

κ
inf
f

{⟨
nDψf

(
λ̄f ;ω

)⟩
− κ

(⟨
λ̄f
⟩
p
−
⟨
λ̄
⟩
p

)}
, (5.41)
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where ⟨·⟩ := ⟨·⟩1 is an integration over the unit sphere, κ a Lagrange multiplier for the
constraint (5.40), and nD is the number of chains in the polymer network per unit volume.
The necessary condition for the minimization problem is

nD

∂ψf

(
λ̄f ;ω

)
∂λ

− κ
(⟨
λ̄f
⟩
p

)(1−p) (
λ̄f
)(p−1)

= 0, (5.42)

which can be rewritten as

κ = nD

∂ψf

(
λ̄f ;ω

)
∂λ

(⟨
λ̄f
⟩
p

)(p−1) (
λ̄f
)(1−p)

, (5.43)

where κ is constant on the sphere. Since ω is also assumed to be constant on the unit sphere,
a non-trivial solution can only be derived if λ = λ̄f is constant. Thus, we find that the same
simple result as in (4.24)

λ =
⟨
λ̄
⟩
p
, (5.44)

still holds and that the macroscopic free energy contribution from the unconstrained partially
crystallized chain reads

Ψ̄f

(
C̄;ω

)
= nDψf

(⟨
λ̄
⟩
p
;ω
)
. (5.45)

Given the macroscopic free energies (4.28) and (5.45), the stress response for SIC in nat-
ural rubber (5.21), the chemical potential threshold (5.23), and the rate of the degree of
crystallinity (5.22) can be calculated by evaluating the necessary derivatives.

Remark 5.3. It should be noted that the modeling framework that has been laid out is
restricted to modest degrees of crystallinity – a situation seen in natural rubber where the
maximum expected degree of crystallinity is around 20%. At higher values, say approaching
100%, one would expect the material to behave more in line with the Cauchy-Born rule
(CBR); see e.g. Ericksen (2008) for a recent commentary on this rule. In a general CBR
motion the lattice moves affinely coupled with a non-affine basis (atom) relaxation (Weiner,
1983, §4.3). The micro-sphere model incorporates a relaxation but lacks a mechanism (beyond
the averaging constraint) for inter-chain interactions which would allow for the “natural”
appearance of CBR-like behavior. Thus the use of the micro-sphere framework for a strain
crystallizing model is restricted to materials such as natural rubber that do not exhibit large
degrees of crystallization.

5.3.2 The Isotropic Assumption

The model presented in this chapter for SIC in natural rubber is isotropic and this
warrants further discussion. When natural rubber crystallizes it forms monoclinic crystals
(Bunn, 1942a,b; Toki et al., 2003) and these are principally aligned with the loading axis
(Flory, 1947; Toki et al., 2003; Guilie et al., 2013). There is clearly an induced anisotropy on
the microscale. Since the micro-sphere framework allows one to consider independent direc-
tions it would appear that an anisotropic micro-sphere model would be possible. However,
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central to the micro-sphere framework is the relaxation in (5.41). This relaxation differenti-
ates the micro-sphere model from the earlier efforts of, say, Treloar and Riding (1979) and
Wu and van der Giessen (1993) in which affine assumptions were invoked (i.e. no relaxation)
and it is what gives the micro-sphere framework its superior modeling capabilities. The ad-
dition of anisotropy with relaxation is non-trivial and works dealing with anisotropy and the
micro-sphere model invariably assume an affine motion; see e.g. Göktepe and Miehe (2005)
or Menzel and Waffenschmidt (2009). In the limiting case of ω = 0, the affine model is known
to give a poor result; relaxation is required. The primary question is what is the appropriate
variational principle to impose on the micro-sphere model during anisotropic evolution of
the microstructure. With an eye towards phase transformations and plastic flow some vari-
ational principles have been developed; see e.g. Mielke (2004) and Mielke and Ortiz (2008).
Unfortunately, the mathematical structure of these developments is not directly compati-
ble with the micro-sphere framework which lacks a gradient constraint on microstructural
state. Kroon (2010) in his strain crystallization model does provide one mechanism for an
anisotropic relaxation but it relies on the addition of an ad hoc term to the micro-sphere
energy. For these reasons, an isotropic model is chosen and the final result is viewed as a
single (isotropic) order parameter model which provides a spatially averaged measure of the
true state of the material.

5.4 Macroscopic material response and summary

In this section the derivatives needed for the macroscopic stress-strain response are cal-
culated and evaluated for the case of the partially crystallized single chain having a Gaussian
probability density (3.126). The results for the non-Gaussian case are not mentioned here
but will be considered in the next chapter to assess the modeling capacity of the proposed
model.

5.4.1 Derivatives

At this point, the contribution from the partially crystallized chain and the contribution
from the non-affine tube constraint can be assembled into the overall isochoric response of
the material

Ψ̄
(
C̄;ω

)
= nDψf

(⟨
λ̄
⟩
p
;ω
)
+ ⟨nDψc (ν̄

q)⟩ . (5.46)

In order to calculate the second Piola-Kirchhoff stress tensor as given in (5.21), the following
derivative is needed,

∂Ψ̄(C̄;ω)

∂C̄
=
∂Ψ̄f (C̄;ω)

∂C̄
+
∂Ψ̄c(C̄)

∂C̄
. (5.47)

It is important to note that the derivative is taken with respect to C̄ at a constant degree
of crystallinity ω. Thus, using the result in (5.44), the contribution from the partially
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crystallized chain ends up being(
∂Ψ̄f

∂C̄

)
kl

=

(
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∂C̄

)
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2
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, (5.48)

and using (4.27), the non-affine tube constraint contribution results in(
∂Ψ̄c

∂C̄

)
kl

=

(
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∂ν̄
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)
NiNj

⟩
. (5.49)

The only derivatives left to evaluate are ∂ψf/∂λ from (5.48), ∂ψc/∂ν from (5.49), and ∂Ψ/∂ω
from (5.22) for the evolution of the internal variable ω. For the simple case of the Gaussian
probability density (3.126) the derivatives are listed next. The derivatives for the Non-
Gaussian model with the probability density (3.128) can be calculated using the expression
for p̄f given in Appendix A.1. Using (5.36), the partial derivative reads

nD
∂ψf

∂λ
=

3µ

1− ω

(
λ−

√
Nω
)
, µ := nDkT, (5.50)

where µ, the effective shear modulus is introduced. Using (4.14)

nD
∂ψc

∂ν
= µNU, U := α

(
a

d0

)2

, (5.51)

where U is the effective tube geometry parameter. The gradient in (5.22) is calculated using
(5.20), and (5.46):

∂Ψ(C̄;ω)
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λ=⟨λ̄⟩

p

,

(5.52)

where µD := nD∆Hu is the effective heat of fusion.

5.4.2 Model summary

The proposed model has a total of eight material parameters, summarized in Table 5.1,
in addition to the ambient temperature T and the crystallization temperature T 0

m, which are
both used in (5.52). Five of the parameters are associated with the non-affine micro-sphere
model and three additional parameters are introduced for the crystallization kinetics: µD

is the heat of fusion (per unit volume); gC is the critical threshold value the driving force
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# Parameter Name Eq. Effect

1 µ := nDkT Shear modulus (5.50) Ground state stiffness
2 N Number of chain segments (3.126) Chain locking response
3 p Non-affine stretch parameter (5.40) 3D locking characteristic

4 U := α (a/d0)
2 Tube geometry parameter (5.51) Additional constraint stiffness

5 q Non-affine tube parameter (4.27) Shape of constraint stress

6 µD := nD∆Hu Heat of fusion (5.52) Heat of fusion
7 gC Critical chemical potential (5.22) Threshold at ω = 0
8 γ Threshold evolution parameter (5.22) Softening/ hardening

Table 5.1: Material parameters of the proposed model.

|∂Ψ/∂ω| has to reach before the crystallization process can start; γ is a hardening/softening
parameter, meaning that if γ > 0, the driving force threshold increases as the degree of
crystallinity goes up. On the other hand if γ < 0, the driving force threshold decreases as
the degree of crystallinity goes up, which in turn means that once the crystallization process
has started, it becomes progressively easier for the crystallization to continue.
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Chapter 6

Assessment of Modeling Capacity

While the previous chapter sets up a thermodynamically consistent multiscale model
for SIC in NR, this chapter lays out a computationally accessible algorithmic setting of
the model, assesses its predictive performance by using published data, and emphasizes the
physical meaning of the model parameters1.

6.1 Return mapping algorithm

In this section the algorithmic setting of the proposed constitutive model for strain-
induced crystallization is explained. The goal of the numerical implementation is to be able
to calculate the evolution of the stress tensor and the degree of crystallinity for a given
deformation cycle.

As a first step of the algorithm a trial stress tensor (5.21) is calculated assuming no
evolution of crystallinity. In order to do so, the averaging integrals over the unit sphere in
(5.48) and (5.49) have to be evaluated. This is done using a 21-point integration scheme
as derived in Bazant and Oh (1986). A very thorough and easy-to-follow description of the
algorithm using the 21-point integration scheme is provided in Miehe et al. (2004), where the
unit sphere S0 is discretized bym = 21 orientation vectors {ri = ri1e1+r

i
2e2+r

i
3e3}i=1...m and

weight factors {wi}i=1...m. The spherical averaging (integration) of a microscopic quantity v
on the unit sphere is then written as a discrete sum

⟨v⟩ = 1

S0

∫
S0

v(A) dA ≈
m∑
i=1

viwi, (6.1)

where {vi}i=1...m represent the microscopic variable v evaluated at points Ai on the unit
sphere corresponding to the orientation vector ri. The integration points and the associated
weights are summarized in Table 6.2.

1Results in this chapter are reprinted with permission from Mistry and Govindjee (2014)
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1. Given the deformation Cn+1, compute the trial state (no evolution of crystallinity):

ωtrial
n+1 = ωn,

gtrialn+1 = g(Cn+1, ωn),
Strial
n+1 = S(Cn+1, ωn).

2. Check consistency of crystallization step:

if gtrialn+1 ≤ 0, then ( · )n+1 := ( · )trialn+1 & EXIT

3. else gtrialn+1 > 0, set

gn+1 =

∣∣∣∣∂Ψ(⟨λ̄⟩
p
,ωn+1)

∂ω

∣∣∣∣− (gC + γωn+1) = 0,

and solve for ωn+1 using a Newton-Raphson scheme, where a Backward-Euler scheme
is used to integrate the evolution equation:

ωn+1 = ωn −A(tn+1 − tn)(∂Ψ(
⟨
λ̄
⟩
p
, ωn+1)/∂ω).

4. Calculate the new Sn+1 using the updated ωn+1

Table 6.1: Implementation of the return mapping algorithm for strain-induced crystalliza-
tion.

Once the trial stress tensor Strial
n+1 has been computed, a return mapping algorithm is

proposed in order to determine the evolution of the degree of crystallinity and to correct
the stress computation. The idea is to start with the trial state where the evolution of the
degree of crystallinity is frozen, that is ωtrial

n+1 is assumed to be the same as the previous one
ωn. Next g

trial
n+1 is evaluated using ωtrial

n+1 and the actual Cn+1 as summarized in step 1 of Table
6.1. Since the trial state may or may not be a physically admissible state, the value of the
threshold function gtrialn+1 is checked for consistency. If gtrialn+1 ≤ 0, then no evolution of the
degree of crystallinity is allowed and the trial state indeed is a physically admissible state.
However if gtrialn+1 > 0, the trial step cannot be a solution, and there has to be an evolution of
the degree of crystallinity. By numerically solving the equation g(Cn+1, ωn+1) = 0 for ωn+1,
an admissible degree of crystallinity ωn+1 and an updated S(Cn+1, ωn+1) can be computed.

6.2 Numerical results and discussion

This section uses published X-ray diffraction measurements carried out by Toki et al.
(2003) to test the proposed model. Moreover the proposed model is compared to the recent
model of Kroon (2010) and the differences between them are discussed.

6.2.1 Model compared to experiments

In the experiments of Toki et al. (2003), strain-induced crystallization is measured using
in situ synchrotron wide-angle X-ray diffraction on sulfur (NR-S) and peroxide (NR-P) cured
natural rubber as well as sulfur vulcanized synthetic polyisoprene rubber (IR-S). The exper-
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# ri1 ri2 ri3 wi/2

1 0.0 0.0 1.0 0.0265214244093
2 0.0 1.0 0.0 0.0265214244093
3 1.0 0.0 0.0 0.0265214244093
4 0.0 0.707106781187 0.707106781187 0.0199301476312
5 0.0 -0.707106781187 0.707106781187 0.0199301476312
6 0.707106781187 0.0 0.707106781187 0.0199301476312
7 -0.707106781187 0.0 0.707106781187 0.0199301476312
8 0.707106781187 0.707106781187 0.0 0.0199301476312
9 -0.707106781187 0.707106781187 0.0 0.0199301476312
10 0.836095596749 0.387907304067 0.387907304067 0.0250712367487
11 -0.836095596749 0.387907304067 0.387907304067 0.0250712367487
12 0.836095596749 -0.387907304067 0.387907304067 0.0250712367487
13 -0.836095596749 -0.387907304067 0.387907304067 0.0250712367487
14 0.387907304067 0.836095596749 0.387907304067 0.0250712367487
15 -0.387907304067 0.836095596749 0.387907304067 0.0250712367487
16 0.387907304067 -0.836095596749 0.387907304067 0.0250712367487
17 -0.387907304067 -0.836095596749 0.387907304067 0.0250712367487
18 0.387907304067 0.387907304067 0.836095596749 0.0250712367487
19 -0.387907304067 0.387907304067 0.836095596749 0.0250712367487
20 0.387907304067 -0.387907304067 0.836095596749 0.0250712367487
21 -0.387907304067 -0.387907304067 0.836095596749 0.0250712367487

Table 6.2: Spherical integration points and weights.

iments are conducted at 0 ◦C, where a 25mm sample is uniaxially deformed from a stretch
of 1 to a stretch of 6 and back at 10mm/min. One loading cycle thus takes approximately
25 minutes. The data for the NR-S, NR-P, and IR-S samples are plotted as dotted lines in
Figures 6.1, 6.2, and 6.3 respectively. Optimized model parameters are found in two steps.
In a first step, the evolution of the degree of crystallinity from the experiments is considered
as given and only the stress-strain curve is fit. An estimate of the five material parameters of
the non-affine micro-sphere model (N, p, µ, q, U) is thus calculated using a least squares fit.
As a next step, the remaining three parameters (µD, gC , γ) are fit by hand with only minor
changes of the other parameters. This is feasible because of a clear meaning of the three
parameters: an increase in µD decreases the maximum degree of crystallinity, and slightly
increases the incipient crystallization stretch; an increase in gC increases the the incipient
crystallization stretch and lowers the maximum degree of crystallinity; and an increase in
γ decreases/delays incipient decrystallization stretch and slightly decreases the maximum
degree of crystallinity. The optimized material parameters for the model curves are listed in
Table 6.3.

In Figures 6.1(a) Toki’s experimental data for the NR-S sample are indicated by the
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Gaussian Non-Gaussian
model model

NR-S NR-P IR-S NR-S NR-P IR-S

N [-] 195.95 191.13 199.95 175.95 191.70 191.95
p [-] 1.4692 1.1594 1.4692 1.4692 1.4941 1.46922
µ [MPa] 0.62023 1.0191 1.02023 0.62023 1.0878 1.02023
q [-] 16.933 15.048 16.200 17.053 14.766 16.260
U [-] 3.7578e-8 1.9937e-7 3.7578e-8 3.7578e-8 2.3993e-7 3.7578e-8

µD [MPa] 0.110 0.125 0.210 0.115 0.130 0.205
gC [MPa] 18 34 42 14 34 34
γ [MPa] -65 -140 -260 -45 -120 -205

Table 6.3: Optimized material parameters for the models with Gaussian and non-Gaussian
probability densities. The ambient temperature is T = 0 ◦C and the crystallization temper-
ature is assumed to be T 0

m = −143.95 ◦C (isoprene).

dotted line and the prediction by the Gaussian model by the solid line. The prediction of the
stress-strain hysteresis is in good agreement up to a stretch of 4. Above a stretch of 4, during
loading, the proposed model under predicts the stress due to the fact that the crystallization
flow-rule is rate independent; this point is supported by the experimental observations of
Marchal (2006). Note, that this rate dependency is independent of whether or not the
background material model is elastic or viscoelastic. The prediction of the crystallization
is seen to be quite good, except for the decrystallization from a stretch of 3 to 1. The
prediction there appears to have some type of “inverse yielding” (necking during unloading)
as mentioned in Albouy et al. (2005) and Trabelsi et al. (2003) (see Figure 1.1). Note a
negative value of γ is used which suggests a softening as mentioned in Section 5.4.2. It
is also important to point out that the predicted value of N ≈ 196 is physically sound.
Assuming a monomer length of a = 4Å, the maximum degree of crystallinity ωmax ≈ 0.15
gives us an estimated crystallite length of lc ≈ Nωmaxa ≈ 118Å, which falls into the range
of reported crystallite lengths of 80Å to 180Å (Chenal et al., 2007; Trabelsi et al., 2003).
Lastly it is noted that no relevant differences are found between the prediction generated by
the Non-Gaussian model in Figure 6.1(b) and the Gaussian model in Figure 6.1(a).

In Figure 6.2(a) Toki’s experimental data for the NR-P sample is indicated by the dotted
line and the prediction by the Gaussian model by the solid line. The same remarks as made
for the quality of the NR-S fit can be made here as well. However in Figure 6.3(a) the quality
of the stress-strain hysteresis fit for Toki’s IR-S seems to be better than the quality of the
previous two fits. Deviations are only found on the loading curve between stretches of 4 and
6. Additionally the model is able to fully capture the instant start of the decrystallization
as seen in the unloading part of the crystallization curve. The same also holds true for the
Non-Gaussian model in Figure 6.3(b).
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(a) Gaussian model
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Figure 6.1: Comparison of the sulfur vulcanized NR data (dotted line) to: (a) the Gaussian
model; (b) the non-Gaussian model; and (c) Kroon’s model with (solid line) and without
(dashed line) viscoelasticity. The curve for the degree of crystallinity is only plotted once
because it stays the same for both cases. Optimized parameters for (a) and (b) can be found
in Table 6.3 under NR-S.

6.2.2 Model compared to Kroon’s model

As mentioned in Chapter 1 a similar model was recently developed by Kroon (2010). One
of the core differences between the two models is in how they view the increase of the degree
of crystallinity. In the proposed model the increase in crystallinity stems from the growth of
the extended-chain crystallites, which is supported by Chenal et al. (2007). Kroon uses the
idea of Murakami et al. (2002), where the crystallite size is thought to be constant and the
growth driven by nucleation. However, it is also mentioned in Murakami et al. (2002) that
the induced crystallites are well packed, which can be seen as a growing crystallite provided
the definition of a crystallite is loosened a bit. In any case, researchers do not seem to fully
agree on the mechanism that governs the increase in crystallinity.
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(a) Gaussian model
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(b) Non-Gaussian model (c) Kroon’s model

Figure 6.2: Comparison of the peroxide vulcanized NR data (dotted line) to: (a) the Gaussian
model; (b) the non-Gaussian model; and (c) Kroon’s model with (solid line) and without
(dashed line) viscoelasticity. The curve for the degree of crystallinity is only plotted once
because it stays the same for both cases. Optimized parameters for (a) and (b) can be found
in Table 6.3 under NR-P .

Another important point is viscoelasticity. In order to be able to predict the stress-strain
hysteresis, Kroon uses a phenomenological viscoelastic component. However Murakami et al.
(2002) and Trabelsi et al. (2003) clearly note that the hysteresis is entirely due to the
phenomenon of crystallization and not due to viscoelastic effects. Toki’s loading rate is also
observed to be rather slow. Kroon’s predictions with and without the viscoelastic component
are plotted in Figures 6.1(c), 6.2(c), and 6.3(c). The plots show that without the viscoelastic
component only a slight stress-strain hysteresis is observable. In the proposed model no
viscoelastic component is used. This issue is clearly important if the model is to be utilized
for fracture prediction where energy balance issues are of paramount interest.

Another difference in the models is the evolution law for the degree of crystallinity.
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(a) Gaussian model
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Figure 6.3: Comparison of the sulfur vulcanized synthetic polyisoprene rubber data (dotted
line) to: (a) the Gaussian model; (b) the non-Gaussian model; and (c) Kroon’s model with
(solid line) and without (dashed line) viscoelasticity. The curve for the degree of crystallinity
is only plotted once because it stays the same for both cases. Optimized parameters for (a)
and (b) can be found in Table 6.3 under IR-S.

In Kroon’s model a phenomenological Arrhenius equation is implemented to govern the
crystallinity. However in the proposed model it is felt that the approach using the chemical
potential as a driving force is more physical and provides the better predictions for the degree
of crystallinity, especially if compared in the case of IR-S in Figure 6.3.

A further modeling difference is found in the way the non-affine deformation is introduced.
Kroon uses a phenomenological compliance stretch on the microscopic scale to incorporate
non-affine deformation. Computationally it is equivalent to the introduction of an ad hoc
penalty constraint, which is used to penalize non-affine deformation. In the proposed model
the non-affine deformation is derived from a principle of minimum free energy and a simple
closed-form result is obtained (Miehe et al., 2004). It is noted that Kroon’s methodology
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Viscoelasticity No viscoelasticity

NR-P IR-S NR-S NR-P IR-S NR-S

n [-] 22.0 20.0 23.3 22.0 27.6 22.4
nc [-] 9.3 11.0 11.0 9.9 13.1 11.0
N [-] 0.1 0.1 0.1 0.1 0.1 0.1
µc [MPa] 1.05 1.20 0.60 1.00 1.35 0.6
α [MPa] 0 0 0 0 0 0
µnc [MPa] 180 63 170 245 270 200
µv [MPa] 1 1 1 0 0 0
η [MPa min] 0.25 0.12 0.20 - - -
gc [min−1] 0.088 0.047 0.044 0.073 0.066 0.051
ga [min−1] 0.31 0.74 0.50 0.31 0.59 0.48

Table 6.4: The material parameters used for the reproduced results of Kroon’s model.

can lead to unstable behavior at large stretches.
As a last point, the model parameters regarding the crystallite size are mentioned. Kroon

uses a parameter N as the number of participating chains in the crystallite and a parameter
nc as the number of links in the extended-chain crystal. The first value turns out to be
N = 0.1, which is not physical and the second value is around nc = 11, which is physically
quite low. In the proposed model however, the predicted size of the crystallite fully agrees
with experimentally reported values.

Remark 6.1. The predictions in Figures 6.1(c), 6.2(c), and 6.3(c) are reproduced results
from Kroon (2010) and might slightly differ from the original predictions, since here a 21-
point integration scheme (Bazant and Oh, 1986) is used to integrate over a spherical surface
instead of the 50-point integration scheme mentioned in Kroon (2010). The material param-
eters used for the reproduced results of Kroon’s model curves are listed in Table 6.4.
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Chapter 7

Concluding Remarks

The goal of this thesis was to develop a computationally-accessible micro-mechanically
motivated continuum model for SIC in NR. To this end, a micro-mechanical model of a
constrained partially crystallized polymer chain was derived and subsequently connected to
the macroscopic level using the non-affine micro-sphere model. On the macroscopic level,
a thermodynamically consistent framework for strain-crystallizing materials was developed,
and a description of the crystallization kinetics was introduced. For that matter, an evolu-
tion law for crystallization based on the gradient of the macroscopic Helmholtz free energy
function (chemical potential) in combination with a simple threshold function was used. The
key here was the addition of a softening of the critical chemical potential driving force with
advancing crystallization. The predictive performance of the proposed model was shown by
fitting available experimental data for various cured natural rubber samples, and as a last
step the model was compared to a recently developed constitutive model to highlight its
physical features. It is seen that both the coarse scale stress-strain response is reasonably
reproduced as is the internal state degree of crystallinity. Further the fitted model parame-
ters are seen to correctly fit in the physical range seen in experiments. The good behavior
occurs despite this rather basic model of SIC. This simplicity warrants further discussion.

Three key issues were encountered during the development of this model. Firstly, as
mentioned in Section 5.3.2, the proposed model is isotropic, and the addition of anisotropy
with relaxation over the micro-sphere is non-trivial but a desirable next step. However, there
is only little experimental work available on anisotropic effects of SIC on the macroscopic
scale, such that the testing of an anisotropic model would be difficult.

A second relevant issue is viscoelasticity. Researchers do not seem to agree completely
on whether the hysteretic behavior is entirely due to the phenomenon of crystallization or
due to viscoelastic effects. More work has to be done to understand thoroughly the energetic
and dissipative effects. This is especially important with regard to the current work of the
author on fracture prediction, where energy balance issues are of utmost interest.

Thirdly, the mechanisms that govern the evolution of the degree of crystallinity are not
entirely clear. Chenal et al. (2007) suggests that there are a fixed amount of nuclei in the
amorphous polymer and the increase in crystallinity stems from crystal growth. However,
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Murakami et al. (2002) states that the size of the crystallites is constant and a growth in
crystallinity is achieved through the formation of nuclei. Again, more experimental work has
to be done to fully understand the underlying physics of crystallization in NR.

Finally, a further suggestion to improve the predictive ability of the proposed model,
is to use a rate-dependent crystallization “flow-rule” as seen in viscoplasticity formulations
by Perzyna and Duvaut-Lions (see e.g. Simo and Hughes (1998, Section 2.7)) instead of a
rate-independent ones.
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Appendix A

Non-Gaussian Model

A.1 Probability Density p̄f

The probability density of the conformation in Figure 5.1 using the Non-Gaussian prob-
ability density (3.128) is given as

p̄f (λ;ω) = − 1
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√

1
N−Nω

3

√
3

2
e

3(λ−
√

Nω)2

2(−1+ω) (3(243λ8 − 828λ6(−1 + ω)

− 2346λ4(−1 + ω)2 − 900λ2(−1 + ω)3 − 485(−1 + ω)4)− 72
√
Nλ(81λ6

− 207λ4(−1 + ω)− 391λ2(−1 + ω)2 − 75(−1 + ω)3)ω − 5832N7/2λω7

+ 729N4ω8 − 72N5/2λω3(−160 + ω(480 + (−273 + 567λ2 − 47ω)ω))

+ 36N3ω4(−80 + ω(240 + ω(−171 + 567λ2 + 11ω)))− 24N3/2λω(1701λ4ω2

− 30λ2(−1 + ω)(−16 + ω(32 + 53ω))− (−1 + ω)2(1120 + ω(−2240 + 2293ω)))

+ 12N(1701λ6ω2 − 225(−1 + ω)3ω2 − 15λ4(−1 + ω)(−16 + ω(32 + 191ω))

− λ2(−1 + ω)2(1120 + ω(−2240 + 4639ω)))− 2N2(800 + ω(−4800 + ω(18720

− 25515λ4ω2 + 270λ2(−1 + ω)(−32 + ω(64 + 37ω)) + ω(−42880 + ω(55839

+ ω(−38718 + 11039ω))))))),

where N1 and N2 are assumed to be N(1− ω)/2, since the position of the extended crystal
within the chain does not change the result. The probability density p̄f was calculated using
Mathematica.
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