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ABSTRACT

Motivation: Homology detection enables grouping proteins into

families and prediction of their structure and function. The range of

application of homology-based predictions can be significantly

extended by using sequence profiles and incorporation of local struc-

tural features. However, incorporation of the latter terms varies a lot

between existing methods, and together with many examples of

distant relations not recognized even by the best methods, suggests

that further improvements are still possible.

Results: Here we describe recent improvements to the fold and

function assignment system (FFAS) method, including adding opti-

mized structural features (experimental or predicted), ‘symmetrical’

Z-score calculation and re-ranking the templates with a neural net-

work. The alignment accuracy in the new FFAS-3D is now 11% higher

than the original and comparable with the most accurate template-

based structure prediction algorithms. At the same time, FFAS-3D has

high success rate at the Structural Classification of Proteins (SCOP)

family, superfamily and fold levels. Importantly, FFAS-3D results are

not highly correlated with other programs suggesting that it may sig-

nificantly improve meta-predictions. FFAS-3D does not require 3D

structures of the templates, as using predicted features instead of

structure-derived does not lead to the decrease of accuracy.

Because of that, FFAS-3D can be used for databases other than

Protein Data Bank (PDB) such as Protein families database or

Clusters of orthologous groups thus extending its applications to func-

tional annotations of genomes and protein families.

Availability and implementation: FFAS-3D is available at http://ffas.

godziklab.org.

Contact: adam@godziklab.org

Supplementary Information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

One of the most intriguing problems in molecular biology is the

extent of homology between genes and proteins. With sequences

evolving quickly, many homologs become unrecognizable by

simple sequence-sequence comparisons.More sophisticatedmeth-

ods, including sequence-profile and profile-profile methods allow

us to recognize statistically significant similarities even between

distant homologs. The fold and function assignment system

(FFAS) is one of the first programs that introduced using pro-

file-profile alignment (Jaroszewski et al., 2000; Rychlewski et al.,

2000) for protein homology detection, and since its inception it is

publicly available on the http://ffas.godziklab.org server. Profile-

profile methods have been proved to be more accurate and more

sensitive than sequence-sequence alignment and sequence-profile

alignmentmethods (Panchenko, 2003), and suchmethods are now

widely used in various types of applications, such as protein struc-

ture prediction (Baker and Sali, 2001), function assignment

(Kinch and Grishin, 2002), new domain annotation(Jaroszewski

et al., 2009) and aiding molecular replacement method of protein

crystallography (Schwarzenbacher et al., 2004).
The performance of the profile-profile comparison depends

critically on the diversity of sequences included in the profiles.

With low diversity, the performance of profile-profile alignment

becomes similar to that of the sequence-sequence alignment.

Continuous growth of the protein sequence databases partly

alleviates this problem. In addition, accuracy of profile-profile

algorithms can be improved by using additional information to

add more sequences to the profile or by adding other features/

descriptors to it. In the former category, one can include sequence

fragments with similar structure in the profile calculation, as done

in the SP3 method (Zhou and Zhou, 2005), or incorporate more

distant homologs in the profile calculation by using a higher E-

value cutoff in Position-Specific Iterated Basic Local Alignment

Search Tool (PSI-BLAST) (Altschul et al., 1997) searches as done

byMUlti-Sources ThreadER (MUSTER) (Wu andZhang, 2008).

In the latter category, one can expand scoring by including real or

predicted structural features such as secondary structure (SS)

type, solvent accessibility (SA) and torsion angles (Wu and

Zhang, 2008; Yang, et al., 2011). This strategy recently became

increasingly effective because of the improving accuracy of meth-

ods for predicting local structural features. It is important to note

that using local structural features predicted from sequence allows

comparison of profiles of proteins neither of which has an experi-

mentally determined structure.

In this study, we tested various predicted local structural fea-

tures in the context of the FFAS scoring, including SS, residue–

type-independent SA and residue depth (RD). Besides testing
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the new composite score, we predict the accuracy of each align-

ment by neural network trained on various parameters of the

alignment. All new features were tested on benchmarks inde-

pendent from the training set.

2 METHODS

FFAS-3D contains several features of the original FFAS (Rychlewski

et al., 2000), such as the collection and weighting of sequences in the

multiple sequence alignments used for profile calculation and normaliza-

tion of profile matching matrix between two sequences. The modifica-

tions of the profile-profile matching score added after original FFAS

publication (Rychlewski et al., 2000) are described in Section 2.1.

The most important scoring terms added to FFAS-3D include the

SS matching score, solvent exposure matching score and template

re-ranking. The derivation of residue-size independent SA, the direct

comparison of RD and the re-ranking score using different sources of

information were not used in similar profile-profile methods before.

These features are described in Sections 2.2–2.4. Implementation of

dynamic programing, calculation of the final Z-score and template

re-ranking are described in Sections 2.5–2.7.

2.1 Sequence profile derivation

Current implementation of FFAS first runs PSI-BLAST (Altschul et al.,

1997) on a non-redundant sequence database clustered using CD-HIT

(Li and Godzik, 2006) with sequence identity cutoff 85% to obtain the

multiple sequence alignments. The E-value threshold of 0.005 and the

maximum number of five iterations are used as a default. At most 750

alignments are saved in each round. The profile is built from alignments

from the last PSI-BLAST round and all alignments from previous

rounds, if aligned sequences were not included in the last round [in the

original FFAS (Rychlewski et al., 2000) all the alignments from five PSI-

BLAST iterations were included but then aligned proteins were purged by

removing ones with497% sequence identity to other proteins].

Unlike the Henikoff–Henikoff weighting scheme (Henikoff and

Henikoff, 1994) used for balancing the sequences in multiple sequence

alignments found by PSI-BLAST, the weight of each sequence in FFAS

profile is based on the diversity of this sequence as compared with all the

other sequences, which is calculated using the BLOSUM62 mutation

matrix as described in Rychlewski et al. (2000).

The sequence-profile score sp(i,j) for matching two residues in two

sequences is the product of the corresponding two profile vectors and the

BLOSUM62 matrix [see Equation (1)]. The multiplication by the

BLOSUM62 matrix was introduced after year 2000, and it is a logical

equivalent of the transformation of profiles used in Rychlewski et al.

(2000).

spði, jÞ ¼ �
X20
k¼1

X20
l¼1

ffði, kÞ � BLðk, lÞ � ffðj, lÞ ð1Þ

We then calculate the average �(sp) and standard deviation �(sp) of

sp(i,j) score over all residue pairs in the two compared profiles and trans-

form sp(i,j) into a normalized scoring matrix, which is then used by

dynamic programing algorithm [see Equation (2)] [the same approach

was used in Rychlewski et al. (2000)].

sp0ði, jÞ ¼ ðspði, jÞ � �ðspÞÞ=�ðspÞ ð2Þ

The rationale behind this step is that raw (not normalized) profile-

profile comparison matrices show large differences in average values

and standard deviations resulting from factors such as similarity of

amino acid composition and number and diversity of sequences included

in the profiles. These factors are not related to specific similarity between

two proteins represented by these profiles. As confirmed by benchmark

tests, the normalization step improves prediction accuracy by reducing

unspecific score differences and enhancing specific sequence similarity

signal related to the optimal alignment found by dynamic programing.

2.2 Secondary structure type

The three-state SS type (helix, sheet, coil) of each residue is predicted by

PSIPRED (Jones, 1999) for the query sequence. For each template struc-

ture, we group the eight SS types as assigned by Define Secondary

Structure of Proteins (DSSP) (Kabsch and Sander, 1983) into three

states. The SS matching score (used in the alignment scoring matrix)

for two residues depends on the agreement of aligned SS types and the

confidence score provided by PSIPRED [see Equation (3)]. The

PSIPRED’s confidence is in the range of 0–9. For templates whose SS

was calculated using DSSP, we assumed confidence score of 9.

ssði, jÞ ¼
�confðiÞ � confðjÞ if ssðiÞ ¼ ssðjÞ
confðiÞ � confðjÞ otherwise

�
ð3Þ

We have also tested a scoring function using negative logarithm of the

SS probability (Soding, 2005), but it did not improve the prediction

accuracy.

2.3 Residue-type independent solvent accessibility

The real-value SA of each residue was predicted by a back propaga-

tion neural network (Rumelhart et al., 1986) with two hidden layers for

the query sequence (Xu and Zhang, 2012). The input features are 20

frequencies of residue types extracted from the checkpoint file generated

by PSI-BLAST and three probabilities of SS types as predicted by

PSIPRED.

For template structures, solvent accessible surface area (SASA) was

calculated by EDTSurf (Xu and Zhang, 2009) and then normalized by

dividing it by the maximum solvent accessible surface area (MSASA).

However, we found that this kind of SA is residue-type dependent,

e.g. smaller residues usually have smaller SA values despite the fact

that they have lower values of MSASA (see Supplementary Table S1 in

Supplementary Materials) used for normalization. This is because small

residues tend to be buried by the neighboring bigger residues. It results in

the smaller values of average SA for small residues as compared with

bigger residues even if they have similar hydrophobicity values. This de-

pendence on the residue type does not cause problems if the predicted and

real SA values are compared for the same residue type (Xu and Zhang,

2012). However, it introduces discrepancies when we align residues and

compare their SA values for different residue types.

To make the SA normalization residue-type independent, we intro-

duced the reference solvent accessible surface area (RSASA) and used

it for normalization of SA. We downloaded a non-redundant set of 3922

protein chains provided by Protein Sequence Culling Server (PISCES)

(Wang and Dunbrack, 2003) server (pairwise sequence identity50.30)

and calculated all-to-all structure alignment using Template Modeling

Score Alignment (TM-align) (Zhang and Skolnick, 2005). Then we se-

lected protein pairs that have TM-score40.5, which means they have the

same fold (Xu and Zhang, 2010). We only considered pairs of aligned

residues with distances55 Å after the optimal superposition of each pro-

tein pair. Then we calculated RSASA iteratively. In the first step, RSASA

of each residue type is set to its MSASA. Then we sum the SA values for

residue types a and b separately when they are aligned and then calculate

their ratio RATk(a,b) in the k-th iteration. We divide the RSASA by the

average ratio ARATk(a) for each residue type to get the new RSASA.

After �5 iterations, the RSASA of each residue type becomes stable and

most of the ratios between the 400 residue pairs get closer to 1. The final

20 values of RSASA are listed in Supplementary Table S1 [they can also

be used for the normalization of SA values calculated with DSSP, as

SASA values calculated by EDTSurf and DSSP are highly correlated

(Xu and Zhang, 2013)]. The iterative procedure is described formally
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by Equation (4). The average absolute difference of solvent accessibilities

normalized with RSASA for the aligned residue pairs is equal to 0.113 as

compared with 0.120 difference of solvent accessibilities normalized with

MSASA.

RSASA0ðaÞ ¼MSASAðaÞ

solkðaÞ ¼ SASAðaÞ=RSASAkðaÞ

RATkða, bÞ ¼
P

solkðaÞ=
P

solkðbÞ

ARATkðaÞ ¼
P20
b¼1

RATkða, bÞ=20

RSASAkþ1ðaÞ ¼ RSASAkðaÞ=ARATkðaÞ

8>>>>>><
>>>>>>:

ð4Þ

The SA matching score [given in Equation (5)] used in the alignment

scoring matrix is the absolute difference of solvent accessibilities between

any two residues in two sequences.

saði, jÞ ¼ jsolðiÞ � solðjÞj ð5Þ

2.4 Residue depth

RD evaluates the position of each residue in the protein structure relative

to the closest point of the solvent accessible surface (Chakravarty and

Varadarajan, 1999). When residues are completely buried inside of the

protein, their solvent accessibilities are all equal to zero, but depth values

are different. Hence, RD can be considered as a complementary term to

SA. It was used before for generating structure profile to help find

remotely homologous protein pairs (Zhou and Zhou, 2005).

Here, RD of a template structure is calculated by EDTSurf, whereas

for the query sequence it is predicted by a separate neural network with

two hidden layers. Input features for each residue are the same as that

used for the SA prediction. The window size is 33, which results in

23� 33¼ 759 nodes in the input layer. Each of the two hidden layers

contains 70 nodes and the output layer (consisting of one node) predicts

the real-value RD. Similar to SA, we normalize the depth value dv(i) to a

value between 0 and 1 as shown in Equation (6). We then directly use the

absolute difference of RDs as the matching function in the alignment

scoring matrix [see Equation (7)].

depðiÞ ¼ ðdvðiÞ � 2:8Þ=7 ð6Þ

rdði, jÞ ¼ jdepðiÞ � depðjÞj ð7Þ

The inclusion of predicted structural features into profiles improves

profile-profile comparison only if these predictions are sufficiently accur-

ate. For instance, the accuracy of SS prediction is relatively high (Q3

accuracy40.80) and it is known to provide a useful contribution to pro-

file-profile alignment. The prediction errors of SA and RD are listed in

Supplementary Table S2. For SA, hydrophobic residues such as CYS,

ILE, LEU and VAL, often have smaller prediction errors, as they are

usually buried and have small values of SA. For hydrophilic residues such

as ASP, GLU, LYS, ASN, GLN and ARG, SA is harder to predict, as

they are on the surface region and real SA values of those residues vary in

a broad range. On the contrary, hydrophilic residues often have small

values of RD, which are easier to predict with neural networks. In sum-

mary, the values listed in Supplementary Table S2 suggest that by using

both RD and SA one may reduce errors related to inaccuracies in solvent

exposure prediction.

2.5 Dynamic programing

FFAS carries out Smith–Waterman dynamic programing algorithm

(Smith andWaterman, 1981) to obtain the optimum local-local alignment

(because FFAS uses local-local alignment, it is not necessary to introduce

a separate step of splitting sequences into domains). The gap opening and

gap extension penalties are constant, set to 6.0 and 0.3, respectively. The

complete matching score in Equation (8) is the linear combination of the

four terms described earlier in the text with weighting factors w1¼ 1.25,

w2¼ 2.15 and w3¼ 2.05.

scoreði, jÞ ¼ sp0ði, jÞ þ w1 � ssði, jÞ þ w2 � saði, jÞ þ w3 � rdði, jÞ ð8Þ

The weighting factors were optimized on the targets of the ninth

Critical Assessment of protein Structure Prediction (CASP9) compared

with the template library consisting of 29 301 protein chains from the

Protein Data Bank (PDB) (Berman, et al., 2000) released before

CASP9. For every pair of sequences q and t, the final raw score raw_

score(q,t) that is found by dynamic programing corresponds to the op-

timal local alignment between the two sequences. Average Global

Distance Test-High Accuracy (GDT-HA) score for all targets was used

as an objective in the optimization.

2.6 Calibration of raw profile-profile alignment scores

Raw profile-profile alignments scores for a given protein are obviously

correlated with protein’s length, but they also show less trivial biases

toward higher or lower average scores. They may also have wider or

narrower distribution when compared with profiles of unrelated proteins.

These differences, related to amino acid composition and diversity of

sequences included in the profile, are difficult to predict from the profile

itself. Therefore, FFAS calibrates raw alignment score using actual dis-

tribution of scores obtained by comparing each sequence profile with a

library of profiles representing 1195 different folds from Structural

Classification of Proteins (SCOP) (Murzin et al., 1995) database. The

profiles representing SCOP structures are assigned to four bins based

on their lengths (bins correspond to length ranges:5100aa, 100–200aa,

200–300aa,4300aa), and median value and average absolute deviation of

the raw scores are then calculated for alignments between query profile

and profiles from each bin. Subsequently, linear regression is used to

interpolate the median value and the average absolute deviation values

(we then denote intercept and slope parameters for median raw score and

absolute deviation �_�, �_�, �_� and �_�, respectively). The expected

median value and average absolute deviation of raw score for proteins

with any sequence length can be then estimated using these four param-

eters. These expected values are then used to calibrate the raw score.

For each alignment of two sequences q and t, raw score raw_score(q,t)

can be calibrated in two ways leading to two different Z-scores. The first

calibration is based on the parameters of the expected median and aver-

age absolute deviation for sequence q, and the second is calculated using

analogous values for sequence t [see Equation (9)]. High value of Z1(q,t)

indicates that protein t may be a significant hit among all proteins with

similar lengths, when they are aligned with protein q. At the same time,

high value of Z2(q,t)means that protein qmay be a significant hit among

all proteins with similar lengths, when they are aligned with protein t.

Z1ðq, tÞ ¼
raw scoreðq, tÞ � ð� �ðqÞ þ � �ðqÞ � lenðtÞÞ

� �ðqÞ þ � �ðqÞ � lenðtÞ

Z2ðq, tÞ ¼
raw scoreðq, tÞ � ð� �ðtÞ þ � �ðtÞ � lenðqÞÞ

� �ðtÞ þ � �ðtÞ � lenðqÞ
¼ Z1ðt, qÞ

Zðq, tÞ ¼ maxfZ1ðq, tÞ,Z2ðq, tÞg

8>>>>>><
>>>>>>:

ð9Þ

We assumed that a significant hit should fulfill both of the above

criteria. Hence, we used the maximum of Z1(q,t) and Z2(q,t) as the

final value of the calibrated score (because FFAS scores are negative,

maximum corresponds to the less outstanding of the two Z-scores).

Note that raw_score(q,t) is symmetrical with respect to q and t.

Template t may be a significant hit to query q based on the low

Z1(q,t), but on the contrary, q may be not an outstanding hit to t

based on the high Z2(q,t). Hence by using a maximum, we eliminate

cases when raw score is significant as compared with only one ‘baseline’

distribution. As we show later, this approach improves template selection.

The comparisons between the three possible ways of Z-score calculation
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for two example query sequences and representatives of the 1195 folds

from SCOP database are shown in Supplementary Figure S1.

Interestingly, more pairs between the first query sequence and the

SCOP folds have Z2(q,t)4Z1(q,t) than vice versa especially in cases of

higher homology. For more remotely related sequences (i.e. in the highZ-

score region), Z2(q,t) is more often lower than Z1(q,t). In this example,

Z(q,t)¼Z2(q,t) for the closest SCOP fold assigned to this query

sequence (see the bottom-left point in Supplementary Fig. S1b). For

the second example shown in Supplementary Figure S1d–f, more pairs

have Z1(q,t)4Z2(q,t) and Z-score of the closest SCOP fold assigned to

this query sequence comes from Z1(q,t).

2.7 Re-ranking of the templates based on the predicted

alignment accuracy and structural fitness

To further optimize the selection of templates, we predict the accuracy of

each alignment using neural network. The neural network input features

include the Z-score, sequence identities and coverage of alignments,

agreement of SS, Pearson’s correlation coefficients of SA and RD

between the aligned residues and the average matching score per residue

pair (total raw score divided by the number of aligned pairs). The output

is the predicted MaxSub score (Siew et al., 2000) of the alignment (in the

range between 0 and 1).

We used the CASP9 targets as the training set and selected 75 top

scoring alignments for each target. We tested different numbers of

hidden nodes and hidden layers and found that the best accuracy

comes from the neural network with 13 hidden nodes and 2 hidden

layers. The average error of the predicted MaxSub score was 0.067 as

compared with the real MaxSub score of the same alignment applied to

the two corresponding structures. [We have tested neural networks

trained on MaxSub, TM-score (Zhang and Skolnick, 2004), Global

Distance Test-Total Score (GDT-TS) and GDT-HA scores (Zemla,

2003), and MaxSub score yielded optimal benchmark results].

Given the alignment between the query sequence q and the template t,

we obtain the unrefined backbone structure for the query q, by replacing

template residues with aligned query residues. We then evaluate the fit-

ness of the query sequence in the template structure by using pairwise C�

potential EC�(q,t) implemented in the Distance-scaled, Finite-Ideal gas

REference (DFIRE) method (Zhou and Zhou, 2002). In the final step,

the MaxSub scoreMS(q,t) predicted by the neural network as well as the

energy of the initial backbone structure are combined with the original

FFAS-3D Z-score Z(q,t) and the original sequence–profile-based Z-

score Zsp(q,t) by FFAS and used as a score for template selection [see

Equation (10)] with weights optimized empirically using grid search.

Zsp(q,t) has a higher correlation with the alignment accuracy especially

when its value is low, hence it helps the ranking if we include it in the

equation. (If the templates structure is unknown, the scoring function

only includes the first three terms).

Z0ðq, tÞ¼Zðq, tÞþ0:2� Zspðq, tÞ � 140�MSðq, tÞþ55� EC�ðq, tÞ ð10Þ

3 RESULTS

3.1 Overall accuracy of alignment

We selected a test set of 367 single-domain protein chains with
530% sequence identity to each other from the pre-calculated list

available from the PISCES server (Wang and Dunbrack, 2003).
This set does not include any homologs of the CASP9 targets,

which were used as the training set. We used queries from the test
set in searches against library of profiles of PDB structures and

evaluated the alignment coverage, GDT-HA and GDT-TS
scores (Zemla, 2003) of the top-scoring alignment and the

Modeller (Sali and Blundell, 1993) model based on that

alignment. The incremental effects of adding structural features

to the scoring function are shown in Table 1. The addition of the

SS to the scoring function improved the accuracy of the GDT-

HA of the top-scoring alignment by 4% as compared with the

original version that used only profile-profile comparison.

However, it may be partly attributed to the 4% increase of the

average alignment length. Matching terms for SA and RD con-

tributed another 2 and 1% to the accuracy, respectively, without

increasing the average alignment length. Finally, the re-ranking

of the templates based on the alignment accuracy predicted with

neural network improved average GDT-HA score by another

4% leading to the cumulative improvement of 11% as compared

with the original FFAS. At the same time, the average alignment

length increased by 10%. The improvement of the accuracy of

the top-scoring alignments as compared with the original FFAS

program is illustrated by Figure 1a. The new program improved

the alignments for 59% of the targets in the test set, the accuracy

Fig. 1. Comparison of the GDT-HA of the top alignments selected by

different methods. (a) FFAS-3D and FFAS; (b) FFAS-3D and HHpred;

(c) FFAS-3D and re-ranking by the combined score

Table 1. Comparison of alignment accuracy on the 367 test proteins

Method First threading alignment Modeller model

COV GDT-HA GDT-TS COV GDT-HA GDT-TS

sp (FFAS) 0.81 35.02 47.34 0.85 34.33 47.31

spþ ss 0.84 36.42 49.07 0.88 35.67 49.07

spþ ssþ sa 0.84 37.19 49.97 0.90 36.68 50.30

spþ ssþ saþ rd 0.85 37.52 50.47 0.90 37.00 50.77

Re-ranking 0.89 39.08 52.42 0.94 38.19 52.40

HHpred 0.83 37.54 50.47 0.89 37.05 50.84

Note: COV, coverage; sp, sequence profile; ss, secondary structure; sa, solvent ac-

cessibility; rd, residue depth.
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of 18% alignments did not change and the accuracy of 23%

decreased, as compared with the original FFAS method.
To evaluate the impact of the modeling step, we compared the

accuracy of the Modeller model with the accuracy of the initial

alignment. As show in Table 1, the average GDT-TS score of the

models is slightly higher than GDT-TS score of the correspond-

ing alignments but the opposite is true for the average GDT-HA

score. Because GDT-HA takes into account only the most ac-

curate parts of the model (C�-C� distances54 Å), whereas

GDT-TS score also includes less accurately predicted regions

(C�-C� distances58 Å), it means that the modeling step im-

proved the overall completeness of the model at the expense of

the accuracy of most reliably predicted regions.
We also compared the performance of FFAS-3D with HHpred

(Soding, 2005), a leading Hidden Markov Model-Hidden

Markov Model (HMM-HMM) local-local alignment program.

HHpred uses hidden Markov models, which can be viewed as a

special type of profiles that include probabilities of insertions and

deletions and SS matching score based on confidence-dependent

conditional probability. We built HHpred HMM profiles for the

same template library of 29 301 protein chains that was used to

evaluate FFAS-3D. The average alignment accuracy and align-

ment coverage of HHpred are close to those of the FFAS-3D

before the template re-ranking step (Table 1). The distribution

of differences in accuracy of the top-scoring alignments between

FFAS-3D and HHpred is illustrated by Figure 1b. Both pro-

grams yield similar results for easy benchmark targets with

highly accurate alignments (GDT-HA475). Similarly, for diffi-

cult cases, where there is probably no accurate template in the

library, the top hits by both programs have low accuracy (GDT-

HA520). However, most benchmark queries fall into the region

between these two extremes and, in this region, alignment results

are significantly different. In fact, the top-scoring templates from

FFAS-3D and HHpred are different for 231 of 367 queries, sug-

gesting that despite similar overall accuracy, there are significant

differences between these two local-local alignment programs.

3.2 Fold recognition rate

To evaluate fold recognition independently from the overall pre-

diction accuracy assessed as described in the previous section, we

tested FFAS-3D on the Lindahl benchmark set (Lindahl and

Elofsson, 2000), consisting of 976 domains from the SCOP

library. The benchmark contains 555, 434 and 321 targets with

at least one similar structure at the family, superfamily and fold

levels, respectively. We evaluated the success rates in terms of

ranking any of the similar structures as the first and among top

five hits. The comparison of FFAS-3D with HHpred and

SPARKS-X is shown in Table 2. SPARKS-X conducts a semi-

global alignment and tends to yield longer alignments (on aver-

age �9% higher coverage than HHpred and FFAS-3D).

FFAS-3D has better recognition rates than the other two pro-

grams at the family and superfamily levels, even without tem-

plate re-ranking. Because SPARKS-X is specifically designed

with focus on the remote homologs, it has the highest success

rate at the fold level. Although FFAS-3D fold detection rate is

�25% lower than that of SPARKS-X, it is 40% better than

HHpred’s. The lower performance of local-local alignment pro-

grams at the fold level as compared with semi-global programs

such as SPARKS-X is probably linked to the fact that for remote

homologs they either yield short alignments or do not yield any

alignment at all and, thus, do not provide any meaningful score.

In other words, semi-global algorithm, which ‘forces’ the align-

ment of apparently dissimilar pairs, makes it possible to choose

the closest of these marginally similar templates.
FFAS-3D uses predicted structural features of the query

sequence and real structural features of template structures.

However, using experimental structures significantly limits the

range of potential applications of the method, as thousands of

protein families have no structural coverage. Thus, to detect

remote homologies to such families, we evaluated the version

of the program that uses predicted structural features for both

the query and the template (denoted FFAS-3Dp in Table 2). For

reference, we also checked the performance of the program

where real structural features were used for the query and the

template (denoted FFAS-3Dr in Table 2). To maintain simpli-

city, we used the same weighting parameters of the scoring terms

as that in the default version, even that they could be re-

optimized for predicted features to achieve better results.

Surprisingly, the performance of the version using only predicted

features is similar to that of FFAS-3D at the superfamily level

and surpasses FFAS-3D at the family level. It is understandable

because at the family level sequences are highly similar and the

differences between their predicted structural features obtained

with the same SS prediction method are smaller than the differ-

ences between predicted and real structural features. At the fold

level where sequences are more distantly homologous, the recog-

nition rate is only 8% worse. As expected, when we use the real

features for both the target and the template, the performance is

much better than the default FFAS-3D at all the SCOP levels

indicating the potential gain from improving the accuracy of

predicted features.

3.3 Symmetrical Z-score improves template ranking

We compared the ranking result by the symmetrical Z-score

Z(q,t) (see Section 2) with results obtained with individual

Z-scores calculated for query and the template (Z1(q,t) and

Table 2. Family, superfamily and fold recognition rates of different pro-

grams on the Lindahl benchmark set

Method Family (%) Superfamily (%) Fold (%)

First Top 5 First Top 5 First Top 5

FFAS 82.3 87.7 60.4 67.5 15.0 28.3

HHpred 82.9 87.1 58.8 70.0 25.2 39.4

SPARKS-X 84.1 90.3 59.0 76.3 45.2 67.0

FFAS-3D 84.9 91.2 66.6 79.5 35.8 55.1

FFAS-3Dp 86.3 91.9 65.7 77.0 33.0 53.9

FFAS-3Dr 87.2 93.9 71.0 81.8 42.7 63.9

Note: In each level, the program succeeds in recognizing the target if the structure

with the same SCOP family, superfamily or fold classification is ranked as the first

or as one of the top 5.

FFAS-3Dp, using the matching of predicted structural features in the scoring func-

tion; FFAS-3Dr, using the matching of real structural features in the scoring

function.
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Z2(q,t)). Based on the test set, the first alignments selected by

the latter two yield average GDT-HA scores 36.82 and 37.03,

respectively, which are 1.7 and 1.2% worse than average GDT-

HA obtained with the symmetrical Z-score (Fig. 2). There are

many targets that have the same GDT-HA if ranked by Z(q,t)

and Z2(q,t) (Fig. 2b), suggesting that Z1(q,t) is usually smaller

than Z2(q,t). This also makes Z1(q,t) versus Z2(q,t) in

Figure 2c similar to that in Figure 2a, except that Z(q,t) provides

better prediction than Z2(q,t) for many hard proteins shown in

the bottom-left region. Because the top templates selected by

Z1(q,t) and Z(q,t) are often quite different, both of them

could be used as independent methods in the future FFAS

metaserver.
As an example we analyzed test target 3s8sA, which is a

medium-sized alphaþ beta protein with many good modeling

templates. Top values of Z1(q,t) are higher than top values of

Z2(q,t), which is related to the higher standard deviation of the

distribution of the raw scores of the query. The top template

picked by the symmetrical Z-score Z(q,t) 1p27B is ranked

in the sixth place by Z1(q,t) and on position 27th by Z2(q,t).

It has GDT-HA score of 54.21, that is 0.24 and 12.62 higher than

the top ranking templates picked by Z1(q,t) and Z2(q,t) scores,

respectively.
Better performance of the symmetrical Z-score can be under-

stood, as it conservatively ‘picks’ the template whose raw score is

outstanding as compared with the baseline distributions of both

compared profiles.

It is important to note that here the full FFAS-3D score (raw_

score(q,t)) was normalized using distributions of raw scores of

the profile-profile term only. Interestingly, using the distribution

of the complete raw score for calibration did not improve the

ranking of templates. This can be rationalized by the fact that

our descriptors of SSs and solvent exposure and related compari-

son terms fall into well-defined numerical ranges, while there are

huge differences between characteristics of sequence profiles.

3.4 Adding structural features to the scoring function

improves ranking of the templates and alignment

accuracy

Because structural features are used in the scoring function, they

do not only affect the ranking of templates, but also influence the

alignments between the query and templates. As illustrated by

the Figure 1a, structural features added in FFAS-3D did not

change the alignments of highly similar protein pairs whose

accuracy was already high in the original FFAS. However, the

differences between the alignments calculated with these two

programs become larger for more distantly related pairs (as indi-

cated by lower GDT-HA values).
For instance, for target 3ndqA, which is an alpha protein with

six short helices, the first and second templates as ranked

by FFAS-3D are 2dmeA and 1enwA (see Supplementary

Fig. S2a). The correlation coefficients of SA and RD, agreement

of SS, raw score of profile-profile alignment are also listed in the

figure. The alignment accuracy is 59.53 for 2dmeA and 27.84 for

1enwA. Because the profile-profile matching score is slightly

lower for 1enwA than 2dmeA (�45.836 versus �45.310), the

first template selected by the original FFAS program is 1enwA

and the alignment is the same as that by FFAS-3D. However,

based on the structural features in the alignment, 2dmeA has

much higher correlation coefficient of SA and agreement of

SS, which result in better Z-score in FFAS-3D. This example

illustrates the situation where matching of structural features

improves template selection.
Target 2y9wC is one chain of Agaricus bisporus mushroom

tyrosinase (shown as cartoon in Supplementary Fig. S3). This

protein chain has a globular shape, which is covered by many

beta-strands. Both FFAS and FFAS-3D correctly picked the

same top-scoring template 2e4mC (shown as line in

Supplementary Fig. S3). However, the alignments calculated

with FFAS and FFAS-3D are significantly different with most

differences in the coil regions between beta-strands. As illustrated

by Supplementary Figure S2b, only the terminal part of the

alignment is identical for both programs. The alignment from

FFAS-3D has four small gaps, whereas that by FFAS has two

long gaps. GDT-HA score is 35.84 for the FFAS-3D alignment,

which is much higher than GDT-HA of 19.30 of the FFAS

alignment. This example illustrates how incorporating structural

features can improve the alignment accuracy. We also show the

structure alignment of these two structures (see Supplementary

Fig. S2c, residue pairs with C�-C� distances55 Å are connected

by dots). As expected, structural alignment would result in the

most accurate template-based model, with GDT-HA¼ 53.68.

However, this alignment requires introducing 14 gaps, which

would have prohibitive cost in dynamic programing alignment

of remotely similar proteins.

Fig. 2. Comparison of the GDT-HA of the top alignments selected by

different types of Z-scores. (a) Z-score calculated using calibration par-

ameters for the query versus symmetrical Z-score; (b) Z-score calculated

using calibration parameters for the templates versus symmetrical

Z-score. (c) Z-score calculated using calibration parameters for the

query versus Z-score calculated using calibration parameters for the

template
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3.5 Improved template ranking using neural network

The effect of template re-ranking is illustrated by Figure 1c.

Although the average accuracy of the prediction after template

re-ranking increases, there are still many targets for which it

decreases. The re-ranking procedure does not change the order

of top templates for �39% of targets (these are usually cases

when one template is significantly better than others). Most of

the situations when templates are re-ranked fall into two cate-

gories: (i) there are many templates with low Z-scores; (ii) all the

top-scoring templates have high Z-scores. In such cases, the pre-

dicted Maxsub score and the backbone potential provide infor-

mation complementary to the Z-score and help to differentiate

between the templates with similar Z-scores.

Because the predicted structural features have only limited

accuracy, they may sometimes become closer to the structural

features of the wrong template than to the correct one. The cal-

culation or prediction of SA/depth for a protein is also likely to

be inaccurate for the surface regions where it binds to cofactors

or other proteins. In other cases, correct templates with good

matching of structural terms are not on the top of the

scoring list because of the high raw profile-profile score or high

normalization factor— i.e. denominator in Equation (9). Neural

network re-ranking can account for these situations and effect-

ively filter out at least some erroneous templates.
The first situation may be illustrated by the example 2y0mB,

which is a small domain consisting of one helix. Z-scores of the

top templates are high (4�15.0), suggesting that it is a hard

target and the original template ranking may be incorrect.

Generally, the neural network predictions of Maxsub scores

are higher than the actual Maxsub scores, as illustrated by the

top part of Table 3. Because neural network correctly infers that

the first template has low Maxsub score (possibly due to the low

sequence identity in the alignment region), this template drops to

the fourth place. The template 2o98P is predicted to have the

highest accuracy (due to the high sequence identity to the query

sequence). Although this template is not the optimal choice (as
indicated by real Maxsub scores of the predictions), it still gives
the much higher Maxsub score than the top template in the ori-

ginal ranking.
The second type of situation where templates re-ranking may

lead to substantial improvement can be exemplified by predic-

tions for target 3rjpA, an alphaþ beta protein, with a lot of
highly homologous templates in the library. Here, the predicted
Maxsub scores are highly correlated with the real Maxsub scores

(see the bottom of Table 3). The best template 1gxpA has the
highest predicted score, but it is only in the third place after re-
ranking due to the much lower Z-score. The second best tem-

plate 2pmuA now becomes the first template, which has Maxsub
score 0.20 higher than the original first template 2jzyA.
Table 3 illustrates only the re-ranking of the top five templates.

After testing several values for the number of templates included
in the re-ranking process, we found that the best improvement is
achieved if top 10 templates are re-ranked.

4 CONCLUSIONS

We have performed an extensive upgrade of a FFAS profile-
profile alignment method, bringing its sensitivity and accuracy
on par to the leading programs in the field, while maintaining its

unique features. This was achieved by incorporating three local
structural features into FFAS: SS type and solvent exposure term

consisting of complementary SA and RD terms. The combin-
ation of these terms improves the average alignment accuracy of
the program by �7% as compared to the original version of

FFAS, which only conducts profile-profile alignments. The
next step of predicting the alignment accuracy of the top tem-
plates by neural network and re-ranking the templates adds an-

other 4% in accuracy as evaluated by the GDT-HA score. The
new FFAS-3D program is comparable with the current state-of-
the-art programs as evaluated on the independent test set of

structures deposited after CASP9 targets (which served as our
training set). We have also tested FFAS-3D on the test set con-
sisting of CASP10 targets obtaining an average GDT-HA of

41.65, which would rank FFAS-3D among the most accurate
homology recognition methods. FFAS-3D was also tested on
the Lindahl benchmark set for fold recognition and showed

superior success rate on the family and superfamily levels.
The individual predictions obtained with FFAS-3D and pre-

dictions from other programs often show significant differences

in template selection suggesting that they are complementary and
thus FFAS-3D would contribute to the accuracy of meta-servers

and other jury-based prediction methods.
Because the accuracy of the predicted structural features is

crucial to the alignment accuracy and template ranking, the

future improvements of the performance of FFAS-3D may
depend on the development of the more accurate programs for
predicting structural features. Such new added structural features

should provide non-redundant information to the scoring func-
tion. For instance, SS description schemes with43 SS types may
improve prediction accuracy if they can be accurately predicted

from protein sequence.
Another possible direction of development is linked to the

observation that optimal parameters for the alignment of close

homologues are probably significantly different from the optimal

Table 3. Top five templates before and after re-ranking for targets

2y0mB(top) and 3rjpA(bottom)

R Temp ID cSA cRD aSS Z MSp MSr R0

1 1undA 0.09 0.56 0.10 0.85 �14.1 0.43 0.30 4

2 2kesA 0.15 �0.03 0.07 0.97 �13.9 0.79 0.60 2

3 2rmfA 0.25 0.21 �0.03 1.00 �13.9 0.62 0.58 3

4 2o98P 0.31 0.08 0.26 0.96 �13.3 0.81 0.55 1

5 3a1qC 0.11 0.21 �0.01 0.94 �13.0 0.42 0.67 5

1 2jzyA 0.38 0.44 0.35 0.78 �84.1 0.69 0.59 2

2 2pmuA 0.35 0.65 0.55 0.87 �80.8 0.75 0.79 1

3 2hqnA 0.27 0.50 0.44 0.81 �75.2 0.70 0.66 4

4 1gxpA 0.37 0.58 0.55 0.84 �71.4 0.75 0.80 3

5 1ys6A 0.41 0.58 0.60 0.90 �69.2 0.73 0.76 5

R, order before re-ranking; Temp, template name; ID, sequence identity in the

alignment region; cSA, correlation coefficient of solvent accessibility in the align-

ment region; cRD, correlation coefficient of residue depth in the alignment region;

aSS, agreement of secondary structure in the alignment region; Z, original Z-score;

MSp, predicted MaxSub score; MSr, real MaxSub score of the alignment; R0, order

after re-ranking.
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method for aligning remotely homologous pairs and pairs for
which similarity can only be predicted based on structural fea-
tures. In particular, the optimal detection of such remote homo-
logs may require different values of gap penalties, higher weights

of structural features or even switching to semi-global align-
ments. To address this issue, the alignment program may evalu-
ate the difficulty of the prediction in the initial search and then

adjust alignment parameters and perform another search in the
template library.
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