Lawrence Berkeley National Laboratory
LBL Publications

Title
Invariant Metrics for Hamiltonian Systems

Permalink
btt_ps://escholarship.orq/uc/item/7iz440v2|

Authors
Rangarajan, G
Dragt, A )
Neri, F

Publication Date
1991-05-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.orqg/licenses/by/4.0/

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/7jz440v2
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

LBL-30705

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

[ .
Accelerator & Fusion
Research Division

‘SM

Presented at the IEEE Particle Accelerator Conference,
San Francisco, CA, May 6-9, 1991, and to
be published in the Proceedings

Invariant Metrics for Hamiltonian Systems

G. Rangarajan, A.J. Dragt, and F. Neri _
4 ™
U. C. Lawrence Berkeley Laboratory
Library, Berkeley

- - FOR REFERENCE

Not to be taken from this room

May 1991

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

14

*A18a1qTT @5 -6p

T Adog

S50L0E-T181




DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



LBL-30705

Invariant Metrics for Hamiltonian Systems”

Govindan Rangarajan

Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

Alex J. Dragt |
Center for Theoretical Physics, University of Maryland, College Park, MD 20742

Filippo Neri
AT Division, Los Alamos National Laboratory, Los Alamos, NM 87545

May 1991

Qo * Work supported in part by the Director, Office of Energy Research, Office of High
- Energy and Nuclear Physics, Division of High Energy Physics, of the U.S.
Department of Energy under Contract No. DE-AC03-76SF00098



LBL-30705

Invariant Metrics for Hamiltonian Systems*

Govindan Rangarajan
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
Alex J. Dragt
Center for Theoretical Physics, University of Maryland, College Park MD 20742
Filippo Neri
AT Division, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

In this paper, invariant metrics are constructed for
Hamiltonian systems. These metrics give rise to norms
on the space of homeogeneous polynomials of phase-space
variables. For an accelerator lattice described by a Hamil-
tonian, these norms characterize the nonlinear content of
the lattice. Therefore, the performance of the lattice can
be improved by minimizing the norm as a function of pa-
rameters describing the beam-line elements in the lattice.
A four-fold increase in the dynamic aperture of a model
FODO cell is obtained using this procedure.

I. INTRODUCTION

Given an accelerator lattice, various correction schemes
(lumped correctors, shuffling of magnets etc.) can be used
to improve its performance. However, to be able to imple-
ment these schemes, it is essential to have a “merit func-
tion” (depending on the parameters describing the beam-
line elements) that can be minimized to produce the opti-
mal lattice. This merit function should be a reliable mea-
sure of the nonlinearilty of the lattice since it is nonlinear
effects that degrade the performance of the lattice and it is
these effects that have to be minimized. In this paper, we
propose a merit function satisfying the above criteria. This
function will turn out to be a positive definite symmet-
ric bilinear form invariant under the action of the unitary
group U(3).

We restrict ourselves to accelerator lattices described
by a (nonlinear) Hamiltonian in a six-dimensional phase
space. Given such a system, an equivalent description is
provided by the following one-pass or one-period symplec-
tic map{1]

M = Melsiedst | elmt (1)

Here, the 6 x 6 matrix Af characterizes the linear part
of the map and the Lie transformations e’/ characterize
the nonlinear part. The operator : f,, : is the Lie operator
corresponding to the homogeneous polynomial f,(z) of
degree m in the phase-space variables z; (i = 1,2,...6).

*Work supported in part by the U.S. Department of Energy

The polynomial f,,(z) can be expanded as follows:
fm(2) = a{VPE() 2

where we have used FEinstein’s summation convention.
Here Pém)(z) denotes the following mth degree basis
monomial

PIM(2) =qip}. ..

The monomials are ordered using the index a[2]. The sum-
mation over « in Eq. (2) extends from 1 to N(m) where
N(m) is given by the relation[3]

wmy = ("+7). ()

In this paper, we will construct a symmetric positive def-
inite bilinear form on the space spanned by homogeneous
polynomials of degree m in phase-space variables. This
will enable us to define a norm on this space. This norm
will also be invariant under the action of the unitary group
U(3). Since the nonlinear part of a symplectic map is spec-
ified by homogeneous polynomials, a norm defined on the
space of homogeneous polynomials can be used to quan-
tify the nonlinear content of the map (or equivalently the
lattice). Moreover, the norm is a function of parameters
specifying the beam-line elements of the accelerator lattice
under consideration. Therefore, one can vary these pa-
rameters so as to minimize this norm. This should lead to
improvements in performance of the lattice. This is shown
to be true for a model FODO cell later in the paper.

Gepne, i+ +re=m.  (3)

II. CONSTRUCTION OF INVARIANT
METRICS

We start by defining a bilinear form g((;;) as follows
055 = (P () P72 ) (5)

where (P{™(z) ,P[(,m)(z) ) denotes a bilinear form defined
on the space of basis monomials of degree m. We require
the bilinear form to be symmetric and positive definite so
that it can be used to define a norm on this space.



Ideally, we would also require g ™) to be invariant under
the action of all symplectic maps. Then we would obtain
a metric as unique as possible. However, this turns out to
be impossible. The set of all symplectic maps forms a non-
compact Lie group[l]. It can be shown that such groups
can not have invariant metrics[4]. Only compact groups
can have such metrics. Therefore, we are forced to impose
a more modest requirement that the metric be invariant
under the action of the largest compact subgroup of the
symplectic group. We will require that g(ﬂ) be invariant
under the action of the compact unitary group U(3).

We define the bilinear form (Pgm)(z) ,Pém)(z) ) as
follows[3]:

r 1
(P{™(2) ,P{™(2) ) = o / dQs PS™ (2) P{™(z) |
(6)
where dQs is the solid angle for the 5-sphere and 7% =
7?4+ p? + .- -+ pi. We show that it is invariant under the
action of U(3). Consider the following expression

(OPL(2), UPS™(2)) = /er PI™(U2)P{™(Uz).

(7
Here, U is the Lie transformation corresponding to the ele-
ment U belonging to U(3)[3]. We change to a new variable
z' defined to be equal to Uz. Since the solid angle d2s is
invariant under the action of U(3), we obtain the relation

(UP(m)( ), Up(m)( )) = /dQ5 P(gm)(z/)Pém)(z/)

(8)
Since U was an arbitrary element of U(3), we get the de-
sired result

p2Zm

(OPM () UP () = (P() P(E)) ()
VU € U(B). (10)

It is easily seen from the definition that this bilinear form
is symmetric. Obviously, it is also positive definite. Hence,
Eq. (6) gives a valid invariant metric.

This invariant metric can be evaluated as follows. Con-
sider the following equation

/d6ze"r P(m)( )P(m) (z) = /ch p2m+5 g —r?

11
(m)( )P(m)(z) ) ( )

This is seen to be correct since we have merely reexpressed
the infinitesimal volume element d®z in terms of the radius
vector r and solid angle dQ2s. Inserting Eq. (6) in Eq. (11),
we obtain the relation

[doze=" P{(2) P™(2)
fdre—-r27.2m+5

(P{™(2) ,PS™(2) ) =
(12)

Both the numerator and the denominator can now evalu-
ated easily(3].

Using the above construction, we obtain the following
expression for gfg (we do not list entries below the diago-
nal; we also restrict ourselves to the four-dimensional case
due to lack of space):

) = ¢ i=1,11,17,20,

o) = ¢ i=12,3,4,5,8,10,12,13,14,16,18,19,
9% = e i=6,7,9,15

gg% = gg% = gggo = 9221 = C2,
9?57 = g‘(‘aﬁ"’ = 9%5)14 = 9131 16 — C2,
91:;2 17 = g%g)zo = 9%5)19 = 91320 = C2,
SR el el ¥
T e " B ¥ el
9810 = 91219 = 913’18 = YJig1e = Cs-

Here the indices 1,2, ...20 represent monomials ¢7, ¢?p;,
4342, 4ip2, 1P, 1P192, P12, 4193, Q192P2, D1P3, PR, PL2,

PiP2, P143, P192P2, P1P3, 43, 45P2, 42D3, and pj respectively.
And the constants ¢, ¢z, and c3 have the following values

C1 = 5/64, Ca = 61/5, C3z = 01/15. (13)

I1I. CONSTRUCTION OF NORMS

Using the metric defined above, we now define a norm on
the space of homogeneous polynomials of degree m. This
norm can then serve as a merit function that can be used
to minimize nonlinearities of degree m.

Each metric ggg) gives rise to a norm on the space of
homogeneous polynomials of degree m. Consider a general
homogeneous polynomial of degree m denoted by f,,. We
are interested in obtaining a norm for storage ring lattices.
Since the emittances in the three degrees of freedom can
be quite different, we normalize them by factoring out the
betatron functions. This is achieved by going to the so-
called normal form[1] of the linear part M of the map M.

Let A be the symplectic transformation that takes M into

its normal form N 1.e.
N=AMA"! (14)

where N is a block-diagonal matrix with 2 x 2 blocks on
the diagonal[5]. Applying the transformation A to the map
M, we obtain the result

No= AMA™ = AMA Y Ael=e o efmi AL

(15)
Using Eq. (14),we get the relation

Ny = Nedsteldi's | edmi (16)
where[1]
= Afm(2) = fm(A2). (17)

Since A depends on M, the fi'’s also now depend on the
linear part of the map. These transformed f,,’s can be
reexpressed in the original basis as follows

FE(z) = 6 PEM(2) . (18)

~z



We are now in a position to define a norm on the space
of homogeneous polynomials

Ifmll = (5, £20)F = QGEVPE () BV P2 )3
(19)
Using Eq. (5), we get the following result

fimll = (455 B5™85™)3. (20)

From the above equation, we see that the norm ||f, || is
a function of parameters characterizing the beam-line el-
ements in the accelerator lattice that we started out with
(since the coeflicients ™ are determined by these param-
eters). Therefore, one can think of varying these parame-
ters so as to minimize this norm. Since the norm quantifies
the nonlinear content of the lattice, this may lead to im-
provements in the performance of the system. We also note
that || fm||? is a positive definite quadratic function of the
strengths of the m-th order multipoles (e.g. || f3||? is such a
function of the sextupole strengths). Hence ||fmm||? is guar-
anteed to have an unique global minimum as a function of
these multipole strengths.

IV. EXAMPLE

In this section, we study a model FODO cell with sys-
tematic sextupole errors to illustrate the utility of the in-
variant metric. The FODO cell consists of the following
elements: a thin-sextupole corrector, a drift, a focusing-
quadrupole with fringe fields and sextupole error, a drift,
athin-sextupole corrector, a drift, a defocusing-quadrupole
with fringe fields and sextupole error, a drift, and finally,
another thin-sextupole corrector.

First, we turn off the correctors and compute the norm
|If3]|? in a four-dimensional phase space. It has a certain
value ( & 400 in our case). Next, we set the corrector
strengths by minimizing the norm. The minimum is found
to correspond roughly[6] to setting the corrector strengths
according to Simpson’s rule (i.e. the three strenghts are in
the ratio 1:4:1)[7]. For this setting, the value of || f3||? is re-
duced (from the uncorrected case) by almost two orders of
magnitude. To verify that third order nonlinearities have
actually been reduced in magnitude, the dynamic aperture
of the FODO cell was computed for these two cases. The
dynamic aperture for the corrected case was found to be
larger by a factor of four.

V. SUMMARY

In this paper, we constructed invariant merit functions
for accelerator lattices described by Hamiltonians. These
metrics were used to define norms on the space of ho-
mogeneous polynomials of phase-space variables. These
norms quantify the nonlinear content of the accelerator lat-
tice. They can be minimized as a function of parameters
describing the beam-line elements to improve the perfor-
mance of the lattice. Finally, we considered a model FODO

cell with sextupole errors. By minimizing the third degree
norm using correctors, we obtained a four-fold increase in
the dynamic aperture.
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