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ABSTRACT OF THE DISSERTATION

Efficient large-scale machine learning algorithms for genomic sequences

By

Daniel Quang

Doctor of Philosophy in Computer Science

University of California, Irvine, 2017

Professor Xiaohui Xie, Chair

High-throughput sequencing (HTS) has led to many breakthroughs in basic and translational

biology research. With this technology, researchers can interrogate whole genomes at single-

nucleotide resolution. The large volume of data generated by HTS experiments necessitates

the development of novel algorithms that can efficiently process these data. At the advent of

HTS, several rudimentary methods were proposed. Often, these methods applied compro-

mising strategies such as discarding a majority of the data or reducing the complexity of the

models. This thesis focuses on the development of machine learning methods for efficiently

capturing complex patterns from high volumes of HTS data.

First, we focus on on de novo motif discovery, a popular sequence analysis method that

predates HTS. Given multiple input sequences, the goal of motif discovery is to identify one

or more candidate motifs, which are biopolymer sequence patterns that are conjectured to

have biological significance. In the context of transcription factor (TF) binding, motifs may

represent the sequence binding preference of proteins. Traditional motif discovery algorithms

do not scale well with the number of input sequences, which can make motif discovery

intractable for the volume of data generated by HTS experiments. One common solution is

to only perform motif discovery on a small fraction of the sequences. Scalable algorithms

that simplify the motif models are popular alternatives. Our approach is a stochastic method

xiii



that is scalable and retains the modeling power of past methods.

Second, we leverage deep learning methods to annotate the pathogenicity of genetic variants.

Deep learning is a class of machine learning algorithms concerned with deep neural networks

(DNNs). DNNs use a cascade of layers of nonlinear processing units for feature extraction

and transformation. Each layer uses the output from the previous layer as its input. Similar

to our novel motif discovery algorithm, artificial neural networks can be efficiently trained in

a stochastic manner. Using a large labeled dataset comprised of tens of millions of pathogenic

and benign genetic variants, we trained a deep neural network to discriminate between the

two categories. Previous methods either focused only on variants lying in protein coding

regions, which cover less than 2% of the human genome, or applied simpler models such as

linear support vector machines, which can not usually capture non-linear patterns like deep

neural networks can.

Finally, we discuss convolutional (CNN) and recurrent (RNN) neural networks, variations of

DNNs that are especially well-suited for studying sequential data. Specifically, we stacked

a bidirectional recurrent layer on top of a convolutional layer to form a hybrid model. The

model accepts raw DNA sequences as inputs and predicts chromatin markers, including

histone modifications, open chromatin, and transcription factor binding. In this specific

application, the convolutional kernels are analogous to motifs, hence the model learning is

essentially also performing motif discovery. Compared to a pure convolutional model, the

hybrid model requires fewer free parameters to achieve superior performance. We conjecture

that the recurrent layer allows our model spatial and orientation dependencies among motifs

better than a pure convolutional model can. With some modifications to this framework,

the model can accept cell type-specific features, such as gene expression and open chromatin

DNase I cleavage, to accurately predict transcription factor binding across cell types. We

submitted our model to the ENCODE-DREAM in vivo Transcription Factor Binding Site

Prediction Challenge, where it was among the top performing models. We implemented

xiv



several novel heuristics, which significantly reduced the training time and the computational

overhead. These heuristics were instrumental to meet the Challenge deadlines and to make

the method more accessible for the research community.

HTS has already transformed the landscape of basic and translational research, proving itself

as a mainstay of modern biological research. As more data are generated and new assays

are developed, there will be an increasing need for computational methods to integrate

the data to yield new biological insights. We have only begun to scratch the surface of

discovering what is possible from both an experimental and a computational perspective.

Thus, further development of versatile and efficient statistical models is crucial to maintaining

the momentum for new biological discoveries.
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Chapter 1

Introduction

Epigenetics refers to modifications to the genome that do not affect the underlying nu-

cleotide sequence. These modifications are important for the control of gene regulation and

establishing cell identity. Examples of epigenetics include the 3D chromosome conforma-

tion, DNA methylation, and histone modifications. Unlike the underlying genome, which is

largely static within an individual, the epigenome, which includes all epigenetic changes at

a genome-wide level, can be dynamically altered by environmental conditions.

HTS has provided an unprecedented opportunity to query the epigenome. Since the intro-

duction of HTS, many experimental assays that utilize this technology have been developed.

Although HTS assays are designed for different purposes, they typically adhere to the fol-

lowing multi-step scheme:

1. Collect a homogeneous bulk of cells. Although the exact number depends on the

assay and application, HTS assays require a large number of cells, reaching as many

as tens of millions of cells in some cases. For this reason, immortalized cell lines are

widely used because they are convenient for growing a large number of cells. One

common criticism of cell lines is that they are derived from cancerous or transformed
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samples, and therefore not representative of endogenous biology. Primary tissues are

one alternative, but they can be difficult to collect and they are not as uniform or

reproducible as cell lines.

2. Fragmentation and enrichment. The order of these two steps depends on the

specific assay. Fragmentation shears the nucleotide sequences into smaller strands.

This can be achieved by various means, such as nucleases and sonication. Enrichment

positively selects for fragments of interest, while filtering away irrelevant fragments.

3. Amplification. The enriched short sequences are duplicated in a procedure called

polymerase chain reaction so that enough identical DNA strands are available to ana-

lyze.

4. Sequencing. In this step, letter nucleotide sequences are obtained from the cloned

DNA fragments. Each nucleotide sequence is called a “read.” Sequencing is highly

parallelized.

5. Read mapping. Reads from the sequencing step are computationally mapped back

to a reference genome. The overlap, or pileup, of reads form a histogram of read depth

along the genome. This histogram is a genomic signal that is essentially a discrete-time

signal.

By no means a complete list, examples of HTS assays include:

1. Whole genome sequencing (WGS). Perhaps one of the most basic HTS assays,

but also one of the most expensive, WGS is the process of determining the complete

DNA sequence of an individual’s genome. Putative genetic variants, such as single

nucleotide polymorphisms (SNPs), insertions, and deletions, are identified through

differences between aligned read sequences and the reference genome. Variants may

carry information about an individual’s susceptibility to certain diseases. In order to

2



get a statistically reliable assessment of individual putative variants, samples must be

sequenced at sufficient depths, which significantly increases cost. In some sense, WGS

may be better characterized as whole genome resequencing, since reconstructing the

whole genome is a considerably more difficult task.

2. ChIP-seq [48]. ChIP-seq is an assay that combines chromatin immunoprecipitation

and HTS to characterize binding interactions between proteins and DNA in vivo. Bind-

ing sites appear as “peaks” in the genomic signal. ChIP-seq can also identify genomic

regions of histone modifications. These histone modifications are thought to demarcate

regulatory elements.

3. DNase-seq [27, 47]. DNase-seq profiles accessible chromatin based on the genome-

wide sequencing of regions sensitive to cleavage by DNase I. FAIRE-seq [37] and ATAC-

seq [19] are also HTS assays that can profile accessible chromatin, although we do not

focus on these assays in this thesis. There are also two different variations of the

DNase-seq protocol: a single-cut protocol [27] and a double-cut protocol [47]. The

latter is much more prominent in the literature and the one we focus on in this thesis.

At deep enough sequencing depth, protein binding sites appear as “footprints” (FPs)

in the genomic signal [43, 70, 17].

4. RNA-seq [68] RNA-seq uses HTS to reveal the presence and quantity of RNA in

vivo. RNA fragments are converted to DNA fragments via reverse transcription before

the sequencing step.

Advances in HTS research has been encouraged by the ever-decreasing cost of sequencing. To

put this into perspective: the estimated cost for generating the initial “draft” human genome

sequence completed in June 2000 is $300 million worldwide; by 2006, the cost to generate

a high-quality ’draft’ human genome sequence had dropped to $14 million; by late 2015,

that figure had fallen below $1,500 [1]. As a result of the robustness and decreasing costs
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of HTS, many large data consortia have emerged. Examples include the Encyclopedia of

DNA Elements (ENCODE) [29], the Roadmap Epigenomics Project [84], Genotype-Tissue

Expression Project (GTEx) [62], the 1000 Genomes Project [2], and the Cancer Genome

Atlas (TCGA) [65]. Although these consortia have different but related goals, they follow a

similar premise: collect -omic scale data on a variety of individuals, cell types, and conditions

and disseminate the data to the public. With such a large volume of data entering the public

domain, there is a growing need for novel computational methods to efficiently analyze and

integrate these diverse datasets. One common application of integrating these datasets is for

the purpose of identifying regulatory elements such as enhancers, insulators, and promoters.

Some algorithms accomplish this by dividing the entire genome systematically into segments,

and then assigning the resulting genome segments into “chromatin states” by applying ma-

chine learning methods such as Hidden Markov Models, Dynamic Bayesian Networks, or

Self-Organizing Maps [30, 46, 67].

In this thesis, we introduce novel computational methods to solve a few of the myriad of

long-standing problems in computational genomics. Our methods place a strong emphasis

on scalability and non-linearity.

1.1 Dissertation Outline and Contributions

The thesis is outlined as follows:

In chapter 2, we present our contributions to de novo motif discovery and the resulting

improvement in several large sequence datasets. The contributions include an update to

the popular motif discovery algorithm, MEME [9], by replacing its batch Expectation-

Maximization (EM) algorithm [28] with an online EM algorithm [21]. The main difference

between these two EM algorithms is that the batch version performs a parameter update

4



each time after processing the whole training dataset, whereas the online version performs a

parameter update after processing a single training sample, or a mini-batch of training sam-

ples. The online EM algorithm also converges considerably faster than the batch EM version.

If required, the online EM algorithm can be combined with a streaming strategy so that data

are efficiently loaded as needed from the hard drive into system memory, which in turn con-

siderably reduces the memory resources required to run the algorithm. Compared to MEME,

our method is several orders of magnitude faster, and this gap quickly widens as a function of

the size of the dataset. These contributions are released as an open-source software package

called EXTREME, which is available at https://github.com/uci-cbcl/EXTREME. Portions

of this chapter were published as part of [76].

In chapter 3, we present our contributions to pathogenic variant annotation. Pathogenic

variant annotation is the task of identifying genetic variants that cause disease. This is often

done by assigning a score to a variant that describes its propensity to cause a disease. We de-

veloped a deep learning approach that trains a DNN on a large set of tens of millions of labeled

genetic variants, treating the problem as a binary classification task. Similar to the online

EM algorithm used in our EXTREME algorithm, the stochastic gradient descent method

used to train DNNs efficiently performs parameter updates on small mini-batches of training

data. Our method has the added benefit of being able to assign scores to variants, which

many prior annotation methods tended to avoid. It is also an improvement on Combined

AnnotationDependent Depletion (CADD) [55], which uses a linear support vector machine

(SVM) [26] to complete the same task. Linear SVMs cannot capture non-linear interactions

among features, which limits its performance relative to DNNs. These contributions are

released as an open-source software package called DANN and a genome-wide set of pre-

computed SNP scores, which are available at https://cbcl.ics.uci.edu/public data/DANN/.

Portions of this chapter were published as part of [75].

In chapter 4, we present another deep learning method for variant annotation. The imple-
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mentation is based around CNNs and RNNs using raw DNA sequences as inputs to predict

cell type-specific epigenetic markers. To combine the strengths of both types of DNNs, we

stacked a recurrent layer on top of a convolutional layer to form a hybrid architecture. The

kernels of the convolutional layer are analogous to motifs. Hence, the model training is also

implicitly performing motif discovery, similar to our EXTREME algorithm. Our method is

an improvement on DeepSEA [105], which uses a pure convolutional model with more free

weights and layers than our hybrid model does. The source code of the method is released as

an open-source software package called DanQ, which is available at https://github.com/uci-

cbcl/DanQ. Portions of this chapter were published as part of [77].

Finally, in chapter 5, we introduce a method for predicting TF binding across cell types.

Our proposed solution extends the hybrid architecture of the DanQ framework. The model

is trained on reference binding data and uses cell-type specific features, such as DNase I

hypersensitivity and gene expression, to generalize from training cell types to testing cell

types. We submitted our model ENCODE-DREAM in vivo Transcription Factor Binding

Site Prediction Challenge, where it was among the top performing models. These con-

tributions are released as an open-source software package called FactorNet, available at

https://github.com/uci-cbcl/FactorNEt.
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Chapter 2

EXTREME: motif discovery by online

Expectation-Maximization

2.1 Introduction

TFs are proteins that play an important role in transcriptional regulation by promoting or

blocking the recruitment of RNA polymerase II. They can bind specifically to recognition

sequences on the genome or to other TFs in a complex. HTS assays generate a rich amount of

information on the sequence preference of TFs. Peak sequences in ChIP-Seq [48] can provide

the genome-wide binding sites of a single TF. DNase-Seq, which sequences open chromatin

regions in the genome, can provide single nucleotide resolution for the binding sites of many

TFs [43, 70]. When sequenced deep enough, binding sites appear as dips, or footprints (FPs),

in the DNase-Seq signal. FPs only identify the locations of the TF binding sites; they do not

identify the proteins that are bound there. These assays can provide functional information

for thousands to millions of bp regions in the genome.

The task of identifying the sequence preference of a TF is called motif discovery. Motif
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discovery algorithms can be classified as either search-based or probabilistic. Search-based

algorithms infer a motif as a regular expression or consensus sequences. Probabilistic algo-

rithms infer a motif as a position weight matrix (PWM). PWMs were first introduced as

alternatives to consensus sequences [95]. In the first step of constructing a PWM, a basic po-

sition frequency matrix (PFM) is constructed by counting the occurrences of each nucleotide

at each position. This step is usually performed after a sequence alignment. From the PFM,

a position probability matrix (PPM) can now be constructed by dividing nucleotide counts at

each position by the number of sequences, thereby normalizing the values. Finally, a PWM

is constructed from a PPM by computing the log ratio of nucleotide probabilities with re-

spect to a background distribution. Both PPMs and PWMs assume statistical independence

between positions in the pattern, as the probabilities for each position are calculated in-

dependently of other positions. Each column can therefore be regarded as an independent

categorical distribution. Other, more complex, motif models such as the Slim model [49] re-

lax this assumption, but PWMs nevertheless remain ubiquitous in bioinformatics community

due to their simplicity and ease of interpretability.

While PWMs provide more information about a TF’s binding specificity than consensus

sequences, inferring PWMs is not always practical. Probabilistic motif discovery programs

usually employ algorithms such as expectation-maximization (EM) [28] for inference. These

algorithms scale poorly with dataset size. Search-based algorithms are therefore preferred

for large datasets. DREME [5] is an example of a search-based algorithm designed for large

datasets.

MEME is a popular probabilistic motif discovery program [9]. It uses the EM algorithm

to infer PWMs. Since its inception in 1994, it has gone through several versions. However,

MEME scales poorly with large datasets. One strategy to improve MEME’s performance is to

discard many of the sequences. This is the strategy used by MEME-ChIP [63], which accepts

500 sequences. In comparison, a ChIP-seq dataset may contain tens of thousands of binding
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peak sequences, and a DNase-seq dataset may contain approximately one million footprint

sequences. However, discarding sequences can decrease the chance of discovering motifs

corresponding to infrequent cofactors. Another strategy, as utilized in STEME, applies

suffix trees to accelerate MEME [81]. However, STEME is only practical for finding motifs

of up to width 8 on large datasets because its efficiency tails off quickly as the motif width

increases. Other strategies for accelerating MEME involve specialized hardware such as

parallel pattern matching chips on PCI cards [89] or graphical processing units (GPUs) [22].

However, these implementations require hardware not available to most researchers.

To overcome these issues, we propose an online implementation of the MEME algorithm that

we have named EXTREME. The online EM algorithm adheres closely to the original EM

algorithm (hereafter referred to as the batch EM algorithm) [21], and it has achieved remark-

able success in other large data bioinformatics applications such as transcript quantitation

[85] and deconvolving subclonal tumor populations [60]. Normally, the online EM algorithm

is designed for cases where not all data can be stored at once. Although most computers

have enough memory to store entire sequence datasets at once, the online EM algorithm is

still advantageous for motif discovery because, for large sample sizes, the online EM algo-

rithm converges faster than the batch EM algorithm. We show that many of the features of

the original MEME algorithm can be adapted to the online methodology. Furthermore, we

show that EXTREME can achieve similar results to MEME in a fraction of the execution

time. We also show that using the entire dataset is necessary to discover infrequent motifs,

which is not always practical to do with MEME. To the best of our knowledge, this is the

first application of the online EM algorithm to motif discovery.
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Zi Xi
n

λ θm

θbg

Figure 2.1: MEME’s model: λm, the prior probability of a binding site; Zi, the binary latent
variable representing whether the i-th W -mer is a motif instance; Xi, the i-th W -mer; θm,
the PPM of the motif; θbg, the nucleotide frequency vector of the background distribution.

2.2 Methods

2.2.1 MEME

The original MEME algorithm applies the batch EM algorithm to infer PPMs. Here, we

provide a brief overview of MEME’s model and how MEME applies the batch EM algorithm

to infer parameters.

MEME’s model

Let Y = (Y1, Y2, . . . , YN) be the dataset of sequences, where N is the number of sequences

in the dataset. Each sequence is over the alphabet A = (A,C,G, T ). MEME uses a mixture

model that breaks up the dataset into all n (overlapping) subsequences of lengthW and treats

each subsequence as independent and identically distributed (i.i.d.) observations. We will
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refer to this new dataset as X = (X1, X2, . . . , Xn). The mixture model is a two-component

model that assumes each subsequence is either an instance of the motif or background.

Other variants of MEME place additional constraints. The one occurrence per sequences

(OOPS) variant assumes that each sequence contains one instance of the motif. The zero

or one occurrence per sequence (ZOOPS) variant assumes each sequence can have zero or

only one occurrence of the motif. These two variants make slight modifications to MEME’s

probabilistic model. We will only consider the two-component model.

The background component is characterized as a zero-order Markov model parameterized

by the vector θbg = (f0,A, f0,C , f0,G, f0,T ) where f0,k is the background frequency of letter

k. The background model can be viewed as a PPM with W identical columns. The motif

model is characterized by the PPM θm = (f1, f2, . . . , fW ). Each fj = (fj,A, fj,C , fj,G, fj,T ) is

a parameter of an independent random variable describing a multinomial trial representing

the distribution of letters at position j in the motif. The corresponding PWM, θpwm =

(g1, g2, . . . , gW ), can be computed from θbg and θm as follows:

gj,k = log2

fj,k
f0,k

(2.1)

λm parameterizes the probability that any W -mer is generated by the motif model while

λbg = 1 − λm is the probability that any W -mer is generated by the background model.

θ = (θm, θbg) and λ = (λm, λbg) are unknown parameters that are inferred from the known

data X. Therefore, the MEME model is

p(Zi = 1|θ, λ) = λm, 1 ≤ i ≤ n (2.2)
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p(Xi|Zi, θ) = p(Xi|θm)Zip(Xi|θbg)1−Zi (2.3)

where Zi is a binary latent variable which has a value of 1 if Xi is drawn from the motif

model or 0 if Xi is drawn from the background model. Zi’s true value is unknown, but

its conditional expected value, defined here as Z
(0)
i , for a given set of parameters can be

calculated as follows:

Z
(0)
i = E[Zi|X, θ, λ] =

p(Xi|θm)λm
p(Xi|θm)λm + p(Xi|θbg)λbg

(2.4)

To calculate Z
(0)
i , we need to know the form of p(Xi|θm) and the form of p(Xi|θbg). MEME

assumes the distributions of the motif class and background class are

p(Xi|θm) =
W∏
j=1

∏
k∈A

f
I(k,Xi,j)
j,k (2.5)

p(Xi|θbg) =
W∏
j=1

∏
k∈A

f
I(k,Xi,j)
0,k (2.6)

where Xi,j is the letter in the jth position of subsequence Xi, and I(k, a) is an indicator

function

I(k, a) =

 1 if a = k

0 otherwise
(2.7)

The MEME model is depicted in plate notation in Fig. 2.1.
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Batch EM

λ and θ are iteratively improved in the batch EM algorithm. In the E-step, the expected

counts of all nucleotides at each position are calculated based on the current guess of the

parameters. In the M-step, the parameters are updated based on the values calculated in

the E-step. MEME repeats the E and M steps until the change in θm (Euclidean distance)

falls below a threshold (default: 10−6). The E and M steps are as follows:

E-step:

cj,k :=
n∑
i=1

EiZ
(0)
i I(k,Xi,j) (1)

c0,k :=
n∑
i=1

W∑
j=1

(
1− Z(0)

i

)
I(k,Xi,j) (2)

M-step:

fj,k :=
cj,k+βk∑

k∈A
(cj,k+βk)

(1)

λm :=
n∑
i=1

Z
(0)
i

n
(2)

for k ∈ A and j = 0, 1, 2, . . . ,W

To discover multiple motifs, MEME associates an “erasing factor” Ei for each subsequence

Xi. The erasing factors vary between 0 and 1 and are set to 1 initially to indicate no erasing

has taken place. Each time a motif is discovered, the erasing factors are reduced by a factor

representing the probability that the position overlaps an occurrence of that motif. More

details concerning how MEME erases are in [7]. MEME also implements pseudo counts

β = (βA, βC , βG, βT ) in the M-step to prevent any letter frequency fj,k from becoming 0.

This is because if any letter frequency fj,k becomes 0, its value cannot change.

EM performs maximum likelihood estimation to maximize an objective function. The new

estimates in the M-step are always guaranteed to increase the value of the objective function.

As the E and M steps are repeated, EM algorithms converge to a maximum. For MEME,
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the objective function is the expected value of the log likelihood of the model parameters θ

and λ given the joint distribution of the data X and missing data Z:

E[logL(θ, λ|X,Z)] =
n∑
i=1

Z
(0)
i log(p(Xi|θm)λm)

+
n∑
i=1

(
1− Z(0)

i

)
log(p(Xi|θbg)λbg)

(2.8)

Seeding

The EM algorithm is sensitive to initial conditions and prone to converging to local maxima.

To mitigate this problem, MEME tests many seeds and runs the EM algorithm to convergence

from the “best” seed. The exact details of how MEME performs seeding can be found in [8].

Scoring the motifs

Motif instances are determined according to Bayesian decision theory. After a motif is

discovered, a subsequence Xi is classified as being an occurrence of the motif only if

log

(
p(Xi|θm)

p(Xi|θbg)

)
> log

(
λbg
λm

)
(2.9)

For each motif discovered, MEME calculates its E-value. This E-value is the number of

motifs, with the same width and number of occurrences, that can generate an equal or

higher log likelihood ratio if the dataset had been generated according to background model.

The log likelihood ratio llr = log(p(sites|motif)/ log(sites|background)) is a measure of how

different the sites are from the background model. Calculating the E-value exactly can be

time consuming, so it is not computed directly. It is instead heuristically calculated as a

function of the total information content and the number of occurrences [6].
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Time complexity

For each iteration of the batch EM algorithm, the number of operations performed is ap-

proximately proportional to W . Each batch EM iteration has a time complexity of O(nW ).

Although the number of iterations can vary, it is typically proportional to n. Therefore,

in practice the algorithm scales quadratically with the size of the dataset and has a time

complexity of O(n2W ). The seed searching also scales quadratically with the size of the

dataset [8].

2.2.2 EXTREME

EXTREME shares many similarities with MEME, especially in the implementation. At the

center of the EXTREME algorithm is the online EM algorithm. We provide an overview

of the online EM algorithm and how EXTREME implements the online EM algorithm to

discover motifs.

Online EM

Like the batch EM algorithm, the online EM algorithm also repeatedly iterates between E

and M steps, which update the parameters. In contrast to the batch EM algorithm, each

iteration of the online EM algorithm operates on only one observation, Xi, instead of the

whole dataset X.

Following the instructions in [21], the E and M steps, as derived from (2.8), are:

The step size is γi = γ0i
−α. α and γ0 are set to 0.6 and 0.05, respectively. These are by

no means the most optimized set of parameters, but they are adequate for accurate motif

discovery. As shown in [21], the online EM algorithm converges to a local maximum of the
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E-step:

sm,i := sm,i−1 + γi

(
Z

(0)
i − sm,i−1

)
(1)

cj,k,i := cj,k,i−1 + γi

(
Z

(0)
i I(k,Xi,j)− cj,k,i−1

)
(2)

c0,k,i := c0,k,i−1 (3)

+ γi

(
W∑
j=1

(
1− Z(0)

i

)
I(k,Xi,j)− c0,k,i−1

)

M-step:
fj,k :=

cj,k,i∑
k∈A

cj,k,i
(1)

λm := sm,i (2)

for k ∈ A, j = 1, 2, . . . ,W , and i = 1, 2, . . . , n

likelihood function (2.8) for α ∈ (0.5, 1].

The E and M steps are repeated until a convergence threshold (default: 10−6) in terms of

the symmetrized Kullback-Leibler divergence (KLD) between the PPM estimates at a user-

defined number of intervals (default: 100) of W -mers at the end of a complete pass through

the dataset is satisfied. The KLD between two PPMs A and B is calculated as follows:

KLD(A,B) =
1

2

W∑
j=1

∑
k∈A

(
Aj,k log

(
Aj,k
Bj,k

)
+Bj,k log

(
Bj,k

Aj,k

))
(2.10)

If convergence is not reached at the end of a pass, the exponent α is updated to the mid-

point between α’s current value and one and EXTREME performs another pass through the

dataset. EXTREME repeats these steps until the convergence threshold is met.

To accommodate pseudo counts, we modify the indicator function from (2.7):

I(k, a) =

 1 + βk if a = k

βk otherwise
(2.11)

By default, EXTREME sets βk to 0.0001 times the frequency of letter k in the entire dataset.
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To accommodate reverse complements, we also modify the calculation of Z
(0)
i from (2.4) so

that for each Xi, the reverse complement is also evaluated and Z
(0)
i takes the higher of the two

values. MEME, in contrast, handles reverse complements by adding a reverse-complemented

copy of the data, essentially doubling the size of the data.

Seeding

Before running the online EM algorithm, the order of the W -mers Xi is randomized. The

online EM algorithm is therefore a stochastic algorithm. This means that different runs

of the online EM algorithm can yield different results, even if ran multiple times from the

same initial conditions. This can present a problem for seeding because even using the best

seed from MEME’s heuristic is not guaranteed to generate the optimal or even consistent

solutions, causing EXTREME to converge to local maxima. On the other hand, this also

means that seeds that would yield non-optimal solutions in MEME can yield optimal solu-

tions in EXTREME. In fact, local maxima may actually correspond to biologically relevant

motifs, especially in datasets that are rich in motifs such as DNase-Seq data. Furthermore,

an efficient online EM implementation of MEME offers very little benefit if runtimes are

dominated by the inefficient seed search.

EXTREME’s seeding strategy applies a search-based motif discovery algorithm to find motifs

to initialize the online EM algorithm. Similar to DREME [5], the seeding algorithm finds

words that are enriched in a sequence dataset relative to a negative sequence dataset. We

use the same dinucleotide shuffle algorithm employed in DREME to generate a dinucleotide-

shuffled version of the input sequence set as the negative sequence set. The seeding algorithm

counts the number of occurrences of words in the positive sequence set and the negative

sequence set and associates a ”z-score” with each word. The z-score is given by

z =
s+ − s−√

s−
(2.12)
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where s+ and s− are the number of occurrences of the word in the positive sequence and

negative sequence sets, respectively. If s− is zero for a word, it is changed to one to prevent

division by zero. Unlike DREME, our seeding algorithm searches for words that are not

exact. Each word contains g universal wildcard letters surrounded by flanking sites of l

unambiguous letters. For example, TCAGNNGGAC is a word with a gap length, g, of 2 and

a half-length, l, of 4. The gap length, g, varies between the user-defined parameters gmin and

gmax. Z-scores for each value of g are normalized by dividing by the standard deviation of all

z-scores for each respective value of g. Words that have a normalized z-score that exceed a

user-defined threshold, zthresh, and have at least a user-defined number of occurrences, smin,

in the positive sequence set are aligned and grouped together using a hierarchical clustering

algorithm we adapted from [104]. Word clusters are converted to frequency count matrices

by counting the number of occurrences of each letter at each position along the alignment.

The counts are weighted by the normalized z-score of each word in a cluster so that more

significant words will contribute more to the count matrix than less significant words. A count

matrix, which is also a PFM, is converted to a PPM, θm, by dividing each matrix element

by its respective row sum. The initial expected counts, c, is initially set to the initial θm as

well. θbg and the expected background counts c0 are set to the nucleotide frequency in the

dataset. λm and sm,0 are initialized to the predicted number of motif occurrences divided

by n, the total number of W -mers. We predict the number of motif occurrences for a given

PPM seed as the number of W -mers that have a goodness-of-fit score greater than 0.7 (see

[71] for details).

We also alter the form of p(Xi|θm) from (2.5):

p(Xi|θm) = ψ

W∏
j=1

∏
k∈A

f
I(k,Xi,j)
j,k (2.13)

The bias factor ψ has a value between 0 and 1. A bias factor closer to 0 biases the motif

discovery towards subsequences that more closely match the current motif guess, decreasing
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the number of discovered motif occurrences. A bias factor closer to 1 makes the motif

discovery less selective, increasing the number of motif occurrences. After convergence,

motif occurrences are identified using (2.9). ψ is initially set to 1, and its value is varied in

a binary search fashion until the number of discovered motif occurrences is between sitesmin

(default: 10) and sitesmax (default: 5 times the number of predicted motif sites). Up to 15

different values of ψ are tried before EXTREME stops. Because each initial PPM guess can

be tested independently, this seeding strategy can be parallelized to allow multiple motifs

to be discovered simultaneously. Hierarchical clustering of the discovered motifs can then

identify individual motif classes.

Time complexity

Each pass through the dataset with the online EM algorithm has a time complexity of

O(nW ). Typically, the online EM algorithm reaches convergence after one to five passes

through the data, so the overall time complexity is proportional to the width of the motif

and the size of the dataset. The seeding algorithm’s word search also scales linearly with

the dataset size, while the hierarchical clustering is inefficient and can scale cubically with

the number of words to cluster. In practice, EXTREME as a whole scales linearly in time

complexity with the dataset size.

Implementation

EXTREME is written in Python. To calculate E-values, EXTREME uses Cython bindings

to the original MEME C source code to call the appropriate functions. EXTREME requires

about 8 Gb of memory for a 10 Mbp dataset. Most of the memory is devoted to MEME’s

E-value calculation, which involves a preprocessing step that does not scale well to large

numbers of motif sites. Although we use MEME’s E-value in some of the analyses in this
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chapter, in practice we found the calculation heuristic to be unreliable and recommend

omitting it for most applications.

2.3 Results

MEME is a popular motif discovery algorithm. It has been a valuable tool in the ongoing

challenge of identifying regulatory elements. However, its performance scales poorly with

large datasets. Experiments such as ChIP-Seq and DNase-Seq generate data that are too

large for MEME to process in a practical amount of time without discarding most of the data.

To overcome this challenge, we have developed EXTREME, a motif discovery algorithm

that can process ChIP-Seq and DNase-Seq data efficiently without discarding any data. We

first show, using simulated datasets, that MEME’s running time scales much faster than

EXTREME’s running time with respect to dataset size. Using a ChIP-Seq dataset and a

DNase-Seq dataset, we demonstrate that using the entire dataset of sequences is necessary

to discover infrequent motifs. We also show that the motifs discovered by EXTREME are

similar in quality to the motifs discovered by MEME.

2.3.1 Comparison of MEME and EXTREME performance

We compare MEME and EXTREME using several simulated datasets. Simulated datasets

are generated with the RSAT suite of tools [98]. We generate 4 sequence datasets, each

containing 1000 random masked hg19 genomic sequences of a single length (100, 200, 300, or

400 bps), using the RSAT random-genome-fragments tool. This masked reference genome

was preprocessed with RepeatMasker [93] and Tandem Repeats Finder [13] so that repeats

(with period of twelve or less) are masked by capital Ns. For each of the 4 sequence datasets,

we implant 50, 100, 500, or 1000 instances of the JASPAR [88] VDR/RXRA heterodimer
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Figure 2.2: Comparison of MEME and EXTREME running times on simulated
datasets of varying sequence length and motif sites. The x-axis is the total number of
bps in the simulated dataset. The y-axis is the total running time it takes for MEME or EX-
TREME to complete seeding and reach convergence. The sequence logo of the VDR/RXRA
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motif using the RSAT random-motifs implant-sites tools, yielding a total of 16 simulated

datasets, each containing 1000 sequences of varying lengths and number of motif sites.

For the seeding step of each EXTREME run, we search for words with a half-length l = 6, a

gap length g between gmin = 0 and gmax = 2, a normalized z-score greater than the threshold

zthresh = 5, and at least smin = 5 occurrences in the positive sequence set. The words are

clustered and we select the cluster containing the most words to convert to a PPM seed

from which to initialize the online EM algorithm. Because the online EM algorithm is a

stochastic algorithm, we repeat the online EM portion of the run 30 times for each dataset

with different random seeds to initialize the pseudorandom number generator in order to get

a good estimate of performance. We also run MEME on each of the 16 simulated datasets

to find a single motif of a width between 12 and 17 under the two-component model to
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approximate the same parameters for the EXTREME run. Fig. 2.1 shows that MEME’s

running time scales much faster than EXTREME’s running time with respect to the input

size for all noise levels. Extrapolating from these data, MEME can take weeks to discover

a motif in a 10 Mbp dataset. EXTREME can complete this same task in hours. With the

exception of one of the datasets, MEME is marginally more accurate than EXTREME in each

case (Fig. 2.3). In the one exception, MEME fails to converge to the correct motif because

there are not enough true motif occurrences relative to the dataset size for MEME’s seeding

algorithm to pick a good seed. As the number of motif occurrences increases, both MEME

and EXTREME better approximate the true PPM and the relative difference between their

results diminish. Although EXTREME’s running time and accuracy vary more as the noise

level increases, EXTREME still consistently generates results comparable to those of MEME

in a fraction of MEME’s running time.

2.3.2 Discovering motifs in ChIP-Seq data

We compare the performance of MEME and EXTREME for discovering motifs in ChIP-

Seq data using a dataset generated by the Myers Lab at the Hudson Alpha Institute for

Biotechnology [16]. The ChIP-Seq data correspond to an REST ChIP performed on the

GM12878 cell line. Peaks were already called and organized into BED files by the authors.

We further process the data by intersecting replicates and extracting genomic sequences from

the middle 100 bps of the intersected regions from the same hg19 masked reference genome

we use for the simulated data. The resulting sequence dataset consists of 2849 sequences

and 282980 bps.

We run EXTREME on the ChIP-Seq dataset to discover multiple motifs. For the seeding

step, we search for words with a half-length of 8, a gap length between 0 and 10, inclusive,

a normalized z-score greater than 5, and at least 5 occurrences in the positive sequence set.
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Figure 2.4: Motifs discovered by EXTREME in the GM12878 REST ChIP-Seq dataset. Each
motif comes from one of the 10 motif clusters. Motifs are aligned to highlight the varying
distances and orientations between the half-sites. Number of non-overlapping motif sites
in non-repetitive regions and E-values shown next to each motif. E-values are calculated
according to MEME’s heuristic.

The word search takes 32 seconds to find 1248 words. Hierarchical clustering groups these

words into 23 clusters, taking 91 seconds to complete. These 23 clusters are converted to

PPMs of widths between 16 and 29 bps, providing seeds for the online EM algorithm. Each

seed is processed by the online EM algorithm on a separate core in parallel. 20 of the 23

seeds successfully yield motifs within 15 different values of the bias factor ψ (2.13). The

Supplementary material of the article this chapter is based on contains these 20 motifs in

MEME Minimal Motif Format [76]. Hierarchical clustering of the 20 motifs groups them
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into 10 clusters. Online EM running times range from 67 seconds to 859 seconds, taking

an average of 361 seconds. Running times vary because different seeds can converge to

different motifs and may require additional passes through the data to reach convergence.

For comparison, we also run MEME on the ChIP-Seq dataset to find a single motif of a width

between 16 and 29 bps under the two-component model using a single core. MEME takes

8191 seconds to find a single motif. While comparison between the multi-core EXTREME

run to the single-core MEME run is not straight-forward, it should be noted that the total

computing time for EXTREME, which sums the running times for the seeding and each

of the online EM runs, is 8305 s. In the computing time it takes for MEME to discover a

single motif, EXTREME finds 10 motif clusters in roughly the same amount of time. The

disparity between the two programs’ performances is compounded by the fact that MEME

discovers multiple motifs in serial, and would require roughly the same running time to find

each additional motif.

Many of the discovered motifs are novel, demonstrating varying half-site distances and ori-

entations (Fig. 2.4). Interestingly, two of the discovered motifs show that the half-sites

are reversed. To determine whether the reversed motif is functional, we scan for sequences

in the ChIP-Seq dataset matching one of the reversed motifs’ consensus sequence, align

these sequences, and extract GERP scores [25]. Sequences containing this reversed motif

are enriched in high GERP scores, showing that these sequences are conserved and possibly

functional (Fig. 2.5).

Some of the motifs discovered in this dataset have a low number of occurrences. One of the

motifs, for example, only has 11 sites in the data. It would be very unlikely to discover these

infrequent motifs if the majority of sequences are discarded. This highlights the importance

of using the entire dataset for thorough motif discovery.
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Figure 2.5: Conservation analysis of the reversed REST motif. Sequences in
the GM12878 REST ChIP-Seq dataset containing the consensus sequence GCTGTCC-
NTTCAGCA or its reverse complement are aligned with 10 bp flanking sequences. (A)
GERP scores are plotted for each nucleotide in a heatmap. The motif’s sequence logo is
aligned at the top for reference. (B) The average GERP score plotted against the genomic
positions, relative to the center of the alignment.

2.3.3 Discovering motifs in DNase-Seq data

To assess the performance of MEME and EXTREME for DNase-Seq data, we use a DNase-

Seq FP dataset generated by the Stamatoyannopoulos Lab at the University of Washington

[70]. The DNase-Seq data correspond to a footprinting experiment performed on the K562

cell line. FPs are already organized into a BED file by the authors. We further process the

FP data by extending each FP by 5 bps on each side and then merging any intersecting

regions. Genomic sequences are extracted from the masked hg19 reference genome. The
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Figure 2.6: Six examples of motifs discovered by EXTREME in the K562 DNase
footprint dataset. Number of non-overlapping motif sites in non-repetitive regions and E-
values shown below each motif. The E-values show how significant the motifs are, calculated
according to MEME’s heuristic.

resulting dataset consists of 198527 sequences and 10487345 bps.

We first discover motifs in the DNase-Seq dataset using MEME. We do not run MEME on

the whole dataset because we know MEME can take months to complete for a dataset of this

size. We therefore run MEME-ChIP on the dataset, which runs MEME on 600 randomly

selected sequences. For the data subset, MEME discovers two motifs that strongly resemble

previously discovered motifs (CTCF and SP1). The other discovered motifs are repetitive

or fail to meet our E-value threshold of 0.01.

In the seeding step of EXTREME, we first search for words with a half-length of 4, a gap

length between 0 and 10 bps, inclusive, a normalized z-score greater than 5, and at least 10

occurrences in the positive sequence dataset. The word search takes 836 seconds to yield

761 words. Hierarchical clustering of the words takes 23 seconds to group the words into

129 clusters. We then convert the clusters to 129 PPM seeds of widths between 8 and 19

bps. Each seed is processed independently by the online EM algorithm on a separate core

in parallel. Running times vary for each of the online EM runs, ranging from 4475 seconds

to 18300 seconds, completing in an average of 7390 seconds. Hierarchical clustering groups

the discovered motifs into 22 distinct clusters.

To discover additional motifs in the DNase-Seq data, we mask the 7 most abundant motifs
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from different motif clusters by replacing instances of those motifs with capital Ns and

restart the motif discovery. We remove these motif instances because the first round of motif

discovery shows that many different seeds can converge to the same motif, and we want to

bias the motif discovery towards different motifs. Based on TOMTOM [41] analysis, the

7 motifs strongly match known motifs (TOMTOM E < 0.01): CTCF, SP1, SRF, NRF1,

JUNDM2, ZNF143, and TAL1/GATA1. In this second round of motif discovery, we search

for words with a half-length of 5, a gap length between 0 and 10 bps, inclusive, a normalized

z-score greater than 8, and at least 10 occurrences in the positive sequence dataset. The

word search takes 888 seconds to yield 1187 words. Hierarchical clustering of the words

completes in 102 seconds and yields 357 clusters, which are then converted to PPM seeds

of widths between 10 and 21bps. Each seed is independently processed by the online EM

algorithm on a separate core in parallel. Online EM run times range from 3330 seconds to

22702 seconds, completing in an average of 7605 seconds. Hierarchical clustering condense

the motifs into 131 clusters.

Examples of motifs discovered in the K562 dataset are shown Fig. 2.6. All motifs discovered

by EXTREME in the K562 dataset are available in MEME Minimal Motif Format in the

Supplementary material of [76]. Many of the motifs discovered by EXTREME have a low

number of occurrences relative to the total size of the dataset. One motif only has 464

occurrences in the 10.5 Mbp dataset (Fig. 2.6E). These kinds of motifs are too infrequent

to be discovered in subsets of the data. Discovering motifs in a subset of the data is only

possible for motifs that are present in high abundance, such as the ones shown in Fig. 2.6A

and 2.6B, which are also the motifs discovered by the MEME run on the data subset. Again,

this highlights the importance of using the whole dataset for motif discovery. Using MEME to

discover these infrequent motifs is not practical because MEME can take months to discover

a motif in a dataset as large as the K562 dataset. Furthermore, the number of occurrences

for motifs are less than expected. For example, EXTREME only finds 1771 occurrences

of the CCAAT box motif (Fig. 2.6F), even though the ENCODE NFYA ChIP-Seq data
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Figure 2.7: TOMTOM comparisons of motifs discovered by EXTREME with mo-
tifs in databases. Each panel shows the logo of the motif discovered by EXTREME (lower
logo) aligned with the best matching motif in the databases (upper logo), along with the
name of the best matching motif and significance value of the match.

indicate it should be present in at least a third of all human promoters. The reason for the

discrepancy is likely due to the way [70] called FPs. [70] reported high-confidence FPs at

an FDR of 1%. This is a very stringent threshold and we therefore expect their footprinting

algorithm to call many false negatives as a result.

2.3.4 Comparison to known motifs

We assess the similarity of the motifs discovered by EXTREME in the DNase-Seq and ChIP-

Seq datasets to known motifs using TOMTOM. Some of the motifs discovered by EXTREME

have highly significant matches to known motifs (Fig. 2.7). Many of the motifs discovered,

however, are novel and fail to meet our TOMTOM E-value threshold of 0.01. Validating

these novel motifs requires further computational or experimental scrutiny.

2.4 Discussion

A search-based seeding strategy combined with the online EM algorithm is effective for ef-

ficient de novo motif discovery in large datasets. EXTREME uses the online EM algorithm
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to discover motifs that very closely match motifs discovered by MEME. MEME can take

months to discover even a single motif in a large dataset like the DNase-Seq dataset. While

strategies such as discarding sequences is effective for quickly discovering abundant motifs,

it is insufficient for finding infrequent motifs, which are numerous in DNase-Seq data. EX-

TREME can quickly process entire large datasets without discarding sequences or using

specialized hardware. If available, EXTREME can take advantage of parallelized hardware

configurations, which is useful for rapidly discovering multiple motifs in large datasets. Al-

though such configurations are not available to all researchers, EXTREME can still be used

with more traditional configurations to serially discover multiple motifs at a substantially

faster rate than MEME can.

We expect EXTREME to be a valuable tool for thorough motif discovery in large datasets.

Its ability to discover multiple motifs in DNase-Seq data will be especially useful for under-

standing transcriptional regulation. Because motifs discovered by EXTREME closely match

motifs discovered by MEME, the results are highly compatible with existing algorithms and

databases. For example, a motif discovered by EXTREME in a DNase I footprint dataset

can easily be queried against a database of known motifs, which in turn can reliably as-

sociate FPs with well-studied TFs. Novel motifs discovered in ChIP-seq datasets can also

be confidently associated with the immunoprecipitated TF. This is especially useful for the

study of TFs that lack a suitable antibody for ChIP experiments.

While EXTREME is effective in motif discovery, there is still much room for improvement.

For example, the code can be rewritten in a faster programming language, such as C. We

chose the Python programming for its compatibility and readability, but the language is

known to have many overhead issues that make it much slower compared to other program-

ming languages. Although we emphasized that one of EXTREME’s strengths is that it does

not require specialized hardware, another way we can improve EXTREME’s performance is

to implement it with a backend that can leverage GPUs. As GPUs become more ubiquitous
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in research due to the prevalence of deep learning methods, our initial concerns will become

less of an issue. Regardless, many of these backends can seamlessly utilize either CPUs or

GPUs. Future updates can also incorporate more MEME features such as the OOPS and

ZOOPS models. We are also interested in systematically applying EXTREME to existing

ChIP-seq and DNase-seq datasets from ENCODE. By doing so, we can considerably add

to existing motif databases, helping fill missing gaps in our understanding of regulatory

genomics.

2.5 Software availability

To encourage further investigation, we have made EXTREME publicly available at the

Github repository http://github.com/uci-cbcl/EXTREME under the GNU General Public

License.
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Chapter 3

DANN: annotating the pathogenicity

of genetic variants using a deep neural

network

3.1 Introduction

Identifying the genetic variants responsible for diseases can be very challenging. The ma-

jority of candidate variants lie in noncoding sections of the genome, whose role in main-

taining normal genome function is not well understood. Most annotation methods can

only annotate protein coding variants, excluding >98% of the human genome. Over 1,200

genome-wide association studies (GWASs) have identified nearly 6,500 disease- or trait-

predisposing SNPs, 93% of which are located in noncoding regions [44], highlighting the im-

portance of a predictive model for noncoding variants. One annotation method, Combined

Annotation–Dependent Depletion (CADD) [55], can annotate both coding and noncoding

variants. CADD trains a linear kernel SVM to separate observed genetic variants from
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simulated genetic variants. Observed genetic variants are derived from differences between

human genomes and the inferred human-chimpanzee ancestral genome. Because of natural

selection effects, observed variants are depleted of deleterious variants. Simulated genetic

variants are enriched for deleterious variants.

CADD’s SVM can only learn linear representations of the data, which limits its performance.

To overcome this, we implemented a DNN algorithm that we have named DANN (Deleterious

Annotation of genetic variants using Neural Networks). A DNN is an artificial neural

network with several hidden layers of units between the input and output layers. The extra

layers give a DNN added levels of abstraction, but can greatly increase the computational

time needed for training. Deep learning techniques and GPU hardware can significantly

reduce the computational time needed to train DNNs. DNNs outperform simpler linear

approaches such as logistic regression (LR) and SVMs for classification problems involving

many features and samples.

The specific type of DNN we propose to implement is called a feedforward neural network,

also known as a multilayer perceptron (MLP). One of the defining aspects of an MLP is the

dense connections between adjacent layers. MLPs are most appropriately for applied to data

where the order of the features are irrelevant. Other applications of MLPs in bioinformatics

include gene expression inference [23] and splicing pattern prediction [59].

3.2 Methods

3.2.1 DNN training

The DANN MLP model consists of an input layer, three 1000-node hidden layers, and a

sigmoid function output layer (Fig. 3.2). Each node in a non-input layer takes as input the
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activation vector from the previous layer and applies a non-linear transformation. For exam-

ple, the first node in the first hidden layer transforms the input vector, x = (x1, x2, . . . , x949),

and outputs the following value:

h
(1)
1 = f

(
949∑
i=1

W
(0,1)
1,i xi + b

(0,1)
1

)
(3.1)

where W (j,j+1) denotes the weight matrix between the j-th and the next layer, b(j,j+1) is the

corresponding bias vector, and f is a non-linear activation function. If we extend f to apply

to vectors in an element-wise fashion, then we can compactly write the model as a series of

matrix multiplications and non-linear transformations mapping from the input vector, x, to

the scalar output, ŷ:

h(1) = f
(
W (0,1)x+ b(0,1)

)
(1)

h(2) = f
(
W (1,2)h(1) + b(1,2)

)
(2)

h(3) = f
(
W (2,3)h(2) + b(2,3)

)
(3)

ŷ = σ
(
W (3,4)h(3) + b(3,4)

)
(4)

Our choice of the hidden activation function, f , is the hyperbolic tangent function:

f(z) = tanh(z) =
ez − e−z

ez + e−z
(3.2)

Another common choice for the hidden unit is the rectified linear unit (ReLU):

f(z) = max (0, z) (3.3)
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Figure 3.1: Graphical illustration of the feedforward neural network.

We do not employ ReLUs in this study, but we do heavily use them in chapters 4 and 5. Yet

another common choice for the activation function, f , is the sigmoid function, which we use

as the final transformation in the output layer:

f(z) = σ(z) =
1

1 + e−z
(3.4)

For binary classification tasks, the sigmoid function is a natural choice for the final output. It

is a real-valued and differentiable function, making it amenable for gradient-based methods,

and it is bounded between zero and one, making it comparable to the binary labels of

classification tasks. The sigmoid output of the model, ŷ, is interpreted as the probability

that the model assigns to the true label, y, to be one. Observed and simulated variant labels

correspond to binary labels zero and one, respectively.
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The goal of model training is to find the “best” set of weights, θ. This can be achieved

by defining a loss function, L, and applying the standard (or “batch”) gradient descent to

iteratively update the weights toward a local minimum according to the following rule:

θ := θ − γ∇θL (3.5)

where γ is the learning rate and is typically set to a small constant. The gradient, ∇θL, can

be efficiently computed with the backpropagation algorithm [86].

In this application, we minimize the mean cross entropy loss function, a common choice for

binary classification tasks, across N training samples:

L = − 1

N

N∑
n=1

[yn log ŷn + (1− yn) log (1− ŷn)] =
1

N

N∑
n=1

Ln (3.6)

The gradient descent algorithm shares many similarities with the EM algorithm that we

described in the previous chapter. Both algorithms optimize an objective function and can

be trained in either a batch or online fashion. Many of motivations for using an online version

over the batch version are also shared between the EM and gradient descent algorithms,

including memory efficiency and faster convergence. The online version of gradient descent,

which is commonly called the stochastic gradient descent (SGD), updates the weights after

processing each individual training sample according to the following rule:

θ := θ − γ∇θLn (3.7)
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A compromise between online and batch versions of gradient descent is to compute the

gradient against a “mini-batch” of training examples at each iteration. This modification

can perform significantly better than true SGD because the code can make use of fast

parallelized vectorization libraries rather than computing each step separately. It may also

result in smoother convergence, as the gradient computed at each step uses more training

examples. This is the more commonly used version of gradient descent, and it is the one we

use to train the DANN model. We use a mini-batch size of 100.

We also apply dropout, a method that reduces overfitting by randomly setting a set a fraction

of the activations to zero [94]. We set the hidden node dropout rate to 0.1.

To reduce training time, we apply momentum training, which adjusts the parameter incre-

ment as a function of the gradient and learning rate [97]. It slightly modifies the SGD update

(eqn. 3.7) as follows:

ν := µν + γ∇θLn (1)
θ := θ − ν (2)

where µ and γ are the momentum rate and learning rate, respectively. We fix the learning

rate to a value of 0.01. The momentum rate is initially 0.01, and linearly increases to 0.99

at the end of each epoch for the first 10 epochs and then remains at 0.99.

We trained the DNN using deepnet (https://github.com/nitishsrivastava/deepnet) on an

NVIDIA Tesla M2090 card. We chose the deepnet package because of its support for sparse

matrices.

3.2.2 Models for comparison

As a baseline comparison, we trained a LR model. For LR training, we applied SGD using

the scikit-learn library [72] with parameter α = 0.01, which we found to maximize the
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accuracy of the LR model. We also train an SVM using the LIBOCAS v0.97 library [32]

with parameter C = 0.0025, closely replicating CADD’s training as much as possible.

3.2.3 Features

There are a total of 949 features defined for each variant. The feature set is sparse, and

includes a mix of real valued numbers, integers, and binary values. For example, amino

acid identities are only defined for coding variants. To account for this, we include Boolean

features that indicate whether a given feature is undefined, and missing values are imputed.

Moreover, all n-level categorical values, such as reference allele identity, are converted to n

individual Boolean flags. Other features include evolutionary scores and gene model annota-

tions. See the Supplementary of [55] for more details about the features and imputation. LR

and DNN are sensitive to feature scaling, so we preprocess the features to have unit variance

before training either model; however, we chose not to zero-mean normalize the features in

order to preserve the sparsity of the features.

3.2.4 Training data

CADD’s training data consist of 16,627,775 “observed” variants and 49,407,057 “simulated”

variants. We trained all three models on this dataset to differentiate the simulated variants

from the observed variants. To account for the imbalance between the two datasets, we

randomly sampled 16,627,775 simulated variants for training. These 33,255,550 variants are

split into a “training set”, a “validation set”, and a “testing set” in an approximately 8:1:1

ratio. The three models are trained on training set. For SGD, each gradient step is not

guaranteed to minimize the loss function; at 1/10 epoch intervals throughout the 20 epochs

of training the validation set is evaluated in order to select the “best” model that maximizes

classification accuracy on the validation set. The validation set is also used to fine tune
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Figure 3.2: ROC curves comparing performances of the neural network (DANN),
support vector machine (SVM), and logistic regression (LR) models. The models
are evaluated on discriminating (A) “simulated” variants from “observed” variants in the
testing set and (B) pathogenic ClinVar variants from likely benign ESP alleles (DAF ≥
5%). A random guess would give a point along the dashed line (the so-called line of no-
discrimination) from the bottom left to the top right corners.

hyperparameters such as dropout rate, minibatch size, etc. Finally, the models are regularly

evaluated on the testing set to monitor for overfitting. In contrast, [55] trained CADD using

an “ensemble” strategy that involves training SVMs on ten different subsets of the training

data. We found little performance improvement when we applied this strategy.

3.3 Results and Discussion

To compare the performance of the three models, we generated receiver operating charac-

teristic (ROC) curves discriminating the 3,326,573 simulated and observed variants in the

testing set and calculated the area under the curve (AUC) (Fig. 3.2). We used the discrim-

inant values of the SVM and the sigmoidal function output of the DNN and LR models as

classifiers for the ROC curves. We do not directly compare to CADD because it can only

evaluate 100,000 variants at a time and CADD was already trained on testing set variants;

however, the SVM we trained performs very similarly to CADD despite being trained on a
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smaller dataset (data not shown). The classification accuracies of the SVM, LR, and DNN

models are 58.2%, 59.8%, and 66.1%, respectively. A few observations emerge from our anal-

ysis. First, LR performs better than SVM, suggesting that the max margin regularization

employed by SVM plays little role in this particular dataset. Second, DNN performs signifi-

cantly better than both LR and SVM, leading to a 19% reduction in the error rate and 14%

improvement in the AUC relative to SVM. This suggests the importance of accounting for

nonlinear relationships among features, likely due to the heterogeneity of features generated

in genome annotations. Third, although DNN improves on the linear methods, its accuracy

is still unsatisfactory. We suspect a few factors might contribute to this: 1) The training

data are inflated with mislabeled samples. Observed variants can be under positive or weak

purifying selection, and therefore be functional. Conversely, many simulated variants can be

nonfunctional since they are randomly sampled from the genome. 2) The features currently

used in genome annotation are insufficient for functional prediction. 3) The model training

needs further improvement.

We also generated ROC curves showing the models discriminating pathogenic mutations de-

fined by the ClinVar database [10] from likely benign Exome Sequencing Project (ESP) [33]

alleles with a derived allele frequency (DAF) ≥ 5% (Fig. 3.2B, n = 10,000 pathogenic/10,000

likely benign). Coding variants constitute 85.6% and 43.0% of the ClinVar and ESP databases,

respectively, reducing the difficulty of annotation since many more informative features are

available in coding regions. For variants with multiple gene annotations, we only selected

the gene annotation that yielded the highest score from each model. All three models greatly

improve on the AUC metric, with the LR and DANN models outperforming SVM; however,

the performance gap between the models is much smaller than the gap in the testing set.

The differences between the testing set and the ClinVar/ESP set brings up several questions.

First, what is the proper training and evaluation sets for measuring the pathogenicity of ge-

netic variants. Ideally, for the purposes of machine learning, the training, validation, and
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evaluation sets should all come from the same probability distribution. Clearly, this is not

the case as the ClinVar/ESP set carries a drastically different proportions of coding variants

than the training or testing sets. While this may be seen as a design flaw on part of the

CADD authors for curating their training and evaluation sets as they did, this scenario is

often unavoidable in genomics, owing to a variety of factors such as difficulty in reproducing

results and biases in data curation. We surmise, based on our results, that DANN can gen-

erally predict variant pathogenicity better than the other methods, but this conclusion relies

on the assumption that a better performance on the testing set leads to better performance

for predicting pathogenicity. This also raises the question of what actually constitutes a

pathogenic or deleterious variant. CADD drew an equivalence between disease and a re-

duction in organismal fitness; however, some diseases may not necessarily impact fitness.

Other methods, such as fitCons [40] and delta-SVM [56], evaluate their methods on cell

type-specific datasets and claimed better performance than CADD, without using the same

evaluations sets as CADD. As of the writing of this thesis, there appears to be no consensus

for evaluating variant annotation methods. Finally, we also question how the evaluation sets

are generated. The majority of genetic variation is benign, but the evaluation sets tend to

be artificially balanced. Most genomic datasets are very sparse. For example, a TF may be

bound to a few thousand sites in the genome, which covers much less than 1% of the entire

genome. Evaluation metrics should reflect this imbalance. We will revisit these questions in

the subsequent chapters.

In conclusion, we have improved considerably upon CADD’s SVM methodology. We can even

achieve better performance with LR, suggesting that LR is the preferred linear classifier

in this case. DANN achieves the best overall performance, substantially improving upon

the linear methods in terms of accuracy and separation on the testing set, which contains

mostly noncoding variants. This makes DANN the most useful annotation algorithm since

the vast majority of human variation is noncoding. When limited to a coding biased dataset,

all three models perform well, but the performance gap is small. Given DANN’s superior
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performance for annotating noncoding variants, which comprise the overwhelming majority

of genetic variation, we expect DANN to play an important role in prioritizing putative

causal variants, such as those derived from GWAS, for further downstream analysis.

3.4 Software availability

Source code, training data, and testing data described in this chapter are available at

https://cbcl.ics.uci.edu/public data/DANN/ under the MIT license. For convenience, we

provide pre-computed DANN scores for all possible SNPs in the hg19 genome. Since SNPs

subsume the vast majority of genetic variation, these scores should meet the demands of most

research applications. DANN SNP scores are also available in several widely used general

annotation programs, including ANNOVAR [101], Varsome (https://varsome.com/), and

dbNSFP [61].
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Chapter 4

DanQ: stacked convolutional and

recurrent neural network for

predicting chromatin markers from

raw nucleotide sequences

4.1 Introduction

In the previous chapter, we describe several annotation methods that integrate various ge-

nomic datasets, such as evolutionary scores and gene model annotations. However, there

has been a growing interest to predict function directly from raw genomic sequence, without

using any curated datasets such as gene models or multiple species alignments. Previous

studies have shown that the sequence features alone can predict epigenomic elements, some-

times even in a cell type-specific manner [103, 12, 36]. A model that can predict function

directly from sequence may reveal novel insights about noncoding elements without any
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bias introduced by the curated datasets, echoing the motivations discussed in the previous

chapter.

Convolutional neural networks (CNNs) are variants of DNNs that are appropriate for the

aforementioned task. CNNs use a weight-sharing strategy to capture local patterns in struc-

tured data such as sequences. This weight-sharing strategy is especially useful for studying

DNA because the convolution filters, or kernels, can capture sequence motifs. Consequently,

the CNN training process, which is also typically done in an online fashion, is essentially

performing motif discovery. In this regard, a DNA sequence-based CNN shares many sim-

ilarities with our EXTREME algorithm. One key difference between the two algorithms is

that the EM algorithm used in EXTREME is often viewed as an “unsupervised” algorithm

whereas CNNs are typically trained in a “supervised” fashion. DeepBind is one such method

that uses a CNN for the purpose of identifying the sequence specificities of DNA- and RNA-

binding proteins [3]. DeepSEA is a recently developed algorithm that utilizes a CNN for

predicting DNA function [105]. The CNN is trained in a supervised joint multi-task fashion

to simultaneously learn to predict large-scale chromatin-profiling data, including TF binding,

DNase I sensitivity and histone-mark profiles across multiple cell types, allowing the CNN to

learn tissue-specific functions. It claims to significantly outperform gkm-SVM [36], a related

algorithm that can also predict the regulatory function from raw DNA sequences, but uses

an SVM instead of a CNN for predictions. To predict the effect of regulatory variation, both

gkm-SVM [57] and DeepSEA use a similar strategy of predicting the function of both the

reference and allele sequences and processing the score differences.

Another variation of DNNs is the recurrent neural network (RNN). Unlike a CNN, connec-

tions between units of a RNN form a directed cycle. This creates an internal state of the

network that allows it to exhibit dynamic spatial behavior. A bi-directional long short-term

memory network (BLSTM) is a variant of the RNN that combines the outputs of two RNNs,

one processing the sequence from left to right, the other one from right to left. Instead
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Figure 4.1: Graphical illustration of the DanQ model. An input sequence is first one
hot encoded into a 4-row bit matrix. A convolution layer with rectifier activation acts as
a motif scanner across the input matrix to produce an output matrix with a row for each
convolution kernel and a column for each position in the input (minus the width of the
kernel). Max pooling reduces the size of the output matrix along the spatial axis, preserving
the number of channels. The subsequent BLSTM layer considers the orientations and spatial
distances between the motifs. BLSTM outputs are flattened into a layer as inputs to a
fully connected layer of rectified linear units. The final layer performs a sigmoid nonlinear
transformation to a vector that serves as probability predictions of the epigenetic marks to
be compared via a loss function to the true target vector.

of regular hidden units, the two RNNs contain LSTM blocks, which are “smart” network

units that can remember a value for an arbitrary length of time. BLSTMs can capture

long-term dependencies and have been effective for other machine learning applications such

as phoneme classification [39], speech recognition [38], machine translation [96], and human

action recognition [106]. Although BLSTMs are effective for studying sequential data, they

have not been applied for DNA sequences.

Hence, we propose DanQ (carrying on the theme of naming annotation algorithms after

the author), a hybrid framework that combines CNNs and BLSTMs (Figure 4.1). The first
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layers of the DanQ model are designed to scan sequences for motif sites through convolution

filtering. Whereas the convolution step of the DeepSEA model contains three convolution

layers and two max pooling layers in alternating order to learn motifs, the convolution step

of the DanQ model is much simpler and contains one convolution layer and one max pooling

layer to learn motifs. The max pooling layer is followed by a BLSTM layer. Our rationale for

including a recurrent layer after the max pooling layer is that motifs can follow a regulatory

grammar governed by physical constraints that dictate the in vivo spatial arrangements and

frequencies of combinations of motifs, a feature associated with tissue-specific functional

elements such as enhancers [76, 78]. Following the BLSTM layer, the last two layers of the

DanQ model are a dense layer of rectified linear units and a multi-task sigmoid output,

similar to the DeepSEA model.

DanQ surpasses other methods for predicting the properties and function of DNA sequences

across several metrics. In addition, we show that the convolution kernels learned by the

model can be converted to motifs, many of which significantly match known motifs. We

expect DanQ to provide novel insights into noncoding genomic regions and contribute to

understanding the potential functions of complex disease- or trait-associated genetic variants.

4.2 Methods

4.2.1 Features and data

The DanQ framework uses the same features and data as the DeepSEA framework. Briefly,

the human GRCh37 reference genome was segmented into non-overlapping 200-bp bins. Tar-

gets were computed by intersecting 919 ChIP-seq and DNase-seq peak sets from uniformly

processed ENCODE [29] and Roadmap Epigenomics [84] data releases, yielding a length 919

binary target vector for each sample. Each sample input consists of a 1,000-bp sequence
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centered on a 200-bp bin that overlaps at least one TF binding ChIP-seq peak, and is paired

with the respective target vector. Based on this information, we expected that each target

vector would contain at least one positive value; however, we found that about 10% of all

target vectors were all negatives. Each 1,000-bp DNA sequence is one-hot encoded into a

1,000 x 4 binary matrix, with columns corresponding to A, G, C and T. Training, validation,

and testing sets were downloaded from the DeepSEA website. Samples were stratified by

chromosomes into strictly non-overlapping training, validation and testing sets. The val-

idation set was not used for training or testing. Reverse complements are also included,

effectively doubling the size of each dataset.

For evaluating performance on the test set, the predicted probability for each sequence

was computed as the average of the probability predictions for the forward and reverse

complement sequence pairs, similar to DeepSEAs evaluation experiments.

4.2.2 Long Short-Term Memory (LSTM) architecture

Given an input vector sequence x = (x1, x2, . . . , xT ), a standard RNN computes the hidden

vector sequence h = (h1, h2, . . . , hT ). Unlike a CNN or MLP, which computes hidden acti-

vations as only a function of the inputs, an RNN computes hidden activations as a function

of both the inputs and adjacent activation units from t = 1 to t = T as follows:

ht = H(Wxhxt +Whhht−1 + bh) (4.1)

where W denotes weight matrices (e.g. Wxh is the input-hidden weight matrix), b denotes

bias vectors (e.g. bh is hidden bias vector), and H is the hidden layer function. The zeroth

hidden vector, h0, is often set to the zero vector.
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Figure 4.2: Graphical illustration of the repeating modules of an LSTM net-
work. Courtesy of Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-
LSTMs/).

H is usually an element-wise non-linear function, such as the sigmoid function (Eqn. 3.4).

An LSTM network is a type of RNN that treats H as four interacting layers (Fig. 4.2).

It is designed to capture long-term dependencies in sequential data, addressing a deficit

commonly plaguing RNNs [45]. For an LSTM network, H is implemented by the following

composite function:

Input gate it = σ(Wxixt +Whiht−1 + bi) (1)
Forget gate ft = σ(Wxfxt +Whfht−1 + bf ) (2)

Candidate state C̃t = tanh(Wxcxt +Whcht−1 + bc) (4)

Cell state Ct = ftCt−1 + itC̃t (5)
Output gate ot = σ(Wxoxt +Whoht−1 + bo) (4)
Output ht = ot tanh(ct) (6)

Intuitively, LSTM networks are able to retain information over long ranges due to the cell

state (5). The cell state runs straight down the entire chain of LSTM modules, with only

some minor linear interactions. Consequently, the cell states can achieve arbitrarily large

positive or negative values. In contrast, traditional RNNs use “squashing” functions such as

the sigmoid or hyperbolic tangent function that cause the gradient (error signal) to decrease

exponentially with the number of recurrent layers, causing the front layers to train very

slowly. The cell state helps LSTM networks avoid this “vanishing gradient problem”, but
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LSTM networks are still prone to the “exploding gradient problem”. Typically, the latter is

addressed by clipping gradients to a maximum value.

4.2.3 DanQ model and training

Detailed specifications of the DanQ neural network architectures are presented below. Num-

bers to the right of the forward slash indicate values unique to the DanQ-JASPAR model, a

larger model in which about half of the convolution kernels are initialized with motifs from

the JASPAR database [64].

1. Convolution layer. (320/1024 kernels. Window size: 26/30. Step size: 1.)

2. Pooling layer. (Window size: 13/15. Step size: 13/15.)

3. BLSTM layer. (320/512 forward and 320/512 backward LSTM neurons)

4. Fully connected layer. (925 ReLU neurons)

5. Sigmoid output layer. (919 sigmoid neurons)

The first model we trained contains, referred to as DanQ, contains 46,926,479 free weight

and was trained for 60 epochs, each training epoch completing in approximately 6 hours.

The second model we trained, which we designated as DanQ-JASPAR because half of the

kernels are initialized with motifs from the JASPAR database [64], contains 67,892,175 free

weights, was trained for 30 epochs, and each epoch of training completes in approximately

12 hours. In comparison, the DeepSEA model contains three convolutional and two max

pooling layers, and 52,843,119 free weights.

Dropout [94] is included to randomly set a proportion of neuron activations from the max

pooling and BLSTM layers to a value of 0 in each training step to regularize the DanQ

models. The dropout parameters are as follows:
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• Layer 2: 20%

• Layer 3: 50%

• All other layers: 0%

All weights are initialized by randomly drawing from unif(-0.05,0.05) and all biases are

initially set to 0. In addition to random initialization, an alternative strategy is to initialize

kernels from known motifs: a random subsection of a kernel is set equal to the values of the

position frequency matrix minus 0.25, and its corresponding bias is randomly drawn from

unif(-1.0,0.0). We tried both in our implementation.

We update neural network model weights, θ, using the RMSprop algorithm [100] with a

minibatch size of 100 to minimize the training loss. Similar to momentum training [97],

the RMSprop algorithm modifies the gradient update (Eqn. 3.7). The main idea behind

RMSprop is to divide the learning rate, γ, for a weight by a running average of the magnitudes

of recent gradients for that weight.

v := ρv + (1− ρ)(∇θLn)2 (1)
θ := θ − γ√

v+ε
∇θLn (2)

where γ is the learning rate, ρ is the “forgetting factor”, and ε is a “fuzz factor” to prevent

division by zero. We set these values to 0.001, 0.9, and 10−8, respectively.

Validation loss is evaluated at the end of each training epoch to monitor convergence and for

model selection. Our choice of loss function is the average multi-task binary cross entropy

loss function, a slight modification of the single-task binary cross entropy loss function (Eqn.

3.6) to account for the 919 chromatin mark labels per sample:

L = − 1

N

N∑
n=1

1

919

M∑
m=1

[yn,m log ŷn,m + (1− yn,m) log (1− ŷn,m)] =
1

N

N∑
n=1

Ln (4.2)
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where M is the number of labels per sample, y is the label matrix of N rows and M columns

and ŷ is the predicted label matrix. M is the total number of labels per sample, which for

the purposes of this chapter is 919, one for each chromatin mark. In contrast, y and ŷ in the

single-task version (Eqn. 3.6) are both vectors of length N .

Our implementation utilizes the Keras 0.2.0 library (https://github.com/fchollet/keras) with

the Theano 0.7.1 [11, 14] backend. An NVIDIA Titan Z GPU was used for training the model.

4.2.4 Logistic regression

For benchmark purposes, we also trained a logistic regression (LR) baseline model, similar to

our evaluations of the DANN model in the previous chapter. Unlike the DanQ and DeepSEA

models, the LR model does not process raw sequences as inputs. Instead, the LR model uses

zero-mean and unit variance normalized counts of k-mers of lengths 1-5bp as features. The

LR model was regularized with a small L2 weight regularization of 10−6. Similar to the

training of the DanQ models, the LR model was trained using the RMSprop algorithm with

a minibatch size of 100 to minimize the average multi-task binary cross entropy loss function

on the training set. Validation loss is evaluated at the end of each training epoch to monitor

convergence. We note that this method of training is equivalent to training 919 individual

single-task LR models.

4.2.5 Functional SNP prioritization

The DanQ functional SNP prioritization framework shares the same datasets, features, and

training algorithm as the DeepSEA functional SNP prioritization framework, essentially

exchanging DeepSEA chromatin effect predictions with DanQ chromatin effect predictions.

Essentially, it converts the 919 chromatin mark predictions into a single score that can be
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directly compared with other annotation methods like DANN [75] and CADD [55]. Briefly,

we downloaded positive and negative SNP sets for training and testing. We also downloaded

DeepSEA functional SNP scores for these variants for benchmarking purposes. Positive

SNPs include expression quantitative trait loci (eQTLs) from the Genome-Wide Repository

of Associations between SNPs and Phenotypes (GRASP) database [58] and noncoding trait-

associated SNPs identified in GWAS studies from the US National Human Genome Research

Institute (NHGRI) GWAS Catalog [102]. Negative SNPs consist of 1000 Genomes Project

SNPs [2] with controlled minor allele frequency distribution in 1000 Genomes population.

The negative SNPs are further split into training and testing sets, the former consisting

of 1,000,000 randomly selected noncoding 1000 Genomes SNPs with minor allele frequency

distribution matched with the eQTL or GWAS positive standards and the latter consisting

of negative SNPs of varying distances to positive standard SNPs. We trained two boosted

ensemble classifier models, one for the GRASP set and one for the GWAS set, using the

XGBoost implementation (https://github.com/tqchen/xgboost). The hyperparameters we

used for XGBoost training are as follows:

• booster: gbtree

• subsample: 0.5

• alpha: 0.001

• lambda: 10

• eta: 0.05

• max depth: 0.05

• max delta step: 1

• gamma: 1
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• num round: 100 for the GWAS model, 300 for the GRASP model

Features were computed as in Zhou and Troyanskaya [105], replacing DeepSEA chromatin

effect predictions with DanQ chromatin effect predictions. All features were standardized

to mean 0 and variance 1 before training. Unequal positive and negative training sample

sizes were balanced with sample weights. The performance of each model was estimated by

tenfold cross-validation and across several negative groups.

4.3 Results

We first train a DanQ model containing 320 convolution kernels for 60 epochs, evaluating

the average multi-task cross entropy loss on the validation set at the end of each epoch

to monitor the progress of training. To regularize the model, we also include dropout to

randomly set a proportion of neuron activations from the max pooling and BLSTM layers

to a value of 0 in each training step.

For benchmarking purposes, we compare a fully trained DanQ model to a LR baseline

model and the published DeepSEA model. To compare performance among models, we first

calculated the area under the receiver operating characteristics curve (ROC AUC) for each

of the 919 binary targets on the test set (Figure 4.3). In terms of the ROC AUC score,

DanQ outperforms the DeepSEA model for two of the targets as shown in the examples at

the top of Figure 4.3, although this performance difference is relatively small. This pattern

extends to the remaining targets as DanQ outperforms DeepSEA for 94.1% of the targets,

although the difference is again comparatively small with an absolute improvement of around

1-4% for most targets. Despite the simplicity of the LR models, the ROC AUC statistics

suggests that LR is an effective predictor, with ROC AUC scores typically over 70%. Given

the sparsity of positive binary targets (∼2%), the ROC AUC statistic is highly inflated by
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Figure 4.3: ROC comparison between DanQ and DeepSEA for predicting chro-
matin marks. (top) ROC curves for the GM12878 EBF1 and H1-hESC SIX5 targets
comparing the performance of the three models. (bottom) Scatterplot comparing DanQ and
DeepSEA ROC AUC scores. DanQ outperforms DeepSEA for 94.1% of the targets in terms
of ROC AUC.

the class imbalance, a fact overlooked in the original DeepSEA paper.

A better metric to measure the performance is the area under precision-recall curve (PR

AUC) (Figure 4.4). Neither the precision nor recall take into account the number of true

negatives, thus the PR AUC metric is less prone to inflation by the class imbalance than the

ROC AUC metric is. As expected, we found the PR AUC metric to be more balanced, as

demonstrated by how the LR models now achieve a PR AUC below 5% for the two examples
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Figure 4.4: PR comparison between DanQ and DeepSEA for predicting chromatin
marks. (top) PR curves for the GM12878 EBF1 and H1-hESC SIX5 targets comparing the
performance of the three models. (bottom) Scatterplot comparing DanQ and DeepSEA PR
AUC scores. DanQ outperforms DeepSEA for 97.6% of the targets in terms of PR AUC.

at the top of Figure 4.4, far below the performance of the other two models. Moreover,

the performance gap between DanQ between DeepSEA is much more pronounced under the

PR AUC statistic than under the ROC AUC statistic. For the two examples shown, the

absolute improvement is over 10% and the relative improvement is over 50% under the PR

AUC metric, and 97.6% of all DanQ PR AUC scores surpass DeepSEA PR AUC scores.

These results show that adding recurrent connections significantly increases the modeling

power of DanQ.
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Figure 4.5: (a) Three convolution kernels (bottom) visualized and aligned with EBF1, TP63,
and CTCF motif logos (top) from JASPAR using TOMTOM. Significance values of the
match are displayed below motif names. (b) All 320 convolution kernels are converted to
sequence logos and aligned with RSAT. The heatmaps are colored according to the infor-
mation content of the respective nucleotide at each position. (c) Same as (b), except the
heatmap is colored by the sum of the information content of each letter.

Using a similar approach described in the DeepBind method [3], we converted the kernels

from the convolution layer of the DanQ models to position frequency matrices, or motifs.

Then, we aligned these motifs to known motifs using the TOMTOM algorithm [41]. Of the

320 motifs learned by the DanQ model, 166 significantly match known motifs (E < 0.01)

(Fig. 4.5A). Next, we aligned and clustered the 320 motifs together into 118 clusters using

the RSAT matrix clustering tool [66], and confirmed that the model learned a large variety

of informative motifs (Fig. 4.5B and 4.5C).

Given the large scope of the data, we conjectured that our current model did not exhaust the

entire space of useful motif features despite the large variety of motifs learned. Moreover,
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weight initialization is known to play crucial role for the performance neural networks [97]

and we hypothesized that a better initialization strategy can further improve the performance

of our neural network. Thus, we trained a larger model containing 1024 convolutional kernels

of which about half are initialized with known motifs from JASPAR [64]. This alternative

way of initialization can further improve the performance of DanQ (Tab. 4.1).

Training Validation Testing
Method Loss Accuracy Loss Accuracy Loss Accuracy
Predict all zeros N/A 97.84% N/A 98.05% N/A 97.94%
LR 0.0798 97.90% 0.0743 98.09% 0.0771 97.99%
DeepSEA 0.0551 98.20% 0.0509 98.36% 0.0554 98.21%
DanQ 0.0539 98.23% 0.0491 98.39% 0.0538 98.24%
DanQ-JASPAR 0.0521 98.26% 0.0482 98.40% 0.0533 98.24%

Table 4.1: Accuracy and loss on training, validation, and testing sets for each of
the models. The DanQ model initialized with JASPAR motifs performed the best across
all metrics, as indicated in bold. Note that due to the huge class imbalance, all models
achieved high accuracies.

Finally, we extended DanQ to prioritize functional SNPs based on differences of predicted

chromatin effect signals between reference and allele sequences. This analysis replicates

DeepSEA’s framework, which converts 919 pairs of chromatin marker predictions into a

single scores, allowing a more direct comparison with annotation methods such as CADD [55],

GWAVA [83], and FunSeq2 [34]. The authors of DeepSEA claim their results demonstrate

that DeepSEA can outperform CADD in this task. Specifically, we downloaded training and

testing SNP sets [105] that we used to train and evaluate boosted ensemble classifiers. The

positive SNPs are annotated “functional” noncoding positive SNPs are eQTL SNPs from the

GRASP database [58] and noncoding trait-associated SNPs identified in GWAS studies from

the US NHGRI GWAS Catalog [102]. Negative “nonfunctional” variant standards consist of

1000 Genomes Project SNPs [2] with controlled minor allele frequency distribution in 1000

Genomes population. These variant sets are the same sets used by the DeepSEA functional

SNP prioritization framework for training and testing. The DanQ framework outperforms

the DeepSEA framework across most of the testing sets, with the performance difference
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Figure 4.6: Comparison of the DanQ and DeepSEA methods for functional SNP
prioritization. The positive set includes annotated GRASP eQTLs or GWAS Catalog
noncoding SNPs. The negative set includes 1000 Genomes Project noncoding SNPs (across
several negative-SNP groups of varying distances to the positive SNPs). The x axes show
the average distances of negative-SNP groups to a nearest positive SNP. The All negative-
variant groups are randomly selected negative 1000 Genomes SNPs. Model performance is
assessed with area under the receiver operating characteristic curves (ROC AUC).

being 0.5-2% in terms of the ROC AUC metric (Fig. 4.6).

4.4 Discussion

In conclusion, DanQ is a powerful method for predicting the function of DNA directly from

sequence alone, making it a valuable asset for studying the function of noncoding DNA.

Its hybrid architecture allows it to simultaneously learn motifs and a complex regulatory

grammar between the motifs. The additional modeling capacity afforded by the recurrent

connections allows DanQ to significantly outperform DeepSEA, a pure CNN model that

lacks recurrent modeling. This performance gap is demonstrated across several metrics,
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including a direct comparison of AUC statistics between the two models. We argue that the

PR AUC statistic is a much more balanced metric than the ROC AUC statistic to assess

performance in this case due to the massive class imbalance. In fact, the performance gap can

be quite drastic under the PR AUC statistic, reaching well over a 50% relative improvement

for some epigenetic marks. Despite the significant improvement in performance, there is

still much room for improvement because most of the PR AUC scores are below 70% for

either model. Furthermore, the significant improvement in chromatin effect prediction does

not immediately translate to an equally large improvement in functional variant prediction.

One factor that may limit performance in this regard is that while the GRASP eQTL and

GWAS catalog SNPs we label as positive variants are associated with phenotypes, these

SNPs may not be the causal variants. Instead, the causal variants are likely in linkage

disequilibrium with these SNPs. Thus, we hypothesize that extending our framework to

study the link between phenotypes and haplotypes instead of phenotypes and individual

SNPs may improve prediction performance. Nevertheless, the improved capability of DanQ

to predict chromatin effects means it can better predict the epigenetic changes caused by

genetic variants, which is useful information for prioritizing the causal variant among a group

of tightly-linked variants and predicting the phenotypic outcomes of genome editing, the

latter of which is beneficial for several fields including synthetic biology and transgenic animal

studies. However, many of the issues raised in the previous chapter are applicable here as well.

Although DeepSEA claims it can outperform CADD, the DeepSEA authors only showed this

using testing sets of their own choosing, instead of using the same ClinVar/ESP testing set

the CADD authors used (Fig. 3.2B). Moreover, the tenfold cross-validation method used

to evaluate the DeepSEA’s functional SNP prioritization may also have inflated the results

in DeepSEA’s favor. The other annotation methods DeepSEA was compared to were not

provided with the same treatment. We hypothesize that the tenfold cross-validation strategy

may actually be picking up implicit biases present between the positive and negative sets,

instead of any relevant or useful biological features. For this reason, we chose not to repeat
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the tenfold cross-validation procedure for the ClinVar/ESP testing set since the positive and

negative sets are known to carry different proportions of coding variants. As a result of this

issue, we argue that there is a pressing need in the bioinformatics community to systematize

the evaluation of annotation method. This will require agreed-upon evaluation metrics and

datasets. Such systems are readily available for other machine learning applications such as

MNIST and CIFAR with image recognition, and TIMIT for speech recognition, but not for

biological applications.

There are several avenues of future interest to explore. First, the model can be made fully re-

current so it can process sequences of arbitrary length, such as whole chromosome sequences,

to generate sequential outputs. In contrast, our current setup can only processes sequences

of constant length with static output. A fully recurrent architecture may also benefit our

effort to study variants since it would allow us to explore the long-range consequences of

genetic variants, as well as the cumulative effects of SNPs that are in linkage disequilibrium

with each other. Second, we are interested in incorporating new ChIP-seq and DNase-seq

datasets from more cell types as they become available. Incorporating other types of data,

such as methylation, nucleosome positioning, and transcription may also yield novel results

and improve functional variant prioritization. Finally, we are committed to updating and

improving the DanQ model. As our results have shown, the model architecture and weight

initialization can influence performance. Previously, we manually selected model parame-

ters. For example, the DanQ model contains 320 kernels because the DeepSEA model also

contains 320 kernels in its first convolutional layer, making the two models somewhat more

comparable at the architectural level. Interestingly, although our first model contains fewer

free weights than DeepSEA, our first model still significantly outperforms DeepSEA. In ad-

dition, the choice of 1,024 kernels in the JASPAR-based model was made to accommodate

519 motifs in the JASPAR database in addition to an approximately equal number of ran-

domly initialized kernels. One interesting prospect is to utilize distributed computing-based

hyperparameter tuning algorithms to automatically find the optimal combination of model
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architecture, initial weights and hyperparameters. We will commit to providing regular up-

dates as the model improves. Also, our motif analysis has shown that neural network training

is an effective motif discoverer. Hence our updates will include motifs from the model in

MEME minimal format, a flexible format compatible with most motif-related programs, as

a resource to the community. To the best of our knowledge, this is the first application of

a hybrid convolution and recurrent network architecture for the purpose of predicting func-

tion de novo from DNA sequences. We expect this hybrid architecture will be continually

explored for the purpose of studying biological sequences.

4.5 Software availability

Source code described in this chapter is available at https://github.com/uci-cbcl/DanQ. The

github repository also contains motifs derived from the model kernels in minimal MEME for-

mat and TOMTOM results comparing the motifs to known motifs in the JASPAR database.
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Chapter 5

FactorNet: predicting cell type

specific protein-DNA binding from

nucleotide-resolution sequential data

5.1 Introduction

The Encyclopedia of DNA Elements (ENCODE) [29] and NIH Roadmap Epigenomics [84]

projects have generated a large number of HTS epigenetic datasets for dozens of different

cell and tissue types. Owing to several constraints, including cost, time or sample material

availability, these projects are far from completely mapping every mark and sample com-

bination. This disparity is especially large for TF binding profiles because ENCODE has

profiled over 600 human biosamples and over 200 TFs, translating to over 120,000 possible

pairs of biosamples and TFs, but as of the writing of this article only about 8,000 TF binding

profiles are available. Due to the strong correlations between epigenetic markers, computa-

tional methods have been proposed to impute the missing datasets. One such imputation
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method is ChromImpute [31], which applies ensembles of regression trees to impute missing

chromatin marks. With the exception of CTCF, ChromImpute does not impute TF binding.

Moreover, ChromImpute does not take sequence context into account, which can be useful

for predicting the binding sites of TFs like CTCF that are known to have a strong binding

motif.

Computational methods designed to predict TF binding include PIQ [90], Centipede [73],

and msCentipede [79]. These methods require a collection of motifs and DNase-seq data

to predict TF binding sites in a single tissue or cell type. While such an approach can be

convenient because the DNase-seq signal for the cell type considered is the only mandatory

experimental data, it has several drawbacks. These models are trained in an unsupervised

fashion using algorithms such as expectation maximization (EM). From our experience,

EM-based algorithms can be very computationally inefficient. To compensate for this issue,

PIQ, Centipede, and msCentipede limit training and evaluation to motif matches, which

represent a small and unrepresentative fraction of the whole genome. Furthermore, the

manual assignment of a motif for each TF is a strong assumption that completely ignores

any additional sequence contexts such as co-binding, indirect binding, and non-canonical

motifs. This can be especially problematic for TFs like REST, which we showed can have

have eight non-canonical binding motifs (Fig. 2.4).

DNNs offer an attractive alternative for solving the imputation problem. They can efficiently

identify complex non-linear patterns from large amounts of feature-rich data. As mentioned

in the previous chapter, CNNs are RNNs are variants of the DNN that are especially well-

suited for studying sequential data, which are ubiquitous in biology. Examples of CNNs in

genomics include DanQ[77], DeepSEA [105], Basset [50], and DeepBind [3]. DanQ combines

the CNN with an RNN to form a CNN-RNN hybrid architecture that can outperform pure

convolutional models (Chapter 4). These four CNN methods accept raw DNA sequence

inputs and are trained in a supervised fashion to discriminate between the presence and
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Figure 5.1: Simplified diagram of the FactorNet model. An input DNA sequence
(top) is first one hot encoded into a 4-row bit matrix. Real-valued single-nucleotide signal
values are concatenated as extra rows to this matrix. A rectifier activation convolution layer
transforms the input matrix into an output matrix with a row for each convolution kernel
and a column for each position in the input (minus the width of the kernel). Each ker-
nel is effectively a sequence motif. Max pooling downsamples the output matrix along the
spatial axis, preserving the number of channels. The subsequent recurrent layer contains
long short term memory (LSTM) units connected end-to-end in both directions to capture
spatial dependencies between motifs. Recurrent outputs are densely connected to a layer of
rectified linear units. The activations are likewise densely connected to a sigmoid layer that
nonlinear transformation to yield a vector of probability predictions of the TF binding calls.
An identical network, sharing the same weights, is also applied to the reverse complement
of the sequence (bottom). Finally, respective predictions from the forward and reverse com-
plement sequences are averaged together, and these averaged predictions are compared via
a loss function to the true target vector. Although not pictured, we also include a sequence
distributed dense layer between the convolution and max pooling layer to capture higher
order motifs.
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absence of epigenetic markers, including TF binding, open chromatin, and histone modifi-

cations. Consequently, these algorithms are not suited to the task of predicting epigenetic

markers across cell types. Instead, they are typically designed for other tasks such as motif

discovery or functional SNP annotation.

To predict cell type-specific TF binding, we developed FactorNet, which combines elements

of the aforementioned algorithms. FactorNet trains a DNN on data from one or more ref-

erence cell types for which the TF or TFs of interest have been profiled, and this model

can then predict binding in other cell types. The FactorNet model builds upon the DanQ

CNN-RNN hybrid architecture by including additional real-valued coordinated-based sig-

nals such as DNase-seq signals as features. FactorNet is similar to a recently developed

method called DeepCpG, which integrates sequence context and neighboring methylation

rates to predict single-cell DNA methylation states using a CNN and a bidirectional RNN

[4]. We also extended the DanQ network into a ”Siamese” architecture that accounts for

reverse complements (Figure 5.1). This Siamese architecture applies identical networks to

both strands to ensure that both the forward and reverse complement sequences return the

same outputs, essentially halving the total amount of training data, ultimately improving

training efficiency and predictive accuracy. Both networks share the same weights. Siamese

networks are popular among tasks that involve finding similarity or a relationship between

two comparable objects. Two examples are signature verification [18] and assessing sentence

similarity [69]. Another recent method, TFImpute [74], shares many similarities with Fac-

torNet. Like FactorNet, TFImpute is intended to impute missing TF binding datasets, and

it uses a CNN-RNN architecture, and a weight-sharing strategy to handle reverse comple-

ments. TFImpute is a sequence-only method and therefore more comparable to DeepSEA,

DeepBind, and Basset. Unlike FactorNet, TFImpute does not directly accept cell type-

specific data like DNase-seq as model inputs, hence its ability to generalize across cell types

is questionable.
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We submitted the FactorNet model to the ENCODE-DREAM in vivo Transcription Factor

Binding Site Prediction Challenge, where it is among the top four ranked teams. All results

discussed in this chapter are derived from data in the Challenge. The challenge delivers

a crowdsourcing approach to figure out the optimal strategies for solving the problem of

TF binding imputation. Another one of the goals of the challenge is to provide a platform

for systematically and uniformly assessing the predictive models. This second goal was

motivated by the multitude of examples in the literature where authors artificially generate

questionable evaluation datasets. Often, these evaluation datasets are not representative of

actual use cases, and may inflate results in favor of the methods developed by the respective

authors. Similar issues were also highlighted in Chapters 3 and 4 of this thesis with respect

to variant annotation.

5.2 Methods

5.2.1 ENCODE-DREAM Challenge dataset

The ENCODE-DREAM Challenge dataset is comprised of DNase-seq, ChIP-seq, and RNA-

seq data from the ENCODE project or The Roadmap Epigenomics Project covering 14

cell types and 32 TFs. All annotations and pre-processing are based on hg19/GRCh37

release version of the human genome and GENCODE release 19 [42]. Data are restricted to

chromosomes X and 1-22. Chromosomes 1, 8 and 21 are set aside exclusively for evaluation

purposes and binding data were completely absent for these three chromosomes during the

challenge. TF binding labels are provided at a 200 bp resolution. Specifically, the genome is

segmented into 200 bp bins sliding every 50 bp. Each bin is labeled as bound (B), unbound

(U) or ambiguously bound (A) depending on the majority label of all nucleotides in the

bin. Ambiguous bins overlap peaks that fail to pass the irreproducible discovery rate (IDR)
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threshold of 5% and are excluded from evaluation. A more complete description of the

dataset, including pre-processing details such as peak calling, can be found in the ENCODE-

DREAM Challenge overview paper (in preparation as of the writing of this thesis) and

website (https://www.synapse.org/ENCODE).

5.2.2 Evaluation

The TF binding prediction problem is evaluated as a two-class binary classification task. For

each test TF/cell type pair, the following performance measures are computed:

1. auROC. The area under the receiver operating characteristic curve is a common metric

for evaluating classification models. It is equal to the probability that a classifier will

rank a randomly chosen positive instance higher than a randomly chosen negative one.

2. auPR. The area under the precision-recall curve is more appropriate in the scenario

of few relevant items. As mentioned in the previous chapter, this measure is preferred

over the auROC for TF binding prediction [77]. Unlike the auROC, the auPR does

not take into account the number of true negatives called.

3. Recall at fixed FDR. The recall at a fixed false discovery rate represents a point

on the precision-recall curve. Like the auPR metric, this metric is appropriate in the

scenario of few relevant items. This metric is often used in applications such as fraud

detection in which the goal may be to maximize the recall of true fraudsters while

tolerating a given fraction of customers to falsely identify as fraudsters.

As illustrated in Figure 5.1, the FactorNet Siamese architecture operates on both the forward

and reverse complement sequences to ensure that both strands return the same outputs

during both training and prediction. Although a TF might only physically bind to one
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strand, this information cannot usually be inferred directly from the peak data. Thus, the

same set of labels are assigned to both strands in the evaluation step.

5.2.3 Features and data pre-processing

FactorNet works directly with standard genomic file formats and requires relatively little pre-

processing. BED files provide the locations of reference TF binding sites and bigWig files

provide dense, continuous data at single-nucleotide resolution. bigWig values are included

as extra rows that are appended to the 4-row one hot input DNA binary matrix. FactorNet

can accept a variable number of bigWig files as input features, and we found the following

signals to be the most informative for prediction:

1. DNase I cleavage. For each cell type, reads from all DNase-seq replicates were

trimmed down to first nucleotide on the 5’ end, pooled and normalized to 1x coverage

using deepTools [80].

2. 35 bp mapability uniqueness. This track quantifies the uniqueness of a 35 bp sub-

sequence on the positive strand starting at a particular base, which is important for

distinguishing where in the genome DNase I cuts can be detected. Scores are between

0 and 1, with 1 representing a completely unique sequence and 0 representing a se-

quence that occurs more than 4 times in the genome. Otherwise, scores between 0 and

1 indicate the inverse of the number of occurrences of that subsequence in the genome.

It is available from the UCSC genome browser under the table wgEncodeDukeMapa-

bilityUniqueness35bp.

In addition to sequential features, FactorNet also accepts non-sequential metadata features.

At the cell type level, we applied principal component analysis to the inverse hyperbolic

sine transformed gene expression levels and extracted the top 8 principal components. Gene
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expression levels are measured as the average of the fragments per kilobase per million for

each gene transcript. At the bin level, we included Boolean features that indicate whether

gene annotations (coding sequence, intron, 5’ untranslated region, 3’ untranslated region,

and promoter) and CpG islands [35] overlap a given bin. We define a promoter to be the

region up to 300 bps upstream and 100 bps downstream from any transcription start site.

To incorporate these metadata features as inputs to the model, we append the values to the

dense layer of the neural network and insert another dense layer containing the same number

of ReLU neurons between the new merged layer and the sigmoid layer (Fig. 5.1).

5.2.4 Training

Our implementation is written in Python, utilizing the Keras 1.2.2 library [24] with the

Theano 0.9.0 [11, 14] backend. We used an NVIDIA Titan X Pascal GPU for training.

FactorNet supports single-task and multi-task training. Both types of neural network models

are trained using the Adam algorithm [54] with a minibatch size of 100 to minimize the mean

binary cross entropy loss function (Eqn. 4.2) on the training set. Adam (short for Adaptive

Moment Estimation) is an update to the RMSProp optimizer, which we described in the

previous chapter. It uses running averages of both the gradients and the second moments

of the gradients. Given parameters θn and a loss function Ln, where n indexes the current

training iteration (indexed at 1), Adam’s parameter update is given by:

mn+1 := αmn + (1− α)∇θLn (1)
vn+1 := βvn + (1− β)(∇θLn)2 (2)
m̂ := mn+1

1−αn (3)

v̂ := vn+1

1−βn (4)

θn+1 := θn − γ m̂√
v̂+ε
∇θLn (5)

where γ is the learning rate, ε is a “fuzz factor” to prevent division by zero, and α and β are

the “forgetting factors” for gradients and second moments of gradients, respectively. We set
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these values to 0.001, 10−8, 0.9, and 0.999 respectively.

One or more chromosomes are set aside as a validation set. Validation loss is evaluated at the

end of each training epoch and the best model weights according to the validation loss are

saved. Training sequences of constant length centered on each bin are efficiently streamed

from the hard drive in parallel to the model training. Random spatial translations are

applied in the streaming step as a form of data augmentation. Each epoch, an equal number

of positive and negative bins are randomly sampled and streamed for training, but this ratio

is an adjustable hyperparameter (see Tab. for a detailed explanation of all hyperparameters).

In the case of multi-task training, a bin is considered positive if it is confidently bound to at

least one TF. Bins that overlap a blacklisted region [29] are automatically labeled negative

and excluded from training. We also include dropout [94] to reduce overfitting.

Single-task training

Data from multiple cell types can be leveraged for single-task training by treating bins from

all cell types as individually and identically distributed (i.i.d.) records. To make single-

task training run efficiently, one bin is allotted per positive peak and these positive bins are

included at most once per epoch for training. Each epoch, negative bins are also drawn

randomly without replacement from the training chromosomes. For example, if we were to

train on a single cell type that has 10,000 peaks for a particular TF, then we may train

on 10,000 positive bins and 10,000 negative bins each epoch. Ambiguously bound bins are

excluded from training.

Multi-task training

FactorNet can only perform multi-task training when training on data from a single cell type

due to the variation of available binding data for the cell types. For example, the ENCODE-
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DREAM Challenge provides reference binding data for 15 TFs for GM12878 and 16 TFs

for HeLa-S3, but only 8 TFs are shared between the two cell types. Unlike the single-task

models, which ignore ambiguous bins during training, the multi-task models assign negative

labels to the ambiguous bins because of the frequent overlap of confidently and ambiguously

bound regions. Compared to single-task training, multi-task training takes considerably

longer to complete due to the larger number of positive bins. At the start of training,

positive bins are identified by first segmenting the genome into 200 bins sliding every 50 bp

and discarding all bins that fail to overlap at least one confidently bound TF site. Each

epoch, negative bins are drawn randomly with replacement from the training chromosomes.

5.2.5 Bagging

Ensembling is a common strategy for improving classification performance. At the time

of the Challenge, we implemented a simple ensembling strategy commonly called “bagging

submissions”, which involves averaging predictions from two or more models. Instead of

averaging prediction probabilities directly, we first convert the scores to ranks, and then

average these ranks. Rank averaging is more appropriate than direct averaging if predictors

are not evenly calibrated between 0 and 1, which is often the case with the FactorNet models.

5.3 Results

5.3.1 Predictive performance varies across transcription factors

Table 5.1 shows a partial summary of FactorNet cross-cell type predictive performances on

a variety of cell type and TF combinations as of the conclusion of the ENCODE-DREAM

Challenge. Final rankings in the Challenge are based on performances over 13 TF/cell
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Table 5.1: Partial summary of FactorNet cross-cell type predictive performances
on the ENCODE-DREAM Challenge data. Each final ranking TF/cell type pair is
demarcated with a *. For each final ranking TF/cell type pair, we provide, in parentheses,
performance scores based on the evaluation pair’s original ChIP-seq fold change signal.

Recall at
Factor Cell type auROC auPR 50% FDR
CTCF* iPSC 0.9966 (0.9998) 0.8608 (0.9794) 0.9142 (0.9941)
CTCF GM12878 0.9968 0.8451 0.8777
CTCF* PC-3 0.9862 (0.9942) 0.7827 (0.8893) 0.7948 (0.9272)
ZNF143 K562 0.9884 0.6957 0.7303
MAX MCF-7 0.9956 0.6624 0.8290
MAX* liver 0.9882 (0.9732) 0.4222 (0.6045) 0.3706 (0.6253)
EGR1 K562 0.9937 0.6522 0.7312
EGR1* liver 0.9856 (0.9741) 0.3172 (0.5306) 0.2164 (0.5257)
HNF4A* liver 0.9785 (0.9956) 0.6188 (0.8781) 0.6467 (0.9291)
MAFK K562 0.9946 0.6176 0.6710
MAFK MCF-7 0.9906 0.5241 0.5391
GABPA K562 0.9957 0.6125 0.6299
GABPA* liver 0.9860 (0.9581) 0.4416 (0.5197) 0.3550 (0.5202)
YY1 K562 0.9945 0.6078 0.7393
TAF1 HepG2 0.9930 0.5956 0.6961
TAF1* liver 0.9892 (0.9657) 0.4283 (0.4795) 0.4039 (0.4766)
E2F6 K562 0.9885 0.5619 0.6455
REST K562 0.9958 0.5239 0.5748
REST* liver 0.9800 (0.9692) 0.4122 (0.5596) 0.4065 (0.5945)
FOXA1* liver 0.9862 (0.9813) 0.4922 (0.6546) 0.4889 (0.6728)
FOXA1 MCF-7 0.9638 0.4487 0.4613
JUND H1-hESC 0.9948 0.4098 0.3141
JUND* liver 0.9765 (0.9825) 0.2649 (0.6921) 0.1719 (0.7223)
TCF12 K562 0.9801 0.3901 0.3487
STAT3 GM12878 0.9975 0.3774 0.3074
NANOG* iPSC 0.9885 (0.9876) 0.3539 (0.6421) 0.3118 (0.6680)
CREB1 MCF-7 0.9281 0.3105 0.2990
E2F1* K562 0.9574 (0.9888) 0.2406 (0.6428) 0.0000 (0.6573)
FOXA2* liver 0.9773 (0.9932) 0.2172 (0.7920) 0.0231 (0.8278)

type pairs. A score combining several primary performance measures is computed for each

pair. In addition to the 13 TF/cell type pairs for final rankings, there are 28 TF/cell type

“leaderboard” pairs. Competitors can compare performances and receive live updating of

their scores for the leaderboard TF/cell type pairs. Scores for the 13 final ranking TF/cell

type pairs were not available until the conclusion of the challenge. Our model achieved first
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Figure 5.2: Predictive performance and ChIP-seq signal varies across TF/cell-
type pairs. Scatterplots compare (A) auPR and (B) auROC scores between FactorNet
predictions and mean ChIP-seq fold change signal. Each marker corresponds to one of
the 13 final ranking TF/cell type pairs. Spearman (ρ) and Pearson (r) correlations are
displayed in each plot. (C) Genome browser [51] screenshot displays the ChIP-seq fold
change signal, FactorNet predictions, and peak calls for four TF/cell type pairs in the TYW3
locus. Confidently bound regions are more heavily shaded than ambiguously bound regions.

place on six of the 13 TF/cell type final ranking pairs, the most of any team.

FactorNet typically achieves auROC scores above 97% for most of the TF/cell type pairs,

reaching as low as 92.8% for CREB1/MCF-7. auPR scores, in contrast, display a wider

range of values, reaching as low as 21.7% for FOXA1/liver and 87.8% for CTCF/iPSC.

For some TFs, such as CTCF and ZNF143, the predictions are already accurate enough

to be considered useful. Much of the variation in auPR scores can be attributed to noise

in the ChIP-seq signal used to generate the evaluation labels, which we demonstrate by

building classifiers based on taking the mean in a 200 bp window of the ChIP-seq fold change
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signal with respect to input control. Peak calls are derived from the SPP algorithm [53],

which uses the fold-change signal and peak shape to score and rank peaks. An additional

processing step scores peaks according to an IDR value, which is a measure of consistency

between replicate experiments. Bins are labeled positive if they overlap a peak that meets

the IDR threshold of 5%. The IDR scores are not always monotonically associated with the

fold-changes. Nevertheless, we expect that performance scores from the fold-change signal

classifiers should serve as overly optimistic upper bounds for benchmarking. Commensurate

with these expectations, the auPR scores of the FactorNet models are less than, but positively

correlative with, the respective auPR scores of the ChIP-seq fold-change signal classifiers

(Figure 5.2A). Interestingly, this pattern does not extend to the auROC scores, and in more

than half of the cases the FactorNet auROC scores are greater (Figure 5.2B). These results

are consistent with our findings in Chapter 4 which showed the auROC can be unreliable

and overly optimistic in an imbalanced class setting [87], which is a common occurrence in

genomic applications [77], motivating the use of alternative measures like the auPR that

ignore the overly abundant true negatives.

We can also visualize the FactorNet predictions as genomic signals that can be viewed along-

side the ChIP-seq signals and peak calls (Figure 5.2C). Higher FactorNet prediction values

tend to coalesce around called peaks, forming peak-like shapes in the prediction signal that

resemble the signal peaks in the original ChIP-seq signal. The visualized signals also demon-

strate the differences in signal noise across the ChIP-seq datasets. The NANOG/iPSC ChIP-

seq dataset, for example, displays a large amount of signal outside of peak regions, unlike

the HNF4A/liver ChIP-seq dataset which has most of its signal focused in peak regions.

The ENCODE-DREAM challenge data, documentation, and results can be found on the

Challenge homepage: https://www.synapse.org/ENCODE
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Interpreting neural network models

Using the same heuristic from DeepBind [3] and DanQ [77] that we used in Chapter 4, we

visualized several kernels from a HepG2 multi-task model as sequence logos by aggregating

subsequences that activate the kernels (Figure 5.3A). The kernels significantly match motifs

associated with the target TFs. Furthermore, the aggregated DNase I signals also inform us

of the unique “footprint” signatures the models use to identify true binding sites at single-

nucleotide resolution. After visualizing and aligning all the kernels, we confirmed that the

model learned a variety of motifs (Figure 5.3B). A minority of kernels display very little

sequence specificity while recognizing regions of high chromatin accessibility (Figure 5.3C).

Saliency maps are another common technique of visualizing neural network models [92].

To generate a saliency map, we compute the gradient of the output category with respect

to the input sequence. By visualizing the saliency maps of a genomic sequence, we can

identify the parts of the sequence the neural network finds most relevant for predicting

binding, which we interpret as sites of TF binding at single-nucleotide resolution. Using a

liver HNF4A peak sequence and HNF4A predictor model as an example, the saliency map

highlights a subsequence overlapping the summit that strongly matches the known canonical

HNF4A motif, as well as two putative binding sites upstream of the summit on the reverse

complement (Figure 5.3D).

5.3.2 Data variation influences predictive performance

In the cases for which two or more testing cell types are available for the same TF, we

also observe some rather large disparities in performance. With the exception of FOXA1,

FactorNet consistently performs poorer for liver than for other cell types, the difference in

auPR reaching as much as 33.5% in the case of EGR1 (Table 5.1). Variation in data quality

across cell type-specific datasets may partially explain these performance differences. The
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Figure 5.3: Visually interpreting FactorNet models. (A) Network kernels from a
HepG2 multi-task FactorNet model are converted to sequence logos and aligned with motifs
from JASPAR [64] using TOMTOM [41]. Mean normalized DNase I cleavage signals and
their maximum values are displayed above the aligned logos. E-values measure similarity
between query and target motifs, corrected for multiple hypothesis testing. All kernels are
converted to sequence logos and aligned with RSAT [66]. The heatmaps are ordered by this
alignment and colored according to the motif information content (IC) (B) or mean DNase
I cleavage signal (C) at each nucleotide position. (D) Normalized liver DNase I cleavage
signal and saliency maps of aligned stranded sequences centered on the summit of a liver
HNF4A peak in the TYW3 locus (Figure 5.2C). Negative gradients are converted to zeros.
We visualized saliency maps with the DeepLIFT visualizer [91]

DNase-seq data, which is arguably the most informative cell type-specific feature for binding

prediction, widely varies in terms of sequencing depth and signal-to-noise ratio (SNR) across

the cell types, which we measure as the fraction of reads that fall into conservative peaks

(FRiP) (Figure 5.4A). Notably, liver displays the lowest SNR with a FRiP score of 0.05,

which is consistent with its status as a primary tissue; all other cell types are cultured cell

lines.

To further scrutinize the effect data variation has on performance, we trained several Fac-
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Figure 5.4: Cell type-specific dataset variation influence cross-cell type perfor-
mance. (A) IGV [99] screenshot of pooled DNase I cleavage signal and conservative DNase-
seq peaks. The inset is a magnified view of an NRF1 binding site. (B) Learning curves of
E2F1 single-task models trained on a cell type. Difference between the smallest within- and
cross-cell type validation losses are displayed in each plot. (C and D) PR curves of models
trained exclusively on a cell type evaluated on E2F1/K562. Dotted lines are points of dis-
continuity. We generated single-task scores by bagging scores from two single-task models
initialized differently. Final bagged models ensemble single- and multi-task models.
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torNet single-task models and plotted the learning curves to monitor for overfitting (Figure

5.4B). Learning curves trace the predictive performance of neural networks on training and

validation sets. They are useful for identifying signs of overfitting, a common problem in

machine learning. These learning curves focus on the GM12878 and HeLa-S3 cell types,

using one cell type for training and the other as a validation set. We selected these two cell

types because they are the only two reference cell types for E2F1, which FactorNet performed

particularly poor on. In addition, the HeLa-S3 DNase-seq data read count and FRiP score

are both almost twice that of the read count and FRiP score for the GM12878 DNase-seq

data.

From the learning curves of the E2F1 model trained on GM12878, we observe evidence of

overfitting. The HeLa-S3 cross-cell type validation loss reaches a minimum value within four

training epochs, after which it increases until it reaches a steady state value. In contrast, the

GM12878 within-cell type validation loss steadily decreases past the first four epochs and

remains much smaller than the HeLa-S3 validation loss throughout training. At first, we

speculated the gap to be caused by the differences in the cell type DNase-seq data; however,

based on the learning curves for other TFs, this may not necessarily be the sole reason. In

the cases of GABPA and TAF1, the differences in validation losses is much smaller. One

possible explanation for these results is the differences in the ChIP-seq protocols between the

GM12878 and HeLa-S2 datasets. Unlike the other three TFs, the GM12878 and HeLa-S3

E2F1 ChIP-seq datasets were generated using two different antibodies: ENCAB037OHX and

ENCAB000AFU, respectively. Both ZNF143 ChIP-seq datasets were generated using the

same antibody (ENCAB000AMR), but the model trained on HeLa-S3 displays an unusually

high validation loss difference. We speculate this is because the GM12878 ZNF143 ChIP-

seq dataset was generated using both single-end 36 bp and paired-end 100 bp reads while

the HeLa-S3 ZNF143 ChIP-seq dataset was generated using only single-end 36 bp reads.

Given that paired-end 100 bp reads can map to genomic regions that are unmapable for

the shorter 36 bp reads, we suspect that differences in read types can introduce significant
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dataset-specific artifacts.

Given the differences in the GM12878 and HeLa-S3 E2F1 ChiP-seq datasets resulting from

the use of different antibodies, we investigated whether a model exclusively trained on one

cell type could improve our predictive performance for the K562/E2F1 testing set. To do so,

we retrained single- and multi-task models exclusively on either GM12878 or HeLa-S3 and

evaluated cross-cell type binding performance on the E2F1/K562 testing set. In contrast,

the E2F1 model used at the conclusion of the Challenge was trained on data from both

reference cell types. The K562 E2F1 ChIP-seq dataset was generated using the antibodies

ENCAB037OHX and ENCAB851KCY, the former of which was also used for GM12878.

Hence, we expect that the GM12878 model would be a better predictor for K562 E2F1

binding sites than the other two models, which we find to indeed be the case (Figure 5.4C

and 5.4D). Although we managed to improve upon our previous E2F1 model, the cross-

cell type performance for E2F1 is still inadequate, especially compared to TFs like CTCF.

Predicting binding for TFs in the E2F family is notoriously difficult because members of

this protein family share almost identical binding motifs, which in turn makes distinguishing

between multiple members of the same family difficult. For TFs that are part of a large

family sharing similar sequence binding preference, we conjecture that performance will be

limited regardless of the choice of cell type or antibody.

5.3.3 Comparing single- and multi-task training

Although a thorough comparison between single- and multi-task training is beyond the

scope of this paper, our results on E2F1 show that single- and multi-task models can differ

in performance. Specifically, the cross-cell type auPR of the single-task GM12878 model is

more than 10% greater than that of its respective multi-task model (Figure 5.4C and Figure

5.4D). To the best of our knowledge, the cross-cell type performance of each training method
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Figure 5.5: Comparison of single- and multi-task training. Cross-cell type precision-
recall curves of single-task and multi-task NANOG binding prediction models trained on
H1-hESC and evaluated on iPSC. Model weights were selected based on the within-cell
type validation loss on chr11. We generated single-task scores by bagging scores from two
single-task models initialized differently. The three single-task models differ in the ratio of
negative-to-positive bins per training epoch. The bagged models are the rank average scores
from the multi-task model and one of the three single-task models. auPR scores are in
parentheses. Both training and testing ChiP-seq datasets use the ENCAB000AIX antibody.

depends on the TF/cell type pair. For example, when we retrained single-task and multi-

task models for NANOG using H1-hESC as a reference cell type and evaluated the models

on iPSC, the multi-task model’s auPR score is over 16% greater than that of the single-task

model (Figure 5.5).

While we initially assumed that the multi-task training confers an advantage by introducing

additional information through the multiple labels, at least in the case of NANOG, there

are too many conflating variables to immediately conclude this. One of these conflating

variables is the differences in training data between single-task and multi-task models. In

our current framework, the multi-task training contains significantly more negative bins per

training epoch than the single-task training does to balance the positive bins from multiple
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ChIP-seq datasets. By increasing the ratio of negative to positive samples per epoch for

single-task training, we can close the gap between the two training methods in terms of the

auPR score, demonstrating that the selection of negative bins affects predictive accuracy.

Moreover, the single-task models each use 654,657 weights and require 30 seconds-5 minutes

per training epoch whereas the multi-task models each use 5.4 million weights and require

2-3 hours per training epoch, making the former significantly more efficient than the latter.

Regardless of whether single- or multi-task training is advantageous, ensembling predictions

from both model types can yield significant improvements in performance. It should be

noted this pattern did not hold true for the case of training on HeLa-S3 data and evaluating

on E2F1/K562 (Figure 5.4D), and we speculate that the difference in antibodies may explain

this discrepancy.

5.4 Discussion

In this work, we introduced FactorNet - an open source package to apply stacked convo-

lutional and recurrent neural networks for predicting TF binding across cell types. While

RNNs are computationally expensive to train, especially compared to CNNs, FactorNet in-

corporates several heuristics to significantly speed up model training and improve predictive

performance. Using data from the ENCODE-DREAM Challenge, we demonstrated how our

model can effectively integrate cell type-specific data such as DNase-seq to generalize TF

binding from reference cell types to testing cell types. As of the conclusion of the Challenge,

FactorNet is one of the top performing binding prediction models.

Through our post-Challenge analyses, we gained insights into the variables that affect pre-

dictive performance, allowing us to propose strategies for improving the model. First, we

observed that the predictive performance widely varied over all TF/cell type pairs, espe-

cially in terms of the auPR metric. By leveraging the original ChIP-seq fold change signal,
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we established upper bounds for the auPR metric for each final ranking TF/cell type pair.

These bounds also correlate positively with auPR scores from FactorNet predictions, show-

ing that a large amount of the variation in predictive performance can be attributed to the

noise in the original ChIP-seq signal (Figure 5.2A). We expect that predictive performance

for many TF/cell type pairs can be improved by redoing experiments with higher quality

antibodies. Alternatively, ChIP-exo, a modification of ChIP-seq that uses exonucleases to

degrade contaminating non-protein-bound DNA fragments [82], may improve the quality of

ChIP signals. Next, we investigated the variation in the DNase-seq datasets. We found

that the DNase-seq datasets greatly differ in terms of sequencing depth and SNR (Figure

5.4A). While we do correct for the variation in sequencing depth by normalizing the cleavage

signals to 1x coverage, we do not correct for the variation in the SNR. The performance

lost is most staggering for the liver cell type, which has the DNase-seq dataset with the

lowest SNR. However, differences in DNase-seq SNR do not fully account for differences in

predictive performance. By studying several within- and cross-cell type validation curves,

we also concluded that differences in antibodies and read lengths can introduce significant

dataset-specific biases (Figure 5.4B). Accordingly, we can improve performance by omitting

less compatible cell type datasets (Figure 5.4C-D).

We also compared single- and multi-task training frameworks. Several previous studies have

proposed that multi-task training can aid performance, but our results do not entirely favor

one method over the other. For the K562/E2F1 cross-cell type testing set, the GM12878

single-task model outperformed GM12878 multi-task model (Figure 5.4C); however, for the

NANOG/iPSC cross-cell type testing set, the H1-hESC multi-task model outperformed the

H1-hESC single-task model (Figure 5.5). In the latter case, the performance gap can be nar-

rowed by changing the proportion of negative to positive training samples in the single-task

framework, suggesting that any additional gain granted by the multiple labels is eclipsed by

the choice of negative sets. Nevertheless, ensembling single- and multi-task models together

appears to be an effective method of improving predictive performance, at least if antibodies
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and read lengths are kept consistent.

Another avenue we can explore for improving the model is hyperparameter tuning. We se-

lected the hyperparameters for the models in this work arbitrarily for demonstration and

uniformity purposes (Table S5.1-S5.3). Although we have not yet implemented them, dis-

tributed computing hyperparameter tuning algorithms [15] can systematize hyperparameter

selection and improve performance.

One of the chief criticisms of neural networks is that they are “black box” models. While

neural networks can achieve great performances in predictive tasks, the exact reasons for why

this is the case is not always entirely clear. In contrast to these criticisms, we can visualize and

interpret aspects of the FactorNet model. By converting network kernels to motifs, we show

that FactorNet can recover motifs that are known to contribute to binding (Figure 5.3A).

DNase I footprint patterns help discriminate true binding sites from putative sites that simply

match a motif. Previous TF binding prediction methods, such as Centipede, require users

to supply motifs. FactorNet relaxes this strong assumption and essentially performs de novo

motif discovery during the learning process to identify the sequence patterns that are most

useful for binding prediction. Saliency maps can also help elucidate the complex regulatory

grammar that govern TF binding by visualizing the spatial positions and orientations of

multiple binding sites that work together to recruit TFs (Figure 5.3D).

Our adherence to standardized file formats also makes FactorNet robust. For example,

FactorNet can readily accept other genomic signals that were not included as part of the

Challenge but are likely relevant to TF binding prediction, such as conservation and methy-

lation. Along these same lines, if we were to refine our pre-processing strategies for the

DNase-seq data, we can easily incorporate these improved features into our model as long

as the data are available as bigWig files [52]. Other sources of open chromatin information,

such as ATAC-seq [20] and FAIRE-seq [37], can also be used to replace or complement the

existing DNase-seq data. In addition, FactorNet is not necessarily limited to only TF binding
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predictions. If desired, users can provide the BED files of positive intervals to train predictive

models for other markers, such as histone modifications. As more epigenetic datasets are

constantly added to data repositories, FactorNet is already in a prime position to integrate

both new and existing datasets.

In conclusion, FactorNet is a very flexible framework that lends itself to a variety of future

research avenues. The techniques that we introduced in this paper will also be useful for the

field of machine learning, especially since neural network models are becoming increasingly

popular in genomics. Some of the design elements of FactorNet were motivated by the

specific properties inherent in the structure of the data. Many of these properties are shared

in data found in other applications of machine learning. For example, the directional nature

and modularity of DNA sequences prompted us to search for a model that can discover

local patterns and long-range interactions in sequences, which led us to ultimately select a

hybrid neural network architecture that includes convolution and bidirectional recurrence.

Natural language processing problems, such as topic modeling and sentiment analysis, can

also benefit from such an architecture since language grammar is directional and modular.

Another unique aspect of the data that guided our design is the double strandedness of

DNA, which prompted us to adopt a Siamese architecture to handle pairs of input sequences.

Protein-protein interaction prediction also involves sequence pairs and would likely benefit

from a similar framework. Our heuristics for reducing training time and computational

overhead will serve as useful guidelines for other applications involving large imbalanced

data, especially if recurrent models are utilized. We therefore expect that FactorNet will be

of value to a wide variety of fields.
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5.5 Software availability

Source code is available at the github repository http://github.com/uci-cbcl/FactorNet un-

der the MIT license. In addition to the source code, the github repository contains all models

and data used for the ENCODE-DREAM challenge.
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5.6 Supporting Information

Table S5.1: Summary and description of the hyperparameters used for the single-
task models in Figure 5.4B.

Hyperparameter Value Description
-v validchroms chr3 chr5 chr7 chr10 chr12

chr14 chr16 chr18 chr20 chrX
Sequences on these chromosomes
are set aside for validation.

-e epochs 200 (ZNF143, TAF1), 300
(E2F1, GABPA)

Max number of epochs to train be-
fore training ends.

-ep patience 200 (ZNF143, TAF1), 300
(E2F1, GABPA)

Number of epochs with no improve-
ment in the validation loss.

-lr learningrate 0.00001 Learning rate for the Adam opti-
mizer. We decreased it from the
default value of 0.001 to smooth the
learning curves.

-n negatives 1 Number of negative bins to sample
per positive bin per epoch.

-L seqlen 1000 Length, in bps, of input sequences
to the model.

-w motifwidth 26 Width, in bps, of the convolutional
kernels.

-k kernels 32 Number of kernels/motifs in the
model.

-r recurrent 32 Number of recurrent units (in one
direction) in the model.

-d dense 128 Number of units in the dense layer
in the model.

-p dropout 0.5 Dropout rate between the recurrent
and dense layers. Also the dropout
rate between the dense and sigmoid
layers.

-m metaflag False Flag for including cell type-specific
metadata features (usually gene ex-
pression).

-g gencodeflag True Flag for including CpG island and
gene annotations.

-mo motifflag True Flag for initializing two of the ker-
nels to the PWM of the canonical
motif (forward and reverse comple-
ment).

-s randomseed Varies Random seed for reproducibility.
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Table S5.2: Hyperparameters used for the multi-task models in Figures 5.3-5.5.
Unspecified values should be assumed to be the same as those found in Table S5.1.

Hyperparameter Value Notes
-v validchroms chr11
-e epochs 20 Fewer epochs needed for multi-task

training due to the large number of
training bins.

-ep patience 20
-lr learningrate 0.001 Default value of 0.001 is sufficient

for most applications.
-n negatives 1
-g gencodeflag False Multi-task training does not cur-

rently incorporate any metadata
features.

-mo motifflag False

Table S5.3: Hyperparameters used for the single-task models in Figures 5.4C-D
and 5.5. Unspecified values should be assumed to be the same as those found in Table S5.1.

Hyperparameter Value Notes
-v validchroms chr11
-e epochs 100 Need more epochs than multi-task

training due to fewer positive bins.
-ep patience 20
-lr learningrate 0.001 Default value of 0.001 is sufficient

for most applications.
-n negatives Varies (but usually 1) In some cases, increasing this value

from 1 improves cross-cell type
auPR scores for single-task models.
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Chapter 6

Conclusion

HTS technology has undoubtedly revolutionized both basic and translational biological re-

search. The massive throughput of data delivered by HTS has encouraged a more “data-

driven” approach to research, moving from experimental procedures of limited scope concern-

ing single genes to comprehensive, simultaneous sweeps elucidating insights at an “-omics”

level. This data-driven paradigm is reinforced by the growing availability of HTS datasets,

such as those generated by ENCODE and Roadmap Epigenomics. If desired, researchers can

design projects purely based around exploring the genomic data that are already publicly

available. Furthermore, as new HTS-based experiments are developed, new computational

models will have to be developed in tandem. These computational models must meet the

challenging demand of being scalable while maintaining sufficient complexity.

In this thesis, we have presented four machine learning methods integrating HTS-derived data

to address several open challenges in functional genomics. First, we described improvements

in de novo motif discovery. Our solution improves upon MEME, a popular de novo motif

discovery algorithm, by replacing the batch EM algorithm with an online EM algorithm. The

resulting algorithm, EXTREME, scales linearly with the size of the input sequence dataset,
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whereas MEME scales quadratically. EXTREME’s scalability proves especially useful for

large sequence datasets that are derived from ChIP-seq peaks and DNase-seq footprints,

which can contain hundreds of thousands to millions of base pairs. We demonstrated in a

ChIP-seq dataset and a DNase-seq dataset that EXTREME can efficiently discover both

novel and known motifs, the latter of which can significantly resemble motifs derived from

MEME. We also showed that using the entire dataset is necessary to discover infrequent

motifs. These infrequent motifs are commonly overlooked when applying motif discovery to

a small fraction of the sequences, a commonly used strategy to compensate for MEME’s poor

time complexity. Second, we showed how deep learning methods can be adapted to integrate

a diverse set of features to address the problem of pathogenicity annotation. Specifically, we

trained a three layer multilayer perceptron binary classifier on a dataset of 3̃0 million genetic

variants to discriminate between “deleterious” and “benign” variants. Our method, DANN,

improves upon CADD, which uses a linear support vector machine to solve the same problem;

however, the results raised several questions. Mainly, what is the proper definition of a dele-

terious variant and what is the proper way, if any, of evaluating annotation methods? Third,

we introduced a stacked convolutional and recurrent hybrid neural network to predict chro-

matin markers directly from raw nucleotide sequences. Our method, DanQ, outperformed

DeepSEA, a pure convolutional model, in this task based on two performance measures: the

area under the receiver operating curve and the area under the precision-recall curve, the

latter of which was more appropriate for evaluation in this case due to the class imbalance.

Once again, we also addressed the problem of variant annotation, and although our method

outperformed DeepSEA in this task as well, the results also raised questions about how to

properly evaluate a variant annotation method. Finally, we extended the DanQ architecture

to integrate raw nucleotide sequences and cell type-specific genomic signals to predict tran-

scription factor binding across cell types. The resulting model, FactorNet, addresses a need

to impute gaps in the ChIP-seq experiment matrix of ENCODE and Roadmap Epigenomics.

We submitted our model to the ENCODE-DREAM in vivo Transcription Factor Binding
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Site Prediction Challenge, where it was among one of the top performing models. One of the

primary goals of the challenge was to provide a uniform and systematic platform to evaluate

the different competing methods. We developed many novel heuristics to reduce training

time, which is of high-priority for competitions with strict deadlines. One of these heuris-

tics is making the model a Siamese network, which applies identical subnetworks containing

shared weights to both the forward and reverse strand sequences. This strategy allows the

model to efficiently process both strands, in parallel, ensuring that both strands return the

same output. Previous methods, including DeepSEA and DanQ, have treated both strands

as independent and identically distributed records, an incorrect assumption that doubles the

training times.

In terms of existing and future computational needs in genomics research, our solutions

have only scratched the surface. Nevertheless, our contributions serve as important stepping

stones in the development of current and future bioinformatics tools by highlighting the need

for scalability and complexity. Our implementations of these improvements are all available

as open-source software.
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