
UCSF
UC San Francisco Previously Published Works

Title

Neural control of lexical tone production in human laryngeal motor cortex.

Permalink

https://escholarship.org/uc/item/7jz7d148

Journal

Nature Communications, 14(1)

Authors

Lu, Junfeng
Li, Yuanning
Zhao, Zehao
et al.

Publication Date

2023-10-30

DOI

10.1038/s41467-023-42175-9
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7jz7d148
https://escholarship.org/uc/item/7jz7d148#author
https://escholarship.org
http://www.cdlib.org/


Article https://doi.org/10.1038/s41467-023-42175-9

Neural control of lexical tone production in
human laryngeal motor cortex

Junfeng Lu 1,2,3,9, Yuanning Li 4,5,6,7,9, Zehao Zhao 1,2,3,9, Yan Liu1,2,3,
Yanming Zhu 1,8, Ying Mao 1,2,3 , Jinsong Wu 1,2,3 &
Edward F. Chang 5,6

In tonal languages, which are spoken by nearly one-third of the world’s
population, speakers precisely control the tension of vocal folds in the larynx
to modulate pitch in order to distinguish words with completely different
meanings. The specific pitch trajectories for a given tonal language are called
lexical tones. Here, we used high-density direct cortical recordings to deter-
mine the neural basis of lexical tone production in native Mandarin-speaking
participants. We found that instead of a tone category-selective coding, local
populations in the bilateral laryngeal motor cortex (LMC) encode articulatory
kinematic information to generate the pitch dynamics of lexical tones. Using a
computational model of tone production, we discovered two distinct patterns
of population activity in LMC commanding pitch rising and lowering. Finally,
we showed that direct electrocortical stimulation of different local popula-
tions in LMC evoked pitch rising and lowering during tone production,
respectively. Together, these results reveal the neural basis of vocal pitch
control of lexical tones in tonal languages.

In spoken languages, vocal pitch is an important acoustic cue for both
lexical and non-lexical information. In non-tonal languages, such as
English, vocal pitch represents prosody and intonation1. In tonal lan-
guages, in contrast, vocal pitch is mainly used to distinguish single
words from each other. In Mandarin Chinese, for example, a single
syllable can feature one of four different pitch contour categories
(lexical tones) to signify different Chinese characters and meanings2.

Tone categories are usually classified by two features: the starting
pitch height (high, mid, or low) and the direction of change (rising,
falling, or dipping). For example, inMandarin, when the syllable /ma/ is
pronounced with a high pitch (high-level tone, /mā/, Tone 1), it means
mother (妈). When the pitch contour rises during the syllable (mid-
rising tone, /má/, Tone 2), it means hemp (麻). When the pitch drops

and then increases (low-dipping tone, /mǎ/, Tone 3), it means horse
(马). Finally, a falling tone (high-falling tone, /mà/, Tone 4) means to
scold (骂)3. Therefore, precise control of the larynx to produce vocal
pitch across a broad dynamic range at the timescale of single syllables
is critical for tonal language speakers.

Three key functions of the larynx are involved in the production
and modulations of pitch: voicing, pitch rising, and pitch lowering
(Fig. 1a)4. Voicing, also known as vocalization or phonation, is created
by the muscles in the larynx bringing the vocal cords together. As the
air rushes through the vocal tract, the ligament of the vocal cords
vibrates passively, producing the fundamental frequency (F0), which is
determined by the physical properties of the vocal folds4,5. Two major
intrinsic laryngeal muscles, namely the cricothyroid (CT) and
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thyroarytenoid (TA) muscles, achieve fine control of the tension of
vocal folds. In the process of voicing, CT stretches and increases the
tension of vocal folds to raise the vocal pitch, while TA shortens and
decreases the tension of vocal folds with other muscles to lower the
pitch4,6,7.

Neuroimaging and neurophysiological studies have recently
identified two laryngeal motor cortex (LMC) regions in the human

ventral sensorimotor cortex (vSMC) correlated with laryngeal
movements8–12. The bilateral dorsal LMC (dLMC) were found to
monotonically encode pitch rising during a word emphasis task in
English8. Voicing is encoded by distinct neural populations in both
dLMC and ventral LMC (vLMC)8,13.

However, how humans exert precise control of laryngeal muscles
to dynamically regulate vocal pitch to produce lexical tones is still
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unanswered. A positive monotonic coding for pitch rising cannot fully
account for the pitch lowering dynamics in tonal languages. A previous
intracranial study14 in Mandarin tone perception demonstrated the
existence of single-electrode-level high gamma responses that differ-
entiate between lexical tones in the temporal lobe during speech
perception. Such neural activity can be explained by positive and
negative tuning to speaker-normalized pitch features. Here, we seek to
determine the neural coding mechanisms underlying lexical tone
production. Specifically, if it is represented by the encoding of lar-
yngeal articulatory kinematics/pitch dynamics or more abstract plan-
ning signals of discrete tone categories. We also want to understand
which pitch parameters, and specifically, whether the pitch height or
the more complex encoding of the underlying pitch modulation
functions (pitch rising and pitch lowering) are encoded during tone
production. Last, we want to determine whether the neural coding of
pitch is localized in specific cortical areas or distributed in vSMC.

To address these questions, we used high-density intracranial
recordings fromparticipants undergoing neurosurgical brainmapping
procedures. We recorded neural activity from the ventral sensor-
imotor cortex while eight participants spoke Mandarin syllables with
four different tones. The wide range and change of pitch in tonal lan-
guageproducedby laryngealmuscles, in combinationwith high spatial
and temporal resolution recordings allow us to investigate the neural
encoding of vocal pitch. Finally, we used direct cortical electrical sti-
mulation to probe the exact causal relationship between the specific
neural population and the corresponding pitch dynamics.

Results
Differential neural activity patterns are represented in single
electrodes from LMC during tone production
High-density electrocorticography (ECoG) arrays were placed tem-
porarily over the lateral sensorimotor cortex (left n = 4, right n = 4).
Participants spoke into a microphone while simultaneous neurophy-
siological ECoG recordings were done. In each trial of the experiment,
the participants randomly heard amonosyllabic word (e.g., /ma/, /mi/)
with one of the four different tones, and were instructed to repeat the
monosyllable aloud three times in a row (Fig. 1b). Each participant
completed 60-160 trials, which yielded 45-120 repetitions per lexical
tone. Pitch height and pitch change are two critical pitch features that
were shown to be important in discriminating lexical tones in tone
languages2,3. We extracted the pitch contour (F0) from the produced
acoustic waveform and examined these two features for all partici-
pants. Robust and discriminable contours for different tones were
produced across all 8 participants, spanning a broad range in both
pitch height and pitch change (Fig. 1c). Additionally, a principal com-
ponent analysis (PCA) of the pitch contours of tone tokens from all
participants also revealed similar key features (Fig. S1).

We computed the analytic amplitude of signals in thehigh-gamma
band (70 to 150Hz), a measure correlated with local neuronal
activity8,15.We foundwidespread cortical activation in the vSMCduring

syllable articulation, with 56.0 ( ± 18.5 s.d.) active electrodes per par-
ticipant on average (see Fig. S2 for the distribution of speech respon-
sive electrodes on individual surfaces).

We then aligned the high-gamma activity for each tone token to
the vowel onset time, and evaluated the average neural response for
each tone across syllable tokens. Electrodes in bilateral dLMC and left
vLMC showed differential patterns of neural activity to the four tones
during articulation (p <0.05, one-way ANOVA, Bonferroni corrected;
Fig. 1d). These electrode sites with tone discriminating activity made
up an average of 14.2% (±9.7% s.d.) of all articulation-related sites.
Furthermore, among these tone discriminant electrodes different
response profiles were found, where each electrode was activated
during the production of multiple tones, and each tone elicited dif-
ferent patterns of neural activity across different electrodes (Fig. 1e).
Therefore, the results do not show evidence of electrodes sites that
were tuned to a single tone category but rather suggest a distributed
neural coding in bilateral LMCunderlying the cortical control of lexical
tone production.

Cortical patterns of tone discriminant electrodes are explained
by pitch height and change encoding
Since we did not find tone-specific coding in the tone discriminant
electrodes, we next investigated what features drive the differential
patterns in these electrodes. To do this, we used a linear encoding
model to predict the neural activity during tone production, using
features representing the pitch dynamics (pitch height and pitch
change), voicing (binary pitch), non-laryngeal articulator movements
and so on. The unique contribution of each feature was computed and
correlated to the tone discriminability in the neural activity for each
electrode (n = 448). A strong and significant positive correlation was
found between pitch encoding and tone discriminability, suggesting
that the differential patterns of neural activity were mainly driven by
pitch encoding (Pearson’s r =0.75, p = 4.3E−36; Fig. 2a). No correlation
was found between tone discriminability and intensity (Pearson’s
r =0.05, p =0.37; Fig. 2b), syllable onset (Pearson’s r = 0.05, p =0.40;
Fig. 2c), binary pitch (Pearson’s r = 0.03, p = 0.67; Fig. 2d) or tone
category (Pearson’s r =0.07, p =0.25; Fig. 2e). We further looked at the
two components of pitch features. We found neural activity at indivi-
dual electrodes either represents pitch height or pitch change (Fig. 2f).
Pitch change was more relevant to tone discriminability than pitch
height (Pearson’s r =0.61 for pitch change, Pearson’s r =0.45 for pitch
height, z = 64.3, Fisher’s z transform comparing two correlation coef-
ficients, p < 1E−100; Fig. 2g, h).

Since the pitch contours of lexical tones in continuous natural
speech might deviate from those in isolated canonical single tonal
syllables, we next wanted to evaluate whether findings in the syllable
production task would generalize to speaking natural sentences as
well. Participants were asked to speak aloud 20 phonetically
balanced Mandarin sentences16, reading from a prompt on a screen.
We found the neural activity to lexical tones in natural speech was

Fig. 1 | Differential neural activity patterns are represented in single electrodes
from LMC during lexical tone production. a Anatomical and physiological basis
of vocal pitch control (copyright Jinxuan Wu, used with permission). When the
subject is uttering syllables of four different Mandarin tones, the vocal cords are
pushed together and vibrated by the passing air to produce the sound (voicing),
cricothyroid stretches and increases the tension of vocal folds to raise the pitch,
while thyroarytenoid contracts and decreases the tension of vocal folds to lower
the pitch. b The flowchart of the lexical tone production task (copyright Zehao
Zhao, used with permission). In each trial, the participants were presented with a
randomly displayed tonal syllable as an auditory cue (0.44 s). Following a reaction
time interval (1.0-1.2 s), the patients were instructed to repeat the word three times
consecutively (0.4–0.6 s per word) with intervals of 0.4–0.6 s between repetitions.
The next auditory cue was played after 1.0–1.5 s. Each patient completed 60-160
trials, resulting in 45–120 repetitions per lexical tone. cThe average pitch dynamics

(arbitrary units [a.u.]) for four lexical tones produced by all subjects. Upper panel:
the average trajectory of pitch height (solid line: mean, shaded area: standard
errors of themean [s.e.m.] across all repetitions for each tone of all subjects); lower
panel: the average trajectory of pitch change (solid line: mean, shaded area: s.e.m.
across all repetitions for each tone of all subjects). The 0ms time point represents
the onset of the vowel. d The distribution of all tone discriminant electrodes.
Different symbols represent electrodes from different subjects (S1-S8). Color bar
indicates the degree of tone discrimination (F-statistics across 4 tones). e The
average high-gamma responses for different lexical tone production (shaded area
representsmean± s.e.m. across repetitionsof each tone) in twoexample electrodes
(locations indicated by black arrows in (c). The 0ms time point represents the
onset of the vowel. Black dots indicate timepoints of significant difference across 4
tones (p <0.05, one-way ANOVA, Bonferroni corrected). Source data are provided
as a Source Data file.
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still best explained by the pitch features (Fig. S3), and the single
electrode encoding properties were largely consistent between the
syllable production and natural sentence production tasks (Fig. S4).
In brief, the neural activity of tone-discriminating electrodes
represented the pitch dynamics during both syllable and sentence
production.

Control of vocal pitch is coordinated by two distinct tuning
patterns in LMC
We next wanted to understand mechanistically how these tone-
encoding electrodes generate pitch dynamics. The pitch contour is
directly related to the movements of two groups of laryngeal muscles.
In non-tonal languages, such as English, most of the pitch dynamics
involves pitch rising above the neutral point, which is created by the
stretchymuscles. However, in tonal languages, such asMandarin, pitch
dynamics also involves pitch lowering below the neutral point, which is
created by themuscles that thicken and shorten vocal folds. Tomodel
these two distinct patterns of pitch dynamics andmuscle movements,
we adapted the computational pitch contour generation model for
Mandarin, called the Fujisaki model17. The Fujisaki Model can simulate
the physiological operation of the human larynx, which enables us to
decompose Mandarin pitch contour (F0) into tone command, phrase
command, amplitude, and timing components, and to use variations in
these components to synthesize different tones. Using the Fujisaki
model, the rapid tone commands were extracted to generate pitch
contours for different tones. For each tone, the tone commands canbe

both positive and negative. Specifically, Tone 1 can be synthesized by a
long positive tone command; the rising Tone 2 requires an early
negative and a late positive tone command; a long negative command
generates the low-dipping Tone 3; and the falling Tone 4 is combined
with an early high positive and a late negative command. Using these
extracted tone commands, the dynamic pitch contours of each tone
were reconstructed with high fidelity (Fig. 3a), confirming the perfor-
mance of the Fujisaki model for the participants’ utterances.

An encoding model, similar to the one described in the previous
section and with the extracted tone commands, was used to predict
the high-gamma activity with regard to tone production in each indi-
vidual electrode. The differential neural activity for tones in single
electrodes was also well explained by the tone commands (Pearson’s
r =0.72, p = 7.9E−41; Fig. 3b). To further understand the neural coding
mechanism at the level of a single electrode, we computed the tuning
curve for each individual electrode, i.e., the averaged high-gamma
activity as a function of the tone commands. We found distinct tuning
patterns at different electrodes. Specifically, we found electrodes with
positive tuning of tone commands (22/54 of total electrodes), and
electrodes with negative tuning of tone commands (32/54 of total
electrodes), both distributed bilaterally in LMC (Fig. 3c, d). Moreover,
the tone control electrodeswere clustered in the bilateral dLMC (16/54
of total electrodes in left dLMC, 21/54 of total electrodes in right
dLMC) and the left vLMC (14/54 of total electrodes) (Fig. 3e, see also
Fig. S5 for the distribution of tuning electrodes on individual surfaces).
Together, these results suggest that bilateral LMC has a distributed

Fig. 2 | Tone discriminability from the neural activity is correlated with pitch
height and pitch change representation. a–e, g, h Scatter plot of single electrode
encoding properties across speech-selective electrodes from all participants. Each
dot represents a single electrode (n = 448). The colored dots indicate electrodes
that had significant encoding of x-axis (blue, p <0.005, one-sided permutation
test), y-axis (red, p <0.05, one-way ANOVA, Bonferroni corrected) encoding fea-
tures or both (magenta), while the black dots indicate non-significant electrodes.
The r and P values are computed among the significant electrodes (colored dots)
using Pearson’s correlation (two-sided) between the x- and y-axis. a Scatterplot of
the unique variance explained by pitch features (R2 of pitch change and pitch
height) and tone discriminability (F-statistics across 4 tones). b Scatterplot of the
unique variance explained by intensity (R2) and tone discriminability (F-statistics).

c Scatterplot of the unique variance explained by syllable onsets (R2) and tone
discriminability (F-statistics). d Scatterplot of the unique variance explained by
binary pitch feature (R2) and tone discriminability (F-statistics). e Scatterplot of the
unique variance explained by tone category (R2) and tone discriminability (F-sta-
tistics). fScatterplotof the unique variance explainedbypitch change (R2) andpitch
height (R2). The colored dots indicate electrodes that had significant encoding of
either pitch change or pitch height (p <0.005, one-sided permutation test), with
color indicating the proportion of variance explained by pitch height relative to the
total variance explained by pitch change and pitch height. g Scatterplot of the
unique variance explained by pitch height (R2) and tone discriminability (F-statis-
tics). h Scatterplot of the unique variance explained by pitch change (R2) and tone
discriminability (F-statistics). Source data are provided as a Source Data file.
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neural coding of tone commands, where different local populations
show different patterns of encoding for positive and negative tone
commands.

We have demonstrated neural encoding at individual electro-
des. Subsequently, to determine how neural responses to different
tones were spatiotemporally distinguishable in the distributed LMC
network, we used multivariate pattern analysis to evaluate the tone
decoding accuracy in LMC neural population. We collected all

speech-responsive electrodes across all subjects and trained pair-
wise classifiers to decode the 4 lexical tones from each other. We
found that tones could be significantly decoded as early as 300ms
before the pitch onset (Fig. 4a). The population decoding accuracy
peaked at 66.7%, and around 250–300ms after vowel onset (Fig. 4a).
Consistent with the encoding analysis, electrodes that contributed
to the tone discrimination distributed in bilateral dLMC and left
vLMC (Fig. 4b).
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Fig. 3 | Two tuning commands exist in the LMC to generate different tone
control of vocal pitch. a The application of Fujisaki model. First row: example
syllable waveforms of different tones; second row: original pitch trajectories; third
row: positive (red) and negative (blue) tone commands extracted using Fujisaki
model; fourth row: reconstructed pitch trajectories using Fujisaki model (black
curve), compared to original trajectories. b Scatter plot of single electrode
encoding of tone command features (R2) versus tone discrimination (F-statistics)
across speech-selective electrodes from all participants. Red dots indicate elec-
trodes that had significant tone discrimination only (p <0.05, one-way ANOVA,
Bonferroni corrected); Blue dots indicate electrodes that had significant encoding
of tone command only (p <0.005, one-sided permutation test); Magenta dots
indicate electrodes that had significant encoding of both tone discrimination and
tone command. The r and P values are computed among significant electrodes
(colored dots) using Pearson’s correlation. c Left: average neural tuning curve for
negative tuning electrodes (dashed line: mean high-gamma response, shaded area:

s.e.m.). Solid curve corresponds to an example electrode e1. Right: average high-
gamma activity for different tones (shaded area represents mean ± s.e.m. across
repetitions of each tone) in electrode e1. d Left: average neural tuning curve for
positive tuning electrodes (dashed line: mean high-gamma response, shaded area:
s.e.m.). Solid curve corresponds to an example electrode e2. Right: average high-
gamma activity for different tones (shaded area represents mean ± s.e.m. across
repetitions of each tone) in electrode e2. In (c, d), 0-ms time point represents the
vowel onset. Black dots indicate time points of significant difference across 4 tones
(p <0.05, one-way ANOVA, Bonferroni corrected). e Distribution of positive (red)
and negative (blue) tuning electrodes on the cortical surface. Different symbols
represent significant tone tuning electrodes from different subjects. Darker color
indicates stronger tuning. The example electrodes e1 and e2 are marked by black
arrows. Blue dashed line represents the boundary line separating the dLMC and
vLMC clusters (indicated by gray dashed circles). See also Fig. S5. Source data are
provided as a Source Data file.
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Intraoperative direct electrical stimulation of dLMC elicits pitch
rising and lowering
We have demonstrated the neural activity of LMC reflects different
patterns of encoding for positive and negative tone commands during
tone production. To definitively demonstrate that this activity reflects
feed-forward control of laryngeal muscles, we used direct focal elec-
trocortical stimulation (DES) during intraoperative clinical awake brain
mapping. We asked whether stimulating the pitch-encoding region of
LMC would cause pitch rising and lowering in awake participants. Five
patients (two left-sided and three right-sided) who underwent awake
surgery were included to map the pitch control area. A bipolar sti-
mulator was used to stimulate the patient’s LMCwhen the patient was
pronouncing /mā/ or /má/ to map the pitch rising or pitch lowering
area, respectively (Fig. 5a). In order to confirm the pitch change was
caused by stimulation, the utterances of /mā/ and /má/ were also
recorded as the control condition at least five times without stimula-
tion. The positive sites for pitch change were validated at least
five times.

We found that stimulation of dLMC not only evokes pitch rising8,
but also elicits pitch lowering (Fig. 5b–d). When the participant was
uttering the /mā/ syllable, stimulation to the Label 1 site (Fig. 5b) of
dLMC significantly increased the fundamental frequency of this
utterance (Fig. 5c, the red line represents p <0.05 after FDR correc-
tion). On the contrary, when the patient was pronouncing the /má/
syllable, stimulation to the Label 2 site (Fig. 5b) of the dLMC evoked a
significantly lower pitch relative to the control group (Fig. 5d, the red
line represents p < 0.05 after FDR correction). Concordant with the
previouswork8, pitch rising sites could be evoked in the bilateral dLMC
(Fig. 5e, f). In addition, we also elicited pitch lowering sites in the left
dLMC of two patients (Fig. 5e). Together, these results provide causal
evidence for the positive and negative tuning patterns of LMC. In
addition to bidirectional modulation responses of pitch evoked by
electrical stimulation,we also localizedmotor responses, speech arrest
(defined as a cessation of continuous speech while retaining the
movementofnon-laryngeal articulators) and anomia (characterizedby
the inability to retrieve names while retaining the speech ability)
responses. At the group level, we observed speech arrest evoked in the
bilateral dLMC, specifically near the pitch modulation sites, as well as
in the left vLMC (Fig. 5e, f).

Discussion
Using high-density direct cortical recordings and cortical stimulation,
we probed the neural mechanism of precise pitch control underlying
lexical tone production. Our findings suggest that distributed neural
populations in both the ventral and the dorsal LMC are involved in the
neural coding of dynamic vocal pitch control. In particular, these

neural populations encode two distinct laryngealmovements that lead
to pitch rising and pitch lowering independently.

There is little knowledge about the precise neural mechanism
underlying vocal pitch control. One of the major challenges is the
dynamic nature of vocal pitch during the speech, where rapid pitch
changes would take place within 100ms. As a result, previous imaging
studies, which are constrained by low temporal resolution, failed to
reveal the fine-scale neural coding in LMC that supports the dynamic
control of vocal pitch18–21. The high-density ECoG grid used in this
study overcomes this constraint in temporal resolution while main-
taining millimeter-level spatial resolution, facilitating our ability to
identify distinct neural populations within LMC that contribute to
different transient pitch dynamics.

Our results extend the understanding of pitch control to tonal
languages. Recent human intracranial electrophysiology studies have
demonstrated that dorsal LMC contributes to vocal pitch control
during speech intonations in non-tonal languages8,9,22. However, into-
nations in non-tonal languages, such as English, do not exploit the full
range of dynamics in pitch space23. In particular, most of the dynamics
in the stress patterns in the intonations only include pitch rising above
the neutral pitch, while in tonal languages, pitch dynamics also include
frequent pitch lowering below neutral pitch, such as the dipping tone
inMandarin Chinese. As a result, although these studies identify neural
populations that correlate to vocal pitch, they do not cover the full
neural codes of pitch control. Here we investigate speech production
in a typical tonal language to address this gap in the literature.With the
combination of correlational encoding models and causal DES meth-
ods, we established a refined cortical map of fine-grain pitch control
during speechproduction. Our results indicate that rather than a linear
monotonic coding of the actual vocal pitch, there are distinct neural
populations that encode themore complexmovements of pitch rising
and pitch lowering.

One of the key questions inunderstanding the neuralmechanisms
in sensorimotor cortex (SMC) is the level of representation in the
neural coding. Previous studies have suggested that rather thancoding
for the movements of individual muscles, the neural activity in single
neurons and local populations in SMC is correlated with coordinated
movements ofmultiplemuscles in both primates24 and humans25. Here
using a modified tone production model, we demonstrate that the
correlation between neural activity in LMC, a specific subregion of
SMC, and the pitch dynamics can be explained by the neural repre-
sentation of two different types of pitch control commands, pitch
rising and pitch lowering. Each of the two commands can be achieved
by a coordinated movement of the CT and TA muscles4,6,7. The actual
relationship between the laryngeal muscles and the pitch dynamics is
complex and each pitch movement may require the coordinated

Fig. 4 | Tone can be decoded from distributed neural activity. a Time course of
mean pair-wise tone classification accuracy using a sliding time window of 100ms
(solid line: mean, shaded area: s.e.m. across subjects S1-S8) and population neural
activity in all speech-responsive electrodes in bilateral LMC. The 0ms time point
represents the onset of the vowel. Horizontal dashed line: p =0.05 threshold, two-

sided t-test for independent samples, Bonferroni corrected; vertical dashed line:
peak accuracy time. b Averaged classifier weights at peak accuracy time on each
electrode. Each dot represents one electrode (different symbols represent elec-
trodes from different subjects), with a darker color indicating a larger absolute
classifier weight. Source data are provided as a Source Data file.
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contractions of multiple laryngeal muscles. In fact, it is also possible
that different configurations of laryngeal muscle movements would
lead to the same vocal pitch output26,27. Furthermore, consistent with
previousDES studies, speecharrest couldbe induced in both the vLMC
and the dLMC28,29. Previous research commonly interprets speech
arrest as a negativemotor responseor a disruption in speechplanning/
coordination30–32. However, the lack of monitoring of laryngeal mus-
cles and vocal folds prevents us from fully excluding the possibility of
direct involvement of laryngeal movements in speech arrest28,29. To
fully uncover the exact mapping between activity in these neural
populations and the laryngeal muscle movements may require single
neuron recording combined with electromyography monitoring and
direct visualization of the vocal fold under fiberoptic bronchoscopy.

Recent advances in brain-computer interface (BCI) have shown
that it is possible todecodearticulatormovements andgenerate speech
fromtheneural activity recorded in SMC33–36. However, previous studies
are using non-tonal language where pitch information is not critical for
conveying lexical information. For tonal languages, in addition to syl-
lables that are determined by articulatormovements, the lexical pitch is
also crucial for conveying word meanings. Here using multivariate
pattern analysis, we show that lexical tone can be decoded from the
distributed neural activity patterns in SMC. This provides a potential
implementation of a speech BCI system for tonal languages like Man-
darin Chinese, where articulatormovements and pitch dynamics can be
decoded from the distributed neural activity in SMC through different
channels and combined to generate speech veridically.

Fig. 5 | Direct electrical cortical stimulation of dLMC elicits pitch rising and
lowering. a Acoustic waveform and absolute pitch diagrams of two syllable pro-
duction paradigms. The pitch of normal /mā/ decreases slowly (control, marked in
gray), and the pitch rising response is defined as the direct electrical stimulation
(DES, blackdotted line) evoked increase in pitch (marked in red)when the patient is
pronouncing /mā/. The typical /má/ pitchdropsfirst and then rises rapidly (control,
marked in gray). The pitch lowering response is defined as the DES (black dotted
line) evoked decreases in absolute pitch (marked in blue) relative to the control
group. b–d In a typical patient, the pitch rising and pitch lowering responses were
both evoked in the patient’s left dLMC. b Cortical representation of the pitch rising
(the red Label 1) and pitch lowering (the blue Label 2) sites in this typical case.
cAveragepitch contours of the electrical stimulation-inducedpitch rising response
at T1 (in red) compared to the average pitch contours of normal /mā/ (in gray). The

horizontal dotted line and shaded area represent the mean ± standard error of the
mean (s.e.m.) across repetitions. The vertical dotted line represents the average
start time of electrical stimulation (mean ± s.e.m.: 452 ± 49ms). d Average pitch
contours of the electrical stimulation-induced pitch lowering response at T2 (in
blue) compared to the average pitch contours of normal /má/ (in gray). The hor-
izontal dotted line and shaded area represent the mean ± s.e.m. across repetitions.
The vertical dotted line represents the average start time of electrical stimulation
(mean ± s.e.m.: 203 ± 19ms). The red solid line indicates time points survived
p <0.05, two-sided paired t test, FDR correction). e, f The group-level cortical dis-
tributions of pitch rising (red), pitch lowering (blue), speech arrest (purple) and
other sites (coded by distinct colors) on the (e) left and (f) right hemispheres.
Source data are provided as a Source Data file.
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To sum up, using high-density electrophysiology recordings and
direct cortical stimulations, we reveal the neural mechanisms under-
lying precise pitch control during speech production of tonal lan-
guages, with distinct populations in the bilateral LMC contributing to
the rising and lowering of vocal pitch. These findings not only extend
our knowledge of the laryngealmotor cortex and its neural coding, but
also indicate new applications in speech BCI for tonal languages.

Our study also carries certain limitations. Due to the notable inter-
individual variability of tone production cortex and the constraint of
not being able to concurrently record fromboth the left and right LMC
within the same patient, we were unable to observe bidirectional tun-
ing across all participants, as indicated by the findings at the popula-
tion level. In forthcoming research endeavors, we plan to include a
larger number of participants to gain deeper insights into the spatial
distributions and individual disparities of tone production cortex.

Methods
Participants
A total of 8 subjects from Huashan Hospital participated in this study.
All participants (age range: 29–51 years; 5 males, 3 females; 4 left, 4
right) were eloquent brain tumor patients undergoing awake language
mapping as part of their surgery. During the intraoperative language
mapping, high-density electrode grids were temporarily placed onto
the sensory-motor cortex to record local field potentials from the
cortex, and the participants were instructed to perform the
experiment tasks.

Subjects were asked to participate in the research study only if
theywere undergoing awake surgerywith direct cortical stimulation as
part of normal clinical routine, meaning that this was deemed neces-
sary for the safe resection of their tumor. Each participant was con-
sented prior to the surgery, at which time it was explained in a
transparent manner (as detailed in the IRB-approved written protocol/
consent document) that the research task was for scientific purposes
and would not directly impact their care. It was clearly articulated to
each subject that participation in the research task was completely
voluntary. The experimental protocol was approved by the Huashan
Hospital Institutional Review Board of Fudan University (HIRB,
KY2017–437). All participants gave their written, informed consent
prior to testing.

Experiment paradigm
Two different versions of the tone production paradigm were per-
formed. Two subjects (S1 and S2) participated in the first paradigm,
while the other subjects participated in the second paradigm. For each
trial in the first version, a single word was presented on a screen 20 cm
from the participant. The subject was instructed to name the word
three times in a row after a go cue. In each block, a total of 60 different
words were used (four lexical tones of /e/, /ye/, /yue/, /wo/, /ei/, /wei/,
/ou/, /you/, /a/, /ya/, /wa/, /ai/, /wai/, /ao/, /yao/), and each word was
repeated 3 times, which yielded 180 tokens in total (45 repetitions per
lexical tone). Subject S1 completed one block (45 repetitions per lexical
tone), and Subject S2 completed two blocks (90 repetitions per lexical
tone). For each trial in the second version, a single word was played
through the speaker of a laptop, and the participant was instructed to
repeat the exact word three times in a row. In each block, a total of 8
differentwordswere used (four lexical tones of /ma/ and /mi/, i.e., /mā/,
/má/, /mǎ/, /mà/, /mī/, /mí/, /mǐ/, /mì/), and each word was repeated 15
times,which yielded 120 tokens in total (30 repetitionsper lexical tone).
Each patient completed four blocks (120 repetitions per lexical tone).

In the sentence production task, we selected 20 sentences from
the Fu-sentence corpus16, which consists of phonetically balanced
7-character Mandarin sentences (e.g., “北京近来很寒冷“, /běi jīng jìn lái
hěn hán lěng/). For each trial in the task, a single sentence was pre-
sented on a screen positioned 20 cm away from the participant. The
participant was instructed to read the entire sentence aloud once.

Within each block, each sentence was repeated twice. Each participant
completed 2-5 blocks, resulting in a total of 80-200 sentences (560-
1400 tones) in total.

Data acquisition and preprocessing
During the experimental tasks, neural signals were recorded from one
or two 128-channel ECoG grids (8 × 16, 4mm spacing) using a multi-
channel amplifier optically connected to a digital signal processor
(Tucker-Davis Technologies). The local field potential at each elec-
trode contact was amplified and sampled at 3052Hz. The raw voltage
waveform was visually examined, and channels containing signal var-
iation too low to be detectable from noise or continuous epileptiform
activity were removed. Time segments on remaining channels that
contained electrical or movement-related artifacts were manually
marked and excluded. The signal was then notch-filtered to remove
line noise (at 50Hz, 100Hz, and 150Hz). Using the Hilbert transform,
the envelopes of the signal outputs filtered by eight Gaussian filters
(center frequencies: 70-150Hz, log spaced) were computed. The high-
gamma signal was taken as the average analytic amplitude (envelope)
across these eight bands. The signal was down-sampled to 100Hz and
z-scored using the entire recording block for normalization.

Principal component analysis (PCA) of the lexical tones
We used PCA to analyze the acoustic pitch space of lexical tones. We
extracted the pitch contours of the eight tone exemplars in the tone
production tasks. We utilized an interpolation-based method for pro-
portional warping to adjust the length of these contours to a target
duration of 400ms (40 time points at 100Hz sampling rate). PCA was
performed on this 2891 × 40 datamatrix X , and we got decomposition
X = LWT , where L is a 2891 × 40 PC score matrix, and W is a 40 × 40
orthogonal weight matrix with columns of W forming an orthogonal
basis set for the 40 temporal features. The minimum number of
principal components (PCs) necessary is determined to achieve a
cumulative explained variance ratio surpassing 95%.

Electrode localization
To localize the electrode, the three-dimensional positions of the grid
corners were recorded using the Medtronic neuronavigation system
intraoperatively. These corner electrodes were then aligned to the pre-
operative MRI, using intraoperative photographs as reference. In the
end, we used the “img_pipe” package in Python to localize the
remaining electrodes by interpolating and extrapolating from the
corner electrodes37.

Speech-responsive electrodes selection
To find speech-responsive electrodes in the SMC and adjacent frontal
cortex, wefirst aligned high-gamma responses to the onsets of syllable
production. Onsets were defined as times where the sound of syllable
production was preceded by at least 400ms of silence. We then cal-
culated the average high-gamma responses at each time point
(meanreal) around the speech onset (time window from 300ms before
onset to 100ms after onset). We randomly sampled 1000 time points
as the onsets, and calculated the corresponding average responses
(meanpermutation) and standard deviation (SDpermutation) in the same
timewindow. If themeanreal of continuous 100mson an electrodewas
outside the range ofmeanpermutation ± 5SDpermutation), the electrodewas
considered as a speech-responsive electrode.

Tone discriminant electrodes selection
To find speech-responsive electrodes that also discriminate between
lexical tones, we first aligned high-gamma responses to the onsets of
the tones. Following that, we tested whether the mean high-gamma
responses were significantly different among the four tones using the
one-wayANOVA. Specifically, we compute the F-statistic for every time
point during the -300 ms to 200ms time period relative to the tone
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onset (50 total time points) and find significant time points with
p <0.05 threshold using Bonferroni correction for the total number of
electrodes and time points. Only the electrodes with at least 10 con-
secutive significant time points (100ms) were considered as tone
discriminant electrodes.

Speech feature extraction
In line with our previous research, we employed a similar Praat para-
meter extraction approach8,14,38. We extracted the pitch contour of
each syllable with an autocorrelation method in Praat (Version 6.1.01,
https://www.fon.hum.uva.nl/praat/)39. Additionally, we addressed
halving and doubling errors during the extraction process. Individual
pitch minimum and maximum values were determined for each par-
ticipant, and a timestep of 0.01 s was employed. All other parameters
adhered to the default settings of Praat. The intensity was also
extracted from each trial using Praat and normalized (z-score) within
each block. Subsequently, we calculated pitch height, pitch change,
and binary pitch based on the original pitch contour.

Specifically, assume that the absolute pitch height value at any
given time t was F0 tð Þ. F0 tð Þ could be a positive number if at that time
the phonemewas voiced, orNaN if not voiced. Thepitch height (h) was
computed as the logarithm of the absolute pitch frequency
h tð Þ= logp tð Þ (log Hz, or octave); pitch change (c) was the first-order
difference of the log pitch height c tð Þ=h tð Þ � h t � 1ð Þ; binary pitch
b tð Þ= 1 (if h(t)is not NaN) and b tð Þ=0 (if h tð Þ is NaN). Furthermore, we
discretized absolute pitch, relative pitch and pitch change into 10 bins,
equally spaced from the 2.5 percentile to the 97.5 percentile value. The
bottomand top 2.5%of the valueswereplaced into the bottomand top
bins respectively. As a result, pitch height and pitch change were both
represented as 10-dimensional binary feature vectors. For non-pitch
periods, these feature vectors would have all 0 s.

In addition to pitch-related features, we also included ‘non-lar-
yngeal articulator movements’ as another binary variable that sum-
marizes the differences between the consonants and the vowels9,
which are mainly articulatory differences in jaw, lips and tongue.

Fujisaki model
Using the Fujisaki model of vocal pitch, the pitch contour of an
utterance (F0) can be given by the following equations:

ln F0ðtÞ= ln Fb + P +T ð1Þ

P =
XI

i =0

Ap,iGpðt � T0iÞ ð2Þ

T =
XJ

j = 1

At,j Gtðt � T 1jÞ � Gtðt � T2jÞ
n o

ð3Þ

GpðtÞ=
α2te�αt , t ≥0,

0, t <0

(
ð4Þ

GtðtÞ=
min½1� ð1 +βtÞe�βt ,γ�, t ≥0,
0, t <0

(
ð5Þ

In the equations, Fb represents baseline value of fundamental
frequency.Thephrase component (P) describes the slowdeclination in
pitch over the course of a phrase40, which consists of I individual
phrase commands of amplitude Ap,i and shape Gp. The tone compo-
nent (T) consists of J individual tone commands of amplitude At,j and
shapeGt, which describes the bidirectional control of vocal fold length
and tension by rapidmovements of the laryngeal muscles, resulting in

bidirectional pitch modulation. Gp is an impulse response function
used to describe the phrase control mechanism, while Gt is a step
response function used to describe the tone control mechanism17. It
should be noted that in the process of single syllable production, the
influence of the phrase component was not considered, and the Pwas
set to 0. As a result, the first equation can be simplified
as: ln F0 tð Þ= ln Fb +T .

FujiParaEditor was used to estimate the phrase and tone compo-
nents for each syllable and spoken sentence41. An automated inference
process was used42, as well as manual corrections when necessary.

Encoding model
We used time-delayed linear encoding models, known as temporal
receptive field models43, to evaluate what features are driving the
neural activity in LMC during lexical tone production. Temporal
receptive field (TRF) models predict neural activity using speech-
related features in a window of time around the neural activity. In
particular, we fit the linear model y tð Þ= PF

f = 1

PT
τ =0 β

T
f ðτÞxf t � τð Þ+ ϵ

for each electrode, where y is the high-gamma activity recorded from
the electrode, xf t � τð Þ is the stimulus representation vector of feature
set f at time t � τ,βf ðτÞ is the regressionweights for feature set f at time
lag τ, and ϵ is the gaussian noise.

In the full TRFmodel, we included features for the sound intensity,
relative pitch height, pitch change, syllable onset, binary pitch, tone
command and tone category. To calculate the unique contribution of
specific features, we fit TRF models that excluded each feature in turn
andcalculated thedifference inR2between the full and reducedmodels.

To prevent model overfitting, we used L2 regularization and
cross-validation. Specifically, we divided the data into three mutually
exclusive sets of 80%, 10% and 10% of samples. The first set of 80%was
used as the training set. The second set was used to optimize the L2
regularization hyperparameter, and the final set was used as the test
set.We evaluated themodels using the correlation between actual and
predicted values of neural activity on held out data.We performed this
procedure 5 times and the performance of the model was taken as the
mean of performance across all testing sets.

To calculate the significance of unique portions of variance
explained, we employed permutation testing.We shuffled the acoustic
features between all syllables in the stimuli before computing null
values of the unique variance explained by each feature by running the
same analysis pipeline. We ran this procedure 200 times to get a null
distribution of values. Using this empirical null distribution, we
determine a significant thresholdof p <0.005 for each uniqueR2 value.

Analysis of tuning curve
To evaluate the functional relationship between the tone commands
and the neural activity in LMC, we computed the tuning curve for each
speech-responsive LMC electrode. The tone commands were dis-
cretized into 12 bins uniformly spanning the middle 99-percentile
range for each individual subject. The mean and standard deviation of
high-gamma activity in each electrode was calculated for each bin to
get the entire tuning curve.

Specifically, the tone commands value at time t is denoted as A(t).
We estimated the distribution of A(t) as CDF(A) for each subject, using
the histogram of A(t) over all time t. Then according to the quantiles qi
of this histogram fqi =CDF

�1 ði� 1Þ=12 +0:005� �ji= 1, . . . ,13g, we can
sort the value into 12 bins. As a result, A tð Þ= i, if qi <A tð Þ≤ qi + 1. Since
HGA (denoted as h(t)) and tone command (A(t)) were synchronously
recorded, so we had paired A(t) and h(t). Then for the i-th bin of the
tone command, we collected set as Hi = fAðtÞj8t, s:t:A tð Þ= ig, and
compute the mean and standard deviation of this set Hi. Then the
tuning curve canbeplotted as x = i and y =mean (Hi). A linearmodel y =
ax + b was fitted between the tone commands (x) and mean high-
gamma (y) in the tuning curve using ordinary least squares. We used
the slope a to determine the polarity of the tuning curve.
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Population tone decoding
To determine whether neural responses to different tones were dis-
tinguishable in the LMCnetwork, we usedmultivariate pattern analysis
to evaluate the tone decoding accuracy in LMC neural population. We
aligned high-gamma responses to the onsets of the vowels of syllables9

and divided trials by the lexical tone of the syllable. A sliding time
window with a length of 50ms (5 consecutive time points of high-
gamma activity) was used to evaluate the dynamics of neural repre-
sentation. For each sliding window, the neural activity across all
speech-responsive electrodes was concatenated and used as features
to train a pattern classifier. The time course of the averaged pairwise
classification accuracy was computed as the final decoding result.
Specifically, we used logistic regression with L2 penalty across elec-
trodes. This approach would avoid overfitting while maintaining
temporal smoothness and network interactions between local popu-
lations. A nested cross-validation strategy was adopted where 5-fold
cross-validation was used to estimate the classification accuracy, and
within each training set, 10-fold cross-validation was used to select the
optimal penalty parameter λ.

Intraoperative direct electrical stimulation mapping
Five consecutive glioma patients (two left-sided and three right-sided)
who underwent awake surgery at Huashan Hospital between August
2020 to January 2021 were included to map the pitch control area. We
used the same stimulation parameters (5-mm interval, bipolar elec-
trode, current-constant bipolar square wave, 1-ms wave width, and
60Hz frequency, 1-3mA intensity) as our previous study29,30. All
patients are all (1) right-handed, (2) had intact consciousness, language
function, andmotor function before the operation, and (3) the ventral
central lobe was completely exposed during the operation. During
intraoperative direct electrical stimulation mapping, the cortex was
stimulated at a 1 cm interval. Prior to mapping the pitch control area,
we conducted mapping of orofacial and limb muscle movements,
speech arrest, and anomia, as extensively documented in our previous
studies29,30. Motor responses were defined as visible muscle move-
ments or observable motor waveforms on electromyography (EMG).
Speech arrest was defined as a complete cessation of ongoing speech
during a counting task while retaining consciousness and the ability to
move non-laryngeal articulator muscles. Anomia was defined as the
inability to name the presented objects in a picture naming task but
still being able to generate the introductory phrase “This is a…”. We
first stimulated themotor area and increased the current intensity until
the motor responses were evoked. Then, the same current intensity
was applied to locate the pitch control area29. Two syllable paradigms
were used to map pitch rising and lowering regions respectively.
Typically, the pitch of the normal /mā/ syllable decreases slowly, and
the pitch rising response is defined as a DES-evoked increase in pitch
when the patient is pronouncing /mā/ (Fig. 5a). The pitch of the typical
/má/ drops first and then rises rapidly. The pitch lowering response is
defined as the DES-evoked decrease in absolute pitch relative to the
control group (Fig. 5a). In each task, the normal syllable was repeated
at least five times. Each cortical site was discontinuously stimulated in
themiddleof thepatient’s syllablepronunciation (Fig. 5a) at least three
times and would be determined as a positive site if at least two-thirds
of them evoked pitch change without after-discharge. The positive
sitesweremarkedwith sterile labels. Finally, the intraoperativephotos,
neuro-navigation snapshots, surgery video under the microscope and
the synchronized audio were recorded through our Brain Mapping
Interactive Stimulation System44.

After the operation, we used Praat software (Version 6.1.01,
https://www.fon.hum.uva.nl/praat/) to extract and verify the differ-
ence in pitch contours between the control group and the DES group
(two-tailed paired t test, p < 0.05 after FDR correction was considered
significant). In addition, to explore the spatial distribution of the pitch
control area, we reconstructed the brain surface of each patient and

manually normalized the pitch rising and lowering sites to the ICBM
152 template based on the anatomical landmarks.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The human patient data relevant to this study are accessible under
restricted access according to our IRB protocol. The de-identified
patient data that support the findings of this study will be made
available from the corresponding author upon request. Source data
are provided with this paper.

Code availability
The completely developed code that operates on the full data set will
be made available from the authors upon reasonable request.
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