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INVESTIGATION

Reconstructing the Molecular Function of Genetic
Variation in Regulatory Networks

Roni Wilentzik,* Chun Jimmie Ye," and Irit Gat-Viks*-'
*Department of Cell Research and Immunology, Tel Aviv University, Israel 6997801 and TDepartment of Epidemiology and
Biostatistics, University of California, San Francisco, California 94117

ABSTRACT Over the past decade, genetic studies have recognized hundreds of polymorphic DNA loci called response QTLs (reQTLs) as
potential contributors to interindividual variation in transcriptional responses to stimulations. Such reQTLs commonly affect the
transduction of signals along the regulatory network that controls gene transcription. Identifying the pathways through which reQTLs
perturb the underlying network has been a major challenge. Here, we present GEVIN (“Genome-wide Embedding of Variation In
Networks"), a methodology that simultaneously identifies a reQTL and the particular pathway in which the reQTL affects downstream
signal transduction along the network. Using synthetic data, we show that this algorithm outperforms existing pathway identification
and reQTL identification methods. We applied GEVIN to the analysis of murine and human dendritic cells in response to pathogenic
components. These analyses revealed significant reQTLs together with their perturbed Toll-like receptor signaling pathways. GEVIN
thus offers a powerful framework that renders a comprehensive picture of disease-related DNA loci and their molecular functions

within regulatory networks.

KEYWORDS eQTL; gene expression; immune dendritic cells; regulatory networks

EVEALING the genetic basis of interindividual variation

and discovering how such variation is manifested in re-
sponse to environmental changes is a fundamental challenge
in molecular genetics. Genome-wide association studies have
been highly successful in identifying polymorphic DNA loci
associated with physiological or molecular phenotypes
(McCarthy et al. 2008; Mackay et al. 2009). When the phe-
notype of interest is a quantitative trait, such as blood pres-
sure or cholesterol levels, the underlying genetic locus is
referred to as a “QTI’. A common strategy investigates the
association between quantitative traits of transcriptional re-
sponses and their underlying DNA loci called “response
QTLs” (reQTLs) (Albert and Kruglyak 2015). Studies have
provided clear evidence for the colocalization of reQTLs
and disease-related loci (Caliskan et al. 2015). This observation
has raised the hope that knowledge of reQTLs would con-
tribute to our understanding of genetic variation in regulatory
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networks that control transcriptional response, and that this,
in turn, could shed new light on the molecular basis of disease
pathogenesis (Kim and Przytycka 2012; Chasman et al. 2016).
However, in most reQTL studies the particular positions of
genetic perturbations within the regulatory network have
not been investigated.

Determining the role of causal reQTLs in the context of
regulatory networks is a prerequisite for the experimental
investigation of their role in susceptibility to disease. The
standard solution to this problem relies on a two-step ap-
proach. The first step—“reQTL mapping”—scans the entire
genome to identify significant reQTLs, and the second step—
“network embedding”—uncovers the position at which an
identified reQTL imposes a genetic effect on the network
(Tu et al. 2006; Suthram et al. 2008). Notably, various studies
over the last few years have shown that genetic variation can
be manifested in the context of a particular cell type or stim-
ulus but not in others (e.g., Petretto et al. 2006; Fairfax et al.
2014; Kugelberg 2014; De Jager et al. 2015). However,
the two-step approach has largely ignored the fact that
the rewiring of reQTLs in different stimulations is substan-
tial. As a consequence, in its calculation, a fixed (context-
independent) reQTL effect on a fixed molecular network is
generally assumed.
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An alternative strategy considers the contextual specificity
of both the reQTLs and the regulatory rewiring of signaling
pathways. In two recently devised methods—INCIRCUIT and
PINE (Gat-Viks et al. 2013; Wilentzik and Gat-Viks 2015)—
we considered a mechanism in which a causal reQTL affects
the transduction of signals along a certain molecular pathway
(referred to as a “perturbed network branch”), thereby lead-
ing to a perturbed signal propagating along the network,
from the extracellular stimulations toward the downstream
transcribed genes (Supplemental Material, Figure S1 in File
S1). In those methods, the reQTL mapping step exploits stan-
dard procedures for the identification of reQTLs, and the
network embedding step searches for perturbed network
branches by exploiting existing knowledge about the propa-
gation of different stimulation cues through the regulatory
network. In particular, PINE was shown to improve on the
performance of the INCIRCUIT algorithm, achieving substan-
tially better predictive accuracy (Wilentzik and Gat-Viks
2015). However, analysis using PINE is still limited, most
notably owing to its inability to handle heterozygosity and
its high false-positive rate. As a result, PINE could not be
applied on the outbred human population and is less suitable
for accurate identification of reQTLs jointly with their per-
turbed network branches.

Ideally, a systematic study of the role of reQTLs in regula-
tory networks should: (i) provide a joint mapping of reQTLs
and the position of their effect in networks; (ii) consider the
context specificity of both reQTLs and branches within regu-
latory networks; (iii) achieve high accuracy and reasonable
runtime performance; and (iv) handle both homozygous and
heterozygous cohorts. To address this fourfold challenge, we
have developed a novel method called GEVIN (“Genome-wide
Embedding of Variation In Networks”) for the simultaneous
identification of reQTLs and their perturbed branches within
the regulatory network. Notably, GEVIN enables us not only
to identify the effect of reQTLs on regulatory networks, but
also to provide an ab initio identification of reQTLs based on
prior knowledge of molecular networks.

To examine the utility of the GEVIN approach, we first
evaluated the ability of this method to identify the perturbed
network branch. This was done by comparing GEVIN with
alternative branch identification methods on simulated data
of various network structures. We then compared its perfor-
mance on synthetic data to those of classical reQTL identifi-
cation methods, focusing on the ability to correctly identify
reQTLs in response to specific stimulations. On all bench-
marks, and when using different genetic backgrounds (either
heterozygous or homozygous individuals), GEVIN displayed
substantial improvements in performance and maintained
reasonable running times. Thus, by employing GEVIN it is
possible both to utilize information about the regulatory
network for enhancement of reQTL mapping and to pinpoint
the position of reQTLs within regulatory networks. As a proof
of concept, we applied GEVIN on transcriptome data sets to
identify the embedding of reQTLs in regulatory networks of
the human and of the murine immune systems. Notably, the
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results suggested possible relationships among viral infec-
tions and the pathogenesis of certain inflammatory auto-
immune diseases and neurological disorders. Overall, our
study highlights the utility of GEVIN in uncovering molec-
ular mechanisms by which polymorphic DNA loci induce
broad effects on the interindividual variation in regulatory
networks.

Methods

Overview of GEVIN: a method for embedding reQTLs in
regulatory networks

The GEVIN algorithm is designed to identify “network-
dependent reQTLs” perturbing particular branches within a
regulatory network. GEVIN takes as input three types of data
(Figure 1A): (i) a regulatory network that was acquired from
the scientific literature, consisting of known environmental
cues (e.g., stimulations x,y,z) and distinct signaling path-
ways, termed “network branches” (e.g., branches b1-b10);
(ii) genotyping of all polymorphic DNA loci in each individual
[single-nucleotide polymorphisms (SNPs); e.g., SNPs «, B, v,
and individuals 1 to 4]; and (iii) transcriptional response
profiles of the network’s genes (e.g., genes a—f) following
each of the network’s stimulations and across all genotyped
individuals. GEVIN is designed on the basis of a fundamental
assumption that a perturbation of a SNP in a certain branch
will lead to genetic variation in those genes that are regulated
by the branch, but only in the context of the specific stimu-
lations that act as triggers of this branch. Based on this as-
sumption, each branch is characterized by an “activation
signature,” a collection of all combinations of upstream stim-
ulations that trigger the branch and all downstream genes
regulated by the branch [e.g., (c — f) X (¥ — 2) for branch b6
in Figure 1B]. When testing the perturbation of a certain
branch by a specific SNP, the procedure computes a “GEVIN
score,” which evaluates the observed effect of the SNP across
all combinations of genes and stimuli within the activation
signature of the branch. A high GEVIN score for a SNP and its
best-scoring branch reflects a promising reQTL together with
its inferred perturbed network branch. We term such reQTLs
network-dependent reQTLs.

Formally, the GEVIN score is evaluated using a constraint-
based multivariate regression model. In this model, the ex-
planatory variable is the SNP, the dependent variable is the
multivariate transcriptional responses of all stimulations
(across all genes and individuals), and the solution is con-
strained by the activation signatures of the branches. For
example, the activation signature of branch b6 in the illustra-
tion [(c — f) X (y — 2); Figure 1B], combined with the geno-
typic data of SNP B (Figure 1A; top right), fully explains the
transcriptional response measurements (Figure 1A; bottom
right): AA- and aa-carrying individuals differ in their re-
sponse of genes c—f following stimulations y and z. The out-
put is therefore a single hypothesis of the effect of reQTL 8 on
branch b6 (Figure 1C).
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Figure 1 lllustration of the GEVIN algorithm. (A)
Input data. GEVIN takes as input [1] a regulatory
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Formulation of the GEVIN algorithm

In the following sections, we first formalize the input data, and
then describe a standard gene—SNP association model, extend this
model for the effect of a single SNP on a single gene through
perturbation of a certain network branch, and explain how to
model SNP-branch perturbation. Lastly, based on this framework,
we describe the details of the GEVIN algorithm as a genome-wide
analysis of genetic perturbations within the signaling network.

Input data: GEVIN takes the following as input. (i) Genotyp-
ing of a large collection of SNPs Q across a group of individ-
uals I. X? is a column vector representing the genotyping of
SNP g € Q across all individuals in I. (ii) The transcriptional
response of multiple genes in group G following each of the
multiple stimulations in group S across all individuals in
group I. Let Y¢ be the measured |I| X |S| transcriptional re-
sponse matrix of gene g € G, where Y7, represents the change
in expression level of gene g followihg stimulation s € S in
individual i € I. (iii) Regulatory network M%$, which is ac-
quired from the scientific literature. Such a network consists
of a wiring diagram M that is triggered by the collection of
stimulations S and controls the transcriptional response of
genes in group G. The structure of the regulatory network
M defines a collection of network branches (that is, the dis-
tinct signaling pathways), denoted by B. Each branch b € B
is characterized by the subset of its triggering stimulations

Stimulations

B Branch activation signatures C “
b1 b2 b3 b4 b5

stimulations triggering the signal transduction along
the branch [e.g., (c — f) X (y — z) for branch b6].
Next, GEVIN calculates a statistical score for the per-
turbation of each branch by each SNP. This is done
by assessing the agreement between the genetic
effect of a SNP [from (A)] with the activation signa-
ture of a branch [from (B)]. In particular, genetic
variation in SNP B exactly matches the variation in
response of genes c—f following stimulations y and z
[a higher response in the aa-carrying individuals
compared to the AA-carrying individuals; (A)], which
is the activation signature of branch b6 [as indicated
in (B)l. GEVIN therefore suggests SNP B as a re-
sponse QTL (reQTL) that leads to transcriptional var-
iation by perturbing the transduction of signals
through branch b6 [illustrated in (C)]. TF, transcrip-
tion factor.

SP € S (its upstream stimuli) and the subset of its regulated
genes Gb € G (its downstream genes). In accordance, we de-
fine the activation signature of a branch b € B as a Boolean
|G| X |S| matrix A®, where for each g € G® and s € Sb,Ag_s =1
and all other entries are set to zero.

A basic gene-SNP association framework: Our analysis
generally relies on a standard multivariate regression model
(Rencher 2002; Hidalgo and Goodman 2013) to evaluate the
association between a single SNP g € Q and a single gene
g € G based on its transcriptional response to all stimulations
in group S. In this model, the explanatory variable is the
genotypic data X? and the multivariate outcome variable is
the transcriptional response matrix Y%:

g _ q ag :
Y\I\X\S| =pu+ X\I\X1'81X|S\ + ¢ (Equation 1)

To gain flexibility in the relationships between the different
genotypic groups, the genetic effect was modeled as a cate-
gorical variable.

Modeling the effect of a single SNP on a single gene
through perturbation of a single network branch: GEVIN
relies on a basic assumption that if a given SNP truly perturbs a
certain network branch b € B, it would induce genetic varia-
tion only in the genes regulated by this branch (g € G®) and
only following the relevant triggering stimulations (s € S?),
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as they compose the activation signature of branch b. To
model the effect of SNP g on gene g through perturbation
of a given branch b € B, we add constraints to the regression
model in Equation 1 as follows: the coefficients 8¢ are fixed
to zero for all genes and stimulations in which Ag‘s = 0 (that
is, B¢ = 0if and only if s € S\S org € G\G?; Figure S2 in File
S1 exemplifies the resulting regression in the case of the toy
network in Figure 1A). Finally, a likelihood ratio test of the
constrained regression model (comparing the model with
and without the SNP variable X?) provides a P-value for the
association of a single gene g and a single SNP g acting
through a certain branch b. We refer to this P-value as
Pab¢. Overall, |Q| X |B| X |G| P-values are calculated for each
combination of a gene, a SNP, and a network branch.

Modeling SNP-branch perturbation: A P-value for the ge-
netic perturbation of a branch b by a SNP g, denoted P%?, is
calculated for each SNP g € Q and branch b € B by combining
the P-values of all the genes downstream to the branch using
Fisher’'s combined probability test (Fisher 1925). Formally,
for each SNP g and branch b, Fisher’s test is applied to com-
bine all P-values in the set {P?%¢|g € G*}

Genome-wide analysis of genetic perturbations within the
signaling network: To avoid statistical inflation (e.g., due to
correlation among target genes), the combined P-values of
each branch b are normalized by the “genomic inflation factor”
of the branch, as described in Devlin et al. (2001). The genomic
inflation factor of a given branch b is defined as the ratio of the
median of the observed (real data) combined P-values vs. the
expected median. Here, the expected combined P-values are
calculated using 10 permuted data sets that were generated
by shuffling the genotypic data labels of all individuals. In all
cases, the median is calculated across the set {P%’|q € Q} of
combined P-values (that is, across all SNPs for the same
branch). We refer to these adjusted combined P-values as the
“GEVIN scores.”

Finally, a permutation-based false discovery rate (FDR) is
determined for each branch to conservatively identify signif-
icant SNP-branch perturbations. This is performed by gener-
ating R permuted data sets (by randomly reshuffling the
genotypic data labels of individuals; here, R = 10), calculat-
ing GEVIN scores for all SNPs in each permuted data set, and
then computing the FDR of a branch b as the fraction of
permuted SNPs that obtained higher GEVIN scores than a
certain threshold. Importantly, by shuffling only the geno-
typic data, the activation signature of each branch is retained,
maintaining correlations between the regulating genes and
the triggering stimulations of each branch.

Comparing GEVIN to existing methods for identifying
the perturbed branch

To assess GEVIN’s ability to identify the particular network
branch in which molecular components are perturbed by a
given reQTL, we compared GEVIN to two previously published
methods: (i) The INCIRCUIT algorithm (Gat-Viks et al. 2013),
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a qualitative method whose output is a list of branches hypoth-
esized to be perturbed by an input reQTL based on the network
structure, the output of which is not accompanied by any sta-
tistical assessment; and (ii) the PINE algorithm (Wilentzik and
Gat-Viks 2015), a statistical framework that relies on probabi-
listic graphical modeling (Koller and Friedman 2009) of the
regulatory network. PINE has been shown to outperform the
INCIRCUIT algorithm (Wilentzik and Gat-Viks 2015) but is
limited to homozygous organisms. All reported results were
generated using the optimal parameters of each algorithm as
described in Wilentzik and Gat-Viks (2015) (PINE: 500 permu-
tations and a confidence level of 0.95; and INCIRCUIT: an
association cutoff of 0.1 and enrichment cutoff of 0.9).

All compared methods predict the perturbed branch based
on the same prior network and measurements, yet they differ
in their basic design. Whereas INCIRCUIT and PINE take as
input a single significant reQTL, GEVIN was designed to
identify the reQTLs simultaneously with branch identifica-
tion, reducing the reliance on an input reQTL. In our synthetic
data analysis, all compared methods utilize the correct reQTLs
as input to obtain a fair comparison.

Comparing GEVIN to whole-genome reQTL
identification methods

To assess GEVIN'’s ability to pinpoint the associated reQTL (out
of all SNPs), we implemented three commonly used whole-
genome reQTL identification methods. Similarly to GEVIN, all
compared methods solve separate regression models for each
gene and then utilize Fisher’s combined probability test to
combine the resulting P-values. The alternative methods
mainly differ in how they handle multiple stimulations.

MAXSTIM: The MAXSTIM method utilizes a standard regres-
sion model and tests for association following each of the
stimulations [as implemented in Fairfax et al. (2014) and Lee
et al. (2014)]. Formally, the association between a SNP q and
a gene g is tested in the context of each stimulation s:

Yitq =+ Xjjq B4 + ¢ (Equation 2)

As a first step, a P-value is calculated for a certain gene follow-
ing a given stimulation by testing the significance of the geno-
typic term (that is, with and without the effect of q). Next, for
each stimulation and SNP, a statistical score is generated using
Fisher’s combined method over all genes. For a given SNP g, an
overall score is determined by the best-scoring stimulation.

STIMVAR: The STIMVAR method aims to identify reQTLs by
evaluating the SNP-stimulation interaction terms [as in Smith
and Kruglyak (2008) and Orozco et al. (2012)]. For a given gene
g and SNP g, the calculation is based on the following model:

g _ q
Y(mx|5\) x1 =M+ X(mx\sp % 1B+ Z(xis)) x 182
+ (XX Z)B3 + ¢ (Equation 3)

WhereX?m X |s|)x 118 the concatenation of the X7 vector |S|

times and Z is a categorical vector of the particular
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stimulation, following which the response measurements
were taken. The P-value of the association between a SNP
and a gene is calculated by testing the significance of the
interaction term (that is, with and without the interaction
term X9 X Z). For a given SNP g, an overall score is deter-
mined by combining the P-values of all genes using Fisher’s
method.

MULTIVARIATE: Similarly to GEVIN, the MULTIVARIATE
method was designed based on multivariate regression to
draw power from the agreement between multiple stim-
ulations [as suggested in Knott and Haley (2000) and
Sukhwinder-Singh et al. (2012)]. However, unlike GEVIN,
MULTIVARIATE is not a branch-driven method and therefore
does not impose constraints on the activation signature of
branches. Formally, it uses the linear model in Equation
1 without imposing any constraints on the solution space.

Synthetic data analysis

We generated synthetic data for the purpose of comparing the
GEVIN algorithm with branch perturbation and reQTL iden-
tification methods. See Supplemental Material, File S1 for
details about generating the synthetic data and performance
analysis.

Analysis of biological data

Mouse data: We applied GEVIN to a previously published
data set (Gat-Viks et al. 2013) of bone marrow-derived
dendritic cells (DCs) from the BXD collection of recombinant-
inbred mice strains (Peirce et al. 2004), measuring the ex-
pression levels of 422 genes in response to three stimulations:
Pam3CSK4 (PAM), lipopolysaccharide (LPS), and polyinosinic-
polycytidylic acid (poly I:C), across 43 mice strains. Response
levels were defined as the expression levels measured after
stimulation normalized by the expression in steady state.
Genotypic data of 3796 SNPs was downloaded from WebQTL
(Wang et al. 2003). The murine Toll-like receptor/RIG-1-like
receptor (TLR/RLR) signaling network was constructed
based on the scientific literature (Richez et al. 2009; Kawai
and Akira 2010; Fink and Grandvaux 2013; Kawasaki and
Kawai 2014; McNab et al. 2015; Pandey et al. 2015) and
encompasses seven distinct signaling branches (Table S1A
in File S1). The analysis of GEVIN was separately conducted
on five groups of genes (#1-#5); each gene in these groups
was embedded in the network under the relevant transcrip-
tion factors as described in Gat-Viks et al. (2013) (see Table
S2A in File S1).

Human data: We applied GEVIN to a recently published data
set (Lee et al. 2014) of peripheral blood monocyte-derived
DCs from 676 healthy individuals, measuring the expression
of 414 genes in response to three stimulations: LPS, influenza
virus lacking the NS1 gene (denoted FLU), and the inter-
feron-B cytokine (IFN-B). Response levels were calculated
as in the mouse data. Genotypic data are available for 531 in-
dividuals across 642,850 SNPs (Lee et al. 2014). Here, we

focused on 266 individuals that were genotyped, and from
which samples were taken and exposed to all three stimula-
tions (all profiles exhibit good correlation to other individu-
als). Out of 642,850 genotyped SNPs, we filtered out 46,523
loci in which one of the genotypic groups has an allele
frequency < 1% in the samples. We modeled the structure
of the human TLR/RLR signaling network based on a compre-
hensive literature survey with a focus on human DCs (Richez
et al. 2009; Kawai and Akira 2010; Fink and Grandvaux
2013; Kawasaki and Kawai 2014; Lee et al. 2014; McNab
et al. 2015; Pandey et al. 2015). Overall, the human network
model encompasses nine distinct signaling branches (Table
S1B in File S1) and is embedded with 18 different genes
(Table S2B in File S1). The multivariate regression model
(Equation 1) was extended to control for three confounding
factors: gender, age, and ethnicity. In particular, we con-
ducted a preprocessing step for each branch: we started by
performing principal component analysis on the confounding
factors and then used their representation in the principal
component space to control the factors in the multivariate
regression of each branch in the network. The residuals of
the regressions were later used as dependent variables in
the regression model when testing the significance of a
SNP-branch perturbation.

Data availability

All data sets used in this work are fully presented in the paper.
The code for the GEVIN algorithm is available for download at
https://github.com/roniwile/GEVIN or http://csgi.tau.ac.il/
gevin/.

Results

Comparison of GEVIN with alternative methods for the
challenge of branch identification

To examine GEVIN’s ability to correctly identify the perturbed
network branch, we compared GEVIN with two alterna-
tive branch identification methods: INCIRCUIT and PINE
(Gat-Viks et al. 2013; Wilentzik and Gat-Viks 2015). For this
purpose, we utilized synthetic data collections based on
multiple regulatory networks and different data parameters,
consisting of case data sets of network-dependent reQTLs
(each having a genetic effect on a randomly chosen network
branch) as well as control data sets without any genetic ef-
fect. In particular, we generated two types of synthetic data
collections: those using homozygous and those using hetero-
zygous genetic data (see Methods). The INCIRCUIT and PINE
methods take as input a known reQTL and focus on using the
data to identify the perturbed branch. Accordingly, all three
compared algorithms were provided with true synthetic
reQTLs as input.

We compared the performances of the three methods on
synthetic data sets across a broad range of numbers of genes,
numbers of individuals, and genetic effect sizes. Since INCIRCUIT
is a qualitative method and does not provide statistical
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Figure 2 Performance analysis of
identifying perturbed network
branches. (A-D) Shown are the
sensitivity (A and C) and specificity
scores (B and D) across different
data parameters (numbers of genes,
numbers of individuals, and effect
sizes; left to right) obtained by three
methods for embedding response
QTLs (reQTLs) in networks (color
coded) using data sets of either
homozygous (A and B) or hetero-
zygous (C and D) genetic back-
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of the three reQTL embedding algo-
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using data sets of homozygous
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scores, we assessed the performance by means of standard
sensitivity and specificity statistics, while using a statistical
threshold for the PINE and GEVIN methods (see Methods).
Figure 2A demonstrates the superiority of the GEVIN and
PINE methods over INCIRCUIT in correctly identifying the
perturbed network branch when tested on homozygous data.
Figure 2B highlights a major drawback of the PINE algorithm,
which largely fails to identify nonperturbed branches. In par-
ticular, PINE is limited in its ability to discriminate between
successive network branches, leading to high false-positive
identification of branches on the same signaling pathway as
the perturbed branch (Figure S3, A and B in File S1). Similar
results for PINE and GEVIN were reproduced in various
threshold settings using a standard area under the precision-
recall curve statistic (denoted “AUPR”) across changing score
thresholds (Figure S3C in File S1). The superiority of GEVIN
is further manifested in data of heterozygous genetic back-
ground (Figure 2, C and D): GEVIN outperforms INCIRCUIT,
while PINE cannot be applied to heterozygous data.
Encouraged by GEVIN’s ability to identify network-dependent
reQTLs, we next asked whether GEVIN can further distin-
guish true network-dependent reQTLs, which affect all
genes regulated by the perturbed branch, from single-gene
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reQTLs, which have an effect on a single gene that is regulated
by the perturbed branch. To address this, we compared two
types of control data sets: either the original control, in which
none of the target genes is associated with upstream reQTLs,
or an alternative control data set, in which only a single down-
stream gene is associated with a randomly chosen reQTL
(Methods). In both cases, we used the original network-dependent
reQTLs as our case data sets. As demonstrated in Figure S4 in
File S1, GEVIN’s ability to distinguish network-dependent
reQTLs from single-gene reQTLs is similar to its ability to
distinguish network-dependent reQTLs from non-reQTLs.
Finally, we examined the runtime performances of the three
branch identification methods. We did this by comparing the
homozygous data sets across varying numbers of genes and
individuals on a Linux machine with 2.6 GHz AMD Opteron
6238 processors. As shown in Figure 2E, GEVIN maintains a
reasonable running time that is lower than PINE'’s. For exam-
ple, PINE’s runtime is four times higher than GEVIN’s when
using 30 genes and 2.5 times higher when using 60 genes.
Taken together, these results demonstrate the advantages
of GEVIN asa branch identification method: it is more accurate
than INCIRCUIT and PINE, and can be applied to a wide
variety of data sets of both homozygous and heterozygous
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genetic backgrounds. In the following section, we describe
further testing of GEVIN’s performance as a reQTL identifica-
tion methodology.

Comparison of GEVIN with alternative methods for the
challenge of reQTL identification

To characterize the ability of GEVIN to identify the true reQTL
among all candidate SNPs, we compared GEVIN with three
alternative regression-based methods—MAXSTIM, STIMVAR,
and MULTIVARIATE—that differ from each other and from
GEVIN in handling the transcriptional responses to multiple
stimulations (see Methods). MAXSTIM is based on regression
analysis performed separately for each of the stimulations
(Fairfax et al. 2014; Lee et al. 2014); STIMVAR evaluates the
significance of interactions between a given SNP and the var-
ious stimulations (Smith and Kruglyak 2008; Orozco et al
2012); and MULTIVARIATE utilizes multivariate regression
to exploit correlations between multiple stimulations (Knott
and Haley 2000; Sukhwinder-Singh et al. 2012). Note that
both GEVIN and MULTIVARIATE handle multiple stimulations
as a multivariate outcome, but they use different sets of genes
and stimuli; whereas MULTIVARIATE considers all genes and
stimulations in the network, GEVIN is focused on the subgroup
of genes and stimulations relevant to a particular branch
within the network.

We compared the performances of these methods by using
the abovementioned case data sets of network-dependent
reQTLs, where each data set was built on the basis of one
randomly chosen reQTL from a synthetic genome of 100 SNPs.
Data sets without any genetic effect were used as control.
Given the imbalance between the numbers of synthetic causal
reQTLs and of the remaining SNPs, we tested the performance
of the reQTL identification methods by using the AUPR sta-
tistic. We further examined the fraction of case data sets in
which the synthetic causal reQTLs exactly matched the reQTLs
predicted by each of these methods (denoted “fraction of re-
covered reQTLs”). This analysis demonstrated the advantage
of GEVIN in the case of network-dependent reQTLs, where all

o

o

MAXSTIM
——— STIMVAR

Figure 3 Comparative analysis of response QTL
(reQTL) identification methods. Shown are the
precision-recall curve statistic (AUPR) scores [y-axis;
(A)] and the fraction of recovered reQTLs [y-axis;
(B)] using the case data sets of network-dependent
reQTLs that were constructed with different num-
bers of genes (left), different numbers of individu-
als (middle), and different effect sizes (right; x-axis;
100 heterozygous SNPs in all cases). The four reQTL
identification methods are color coded. The plots de-
0.6 pict GEVIN as the best performing method for iden-
tifying network-dependent reQTLs.

0.6
Effect size

Effect size

reQTLs in the data set have an effect on a certain branch
within the network (Figure 3). For example, in a synthetic
data collection with 30 genes, 60 individuals, and a network-
dependent effect size of 0.4, GEVIN’s AUPR score was higher
than the scores obtained by MAXTIM, MULTIVARIATE, or
STIMVAR (0.98 vs. 0.94, 0.7, or 0.51, respectively). Similar
results were obtained for the fraction of recovered reQTL
scores across different numbers of genes, numbers of individ-
uals, and genetic effect sizes.

We were also interested in examining the performance of
GEVIN compared with those of alternative reQTL identifica-
tion methods in the case of network-independent (constitu-
tive) reQTLs. Unlike the effects of network-dependent reQTLs,
which act in the context of a subset of the stimulations (depend-
ing on the localization of the perturbed branch), the effect of
constitutive reQTLs is manifested in all stimulations. Accord-
ingly, we constructed a collection of synthetic case data sets
carrying such reQTLs (see Methods). Notably, in the case of
constitutive reQTLs, the MULTIVARIATE method outper-
formed the alternative methods, including GEVIN (Figure S5
in File S1). This finding is largely consistent with the designs
of the GEVIN and MULTIVARIATE methods, which exploit
the commonality between various stimulations. However,
whereas MULTIVARIATE exploits all stimulations as a multivar-
iate outcome, GEVIN typically tests a subset of the stimulations,
an appropriate constraint only in the case of network-dependent
reQTLs. A demonstration of the differences between the four
methods in the case of both network-dependent and constitu-
tive reQTLs is further provided in Figure S6 in File S1. Taken
together, these results show that GEVIN successfully utilizes
the differences in genetic associations between stimulations,
performing best in the case of network-dependent reQTLs.

Application of GEVIN to the examination of murine and
human immune DCs

To study network-dependent reQTLs in real biological data,
we used GEVIN to examine reQTLs related to the response
of both human and murine primary DCs to pathogenic
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Figure 4 Evaluation of murine dendritic cell (DC) data using GEVIN. (A) Model of the murine Toll-like receptor/RIG-1-like receptor (TLR/RLR) signaling
network. The network is triggered by three extracellular stimulations [Pam3CSK4 (PAM), lipopolysaccharide (LPS), and polyinosinic-polycytidylic acid
(poly I:0)] and regulates the transcription of NFkB-induced or IRF3-induced genes or both (see gene embedding in Table S2A in File S1). (B) Application
of GEVIN on the five groups of genes (groups #1—#5). Presented are the GEVIN scores (y-axis) obtained for each SNP (x-axis; gray background for odd
chromosomes) for the best-scoring perturbed branch (color coded). Horizontal line: the most conservative 10% permutation-based false discovery rate
(FDR) threshold across all branches. (C) Comparison of GEVIN with alternative network embedding methods. Shown for each gene group (column 1) are
the branches predicted by the INCIRCUIT (column 2), PINE (column 3) and GEVIN (FDR < 10%; column 4) algorithms.

components. In each case, we first discuss the data set and
regulatory network and then consider the resulting associations.

We first applied GEVIN to the examination of bone marrow-
derived immune DCs of recombinant inbred BXD mouse
strains (Peirce et al. 2004). We used previously published
data (Gat-Viks et al. 2013) on transcriptional responses to
three pathogenic-like ex vivo stimulations: PAM, LPS, and
poly I:C. Each of these stimulations triggers the TLR/RLR
signaling network, which plays a key role in pathogen recog-
nition of the innate immune system (Richez et al. 2009;
Kawai and Akira 2010; Fink and Grandvaux 2013;
Kawasaki and Kawai 2014; McNab et al. 2015; Pandey
et al. 2015). To apply GEVIN to these data we modeled the
murine TLR/RLR signaling network (depicted in Figure 4A
and described in Methods). We applied GEVIN to five groups
of genes (groups #1 to #5) that were previously character-
ized in immune DCs (Gat-Viks et al. 2013; Wilentzik and
Gat-Viks 2015) and were scrutinized for the embedding of
their associated reQTLs in the TLR/RLR signaling network.
According to GEVIN’s predictions (Figure 4B and Figure S7 in
File S1), two reQTLs (located in chromosome 1: 128—185
Mb and chromosome 9: 122—123 Mb) perturbed two distinct
branches in the TLR/RLR signaling network (poly I:C~-TRAF3
and LPS-TLR4, respectively), leading to genetic variation in
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the response of genes in groups #1 and #4, respectively
(permutation-based FDR < 10%). Overall, the predicted
reQTLs of all groups were in agreement with previous studies
(Figure 4C and Figure S8 in File S1). Specifically, the branch
predicted by GEVIN to perturb the genes in group #1 is con-
sistent with the branches suggested by INCIRCUIT and PINE,
while the branch predicted by GEVIN for group #4 is up-
stream of the branch suggested by the former methods, shar-
ing part of its signal transduction pathways. The best-scoring
branches suggested by GEVIN for all other groups (#2, #3,
and #5) largely agreed with the branches identified by
INCIRCUIT and PINE, although those branches did not pass
the 10% FDR threshold.

We next applied GEVIN to the recently published human
DC data set (Lee et al. 2014), which records transcriptional
responses to three ex vivo stimulations (IFN-B, LPS, and FLU)
that trigger the TLR/RLR signaling network. The regulatory
network used for this analysis is illustrated in Figure 5A
(Methods). A summary of GEVIN’s predictions across all
branches is shown in Figure 5B (see individual branches in
Figure S9 in File S1), depicting a significant reQTL that per-
turbs the FLU-IFN-a branch (SNP rs327028, located in chro-
mosome 11: 20792419 bp, permutation-based FDR < 10%).
According to the activation signature of the FLU-IFN-«
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Figure 5 Evaluation of human dendritic cell (DC) data using GEVIN. (A) Model of the human Toll-like receptor/RIG-1-like receptor (TLR/RLR) signaling
network. The network is triggered by three stimulations [lipopolysaccharide (LPS), influenza virus lacking the NS1 gene (FLU), and interferon (IFN)-B] and
regulates the transcription of downstream genes [proinflammatory cytokines, IFN-a and -8, and IFN-stimulated genes (ISGs); see gene embedding in
Table S2B in File S1]. (B) Presented are the GEVIN scores (y-axis) obtained for each SNP (x-axis; gray background for odd chromosomes) for the best-
scoring perturbed branch (color coded). Horizontal line: the most conservative 10% permutation-based false discovery rate (FDR) threshold across all
branches. The analysis reveals a single significant perturbation of response QTL (reQTL) rs327028 (located on chromosome 11: 20792419 bp), which
likely perturbs the signal transduction from the FLU stimulation to the IFN-a genes. (C) Shown are boxplots of the transcriptional FLU-responses (y-axis)
of the nine IFN-a genes. The response levels are depicted across the three genotypic groups (x-axis) derived from the rs327028 SNP. The plots indicate
that transcriptional responses, particularly of IFN-a genes, are lowest in TT-carrying individuals.

branch, rs327028 should have an influenza-specific effect on
IFN-a genes (the effect would not be observed in response to
IFN-B or LPS). This agrees well both with the results of a simple
ANOVA model, where the SNP specifically affected the sug-
gested target genes after influenza stimulation (Figure S10 in
File S1), and with the lower expression levels observed in
the minor allele homozygous group (TT; Figure 5C). The sug-
gested rs327028 reQTL has a minor allele frequency of 10.14%
(dbSNP; Sherry et al. 2001), does not deviate significantly from
Hardy-Weinberg equilibrium, and is located in the first exon of
the short isoform of the NELLI gene (Pang et al. 2015). We
conclude that this SNP constitutes a previously uncharacterized
reQTL that affects the transcriptional response of IFN-a genes in
immune DCs following influenza infection.

Discussion

Extensive efforts over the past decade have been focused
on uncovering the genetic basis of complex phenotypes.

Nevertheless, the molecular functions of reQTLs that are
involved in many diseases are still largely unknown. Recent
studies have focused either on the identification of reQTLs
(reQTL mapping; Lee et al. 2014; Caliskan et al. 2015) or on
identification of the position of a given reQTL within the
molecular network (network embedding; Tu et al. 2006;
Suthram et al. 2008; Gat-Viks et al. 2013; Wilentzik and
Gat-Viks 2015). The GEVIN algorithm is the first to combine
these two tasks by simultaneously identifying reQTLs and
their positions within the underlying regulatory network.
According to our results with synthetic data, when a reQTL
has a specific effect on a certain pathway within a regulatory
network (network-dependent reQTL), GEVIN outperforms
existing methods both of network embedding and of reQTL
mapping (Figure 2 and Figure 3). Our application of GEVIN
on a well-characterized data set of murine immune response
demonstrated that GEVIN’s predictions are consistent with
previously published results (Figure 4), supporting the
validity of the GEVIN algorithm.
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Finally, we applied GEVIN on a recently published data set
of human immune responses to LPS, IFN-B, and influenza
stimulations (Figure 5). A particularly promising finding con-
cerned the human rs327028 SNP, which is located on chro-
mosome 11 within the NELLI gene and is associated with
transcriptional responses of several IFN-a genes. The effect
of this SNP was specific to influenza stimulation, and was not
observed in either LPS or IFN-B stimulations. The mechanism
proposed by the GEVIN algorithm therefore implies that
NELL]1 participates in the regulation of IFN-a levels during
the cellular response to viral pathogens. In support of this
hypothesis, previous studies have demonstrated the involve-
ment of NELL] in several immune-related disorders. In partic-
ular, a polymorphic site within the NELLI gene was reported to
have a genetic effect on Crohn’s disease (Franke et al. 2007),
one of the two subphenotypes of inflammatory bowel disease
(IBD). IBD is an autoimmune disease triggered by interactions
of the intestine with environmental factors such as viral infec-
tions. In another study, examination of changes in IFN-«a levels
in response to the Newcastle disease virus revealed that the
kinetics of IFN-a production in Crohn’s patients differs from
that in controls (Capobianchi et al. 1992). Altogether, those
studies showed that NELL1 is related to IBD and that virus-
infected cells from IBD patients exhibit an altered IFN-«a re-
sponse. This observation can be explained by GEVIN’s proposed
mechanism of NELLI regulating IFN-a genes as a protective
response against viral attack. Further study is needed to under-
stand whether IFN-« indeed mediates between NELLI activity
and IBD symptoms in response to viral infection.

Another interesting finding regarding the involvement of
NELL1 in IFN-a regulation appears in the literature on neuro-
logical disorders. NELLI resides in a genomic locus previously
associated with a behavioral phenotype in autism spectrum
disorders (ASDs) of faints, fits, or blackouts (Connolly et al.
2013), and with fever-related syndromic epilepsy in ASD
patients (Hartmann et al. 2015). Several items of evidence
have provided intriguing indications for the role of IFN-« in
ASD, including raised IFN-a levels in patients with ASD
(Stubbs 1995) and autistic-like symptoms (e.g., “withdrawal”
and “reduced communication abilities”) following a large
dose of IFN-a given to children as a treatment for cancer
(Hill et al. 1981). Interestingly, it was also suggested that
high IFN-« levels are related to seizures, which are prevalent
in ASD patients (Parmeggiani et al. 2010). Finally, a recent
study identified the TLR signaling network as one of the two
signaling pathways most significantly shared between ASD
and its comorbidities (Nazeen et al. 2016). Altogether, our
research raises the possibility that ASD—and particularly
seizure pathogenesis—might be affected by the control of
NELL1 on IFN-a levels in response to viral infections.

The GEVIN algorithm was designed to exploit potential
cross talk among different overlapping signaling pathways in
response to different stimulations. This relies on a fundamen-
tal assumption that most biological pathways are a part of a
more complex molecular network and that overlapping path-
ways are common in these networks. We base this assumption
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on the high prevalence of overlapping pathways in the various
repositories of manually-curated signaling networks. For in-
stance, overlapping pathways are present in 65% (15 of 23) of
the multi-stimuli cancer networks and 90% (10 of 11) of the
multi-stimuli cardiovascular networks that were annotated in
the Ingenuity Pathway Analysis database (QIAGEN, Valencia,
CA). We hope that future experiments will facilitate the
construction of additional, less explored networks.

The GEVIN approach opens up many directions for
future improvements. First, integration of different types of
networks—such as metabolic networks and cell-cell interaction
networks—may confer a different perspective on gene regu-
lation. Second, it is likely that the GEVIN framework can be
extended to handle other types of reQTLs, such as DNA meth-
ylation QTL. Third, integration of nonregulated genes in the
computation of branches might allow us to better distinguish
between consecutive branches along the same signaling path-
way. Finally, simultaneous investigation of several reQTLs
affecting the same regulatory network might allow us to ex-
plain the appearance of genetic interactions in some target
genes (residing downstream of both reQTLs) but not in other
genes (residing downstream of only one reQTL). Overall,
GEVIN is suggested as a promising approach for investigating
reQTLs and modeling their effects on regulatory networks,
thus providing an opportunity to obtain a comprehensive
view of the molecular mechanisms involved in the pathogen-
esis of complex diseases.
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