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Learning distributions as they come: Particle filter models for online
distributional learning of phonetic categories

Dave F. Kleinschmidt (davidfk@princeton.edu)
Princeton Neuroscience Institute

Princeton, NJ 08544 USA

Abstract

Human infants have the remarkable ability to learn any hu-
man language. One proposed mechanism for this ability is
distributional learning, where learners infer the underlying
cluster structure from unlabeled input. Computational mod-
els of distributional learning have historically been principled
but psychologically-implausible computational-level models,
or ad hoc but psychologically plausible algorithmic-level mod-
els. Approximate rational models like particle filters can po-
tentially bridge this divide, and allow principled, but psycho-
logically plausible models of distributional learning to be spec-
ified and evaluated. As a proof of concept, I evaluate one such
particle filter model, applied to learning English voicing cate-
gories from distributions of voice-onset times (VOTs). I find
that this model learns well, but behaves somewhat differently
from the standard, unconstrained Gibbs sampler implementa-
tion of the underlying rational model.

Keywords: Computational modeling; Rational models; Parti-
cle filters; Language learning; Distributional learning; Speech
perception

Any normally developing human infant can learn any hu-
man language, and they can do so without requiring much ex-
plicit instruction or guidance. How is this possible? At a basic
level, how can an infant figure out that their language has, for
instance, two different phonetic categories distinguished by
voicing (e.g., “beach” vs. “peach”), and not three, or just one
(Lisker & Abramson, 1964)? One clue comes from the fact
that sounds from the same category tend to sound alike, more
so than sounds from different categories. Infants (and adults)
are sensitive to this cluster structure, and even in the absence
of explicit cues or instructions learn to distinguish between
two sounds better when they occur in two different clusters
than when they occur in a single, unimodal cluster (Maye,
Werker, & Gerken, 2002).

There are a number of different models for this “distribu-
tional learning”, which fall into two broad families. On the
one hand, there are computational-level models (in the sense
of Marr, 1982), which focus on the nature of the problem to
be solved, the information that is available from the world,
and the best performance that is possible given the combi-
nation of those two factors (e.g., Feldman, Griffiths, Gold-
water, & Morgan, 2013). On the other hand, there are cog-
nitive, algorithmic-level models, which focus on psycholog-
ically plausible representations and processes (e.g., McMur-
ray, Aslin, & Toscano, 2009; Vallabha, McClelland, Pons,
Werker, & Amano, 2007). Both of these approaches have
provided insight into the process of distributional learning.
Computational-level models set the boundaries on what is
possible in principle. A notable example is the work of Feld-
man et al. (2013) which shows, somewhat counterintuitively,

that distributional learning of phonetic categories can in gen-
eral be enhanced by simultaneous distributional learning of
words. However, the implementations of these models are of-
ten profoundly psychologically implausible, and may assume
that learners have simultaneous access to the entire batch of
data to learn from, can make multiple passes over that data,
or maintain unlimited amounts of uncertainty.

Algorithmic-level models, on the other hand, serve as ex-
istence proofs that distributional learning is possible, given
particular representational assumptions. These models often
make ad hoc assumptions in order to better fit behavioral data,
as in McMurray et al. (2009) who conclude that “winner-
take-all” competitive dynamics are necessary for distribu-
tional learning. These models also generally lack the in-
principle guarantees of computational-level models, and thus
it is unclear whether any particular model’s failure or success
reflects fundamental constraints or representational assump-
tions (though computational-level models are not immune to
this problem; Goldwater, Griffiths, & Johnson, 2009).

Each level of analysis offers insight, but bridging between
these levels is critical for a comprehensive understanding of
human cognition (Marr, 1982). One way to approach such
a bridge is the family of models known as rational approx-
imations of rational models (Sanborn, Griffiths, & Navarro,
2010). These models provide a principled link between
computational-level concerns about the structure of the world
and the nature of the tasks that the mind must solve, and
algorithmic-level concerns about psychologically plausible
representations and processes. In this paper, I explore a psy-
chologically plausible, approximately rational model for pho-
netic distributional learning: particle filters for Bayesian non-
parametric clustering. As a case study, I apply this model to
English stop voicing (e.g., /b/ vs. /p/), and investigate how
the performance of this model is affected by the constraints
of online processing (one data point at a time) and limited
representational resources, relative to an unconstrained dis-
tributional learning algorithm.

To start, I review the Bayesian approach to distributional
learning as a problem of statistical inference under uncer-
tainty. Next, I briefly summarize two algorithms for doing
this inference: a batch Gibbs sampler algorithm, and an on-
line particle filter algorithm. I then analyze the performance
of these two models on the same (simulated) phonetic cue dis-
tributions, focusing on how well they can recover the true un-
derlying structure, before discussing the implications of these
results.
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Bayesian models of distributional learning
Distributional learning models all attempt to solve the same
problem: given some data points x1:N , we wish to know how
many clusters generated them (and what those clusters look
like). We assume that these data were generated from some
number of clusters K, where K could be (in principle) any-
where between 1 and N (the number of data points). A com-
plete clustering of these data points has two parts: the clus-
ter that each data point is assigned to (denoted c1:N), and the
properties of the clusters themselves (which in the example
below are the mean µk and variance σ2

k of a normal distri-
bution, but in general are the parameters of some probability
distribution).

The first difficulty is that there’s no perfect, un-ambiguous
solution to this problem (in general), since clusters are often
overlapping and of different sizes and frequencies. For this
reason, Bayesian nonparametric models frame this as a prob-
lem of statistical inference under uncertainty, and aim to find
the posterior probability for each possible clustering, given
some particular data, p(c1:N ,µ1:K ,σ

2
1:K |x1:N) (see Gershman

& Blei, 2012, for an excellent introduction). In many cases,
it’s easier to do this in two stages: first, compute the distribu-
tion of cluster assignments p(c1:N |x1:N) (marginalizing over
possible clusters parameters), and then compute the distribu-
tion over cluster properties, conditional on the cluster assign-
ments p(µ1:K ,σ

2
1:K |c1:N ,x1:N).1 Here the focus is on the first

part: computing the distribution of cluster assignments given
the data.

In principle, computing the posterior distribution
p(c1:N |x1:N) is a simple matter of applying Bayes Rule:

p(c1:N |x1:N) ∝ p(x1:N |c1:N)p(c1:N)

The first term is the likelihood, or the probability that the ob-
served data is generated by a particular hypothetical cluster-
ing, which will depend on how similar the data points are
in each cluster, and on the prior distribution over cluster pa-
rameters. The second term is the prior, or how likely such a
clustering is before any data is observed. The prior is where
inductive biases for simpler clustering can be introduced.

The particular prior used here is the Dirichlet process. This
prior has a rich-get-richer structure, which is most easily un-
derstood by considering the conditional prior p(cn|c1:n−1)
over cluster assignments for the nth data point, given assign-
ments 1 to n−1. The prior probability of assigning to a clus-
ter k is

p(cn = k|c1:n−1) ∝

{
Nk existing cluster
α new cluster

where Nk is the the number of other data points assigned to
cluster k. The α parameter is called the concentration param-
eter and controls how strong the simplicity bias is. If α is

1One reason for this is that often when using a conjugate prior
for the cluster parameters, there’s no need to actually know the exact
properties of cluster to evaluate how good it is; all that’s needed is
the data points that are assigned to that cluster (and some measure
of how similar they are to each other).

very low, it’s highly unlikely (a priori) that a new cluster will
be created, especially when there are many data points. The
overall prior probability of any complete clustering c1:N can
be computed from these conditional probabilities under the
assumption that the data is exchangeable (that order doesn’t
matter, or that the cluster structure is stable over time), and
is proportional to ∏

N
2=1 p(ci|c1:i−1) ∝ ∏

K
k=1 αNk! (arbitrarily

defining c1 = 1).
The second difficulty is that there are an enormous num-

ber of possible combinations of cluster assignments. Even
if we know that there are only K = 2 clusters, there are still
2N possible ways to assign N points to two clusters, each of
which has some probability associated with it. Likewise for
every K from 1 to N. Luckily, most of these values for c1:N
have probability that is so small it’s essentially zero, and thus
the whole distribution p(c1:N |x1:N) can be approximated by a
reasonably small number of samples, or hypothetical values
of c1:N .

Batch algorithm: Gibbs sampler
One standard method of doing approximate inference by sam-
pling is a Gibbs sampler, a form of Markov Chain Monte
Carlo (MCMC) techniques. These are named because they
work by sampling (the “Monte Carlo” part) a new value for
the quantity of interest given only the data and the previously
sampled value (the “Markov Chain” part).

For a Dirichlet Process mixture model, this algorithm
works by sweeping through the data, one data point at a time,
re-sampling the cluster assignment for that data point con-
ditioned on the other data points. If c−i are the cluster as-
signments for every point but xi, then the Gibbs sampler will
assign xi to cluster k with probability p(ci = k|x1:N ,c−i) ∝

p(xi|ci = k,x−i,c−i)p(ci = k|c−i)—that is, proportional to the
likelihood of xi given the other data points in cluster k times
the prior probability of k under the Chinese Restaurant Pro-
cess prior. The likelihood for a new category is based on the
prior for the category parameters (e.g., mean and variance).
Once new assignments have been sampled for every xi, the
new values of ci are one sample from the posterior. Multi-
ple samples are drawn by repeatedly sweeping through the
data in this way, recording the sampled assignments for each
sweep.

Online algorithm: Particle filter
In contrast to MCMC algorithms, sequential Monte Carlo
(SMC) algorithms do not require that all data be available
simultaneously. Rather then generating samples one at a time
based on the entire dataset, they maintain a population of
hypotheses (or particles), that are each updated in parallel
as the data comes in. After n− 1 observations, particle j
has an associated weight w( j)

n−1 and clustering c( j)
1:n−1. There

are many different strategies for updating particle j based on
the the next observation xn. Here, we follow the approach
of Chen and Liu (2000), as described in, Fearnhead (2004).
First, as in the Gibbs sampler, an assignment is drawn from
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p(cn = k|c( j)
1:n−1,x1:n). Next, the weight is updated to be

w( j)
n = w( j)

n−1×
∑k p((c( j)

1:n−1,k)|x1:n)

p(c( j)
1:n−1|x1:n−1)

(normalized such that all the new weights sum to 1). The sum
in the numerator ensures that the new weight reflects the abil-
ity of this particle to predict the actual data point observed,
rather than just how well the sampled component explains it
(see Chen & Liu, 2000; Fearnhead, 2004, for further discus-
sion).

One common problem with particle filters is that a small
number of particles capture nearly all the weight, which dras-
tically reduces the effective number of samples and hence
the amount of information about the actual distribution they
are approximating. In order to prevent this, when the vari-
ance of the weights becomes too high, a rejuvenation step
resamples particles (with replacement) proportional to their
weights, and resets the weights to be equal. The threshold for
the variance of the weights was set to 50% of the mean of the
weights (as suggested by Fearnhead, 2004).

Methods
In order to evaluate the particle filter as a model of phonetic
distributional learning, I applied it to the problem of learning
the English distinction between voiced /b/ and voiceless /p/,
based on voice onset time (VOT). This is the primary acous-
tic cue to voicing for word-initial stops in English (Lisker &
Abramson, 1964), and exhibits a clear bimodality. In order
to simulate random VOT datasets, I fit two normal distribu-
tions to the VOTs for /b/ and /p/ from the Buckeye corpus
(Pitt et al., 2007) by Nelson and Wedel (2017). This particu-
lar corpus shows low levels of talker variability in VOT (see
Kleinschmidt, submitted). Fig. 1 shows an example randomly
generated set of VOTs.

The Gibbs sampler and particle filter models were imple-
mented in Julia (Bezanson, Edelman, Karpinski, & Shah,
2017).2 Each was run on 200 randomly generated data sets
of up to 10,000 observations, collecting intermediate results
after 10, 100, and 1,000 observations. For comparison, 6-
month-old infants in Bergelson and Aslin (2017) heard on
average around 200 tokens of word-initial /b/ and /p/ in a sin-
gle day, which would be 60,000 extrapolated to an entire year.
For each dataset, the number of particles (or samples for the
Gibbs sampler) varied (10, 100, and 1,000) and the concen-
tration parameter α varied (0.01, 0.1, 1, and 10). The results
for the Gibbs sampler were qualitatively the same across the
number of samples and number of observations, so results are
only shown for 1,000 samples (after 500 burnin) and 1,000
observations.

For the prior distribution over cluster means and variances,
both used a weakly informative conjugate Normal-χ−2 prior
(Gelman, Carlin, Stern, & Rubin, 2003), with µ0 and σ2

0 set
to the overall mean and variance of all the VOTs, and κ0 =

2Available online at github.com/kleinschmidt/Particles.jl

Voice onset time (VOT, ms)
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Figure 1: Example sample of VOTs used to assess distribu-
tional learning models. With fewer observations, the cluster
structure is not obvious, but with more clusters it bnecomes
clearer.

0.05 (to allow for significant possible variation in the cluster
means) and ν0 = 2 (to constrain the variances to reasonable
values).

For each run, the approximated posterior distribution of
cluster numbers is recorded. In the case of the Gibbs sam-
pler, this is simply the proportion of samples with each num-
ber of clusters K. The calculation is analogous for the par-
ticle filter, except that the weights need to be taken into ac-
count. If particle j has K( j) clusters and weight w( j), then
p(K = k|x1:N) = ∑ j w( j)δk(K( j)) (where δk(x) is the indicator
function, which is 1 if x = k and 0 otherwise).

Results
A natural measure of success is the probability assigned to
K = 2, since the data was generated by a two-component mix-
ture (Fig. 2). Additionally, Fig. 3 shows the expected number
of clusters E(K|x1:N) = ∑k kp(K = k|x1:N), and Fig. 4 shows
the full distributions (p(K|x1:N).

Gibbs sampler
Since the Gibbs sampler provides the “reference” approxima-
tion for these models, we first examine those results, shown
as the gray lines in Fig. 2 and Fig. 3. Of the values tested here,
the Gibbs sampler performs best with α = 0.1, allocating the
majority of the posterior probability to K = 2. Nevertheless,
the Gibbs sampler maintains substantial uncertainty, allocat-
ing some 15-20%probability to clusterings with more or less
than two clusters. For α an order of magnitude smaller or
larger than this, the Gibbs sampler infers fewer or more (re-
spectively) clusters than there actually are (Fig. 3), again with
some substantial uncertainty.

Particle filter
The particle filter, unlike the Gibbs sampler, works best when
α = 0.01 (the smallest value tested). At this value, with a
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Figure 2: Posterior probability correct (two-cluster solutions)
for particle filter (colors, 95% bootstrapped CIs over runs)
and Gibbs sampler (gray horizontal lines). Gibbs sampler is
shown for 1,000 observations and 1,000 samples.

larger number particles, nearly 100% probability is assigned
to the true K = 2 (first panel, Fig. 2).3 For larger values of
α, it eventually overshoots and infers more than 2 clusters.
For instance, Fig. 2, second panel (α = 0.1), shows that the
probability assigned to K = 2 clusters rises to a maximum
around 100 data points, but then falls with more data as more
complex clusterings are increasingly preferred (Fig. 4). Even
though the expected number of clusters is just slightly more
than 2 (Fig. 3) as with the Gibbs sampler, there’s no reason to
think that it would continue to increase with more data, since
there’s no way for the particle filter to go back to simpler
solutions once they’ve been forgotten.

Generally, particle filters with more particles better match
the Gibbs sampler. This is not surprising: more particles
mean more tolerance for uncertainty, which means that the
particle filter is less committed to particular classifications
that it made in the past. With few particles, it’s possible (and
indeed likely) that most of the particles agree on how the first
data points should be classified, even if there is (ideally) some
uncertainty there. Furthermore, with few particles, the prior
has outsized influence. For low α, the 10-particle filter under-
shoots the number of clusters inferred by the Gibbs sampler
(and by more particles), while for high α it overshoots.

Discussion
Rational approximations to rational models—like the parti-
cle filter explored here—provide a natural bridge between
computational-level and algorithmic-level, cognitive models
(Sanborn et al., 2010). These techniques are useful in part be-
cause they approximate optimal statistical inference as spec-

3Similar results are obtained for a three-component mixture,
modeled after the languages described in Lisker and Abramson
(1964) with three voicing categories. The primary difference is that
more data is required to correctly infer that there are three categories
for low values of α.
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Figure 3: The expected number of clusters for particle filter
(colors, 95% bootstrapped CIs over runs) and Gibbs sampler
(gray horizontal lines). Gibbs sampler is shown for 1,000
observations and 1,000 samples

ified by the underlying Bayesian model. But they also allow
us to explore—in a formal, quantitative way—how different
kinds of cognitive constraints interact with the structure of the
world to affect human cognition and learning. In the case of
phonetic distributional learning, there is no shortage of cog-
nitively plausible models (e.g., McMurray et al., 2009; Val-
labha et al., 2007). The model explored here psychologically
plausible—it takes one data point at a time and only main-
tains a small, finite number of hypothetical clusters–and also
grounded in a computational-level model of the problem of
distributional learning and its statistically optimal solution.

The approximation to the statistically optimal solution to
distributional learning provided by the particle filtering al-
gorithm of Chen and Liu (2000) can, in fact, recover the
underlying structure of the particular model system I exam-
ined here (the American English /b/-/p/ contrast). More im-
portantly, this particular sort of approximation constrains the
model in a similar way that language learners are constrained:
they cannot endlessly re-analyze every single sound they have
ever heard, nor can they maintain an essentially infinite set of
hypotheses about how those sounds should be clustered. In
doing so, it provides some insight into how people actually
solve the statistical problem posed by the computational-level
model of distributional learning. Forgetting its own history
actually helps the particle filter model when there is a strong
bias towards fewer clusters (low α). The particle filter reli-
ably arrives at the correct two-cluster structure for low values
of α, even when the Gibbs sampler fails to do so, since the
Gibbs sampler can continuously second-guess its decisions
to create additional clusters.

The tendency for particle filters to get dug into a partic-
ular solution is often a shortcoming, but in this case it may
be a benefit. It also suggests that such limited resources may
actually be a benefit to human learners as well. It does not,
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Figure 4: The posterior probability assigned to each possible number of components, as a function of the number of observa-
tions, number of particles, and α. Blue vertical lines show the true number of clusters K = 2.

however, require that such limitations change with develop-
ment (as in Newport, 1990) or require or particularly benefit
from a specific input (as in Elman, 1993). In fact, the con-
straints imposed by limited tolerance for uncertainty in the
particle filter model examined here are in a sense the opposite
of the “less is more” hypothesis: these constraints allow the
learner to impose stronger a priori preference for simple ex-
planations and still learn, rather than constituting a simplicity
preference in and of themselves. Indeed, one of the advan-
tages of the kind of cognitively constrained rational models
described here is that it allows a principled exploration of the
way that cognitive constraints interact with different kinds of
input and structural assumptions on the part of the learner
(Rohde & Plaut, 1999; Siegelman & Arnon, 2015).

Additionally, specifying and exploring such models of hu-
man behavior also has the potential to improve basic compu-
tational techniques as well. We know that humans do manage
to learn the underlying cluster structure from unsupervised
input like this. The particular ways in which models fail at
this task can be instructive for creating better models. This
may mean taking into account higher-order structure where
it’s present, like phonotactic and lexical regularities (Feld-
man et al., 2013). But it might also motivate specific tech-
niques to get around the difficulty of moving from more com-
plex to less complex clusterings, like adding the possibility of
merging clusters when rejuvenating particles (analogously to
reversible-jump MCMC, Green, 1995).

Finally, distributional learning continues even in adult lis-
teners, both in second language learning (e.g., Pajak & Levy,
2011) and in adapting to unfamiliar talkers (Clayards, Tanen-
haus, Aslin, & Jacobs, 2008; Xie, Theodore, & Myers,
2017). The same Bayesian models that have been applied
to distributional learning in acquisition can explain many of
the patterns observed in adaptation (Kleinschmidt & Jaeger,
2015). Listeners are able to maintain some uncertainty
about how previous tokens ought to be categorized (Bicknell,
Tanenhaus, & Jaeger, submitted), but it is currently unclear
how this constrains their ability to learn from distributional
information. The models explored here could just as easily
be applied to adaptation in adults as acquisition in children.

Conclusion
Approximately-rational models like the particle filter provide
a possible bridge between computational-level models and
psychologically plausible algorithmic-level cognitive models.
A particle filter model of phonetic distributional learning is
able to learn the underlying cluster structure of the English
/b/-/p/ contrast based only on the distribution of a single cue
(VOT). This shows that it is possible to approximate opti-
mal Bayesian inference in this domain without making the
psychologically-implausible assumptions of batch process-
ing and unlimited tolerance of uncertainty. However, the
behavior of this approximation also diverges in potentially
interesting ways from a less-constrained approximate infer-
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ence model (a Gibbs sampler), suggesting that the constraints
posed by limited cognitive resources are a critical piece of the
puzzle in understanding cognition, even for computational-
level modeling (Marr, 1982).
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