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ARTICLE INFO ABSTRACT

Rainfall frequency analysis, which is an important tool in hydrologic engineering, has been traditionally per-
formed using information from gauge observations. This approach has proven to be a useful tool in planning and
design for the regions where sufficient observational data are available. However, in many parts of the world
where ground-based observations are sparse and limited in length, the effectiveness of statistical methods for
such applications is highly limited. The sparse gauge networks over those regions, especially over remote areas
and high-elevation regions, cannot represent the spatiotemporal variability of extreme rainfall events and hence
preclude developing depth-duration-frequency curves (DDF) for rainfall frequency analysis. In this study, the
PERSIANN-CDR dataset is used to propose a mechanism, by which satellite precipitation information could be
used for rainfall frequency analysis and development of DDF curves. In the proposed framework, we first adjust
the extreme precipitation time series estimated by PERSIANN-CDR using an elevation-based correction function,
then use the adjusted dataset to develop DDF curves. As a proof of concept, we have implemented our proposed
approach in 20 river basins in the United States with different climatic conditions and elevations. Bias adjust-
ment results indicate that the correction model can significantly reduce the biases in PERSIANN-CDR estimates
of annual maximum series, especially for high elevation regions. Comparison of the extracted DDF curves from
both the original and adjusted PERSIANN-CDR data with the reported DDF curves from NOAA Atlas 14 shows
that the extreme percentiles from the corrected PERSIANN-CDR are consistently closer to the gauge-based es-
timates at the tested basins. The median relative errors of the frequency estimates at the studied basins were less
than 20% in most cases. Our proposed framework has the potential for constructing DDF curves for regions with
limited or sparse gauge-based observations using remotely sensed precipitation information, and the spatio-
temporal resolution of the adjusted PERSIANN-CDR data provides valuable information for various applications
in remote and high elevation areas.
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1. Introduction countries, do not have that advantage. In many developing countries,

gauge observation networks over remote and mountainous regions are

Rainfall Frequency Analysis (RFA) is an important tool in hydro-
logic engineering (Bonnin et al., 2006; Hosking and Wallis, 2005;
Stedinger, 1993). Depth-duration-frequency (DDF) curves, which link
extreme rainfall depths to their probability of occurrence, are based on
time series of extreme rainfall with different durations fitted with
probability distribution functions. RFA has been traditionally per-
formed using information from rain gauges. This approach has proven
to be a useful tool in planning and design for regions where observa-
tional data is relatively abundant such as the United States or Europe.
However, many parts of the world, particularly the developing

still sparse and limited in terms of duration.

With advances in tools and techniques for precipitation measure-
ment using remotely sensed information, investigation of rainfall
characteristics over remote and mountainous regions with limited
gauge observations has become possible. In an effort to produce long
and consistent climate records based on satellite observations, National
Oceanic and Atmospheric Association (NOAA) under the Climate Data
Record (CDR) program, in cooperation with the University of
California, Irvine, developed a satellite precipitation product named the
Precipitation Estimation from Remotely Sensed Information and
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Artificial Neural Networks-Climate Data Record (PERSIANN-CDR)
(Ashouri et al., 2015). PERSIANN-CDR provides near-global (60°N to
60°S latitude and 0° to 360° longitude) precipitation information with
0.25° spatial and daily temporal resolution from 1983 to the present.
Given its relatively high spatial resolution and long record, PERSI-
ANN-CDR is a unique dataset for studying extreme precipitations and
performing rainfall frequency analysis. The length of the PERSI-
ANN-CDR dataset (34 + years) is particularly valuable for parts of the
world that lack the gauge information for rainfall frequency analysis.

In recent years, several efforts have been made to develop DDF
curves by employing remotely sensed precipitation information from
weather radars and earth observing satellites (Eldardiry et al., 2015;
Marra and Morin, 2015; Overeem et al., 2008; Overeem et al., 2009;
Wright et al., 2013). For instance, Overeem et al. (2009) used an 11-
year gauge-adjusted radar-rainfall dataset and performed a regional
frequency analysis to extract DDF curves for the Netherlands. They
found that radar data, despite being useful for real-time rainfall ana-
lysis, still suffer from serious limitations, such as significant errors in
extreme rainfall estimates and shortness of data, that limit their use-
fulness for RFA. Thus, the application of radar data for rainfall fre-
quency analysis is hampered by: (1) its relatively short length of record
which leads to sampling issues during distribution fitting process and
results in larger uncertainties of the frequency estimates especially for
longer durations; and, (2) estimation uncertainties and heterogeneities
due to the continuous development of radar quantitative precipitation
estimation (QPE) instruments and methods (Allen and DeGaetano,
2005; Lombardo et al., 2006). Eldardiry et al. (2015) quantified the
effects of each of these sources of uncertainty and attributed much of
the quantile estimation uncertainty to the length of the dataset. How-
ever, the conditional bias intrinsic to the radar dataset was the main
reason for the observed systematic underestimations in the rainfall
frequency estimates. As compared to rain gauges and radar network,
satellite QPE is able to provide global coverage and has been employed
in a number of studies for rainfall frequency analysis (Awadallah et al.,
2011; Endreny and Imbeah, 2009; Marra et al., 2017; Zhou et al.,
2015). Yet, similar to radars, the application satellite QPEs for RFA is
undermined by the data length issues and estimation uncertainties as-
sociated with each of the precipitation estimation products.

Among different remotely sensed precipitation datasets, PERSI-
ANN-CDR is a viable candidate for extreme precipitation analysis given:
(1) its high spatial and temporal resolution: when compared with the
long-term Global Precipitation Climatology Project (GPCP) (Huffman
et al., 1997) product which is monthly and 2.5° by 2.5°, PERSIANN-CDR
has a higher temporal (daily) and spatial resolution (0.25° by 0.25°).
The 2.5° spatial and monthly temporal resolution is not capable of
capturing the spatial and temporal variability of the extreme pre-
cipitations especially over regions with complex topographic condi-
tions, and (2) its long record: PERSIANN-CDR has relatively longer data
record (34 + years and continually expanding) in comparison to TRMM
3b42 V7 (Huffman et al., 2007) with 20+ years of data, or CMORPH
(Joyce et al., 2004) with 16 + years of record. Based on these strengths,
Gado et al. (2017) employed the PERSIANN-CDR dataset to estimate
extreme rainfall quantiles at two homogenous regions in the Western
United States. They combined information from the PERSIANN-CDR
pixels and nearby gauges in a homogenous region and used an in-
novative regional frequency analysis method to derive quantile esti-
mates at ungauged locations.

The primary goal of this research is to evaluate the feasibility of
using the PERSIANN-CDR dataset for rainfall frequency analysis by
constructing the required DDF curves over regions with limited gauge
information or mountainous areas. As a proof of concept, this study has
been conducted over the United States, where longer gauge observa-
tions with sufficient spatial coverage exist. As some studies have re-
ported, there are biases in the PERSIANN-CDR estimates which ne-
cessitate the application of bias-adjustment techniques to improve the
accuracy of the PERSIANN-CDR estimates of extreme precipitations
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(Miao et al., 2015; Duan et al., 2016; Shah and Mishra, 2016; Yang
et al., 2016; Liu et al., 2017). This study was designed with the fol-
lowing objectives: (1) to propose an elevation-based bias correction
model applicable to the PERSIANN-CDR dataset and to test it over a
large number of river basins in the continental United States, and, (2) to
demonstrate the usefulness of satellite-based precipitation data in
rainfall frequency analysis and to use the derived frequency estimates
to further verify the effectiveness of the proposed bias-correction
model. In the proposed frequency analysis framework, only the PERS-
IANN-CDR information is used to estimate extreme precipitation
quantiles and no information from nearby gauges is incorporated in the
development of DDF curves (Gado et al., 2017).

The rest of this paper is organized as follows: in Section 2, a detailed
description of gauge and PERSIANN-CDR datasets used in the study is
presented, followed by the specifications of the studied basins. The bias-
adjustment approach, cross-validation techniques and the frequency
analysis procedures pursued in the study are introduced in Section 3.
Section 4 presents the results and discussion. The main findings and
conclusions are summarized in Section 5.

2. Data
2.1. Gauge data

Global Historical Climatology Network (GHCN)-Daily is a quality
controlled dataset that is used in this study. This dataset contains
comprehensive information of daily summaries of more than 40 me-
teorological variables, including precipitation, temperature, snow
depth, wind information, evaporation, etc. recorded by 100,000 land
surface stations operated by 20 agencies around the world.

In this study, we select 20 basins located in the Eastern and Western
United States (Fig. 1). The daily rainfall data from rain gauges with
34+ years of observation (1/1/1983-12/31/2015) were downloaded
from National Oceanic and Atmospheric Association-National Climatic
Data Center (NOAA-NCDC) database (https://www.ncdc.noaa.gov/
ghend-data-access). A brief description of the selected basins with
their hydrologic unit codes (HUC) and the number of gauges with
34+ years of data selected for this study are presented in Table 1. The
selected basins incorporate a wide range of elevations, from 0 to
3700m mean sea level, and diverse climatic conditions based on
Koppen-Geiger climate classification system (Kottek et al., 2006).

2.2. PERSIANN-CDR data

PERSIANN-CDR is a retrospective multi-satellite precipitation da-
taset that provides near-global precipitation information, 60°N-60°S
latitude and 0°-360° longitude, at 0.25° spatial resolution (around
25km) and daily temporal resolution from 1 January 1983 to near
present (Ashouri et al., 2015). The PERSIANN-CDR dataset was devel-
oped by the following steps. In the first step, the PERSIANN algorithm
(Hsu et al., 1997) is implemented on the archive of Gridded Satellite
(GridSat-B1) Infrared Data (Knapp et al., 2011) from Geostationary
Earth Orbiting satellites (GEOs). The model is pre-trained using the
National Center for Environmental Prediction (NCEP) Stage IV hourly
precipitation data. Then the parameters of the model are kept fixed, and
the model is run on the entire historical records of GridSat-B1 to esti-
mate the historical precipitation at 3-hourly resolution. In the next step,
the estimated rain-rates are resampled to 2.5° spatial resolution and
bias-adjusted with GPCP product v2.2 (Adler et al., 2003) to keep it
consistent with the GPCP monthly product. Finally, the PERSIANN-CDR
dataset is obtained by accumulating the 3-hourly bias adjusted data. In
this research, daily PERSIANN-CDR data for the selected basins for the
time period of 1/1/1983 to 12/31/2015 was used.
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Fig. 1. The geographic location of the selected basins and gauges.

3. Methodology
3.1. Model description

In our proposed bias correction model, we first correct the PERSI-
ANN-CDR estimates of annual maximum series with gauge data at
pixels with available gauge records for the study period. The time series
of annual maximum precipitation from both gauge network and PER-
SIANN-CDR for the corresponding pixels are extracted and sorted in an
ascending order. For simplicity, we denote the gauge-based annual
maximum series as “GM”, and the PERSIANN-CDR annual maximum
series as “PM” hereafter. A zero-intercept regression line is fitted to the

Table 1
Summary of the features of the selected basins and gauges.

scatterplot of GM and PM time series, with the corresponding PM values
in the Y-axis and GM values in the X-axis (Fig. 2a). The slope of this
regression line (called “Correction Factor” or CF hereafter) shows the
deviation of PM with respect to ground truth (GM), and it indicates the
level of correction required for correcting PM to GM. A CF value larger
than one indicates an overestimation of the extreme precipitation by
PERSIANN-CDR, and a CF smaller than one implies the under-
estimation. The larger the deviation of a CF value from the one to one
case, the greater the correction required for the PM (Fig. 2a).

To investigate the orographic characteristics of bias at each basin,
the CF values at individual gauges are plotted against the corresponding
gauge elevations (Fig. 2b). The basin-scale plots are further merged to

Basin No. Basin Name HUC State(s) Area (sq. No. of Gauge elevations (m) Koppen-Geiger climate  Climate Description
mi.) gauges class
Min Max Mean
1 Arkansas-Keystone 1106 KS, OK 9750 12 253.0 454.2 347.7 Dfa, Cfa Continental, temperate
2 Central Nevada Desert 1606 NV 47,100 14 1299.1 2448.5 1818.6 BSk, BWk, BWh, Dfb Dry, continental
3 Colorado Headwaters 1401 CO 9730 25 1450.8 3474.7 2646.2 BSk, Dfb, Dfc Dry, continental
4 Dirty Devil 1407 UT, AZ 13,500 11 1164.9 2987.0 2093.1 BSk, Bwk, Dfb Dry, continental
5 Kootenai-Pend Oreille-Spokane 1701 MT, ID, WA 36,600 30 548.6 2514.6 1691.5 Dsb, Dfb Continental
6 Lower Snake 1706 1D, WA, OR 11,800 23 328 2788.9 1523.3 Dfb, Dsb Continental
7 Mississippi Headwaters 0701 MN 20,200 19 278.0 4542 372.2 Dfb Continental
8 Nueces-Southwestern Texas 1211 TX 29,000 15 43 625.4 217.8 Cfa Temperate
Coastal
9 Pascagoula 0317 MS 12,100 20 2.4 164.9 72.3 Cfa Temperate
10 Rio Grande - Elephant Butte 1302 NM 26,900 19 1378.9 2621.3 1843.8 Dfb, BSk Continental, dry
11 San Joaquin 1804 CA 15,600 30 3.7 2920 537.2 Csa, BSk Temperate, dry
12 Southern Florida 0309 FL 18,700 14 0.9 10.7 4.3 Cfa, Aw Temperate, tropical
13 Susquehanna 0205 PA, NY, MD 27,200 30 78.9 566.9 313.5 Dfa, Dfb Continental
14 Trinity 1203 TX 18,000 24 103.9 3399 208.7 C(Cfa Temperate
15 Upper Columbia 1702 WA 22,600 32 113.1 1978.2 689.3 Dfb, Dsb, BSk Continental, dry
16 Upper Mississippi-lowa 0708 IA, IL, MN 22,800 25 195.1 390.1 319.0 Dfa, Dfb Continental
17 Upper Tennessee 0601 TN, NC, GA, 17,200 28 230.1 1143.9 555.5 Cfa Temperate
VA
18 Upper Yellowstone 1007 MT, WY 14,400 30 944.3 2865.1 1906.2 Dfb, Dfc, BSk Continental, dry
19 Wabash 0512 1IN, IL, OH 32,600 26 134.7 284.1 202.2 Dfa Continental
20 Willamette 1709 OR 11,400 46 6.4 1554.5 434.7 Csb, Dsb, Dsc Temperate,
continental
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Fig. 2. Schematic view of the bias adjustment ap-
proach. (a) Estimation of correction factor at a single
gauge with annual maximum series (AMS) of gauge
and collocated PERSIANN-CDR pixel (b) Correction
factor — elevation relationship at single basin scale
(each point showing the CF for at a gauge) (c)
Correction factor-elevation relationship for multiple
basins and the schematic of the fitted exponential

v

Elevation

(b)

Gauge

(a)

provide a more comprehensive view of the CF-elevation relationship
(Fig. 2c). Following the approach mentioned above, an exponential
function is fitted to the derived CF-elevation relationship at both in-
dividual basin and multi-basins scale as shown in Fig. 2c. We construct
a correction function based on the CF-elevation relationship derived
from 4 Western US basins and test its performance with different cross-
validation and validation methods on other basins. The selected basins
are San Joaquin River Basin (California), the Willamette River Basin
(Oregon), the Upper Columbia River Basin (Washington) and the Col-
orado Headwaters (Colorado). These basins are selected since they
provided bias-elevation information at different elevations and en-
compassed different climatic conditions, which are representative for
building a robust and effective bias correction model applicable to
other river bases in the United States. Finally, the correction model
based on these four selected river basins is tested on the other 16 basins
with different elevation ranges and climatic conditions in the Western
and Eastern U. S.

3.2. Hold-out cross-validation

Hold-out cross-validation is implemented to examine how the per-
formance of the correction model is influenced by the number of basins
incorporated in the model calibration, and to investigate whether in-
corporating information from fewer basins could improve the PERSI-
ANN-CDR estimates of AMS. The four basins used for training the
correction function are divided into two groups. The basins are grouped
in a way that information from different elevations and climates are
included for each case. A correction function based on the gauge and
the PERSIANN-CDR information from the basins in the first group is
used to adjust the PM for the basins of the other group, and vice versa.
In other words, an exponential regression function is fitted to the CF-
elevation relationship from the two basins in the first group and is then
used to adjust the AMS from the PERSIANN-CDR dataset for the basins
in the second. The effectiveness of the bias-correction functions is as-
sessed using the root mean squared error (RMSE) of the sorted AMS
from the adjusted PERSIANN-CDR and that of gauge observations, at
each of the gauge locations and basins.

3.3. Comparison with gauge interpolation

Besides comparing the original and corrected PERSIANN-CDR data
using the approaches mentioned above, we also include a commonly
used basin-scale interpolation method for analyzing extreme pre-
cipitation over remote and mountainous areas where the gauge network
is insufficient or even non-existent (Chen et al., 2008; Doumounia et al.,
2014).

3.3.1. Leave-one-out cross-validation

Precipitation intensity at an ungauged location is commonly esti-
mated by interpolating observations from nearby gauges. Performance
of the bias-adjusted PERSIANN-CDR dataset in estimating the annual
maximum time series at an ungauged location is compared with the
estimates from the interpolation method and the original
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PERSIANN-CDR dataset. At each of the calibration basins, we leave one
gauge out of the training phase, and the entire time series of pre-
cipitation at this particular gauge location is constructed with the linear
interpolation of observations from the remaining gauges. Then, the
annual maximum series at the location of the held out gauge is ex-
tracted from the interpolated time series. The CF-elevation relationship
for the selected calibration basins is derived, and the CF corresponding
to the elevation of the removed gauge is used to correct the PM time
series at the PERSIANN-CDR pixel over the left-out gauge location.
Finally, the interpolation-based annual maximum time series and the
corrected PM are compared with the original GM. RMSE is used as the
measure of the difference between the calculated time series and the
GM. It is worth mentioning that we repeat this procedure for all the
gauges at each calibration basin to investigate the robustness of our
proposed correction method.

3.3.2. K-fold cross-validation

The leave-one-out cross-validation approach described in Section
3.3 evaluates the performance of the suggested bias-correction ap-
proach at a single gauge level. When there is a dense gauge network in a
basin, interpolation of available gauge observations may result in better
estimates of the AMS at an ungauged site. However, the gauge inter-
polated estimates could be less reliable when the region has limited or
sparse gauge observations. Therefore, to find the breaking point where
the corrected PERSIAN-CDR dataset starts to outperform the inter-
polation-based results, we carry out the k-fold cross-validation.

At each of the four basins used in the calibration process, different
percentages (i.e., 10, 20, 30, 40, 50, 60, 70, and 80%) of gauges are
randomly selected and left out. Then, the entire time series of pre-
cipitation for the locations of the removed gauges are constructed using
the linear interpolation of the daily observations from the remaining
gauges. The annual maximum series for the locations of the removed
gauges are then extracted from the interpolated time series. Finally, we
compare the corrected PM and the interpolation-based annual max-
imum time series at each gauge location with the GM for that location.

Since various combinations of gauges could be selected as test
samples, results depend on the distribution of the remaining gauges and
the distances between the held out and nearby gauges. To reduce the
sensitivity of the results to the selection of gauges, we carry out 30
random selections of the hold-out gauges and consider each selection as
an independent test. RMSE of the interpolation-based AMS is then
compared with RMSE of the corrected PM for the selected gauges in
each independent run. The average RMSE of the 30 independent runs is
also calculated to have the overall error estimate for different hold-out
scenarios (i.e. 10, 20, 30, 40, 50, 60, 70, and 80% of gauges being held
out).

3.4. Satellite-based rainfall frequency analysis

National Oceanic and Atmospheric Administration (NOAA) Atlas 14
is a source of rainfall frequency estimates for the United States and its
territories. NOAA Atlas 14 provides intensity-duration frequency (IDF)
and depth-duration-frequency (DDF) curves for different regions based
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on the regional frequency analysis approach (Bonnin et al., 2006).
NOAA Atlas 14 IDF and DDF curves were developed using the best fit
among different probability distributions, including the 3-parameter
Generalized Extreme Value (GEV), the Generalized Normal, the Gen-
eralized Pareto, the Generalized logistic, the Pearson Type III dis-
tributions, the 4-parameter Kappa distribution; and the 5-parameter
Wakeby distribution. At 80% of gauges and for sub-daily and daily
durations, the GEV gave the best statistics among the 3-parameter
distributions and its performance was comparable to that of 4 and 5
parameter distributions. Thus, the GEV was adopted across all gauges
and durations (Bonnin et al., 2006).

The GEV distribution was firstly introduced by Jenkinson (1955),
and it has been widely used for frequency analysis of extreme pre-
cipitation and was demonstrated superior over other probability dis-
tribution functions in terms of fitting the annual maxima time series
(AMS) (Ben-Zvi, 2009; Bougadis and Adamowski, 2006; Fowler and
Kilsby, 2003; Gellens, 2002; Norbiato et al., 2007; Villarini et al.,
2011). The GEV distribution is a 3-parameter probability distribution
that combines three extreme value distributions. The type of the dis-
tribution is characterized by the value of the shape parameter (). Ne-
gative, zero, and positive values of the shape parameter determines the
tail behavior of the distribution as short-tailed (Weibull), light-tailed
(Gumbel) and heavy-tailed (Fréchet), respectively. The GEV cumulative
distribution function is given by:

F(x) = exp{—[l + §( % )]E}forgyé 0

- —exp| - X2 =
F(x)—exp{ exp[ ( 5 )]}f0r§ 0 @

where &, u, and o are the shape, location, and scale parameters, re-
spectively.

To fit the GEV distribution with the PERSIANN-CDR daily pre-
cipitation, we first adjust the data samples, in which the annual max-
imum series of PERSIANN-CDR for 2-day, 3-day, 4-day, 7-day, 10-day,
20-day, 30-day, 45-day and 60-day durations are corrected with gauge
data using the same approach used for daily precipitation.

The GEV distribution is fitted to the annual maxima series of the
corrected PERSIANN-CDR data for different durations using gevfit
function from the Matlab Statistics and Machine Learning Toolbox
(https://www.mathworks.com/help/stats/gevfit.html). Maximum
likelihood estimation is used to estimate the parameters of the GEV
distribution and the corresponding confidence intervals (Embrechts
et al., 2013; Kotz and Nadarajah, 2000). The return level for each return
period and duration is estimated using the inverse GEV function as in
Egs. (3) and (4):

X = ,u—% {1—[—ln(1—%)]_§}f0r§ #0

Xr =p—oln [—ln(l—%)]forg =0

@

3

4

where X; is the return level (i.e., the rainfall depth that on average is
exceeded once in Tyears), and T = 1/(1 — F) is the return period.
Using the return levels at different return periods and annual ex-
ceedance probabilities, the DDF curves are generated.

NOAA Atlas 14 (Bonnin et al., 2006) provides DDF curves with sub-
daily, daily and multi-day durations. The DDF curves can be down-
loaded from the NOAA precipitation frequency data server (https://
hdsc.nws.noaa.gov/hdsc/pfds/). Since the PERSIANN-CDR dataset
gives precipitation estimates at daily time scale, the daily and multi-day
durations were considered in generating the DDF curves. To remain
consistent with NOAA frequency estimates, precipitation durations
considered in this study are 1-day, 2-day, 3-day, 4-day, 7-day, 10-day,
20-day, 30-day, 45-day, and 60-day. It should be noted that the

Journal of Hydrology 563 (2018) 123-142

durations considered here do not mean precipitation occurred during
the entire period, but the sliding window gives the highest value of
precipitation accumulation over the selected period. Lastly, we com-
pare the return levels based on the corrected PERSIANN-CDR estimates
with that of NOAA Atlas 14 at each duration and return period.

3.5. Uncertainty assessment

The confidence intervals of the return levels from the original and
the adjusted PERSIANN-CDR datasets are estimated using a boot-
strapping technique. We generate 1000 random samples with replace-
ments from the original and adjust AMS at the target gauge locations.
Then, the Maximum Likelihood estimation is used to calculate the
parameters of the GEV distributions fitted to each of these random
samples. Return levels for different durations are calculated using the
inverse GEV function evaluated at different return periods. Finally, the
5th and 95th percentiles of the bootstrapped return levels at each
duration and return period are taken as the 90 percent confidence in-
tervals.

4. Results and discussion
4.1. Training basins

Fig. 3 shows the scatterplots of the PERSIANN-CDR and gauge AMS
and the regression line equation at a number of gauges in the Will-
amette River Basin in the state of Oregon. In some of the gauge loca-
tions (Fig. 3a-d, and g-i), the original PERSIANN-CDR has a certain
degree of underestimation or overestimation, while in some other
gauge locations the PERSIANN-CDR estimates are in good agreement
with gauge observations (Fig. 3e and f).

An important note here is that a PERSIANN-CDR pixel has an area
about 625 km? which is much larger than the sampling area of a rain
gauge. The value of a PERSIANN-CDR pixel represents the average
precipitation within that pixel’s spatial domain. In fact, even if the
PERSIANN-CDR estimate at a pixel is completely accurate, its value
tends to be smaller than the subpixel point measurements. In other
words, by comparing a PERSIANN-CDR pixel with a point measure-
ment, we are carrying out a “point-area” comparison. Therefore, by
adjusting the PERSIANN-CDR pixels with point measurements, we are
downscaling PERSIANN-CDR to point resolution. This implies that the
adjusted dataset should be regarded as a point estimate, rather than an
area estimate. Furthermore, there would be time discrepancies between
the PERSIANN-CDR’s daily interval, and the gauges’ 24-hour intervals.
Thus, the correction factor accounts for the influence of both “point-
area” and time discrepancy issues.

At each of the four basins selected to build the correction model
(i.e., the San Joaquin River Basin, the Willamette River Basin, the
Upper Columbia River Basin, and the Colorado Headwaters), the CF at
the basin scale is computed by fitting a zero-intercept regression line to
the sorted AMS of all the available gauges and that of collocated
PERSIANN-CDR pixels(Fig. 4). In general, the PERSIANN-CDR esti-
mates of AMS tend to be lower than the AMS from gauge observation,
with different levels of underestimation in the different basins. The
AMS estimates from the original PERSIANN-CDR dataset show con-
siderable underestimation at Colorado Headwaters and Upper Co-
lumbia River Basins with CFs equal to 0.46 and 0.57, respectively.

The scatterplots of CF and gauge elevation for different basins are
shown in Fig. 5(a-d). In general, an exponential relationship exists
between CFs and elevations at each of the four basins. Furthermore,
when merging all the available gauge information from the selected
river basins together, a comprehensive view of this relationship is de-
monstrated (Fig. 5e). As we can see from Fig. 5e, the CFs become
smaller with increasing elevation of the gauges. This reduction in the
CFs implies the underestimation of AMS at higher elevations.

Both IR-based (such as PERSIANN family) and Passive Microwave
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Fig. 3. Scatterplots of gauge and PERSIANN-CDR AMS and the zero intercept regression lines at sample gauge locations in Willamette River Basin. Station names are

written above the scatterplots.

based (such as TMPA (Huffman et al., 2007)) precipitation products
have been reported to underestimate precipitation in high elevations
(Hashemi et al., 2017). This underestimation has been related to several
factors. Satellite-based precipitation products have difficulties in re-
trieving the solid form of precipitation (snow), which is the prevailing
type of precipitation at high elevation regions and in the winter season
(Hashemi et al., 2017). Moreover, since IR-based precipitation algo-
rithms rely on the cloud top temperatures, they cannot fully detect the
orographic enhancements in the liquid phase of precipitation in regions
characterized by complex topographic conditions (Shige et al., 2013).
In addition to the technical and methodological issues inherent to the
satellite precipitation estimation methods, the spatial and temporal
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inconsistencies between the satellite precipitation estimates and gauge
observations at high elevation regions can be related to the poor sam-
pling of gauges (Gebregiorgis and Hossain, 2014). For instance,
Libertino et al. (2016) observed the lowest agreement in the timing of
extreme events recorded by TRMM and gauge observations in sparsely
gauged regions. Miao et al. (2015) also reported low spatial and tem-
poral agreement in terms of extreme precipitation statistics between the
PERSIANN-CDR estimates and gauge observations in regions with low
density of gauges.

As shown in Fig. 5, we fit an exponential function to the scatterplots
of CF for each gauge and its corresponding elevation. This function is
used to correct the PERSIANN-CDR estimates of AMS at different basins



M. Faridzad et al.

(b)

250
—250
IS
=
& 200
[m]
Q 150
z
=
< 100
7}
o
w 50
o
0 0* : ‘
0 100 200 0 100 200 300
Gauge(mm) Gauge(mm)
(¢) (d)
250 4 = * 3
y =0.57 *x g 80 y =0.46 *x L7
€ R2=0.63 % £ R?=0093 7
£ 200 % g L
X & 60 /7
5 150 S L
T ; ”
z = p
40 ¥4
Z 100 Z L .
2
%) ww Kx X @ s oo
a:.l 50 % 20+ P
o o 7
o
0 0 2 .
200 20 40 60 80
Gauge(mm) Gauge(mm)
* Annual Maxima Data ——Regression Line — — —~Reference Line

Fig. 4. CF at basin scale for the selected river basins in the Western United
States, including (a) San Joaquin River Basin, (b) Willamette River Basin, (c)
Upper Columbia River Basin, and (d) Colorado Headwaters River Basin.

in the Eastern and Western United States. However, since this correc-
tion model is based on only a few selected basins, it is necessary to be
validated using different cross-validation techniques and then be tested
on different basins over the continental United States.

4.2. Hold-out cross-validation results

We first carry out hold-out cross-validation on the four selected
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river basins, in which a correction function based on CF-elevation re-
lationship is built using the information from two of the river basins,
Willamette and Upper Columbia river basins. The model is tested on the
other two river basins (the San Joaquin and the Colorado Headwater
River Basins), and vice versa. The goal is to examine the effects of
limited gauge information and basin selection on the overall perfor-
mance of the bias-correction approach.

The effect of bias-correction on the empirical CDF of the PERSI-
ANN-CDR estimates at each of the calibration basins is shown in Fig. 6.
At basin scale, the correction method shifts the empirical CDF of the
AMS from the original PERSIANN-CDR towards the gauge-based em-
pirical CDF. In the Willamette River Basin and the Colorado headwaters
River Basin, the corrected CDF is close to that of the observation. In the
San Joaquin River Basin, the extreme quantiles from the corrected data
are closer to the observation. In the Upper Columbia River basin, the
corrected PERSIANN-CDR gives better estimates of the largest extreme
values compared to the original PERSIANN-CDR estimates. However, it
results in an overestimation of the lower quantiles. This is consistent
with the results shown in Fig. 4, where the regression-based estimates
gave some overestimation for values lower than 55 mm.

The statistics of the hold-out cross-validation results at gauge scale
are presented in Table 2. In most of the gauge locations (111 out of 127
gauges in different basins), the RMSE of the corrected PERSIANN-CDR
is lower than that of the original PERSIANN-CDR. This implies the ef-
fectiveness of the proposed bias-adjustment approach in correcting the
PM at pixel level even in basins with dense gauge networks. At 16
gauges, however, the correction method tends to deteriorate the ori-
ginal PERSIANN-CDR estimates. Among these gauges, 12 are located in
low elevation regions (< 550 m from mean sea level), and more than
half of them are associated with elevations less than 200 m from mean
sea level. The Upper Columbia and the Willamette River Basins have a
larger portion of these gauges with 7 and 5 unsuccessful corrections,
respectively. The poor performance of the corrected PERSIANN-CDR at
those gauge locations could be partly attributed to the complex topo-
graphic conditions of those basins, which pose some challenges for the
PERSIANN algorithm to estimate precipitation accurately. However, as
compared to the original PERSIANN-CDR, the proposed correction
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Fig. 5. CF and elevation relationship at basin and multi-basin scale for (a) San Joaquin River Basin, (b) Willamette River Basin, (c) Upper Columbia River Basin, (d)
Colorado Headwaters River Basin, and (e) merging all gauge information for all the basins.
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approach works well for the majority of the gauges in the hold-out
cross-validation as shown with the lower RMSE values in Table 2.

4.3. Leave-one-out cross-validation

In each basin, one gauge is left out at a time, and the time series of
precipitation at that gauge location is constructed using linear inter-
polation. The annual maximum time series from the gauge interpola-
tion and the corrected PERSIANN-CDR are compared with the gauge
observations at the corresponding location (Table 3). As shown in
Table 3, the RMSE values from the corrected PERSIANN-CDR are con-
sistently lower than those of the original PERSIANN-CDR for all basins.
When compared to the interpolation method, the corrected PERSI-
ANN-CDR gives lower RMSE values at the San Joaquin, the Willamette,
and the Colorado Headwaters River Basins. At the Upper Columbia
River Basin, however, the leave-one-out cross-validation results suggest
that the gauge interpolation performs better than the corrected PERS-
IANN-CDR data.

It is inferable from the gauge scale results that the correction model
outperforms the interpolation method in most cases, even if only one of
the gauges at a densely gauged basin is removed from the sample. The
interpolation method also produces substantial errors at some gauge
locations, particularly those locations where the interpolated gauge is
relatively far from its surrounding gauges. It is possible that complex
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topography leads to different precipitation characteristics between
nearby gauges and results in uncertainties in the interpolated pre-
cipitation estimates.

4.4. K-fold cross-validation

The leave-one-out cross-validation results in the previous section
demonstrate that the interpolation-based estimates of AMS achieved by
removing one of the gauges may outperform the PERSIANN-CDR esti-
mates at some gauges in a densely-gauged region (e.g., the Upper
Columbia River Basin). In order to find the breakpoint where the cor-
rected PERSIANN-CDR will outperform interpolation-based estimates at
a basin scale, the k-fold cross validation is implemented. We randomly
separate different fractions of all available gauges (0.1, 0.2..., 0.8 of the
gauges) in a basin, and remove the selected gauges from the model
training phase. This random selection and removal process is repeated
30 times for each fraction level. Then, the entire precipitation time
series at those locations are constructed by the linear interpolation of
observations from the remaining gauges in that basin. Then RMSE of
AMS estimates from both corrected PERSIANN-CDR and gauge inter-
polation are computed at the removed gauges.

Fig. 7 shows the average RMSE values of AMS estimates from the
interpolation method (blue line) and the corrected PERSIANN-CDR (red
line) for different exclusion ratios in each river basin. The horizontal
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Table 2
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The RMSE(mm) of the original and corrected PERSIANN-CDR data during hold-out cross-validation at different gauge locations and basins.

San Joaquin Willamette Upper Columbia Colorado Headwaters
Corrected Original Corrected Original Corrected Original Corrected Original
14.76 16.74 27.60 54.73 13.30 19.68 6.16 18.20
19.13 34.44 5.78 5.78 3.76 3.09 4.71 18.73
32.66 47.61 11.26 24.65 4.12 8.66 5.44 18.29
31.41 69.29 15.46 11.15 1.32 8.61 5.25 10.88
12.96 4.26 16.73 19.15 2.93 8.02 7.02 9.76
43.12 71.64 30.79 50.90 7.38 31.30 6.43 19.97
9.42 8.59 6.51 9.53 3.61 1.91 8.98 6.50
10.03 10.10 7.42 20.92 15.25 20.72 6.21 17.25
19.79 25.71 11.85 18.53 1.69 4.71 4.12 12.42
6.11 5.49 10.43 11.36 4.97 8.45 4.80 16.22
19.16 36.62 4.99 4.21 6.20 10.88 5.09 12.83
30.47 59.50 6.65 11.81 0.96 4.25 3.74 18.69
8.86 13.73 20.38 37.86 9.12 21.90 4.74 12.75
23.12 10.42 9.43 7.62 3.17 4.97 4.03 19.37
6.57 6.29 14.50 21.04 11.72 6.27 2.61 18.97
16.38 19.47 9.79 19.52 7.36 15.71 5.66 23.01
30.53 20.49 13.75 8.71 0.92 4.30 1.98 15.97
3.25 9.45 13.34 40.60 5.08 9.13 4.12 13.03
22.05 50.93 45.06 65.65 26.64 34.04 5.98 14.10
8.12 26.77 11.12 11.52 8.59 9.39 4.32 13.81
13.91 18.23 2.94 4.90 3.58 10.14 2.73 15.47
13.69 23.67 2.36 6.02 8.59 4.84 3.01 15.38
10.34 15.72 17.35 7.06 19.52 8.05 6.20 12.17
17.74 36.22 4.41 8.65 7.33 40.04 7.29 23.12
24.67 47.21 24.83 44.44 14.55 53.51 9.89 5.98
19.90 31.57 11.39 4.63 9.88 19.40 - -
12.03 27.90 9.58 27.84 8.47 28.97 - -
16.77 20.93 3.29 3.55 19.66 14.44 - -

- - 6.39 33.06 43.31 77.52 - -

- - 7.81 27.53 13.28 7.61 - -

- - 25.35 54.10 17.14 10.74 - -

- - 8.42 39.02 - - - -

- - 9.66 44.36 - - - -

- - 29.91 66.88 - - - -

- - 11.66 37.27 - - - -

- - 13.56 48.13 - - - -

- - 7.22 24.98 - - - -

- - 6.97 34.96 - - - -

- - 13.64 56.23 - - - -

- - 16.40 24.77 - - - -

- - 4.53 6.53 - - - -

- - 12.97 10.91 - - - -

- - 5.74 7.32 - - - -

Note: The underlined values show the cases where the RMSE of the original PERSIANN-CDR is lower than that of the corrected PERSIANN-CDR.

Table 3
The RMSE (mm) from leave one out cross validation using gauge interpolation,
original and corrected PERSIANN-CDR data.

Method Basin Name
San Joaquin = Willamette Upper Colorado
Columbia Headwaters
Interpolation 21.61 16.06 7.87 6.84
Corrected 17.34 12.77 9.79 5.22
PERSIANN-CDR
Original 26.45 23.95 16.22 15.31

PERSIANN-CDR

Note: The underlined value shows the case where the corrected PERSIANN-CDR
method gave a higher RMSE value at basin scale than the interpolation method.

axis defines the number of the iteration, and the vertical axis presents
the average RMSE value of the AMS estimates on the excluded gauge
locations using the corrected PERSIANN-CDR and gauge interpolation.
As the fraction of gauges being removed from the entire samples in-
creases, the errors associated with the interpolation method become
larger. In contrast, the errors produced with our proposed correction
method remain consistently low for different basins over most of the

test scenarios (i.e., different percentages of the gauge being removed).
Moreover, the interpolation-based estimates result in large errors in
some test scenarios and basins. For example, in the San Joaquin River
Basin (Fig. 7a), substantial errors are observed in different scenarios
and over several independent runs.

There are several reasons why errors from the interpolation method
have large values in some of the iterations. Extreme precipitation events
vary substantially in space and time. The annual maximum precipita-
tion at different points of a basin could be results of various extreme
events occurring in different times of the year. When interpolating the
daily gauge observations in a region for constructing precipitation time
series at an ungauged site, heavy precipitation observed at one or more
gauge locations could be falsely extended to the locations that were less
impacted by the storm. Similarly, by removing some of the gauges from
the population, the extreme events impacting those locations may not
be represented in the interpolated time series from the remaining
sample and as a result the extreme event at that location would be
missed. Both of these cases may result in considerable errors in the
annual maximum series estimated from the interpolation method.
Other factors that contribute to the significant interpolation errors in-
clude long distance of sample gauges from the target locations, sub-
stantial elevation differences between the target locations and sample
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Fig. 7. Average RMSE of AMS estimates from the corrected PERSIANN-CDR (red lines) and the interpolation method, during the k-fold cross-validation (blue lines)
for different exclusion ratios at: (a) the San Joaquin River Basin, (b) the Willamette River Basin, (c) the Upper Columbia River Basin, and (d) the Colorado Headwaters
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San Joaquin River Basin, (b) the Willamette River Basin, (c) the Upper Columbia River Basin, and (d) the Colorado Headwaters River Basin.

gauges, and the inability of the sample gauges to demonstrate the
spatiotemporal variability of rainfall at target locations.

The overall errors from the corrected PERSIANN-CDR and the in-
terpolation method at different exclusion ratios and basins are shown in
Fig. 8. As the portion of gauges being left out increases, the RMSE
produced by the interpolation method increases for all the basins, while
the proposed correction method for PERSIANN-CDR shows stable errors
over different ratios and basins with respect to the AMS results. In the
San Joaquin River Basin (Fig. 8a), the Willamette River Basin (Fig. 8b),
and the Colorado Headwaters River Basin (Fig. 8d), the corrected
PERSIANN-CDR yields lower RMSE values than the gauge interpolation
method throughout different ratios, suggesting the effectiveness of the
proposed correction approach. In the Upper Columbia River Basin, the
gauge interpolation method results in better estimates of the AMS at the
ratios up to 30%. However, beyond the 30% threshold, the corrected
PERSIANN-CDR produces more accurate estimates of the AMS. There-
fore, 30% of total gauges is the breakpoint for the Upper Columbia
River Basin in the context of interpolating point gauge information to
spatial estimates. By comparing the statistics of corrected PERSI-
ANN-CDR and the traditional interpolation method, it is observed that
the proposed correction model generates more accurate estimates of the
AMS than does the linear interpolation method. The superiority of the
proposed bias-correction method becomes increasingly evident as the
gauges become sparser.

4.5. Validation on the continental U.S.

In the previous sections, we demonstrated the effectiveness and
robustness of the proposed correction model on the four representative
river basins in the western U.S. In this section, we extensively validate
the correction model on 16 additional river basins with different cli-
mates and topographic conditions across the continental United States
(Table 1). The selected basins for validation cover all the climate classes
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available in the United States based on the Koppen-Geiger climate
classification system. In addition, these basins cover a broad range of
elevations, from low-lying regions in the state of Florida to high ele-
vation regions in the state of Utah. These basins are also associated with
various dominant precipitation mechanisms (such as convective, oro-
graphic, and cyclonic) which could influence the performance of the
satellite-based precipitation products (Hong et al., 2007; Liu and Zipser,
2009).

Table 4 presents the errors in AMS estimates from the original and
the corrected PERSIANN-CDR data on the tested river basins. According
to Table 4, in 15 out of the 16 basins, the correction model results in
lower RMSE values compared to the original PERSIANN-CDR data.
Significant improvements are observed at high elevation regions such
as Dirty Devil, Rio Grande, and Upper Yellowstone river basins with
78.7%, 72.3%, 71.6% reduction in the RMSE of AMS, respectively. Also,
the correction model considerably decreases the errors in the AMS es-
timates at mid-elevation regions, such as Mississippi headwaters, Upper
Mississippi-lowa, and Upper Tennessee River basins (Table 4). Among
the low elevation regions, Nueces-Southwestern Texas Coastal and
Trinity River basins were quite successful with respect to the error re-
duction by the correction model. However, Pascagoula River Basin is
less successful (7.3% decrease in RMSE) and South Florida River Basin
fails to improve (29.7% increase in RMSE). Both of these basins are
located in the South Atlantic Gulf region, which is characterized by
warm convective precipitation mechanisms. As a result of these con-
vective systems, satellite precipitation products often fail to provide
accurate estimates at these regions, as we see from the performance of
raw data shown in Table 4. Both the Pascagoula and the South Florida
river basins have high initial errors compared to the other river basins.
Since the model is trained using the information from four river basins
in the western United States with different hydroclimatic conditions, it
is reasonable for it to not perform as well under temperate and tropical
climatic conditions and for extremes caused by warm convective
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Table 4
Bias-correction results in selected basins over the United States.

Journal of Hydrology 563 (2018) 123-142

Basin No. Basin Name

Average RMSE (mm)

Change (%)

Original PERSIANN-CDR

Corrected PERSIANN-CDR

1 Arkansas-Keystone 30.90
2 Central Nevada Desert 14.16
4 Dirty Devil 15.35
5 Kootenai-Pend Oreille-Spokane 24.23
6 Lower Snake 17.36
7 Mississippi Headwaters 19.12
8 Nueces-Southwestern Texas Coastal 28.68
9 Pascagoula 39.20
10 Rio Grande - Elephant Butte 15.67
12 Southern Florida 35.40
13 Susquehanna 22.61
14 Trinity 35.62
16 Upper Mississippi-lowa 23.83
17 Upper Tennessee 27.14
18 Upper Yellowstone 18.68
19 Wabash 23.36

12.02 -61.1
6.91 —-51.2
3.27 -78.7
9.67 -60.1
4.94 -71.6
3.42 —-82.1
17.43 -39.2
36.32 -7.3

4.34 -72.3
45.92 +29.7
10.64 -52.9
21.87 —38.6
7.24 —69.6
10.15 -62.6
5.31 -71.6
11.46 —51.0

Note: The underlined value shows the case where the adjustment of PERSIANN-CDR data failed to improve the errors in the annual maximum series estimates.

systems.

Generally, satellite precipitation estimation algorithms perform
poorly in estimating precipitation from shallow and warm convective
clouds (Hong et al., 2007; Kubota et al., 2009; Liu and Zipser, 2009;
Sorooshian et al., 2002). One reason behind this poor performance is
that these algorithms relate heavy precipitations to deep convective
clouds and subsequently underestimate heavy precipitations associated
with shallow warm clouds (Hong et al., 2007; Liu and Zipser, 2009).
Moreover, IR-based methods such as PERSIANN are based on cloud top
temperature thresholds that are sometimes too cold for warm oro-
graphic clouds (Adler et al., 2003; Dinku et al., 2008). Finally, due to
the contamination by the cold anvil cirrus clouds, IR-based precipita-
tion estimates typically display 1-3hr phase shift compared to the
maximum diurnal precipitation. These phase shifts influence the per-
formance of IR-based methods in regions dominated by warm con-
vective clouds (Sorooshian et al., 2002).

4.6. Multiday annual maximum series

In Fig. 9, we present the scatterplots of the CF-elevation for multi-
day duration AMS at Colorado Headwaters (Fig. 9a—j) as an illustrative
example. Fig. 9(a)-(j) suggest there is a similar CF-elevation behavior in
multi-day AMS analysis for different durations. Fig. 9(k) presents the
exponential regression functions fitted to each of the N-day maximum
scatterplots. According to Fig. 9(k), as durations increase from 1 day to
60 days, the original PERSIANN-CDR estimates of the AMS become
more accurate (i.e., closer to the CF =1 line). This is because the
PERSIANN-CDR dataset is bias-adjusted with GPCP dataset (Huffman
et al.,, 1997) at a monthly scale and the values from the two datasets
become closer to each other at longer durations. Therefore, at 30-days
or 60-days analysis, the AMS estimates should be close to gauge ob-
servation. Although PERSIANN-CDR and gauge information are ad-
justed at a monthly scale, the monthly coefficients are applied to daily
estimates (Ashouri et al., 2015). Therefore, the sub-monthly or daily
estimates may not be compatible with gauge observations at the cor-
responding scale. Furthermore, the GPCP is a gauge interpolated da-
taset which its pixel values are essentially the average values of gauge
observations within the large grid boundary. However, here we com-
pare the PERSIANN-CDR estimates in pixel scale with the collocated
gauge values which could differ substantially from the corresponding
GPCP pixel values.
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4.7. Depth-duration-frequency curves

Fig. 10 shows the DDF curves derived from the adjusted PERSI-
ANN-CDR data, the frequency estimates from NOAA Atlas 14, and the
90% confidence intervals for a gauge location in Dirty Devil basin in the
state of Utah (USC00420849). We present return levels for daily and
multi-day durations given the daily resolution of the PERSIANN-CDR
dataset. As shown in Fig. 10, the frequency estimates from the original
PERSIANN-CDR data are outside the 90% confidence intervals of the
NOAA Atlas 14 which suggests the necessity of bias adjustment prior to
employing the data for frequency analysis. On the other hand, DDF
curves from the adjusted PERSIANN-CDR data are well within the 90%
confidence intervals of the NOAA Atlas 14 DDF curves. In most cases,
the frequency estimates from the adjusted PERSIANN-CDR data are
very close to the NOAA Atlas 14 estimates which are calculated by
incorporating a large number of gauges and longer records of data for
frequency estimation. Larger deviations from the gauge-based estimates
are observed at longer return periods, and there is no clear trend in
terms of overestimation or underestimation with respect to duration.

As shown in Fig. 10, the confidence intervals from the gauge-based
and satellite-based DDF etimates become larger as the return periods
increase. This higher uncertainty is because of the lower sample size at
the tails of the distributions. Furthermore, the confidence intervals from
the original and the adjusted PERSIANN-CDR datasets are relatively
comparable given the similar lengths of the two datasets. However, the
uncertainty bounds from the satellite-based DDF estimates are larger
than those from the NOAA Atlas 14. One reason behind these larger
confidence intervals is the shortness of the PERSIANN-CDR dataset
when compared to the gauge information used for the development of
NOAA Atlas 14 DDF curves. Another reason is the difference between
the frequency analysis method implemented here and the method em-
ployed in the development of NOAA Atlas 14. NOAA uses the regional
frequency analysis based on L-moments to estimate the frequency and
intensity of extremes (Hosking and Wallis, 2005). The regional fre-
quency analysis method is used in Atlas 14 in order to relieve the un-
certainties arising from a low sample size (limited years of observa-
tions) during the GEV parameter estimation process. Although the
regional frequency analysis method gives frequency estimates with
lower uncertainties, it comes with the assumption of regional homo-
geneity in extreme rainfall characteristics which is not always a valid
assumption. Here, the frequency analysis methods and uncertainties of
the frequency estimates are outside of the scope of this study, and the
DDF curves and their error analyses are the proof of concept.

As seen in Fig. 10, DDF curves from the original PERSIANN-CDR
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Fig. 9. Scatterplots of CF-elevation for different durations (a—f) and the exponential regression fitted to the CF-elevation data for different durations (k) at Colorado

Headwaters Basin.

suggest underestimation of the extreme precipitation quantiles for dif-
ferent durations. This is expected given the spatial resolution of this
dataset. In fact, when considering the remotely sensed precipitation
information, we should be aware that the pixel value represents a
spatial average of precipitation within the extent of a pixel. In other
words, the pixel value disregards the subpixel variability and even if the
PERSIANN-CDR estimate at a pixel is completely accurate, its value
tends to be smaller than the collocated point measurements. As a result,
the extracted DDF curves from a satellite pixel tend to demonstrate
lower return levels (Peleg et al., 2018b), as observed in Fig. 10.

It is worth noting that the estimated DDF curves from the PERSI-
ANN-CDR data are not necessarily based on the liquid-phase pre-
cipitations and the extracted AMS may comprise snowfalls as well. This
is because PERSIANN-CDR and many other satellite-based precipitation
estimation algorithms do not distinguish between precipitation phases.
In other words, the annual maximum time series extracted and used
here may contain solid-phase precipitation extremes due to snowfalls.
Although this study does not differentiate between solid and liquid
phases of precipitation in order to obtain purely rain-based DDF curves,
the current framework can be further modified to incorporate addi-
tional observations on solid precipitations. There are two approaches to
achieve this goal. One approach for this would be to limit the analysis
to warm seasons, but the definitions of warm season vary among var-
ious geographic locations. Another approach would be to distinguish
snowfall from rainfall, but this would require snowfall and air tem-
perature data that are not available everywhere. Future independent

research may improve upon the current study by including such addi-
tional information.

Fig. 11 displays the box plots of RMSE of the return level estimates
from the original and corrected CDR for different durations and return
periods at collocated PERSIANN-CDR pixels and gauges for different
basins in the continental US. The corrected PERSIANN-CDR data was
used to obtain frequency estimates at different gauge locations in the
selected basins, and the results were compared with those from NOAA
Atlas 14. Note that three out of the 16 basins (basins #5, #6 and #15)
were located in the Pacific Northwest region and two basins (basins #8
and #14) were located in the state of Texas, all of which were not
covered by or were being updated in the recent volumes of NOAA Atlas
14. Thus, the frequency estimates were only validated at the remaining
11 basins as shown in Fig. 11.

According to Fig. 11, the RMSE values for return level estimates
corresponding to longer return periods are generally higher for both
datasets. This is expected as the PERSIANN-CDR dataset is relatively
shorter than the gauge information used for the development of NOAA
Atlas 14. The shorter record will result in smaller samples, higher un-
certainties, and larger deviations at the tails of the distribution. Over
the tested basins, the frequency estimates from the corrected PERSI-
ANN-CDR data have consistently lower median RMSE values than those
from the original PERSIANN-CDR at different return periods. The RMSE
values at the basins with higher elevations (such as Central Nevada, or
Dirty Devil basins) were relatively lower than these at basins with lower
elevations (such as Mississippi Headwaters, or Upper Mississippi-lowa
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basins), which implies the suitability of the correction approach for
high elevation regions. Furthermore, in most of the basins and at dif-
ferent return periods, the corrected dataset shows lower variability in
RMSE of the frequency estimates. Corrected PERSIANN-CDR data also
demonstrate superior performance in terms of median RMSE and
variability of RMSE values at the gauges within the basins. The only
case for which the corrected PERSIANN-CDR results in higher RMSE
values at different return periods and durations is the South Florida
basin, where it was previously shown that the correction model does
not improve the AMS estimates due to the climate and the precipitation
mechanism.

The relative errors of the frequency estimates are calculated to show
the relative magnitude of the return level errors compared to the return
levels from NOAA Atlas 14. The relative error here is the difference
between the frequency estimates from PERSIANN-CDR (original and
bias-adjusted) and NOAA Atlas 14, divided by the value from NOAA
Atlas 14. Fig. 12 demonstrates the absolute value of the relative error
for the frequency estimates at different durations and return periods
from the corrected and original PERSIANN-CDR data. As shown, the
relative errors from the corrected PERSIANN-CDR data have con-
sistently lower median values, as well as, lower variability at different
return periods in the tested basins. The median relative errors from the
corrected data are less than 20% different from the return levels esti-
mated by NOAA Atlas 14. Similar performance is observed when the
relative errors of frequency estimates from the two datasets are com-
pared with respect to the extreme precipitation duration. It is also noted
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that the corrected PERSIANN-CDR dataset does not show a systematic
increase or decrease in the relative errors of the frequency estimates,
with respect to the duration. The relative errors of the return level es-
timates from the original PERSIANN-CDR data tend to decrease with
increasing duration. This finding is consistent with our observations in
Fig. 9 that revealed lower errors of the original PERSIANN-CDR data for
longer duration extreme events. As with Fig. 11, the only case in which
the corrected data resulted in higher RMSE values was the South
Florida basin where the correction model did not improve the AMS
estimates (Section 4.5).

5. Summary and conclusions

In this study, the application of the PERSIANN-CDR dataset for
rainfall frequency analysis was investigated. A bias correction model
was developed to further correct the PERSIANN-CDR estimates of an-
nual maximum time series at the pixel scale. The proposed correction
approach was implemented in two steps: (1) Bias correction factors at
limited gauge locations were estimated using linear regression analysis
between annual maximum series (AMS) of gauges and collocated pixels;
and (2) The correction factors from the limited gauge locations were
extended to other regions where gauge data were not available. The
correction model was validated at 16 basins in the continental United
States, covering various climates and elevations. Finally, depth-dura-
tion-frequency (DDF) curves were constructed by fitting the General-
ized Extreme Value distribution to the AMS from the corrected data and
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estimating the quantiles of extreme precipitations. Below is a summary

of our main findings:

1. The proposed bias correction approach has been demonstrated ef-
fective and robust in improving the accuracy of a remote sensing

precipitation estimation product (i.e., PERSIANN-CDR), especially
in high-elevation river basins where gauge or radar networks are
either limited or non-existent.

2. The hold-out cross-validation results indicated that the proposed

bias correction model is capable of improving the AMS estimated by
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Fig. 11. (continued)

the PERSIANN-CDR dataset even in the case that limited gauge in-
formation was provided for the model calibration and the approach
is generalizable to other locations with similar climates and eleva-
tions.

. As shown by the leave-one-out cross-validation, the bias adjusted
PERSIANN-CDR gave better estimates of the AMS for the ungauged
sites at a majority of the basins even though these basins had dense
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gauge networks.

. Results from the k-fold cross-validation method suggested that the
PERSIANN-CDR data, bias-corrected with the proposed correction
approach, performs consistently better than the gauge interpolation
method in estimating the AMS at a majority of regions with limited
gauge observations. It was observed that the gauge interpolation
may sometimes result in significant errors in AMS estimates,
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especially in regions with complex topography.

5. The validation results over 16 basins across different climates and
elevations indicated that the proposed correction method improves
the PERSIANN-CDR estimates of AMS, especially in high elevation
regions.
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6. The bias-adjusted PERSIANN-CDR is further applied to derive the
return levels for different return periods and durations. The fre-
quency estimates from the corrected PERSIANN-CDR data are
compared with those from the original PERSIANN-CDR and NOAA
Atlas 14. Results revealed that the frequency estimates from the
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corrected dataset are consistently closer to the estimates from NOAA
Atlas 14. They also lie within the uncertainty bounds of NOAA Atlas

14.

Thus, the PERSIANN-CDR dataset has the potential for being used in
rainfall frequency analysis for the regions with limited ground-based

1-day 2-day 3-day 4-day 7-day 10-day 20-day 30-day 45-day 60-day
Duration
| Corrected CDR Original CDR |

Fig. 12. (continued)

observations. However, despite the promising results, there are still
some limitations in this dataset and the proposed correction method for

the application of frequency analysis. One of these limitations is the
temporal resolution of the PERSIANN-CDR dataset. The daily temporal
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resolution limits the investigation of extreme events with shorter
durations (e.g. 3-hourly or hourly). Another limitation is that the
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frequency analysis here is conducted at the pixel scale using relatively
limited samples. A sample of 33 annual maximum values is relatively
limited for fitting a 3-parameter distribution. This would result in high
uncertainties in estimating the parameters of the distribution and the
return levels. One remedy to the sample size problem could be the
application of regional frequency analysis methods to increase the
sample size by incorporating information from the nearby locations
with the same climatic conditions.

It is also important to note that given the rising global temperatures,
rainfall intensities especially at shorter durations are expected to in-
crease. Therefore, the increase in the global temperature could be used
as an added factor to adjust historical design rainfall intensities for the
warmer temperatures that lie ahead (Peleg et al., 2018a).

This work is part of an ongoing research and the presented ap-
proaches and results are intended as a proof of concept. Future research
in this area may involve, bringing non-stationarities into the bias-ad-
justment framework (Tao et al., 2018), including covariates into the
bias-adjustment framework which requires advanced optimization
techniques (Yang et al., 2017), investigating the hydrological modeling
applications of the corrected-PERSIANN-CDR data, and developing DDF
curves for ungauged regions or areas not included in the current NOAA
Atlas 14.
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