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Abstract

We introduce and implement a cognitively plausible model
for learning from generic language, statements that express
generalizations about members of a category and are an im-
portant aspect of concept development in language acquisi-
tion (Carlson & Pelletier, 1995; Gelman, 2009). We extend
a computational framework designed to model grounded lan-
guage acquisition by introducing the concept network. This
new layer of abstraction enables the system to encode knowl-
edge learned from generic statements and represent the associ-
ations between concepts learned by the system. Through three
tasks that utilize the concept network, we demonstrate that our
extensions to ADAM can acquire generic information and pro-
vide an example of how ADAM can be used to model language
acquisition. 1

Keywords: Language Acquisition, Generics, Cognitive Mod-
eling

Introduction
Generics, statements in the form of “bananas are yellow”
or “birds fly”, express generalizations about members of a
category, and are frequent in everyday language (Carlson,
1977; Carlson & Pelletier, 1995). These expressions refer
to a category as a whole (e.g birds), as opposed to a sin-
gle instance of a category (e.g a bird), and while referring
to a conceptual category as a whole, generic statements may
assert information that while typical, does not cover all in-
stances, and hence are not necessarily invalidated by counter-
examples (McCawley, 1981; Gelman, 2004). For example,
the statement “birds fly” is not invalidated by the existence
of penguins, a bird that cannot fly. Moreover, experience
with only a single instance of a conceptual category can be
sufficient to acquire generic knowledge (Carlson & Pelletier,
1995; Prasada, 2000). Besides the prevalence and the ex-
pressive power of generics in language, generics also play an
important role in child language acquisition. During concep-
tual development, generic statements complement observa-
tional learning and help construct conceptual knowledge, al-

1Our code is available at https://github.com/isi-vista/adam

lowing children to learn hierarchical information that cannot
be learned from the world with experience alone (Cimpian &
Markman, 2009; Gelman, 2009).

Prasada (2000) emphasized the acquisition problem posed
by the imprecise nature of generic language and our ability to
learn generic knowledge from minimal experience, outlining
that the requirements of a formal system for acquiring generic
knowledge are to complement other learning mechanisms and
to establish relationships between categories and properties.
By age 2, children manifest the capabilities of such a system,
as they can recognize category labels (Graham, Kilbreath, &
Welder, 2004) and make use of names to classify objects,
even if an instance is atypical for a given category (Nazzi &
Gopnik, 2001; Jaswal & Markman, 2007). Considering how
generic utterances such as “penguins are birds” can override
interpretation of perceptual features and allow learning hier-
archical knowledge even from a young age (Gelman, 2009;
Cimpian, Brandone, & Gelman, 2010), it is clear that lan-
guage can inform perceptual learning, making generics a crit-
ical component of language acquisition worth modeling.

Inspired by the plethora of research on generics and child
language development, we introduce and implement a de-
velopmentally plausible model for learning concepts from
generic language that assumes no prior conceptual knowl-
edge, learns meanings of words and concepts in a manner
similar to infants (from the ground up), and demonstrates
the capacity to make inference with the learned concepts.
The importance of generic language has been recognized
in the artificial intelligence and natural language processing
community for tasks that involve knowledge acquisition, on-
tology development, and semantic inference (e.g., Reiter &
Frank, 2010; Friedrich & Pinkal, 2015; Sedghi & Sabharwal,
2018). These approaches generally make use of large-scale
resources and employ methods such as supervised learning
that are not suitable for modeling child language and con-
ceptual development. We base our system on ADAM, a
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software platform for modeling early language acquisition
(Gabbard et al., 2021). Through pairs of perceptual repre-
sentations of situations and linguistic utterances describing
these situations, ADAM learns interpretable representations
for concepts such as objects, attributes, relations, and actions
(see Model and Representation section for further detail).
ADAM’s cognitively plausible design choices regarding per-
ceptual representations (Marr, 1982; Biederman, 1987) and
simple word/pattern learning mechanisms (Webster & Mar-
cus, 1989; Yu & Smith, 2012; Stevens, Gleitman, Trueswell,
& Yang, 2017) lay the groundwork for modeling higher level
semantics in child language acquisition. Given the inter-
play between generic statements, concepts, and observational
learning in natural language (Carlson, 1977; Carlson & Pel-
letier, 1995; Gelman, 2009) and ADAM’s power to learn
meanings of concepts and identify them across situations, we
consider ADAM to be a promising system for modeling ac-
quisition of generic knowledge and the resultant semantic cat-
egory inference.

We expand ADAM’s modeling capabilities to capture se-
mantic associations and generics by introducing a generic
learner module and combining ADAM’s representations with
an additional layer of abstraction, a network data structure
called the concept network. The concept network organizes
the associations between concepts and learns hierarchies and
properties about the concepts through observation as well as
generic utterances. Through three tasks that use generic lan-
guage across different learning curricula, we demonstrate that
ADAM, coupled with the generic learner module and the con-
cept network, can acquire generic knowledge, establish se-
mantic certainty with generics language, and make category
inference. Our demonstrations provide an example of how
ADAM can be used to model language acquisition.

Model and Representation
Meaning Representation in ADAM
ADAM is a software platform for experiments in child lan-
guage learning. The system can process a range of expres-
sions covering a very young learner’s vocabulary and gram-
mar, such as objects (“a ball”), adjectives (“a red ball”),
prepositions (“a ball on a table”) and actions (“Mom rolls a
ball”). ADAM uses perception graphs to represent situations
(e.g. a cup sitting on a table) that it perceives. Perception
graphs consist of perceptually plausible components, such as
geons (Biederman, 1987), body parts, colors, and regions.
For example, when the model observes a cup on the table, the
model perceives a structured graph that consists of the cup’s
color, hollow shape, its handle, and its position relative to the
table. The model learns patterns over observed perception
graphs. The patterns represent hypotheses about the mean-
ing of individual concepts and are consolidated throughout
the learning process. For example, the learner could perceive
perception graphs and utterances from multiple situations that
involve a bear, such as hearing “a brown bear” while ob-
serving a bear by itself, hearing “a bear sits” while observ-

Figure 1: Examples of a concept network. Nodes represent
concepts (e.g. bird, animal, sitting down). The edges are la-
beled by the semantic relation between the concepts (slot),
and the association strength (weight). The top shows a por-
tion of the concept graph for bird. The bottom shows animal
and its neighbors.

ing a bear sitting, and hearing “two bears” while observing
two bears, and eventually learn a representation of “bear”’s
meaning. ADAM uses the learned mapping between linguis-
tic structures and meaning representations to describe new
scenes. Before learning, we define a configurable curricu-
lum that pairs observations and descriptions. During testing,
the perception input is generated without the descriptions.

The Concept Network
We extend ADAM’s representations of concepts and patterns
with the concept network, a graph-based data structure that
represents learned concepts (e.g, objects, attributes, and ac-
tions) as nodes and the semantic associations between them
as edges. The concept network enables one to see whether
any two concepts are related, what their relation is, and how
strong this relation is, by looking at the edge connecting the
two concepts. Contrary to ADAM’s perception graphs and
patterns that are used to describe the components of a scene or
perceptual properties of a perceived object, the concept net-
work represents the overall semantic and conceptual knowl-
edge of the learner learned over time. We represent each con-
cept as a single node in the network; for example, bird is rep-
resented by a single concept node in the concept network, and
other semantically related concepts are its neighbors. Figure
1 (top) visualizes a section of the learned concept network
structure for the bird concept. Using the concept network, we
can infer that a concept such as bird is an animal, and that
it is associated with the concept fly. Since these associations
are formed through the learner’s observations of occurrences
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of concepts throughout learning, the association between the
bird and fly concepts would suggest that a bird was observed
while flying. Similarly, the network can be used to observe
the categories formed by the learner; Figure 1 (bottom) shows
the animal node and its neighbors. To construct the nodes and
edges in this network, while perceiving concepts and seman-
tic relations between them as the learner observes situations
as described in Gabbard et al. (2021), the learner also simul-
taneously creates nodes for concepts (e.g bird, fly) and edges
to associate concepts in the network. The concept network
consists of about 250 concepts when generated with ADAM’s
standard curriculum (see Gabbard et al. (2021) for a complete
list of content descriptors).

Edges and Semantic Associations The edges in the con-
cept network represent the semantic relation between the two
concepts and the association strength between them. For ac-
tion concepts, the relation often denotes an argument rela-
tion with the neighboring concept; the argument relation is
labeled with slots that describe a slot an argument can take in
a phrase. For instance, given “Mom drinks juice”, Mom has
argument slot position slot-1 with drink, while juice has slot-
2. The strengths in the network start from 0 and have a max-
imum of 1.0. Throughout learning, the association strength
between two concepts is updated with each co-occurrence
of the two concepts, using the plateauing update function
a = a+ 0.2 ∗ (1− a). The edges that represent semantic as-
sociations initialized with generic statements have maximum
association strength, since we tend to believe what we are
told is true. These edges are also marked with a slot label that
matches the argument relation of the statement, or the is label
if the statement is a predicate.

Matrix Representation We represent the network as a
weighted adjacency matrix to facilitate rich operations such
as vector similarity between concepts. In order to preserve
argument relation information in the edges in the matrix,
each action concept in the concept network is first translated
to multiple concepts that include the argument relation (e.g
drink slot 1 to represent drink in Mom drinks and drink - slot
2 to represent drink in “drinking juice”).

Concept Similarity We use concept similarity for evalu-
ation. Each concept is represented as an adjacency vector
extracted from the weighted adjacency matrix. Vectors for
category concepts (e.g animal) are represented as the aver-
age of the vectors of all members of that category. Similarity
between pairs of concepts is measured using cosine similar-
ity. Measuring concept similarity provides insight into the
the hierarchical structures that naturally emerge throughout
learning, as visualized in Figure 2 which shows a clustered
heatmap of the vector representations of concepts that are
learned through a curriculum of objects and actions, without
generics. We see the formation of categories that correspond
to body parts, liquids, and animate objects.

Figure 2: A qualitative demonstration of how hierarchical cat-
egories can be measured with concept similarity. We see the
formation of categories in the concept space, e.g animate ob-
jects (cat, dog, Mom, baby, Dad), liquids (water, juice, milk),
and body parts (head, hand). The vector representations of
learned concepts were clustered with hierarchical clustering
method clustermap (Müllner, 2011; Waskom & the Seaborn
Development Team, 2020).

Generic Utterances
To teach generic language and explicit categories to the
learner, we present simple scenes paired with generic utter-
ances such as “bears sit” and “bears are brown”. Since
generic language encodes generic knowledge (e.g “birds fly”
stipulates that birds generally can fly), inputs to the learner
that are in generic form maximize the corresponding associ-
ation strength when observed by the learner. For instance,
while the non-generic utterance “a bear sits” increases the
association strength between between bear and sit, observing
“bears sit” maximizes it.

Generic Learner Module The ADAM system is built of
learning modules. Each module targets a specific type of
learning, such as objects, actions, and relations. We build
a generic learner module to enable learning from generic ut-
terances. The generic learner first verifies that the utterance is
a generic by checking whether all the recognized nouns in the
utterance are bare plurals, an indicative property of generics
in English (Lyons, 1977; Gelman, 2004). Once confirmed,
the learner recognizes the concepts mentioned in the utter-
ance, and forms a semantic connection between these con-
cepts in the concept network. The association strength of this
connection is maximal, which implies a semantic certainty
that is learned from generic input.

In the special case where the generic statement is a predi-
cate containing a previously unknown category, such as ani-
mal in “dogs are animals,” we create a new category concept
node in the concept network and associate the object concept
(dog) with the category concept (animal). If a novel object

2452



concept appears in a generic statement as a member of a cate-
gory concept, such as wug in “wugs are animals,” we create a
new object concept and associate it with the category concept
as well as the features of the members of the category. Over-
all, the module can interpret statements in the form of “birds
fly,” “birds are animals” and “wugs are animals”.

Model Evaluation
We present three tasks to illustrate the behavior of the system
across different learning conditions.

Task 1: Generic Color Predicates
The generic color predicates task shows how the system
can learn generics by establishing stronger associations be-
tween learned concepts. In other words, we measure how the
generic input can change the learner’s understanding of the
world by influencing semantic connections. In this task, we
first teach objects and arbitrary colors to the system with non-
generic utterances (e.g a red truck) based on the standard ob-
ject and color curricula provided in the ADAM system. We
then evaluate the associations between the object and color
concepts that the system has learned. Then, we pick col-
ors that are typical for the object concepts and teach them
with generic statements (“watermelons are green,” “papers
are white,” “cookies are light brown”), and evaluate the as-
sociations between the object and color concepts again. In
the non-generic training phase, each object appears with a
variety of arbitrary colors (e.g cookies with blue, green, and
light-brown colors), which we expect will lead the model to
learn associations between an object and many colors. We
expect the presentation of generic input to yield stronger as-
sociations between the object and the color used in a generic
utterance.

Results and Discussion We measure the association
strengths between objects and all associated colors before
and after observing generic color predicates. The results are
plotted in Figure 3. Prior to hearing generic input, objects
have associations to many arbitrary colors, reflecting the ini-
tial non-generic curriculum. Once the generic color predi-
cates are observed, we see that each object has a significantly
stronger association with the appropriate color as stated in
the generic utterances. Upon observing generics, only the as-
sociation strengths for the correct colors are updated. These
results demonstrate that our model interprets and uses gener-
ics as designed, to establish strong associations between an
object and a prototypical version of some feature.

Task 2: Category Inference
The category inference task demonstrates how the model
forms categories, e.g animals and food. As visualized in
Figure 2, concept categories form naturally in the represen-
tational space throughout learning, as similar objects have
similar semantic roles in actions; for instance, only animate
objects eat, and only food objects are eaten. In this task,
we label these implied categories using generic statements
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Figure 3: Results of the generic color predicates task, plotting
the associations strengths between objects and colors that are
associated with them, before and after observing generic in-
put. At first, each object is associated with an arbitrary set of
colors that reflect the curriculum. The only associations that
increase are correctly the ones observed through generics.

(e.g“cats are animals,” “dogs are animals”). Then, we com-
pare the novel concepts placed in these categories with each
possible category. We first teach the learner a particular cur-
riculum, then a set of previously unknown objects in known
categories (e.g. “wugs are animals”), and finally evaluate
the similarity of the new item (e.g. wug) to each possible
category. We repeat this process for different curricula with
increasing semantic complexity, by including more compli-
cated content such as plurals and actions. Table 1 shows dif-
ferent learning curricula (top), example utterances (center),
and examples with unknown categories (bottom). We ex-
pected that, while the model should be able to form categories
regardless of the curricula, the formed categories would be
most distinct in the less complex conditions.

Table 1: Inputs to the learner in the category inference task:
(top) learning curricula; (center) examples of situations and
utterances; (bottom) inputs presented to the learner. Animal
and people categories are treated as separate categories.

Learning Curriculum
1 Objects, categories
2 Objects, categories, generics
3 Objects, colors, actions, plurals, categories, generics

Results and Discussion The results of the category infer-
ence task are plotted in Figure 4. In the easiest curriculum
setting containing only objects and categories, every object is
most similar to the category in which it was learned, i.e wugs
are most similar to animals, vonks to foods, and snarps to peo-
ple. Expectedly, we see some similarity between animals and
foods, because chicken is a member of both categories. The
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Figure 4: Results of the category inference task, plotting the similarity of novel objects (e.g wug) to animal, food, and people
categories across curricula of varying complexity. The correct categories of objects, i.e categories in which they were presented
in the generic input, are labeled in parentheses. Regardless of the curriculum complexity and concept category, the learner
associates new objects most strongly with the correct category. Incorrect associations increase with curriculum complexity.

Curriculum Examples
Objects a house; a dog
Colors a red truck; papers are white
Actions a baby drinks milk from a cup
Plurals two balls; many cookies
Category Generics bears are animals
Action Generics cats walk; Moms eat

New Object Category Utterance
wug animal wugs are animals
vonk food vonks are foods
snarp people snarps are people

second curriculum condition, which includes objects, cate-
gories, and generics, shows that while the correct trend holds,
there is some association between animals and people due to
generic statements that apply to both categories, such as sit-
ting. Finally, in the most complex curriculum condition that
includes objects, some actions, plurals, colors, categories,
and generics, we see that the associations across categories
are increased, but the correct category still has the highest
association strength. There is some similarity between ani-
mals and foods, and people and animals due to shared con-
cepts such as chicken and eating respectively. Overall, while
associations between object concepts and the incorrect cate-
gories increase with curriculum complexity, regardless of the
curriculum complexity and category of the novel object, ob-
jects are associated most strongly with the correct category in
which they were learned through generic statements.

Task 3: Joint Category
The goal of the joint category task is to demonstrate how the
ADAM system learns categories across curricula with differ-
ent contents. Specifically, we create learning curricula for
each of the four conditions shown in Table 2 and evaluate
the model behavior. We use combinations of chicken, beef,
and cow objects; chicken is used as an example of a lexical

item that is shared by two very similar yet distinct concepts
(chicken as an animal, and chicken as food) and hence is a
member of both the food and animal categories. While beef
and cow could refer to the same thing at a certain semantic
level, they are regarded as disjoint examples of a food and
an animal category respectively. We hypothesized that while
observing chicken would cause some semantic association be-
tween food and animal categories, the model should not show
any semantic association between food and animal categories
when it observes just beef and cow and no chicken.

To execute the task, we run four different versions of the
ADAM system, each one trained with one of the four cur-
riculum conditions shown in Table 2. Then, similar to the
category inference task, each system is presented a set of pre-
viously unknown objects in known categories, e.g “wugs are
animals”. Finally, we evaluate the similarity of the new object
concept to animal and food categories.

Table 2: Curricula and contents for the joint category task

Test Objects Included in the Learning Curriculum
1 None (no chicken, beef, or cow)
4 Beef (food) and cow (animal)
3 Chicken (food and animal)
4 Chicken, beef, and cow

Results and Discussion Figure 5 plots the results of the
joint category task, showing the similarity of the wug con-
cept to animal and food categories across curricula with dif-
ferent contents. In the first condition, with a curriculum that
does not include chicken, beef, or cow, the similarity to an-
imals is strong, but the similarity level for food category in-
dicates an absence of similarity between animals and foods.
Likewise, in the second curriculum condition, when the cur-
riculum includes beef and cow, but not chicken, the learner
does not learn any association between food and animal cat-
egories. However, when we introduce chicken into the cur-
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Figure 5: Results of the joint categories task. Through
generic input, a novel object, wug is learned as an animal.
The plot shows the similarity between the wug concept and
the animal and food categories. Wug is more similar to foods
when the curriculum includes chicken. The similarity is lower
when beef and cow are added and is zero without chicken.

riculum, the association between animals and foods grows.
Finally, including chicken, beef, and cow in the curriculum
leads to some similarity between foods and animals, but less
so than when only chicken was included. That these changes
match our expectations suggests that ADAM can successfully
capture differences in the curricula and the contents in them.
While doing so, the system maintains its robustness as indi-
cated by how the similarity to the correct category outscores
the similarity to the incorrect category in every condition.

Conclusion & General Discussion
We have illustrated that the grounded language acquisition
system of ADAM, coupled with the learner module and con-
cept network, can be successfully used for modeling seman-
tics of generic learning. We demonstrated that the model
learns from generic language, makes desired semantic asso-
ciations between learned concepts, and forms semantic cate-
gories that reflect the contents of the training curricula.

The concept network makes it possible to perform opera-
tions on learned concepts and on the semantics of generics,
enabling generic utterances to establish associations between
concepts and consequently form semantic categories. In the
future, we plan to further examine the role of association
weights in category formation, and how the system performs
on different languages. We also hope to explore how we can
use the matrix representation of the concept network to in-
tegrate ADAM’s structured and interpretable meaning repre-
sentations with distributional models that operate on continu-
ous space, such as neural networks. Moreover, while we did
not include the meaning patterns of the learned concepts in
the concept network, the flexible nature of the network makes
this possible, creating the potential for further semantic anal-
yses that utilize perceptual properties of learned concepts.

Overall, our system’s ability to acquire word meanings and
robustness in capturing desired semantic properties across
diverse learning curricula shows its promising capacity to

model different aspects of language acquisition and to inves-
tigate the question of how children discover the expression of
generics in their own languages.
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