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Abstract  

 

 
Contact Mechanics Modeling of Homogeneous and Layered Elastic-Plastic Media: Surface 

Roughness and Adhesion Effects 

 

by  

 

Zhichao Song 

 

Doctor of Philosophy in Engineering-Mechanical Engineering  

 

University of California, Berkeley  

 

Professor Kyriakos Komvopoulos, Chair 

 

            The main objective of this dissertation was to analyze surface contact interaction at 

different length scales and to elucidate the effects of material properties (e.g., adhesion and 

mechanical properties), normal and shear (friction) surface tractions, and topography parameters 

(e.g., roughness) on contact deformation. To accomplish this objective, a surface adhesion model 

based on an interatomic potential was incorporated into finite element contact models of rough 

surfaces exhibiting multi-scale roughness described by statistical and fractal geometry models.  

 

The problem of a rigid sphere in contact with an elastic-plastic half-space was first 

examined in the light of finite element simulations. Four post-yield deformation regimes were 

identified and the boundaries of neighboring regimes were obtained by curve-fitting of finite 

element results. Material hardness was shown to significantly deviate from the similarity solution 

with decreasing elastic modulus-to-yield strength ratio and the logarithmic dependence of the 

mean contact pressure on the indentation depth was found to hold only when the plastic zone was 

completely surrounded by elastic material. Constitutive equations were first derived for elastic-

perfectly plastic half-spaces from curve-fitting finite element results and were then extended to 

isotropic, power-law hardening half-spaces, using the concept of the effective strain, which 

correlates the indentation depth with the indenter size. Finite element simulations of unloading 

process and repetitive normal contact were used to correlate the residual indentation depth and 

the dissipated plastic energy with the maximum indentation depth. Elastic shakedown, plastic 

shakedown, and ratcheting were identified by tracking the accumulation of plasticity for different 

values of maximum contact load and elastic modulus-to-yield strength ratio. The semi-infinite 

half-space was characterized by three different regions, named ratcheting region, shakedown 

region and elastic region, as the distance to contact surface increases. The obtained results have 

direct implication in material property measurements obtained with indentation method, 

particularly for materials exhibiting strain hardening behavior, and provide insight into the 

accumulation of plasticity due to repetitive contact loading, which is important in the 

understanding of the contact fatigue life of contact-mode devices.   
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Sliding contact between a rigid fractal surface exhibiting multi-scale roughness and an 

elastic-plastic half-space was examined to elucidate rough-surface deformation due to small-

amplitude reciprocating sliding (fretting). Stick-slip at the asperity scale was analyzed based on 

Mindlin’s theory and a friction model that accounts for both adhesion and plowing effects. 

Numerical results yield insight into the effects of surface roughness, contact pressure, oscillation 

amplitude, elastic modulus-to-yield strength ratio, and interfacial adhesion on the friction force, 

slip index, and energy dissipation. The results of this study illustrate the important role of the 

contact load and surface topography on the energy dissipation and fretting wear of small-

amplitude oscillatory contacts.  

 

Surface adhesion modeled as surface traction obeying the Lennard-Jones (LJ) potential 

was incorporated into the contact analysis of a rigid sphere indenting an elastic half-space to 

study contact instabilities associated with instantaneous surface contact (jump-in) and 

detachment (jump-out). This surface traction was introduced into a finite element contact model 

in the form of nonlinear spring elements and the jump-in/jump-out condition obtained 

analytically was confirmed by finite element results. Then, adhesive contact between a rigid 

sphere and an elastic-plastic half-space was analyzed and the effect of plasticity on the pull-off 

force and the commencement of contact instabilities was interpreted in terms of a modified 

Tabor parameter. The developed finite element model with nonlinear spring elements 

representing adhesive surface interaction provides a physics-based, computationally-efficient 

technique for studying adhesive contacts. The obtained results provide explanation for the 

contact instabilities encountered during surface probing with microprobe tips and stiction 

(permanent adhesion) in contact-mode microdevices.  

 

Adhesive contact between a rigid sphere and a layered medium analyzed with the finite 

element method shed light into adhesion-induced contact deformation. Two modes of surface 

detachment were observed for perfect bonding of the film to the substrate – brittle- and ductile-

like surface detachment. Simulation results illustrate the effects of the maximum surface 

separation, film thickness, film-to-substrate elastic property mismatch, and substrate yield 

strength on the mode of surface detachment and residual deformation. Introducing a cohesive 

model that allows for crack formation and growth along the film/substrate interface in the 

previous finite element model, a residual cohesive zone was found at the crack tip after complete 

unloading. Contact instabilities and interface delamination were interpreted by the competing 

effects of surface adhesion and interfacial cohesion. Crack closure and crack-tip opening 

displacement (CTOD) were studied by performing a parametric study of the cohesive strength, 

interfacial energy, surface energy, surface adhesive strength, substrate yield strength, and initial 

defect size. The obtained results can be used to explain thin-film failure in contact systems due to 

the effect of adhesion and to improve the endurance of thin-film media subjected to surface 

tractions.  

 

Adhesive contact of two elastic rough surfaces was analyzed by integrating asperity-scale 

constitutive equations into the model of Greenwood and Williamson (1966) to account for the 

effect of contact instabilities at asperity level on the macroscopic contact response. The strength 

of adhesion was found to be mostly affected by the Tabor parameter and the surface roughness. 

The widely used adhesion parameter of Fuller and Tabor (1977) was shown to be appropriate 

only for contact systems characterized by a high Tabor parameter. Therefore, a new adhesion 
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parameter that governs the strength of adhesion of contact systems with a low Tabor parameter 

was introduced. Finally, a generalized adhesion parameter was derived by using the concept of 

the effective interatomic separation, defined as the ratio of the elastic stretch due to adhesion and 

the equilibrium interatomic distance. 

 

The research carried out in this dissertation provides fundamental understanding of the 

evolution of the stress and strain fields in contacting surfaces, the evolution of plasticity in 

indentation, the development of friction and dissipation of energy in fretting contacts, the 

occurrence of adhesion-induced contact instabilities and interfacial delamination, and the factors 

affecting the strength of adhesion for rough surfaces in normal contact. The results of this thesis 

have direct implications in various technologies, including high-efficiency gas turbines, magnetic 

storage devices, and microelectromechanical systems. 
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(center deflection ℎ𝑜 is due to an adhesion (attractive) surface force) and (b) finite 

element mesh of the layered medium, showing the nonlinear spring elements used to 

model interfacial adhesion.  

 

Figure 6.2 Pull-off force P̅off versus layer thickness t ̅for a layered medium consisting of an 

elastic layer of El = 20 GPa and a rigid substrate. 

 

Figure 6.3 Center deflection before surface separation h̅o  versus Tabor parameter μ for 

homogeneous elastic half-space. 

 

Figure 6.4 Substrate effect θ versus layer thickness t ̅for elastic layered medium with El/Es in the 

range of 2.5–40. 

 

Figure 6.5 Substrate effect θ versus center layer deflection ξ for elastic layered medium having a 

wide range of El/Es. 
 

Figure 6.6 (a) Surface force P̅ versus surface separation δ̅ during loading (solid lines) and 

unloading (dashed lines) and (b) residual surface height h̅r versus radial distance r̅ for 

elastic-plastic layered medium, El/Es = 10, β = 33.3,  t ̅= 8, and δ̅max= 3.33, 10, and 16.7. 

(Pull-off force P̅off and separation force P̅sep are defined in (a).) 

 

Figure 6.7 (a) Surface force  ̅ versus surface separation 𝛿̅ during loading (solid lines) and 

unloading (dashed lines) and (b) residual surface height ℎ̅  versus radial distance 𝑟̅ for 

elastic-plastic layered medium, 𝐸𝑙/𝐸  = 10, 𝛽 = 6.67, 𝑡̅ = 8, and 𝛿m̅ax= 3.33, 10, and 16.7. 

 

Figure 6.8 Residual center height ℎ̅𝑜,  versus maximum surface separation 𝛿m̅ax for elastic-

plastic layered medium, 𝐸𝑙/𝐸  = 10, 𝛽 = 3.33–33.3, and 𝑡̅ = 8. 
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Figure 6.9 (a) Surface force  ̅ versus surface separation 𝛿̅ during loading (solid lines) and 

unloading (dashed lines) and (b) residual surface height ℎ̅  versus radial distance 𝑟̅ for 

elastic-plastic layered medium, 𝐸𝑙/𝐸  = 10, 𝛽 = 1.67, 6.67, and 33.3, 𝑡̅ = 8, and 𝛿m̅ax= 10. 

 

Figure 6.10 (a) Surface force  ̅ versus surface separation 𝛿̅ during loading (solid lines) and 

unloading (dashed lines) and (b) residual surface height ℎ̅  versus radial distance 𝑟̅ for 

elastic-plastic layered medium, 𝐸𝑙/𝐸  = 2.5, 10, and 40, 𝛽 = 33.3, 𝑡̅ = 8, and 𝛿m̅ax= 10. 

 

Figure 6.11 Contours of equivalent plastic strain 𝜀𝑝̅ after complete unloading for elastic-plastic 

layered medium, 𝐸𝑙/𝐸  = 2.5, 10, and 40, 𝛽 = 33.3, 𝑡̅ = 8, and 𝛿m̅ax= 10.  

 

Figure 6.12 (a) Surface force  ̅ versus surface separation 𝛿̅ during loading (solid lines) and 

unloading (dashed lines) and (b) residual surface height ℎ̅  versus radial distance 𝑟̅ for 

elastic-plastic layered medium, 𝐸𝑙/𝐸  = 10, 𝛽 = 33.3, 𝑡̅ = 4, 8, and 16, and 𝛿m̅ax= 10. 

 

Figure 6.13 Surface force  ̅ versus surface separation 𝛿̅ during loading (solid lines) and 

unloading (dashed lines) for four consecutive loading cycles, elastic-plastic layered 

medium, 𝐸𝑙/𝐸  = 10, (a) 𝛽 = 6.67 and (b) 33.3, 𝑡̅ = 8, and 𝛿m̅ax= 10. 

 

Figure 6.14 Depth distributions of equivalent plastic strain 𝜀𝑝̅ along the axis of symmetry (𝑟 ̅= 0) 

for four consecutive loading/unloading cycles, elastic-plastic layered medium, 𝐸𝑙/𝐸  = 

10, 𝛽 = 6.67 and 33.3, 𝑡̅ = 8, and 𝛿m̅ax= 10. 

 

Figure 6.15 Radial distributions of equivalent plastic strain 𝜀𝑝̅ along the layer/substrate interface 

(𝑧̅ = –8) for four consecutive loading/unloading cycles, elastic-plastic layered medium, 

𝐸𝑙/𝐸  = 10, 𝛽 = 6.67 and 33.3, 𝑡̅ = 8, and 𝛿m̅ax= 10. 

 

Figure 7.1 Model of a rigid sphere in close proximity with a layered medium consisting of an 

elastic film and a semi-infinite elastic-plastic substrate.  

 

Figure 7.2 Schematic representation of traction versus film-substrate separation constitutive law 

of a bilinear cohesive zone. Surface separation larger than ℎ∗  leads to either partial 

damage (point C) or full damage (point B), accompanied by a decrease in cohesive 

strength 𝜎𝑐. 

 

Figure 7.3 Schematics of deformed layered medium (a) before and (b) after complete separation 

(jump-out) of the elastic film from the rigid sphere. Formation of a crack and a cohesive 

zone (gray region), partial closure of the cohesive zone (blue region), and high tensile 

stresses (red region) can be encountered at the film/substrate interface during a full load-

unload cycle, depending on the material properties and minimum surface separation 

(maximum compressive force).      

 

Figure 7.4 (a) Surface force  ̅ and (b) corresponding film-substrate separation below the center 

of contact  𝛥̅𝑜 versus surface separation 𝛿̅ for 𝛤 = 0.125, 𝑌̅ = 0.4, 𝜎𝑐 = 0.075, and 𝛿m̅in= –
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0.5, –1.0, and –1.5 (loading = solid lines; unloading = dashed lines). Characteristic points 

are shown for 𝛿m̅in= –1.5. 

 

Figure 7.5 (a) Contours of  residual 𝜎𝑧𝑧
res stress and (b) variation of residual film deflection  at the 

center of contact 𝛿̅res with minimum surface separation 𝛿m̅in for 𝛤 = 0.125, 𝑌̅= 0.4, and 

𝜎𝑐= 0.075. 

 

Figure 7.6 Crack-tip opening displacement 𝛽 and film deflection at the crack-tip location 𝛥̅𝑓 

versus minimum surface separation 𝛿m̅in for 𝛤= 0.125, 𝑌̅= 0.4, and 𝜎𝑐= 0.075. 

 

Figure 7.7 (a) Surface force  ̅ and (b) corresponding film-substrate separation below the center 

of contact  𝛥̅𝑜 versus surface separation 𝛿̅ for 𝛤= 0.125, 𝑌̅ = 0.1, 1.0, and 10, 𝜎𝑐 = 0.075, 

and 𝛿m̅in = –1.0 (loading = solid lines; unloading = dashed lines). 

 

Figure 7.8 Interfacial surface separation 𝛥̅ before (dashed lines) and after (solid lines) jump-out 

versus radial distance 𝑟̅ for 𝛤 = 0.125, 𝑌̅= 0.1, 1.0, and 10, 𝜎𝑐= 0.075, and 𝛿m̅in = –1.0. 

 

Figure 7.9 (a) Surface force  ̅ and (b) corresponding film-substrate separation at the center of 

contact  𝛥̅𝑜 versus surface separation 𝛿̅ for 𝛤= 0.125, 0.25, and 0.5, 𝑌̅= 0.4, 𝜎𝑐 = 0.075, 

and 𝛿m̅in = –1.0 (loading = solid lines; unloading = dashed lines). Characteristic points 

are shown for 𝛤 = 0.125. 

 

Figure 7.10 (a) Radius of fictitious crack 𝑎̅𝑓𝑐 and residual fictitious crack 𝑎̅𝑓𝑐
res and (b) closure of 

residual fictitious crack 𝑐 versus interface work of adhesion 𝛤 for 𝑌̅= 0.4, 𝜎𝑐 = 0.075, and 

𝛿m̅in = –1.0. 

 

Figure  7.11 Crack-tip opening displacement 𝛽 and film deflection at the crack-tip location 𝛥̅𝑓 

versus interface work of adhesion 𝛤 for 𝑌̅ = 0.4, 𝜎𝑐 = 0.075, and 𝛿m̅in = –1.0. 

 

Figure 7.12 (a) Surface force  ̅ and (b) corresponding film-substrate separation  at the center of 

contact  𝛥̅𝑜 versus surface separation 𝛿̅ for 𝛤 = 0.125, 𝑌̅ = 0.4, 𝜎𝑐 = 0.015, 0.075, and 0.2, 

and 𝛿m̅in = –1.0 (loading = solid lines; unloading = dashed lines). Characteristic points 

are shown for 𝜎𝑐 = 0.075 and 0.2. 

 

Figure 7.13 (a) Radius of fictitious crack 𝑎̅𝑓𝑐 and residual fictitious crack 𝑎̅𝑓𝑐
res and (b) closure of 

residual fictitious crack 𝑐 versus cohesive strength 𝜎𝑐 for 𝛤 = 0.125, 𝑌̅ = 0.4, and 𝛿m̅in = –

1.0. 

 

Figure 7.14 Crack-tip opening displacement 𝛽 and film deflection at the crack-tip location 𝛥̅𝑓 

versus cohesive strength 𝜎𝑐 for 𝛤 = 0.125, 𝑌̅ = 0.4, and 𝛿m̅in = –1.0. 

 

Figure 7.15 (a) Surface force  ̅ and (b) corresponding film-substrate separation at the center of 

contact 𝛥̅𝑜 versus surface separation 𝛿̅ for 𝛤 = 0.125, 𝑌̅ = 0.4, 𝜎𝑐 = 0.075, 𝛿m̅in = –1.0, 

and 𝑎̅𝑖 = 1, 4, and 8 (loading = solid lines; unloading = dashed lines).  
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Figure 7.16 Surface separation at jump-in 𝛿i̅n and jump-out 𝛿o̅ut versus initial crack radius 𝑎̅𝑖 for 

𝛤 = 0.125, 𝑌̅ = 0.4, 𝜎𝑐 = 0.075, and 𝛿m̅in = –1.0.  

 

Figure 8.1 Equivalent model of a rigid sphere of reduced radius of curvature R and an elastic 

half-space of effective elastic modulus 𝐸∗.  
 

Figure 8.2 Schematics of interfacial force and contact area versus minimum surface separation 

for smooth (𝜇 < 0.5) and discontinuous (𝜇 > 0.5) surface approach and retraction. 

 

Figure 8.3 Critical contact radius 𝑎̅𝑐 at the instant of maximum adhesive force versus Tabor 

parameter 𝜇. Discrete data points represent numerical data obtained with a previous finite 

element model of adhesive contact (Song and Komvopoulos, 2011). The solid curve is a 

best fit through the numerical data. 

 

Figure 8.4 Critical surface separation 𝛿𝑜̅𝑐 versus Tabor parameter 𝜇 for single contacts that do not 

exhibit jump-in instability (𝜇 < 0.5 ). Discrete data points represent numerical data 

obtained with a previous finite element model of adhesive contact (Song and 

Komvopoulos, 2011). The solid line is a best fit through the numerical data. 

 

Figure 8.5 Comparison of analytical solutions (Eq. (9)) and numerical results obtained with the 

model of a previous FEM study (Song and Komvopoulos, 2011) of interfacial force 

 ̅ versus minimum surface separation 𝛿𝑜̅ for Tabor parameter 𝜇 equal to (a) 0.091, (b) 

0.145, (c) 0.23, and (d) 0.425. 

 

Figure 8.6 Critical central gap 𝑥̅𝑜𝑐 for jump-in instability versus Tabor parameter 𝜇. Discrete data 

points represent numerical data obtained with a previous finite element model of adhesive 

contact (Song and Komvopoulos, 2011). The solid curve is a best fit through the 

numerical data. 

 

Figure 8.7 Comparison of analytical solutions (Hertz analysis) and FEM results obtained with a 

previous finite element model of adhesive contact (Song and Komvopoulos, 2011): (a) 

interfacial force ( −  max)/(4𝐸
∗𝑅2/3) versus minimum surface separation (𝛿𝑜𝑐 −

𝛿𝑜)/𝑅  after the occurrence of maximum adhesive force and (b) contact area ( −
π𝑎𝑐

2)/π𝑅2 versus minimum surface separation (𝛿𝑜
∗ − 𝛿𝑜)/𝑅  after the establishment of 

contact for Tabor parameter 𝜇 = 0.091–1.971.  

 

Figure 8.8 Schematic of equivalent rough-surface contact model comprising a rigid rough 

surface and an elastic half-space. 

 

Figure 8.9 (a) Interfacial force 𝐹̅ and (b) contact area 𝑆̅ versus mean surface separation 𝑑̅ for 

fixed surface roughness (𝜎 = 2 nm) and Tabor parameter 𝜇 = 0.5–46.9. The inset in (a) is 

a magnified plot of the interfacial force for 𝜇 = 10. 

 

Figure 8.10 Strength of adhesion 𝐹̅max versus surface roughness 𝜎 for Tabor parameter 𝜇 =
0.1, 1.0, and 10. 
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Figure 8.11 Strength of adhesion 𝐹̅max  versus Tabor parameter 𝜇 for surface roughness 𝜎 = 0.5, 

1.0, and 2.0 nm. 

 

Figure 8.12 (a) Strength of adhesion 𝐹̅max  and (b) relative strength of adhesion 𝜒 versus surface 

roughness 𝜎 for adhesion parameter 𝜃 = 0.2, 1.0, and 5.0. 

 

Figure 8.13 Relative strength of adhesion 𝜒 versus surface roughness 𝜎 for adhesion parameter 

𝜁 = 0.2, 0.5, and 1.0. 
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CHAPTER 1 

 
Introduction 

 

 
Contact mechanics is an important branch of solid mechanics, dealing with stresses and 

deformation of two or more bodies undergoing intimate surface interactions, as a result of 

internal and/or external loads. It has been a powerful tool in various industries across scales, 

including the automobile industry, where the macroscopic contacts of gears, bearings and brakes 

have to be appropriately designed in order to fulfill the desired functionality; the gas turbine 

industry, where the fretting wear at diaphragm-shroud interface could be a critical issue that 

affects the energy transfer efficiency and gas turbine lifetime; the hard-disk industry, where the 

microscopic contacts at head-disk interface (HDI) may affects data storage capability and 

product reliability significantly and the micro-electronic-mechanical system (MEMS) industry, 

where the contact surfaces has to be optimized in terms of geometry, material and surface 

treatment, in order to avoid mechanical failure like sticition and wear during high frequency 

contact. It also provides insights and theoretical foundation in scientific research, such as 

interpretation of the contact probe-based measurements (e.g. indentation and atomic force 

microscope (AFM)). 

 

The pioneering work on contact mechanics dates back to Hertz (1882), who published the 

classical paper “On the contact of elastic solids”, in which he showed that an ellipsoidal, 

Hertzian distribution of contact pressure would produce elastic displacements in the two bodies 

which were compatible with proposed elliptical contact area. The Hertz theory was strictly 

restricted to frictionless contact of perfectly elastic solids until the second half of the 20
th

 century, 

when these restrictions were removed by proper treatment of friction, stick-slip phenomenon and 

development of plasticity and linear viscoelasticity theories. 

 

With the emergence of high performance computers and advances in numerical method, 

particularly finite element method, around forty years ago, numerical simulation has been 

extensively used to analyze the elastic-plastic contact mechanics, which provides important 

insights of the transition from elastic-dominated to plastic-dominated contact behavior, and also 

validates the classical Hertz theory of elastic contact, and slip line method and similarity solution 

for fully plastic contact. 

 

Mechanical failures may occur in different ways, including excessive plastic flow, 

fracture, cyclic fatigue and wear. Hard coating has been widely used on contacting surfaces, in 

order to enhance the tribological performance, and product reliability and durability. As a result, 

tremendous research attentions have been drawn into the contact problems of layered media. 

Despite of limited analytical solution obtained for perfectly bonded elastic layered media, these 

contact problems are in general complex and have to rely on numerical simulation, considering 

the elastic-plastic deformation of layer/substrate material and potential interface delamination.  

 

Driven by the development of modern engineering technologies, particularly in the hard-

disk and MEMS industries, contact mechanics at micro/nanoscale has attracted significant 
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interests recently. The main challenges arise from two aspects: first, even the macroscopically 

smooth surfaces exhibit multi-scale surface roughness and it is essential to establish a multi-scale 

contact mechanics model that correlates macroscopic contact loads and the real surface 

topography, in order for an accurate real contact area, stresses and coefficient of friction; second, 

surface adhesion plays an important role in contact formulation as contact surfaces scale down 

and surface forces exceed bulk forces, as evidenced by numerous experimental observations (i.g. 

stiction failure in MEMS devices; contact instabilities in nanoindentation and AFM), therefore, 

an appropriate implementation of surface adhesion in contact mechanics model is desired for 

accurate predictions of micro/nanoscale contact behavior. 

  

The traditional ways to characterize rough surfaces are to use statistical parameters, such 

as surface height variance, skewness and kurtosis. The most widely used statistical rough surface 

model is Greenwood-Williamson (GW) model, evidenced by the 3000+ citations of their original 

paper (1966) and general acceptance in industry for its good agreement with experimental 

observation. GW model characterizes rough surfaces by three independent parameters: areal 

density of asperity, radius of curvature at the summit of asperities and standard deviation of 

surface height. The simple expression of GW model allows itself to be implemented into 

numerical programs easily and efficiently.  However, a major drawback of these statistical 

approaches, including GW model, is the use of scale-dependent statistical parameters. Recently, 

many engineering surfaces have been found to exhibit random and self-affinity features; 

consequently, the scale-invariant fractal geometry (Menderbrot, 1973) has been widely used in 

contact mechanics analysis. 

 

Among the first attempts to incorporate surface adhesion in contact mechanics were the 

Johnson-Kendall-Roberts (JKR) model (1971) and Derjaguin-Muller-Toporov (DMT) model 

(1975), which yield different prediction of the pull-off force. These two contradictory arguments 

were later accommodated by introducing a dimensionless parameter, known as Tabor parameter 

(1977) and a smooth transition between the two models were obtained analytically using 

Dugdale assumption (Maugis, 1992) and numerically by assigning a specific surface traction-

separation law (i.g. Lennard-Jones potential) (Muller et al., 1980). However, aforementioned 

work are restricted to adhesive contact of elastic solids and recently, surface traction-separation 

law has been implemented into finite element model, thus allows the modeling of elastic-plastic 

adhesive contact.   

 

The main objectives of this dissertation were to develop contact mechanics models at 

asperity and rough surface scales and analyze the effects of bulk and surface material properties, 

surface topography and loading history on elastic and elastic-plastic contact behaviors, with 

particular emphasis on constitutive modeling of spherical indentation (loading) and retraction 

(unloading), rough surface contact, adhesion-induced contact instabilities for homogeneous and 

layered media and interface delamination in layered media. This dissertation is organized into 

nine chapters as following. 

 

Chapter 2 presented a finite element analysis of spherical indentation on homogeneous 

elastic-plastic half-space. Four different post-yielding deformation regimes were identified, 

which correspond to different stages in evolution of the plastic zone. The boundaries of 

neighboring deformation regimes were obtained by curve fitting the simulation results, and a 
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deformation map was formulated. It was shown that the mean contact pressure does not reach its 

maximum (hardness, H) at the inception of transient fully-plastic deformation regime (TFP), but 

continues to increase until steady-state fully-plastic deformation regime (SSFP). Two distinct 

modes of plastic zone evolution were observed: for low effective elastic modulus-to-yield 

strength ratio (E
*
/Y) value, plastic zone initiated at subsurface propagates in vertical direction 

uniformly to the surface; while for high E
*
/Y values, subsurface plastic zone first propagates to 

the edge of contact region, forming a residual elastic core; then toward the center, until the 

residual elastic core disappears.  Mean contact pressure and contact area constitutive equations 

were derived by curve fitting the simulation results of elastic-perfectly plastic half-space and 

extended to strain hardening half-space, by introducing an effective strain ε* that characterizes  

the average indentation depth and effective yield strength accordingly. 

 

Chapter 3 was focused on constitutive modeling of unloading behavior of an indented 

elastic-plastic half-space and the accumulation of plasticity in half-space due to repetitive normal 

contact. Residual indentation depth and dissipated plastic energy were given in a dimensionless 

form by curve fitting the finite element simulation results and the unloading constitutive 

equations were derived for elastic-perfectly plastic half-space, and extended to strain hardening 

half-space. Adopting the concept of effective strain introduced in chapter 2, residual indentation 

depth of strain hardening half-space was derived. Under multiple loading-unloading cycles, half-

space of high and low E
*
/Y values stabilized to elastic and plastic shakedown/ratcheting 

respectively. Based on the accumulation of equivalent plastic strain, the half-space of low E
*
/Y 

value was further divided into elastic region, shakedown region and ratcheting region, as the 

distance to contact surface decreases. 

 

In chapter 4, a multi-scale contact mechanics model was established to analyze the 

fretting contact between two rough (fractal) surfaces exhibiting fractal behavior. Contact load 

was distributed among the discrete contact spots by calculating the mean surface separation 

iteratively. A uniform tangential displacement (fretting amplitude) was imposed on individual 

asperities in contact and Mindlin’s theory (1953) was applied to determine stick-slip status and 

the tangential force accordingly. Instead of a predefined, constant friction coefficient (Columb’s 

friction coefficient), the adhesion friction force was determined by the real contact area and 

interfacial stress, which is dependent on the interfacial condition, but independent of the normal 

contact pressure and deformation mode. In addition to adhesion friction force, plowing friction 

component was considered for fully plastically deformed asperities in gross slip. In contrast to 

fretting contact analysis based on Greenwood-Williamson (GW) rough surface mode in previous 

literatures, present chapter showed more plastically deformed asperities were in gross slip range 

and contributed to frictional energy dissipation, while more elastically deformed asperities fell 

into the stick range and controlled the tangential stiffness of the system. Effect of fractal 

roughness, effective elastic modulus-to-yield strength ratio, mean contact pressure and fretting 

amplitude were discussed in context of numerical simulation results. Adhesion-dominant fretting 

and plowing-dominant fretting contact were identified. 

 

Chapter 5 developed an elastic-plastic contact mechanics model in presence of surface 

adhesion, which was represented by a traction-separation relationship governed by the Lennard-

Jones (LJ) potential. Adhesion-induced contact instabilities were analyzed by the theory of 

elasticity and a critical Tabor parameter was determined to be μ* = 0.5, above which contact and 
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separation of surfaces occur in an unstable way. A finite element model was used to simulate the 

adhesive contact of a rigid sphere and an elastic-plastic half-space, in which the LJ potential 

governed surface adhesion was implemented by nonlinear spring elements. The contact behavior 

was controlled by three key parameters: Tabor parameter μ, plasticity parameter β and maximum 

normal displacement δmax. Simulation results showed that in the presence of plastic deformation, 

pull-off force may be significantly higher than the value predicted by the JKR and DMT model. 

Contact instabilities were also influenced by necking and residual impression due to excessive 

plastic deformation and could be interpreted by a modified Tabor parameter. Multiple loading-

unloading cycles of adhesive contact was analyzed and it was shown that high Tabor parameter 

and low plasticity parameter resulted in elastic shakedown, whereas low Tabor parameter and 

high plasticity parameter led to plastic shakedown.  

 

Chapter 6 extended finite element model developed in chapter 5 to simulate the adhesive 

contact of a rigid sphere and a layered medium that consists of a stiff elastic layer and a 

compliant elastic-plastic substrate. An effective Tabor parameter was derived as a function of 

layer thickness t, layer and substrate Tabor parameter μf and μs, respectively. It was shown that 

surface separation (detachment) during unloading was not encountered at the instant of 

maximum adhesion (pull-off) force, but as the layered medium continued to be stretched by rigid 

sphere, until jump-out instability occured. Brittle and ductile separation modes were identified 

from the residual deformation after complete unloading and a map of separation mode was 

constructed with respect to the maximum surface separation δmax and substrate plasticity 

parameter β. For high β values, the unloading process is more ductile with larger δmax, evidenced 

by the increase of pile-up height; while for small β values, the separation is more brittle with 

larger δmax, illustrated by the increase of residual impression depth. Multiple loading-unloading 

cycles of adhesive contact was analyzed and incremental plasticity (ratcheting) in the substrate 

was found the most likely steady-state deformation mechanicsm. In subsequent approach cycles, 

adhesion force was larger (smaller) and critical surface separation for jump-in instability was 

smaller (larger) than that of the 1
st
 cycle, for low (high) β value, which was interpreted by 

residual impression (permanent pile-up) after the 1
st
 cycle.   

 

Chapter 7 continued to study the mechanical response of layered media subjected to 

contact load in the presence of surface adhesion. Instead of being assumed perfectly bonded 

(chapter 6), the layer-substrate interface was modeled by a bilinear cohesive zone law, which 

was characterized by cohesive strength and interface work of adhesion, and allowed the crack 

initiation and growth along the interface. It was shown that the unloading response comprises 

five sequential stages: elastic recovery, interface damage (crack) initiation, damage evolution 

(delamination), film bending, and abrupt surface separation (jump-out), with plastic deformation 

in the substrate occurring only during damage initiation. Accumulation of plasticity in the 

substrate produced partial closure of the cohesive zone upon full unloading (jump-out), residual 

tensile stresses at the front of the crack tip, and downward deflection of the elastic film. The 

interface work of adhesion affected the contact behavior only during unloading. In particular, 

both surface force and contact stiffness were influenced by the evolution of interfacial damage 

during unloading only in the case of relatively low interface work of adhesion. Increasing the 

interface work of adhesion promotes crack closure and increases the crack-tip opening 

displacement after full unloading (jump-out). Both crack closure and crack-tip opening 

displacement after full unloading increase with the decrease of cohesive strength due to the 

increase in cohesive zone closure and critical surface separation at failure, respectively; an 
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unstable crack initiation was observed for layer-substrate interface of high cohesive strength. The 

maximum interface delamination was observed for substrate of intermediate yield strength: when 

substrate yield strength is low, the substrate undergoes excessive plastic deformation during 

unloading, conforming the deflected elastic layer; for high yield strength substrate, plastic 

deformation during loading is negligible, thus the adhesion-induced delamination is completely 

closed after jump-out. The effect of preexisting crack at interface was found to be significant 

only during the unloading process. Above a critical crack size, surface separations at the 

instances of jump-in and jump-out instabilities exhibited a linear dependence on crack size; 

while below which, crack size showed no influence on contact instabilities. The results of this 

study provide insight into the interdependence of contact instabilities and evolution of interfacial 

damage (cracking) in layered media during adhesive contact loading and unloading. 

 

Analytical and numerical (FEM) model of elastic adhesive contact developed in chapter 5 

was extended in chapter 8 to study the elastic adhesive contact behavior of rough surface. Based 

on the instability criteria derived in chapter 5, two sets of constitutive equations were developed 

for single asperity contacts demonstrating smooth (μ < 0.5) and abrupt (μ < 0.5) contacts. These 

constitutive equations were incorporated into a Greenwood-Williamson (GW) (1966) rough 

surface model, and the evolution of contact force and contact area were obtained with respect to 

mean surface separation. The evolution of contact area exhibited a three-stage behavior and 

particularly, the rapid nonlinear increase of contact area in the second stage was attributed to the 

asperity-scale jump-in instabilities. The maximum adhesive force (strength of adhesion) was 

shown to decrease with surface roughness and increases with Tabor parameter. The adhesion 

parameter θ defined by Fuller and Tabor (1975) was shown to be governing parameter of the 

strength of adhesion, only for contact surfaces of high μ values; a new adhesion parameter ζ, 

defined as the ratio of surface roughness to equilibrium interatomic separation ε, was proposed 

and confirmed by numerical simulation to control the strength of adhesion for low μ values. To 

accommodate the two different adhesion parameters, an effective surface separation was 

introduced, as the sum of the effective adhesion force range (characterized by ε) and adhesion-

induced asperity elastic deformation (characterized by με). The effective surface separation 

represents a critical separation between two countering asperities, above which the adhesion 

force is secondary. A general adhesion parameter ξ is defined as the ratio of surface roughness to 

the effective surface separation, with θ and ζ as two asymptotes in for the high and low Tabor 

parameter values, respectively. 

 

Finally, chapter 9 concludes the dissertation with a summary of main findings and 

implications reported in chapter 2-8.  
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Chapter 2 

 
 Elastic-plastic spherical indentation: deformation regimes, evolution of 

plasticity, and hardening effect 

 

 
 

2.1. Introduction 

 

Indentation-induced plasticity is a fundamental problem in contact mechanics with direct 

implications in a broad range of engineering applications, including materials hardness 

measurement, load-carrying capacity of bearings and gears, and wear of plastically deformed 

micro/macroscopic contacts, such as those formed between magnetic recording heads and hard 

disks (Komvopoulos, 2000) and gas-turbine blades and shrouds (Cowles, 1996), respectively. 

One of the earliest indentation studies aimed to evaluate the hardness of metals is attributed to 

Tabor (1951). This work motivated numerous subsequent analytical and experimental studies 

dealing with the evolution of plasticity in half-spaces due to compression by rigid indenters of 

various shapes. Ishlinsky (1944) used the slip-line theory of plasticity (Hill, 1967) to analyze 

indentation of a rigid-perfectly plastic half-space by a rigid sphere and found that the hardness is 

equal to three times the yield strength of the material. A similar result was obtained by Hill et al. 

(1989) and Biwa and Storåkers (1995), who used flow theory to obtain a similarity solution of 

rigid-plastic and elastic-plastic indentation, respectively. Johnson (1985) showed that the overall 

deformation behavior of indented elastic-perfectly plastic materials is characterized by the 

sequential evolution of elastic, elastic-plastic, and fully plastic deformation below the rigid 

indenter and that the material hardness is reached at the inception of fully plastic deformation. 

 

Although elastic and fully plastic deformation due to indentation loading can be studied 

analytically by the Hertz theory and the slip-line theory of plasticity or similarity approach, 

respectively, analytical treatment of indentation-induced elastic-plastic deformation is 

cumbersome because both elastic and plastic deformation play important roles on the overall 

deformation behavior. Samuels and Mulhearn (1957) observed that compression of a half-space 

by a blunt indenter produces subsurface displacements approximately in the radial direction from 

initial contact and argued that deformation can be represented by approximately hemi-spherical 

isostrain contours. Motivated by this observation, Johnson (1985) derived a simple constitutive 

relation between the mean contact pressure    in spherical indentation normalized by the 

material yield strength   and a strain parameter       , where             is the effective 

elastic modulus (  and   denote elastic modulus and Poisson’s ratio, respectively),   is the 

contact radius, and   is the radius of curvature of the spherical indenter.  

 

Difficulties in analyzing the complex elastic-plastic deformation due to indentation 

loading were overcome with the enhancement of computational capability and implementation of 

numerical methods, such as the finite element technique. One of the first finite element studies of 

elastic-plastic indentation is attributed to Hardy et al. (1971), who observed a change in contact 

pressure distribution from elliptical (Hertzian) to rectangular and a trend for the stresses along 

the axis of symmetry to become constant with increasing contact load. Follansbee and Sinclair 
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(1984) analyzed elastic-plastic indentation with a constant-strain-triangle finite element code, 

and using a grid expansion technique to improve the computation efficiency they obtained 

numerical results that are in excellent agreement with the classical (Hertzian) elastic solution and 

experimental results for small and large indentation depths, respectively.  Giannakopoulos et al. 

(1994) performed a finite element analysis of Vickers indentation and obtained constitutive 

relations of the indentation load and depth for elastic and elastic-plastic material behaviors, 

respectively. Komvopoulos and Ye (2001) derived a dimensionless constitutive equation for 

indentation of elastic-perfectly plastic half-spaces by a rigid sphere that is in good agreement 

with the constitutive model obtained by Johnson (1985) and found that    2.9  . Kogut and 

Komvopoulos (2004) showed that the slip-line solution    3   is suitable for half-spaces 

exhibiting high      values (i.e., materials demonstrating negligible elastic deformation during 

indentation), whereas the hardness of half-spaces characterized by low      values can be much 

less than 3 . They also      and     , where   or is the radius of the truncated contact area, as 

independent parameters to derive constitutive models that were shown to yield more accurate 

predictions than that of Johnson (1985) based on a single strain parameter (      ). Park and 

Pharr (2004) showed that elastic-plastic deformation due to indentation can be divided into 

elastic- and plastic-dominant regimes, characterized by insignificant and significant hardening 

effect, respectively. Mesarovic and Fleck (1999) observed a decrease in    at large indentation 

depths  , which they attributed to failure of the assumptions used to derive the similarity solution, 

specifically infinitesimal strain kinematics and boundary condition of uniform normal velocity. 

Indentation mechanics models have also been used to characterize the mechanical behavior of 

layered medium (Bhattacharya and Nix, 1988; Ye and Komvopoulos, 2003), interpret the elastic 

modulus and hardness of thin films measured by the nanoindentation technique (Knapp et al., 

1999), study the effect of repetitive contact loading on stress and strain accumulation (Kral et al., 

1993), explore the role of surface adhesion in indentation response (Mesarovic and Johnson, 

2000), and study multi-scale roughness effects in contact mechanics of real surfaces 

(Komvopoulos and Yan, 1998).  

 

Despite significant insight into elastic-plastic deformation of indented half-space media 

derived from aforementioned analytical and numerical investigations, insight into the evolution 

of different deformation behaviors in the post-yield response of elastic-plastic materials, 

measurement of the true  material hardness, and role of strain hardening in indentation requires 

further comprehensive study. Understanding of deformation response due to indentation loading 

requires knowledge of the evolution of plasticity of global deformation parameters. 

Consequently, the objective of this chapter was to examine the post-yield indentation behavior of 

elastic-plastic half-spaces for a wide range of material properties and identify the deformation 

regimes arising from the onset of yielding to the commencement of steady-state fully plastic 

behavior. Equations for the boundaries between different deformation regimes were obtained 

numerically and constitutive relationships of the mean contact pressure and contact area were 

extracted from finite element results. Two different deformation modes of the evolution of the 

residual elastic core between the indenter and the plastic zone are observed by tracking the 

development of the plastic zone with increasing indentation depth. An effective strain accounting 

for the increase in yield strength due to the hardening effect is used to provide a general 

description of the indentation behavior of elastic-plastic half-spaces possessing different strain 

hardening characteristics. General constitutive equations of the mean contact pressure and 

contact area are given for both elastic-perfectly plastic and hardening materials. 
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2.2. Method of analysis 

 

2.2.1. Problem definition 

 

Figure 2.1 shows a schematic of an elastic-plastic half-space indented by a rigid sphere of 

radius R. The radius of the truncated area and the real contact area is denoted by    and  , 

respectively. For small indentation depths (   , deformation is purely elastic and the mean 

contact pressure    and real contact area a are given by (Johnson, 1985) 

 

   
 

   
 

 √ 

  
(
   

  
)                                        (2.1) 

 

                                                                  (2.2) 

 

where   is the normal load and                    is the truncated contact area.  

 

 

 
 

Figure 2.1 Schematic of a deformable half-space indented by a rigid sphere. 

 

Yielding is first encountered on the axis of symmetry (   ) at depth        , and the 

corresponding indentation depth and mean contact pressure are given by                  

and        , respectively. Increasing further the indentation depth (     ) leads to elastic-

plastic deformation and the deviation of    and   from Eqs. (2.1) and (2.2), respectively. The 

maximum mean contact pressure   
   , referred to as the material hardness, is reached at the 

inception of fully plastic deformation and remains constant with further increasing the 

indentation depth (load).  

 

2.2.2. Finite element model 
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Figure 2.2 shows the finite element model used in this study. The spherical indenter was 

modeled as a rigid surface, while the half-space was represented by a mesh consisting of 39,650 

axisymmetric, linear, isoperimetric elements comprising 40,270 nodes. Contact between the rigid 

sphere and the deformable medium was assumed to be frictionless. Nodes on the symmetry axis 

and bottom boundary of the mesh were constrained against displacement in the horizontal (radial) 

and vertical directions, respectively. The distance between two neighboring nodes of the refined 

mesh adjacent to the contact interface is equal to 0.0008 .  

 

 

 
 

Figure 2.2  Finite element model of a half-space and a spherical indenter. 

 

Numerical results are presented in terms of dimensionless parameters, such as mean 

contact pressure  ̅      , contact area  ̅      , indentation depth  ̅      , and effective 

elastic modulus-to-yield strength ratio     . Figure 2.3 shows the variation of  ̅  with  ̅ in the 

elastic deformation regime (     ). Finite element results are compared with the analytical 

solution obtained from Hertz theory (Eq. (2.1)). The close agreement between numerical and 

analytical results validates the modeling assumptions and verifies the suitability of the adopted 

finite element mesh. All simulations were performed with the multi-purpose finite element code 

ABAQUS/Standard (Implicit) (version 6.6.3). 
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Figure 2.3 Variation of mean contact pressure  ̅  with indentation depth  ̅ in the elastic deformation 

regime. 

 

2.2.3. Constitutive material model 

 

Deformation in the elastic-plastic half-space was described by the following stress-strain 

constitutive equations:  

 

                                                                                                                (2.3a) 

 

                                                                                           (2.3b) 

 

where   is the stress,   is the strain,         is the yield strain, and   is the strain hardening 

exponent. 

 

Yielding was determined by the von Mises yield criterion, expressed as  

 

    √
 

 
                                                   (2.4) 

 

where     is the von Mises equivalent stress and     represents components of the deviatoric 

stress tensor.  

 

The evolution of plasticity in the indented half-space was tracked by the equivalent 

plastic strain   ̅, defined as 

 

   ̅  ∫ √
 

 
    

     
 

 
                                                   (2.5) 
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where     
 

 denotes increments of plastic strain and   is the strain path used to track the 

accumulation of plasticity.  

 

 

2.3. Results and discussion 

 

2.3.1. Deformation regimes of elastic-plastic indentation 

 

Figure 2.4 shows representative finite element results of the mean contact pressure  ̅  as 

a function of indentation depth  ̅  for an elastic-perfectly plastic half-space with      = 55. 

Contrary to classical contact mechanics showing the post-yield behavior comprising elastic-

plastic and fully plastic deformation regimes (Johnson, 1985), the present analysis shows that the 

post-yield response consists of four deformation regimes – linear elastic-plastic (LEP), nonlinear 

elastic-plastic (NEP), transient fully plastic (TFP), and steady-state fully plastic (SSFP). The 

post-yield deformation regimes shown in Figure 2.4 were identified by tracking the evolution of 

the plastic zone and variation of mean contact pressure with the increase of the indentation depth 

 ̅, as discussed below. 

 

 

 
 

Figure 2.4 Variation of mean contact pressure  ̅  with indentation depth  ̅ for an elastic-perfectly plastic half-space 

with      = 55. Boundaries between various deformation regimes are represented by vertical dashed lines. 

 

  Linear elastic-plastic (LEP): The lower and upper bounds of the LEP regime correspond 

to the inception of yielding and the instant that the plastic zone reaches the surface, respectively. 

Because the plastic zone is completely surrounded by elastic material, the contact behavior in 

this regime is controlled by elastic deformation. The mean contact pressure exhibits a semi-

logarithmic dependence on indentation depth, used to derive constitutive relations of elastic-

plastic indentation by curve fitting finite element results (Ye and Komvopoulos, 2003; Kogut and 
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Komvopoulos, 2004). However, Figure 2.4 shows that this semi-logarithmic relationship holds 

only in the LEP deformation regime, where the plastic zone is fully confined into the subsurface. 

 

 Nonlinear elastic-plastic (NLEP): A transition from elastic- to plastic-dominant 

deformation behavior occurs in the NLEP regime where the elastic core between the rigid 

indenter and the plastic zone shrinks and ultimately disappears. Figure 2.4 shows that as soon as 

the plastic zone reaches the surface, the contact stiffness decreases and the semi-logarithmic 

dependence of  ̅  on  ̅ observed in the LEP regime no longer holds.  

 

   Transient fully plastic (TFP): In contrast to earlier studies (Hill et al., 1989; Mesarovic 

and Fleck, 1999; Komvopoulos and Ye, 2001; Park and Pharr, 2004; Kogut and Komvopoulos, 

2004), Figure 2.4 shows that  ̅ 
     is not encountered at the inception of fully-plastic 

deformation, i.e., upon the disappearance of the elastic core (termination of the NLEP regime). 

Instead,  ̅  continues to increase with more plasticity accumulating in the subsurface until 

 ̅ 
     is ultimately reached. This regime is referred to as the TFP regime. 

 

       Steady-state fully plastic (SSFP): A further increase in indentation depth produces a 

plateau of  ̅ 
     that characterizes the SSFP deformation regime and corresponds to the true 

material hardness, predicted by the similarity solution and slip-line plasticity theory. The trend 

for  ̅  to decrease at very large indentation depths is attributed to the increase of the contact area 

due to pile-up formation, and is in agreement with the breakdown of infinitesimal strain 

kinematics and boundary condition of uniform normal velocity used in the similarity solution 

(Mesarovic and Fleck, 1999). 

 

Figure 2.5 shows the variation of the mean contact pressure  ̅  with the indentation 

depth  ̅ for      in the range of 11–2200. Boundaries between different deformation regimes are 

shown by solid lines. The boundary curves were obtained by fitting the numerical data at the 

transition between neighboring deformation regimes for different      values. For      = 2200, 

representing a material of extremely low yield strain (   = 0.0004), i.e., negligible contribution 

of elastic deformation,  ̅ 
     = 2.89, which is close to the similarity solution (  ̅ 

     = 3.0) 

obtained for a rigid perfectly-plastic material. However, for      = 11, the effect of elastic 

deformation is significant and  ̅ 
     = 2.09, which is significantly less than the similarity 

solution. 

 

From curve fitting the numerical results corresponding to the boundary between the TFP 

and SSFP deformation regimes shown in Figure 2.5, the following hardness and corresponding 

indentation depth relationships were obtained:   
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]                                 (2.6)   
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Figure 2.5 Variation of mean contact pressure  ̅  with indentation depth  ̅ for elastic-perfectly plastic half-spaces 

with      = 11–2200. Solid lines represent boundaries between deformation regimes. 

 

Figure 2.6 shows a best-fit curve (Eq. (2.6)) and finite element results of the hardness 

    as a function of     . Solutions from previous studies are also included for comparison. 

Although all solutions demonstrate a similar trend, significant differences exist for high      

values, which may be attributed to differences in mesh refinement and/or the smaller      range 

examined in those earlier studies. The convergence of Eq. (2.6) to     =3 with increasing      

is validated by indentation experiments (Marsh, 1964). It is noted that Eq. (2.6) may not hold for 

very low      values, because the very large indentation depth needed to initiate plastic 

deformation in these cases exceeded the current simulation capability. However, Eq. (2.6) is 

applicable for most engineering materials. 

 

Using a similar curve fitting approach, relationships were obtained for the other 

deformation boundaries shown in Figure 2.5. For the boundary of the LEP and NLEP 

deformation regimes, 
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and for the boundary of the NLEP and TEP deformation regimes, 

 

 ̅     [  (
  

 
)
     

]                             (2.10) 

 



14 
 

 ̅  
 

    (
  

 
)     

                                           (2.11) 

 

 

 
 

Figure 2.6 Variation of hardness     with effective elastic modulus-to-yield strength ratio      for elastic-

perfectly plastic half-spaces. 

 

2.3.2. Constitutive contact equations 

 

As mentioned earlier, the indentation behavior in the elastic deformation regime is 

characterized by the linear dependence of  ̅  on  ̅ (Eq. (2.1)), while in the SSFP deformation 

regime the mean contact pressure reaches a maximum corresponding to the material hardness 

(Eq. (2.6)).  

 

In the LEP deformation regime               ̅                      , curve 

fitting of the finite element results yields the following semi-logarithmic relation of  ̅  in terms 

of  ̅: 
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Contrary to previous studies (e.g., Ye and Komvopoulos, 2003; Kogut and Komvopoulos, 

2004), the second expression of Eq. (2.12) indicates that the slope of the  ̅  versus     ̅ plot is a 

function of     .  

 

Similarly, curve fitting of finite element results corresponding to the NLEP and TFP 

deformation regimes (                     ̅                        gives 
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Figure 2.7 shows the variation of the dimensionless contact area  ̅ with indentation depth 

 ̅ in the LEP, NLEP, and TFP deformation regimes               ̅                 
     ) for      in the range of 11–2200. From curve fitting the finite element data shown in 

Figure 7, the following expression of the real contact area in the LEP, NLEP, and TFP 

deformation regimes was obtained: 
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Figure 2.7 Variation of contact area  ̅ with indentation depth  ̅ for elastic-perfectly plastic half-spaces with      = 

11–2200. Solid lines represent boundaries between deformation regimes. 

 

For most engineering materials with relatively high       values (e.g.,      > 200) and 

elastic deformation (i.e.,  ̅       ), Eq. (2.14) yields  ̅     , consistent with the solution 

obtained from Hertz theory. In the SSFP deformation regime (too narrow to be seen in the scale 

of Figure 2.7), the contact area  ̅ is independent of  ̅ and varies only with     . Indeed, from 

curve fitting it was found that: 

 

 ̅        (
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                           (2.15) 

 

It is noted that as      increases (i.e., elastic deformation decreases), Eq. (2.15) 

approaches the solution of a rigid-perfectly plastic half-space obtained from slip-line theory 

  ̅      
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Hence, constitutive equations for the different deformation regimes of elastic-perfectly 

plastic materials are given by Eq. (2.1) (E), Eq. (2.12) (LEP), Eq. (2.13) (NLEP and TFP), and 

Eq. (2.6) (SSFP) for the mean contact pressure and Eq. (2.2) (E), Eq. (2.14) (LEP, NLEP, and 

TFP), and Eq. (2.15) (SSFP) for the contact area.  

 

2.3.3. Evolution of plasticity 

 

As discussed in section 2.3.1, a transition from elastic- to plastic-dominant deformation 

behavior is encountered with the evolution of plasticity, including the initiation and growth of 

the plastic zone and the shrinking and disappearance of the elastic core. Figure 2.8 shows 

representative results revealing two modes of plastic zone development. For material behavior 

dominated by plasticity (high     ), Figure 2.8(a) shows that the increase of the indentation 

depth causes the plastic zone to expand initially toward the contact edge, resulting in the 

formation of an elastic core below the contact interface ( ̅ = 0.0018). As the indentation depth 

(load) increases, the elastic core shrinks ( ̅ = 0.0034) and eventually disappears ( ̅ = 0.0058). 

Alternatively, for elastic-dominant material behavior (low     ), the occurrence of significant 

elastic deformation before the inception of yielding produces a grossly convex contact interface 

(Figure 2.8(b)). An elastic strip of uniform thickness inhibits the expansion of the plastic zone 

toward the surface, even for relatively large indentation depths (  ̅ = 0.204). In this case, 

increasing the indentation depth leads first to uniform thinning ( ̅ = 0.254) and eventual 

disappearance ( ̅ = 0.311) of the elastic strip.  

 

Figure 2.9 provides further insight into the first mode of plastic zone development (high 

    ) in terms of the dimensionless radius  ̅       and maximum height (thickness)  ̅       

of the elastic core (Figure 2.8(b)), where    and    are the height and radius of the elastic core at 

the inception of NLEP deformation. While the height of the elastic core exhibits a monotonic 

decrease with increasing indentation depth, the elastic core radius demonstrates a two-stage 

behavior: relatively shallow indentations ( ̅       ) produce elastic cores of similar radius, 

whereas the radius of elastic cores produced from deep indentations ( ̅       ) decreases with 

increasing indentation depth. This trend is attributed to two competing mechanisms: (a) yielding 

in the elastic core that decreases the core radius and (b) compression of the elastic core 

(Poisson’s effect) that increases the core radius. For shallow indentations, the two competing 

mechanisms are comparable and the core radius remains constant, while for deep indentations, 

yielding in the elastic core is dominant and the core radius decreases. For the simulation results 

shown in Figure 2.9, the critical indentation depth for the disappearance of the elastic core (i.e., 

transition from NLEP to TFP deformation) is  ̅   0.006.  
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Figure 2.8 Evolution of plastic zone in the nonlinear elastic-plastic (NLEP) deformation regime of an elastic 

perfectly plastic half-space with (a)      = 2200 and (b)      = 11. 

 

 

 

 
 

 

Figure 2.9 Variation of elastic core height  ̅ and radius  ̅ with indentation depth in the nonlinear elastic-plastic 

(NLEP) deformation regime of an elastic-perfectly plastic half-space with      = 2200. 
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2.3.4. Hardening effect  

 

Although the results presented above provide insight into the deformation characteristics 

of indented elastic-perfectly plastic materials, most engineering metals and alloys exhibit strain 

hardening that increases the capacity of the material to accumulate plastic deformation above the 

initial yield strength  . Finite element results are presented in this section for elastic-plastic half-

spaces demonstrating isotropic strain hardening that follows Eq. (2.3b). Figures 2.10(a) and 

2.10(b) show the mean contact pressure  ̅       and contact area  ̅       as functions of 

indentation depth  ̅ for      =11 and   between 0 and 0.5. Different deformation regimes are 

distinguished by dashed vertical lines. The effect of strain hardening in the LEP deformation 

regime is shown to be negligible, in agreement with the results of a previous study (Park and 

Pharr, 2004) showing a secondary hardening effect on the indentation response for elastic-

dominant deformation ( ̅ < 2.1). This finding can be explained by considering the evolution of 

plasticity. Under conditions of LEP deformation ( ̅   0.3), the plastic zone is fully confined into 

the subsurface because of the formation of an elastic core (strip) below the contact interface, as 

observed for    0 (Figure 2.8). Thus, the elastic-plastic half-space can be approximated by a 

layered medium consisting of an elastic layer and an elastic-plastic substrate exhibiting strain 

hardening. For relatively shallow indentations (LEP deformation), the substrate effect is 

secondary because the indentation depth is small relative to the thickness of the elastic core 

(strip); therefore, the overall contact response is not sensitive to the strain hardening behavior of 

the substrate. As the indentation depth (load) increases, the thickness (and radius) of the elastic 

core (strip) decreases and the substrate effect becomes dominant. This explains the increase in 

contact stiffness with strain hardening exponent for  ̅   0.3. 

 

 

 
 
Figure 2.10 Variation of (a) mean contact pressure  ̅  and (b) contact area  ̅ with indentation depth  ̅ for elastic-

plastic half-spaces with      = 11 and   = 0–0.5. 

 

To obtain a general constitutive contact model accounting for strain hardening, the mean 

contact pressure was normalized by the effective yield strength   , which depends on the current 

indentation depth, strain hardening exponent, and initial yield strength. Using Eqs. (2.3a) and 

(2.3b) and the idea of the effective material strength   , it follows that 
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                                                  (2.16a) 

 

                                            (2.16b) 

 

where    is the effective strain.    was obtained in terms of      and   by equating finite 

element results of  ̅ 
         (    0) with results of  ̅       (  = 0) for the same 

indentation depth. The calculated value of    was then substituted into Eq. (2.16b) to obtain    in 

terms of     ,  , and  ̅. Figure 2.11(a) shows the variation of    with  ̅ and   for      = 11. 

The close agreement between results corresponding to different   values validates the concept of 

effective strain. The data shown in Figure 2.11 indicate a fairly linear variation of    with  ̅. 
Thus, from a linear curve fit, it is found that    ≈ 0.3 ̅. Figure 2.11(b) shows the variation of the 

mean contact pressure  ̅ 
   normalized by the effective yield strength with indentation depth  ̅ for 

  = 0–0.5. It can be seen that the mean contact pressure data of all hardening cases are fairly 

close with those of the elastic-perfectly plastic case. This is important because it indicates no 

hardening effect on the boundaries of the various deformation regimes for   = 0 and given      
(e.g., dashed lines in Figures 2.4 and 2.10).   

 

 

 
 
Figure 2.11 (a) Effective strain    versus indentation depth  ̅ for elastic-plastic half-spaces with      = 11 and   = 

0.2–0.5 and (b) mean contact pressure  ̅ 
   (normalized by the effective yield strength   ) versus indentation depth 

 ̅ for elastic-plastic half-spaces with      = 11 and   = 0–0.5. 

 

             Substituting the later relation and Eq. (2.16b) into Eq. (2.13), the following general 

constitutive contact relation is obtained for both NLEP and TFP deformation regimes       
               ̅                       : 
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From similar curve fitting of finite element results, the contact area in the NLEP and TFP 

deformation regimes can be expressed as 
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            It is noted that the SSFP deformation regime cannot be distinguished in the mean contact 

pressure versus indentation depth response of hardening materials, which, contrary to elastic-

perfectly plastic materials, do not show a pressure plateau at large indentation depths. This 

problem can be overcome by substituting Eq. (2.16b) into Eq. (2.6). Hence, in the SSFP 

deformation regime 
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Similar to other deformation regimes, curve fitting of finite element results yields the 

following equation of the contact area in the SSFP deformation regime: 
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                                                                                              (2.20) 

 

Thus, constitutive equations for different deformation regimes of hardening materials are 

given by Eq. (2.1) (E), Eq. (2.12) (LEP), Eq. (2.17) (NLEP and TFP), and Eq. (2.19) (SSFP) for 

the mean contact pressure and Eq. (2.2) (E), Eq. (2.14) (LEP), Eq. (2.18) (NLEP and TFP), and 

Eq. (2.20) (SSFP) for the contact area. 

 

In addition to providing insight into the indentation behavior of elastic-plastic materials 

and the true material hardness, the present study has direct implications in contact mechanics 

analysis of rough surfaces. In particular, the mean contact pressure and contact area at each 

asperity contact can be determined from Eq. (2.1), (2.6), (2.12), (2.13), (2.17), or (2.19) and Eq. 

(2.2), (2.14), (2.15), (2.18), or (2.20), respectively, depending on the deformation regime of each 

asperity contact. This will allow for distributing the contact load among asperity contacts 

according to the deformation regime that they belong and accurate determination of the fraction 

of the real contact area corresponding to each of the deformation regimes. 

 

 

2.4. Conclusions 

 

A finite element analysis of the post-yield deformation behavior of homogeneous half-

spaces indented by a rigid spherical indenter was performed for a wide range of elastic-plastic 

material properties. The indentation response was analyzed in terms of dimensionless 

parameters, allowing for interpretation of the deformation behavior and the development of 

generalized constitutive equations. Based on the presented results and discussion the following 

main conclusions can be drawn from the present analysis.  
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(1) The post-yield deformation behavior consists of four deformation regimes: linear elastic-

plastic (LEP), nonlinear elastic-plastic (NLEP), transient fully plastic (TFP), and steady-state 

fully plastic (SSFP). Equations for the boundaries between these deformation regimes were 

extracted from finite element results and interpreted in the context of results showing the 

evolution of the plastic zone with increasing indentation depth. 

 

(2) The mean contact pressure does not reach a maximum (hardness) at the inception of fully-

plastic deformation but increases continuously with the indentation depth (TFP regime), 

eventually reaching a plateau corresponding to the true material hardness (SSFP regime).  

 

(3) General post-yield constitutive equations of the mean contact pressure and contact area were 

obtained in terms of indentation depth and elastic-plastic materials properties by curve fitting 

finite element results. For half-spaces exhibiting predominantly plastic deformation, the 

derived constitutive equations are in close agreement with slip-line plasticity solutions (rigid-

perfectly plastic materials).  

 

(4) For elastic-perfectly plastic materials, subsurface plasticity is characterized by two 

deformation modes, depending on the effective elastic modulus-to-yield strength ratio     . 

For high     , the elastic core between the plastic zone and the indenter surface disappears 

at small indentation depths, and the deformation behavior is controlled by the unconstrained 

plastic zone. Alternatively, for low     , the elastic strip separating the plastic zone from the 

surface is maintained even for large indentation depths, resulting in elastic- and plastic-

dominant deformation behavior at small and large indentation depths, respectively.  

 

(5) Strain hardening affects the indentation behavior only in the NLEP, TFP, and SSFP 

deformation regimes. This effect is attributed to the growth pattern of the plastic zone toward 

the surface.  

 

(6) General constitutive equations of the mean contact pressure and contact area were also 

obtained for hardening materials over the entire elastic-plastic deformation regime in terms 

of the effective yield strength, indentation depth, and elastic-plastic material properties.  
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Chapter 3 

 
Unloading of an elastic-plastic half-space indented by a rigid sphere and the 

evolution of plasticity due to repetitive normal load 

 

 
3.1 Introduction 

 

In chapter 2, the constitutive equations of the indentation process have been derived for a 

rigid sphere and an elastic-plastic half-space and in this chapter, we focus on the constitutive 

modeling of the unloading process, which provides the theoretical foundation to interpret the 

mechanical properties of bulk and thin film detected by probe-based technique across scales: 

from macroscopic Vickers hardness test to micro/nanoindentation (Fischer-Cripps, 2011). 

Furthermore, the repetitive normal contact is analyzed to study the evolution of plasticity, 

motivated by the desire of in-depth understanding of product fatigue performance and 

improvement of component mechanical reliability, in the presence of cyclic normal contact, such 

as micro-switches (Majumder et al., 2001) and head-disk interface in magnetic storage devices 

(Komvopoulos, 2000). It can also simulate single asperity contact in multi-scale model of 

contacting rough surfaces (Yan and Komvopoulos, 1998, Jackson and Streator, 2006, Kadin et 

al., 2006), which enables the prediction of contact behavior of real, rough surfaces.   

 

While extensive studies on contact behavior of elastic-plastic half-space during 

indentation (loading) process have been documented by numerous publications in  theoretical 

(Johnson, 1985, Hill et al., 1989, Biwa and Storåkers, 1995) and numerical aspects (Bhattacharya 

and Nix, 1988, Komvopoulos and Ye, 2001, Kogut and Etsion, 2002, Song and Komvopoulos, 

2012), the mechanical response of an indented elastic-plastic half-space during unloading 

process is relatively unclear and has recently attracted more research interests. The first 

analytical model for unloading process of elastic-plastic indentation was attributed to Johnson 

(1985). Assuming the unloading process is purely elastic, the deflection at the center of contact 

area was derived as a function of contact force, mean contact pressure and effective elastic 

modulus, and the model shows close agreement with the observations of Tabor (1948) on 

permanent indentations made by a hard steel ball in the flat surface of a softer metal. Under the 

same assumption, Mesarovic and Johnson (2000) analyzed the evolution of contact area and 

contact pressure distribution during unloading process, following a fully-plastic loading process. 

Using rigid punch decomposition method, a closed-form solution of pressure distribution was 

derived, which approaches Hertzian pressure distribution asymptotically as contact area 

diminishes. Li and Gu (2009) considered the unloading of two contacting bodies, whose profiles 

are of the form       (i.e. spherical surface under small deformation assumption) and obtained 

analytical solutions for the contact force, contact displacement and contact pressure distribution 

using the superposition of Steuermann solutions. Kogut and Komvopoulos (2003) analyzed the 

unloading behavior of an elastic-perfectly plastic half-space indented by a rigid sphere using 

finite element method. Simulation covers a wide range of    ⁄  values and good correlation was 

observed between the percentage of vertical displacement recovery at the center of contact and 

the ratio of elastic energy released upon complete unloading to the total work done by indenter 

during loading process. Etsion et al. (2005) studied the unloading process of an elastic-plastic 
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loaded sphere, in frictionless contact with a rigid plate by finite element analysis. Constitutive 

equations of contact force and contact during unloading were obtained by curve fitting 

simulation data. An elastic-plastic loading index (EPL index) was suggested as a measure of 

plastic deformation accumulated during loading half-cycle. The unloading analysis was extended 

to full-stick contact condition by Zait et al., (2010) and a larger contact area is observed in 

comparison with the frictionless contact since the radial elastic recovery is prevented by friction. 

Kral et al. (1993) examined the elastic-plastic deformation due to repetitive normal contact of an 

elastic-plastic half-space by a rigid sphere with load up to 300 times of the critical load to initiate 

subsurface plastic deformation. Surface and subsurface stresses were analyzed and a spherical 

band of tensile hoop stress was found to be developed from the axis of symmetry to the surface 

and prevents the expansion of the plastically deformed material, thus increases the likelihood of 

surface radial cracking. Re-yielding is found in the surface region just outside the contact area on 

the completion of the first unloading, while the subsequent cycles were found to produce 

continued yielding within the plastic zone built in the first cycle and the increment of average 

plastic strain decays rapidly with number of cycles, implying a shakedown behavior. Yan and Li 

(2003) studied contact behavior between a rigid sphere and an elastic-perfectly plastic half-space 

by finite element analysis and contact pressure distribution was found not to recover to the 

Hertzian pressure distribution during subsequent loading cycles. Kadin et al. (2006) analyzed the 

multiple loading-unloading of an elastic-plastic spherical contact for materials of a wide range of 

elastic modulus, yield strength and plastic modulus. Re-yielding was found to occur in a 

circumferential region close to the edge of the contact area during the first unloading. 

Furthermore, it was observed that secondary plastic flow occurs in this circumferential region 

when the maximum normal displacement exceeds a threshold value that increases with Poisson’s 

ratio ν and strain hardening ratio    ⁄ . 

 

Despite of the significant progress in the theoretical and numerical studies of the 

unloading behavior, a general constitutive model that governs the unloading mechanics of an 

elastic-plastic half-space indented by a rigid sphere is still lacking and the influence of strain 

hardening characteristics on the unloading behavior has  not been quantified yet. Accumulation 

of plasticity in elastic-plastic half-space during repetitive normal contact has not been fully 

understood and the effect of strain hardening, particularly kinematic strain hardening is not clear 

yet. Therefore, the main objectives of present study are to derive constitutive equations that 

include the strain hardening effect for the unloading of indented elastic-plastic half-space, and to 

understand the accumulation of plasticity by tracing the evolution of plastic zone and dissipated 

plastic energy over number of cycles. 

 

3.2  Contact model of loading-unloading cycle 

 

Figure 3.1(a) and 3.1(b) show the schematics of a rigid sphere indented into and retracted 

from a deformable half-space, respectively, which together comprise a complete loading-

unloading cycle. Contact force, indentation depth and contact radius are denoted as  ,   and  , 

respectively. In the loading half-cycle, the rigid sphere is incrementally pressed into the half-

space until the maximum contact force      is obtained, with the maximum indentation depth 

     and contact area           
  reached simultaneously; during the unloading half-cycle, 

the rigid sphere is gradually retracted from the deformed half-space until the contact force 



24 
 

decreases to zero. Due to the plasticity accumulated in the half-space, a residual impression is 

present, characterized by  residual indentation depth     .  

   

The elastic-plastic half-space was modeled by a power-law, isotropic strain hardening 

model, which allows the yield strength of material to increase with the accumulation of plastic 

strain, as indicated by Eqs. (3.1a) and (3.1b). 

 

               (   )                                                                                                              (3.1a) 

 

                    (   )                                                                                                     (3.1b) 

 

where             is the effective elastic modulus,   is the initial yield strength,    
     is the yield strain and   is strain hardening exponent. All simulations were performed by 

commercial, multi-purpose finite element code ABAQUS/STANDARD (Implicit) (version 6.9 

EF) and the detail of the finite element mesh was described elsewhere (Song and Komvopoulos, 

2012).   

 

 

 
 
Figure 3.1  Schematic of a deformable half-space indented by a rigid sphere. 

 

 

3.3 Results and discussions 

 

3.3.1 Universal loading-unloading behavior 

 

Figure 3.2(a) and 3.2(b) show the dimensionless contact force  ̅        and contact 

area  ̅       verse dimensionless indentation depth  ̅       through a complete loading-

unloading cycle, for an elastic-perfectly plastic half-space of effective elastic modulus-to-yield 

strength ratio      values from 11 to 1100.   ,    and    denote the critical contact force, 

contact area and indentation depth at the onset of subsurface plastic deformation, as given by Eqs. 

(3.2), (3.3) and (3.4) (Johnson, 1985).  

 

                 
                                                                                                                (3.2) 
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                                                                                                               (3.3)     

   

                
                                                                                                                   (3.4)    

 

 

 
 

Figure 3.2(a) Dimensionless normal force  ̅ and (b) contact area  ̅ verse dimensionless indentation depth  ̅, for 

elastic-perfectly plastic half-space of      =110, 220, 550 and 1100 

 

As implied by the overlapping curves shown in Figure 3.2(a) and 3.2(b), the constitutive 

behavior is independent of      value in dimensionless form; thus, in present paper, the 

constitutive equations are derived from the finite element simulation results for elastic-plastic 

half-space of      = 550.  

 

3.3.2 Residual indentation depth and dissipated plastic energy 

 

Residual indentation depth is defined as the depth of the permanent impression at the 

center of contact area after complete unloading and a dimensionless residual indentation depth 

 ̃              characterizes the significance of plastic deformation in the total deformation 

during loading half-cycle. Figure 3.3 shows  ̃    as a function maximum indentation depth   ̅   

and a curve fitting of the simulation data yields Eq. (3.5). 

 

 ̃    (    ̅  
    

)  (    ̅  
    

)                                                                                  (3.5) 

  

The significance of plastic deformation increases with the maximum indentation depth: 

when   ̅     , contact behavior is dominated by elastic deformation, thus completely 

recoverable ( ̃     ); when   ̅    , elastic deformation is negligible and the impression is 

almost permanent. ( ̃     )   
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Figure 3.3 Dimensionless residual indentation depth  ̃    verse dimensionless maximum indentation depth   ̅   

 

 

 
Figure 3.4 Dimensionless dissipated plastic energy  ̃  verse dimensionless maximum indentation depth   ̅   

 

              Another important measure of the contribution of plastic deformation is dimensionless 

dissipated plastic energy, defined as the ratio of dissipated plastic energy to the total work done 

by the rigid sphere during loading half-cycle. Figure 3.4 shows  ̃       verse   ̅   and Eq. 

(3.6) is obtained following the same curve fitting method as Eq. (3.5). 

 

 ̃  (    ̅  
    

)  (    ̅  
    

)                                                                                   (3.6)    
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              Similar to  ̃   , Eq. (3.6) indicates that  ̃  is a monotonic increasing function of   ̅  , 

with asymptotes of purely elastic and perfectly plastic behavior at very small (  ̅     ) and 

large  (  ̅    ) maximum indentation depth. 

 

3.3.3 Unloading constitutive equations 

 

As shown in Figure 3.2(a) and 3.2(b), the unloading path completely deviates from the 

loading curve, as a result of excessive plastic deformation accumulated during loading half-cycle. 

Following a similar curve fitting method proposed by Etsion et al., (2005), Eq. (3.7) is derived to 

correlate the normalized contact force  ̃         and the unloading depth  ̃           
             

 

 ̃   ̃                                                                                                                                       (3.7) 

 

where the exponent   is obtained in Eq. (3.8) by curve fitting the simulation data  

 

       ̅  
      

                                                                                                                     (3.8) 

 

When the indentation behavior is predominantly elastic (  ̅     ), Eq. (3.5) and (3.8) yields 

        and      , respectively, which in together recover the unloading constitutive 

equation (Eq. (3.7)) to that of classical Hertz contact ( ̃    ̃   ). 

 

In contrast to the normalized contact force  ̃, the normalized contact area  ̃         

exhibits a different dependence on the unloading depth  ̃, as suggested by Figure 3.2(b). At the 

initial stage of unloading, indented half-space undergoes elastic recovery that conforms the 

profile of rigid sphere, thus the contact area is almost unchanged; with further unloading, elastic 

recovery is prevented by residual stresses in half-space and the contact area decreases to zero 

rapidly. Therefore, instead of the power law fitting used in Eq. (3.7), an asymptotic equation was 

employed to fit the simulation data of contact area, yielding Eq. (3.9). 

 

 ̃  
 

 
[        ̃]                                                                                                             (3.9) 

 

where the exponent   is obtained in Eq. (3.10) by curve fitting the simulation data 

 

     (    ̅  
      

)                                                                                                       (3.10) 

 

Although Eq. (3.9) looks more complicated than Eq. (3.7), it has to be emphasized that it 

is also a single-parameter equation, which yields much better linear regression than fitting the 

simulation data with a power-law equation. When the indentation behavior is predominantly 

elastic (  ̅     ), Eq. (3.5) and (3.10) yields         and    , thus Eq. (3.9) recovers to 

the unloading equation of classical Hertz contact  ( ̃    ̃), by applying the l'Hôpital’s rule. 

 

3.3.4 Effect of strain hardening 
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The constitutive equations derived above have established quantitative relationships 

among the contact force, contact area and indentation depth for indented elastic-perfectly plastic 

half-space during the unloading half-cycle; however, most of the engineering metals and alloys 

exhibit strain hardening behavior, allowing material yield strength increases as the plastic strain 

accumulates, characterized by strong hardening exponent  , as illustrated by Eq. (3.1b). 

Therefore, a complete loading-unloading cycle is simulated for elastic-plastic half-space of strain 

hardening exponent in the range of 0.1 to 0.5.  

 

Figure 3.5(a) and 3.5(b) show the contact force  ̃ and contact area  ̃  vs. the unloading 

depth  ̃  from a maximum indentation depth of   ̅  =110, for elastic-plastic half-space 

exhibiting of strain hardening exponent  , from 0 to 0.5. Overlapped curves indicate that Eqs. 

(3.7) and (3.9), developed for elastic-perfectly plastic half-space, are applicable for strain 

hardening half-space. However, in order to apply Eqs. (3.7) and (3.9) for strain hardening half-

space, the residual indentation depth  ̃   , which is a variable of  ̃ , has to be determined 

beforehand. Figure 6 shows that  ̃    decreases from 0.71 to 0.51, as   increases from 0 to 0.5. In 

order to find out the dependence of  ̃    on  , the concept of effective strain (          ) 

proposed by Song and Komvopoulos (2012) is adopted and the effective yield strength    at 

  ̅   due to strain hardening is calculated in Eq. (3.11a); consequently, the effective critical 

indentation depth to failure     and effective dimensionless maximum indentation depth   ̅  
  

were obtained by Eqs. (3.11b) and (3.11c), respectively.  
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Figure 3.5 (a) Dimensionless normal force  ̃ and (b) contact area  ̃ verse dimensionless unloading indentation depth 

 ̃ (comparison of simulation results and curve fitted equations) 
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               By replacing   ̅   with   ̅  
  in Eq. (3.5), Eq. (3.12) is obtained. As validated by 

Figure. 3.6,  ̃    predicted by Eq. (3.12) exhibits close agreement with finite element simulation 

result for a range of   = 0 – 0.5. 

 

 

 
 

Figure 3.6 Dimensionless residual indentation depth 
res vs. strain hardening exponent    (unloading from   ̅  = 

110) 
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3.3.5 Evolution of plastic zone in multiple loading-unloading cycles 

 

              Accumulation of plasticity in elastic-plastic half-space due to repetitive, normal contact 

is of particular interest for its direct implication in the reliability of micro-electronic-mechanical 

system (MEMS) devices operating in contact mode, such as microswitches and head-disk 

interface (HDI) in magnetic storage system. In order for a better understanding of plasticity 

accumulation, four consecutive loading-unloading cycles were simulated for an elastic-plastic 

half-space of      = 550 in normal contact with a rigid sphere, with the maximum contact force 

 ̅    = 500. Figure 3.7(a) and 3.7(b) show the contours of equivalent plastic strain   ̅ in half-

space after 1
st
 loading and unloading half-cycle are almost identical. Figure 3.8(a) and 3.8(b) 

show the contour of   ̅  after 2
nd

 loading and unloading half-cycle and it is noticed that the 

maximum   ̅ increases slightly in comparison with that after the 1
st
 cycle, despite of the same 

contour shape. Figure 3.9 plots normalized dissipated plastic energy  ̅                 at 

the end of each loading and unloading half cycle. Although no visible accumulation of plastic 

strain is observed in the contour of   ̅ shown in Figure 3.8, the 1
st
 unloading half-cycle is found 

to be inelastic, evidenced by the increasing dissipated plastic energy. Subsequent unloading half-

cycles are shown to be purely elastic and the accumulation of dissipated plastic energy in 
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subsequent loading half-cycles also decays as the number of cycles increases, leading to elastic 

shakedown.  

 

 

             
 

Figure 3.7 Distribution of equivalent plastic strain  ̅  in elastic-plastic half-space of      = 550, subjected to 

repetitive normal load  ̅    = 500, after 1
st
 (a) loading and (b) unloading half-cycle 

 

 

                  
 

Figure 3.8 Distribution of equivalent plastic strain  ̅  in elastic-plastic half-space of      = 550, subjected to 

repetitive normal load  ̅    = 500, after 2
nd

  (a) loading and (b) unloading half-cycle 

 

 

 
 

Figure 3.9 Dimensionless dissipated plastic energy  ̅  verse the number of cycles   after each loading and 

unloading half-cycle for elastic-plastic half-space of      = 550, subjected to repetitive normal load  ̅    = 500 
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Figure 3.10(a) and 3.10(b) show the contour of   ̅ in elastic-plastic half-space of      = 

55, after 1
st
 loading and unloading half-cycle, respectively. Although the maximum   ̅  stays 

unchanged, the accumulation of plastic strain during unloading is captured by the propagation of 

the high equivalent plastic strain contour (  ̅      ) toward the center of contact. Figure 3.11(a) 

and 3.11(b) show the contour of   ̅ in elastic-plastic half-space after 2
nd

 loading and unloading 

half-cycle, respectively. A comparison of figure 3.10(b) and 3.11(a) reveals that both the 

maximum   ̅  increases slightly and the high equivalent plastic strain contour (   ̅      ) 

continues to propagate to the center during the 2
nd

 loading process. In contrast to the case of 

        , Figure 3.12 indicates  ̅  increases linearly with the number of cycles; therefore a 

plastic shakedown or ratcheting is resembled, implying a potential low cycle fatigue.  

 

 

                       
 

 
Figure 3.10 Distribution of equivalent plastic strain  ̅  in elastic-plastic half-space of      = 55, subjected to 

repetitive normal load  ̅    = 500, after 1
st
 (a) loading and (b) unloading half-cycle 

 

                

                         
 

 
Figure 3.11 Distribution of equivalent plastic strain  ̅  in elastic-plastic half-space of      = 55, subjected to 

repetitive normal load  ̅    = 500, after 2
nd

  (a) loading and (b) unloading half-cycle 

 

Figure 3.13(a) and 3.13(b) show the evolution of equivalent plastic strain  ̅  along the 

axis of symmetry (z-axis) and the contact surface (r-axis), respectively, for elastic-plastic half-

space of      = 55 with the number of cycles. Three different regions were obeserved: (1) an 

elastic region that is sufficiently apart from contact area with effective stress lower than the yield 
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strength, thus the deformation is purely elastic through cycles. (2) a shakedown region that is 

closer to the contact, in comparison with elastic region. Plastic deformation occurs during 1
st
 

cycle, but further accumulation of plastic strain in subsequent cycles is prevented by residual 

stresses. (3) a ratcheting region that is right underneath the contact area, with relatively small 

distance (i. e. 0 ≤ r ≤ 0.5a; 0≤ z ≤ 0.5a). Equivalent plastic strain  ̅  increases consistently with 

number of cycles, which may account for material removal in the form of delamination and/or 

adhesive wear. 
 

 

 
 

Figure 3.12 Dimensionless dissipated plastic energy  ̅  verse the number of cycles   after each loading and 

unloading half-cycle for elastic-plastic half-space of      = 55, subjected to repetitive normal load  ̅    = 500 

            

 

           
 

Figure 3.13 Evolution of equivalent plastic strain  ̅  along (a) the axis of symmetry in depth direction (z-axis) and (b) 

contact surface in radial direction (r-axis) with the number of cycles 

 

While isotropic strain hardening is expected to suppress the plastic strain accumulation 

and plastic energy dissipation in repetitive normal contacts, the effect of kinematic strain 

hardening, which involves both the expansion of yield surface and shift of center of yield surface, 

can be more complicated and interesting. The repetitive normal contact was considered for a 
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rigid sphere and an elastic-plastic half-space exhibiting a combined isotropic/kinematic strain 

hardening behavior (Lemaitre and Chaboche, 1994), with an effective elastic modulus     

55GPa. 

 

The plastic hardening behavior is described by Eqs. (3.13) and (3.14). Eq. (3.13) 

describes the expansion the yield surface with the accumulation of plastic strain, where the 

original yield strength, maximum expansion of yield surface and expansion rate of yield surface 

were specified given by    = 100MPa;   = 1Gpa and   = -0.26, respectively; Eq. (3.14) 

represents the evolution of the center of yield surface, where   = 25.5GPa and   = 81 are 

material constants that characterize the initial hardening modulus and the rate at which hardening 

modulus decreases with plastic strain. Back stress   is the center of yield surface with initial 

value   = 0. Ziegler’s rule of linear kinematic hardening is recovered by setting   = 0  

 

              ̅                                                                                                            (3.13) 

 

  ̇     ̇̅  
   

 
     ̇̅  

  ̇

 
                                                                                                      (3.14)     

                     

 

 
 

Figure 3.14 Distribution of effective stress σV for elastic-plastic half-space, described by a combined 

isotropic/kinematic strain hardening behavior half-space, subjected to repetitive normal load of  ̅    = 500, after (a) 

1
st
, (b) 2

nd
 , (c) 3

rd
  and (d) 4

th
 unloading half-cycle 
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Figure 3.14(a) to 3.14(d) show the contour of dimensionless effective stress       in 

elastic-plastic half-space after 1
st
, 2

nd
, 3

rd
 and 4

th
 unloading half-cycle. It is noticed that       in 

the vicinity of the circumference of contact region increases with the number of cycle, from 0.8 

(elastic deformation) to 1.02 (plastic deformation), which indicates that yielding occurs in 

subsequent cycles. 

 

3.4. Conclusions 

 

Finite element analysis was performed to study the unloading behavior of an elastic-

plastic half-space indented by a rigid sphere and the accumulation of plasticity due to repetitive 

loading-unloading cycles. The major findings from present study are listed as following:  

 

(1) The dimensionless constitutive model of unloading process is independent of the      value 

of elastic-plastic half-space.  

 

(2) Dimensionless residual indentation depth and the dissipated plastic energy are obtained as 

functions of maximum indentation depth for elastic-perfectly plastic medium by curve fitting 

the simulation data. 

 

(3) Unloading constitutive equations were derived for elastic-perfectly plastic medium in a 

dimensionless form and shown also applicable for elastic-plastic medium exhibiting isotropic 

strain hardening behavior. 

 

(4) By adopting the concept of effective strain (Song and Komvopoulos, 2012), a general 

expression of residual indentation depth that includes strain hardening exponent as a variable 

was derived for elastic-plastic medium exhibiting isotropic strain hardening behavior. 

 

(5) Mechanical behavior of elastic-plastic medium subjected to repetitive loading-unloading 

cycles was investigated: for high      value, only 1
st
 unloading is inelastic, while the 

subsequent unloading is purely elastic; thus, elastic shakedown is expected; for low      

value, plastic energy is dissipated incrementally in subsequent loading-unloading, implying 

plastic shakedown or ratcheting.  

 

(6) For elastic-plastic half-space of low      value subjected to repetitive normal load, three 

different deformation regions were identified in the medium: 1. Ratcheting region: a small 

region adjunct to the center of contact area, inside which the plastic strain accumulates 

incrementally with the number of cycles. 2. Shakedown region: the plastically deformed 

material surrounding the ratcheting region, inside which the material undergoes plastic 

deformation in 1
st
 cycle, but does not accumulate plastic strain in subsequent cycles. 3. 

Elastic region: remaining area outside the shakedown region where is sufficiently apart from 

the contact and no plastic deformation occurs through the cycles. 

 

(7) For elastic-plastic medium exhibiting combined isotropic/kinematic hardening behavior, 

effective stress in the vicinity of the circumference of contact area increases incrementally 

and yielding occurs in subsequent cycles.  
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Chapter 4       
        

A fretting contact analysis of fractal surfaces 

 

 
4.1. Introduction 

 

Fretting contact refers to small-amplitude, oscillatory, tangential motion of preloaded 

contact surfaces. The amplitude of relative surface motion is usually on the order from 

micrometers to millimeters, but may also down to several nanometers, depending on morphology 

of contact surfaces. Contact surfaces may undergo full slip and form wear debris (fretting wear) 

when fretting amplitude is relatively large; while induce crack in the vicinity of partial slip zone 

(fretting fatigue) for small amplitude fretting contact. Fretting contact is mostly caused by 

vibration, for example, fretting contact at blade-shroud interface due to aerodynamic load 

induced vibration is known as the primary failure mechanism of gas turbine blade.  
 

The pioneering work on the contact analysis under combined normal and tangential load 

dates back to Cattaneo (1938) and Mindlin (1949), who independently worked out the tangential 

force-displacement relationship of preloaded spherical contacts. It was revealed that with a fixed 

normal load 𝑷, tangential load 𝑸 increases nonlinearly with tangential displacement 𝜹 and the 

circular contact region consists of a center stick zone and a surrounding annulus slip zone, 

known as partial slip. The stick zone shrinks concentrically with the increase of 𝑸 and eventually 

vanishes when full slip occurs 𝑸  𝝁𝑷, and 𝝁 is friction coefficient and assumed to be a constant 

that correlates the tangential and normal tractions on contact surfaces upon full slip. This stick-

slip model was later confirmed by Johnson experimentally (1955), in which stick and slip zones 

were clearly demonstrated when tangential force was not sufficient to induce full slip. Mindlin et 

al., (1952) further extended the stick-slip model and analyzed the cyclic tangential loading 

behavior. The unloading the reloading curves were derived analytically and a hysteresis loop was 

presented, with the enclosed area representing the dissipated fretting energy per cycle.   
 

However, Mindlin’s model is not directly applicable for most of the real contact surfaces 

for mainly two reasons: first, most of the real contact surfaces, if not all of them, exhibit multi-

scale roughness; thus, even the contact of two macroscopically flat surfaces is not continuous, 

but compromises discrete micro contact spots (asperities); second, as a result of surface 

roughness, even very small contact load may induce plastic deformation at asperity contacts. 

Berthoud and Bauberger (1998) implemented Mindlin’s model of single asperity tangential 

contact into a statistical rough surface model proposed by Greenwood and Williamson (1966), 

hereafter referred as GW model. The tangential stiffness of two macroscopically flat rough 

surfaces was calculated and a linear elastic response was predicted before the inception of full 

slip, which was in good agreement with experiment. Bjorklund (1997) used similar modeling 

approach, but an asperity height distribution different from that of GW model, to analyze the 

fretting contact of nominally flat rough surface and showed that the fretting (hysteresis) loop and 

energy dissipation per cycle are essentially independent of asperity height distribution, given the 

same root-mean-square surface roughness. In order to account for the plastic deformation at 

asperity contact, Eriten et al., (2011) utilized the elastic-plastic constitutive equations developed 

by Kogut and Etsion (2002) for the normal contact of asperity contact and modeled the fretting 
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contact of two nominally flat rough surfaces; in addition, a preload dependent friction coefficient 

(Brizmer et al., 2007) was employed, which associates the inception of sliding to plastic 

deformation. Plasticity index was found to be the most influential parameter on fretting loop and 

energy dissipation and predicted fretting loop showed fairly good agreement with experiment. 

Eriten et al. (2011) further analyzed the effect of surface roughness and revealed that more 

energy is dissipated per cycle for rougher contact surface.  
 

Despite of the significance of aforementioned work on fretting contact modeling of rough 

surfaces, it is noticed that the widely accepted GW model does not account for scale-

independence of topography parameters, an intrinsic feature of multi-scale roughness of 

engineering surfaces. In order to overcome the shortcoming of scale-dependence in GW model, 

fractal geometry has been extensively used to describe rough surfaces in contemporary contact 

mechanics (Majumdar and Bhushan,1990, 1991; Wang and Komvopoulos, 1994a,b, 1995; Sahoo 

and Roy Chowdhury, 1996; Komvopoulos and Yan, 1998; Borri-Brunetto et al., 1999; Ciavarella 

et al., 2000; Persson et al., 2002; Yang and Komvopoulos, 2005; Komvopoulos and Gong, 2007; 

Yin and Komvopoulos, 2010), because the fractal geometry is known for the its continuity, non-

differentiability,  self-invariance and self-affinity (Mandelbrot, 1973). Furthermore, The preload-

dependent friction model (Brizmer et al., 2007) used assumes implicitly that the interfacial 

adhesion is sufficiently high to yield the surface or subsurface material. It is a very reasonable 

assumption for sticky interface, but could be questionable for slippery interface, such as very 

clean and smooth interface with anti-sticking coating. The contact interface could be order of 

magnitude weaker than the material strength of contact bodies and full slip can easily occur at 

very low tangential force and without any plastic deformation induced. 

 

The main objective of present analysis is to present a fretting contact model for rough 

surfaces exhibiting fractal geometry, and study the effects of surface roughness, nominal contact 

pressure, fretting amplitude, elastic modulus-to-yield strength ratio and interfacial adhesion 

parameter on maximum tangential force, fretting energy dissipation and slip index. A friction 

model accounts for both adhesion and plowing effect is used and the interfacial shear stress is in 

the range is determined by the shear strength of elastic-plastic half-space and interfacial adhesion 

characterized by an interfacial adhesion parameter in the range of 0 to 1. This chapter is 

organized as following: in section 4.2, the friction model used for asperity contact is discussed 

and the fractal surface is formulated mathematically in section 4.3. Contact mechanics analysis is 

then performed on both normal and tangential directions in section 4.4; section 4.5 presents the 

effects of different parameters in the light of numerical results. 

 

4.2. Friction model 
 

              In present study, the friction coefficient consists of two components: adhesion friction 

coefficient  𝜇  and plowing friction coefficient 𝜇 . Adhesion friction force is assumed to be is 

uniquely determined by the contact area   and interfacial shear stress 𝜏  𝑚𝜏 , where 𝜏  is the 

shear strength of material and m is interfacial adhesion parameter, floating in the range of 0 to 1. 

Since plowing effect is associated with plastic deformation, for asperities in elastic contact, the 

friction coefficient is obtained by 

 

𝜇  𝜇  
  3  ⁄    

 √      ⁄                                                                                                                      (4.1) 
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               For asperities in plastic contact, the plowing friction coefficient is non-zero and the 

friction coefficient was obtained in a close-form through integration (Komvopoulos, 1986) 
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4.3. Surface description  
 

Figure 4.1 shows a typical isotropic and self-affine fractal rough surface and its three-

dimensional surface profile    , 𝑦  is given by (Yan and Komvopoulos, 1998)  
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Fig. 4.1 Typical three dimensional fractal rough surface generated from Eq. (3) with 𝑀= 20,   = 1.5,  𝐿 = 10 mm, 𝐿  

= 5nm,  𝐺 = 50 nm and 𝐷 = 2.5.   

 

where 𝐷 (2 < 𝐷 <3) and 𝐺 are the fractal dimension and fractal roughness, respectively. 𝐿 is the 

sample length; In Figure 1, 𝐿 = 10 mm,  𝐺 = 50 nm and 𝐷 = 2.5.    (  > 1) is a parameter that 

determines the density of frequency in the surface profile, which is typically chosen to be 1.5 for 

frequency distribution density consideration (Komvopoulos and Yan, 1997)  M denotes the 

number of superposed ridges; 𝜙 ,  is a random phase uniformly distributed in the range of [0, 

2 ] by a random number generator to prevent the coincidence of different frequencies at any 

point of the surface profile; 𝑞 is a spatial frequency index. 
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           The fractal dimension 𝐷 is the governing parameter of the extent of space occupied by the 

rough surface and the amplitudes of high-frequency components become comparable to those of 

low-frequency components as 𝐷 increases.  

 

4.4 Contact mechanics analysis 
 

4.4.1 Normal contact of a rigid rough (fractal) surface and a deformable half-space 

 

The advancement of rigid fractal surface toward the half-space results in truncated 

segments and each truncated segment is approximated by an spherical asperity of based radius    

equal to one-fourth of asperity’s base wavelength and height equal to the local interference 

  given by eq. (4.4) 

 

   𝐺 𝐷    𝑙              𝐷                                                                                                 (4.4) 

 

and the radius of spherical asperity is then determined as 

 

  
(  )

 𝐷    ⁄

  5 𝐷   𝐷    ⁄ 𝐺 𝐷    𝑙 𝛾   ⁄  
𝐺 𝐷    𝑙 𝛾   ⁄   3 𝐷 (  )

 3 𝐷  ⁄

  3 𝐷  ⁄                                                    (4.5) 

 

where         is the truncated area of the asperity contact. It is noticed that in previous studies 

(Komvopoulos and Yan, 1998; Yin and Komvopoulos, 2010), the second term in Eq. (4.5) is 

ignored, by assuming local interference  ≪  ; however, this assumption could be inaccurate for 

the small asperities in plastic deformation, and consequently leads to inaccuracy in friction force 

calculation. 

 

The discrete truncated areas of asperity contact has been found to follow island-like 

distribution in geophysics, which obeys a power-law relationship (Menderbrot, 1983) 

 

      (
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                                                                                                                  (4.6) 

 

where       is the number of asperities with truncated area greater than    and  𝐿
  is the largest 

truncated area; the distribution function of truncated areas of asperity contacts is therefore 

derived (Yan and Komvopoulos, 1998) 
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and the number of asperities with truncated area in the interval of [   ,       ] equals 

        . Consequently, the total truncated area of asperity contact    is obtained (Komvopoulos 

and Ye, 2001) 
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where  𝑆
  is the smallest truncated area of asperity contact. It represents the cut-off dimension, 

below which continuum mechanics theory is not applicable, and the in present study, it is set to 

be 5 nm.   

 

The total truncated area    is calculated numerically by counting the number of pixels, 

which reconstructs the rigid fractal surface, with  -height greater than that of truncation plane; 

then  𝐿
  and       are obtained by eqs. (4.7) and (4.8); therefore, with a given global 

interference, the spatial distribution of truncated areas of asperity contacts is completely 

determined. 

 

Depending on local interference   and asperity radius  , asperity contacts can be either 

elastic or plastic, which may substantially affect the distribution of normal load among asperities. 

Following the simplified elastic-perfectly plastic model (Yin and Komvopoulos, 2010), elastic 

deformation occurs when truncated area of asperity contact      
 , while the asperity contact 

undergoes fully-plastic deformation when      
 , where   

  is known as critical truncated area 

of contact, obtained by 

 

∆𝐹    
   ∆𝐹    

                                                                                                                      (4.9) 

 

where ∆𝐹  and ∆𝐹  denote the normal contact load of elastic and fully-plastic deformation, given 

by eqs. (4.10) and (4.11), respectively. 

 

∆𝐹  
    3

  
 

√     3  ⁄

   3  ⁄                                                                                                             (4.10) 

 

∆𝐹                                                                                                                                     (4.11) 

 

The critical truncated area of contact is then determined 

 

  
  

  3     

                                                                                                                               (4.12) 

 

The total normal load 𝐹 can be obtained as the sum of total normal load of elastic and 

fully-plastic asperity contacts, 𝐹  and 𝐹 , respectively, as given by eqs. (4.13) and (4.14). 

 

𝐹  ∫ ∆𝐹          𝑙
 

 𝑐
                                                                                                               (4.13) 

 

𝐹  ∫ ∆𝐹          𝑐
 

 𝑠
                                                                                                              (4.14) 

 

4.4.2 Tangential contact of a rigid rough (fractal) surface and a deformable half-space  

 

Figure 4.2(a) and 4.2(b) show the schematic of tangential force-displacement relationship 

of a preloaded rigid sphere in contact with an elastic half space (Mindlin et al., 1952), for partial 

slip and full slip state, respectively.  Curve 𝑂 𝐵 represents the initial loading procedure, which is 

completely partial slip (𝑂 ) (Fig. 4.2(a)), or consists of a partial slip stage (𝑂 ) and a full slip 
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stage ( 𝐵 ) (Fig. 4.2(b)). Curves 𝐵 𝐷  and  𝐹 𝐵  represent the steady-state backward and 

forward fretting half-cycles, respectively, which are symmetric with each other, with respect to 

the origin 𝑂  and in together form an enclosed hysteresis (fretting) loop. A sudden drop of 

tangential force ∆  occurs when the direction of fretting displacement is reversed, as a result of 

the loss of plowing friction and slip index 𝜃  ∆𝑠      ⁄  is defined to quantify the relative slip. 

 

It has to be noticed depending on material properties and loading conditions, it may takes 

from tens to thousands cycles for hysteresis loop to be stabilized; however, these unstable cycles 

were ignored in present study for two reasons: first, the energy dissipation during unstable cycles 

is not significantly different from the steady-state cycles; second, most fretting fatigue undergoes 

millions of cycles, thus the initial stabilization process is secondary.   

 

During the initial forward fretting (𝑂 𝐵), given a tangential displacement 𝑠, asperity 

contacts may be in partial slip (𝑂 ), or a full slip stage ( 𝐵), depending on the truncated area: 

asperities of small truncated area (     
 ) undergoes full slip, while large truncated area 

(     
 ) leads to partial slip. The transition truncated area   

  for elastically and plastically 

deformed asperities is given by eq. (4.15) and (4.16) respectively.  
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Fig. 4.2 Schematic of fretting loop for (a) partial slip and (b) full slip at at maximum fretting amplitude  

 

where 𝐺         𝐺 ⁄        𝐺 ⁄     is equivalent shear modulus. For asperity contacts 

under full slip condition (     
 ), the tangential load is constant and independent of 𝑠, as given 

by eq. (4.17) 

 

∆   𝜇                                                                                                                                  (4.17) 
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while for asperity contacts in partial slip stage (     
 ), Mindlin’s solution (Eq. (4.18)) is used 

to characterize the relationship between tangential force and displacement (1952). 

 

∆   𝜇 [  (  
  𝐺   

 𝜇 
)
  ⁄

]                                                                                              (4.18) 

 

The total tangential force during initial forward fretting is then obtained by eq. (4.19) 
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As illustrated by Eqs. (4.17) and (4.18), depending on normal and tangential load, 

material properties and interfacial adhesion, asperity contacts may be in partial slip or full slip, at 

the beginning of the backward fretting half-cycle (point B in Fig. 4.2). The asperity contacts in 

partial slip at point B (Fig. 4.2(a)) will remain in partial slip through the backward fretting half-

cycle; while for asperity contacts in full slip at point B (Fig. 4.2(b)), the initial backward fretting 

will be in partial slip, followed by full slip. 

 

Given a tangential displacement 𝑠 (-𝑠    𝑠  𝑠   ), the transition truncated area of 

partial slip and full slip states during backward fretting half-cycle is determined for asperities in 

elastic and plastic contact, respectively, by eq. (4.20) and (4.21).  
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For asperity contacts under full slip condition (     𝐵
 ), the tangential load is constant and 

independent of 𝑠, as given by eq. (4.22) 

 

 𝑢   𝜇                                                                                                                               (4.22) 

 

while for asperity contacts in partial slip stage (     𝐵
 ), Mindlin’s solution (Eq. (4.23)) is used 

to characterize the relationship between tangential force and displacement (1952). 

 

∆ 𝐵  ∆      𝜇 {  [  
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Therefore, the total tangential force during unloading is obtained by eq. (4.24) 
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Considering the fact that forward fretting half-cycle is symmetric with the backward fretting 

half-cycle, with respect to the origin (Figure 4.2), the tangential force-displacement relationship 

during the forward fretting half-cycle (curve 𝐷 𝐵) is obtained by Eq. (4.25) (Eriten et al., 2011) 

 

  𝐹 𝑠    𝐵  𝑠                                                                                                                   (4.25) 

 

Consequently, the energy dissipation is obtained by calculating the area enclosed by the fretting 

loop (Eq. (4.26)).  

 

  ∫   𝐹 𝑠   𝐵 𝑠  
    

     
 𝑠                                                                                              (4.26) 

 

4.5. Numerical results and discussion 

 

In present study, sample length 𝐿 is10 mm and the cut-off length 𝐿  is selected to be 5 

nm. The fractal dimension 𝐷 is set to be 2.5 and the yield strength   of elastic-plastic half-space 

is 500 MPa. The numerical results are interpreted in terms of dimensionless parameters, such as 

dimensionless fractal roughness 𝐺̅  𝐺 𝐿⁄ , dimensionless tangential displacement 𝑠̅  𝑠 𝑠   ⁄ , 

dimensionless fretting amplitude 𝑠̅    𝑠   𝐿⁄ , dimensionless nominal contact pressure 

 ̅    ⁄ , dimensionless tangential force  ̅    𝐿 ⁄  and dimensionless fretting energy 

dissipation  ̅    𝐿 𝑠   ⁄ .  

 

4.5.1 Effect of surface roughness 

 

Figure 4.3(a) shows the tangential force  ̅ vs. tangential displacement 𝑠̅ (fretting loops) 

for rough surfaces of fractal roughness 𝐺̅       (RMS roughness   𝐿     ×     ),  ×
     (  𝐿     ×     ),  ×      (  𝐿     ×     ), and      (  𝐿     ×     ), in 

fretting contact with an elastic-plastic half-space of    ⁄  = 440, subjected to nominal contact 

pressure  ̅ = 0.3, fretting amplitude 𝑠̅     ×      and interfacial adhesion parameter 𝑚  = 

0.5.  A spontaneous drop of tangential force is observed for all cases at the maximum and 

minimum fretting displacement, as a result of the loss of plowing friction when the direction of 

fretting displacement is reversed. Figure 4.3(b) shows the drop of tangential force ∆ ̅̅ ̅̅  

=∆     ⁄  as a function of 𝐺̅. The increase of ∆ ̅ with 𝐺̅ implies that more asperities are in 

plastic contact for rougher surfaces under the same nominal contact pressure. Figure 4.4(a) 

shows the maximum tangential force  ̅   and fretting energy dissipation  ̅ as a function of 𝐺̅. 

Both  ̅    and  ̅ initially decrease, then increase as fractal roughness 𝐺̅ increases. This non-

monotonic trend can be interpreted by considering the evolution of truncated area of asperities in 

elastic and plastic contact, respectively, as shown in Figure 4.4(b). With the increase of 𝐺̅, elastic 

contact area    decreases and plastic contact area    increases. At small surface roughness range 

(𝐺̅      ), the decrease of     is significantly faster than the increase of   , consequently leads 
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to lower tangential force and less fretting energy dissipation. With further increase of surface 

roughness range (𝐺̅      ), the decrease of    slows down and becomes comparable with the 

increase of   ; therefore, with roughly constant total contact area, the increase of    results in 

higher plowing friction force and consequently raises up the tangential force and fretting energy 

dissipation.   

 

 

 
 

Fig. 4.3 (a) Dimensionless tangential force  ̅  vs. dimensionless tangential displacement 𝑠̅ for rough surfaces of 

fractal roughness 𝐺̅       (RMS roughness   𝐿     ×     ),  ×      (   𝐿     ×     ),  ×      

(  𝐿     ×     ), and      (  𝐿     ×     ),  in fretting contact with an elastic-plastic half-space of    ⁄  = 

440, subjected to nominal contact pressure  ̅ = 0.3, fretting amplitude 𝑠̅     ×      and interfacial adhesion 

parameter 𝑚 = 0.5. (b) The drop of tangential force ∆ ̅ =∆     ⁄  vs. fractal roughness 𝐺̅. 

 

 

 
 

Fig. 4.4 (a) maximum tangential force  ̅    and fretting energy dissipation ∆ ̅ vs. fractal roughness 𝐺̅ (b) Elastic 

contact area   ̅  and plastic contact area   ̅  vs. fractal roughness 𝐺̅  for rough surfaces in fretting contact with an 

elastic-plastic half-space of    ⁄  = 440, subjected to nominal contact pressure  ̅ = 0.3, fretting amplitude 𝑠̅    
 ×      and interfacial adhesion parameter 𝑚 = 0.5. 

 

4.5.2 Effect of nominal contact pressure 

 

           Figure 4.5(a) shows the tangential force  ̅ vs. tangential displacement 𝑠̅ (fretting loops) 

for fractal rough surfaces 𝐺̅   ×      in fretting contact with an elastic-plastic half-space of 
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   ⁄  = 440, subjected to nominal contact pressure  ̅  = 0.1, 0.6 and 1.5, fretting amplitude 

𝑠̅     ×      and interfacial adhesion parameter 𝑚 = 0.5. The fretting loop indicates higher 

 ̅  yields lower maximum tangential force  ̅    and fretting energy dissipation ∆ ̅ .  This 

counter-intuitive trend is further explored in Figure 4.6(a), which shows that both maximum 

tangential force  ̅   and dissipated fretting energy ∆ ̅ decrease with nominal contact pressure 

 ̅. Similar phenomenon (less fretting energy is dissipated at higher nominal contact pressure) is 

also captured in fretting contact analysis using GW model (Eriten and Polycarbou, 2011), but the 

interpretation is different: in GW model, all asperities are assumed of the identical radius of 

curvature; therefore, at higher  ̅, more asperities are plastically deformed and tend to stay in 

partial slip state, thus result in less fretting energy; whereas in fractal surface model, the 

asperities in plastic contact are of smaller contact area than those in elastic contact. Therefore, at 

low nominal contact pressure, area of discrete contact regions are small, thus majority of the 

asperities are in plastic contact; with the accumulation of normal load, the fraction of contact 

area for asperities in elastic contact increases, as indicated by Figure 4.6(b), which leads to 

smaller tangential force and lower fretting energy dissipation. The argument above is also 

consistent with the observation that higher tangential stiffness when nominal contact pressure is 

lower: since the area of discrete contact region is smaller, the tangential displacement required to 

drive an asperity from partial slip to full slip is also smaller, and consequently, the tangential 

stiffness is higher. 

 

 

 
 

Fig. 4.5  Tangential force  ̅ vs. tangential displacement 𝑠̅ for fractal rough surfaces 𝐺̅   ×      in fretting contact 

with an elastic-plastic half-space of    ⁄  = 440, subjected to nominal contact pressure  ̅ = 0.1, 0.6 and 1.5, fretting 

amplitude 𝑠̅     ×      μm and interfacial adhesion parameter 𝑚 = 0.5.  
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Fig. 4.6 (a) maximum friction force  ̅   and fretting energy dissipation ∆ ̅ vs. nominal contact pressure  ̅  and (b) 

fraction of plastic contact force 𝐹  𝐹  𝐹  ⁄  and plastic contact area          ⁄  vs. nominal contact pressure  ̅ 

for fractal rough surfaces 𝐺̅   ×      in fretting contact with an elastic-plastic half-space of    ⁄  = 440, 

subjected to fretting amplitude 𝑠̅     ×      μm and interfacial adhesion parameter 𝑚 = 0.5.  

 

 

 
 

Fig. 4.7 (a) Tangential force  ̅ vs. tangential displacement 𝑠̅ for fractal rough surfaces 𝐺̅   ×      in fretting 

contact with an elastic-plastic half-space of    ⁄  = 440, subjected to nominal contact pressure  ̅ = 0.3, fretting 

amplitude  ̅     ×     ,     ,  ×      and      and interfacial adhesion parameter 𝑚 = 0.5. (b) Fretting 

energy dissipation ∆ ̅ vs. fretting amplitude 𝑠   . 

 

4.5.3 Effect of fretting amplitude 

 

Figure 4.7(a) shows the tangential force  ̅ vs. tangential displacement 𝑠̅ (fretting loops) 

for rigid rough surface of fractal roughness 𝐺̅   ×      in fretting contact with an elastic-

plastic half-space of    ⁄  = 440, subjected to nominal contact pressure  ̅  = 0.3, fretting 

amplitude 𝑠̅     ×     ,     ,  ×      and     and interfacial adhesion parameter 𝑚 = 

0.5. At small fretting amplitude (e.g. 𝑠̅        ), most asperities are under partial slip state, 

thus dissipated fretting energy is low. As fretting amplitude increases, more asperities are in full 

slip state, resulting in higher tangential force and more fretting energy dissipation. When fretting 

amplitude 𝑠̅    is sufficiently large (e.g. 𝑠̅     ×      and     ), all asperity contacts have 

been in full slip state before 𝑠̅    is reached, thus a plateau is encountered for tangential force. 

As 𝑠̅    increases, the contribution of partial slip range becomes less significant, evidenced by 
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the fact that slip index 𝜃 increases to 1 asymptotically (Figure 4.7(b)); thus the fretting loop can 

be approximated as a rectangle of length 2𝑠̅   and width 2 ̅   , and fretting energy dissipation 

∆ ̅ also approaches the value of maximum tangential force  ̅    asymptotically. It is noticed 

that in most energy-based fretting wear analysis, this approximation is generally used, in order to 

simplify the calculation of fretting energy dissipation; however, when fretting amplitude is not 

sufficiently large to ignore the partial slip range, it may noticeably overestimate the fretting 

energy dissipation, thus wear rate.  

 

4.5.4 Effect of elastic modulus-to-yield strength ratio 

 

Figure 4.8(a) shows the tangential force  ̅ vs. tangential displacement 𝑠̅ (fretting loop) 

for rigid rough surface of fractal roughness 𝐺̅   ×      in fretting contact with an elastic-

plastic half-space of    ⁄  = 110, 220, 440 and 660, subjected to nominal contact pressure  ̅ = 

0.3, fretting amplitude 𝑠̅     ×      and interfacial adhesion parameter 𝑚 = 0.5. For small 

   ⁄  value, the fretting loop is under partial slip and the plateau of maximum tangential force is 

not achieved at 𝑠   ; for high    ⁄  value, the tangential force  ̅  approaches its maximum 

asymptotically before 𝑠    is reached, implying all asperities are in full slip state. The 

dependence of stick-slip state on    ⁄  value can be interpreted by considering the contact area: 

because the yield strength of elastic-plastic half-space is fixed in present study, lower    ⁄  value 

indicates lower elastic modulus; therefore, larger contact area has to be established to achieve the 

same nominal contact pressure, and larger fretting displacement is required for asperities transit 

from partial slip to full slip state. This interpretation is consistent with the trend that slip index 𝜃 

increases with    ⁄  value, as plotted in Figure 4.8(b).  Meanwhile, larger elastic contact area 

caused by lower    ⁄  value induces higher friction force; therefore, the maximum tangential 

force  ̅     increases as    ⁄  value decreases, as shown in Figure 4.9(a). Due to the two 

competing factors (decrease of  ̅   and increase of slip index 𝜃   with the increase of    ⁄  

value), a non-monotonic trend is captured in Figure 4.9(b), that fretting energy dissipation ∆ ̅ 

first increases, then decreases with    ⁄  value. However, it has to be noticed that, there exists 

some critical value of     ⁄  value, beyond which the critical truncated area   
  is sufficiently 

large such that all asperities are in plastic contact and the influence of elastic material properties 

is negligible. 
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Fig. 4.8(a) Tangential force  ̅  vs. tangential displacement 𝑠̅  for fractal rough surfaces 𝐺̅   ×      in fretting 

contact with an elastic-plastic half-space of    ⁄  = 110, 220, 440 and 660, subjected to nominal contact pressure  ̅ 

= 0.3, fretting amplitude 𝑠̅     ×      and interfacial adhesion parameter 𝑚 = 0.5. (b) Slip index 𝜃 vs. elastic 

modulus-to-yield strength ratio    ⁄ . 

 

 

 
 

Fig. 4.9(a) maximum friction force  ̅    vs. elastic modulus-to-yield strength ratio    ⁄ . (b) fretting energy 

dissipation ∆ ̅ vs. elastic modulus-to-yield strength ratio    ⁄  for fractal rough surfaces 𝐺̅   ×      in fretting 

contact with an elastic-plastic half-space, subjected to nominal contact pressure  ̅ = 0.3, fretting amplitude 𝑠̅    
 ×      and interfacial adhesion parameter 𝑚 = 0.5. 

 

4.5.5 Effect of interfacial condition 

 

As discussed in section 4.2, interfacial shear stress is bounded between 0 and the shear 

strength of the elastic-plastic half-space 𝜏 , characterized by interfacial adhesion parameter 𝑚, 

floating in the range of 0 to 1, representing the strength of interfacial adhesion: small 𝑚 value 

represents low interfacial adhesion and when 𝑚 = 0, interface is known as frictionless; on the 

other hand, large 𝑚 value is applicable for sticky surfaces  and  when 𝑚 = 1, the adhesion at 

interface junction is sufficiently strong such that plastic deformation occurs at surface and/or 

subsurface and full slip starts, before junction breaks, which is essentially equivalent to the 

friction model of Brizmer et al. (2007). The value of 𝑚 is primarily determined by the material 

compatibility of two contact surfaces, but is also significantly influenced by environmental 

conditions (e.g. temperature, humidity, cleanness) and can be alternated intentionally by surface 

modification (e.g. anti-sticking coating). Therefore, it is of interest to see the influence of 𝑚 on 

fretting contact. 

 

Figure 4.10(a) shows the maximum tangential force  ̅    vs. interfacial adhesion 

parameter 𝑚  for rigid rough surfaces of fractal roughness 𝐺̅   ×     ,     ,  ×      in 

fretting contact with an elastic-plastic half-space of    ⁄  = 220, subjected to nominal contact 

pressure  ̅ = 0.3 and fretting amplitude 𝑠̅     ×      . Smoother surface (𝐺̅   ×     ) 

exhibits the highest increasing rate of  ̅   with respect to 𝑚, comparing with rougher surfaces 

(𝐺̅   ×      ), indicating that interfacial friction is more sensitive to interfacial adhesion for 

smooth surface. The explanation can be made by considering the fraction of elastic and plastic 

contact area for different surface roughness. From Eqs (4.1) and (4.2), it is realized that friction 

coefficient of asperities in elastic contact is proportional to 𝑚; while for asperities in plastic 
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contact, only adhesion friction coefficient increases with 𝑚 linearly and plowing friction force is 

independent of 𝑚, thus exhibit less significant dependence on 𝑚. As analyzed in section 4.5.1, 

with the increase of surface roughness 𝐺̅, more asperities are in plastic contact; therefore, the 

influence of 𝑚 is less pronounced for rougher surfaces. Figure 4.10(b) shows the fretting energy 

dissipation ∆ ̅ as a function of 𝑚 for 𝐺̅   ×     ,     ,  ×      , respectively. Similar to 

 ̅   ,  ∆ ̅ also increases faster with 𝑚 for smoother surfaces; furthermore, it is noticed when 

𝐺̅   ×     , ∆ ̅  even decreases slightly as 𝑚  increases. This counter-intuitive trend is 

interpreted by considering the variation of slip index 𝜃, as demonstrated in Figure 4.11. For 

𝐺̅   ×      and     , the decrease of 𝜃 with 𝑚 is negligible in comparison with the increase 

of  ̅   , thus ∆ ̅ increases; however, when 𝐺̅   ×     ,   ̅    increases very slightly with 

𝑚, as shown in Figure 4.10(a) and decrease of  𝜃 is more pronounced, since more asperities will 

be in partial slip condition due to stronger interfacial adhesion, therefore ∆ ̅decreases with 𝑚. 

 

 

 
 

Fig. 4.10(a) maximum friction force  ̅   vs. interfacial adhesion parameter 𝑚  for fractal rough surfaces 𝐺̅  
 ×     ,     ,  ×      in fretting contact with an elastic-plastic half-space of    ⁄  = 220, subjected to nominal 

contact pressure  ̅ = 0.3 and fretting amplitude 𝑠̅     ×      . (b) fretting energy dissipation ∆ ̅ vs. interfacial 

adhesion parameter 𝑚 for 𝐺   2, 10 and 50nm. 

 

 

 
 

Fig. 4.11 Slip index 𝜃 vs. interfacial adhesion parameter 𝑚. 



49 
 

4.6. Conclusions 

 

A fretting contact model was proposed for a rigid surface exhibiting multi-scale 

roughness (fractal) and an elastic-plastic half-space. Mindlin’s theory of partial slip was 

employed as asperity scale and the status (partial slip or full slip) of each asperity contact was 

identified. In contrast to the Coulomb friction model used in the original work of Mindlin, as 

well as the preload dependent friction model (Brizmer et al., 2007) which implicitly assumes the 

interface adhesion is sufficiently strong, thus inception of sliding is associated with plastic 

deformation, present study breaks down the friction force into two components: adhesion and 

plowing. Adhesion friction force is applicable for all asperity contacts, regardless of the nature of 

contact (elastic or plastic) and tangential motion (partial slip or full slip). It depends on real 

contact area, shear strength of elastic-plastic half-space and interfacial condition, which is 

characterized by an interfacial adhesion parameter, floating between 0 and 1; but is independent 

of contact pressure. On the other hand, plowing friction force is only applicable for asperities in 

plastic contact and full slip regime and determined by the plastic deformation of asperity contact. 

 

The effects of surface roughness, nominal contact pressure, fretting amplitude, elastic 

modulus-to-yield strength ratio and interfacial adhesion parameter were elucidated in the context 

of fretting energy dissipation, maximum tangential force and slip index obtained by numerical 

method. Both maximum tangential force and fretting energy dissipation demonstrate a non-

monotonic dependence on surface roughness. The initial decrease of the maximum tangential 

force and fretting energy dissipation is attributed to rapid decrease of elastic contact area, while 

with continued increase of surface roughness, the increase of plastic contact area is dominant and 

the maximum tangential force and fretting energy dissipation increase. 

 

Both maximum tangential force and fretting energy dissipation were found decreasing 

with nominal contact pressure. This counter-intuitive result can be understood by considering 

that asperities of large truncated area in elastic contact, while small truncated area represents 

plastic contact in contact of fractal surfaces. Therefore, the fraction of elastic contact area 

increases with nominal contact pressure, which reduces both the friction coefficient, thus fretting 

energy dissipation. 

 

Transition from partial slip to full slip was reproduced at macroscopic scale with the 

increase of fretting amplitude, accompanied by accumulation of fretting energy dissipation. 

While a rectangle with length of two times of fretting amplitude and width of two times of 

maximum tangential force is a good approximation of the fretting loop when fretting amplitude 

is sufficiently large, this simple multiplication may significantly overestimate the fretting energy 

dissipation at small fretting amplitude, and consequent wear prediction. 

 

The influence of elastic modulus-to-yield strength ratio (    ⁄ ) on fretting contact 

behavior is driven by two competing mechanisms: the maximum tangential force is higher for 

smaller    ⁄  value because of larger contact area; meanwhile, slip index shows the opposite 

dependence because larger contact area implies that more asperities are in partial slip with given 

fretting amplitude. At small    ⁄  value, the increase of slip index with    ⁄  value is the 

dominant factor, thus fretting energy dissipation increases; with further increase of    ⁄ , slip 
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index approaches 1 asymptotically and the second first mechanism becomes more important; as a 

result, fretting energy dissipation decreases. 

 

The effect of interfacial adhesion parameter was examined at three different surface 

roughness values. For smooth surface, the maximum tangential force increases significantly with 

the interfacial adhesion parameter; but for rough surface, maximum tangential force is relatively 

insensitive to interfacial adhesion parameter. In order to understand the difference of interfacial 

adhesion effect on maximum friction force for different surface roughness value, we have to 

revisit the roughness effect discussed above. As surface roughness decreases, elastic contact area 

where friction is proportional with interfacial adhesion parameter increases and plastic contact 

area where friction is relatively less dependent on interfacial adhesion parameter decreases. The 

observation above implies that to reduce friction efficiently, it is necessary to smooth the surface 

before depositing any anti-sticking layer. Interestingly, it is noticed that fretting energy 

dissipation may even decrease slightly with interfacial adhesion parameter, as a result of more 

asperities in partial slip due to strong interface adhesion. 
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CHAPTER 5 

 
Adhesion-induced instabilities in elastic and elastic-plastic contacts during 

single and repetitive normal loading 

 

 
5.1. Introduction 

 

 In chapter 2-4, we have systematically investigated the adhesionless contact behavior at 

both asperity scale (chapter 2 and 3) and for rough surfaces (chapter 4). It is generally acceptable 

to neglect surface adhesion in contact analysis at macroscopic scale, however, as contact surfaces 

scale down and surface forces exceed bulk forces, surface adhesion is of great importance and 

plays a dominant role in many engineering systems, such as microelectromechanical systems, 

hard-disk drives, and surface force microscopes (Du et al., 2007) to name just a few. One of the 

first studies of adhesive contact is attributed to Bradley (1932), who examined the effect of 

adhesion on the contact force between two rigid spheres and reported that the pull-off force  𝑜𝑓𝑓 

(defined as the maximum adhesive (attractive) force at the instant of surface separation) is given 

by  𝑜𝑓𝑓      ∆ , where   is reduced radius of curvature (          ⁄⁄    , where R1 

and R2 are the radii of curvature of the two spheres) and ∆  is the work of adhesion (∆ ≡    
      , where    and    are the surface energies of the two spheres, respectively, and     is the 

interfacial energy). Pioneering studies of adhesive contact between elastic spherical bodies have 

been performed by Johnson, Kendall, and Roberts (JKR) (1971) and Derjaguin, Muller, and 

Toporov (DMT) (1975). In the JKR model, the adhesion force is assumed to arise within the 

contact region in conjunction with the Hertzian contact pressure, resulting in the formation of a 

neck that increases the contact area. The contact stress predicted by the JKR model increases 

asymptotically to infinity at the contact edge and the resulting pull-off force is given by  𝑜𝑓𝑓  

      ∆ . According to the DMT model, the adhesion force is produced over an annulus 

surrounding the contact region without affecting the surface profiles of the elastically deformed 

spheres and  𝑜𝑓𝑓      ∆ . Elastic behavior of adhesive contacts can be described by so-

called Tabor parameter 𝜇 given by (Tabor, 1977) 

 

 𝜇  (
 ∆𝛾 

    3)
  ⁄

                                                                                                                           (5.1) 

 

where          
          

    ⁄⁄     is the effective elastic modulus (  ,    and   ,    

denote elastic modulus and Poisson’s ratio of the two contacting elastic spheres, respectively) 

and   is the atomic equilibrium distance. The JKR model holds for large and compliant spheres 

(high 𝜇), whereas the DMT model is applicable in cases of small and stiff spheres (low 𝜇). The 

parameter 𝜇  can be viewed as the ratio of the elastic surface displacement at the instant of 

separation to the effective range of surface force characterized by the equilibrium distance 

(Johnson and Greenwood, 1997). Zhao et al. (2003) considered the nature of physical contacts in 

the context of the Tabor parameter and reported 𝜇 values for different material systems, e.g., Si 

tip in contact with a NbSe2 surface under vacuum (𝜇 = 0.2–0.3), contact between 1-μm-diameter 

carbon particles (𝜇 = 0.5–1.5) and between 8-μm-diameter polymer monofilaments (𝜇 ≈ 12), and 
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polyurethane sphere in contact with a glass substrate (𝜇 ≈ 1000). Johnson and Greenwood (1997) 

have reported similarly wide range of 𝜇 values, e.g., 𝜇 < 1 for stiff materials in contact with a 

sharp (~100 nm in radius) Si tip of an atomic force microscope (AFM) and 𝜇 ≈ 50 for crossed 

cylinders of mica sheet glued to glass cylinders used in the surface force apparatus (Israelachvili, 

1992). In view of the wide range of Tabor parameter, understanding its significance in adhesive 

contact behavior is of particular importance.   

 

 Muller, Yushenko, and Derjaguin (MYD) (1980) used the Lennard-Jones (L-J) potential 

to determine the surface traction and deformation of an elastic sphere in adhesive contact with a 

rigid plane, and observed a smooth transition of the pull-off force between values predicted by 

the DMT (𝜇 < 0.1) and JKR (𝜇 > 5) models. Greenwood (1997) confirmed the results of the 

MYD model and showed that jump-in and jump-out due to adhesion in spherical contacts 

commence only when 𝜇 > 1. Maguis (1992) used the Dugdale approximation (MD model) to 

represent the surface traction and derived a closed-form solution of the pull-off force that yields a 

smooth transition between the DMT and JKR solutions in the intermediate range of Tabor 

parameter 0.1 < 𝜇 < 5. Johnson and Greenwood (1997) constructed an adhesion map that shows 

the ranges of dimensionless normal load and Tabor parameter where different contact models 

(e.g., JKR, DMT, and MD) are appropriate. 

 

 Neglecting short-range repulsive forces, Attard and Parker (1992) derived a contact 

instability condition for surface deformation larger than the perturbations of the surface profile 

given by  

 

  𝑜  ⁄    ⁄   √  𝜇  ⁄                                                                                                              (5.2) 

 

where  𝑜 is the central gap. Pethica and Sutton (1988) argued that surface instabilities occur 

when the surface force gradient exceeds that of the restoring force due to elastic deformation of 

the interacting bodies and obtained an instability condition given by 

 

  𝑜  ⁄    ⁄     𝜇  ⁄  ⁄                                                                                                            (5.3) 

 

In all of the analytical and numerical studies mentioned above, contact deformation was 

assumed to be purely elastic. However, Maugis and Pollock (1984) showed that a high adhesion 

force may induce plastic deformation, even in the absence of an externally applied load. 

Therefore, for comprehensive analysis of adhesive contact, it is essential to consider elastic-

plastic material behavior. Mesarovic and Johnson (2000) studied separation of two adhering 

elastic-plastic spheres under the assumption of predominantly elastic deformation during 

unloading. Kogut and Etsion (2003) extended the classical DMT analysis of elastic adhesive 

contacts to fully plastic adhesive contacts and used a finite element model to calculate surface 

separation outside the contact region. Kadin et al. (2008a) used the finite element method and the 

L-J potential to model adhesive contact between a rigid flat and an elastic-plastic sphere that 

exhibited kinematic hardening and observed a dependence of the load-unload behavior on the 

Tabor parameter, plasticity parameter, maximum surface approach, and evolution of plasticity 

during the loading and unloading phases. Kadin et al. (2008b) also modeled cyclic loading of an 

elastic-plastic sphere in adhesive contact with a rigid flat and studied the effect of isotropic and 

kinematic strain hardening of the sphere on the shakedown behavior. 
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Wu and Adams (2009) used the JKR, DMT, and GJ (Greenwood and Johnson, 1998) 

stress fields to determine the critical load at the onset of yielding in the subsurface and confirmed 

that, for sufficiently high 𝜇 and low yield strength  , yielding may occur even in the absence of 

an external load. Kadin et al. (2008c) used a semi-analytical model of adhesive contact and 

reported that jump-in may induce plastic deformation, depending on the combined effect of    

and   [Eq. (5.1)]. Song and Srolovitz (2006) performed molecular dynamics simulations of 

adhesive contact between a rigid flat and an elastic-plastic sphere and observed material transfer 

to the rigid flat due to excessive plastic deformation during unloading.  

 

A common feature in the surface instability criteria of the above studies is that jump-in 

and jump-out do not occur when 𝜇 < 1; however, this criterion appears to be limited to infinitely 

stiff systems. The main objective of this chapter was to examine adhesion-induced contact 

instabilities in elastic and elastic-plastic contacts of systems with a finite stiffness. Solutions of 

the critical central gap at the instant of jump-in and jump-out and interpretation of these 

phenomena in the context of force-displacement responses are presented first, followed by finite 

element results of elastic and elastic-plastic adhesive contacts illustrating the effect of plastic 

deformation on adhesive contact behavior during single and multiple approach-retraction cycles.  

 

 

5.2. Analytical model of adhesive contact 

 

Figure 5.1 shows the equivalent system of two elastic spheres in close proximity, i.e., a 

rigid sphere of reduced radius R and an elastic half-space of effective modulus E
*
. The separation 

of the two surfaces is given by    𝑜      ⁄ , where   is the radial distance from the axis of 

symmetry. For surface interaction controlled by the L-J potential (Israelachvili, 1992), the local 

traction distribution      can be expressed as  

 

     
 ∆𝛾

  
{[

 

    
]
 

 [
 

    
]
 

}                                                                                (5.4) 

 

The above equation was first introduced by Johnson and Greenwood (1997) without proof and 

has since been used in several adhesion studies (e.g., Kogut and Etsion, 2003; Du et al., 2007; 

Kadin et al., 2008a-c). A detailed derivation of Eq. (5.4) is given in Appendix A (Eq. (A9)). 

 

Although the geometrical relationship    𝑜      ⁄  gives the true surface separation 

only in the case of undeformed half-space, it may also yield fair estimates of the surface gap 

when deformation is small, as before the commencement of jump-in. This assumption is 

validated by finite element results presented in a following section. The surface displacement of 

an axisymmetric elastic solid due to distributed surface traction can be obtained by integrating 

the Boussinesq solution of the surface displacement 𝑢  of a half-space due to a concentrated 

normal force   given by (Timoshenko and Goodier, 1970) 

 

𝑢  
(  𝜈 )

  
(
 

 
)                                                                                                                            (5.5) 
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Since adhesive surface interaction also exists outside the contact region, the surface displacement 

at   = 0 can be obtained as 

 

 𝑜  ∫
    

    
     

∞

 
                                                                                                                   (5.6) 

 

Substitution of Eq. (5.4) into Eq. (5.6) followed by integration yields  

 

 𝑜  
  ∆𝛾√ 

 √    
(

   3

  𝑜
5  ⁄  

      9

      𝑜
 7  ⁄ )                                                                              (5.7) 

 

 

 

 
Figure 5.1 Equivalent model of a rigid sphere in close proximity with an elastic half-space. The pile-up at the half-

space surface is due to the effect of adhesion. 

 

Figure 5.2 shows a schematic of the jump-in phenomenon. At a critical central gap  𝑜 

(Figure 5.2(b)), an infinitesimally small relative displacement    causes the upwardly displaced 

surface to jump into contact with the sphere and the central gap vanishes (Figure 5.2(c)). 

Therefore, the jump-in condition can be mathematically expressed as 

 

  𝑜     ⁄  or     𝑜   ⁄                                                                                                    (5.8) 

 

In the present analysis, contact does not imply “hard” contact as defined in classical 

contact mechanics because the repulsive term in the L-J potential prevents intimate surface 

contact. Therefore, the sphere is assumed to be in contact with the elastic half-space when 

surface separation reaches an infinitesimally small value, on the order of the atomic equilibrium 

distance. Using the geometric relationship 
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 𝑜       𝑜                                                                                                                  (5.9) 

 

in conjunction with Eq. (5.8), the instability criterion can be expressed as 

 

𝜕 𝑜 𝜕 𝑜    ⁄                                                                                                                         (5.10) 

 

After subtituting Eq. (5.7) into Eq. (5.10), the dimensionless critical central gap at the 

instant of jump-in or jump-out x̅ ,c  x ,c  ⁄  can be obtained as the solution of equation 

 

     ̅𝑜
   ⁄       ̅𝑜

    ⁄  𝜇   ⁄                                                                                         (5.11) 

 

 

 
 

Figure 5.2. Schematics of a rigid sphere in proximal distance with an elastic half-space: (a) relatively large gap (no 

surface deformation), (b) pile-up formation due to adhesive interaction, and (c) sudden surface contact (jump-in). 

 

Figure 5.3 shows the critical central gap x̅ ,c as a function of Tabor number μ. Below a 

critical (threshold) value μ  = 0.5, neither instability is encountered and both approach and 

retraction paths of the force-displacement response are smooth.  

 

The critical Tabor parameter determined from the present analysis (𝜇  = 0.5) is less than 

that reported previously (𝜇  = 1) (Greenwood, 1997) and validated by finite element results 

(Kadin et al., 2008a). This discrepancy is attributed to the apparatus stiffness effect. As pointed 

out by Greenwood (1997), 𝜇  = 1 holds only for an infinitely stiff apparatus, whereas for an 

apparatus of finite stiffness, jump events can occur when 𝜇  = 0.5 or even less. In all previous 

studies that reported 𝜇  = 1, adhesive contact was modeled between two elastic spheres 

(Greenwood, 1997) or an elastic sphere and a rigid plate (Kadin et al., 2008a-c), implying 

infinite stiffness apparatus, whereas contact of a rigid sphere with an elastic half-space 

investigated in this study is typical of a finite stiffness apparatus, i.e., deformation of the elastic 

half-space is not constrained by physical boundaries, which explains the lower critical Tabor 

parameter in the present analysis. For 𝜇  > 0.5, Eq. (5.11) yields two solutions  ̅𝑜, ; the large root 

corresponds to jump-in and the small root to jump-out. As 𝜇  decreases, the two solutions 

R

x0

R R

h0

h0Deformed surfacer

x

(0, -h0)

(0, δ) (0, δ+dδ)

x
x

x

o



56 
 

approach each other, converging to a single value  ̅𝑜,  = 1.3 for 𝜇 = 0.5. In the case of jump-in, 

 ̅𝑜,  shows a strong dependence on 𝜇, as opposed to jump-out where  ̅𝑜,  varies slightly in the 

range of 1.1–1.3.  

 

 

 
 

Figure 5.3. Critical central gap at the instant of jump instabilities versus Tabor parameter. 

 

 

              
 

Figure 5.4. Critical central gap at the instant of the jump-in instability versus Tabor parameter. 

 

Figure 5.4 shows the critical central gap at the instant of jump-in  ̅𝑜,  as a function of 

Tabor parameter 𝜇. Good agreement is shown between results of the present analysis and that of 

Pethica and Sutton (1988), which is for the same contact geometry (Figure 5.1). The slightly 

higher values of  ̅𝑜,  predicted from the analysis of Pethica and Sutton are attributed to the 

absence of a repulsive term in the interatomic potential used in their study. In the absence of a 
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repulsive force, jump instabilities can occur regardless of Tabor parameter because the contact 

stiffness remains negative. Therefore, a critical Tabor parameter cannot be obtained from the 

analysis of Pethica and Sutton. 

 

 

5.3. Finite element model of adhesive contact 
 

 Figure 5.5 shows the finite element model used to analyze elastic and elastic-plastic 

adhesive contact. The purpose of the elastic finite element analysis was to validate the analytical 

model. Finite element simulations were performed with the multi-purpose finite element code 

ABAQUS (version 6.7). The ABAQUS/STANDARD solver was used in all simulations of this 

study. The half-space was modeled with 69,736 axisymmetric, four-node, linear, isoparametric 

elements consisting of 70,528 nodes. The nodes at the bottom and left boundaries of the mesh 

were constrained against displacement in the vertical and horizontal direction, respectively. The 

distance between two adjacent surface nodes of the refined mesh is equal to ~0.003 . The rigid 

surface option was used to model the sphere. Similar to a previous study (Kadin et al., 2008a), 

nonlinear spring elements (SPRINGA) with a prescribed force-displacement relationship 

governed by the L-J potential were used to model interfacial adhesion. The (adhesion) force    

generated by a spring assigned to a surface node at a distance   from   = 0 is given by  

 

                
    ∆𝛾

  
{[

 

    
]
 

 [
 

    
]
 

}   

 

                                                             (5.12) 

 

 

 

 
 

Figure 5.5. Finite element model of a rigid sphere in close proximity with a deformable half-space. Surface adhesion 

is modeled by nonlinear springs (shown by serrated lines) with a force-distance relationship governed by the L-J 

potential. 

 

The half-space was modeled as an elastic-perfectly plastic material. The transition from 

elastic to plastic deformation obeyed the von Mises yield criterion. Plastic deformation was 

based on the associated flow rule. To examine the accuracy of the finite element model, 

simulations were performed with a linear-elastic half-space using different 𝜇 values. Figure 5.6 

shows a smooth transition of the dimensionless pull-off force  ̅𝑜𝑓𝑓   𝑜𝑓𝑓      ∆  ⁄  from the 
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Deformable half-space
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DMT solution ( ̅𝑜𝑓𝑓  = 1) to the JKR solution ( ̅𝑜𝑓𝑓  = 0.75), which in good agreement with 

previous studies (Greenwood, 1997; Maguis, 1992). 

 

 

 
 

Figure 5.6. Pull-off force versus Tabor parameter. 

 

 

5.4. Results and discussion 

 

5.4.1. Elastic adhesive contact 

 

 Finite element simulations of elastic adhesive contact were performed to validate the 

elastic model and the predicted instabilities. In theory, the normal force-displacement response 

should exhibit an infinite slope at the instant of jump instability. However, an infinite slope in the 

force response cannot be captured in the finite element analysis because only one output (i.e., 

either normal force or surface gap) is known at any given time step. Therefore, a jump instability 

in the finite element simulations appears as abrupt increase or decrease in normal force 

accompanied by a large finite slope in the force-distance response. 

 

As mentioned above, the geometrical relationship    𝑜      ⁄  can be used to 

estimate the surface gap when surface deformation is small, as prior to the commencement of 

jump-in. The validity of this assumption can be examined by considering the surface gap error 

     defined as  

 

     
 𝐹 𝑀 ( 𝑜     ⁄ )

 𝐹 𝑀
                                                                                                           (5.13) 

 

where  𝐹 𝑀 is the surface gap obtained from the finite element analysis, which accounts for the 

effect of surface deformation.  
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Figure 5.7 shows      as a function of dimensionless radial distance  ̅    ⁄  for 𝜇 = 2.1. 

Because the maximum error is less than 6%, using the geometrical relationship    𝑜      ⁄  

to calculate the surface gap before the occurrence of jump-in is an acceptable approximation. In 

addition to jump-in, Eq. (5.11) was also proven to hold in the case of jump-out instability, as 

evidenced by the good agreement between analytical predictions (small root of Eq. (5.11)) and 

finite element results. 
 

    

 
 

Figure 5.7. Surface gap error versus radial distance for μ = 2.1. 

 

                Figure 5.8 shows the variation of the central gap  ̅𝑜with the dimensionless normal 

approach  ̅    ⁄  during the approach and retraction of the rigid sphere for different values of 

𝜇. A comparison of Figures. 5.8(a)–5.8(c) shows that the approach and retraction paths converge 

as 𝜇  decreases, in agreement with the elastic analysis. Figure 5.8(d) confirms the analytical 

prediction that neither jump-in nor jump-out occur when 𝜇 < 𝜇  = 0.5 (Figure 5.3). In addition, 

the finding that the jump-in displacement is always larger than the jump-out displacement is in 

good agreement with experimental observations and can be explained by the analytical model. 

Jump-in is characterized by the sudden decrease in central gap, from the large root of Eq. (5. 11) 

to a value of ~1.0   corresponding to the maximum adhesive (attractive) force, whereas jump-out 

commences abruptly as soon as the smoothly increasing central gap reaches a value in the range 

of 1.1   –1.3  . Thus, jump-out always occurs at a smaller  ̅ than jump-in. Table 5.1 shows a 

comparison between analytical and finite element results of the critical central gap at the instant 

of jump-in versus the Tabor parameter. The close agreement between the predictions of the two 

methods confirms the validity of the elastic analysis presented in Sect. 5.2.  
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Table 5.1. Comparison of analytical and finite element method (FEM) results of dimensionless critical central gap at 

the instant of jump-in for different values of Tabor parameter. 
 

 

 
 

Figure 5.8. Central gap versus displacement for (a) μ = 2.1, (b) μ = 1.14, (c) μ = 0.72, and (d) μ = 0.16. 

 

5.4.2. Elastic-plastic adhesive contact 
 

Finite element results of elastic-plastic adhesive contact are presented in this section. In 

addition to the Tabor parameter 𝜇 that governs elastic adhesive contact, a plasticity parameter 

  ∆   ⁄  (Kadin et al., 2008a) and the dimensionless normal displacement  ̅ are used to 

analyze elastic-plastic adhesive contact. 

 

Figure 5.9 shows the dimensionless normal force  ̅      ∆ ⁄
 and central gap  ̅𝑜 as 

functions of  ̅ for 𝜇 = 1.14,   = 1.67, and   ̅   = 6.67. As shown in Figure 5.9(a), the retraction 

path deviates from the approach path even at the onset of retraction and the pull-off force is 

about –2.5   ∆ , which is well above the pull-off force predicted by the JKR and DMT models. 

This is attributed to the partial recovery of the deformed surface after retraction because of 

plastic deformation in the half-space. Figure 5.9(b) shows that both jump-in and jump-out 

occurred in this simulation case, in agreement with the analytical prediction that both type of 

instability occur when 𝜇 > 𝜇  = 0.5. 
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Figure 5.9. (a) Normal load and (b) central gap versus displacement for μ = 1.14,  = 1.67, and 
max = 6.67. 

 

    

 
 

Figure 5.10. Normal load and central gap versus displacement for (a, b) μ = 0.45,  = 1.67, 
max = 6.67 and (c, d) μ = 

1.14,  = 2.78, 
max = 0. 
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Figure 5.10 shows  ̅ and  ̅𝑜 as functions of   for the cases of 𝜇 = 0.45,   = 1.67,   ̅   = 

6.67 and 𝜇 = 1.14,   = 2.78,   ̅   = 0. Figures. 5.10(a) and 5.10(c) show a pull-off force   𝑜𝑓𝑓= 

–7.6   ∆  and –2   ∆ , respectively, i.e., larger than the pull-off force predicted by the elastic 

models of adhesive contact. The fact that the pull-off force in the second simulation case is not 

significantly higher than that predicted by elastic models is attributed to the dominance of elastic 

deformation because of the very small surface approach (  ̅   = 0) as compared to the first 

simulation case where deformation was predominantly plastic due to the much larger surface 

displacement (  ̅   = 6.67). Figure 5.10(b) shows that jump-in did not occur in the case of 𝜇 = 

0.45,   = 1.67, and   ̅   = 6.67, which is consistent with the elastic prediction that jump 

instabilities cannot occur when 𝜇  < 𝜇  = 0.5. However, the occurrence of jump-out is in 

disagreement with the elastic analysis. This discrepancy between elastic and elastic-plastic 

analysis is attributed to a decrease in the effective radius of curvature due to plastic deformation 

during surface approach, which increased the Tabor parameter above the threshold value (𝜇  = 

0.5).  

 

As shown schematically in Figure 5.11(a), the formation of a residual impression during 

surface approach increases the radius of curvature from   to   𝑓𝑓 (Figure 5.11(a)), resulting in a 

higher Tabor parameter. Figure 5.10(d) shows an opposite trend for 𝜇  = 1.14,   = 2.78, and 

  ̅   = 0. In this case, only jump-in commenced because plastic deformation mostly occurred 

during retraction due to the relatively high plasticity parameter. The decrease in the radius of 

curvature from R to Reff due to the development of a pile-up during retraction (Figure 5.11(b)) 

resulted in 𝜇< 0.5. Thus, to interpret surface instabilities in elastic-plastic adhesive contacts, the 

Tabor parameter (Eq. (5.1)) must be modified to account for the effect of plastic deformation on 

the effective radius of curvature   𝑓𝑓 (Kadin et al., 2008b). For the two possible scenarios shown 

schematically in Figure 5.11, the corresponding effective Tabor parameter 𝜇 𝑓𝑓 is given by  

 

𝜇 𝑓𝑓 ≡ (
 𝑒𝑓𝑓∆𝛾 

    3 )
  ⁄

 [
   ∆𝛾 

          3]
  ⁄

                                                                         (5.14a) 

 

𝜇 𝑓𝑓 ≡ (
 𝑒𝑓𝑓∆𝛾 

    3 )
  ⁄

 [
   ∆𝛾 

          3]
  ⁄

                                                                                 (5.14b) 

 

where    is the radius of the plastically deformed surface. Significant differences in normal 

displacement at the instant of surface contact and separation (either smooth or abrupt)    and   , 

respectively, were observed in the previous two cases. In the case of 𝜇 = 0.45,   = 1.67, and 

  ̅    = 6.67, the formation of a residual impression (Figure 5.11(a)) resulted in    <   , whereas 

in the case of 𝜇 = 1.14,   = 2.78, and   ̅    = 0, pile-up formation (Figure 5.11(b)) resulted in 

   >   . These different behaviors are attributed to the evolution of plasticity during surface 

approach and retraction in the first and second simulation case, respectively. These trends cannot 

be observed in elastic adhesive contacts where        always holds. 
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Figure 5.11 Schematics of (a) residual impression and (b) necking produced during surface approach and 

surface retraction, respectively. 

 

            The effect of the maximum normal displacement   ̅   can be interpreted in light of the 

approach-retraction curves shown in Figure 5.12 for 𝜇 = 1.14,   = 1.67, and different values of 

  ̅  . Although all of the approach paths overlap, showing the occurrence of jump-in at a 

displacement    ≈ –2.5  corresponding to a dimensionless maximum attractive force at the 

instant of contact  ̅  ≈ 1.85, the retraction paths demonstrate significant dependence on   ̅  . 

For   ̅   = 0, 6.67, and 13.33, the dimensionless pull-off force is  ̅𝑜𝑓𝑓 = 1.85, 2.7, and 4.0, 

respectively. The trend for  ̅𝑜𝑓𝑓  and    to increase with   ̅   is associated with plasticity 

intensification, resulting in higher   𝑓𝑓 due to the increase in residual depth      (Figure 5.11). 

 

 

 
 

Figure 5.12. Normal load versus displacement for μ = 1.14,  = 1.67, and 
max = 0, 6.67, and 13.33. 
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Figure 5.13 shows the variation of the pull-off force  ̃𝑜𝑓𝑓  𝑙𝑜𝑔( 𝑜𝑓𝑓
   𝑜𝑓𝑓

 ⁄ ) with the 

maximum normal displacement  ̃           ⁄    , where  𝑜𝑓𝑓
   and  𝑜𝑓𝑓

  are the pull-of 

forces of elastic-plastic and elastic adhesive contacts, respectively, and    is the normal 

displacement at the inception of yielding, for 𝜇 = 1.14 and   = 1.67. The numerical data shown 

in Figure 5.13 reveal a linear dependence of  ̃𝑜𝑓𝑓 on  ̃   . Thus, curve fitting the data shown of 

Figure 5.13 yields the following exponential relationship of the pull-off force of elastic-plastic 

adhesive contacts:  

 

 𝑜𝑓𝑓
    𝑜𝑓𝑓

        ̃                                                                                                                 (5.15) 

 

 

                          
 
Figure 5.13. Pull-off force versus maximum normal displacement for μ = 1.14 and  = 1.67. 

 

            Figure 5.14 shows the variation of the dimensionless normal force  ̅  with the 

dimensionless normal displacement  ̅ in four consecutive approach-retraction cycles of three 

representative cases. (A cycle consists of an approach and a retraction half-cycle.) For 𝜇 = 1.14, 

  = 1.67, and  ̃   = 6.67, plastic deformation occurred only in the first half-cycle, as indicated 

by the overlap of all subsequent responses (Figure 5.14(a)), implying elastic shakedown at 

steady-state. This elastic shakedown differs from classical elastic shakedown, where the 

coincidence of the loading and unloading paths signifies the absence of energy dissipation. In the 

present case, the force hysteresis due to the jump instabilities indicates the occurrence of energy 

dissipation. In the finite element simulations, the dissipated energy was removed from the system 

by a stabilizing algorithm that uses artificial damping to compensate for local instabilities. 

However, because the force hysteresis due to such surface instabilities is intrinsically different 

from that due to excessive plastic deformation and the force hysteresis loops retrace each other 

after the first half-cycle, the cyclic behavior shown in Figure 5.14(a) may be classified as elastic 

shakedown in adhesive contacts. A different behavior was found in the second simulation case of 

𝜇 = 0.45,   = 1.67, and  ̃    = 6.67 (Figure 5.14(b)). Although jump-in did not occur in the first 

half-cycle (expected since 𝜇  < 0.5), both jump-in and jump-out instabilities occurred in 
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subsequent half-cycles because the residual impression generated in the first half-cycle increased 

the effective Tabor parameter above the threshold (i.e., 𝜇 𝑓𝑓 > 0.5, Eq. 5.14(a)). The stable and 

non-overlapping approach and retraction paths in following half-cycles reveal a steady-state 

behavior that resembles plastic shakedown. The development of a force hysteresis with 

increasing number of cycles is also evident in Figure 5.14(c) for the case of 𝜇 = 1.14,   = 2.78, 

and  ̃    = 0. However, in contrast to the results shown in Figure 5.14(b), jump-in occurred in 

the first half-cycle, whereas neither jump-in nor jump-out were encountered in subsequent half-

cycles. The effect of plasticity parameter on shakedown behavior can be understood by 

comparing the results shown in Figures. 14(a) and 14(c), which are for  = 1.14. For relatively 

low plasticity parameter (  = 1.67), elastic shakedown occurred even for a relatively large 

maximum normal displacement ( ̃    = 6.67), while for high plasticity parameter (  = 2.78), 

plastic shakedown occurred even for a very small maximum normal displacement ( ̃    = 0) 

because of the low yield strength of the material. In contrast to an earlier study (Kadin et al., 

2008b) where elastic and plastic shakedown was predicted only for isotropic and kinematic strain 

hardening, respectively, the present study shows that both elastic and plastic shakedown may 

occur even with elastic-perfectly plastic materials, depending on the plasticity parameter. 

 

 

   
 

 

Figure 5.14  Normal load versus displacement for four complete approach-retraction cycles: (a) μ = 1.14,  = 1.67, 

max  = 6.67, (b) μ = 0.45,  = 1.67, 
max  = 6.67, and (c) μ = 1.14,  = 2.78, 

max = 0. 

 

Figure 5.15 shows contours of equivalent plastic strain 
p  in the half-space subsurface 

for 𝜇 = 1.14,   ̅   = 0, and different  values. For relatively low plasticity parameter (  = 1.67), 

only elastic deformation occurred and the flatness of the half-space surface was fully recovered 

upon surface separation (Figure 5.15(a)). For intermediate plasticity parameter (  = 2.78), plastic 

deformation evolved during both approach and retraction half-cycles, resulting in neck formation 

during surface retraction (Figure 5.15(b)). For high plasticity parameter (  = 4.17), necking 

intensified significantly, causing sharp displacement gradients at the neck edge that induced 

severe localized deformation, e.g.,   ̅  = 1.6 near the neck edge (Figure 5.15(c)). Complete 

separation of the rigid sphere from the half-space was not simulated in this case due convergence 

problems associated with excessive element distortion due to strong adhesion of the neck to the 

sphere. Material transfer to indenter surfaces due to high adhesive forces is often observed and 

has also been captured in molecular dynamics studies (Song and Sorolovitz, 2006). The 

excessive plastic deformation shown in Figure 5.15(c) suggests that subsurface microcracking 

parallel to the surface and/or perpendicular to the surface at the neck edge are possible failure 
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processes. Propagation of these cracks in adhesive contacts due to cyclic loading may eventually 

result in the transfer of detached material to the rigid sphere after complete surface separation.  

 

 

              
 
Figure 5.15. Contours of equivalent plastic strain in the subsurface of an elastic-plastic half-space for μ = 1.14 and 

max = 0: (a)  = 1.67, (b)  = 2.78, and (c)  = 4.17. Contours in (a) and (b) are at the instant of surface separation 

(jump-out), whereas contours in (c) are due to stretching of a neck strongly adhered to the retracting rigid sphere. 

 

 

5.5 Conclusions 
 

A continuum mechanics model of adhesive surface interaction which accounts for contact 

instabilities during surface approach (jump-in) and surface retraction (jump-out) was developed 

in this study. Interfacial adhesion was represented by the L-J potential. A criterion of jump-in and 

jump-out in elastic adhesive contacts was derived from geometry considerations using the 

surface displacements of the elastically deformed half-space. For elastic deformation, the critical 

central gap at the instant of jump instabilities was obtained implicitly in terms of the Tabor 

parameter, using an elastic solution of the surface displacements. The critical central gap at the 

instant of jump-in increased with the Tabor parameter, whereas the critical central gap at the 

instant of jump-out decreased slightly in the range of 1.1ε–1.3ε. According to the elastic analysis, 

neither type of instability should occur below a threshold value of the Tabor parameter μ
*
 = 0.5, 

which is less than the threshold μ
*
 = 1 predicted in earlier studies. This discrepancy is attributed 

to differences in the apparatus stiffness, i.e., μ
* 

= 1 for infinitely stiff apparatus (earlier studies) 

and μ
* 
= 0.5 (or even less) for finite stiffness apparatus (present study). 

 

A finite element model of a rigid sphere and an elastic or elastic-plastic half-space was 

used to analyze elastic and elastic-plastic adhesive contact behavior. Surface interaction was 

modeled by nonlinear springs that obeyed a force-displacement relationship governed by the L-J 

potential. The finite element model was validated by the JKR and DMT models. Simulation 

results yielded a smooth transition of the pull-off force between JKR and DMT estimates. The 

good agreement between analytical and finite element predictions for the jump instabilities and 

results of the critical central gap at the instant of these instabilities validated  the analysis of 

elastic adhesive contact. 

 

Finite element simulations of elastic-plastic adhesive contact performed for different 

values of Tabor parameter, maximum normal displacement, and plasticity parameter showed 
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higher pull-off forces for elastic-plastic adhesive contacts than those predicted by JKR and DMT 

elastic contact models because plastic deformation inhibited full recovery of the half-space after 

surface retraction. Curve fitting of finite element results showed that the pull-off force of elastic-

plastic adhesive contacts is an exponential function of the maximum normal displacement. Two 

interesting behaviors were observed with elastic-plastic adhesive contacts. For relatively low 

Tabor parameter and intermediate plasticity parameter, surface approach was characterized by a 

smooth path, while the surface retraction path was disrupted by a jump-out instability caused by 

the decrease in effective radius of curvature due to a residual impression formed during surface 

approach. Alternatively, for intermediate Tabor parameter and large plasticity parameter, jump-in 

occurred during surface approach, while surface retraction followed a smooth path because 

necking prevented jump-out.  

 

Repetitive adhesive contact was studied by simulating four complete approach-retraction 

cycles for different values of Tabor parameter, maximum normal displacement, and plasticity 

parameter. High Tabor parameter and low plasticity parameter resulted in elastic shakedown, as 

opposed to low Tabor parameter and high plasticity parameter that led to plastic shakedown. 

Surface separation demonstrated a strong dependence on plasticity parameter. High plasticity 

parameter enhanced necking, which, in turn, caused a transition from abrupt to smooth surface 

separation.  
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Chapter 6 

 
Adhesive Contact of Elastic-Plastic Layered Media:  

Effective Tabor Parameter and Mode of Surface Separation 

 
 

6.1. Introduction 

 

In chapter 5, we have successfully implemented spring elements of prescribed force-

displacement relationship derived from Lennard-Jones (LJ) potential into finite element model 

and analyzed the contact instabilities for homogeneous elastic-plastic half-space; however, in 

most of the MEMS devices, if not all, the surfaces exposed to mechanical contact are protected 

by an intentionally deposited hard layer, in order to improve the tribological performance and 

mechanical robustness of the device. Precise stress analysis of layered media is critical to the 

longevity of contact-mode mechanical systems. Both theoretical and numerical analyses have 

been carried out for various elastic-plastic contact systems (Komvopoulos et al., 1987; 

O’Sullivan and King, 1988; Komvopoulos, 1988; Kral et al., 1995a; Kral et al., 1995b; Li and 

Chou, 1997). However, because real contact interfaces demonstrate multi-scale roughness, the 

overall contact behavior may be strongly affected by adhesion forces arising at asperity 

microcontacts. Therefore, accurate analysis of contact deformation and failure mechanisms of 

layered media requires mechanistic models that take into account adhesion effects encountered at 

the asperity microcontact level.  

 

Pioneering studies of adhesive contact between elastic solids have been performed by 

Johnson et al. (1971) and Derjaguin et al. (1975), who are credited for the development of two 

widely used adhesive contact models of elastic spheres, known as the JKR and DMT models, 

respectively. These models give that the force at the instant of separation of two adhering spheres 

of radius    and    (referred to as the pull-off force  𝑜𝑓𝑓) is equal to –1.5  ∆  (JKR) and –

2  ∆  (DMT), where                is the reduced radius of curvature and ∆     
       is the work of adhesion (  and   are the surface energies of the two spheres and     is 

the interfacial energy). Hereafter, an attractive surface force between interacting solids is 

designated as a negative force. Tabor (1977) interpreted the JKR and DMT models in terms of a 

dimensionless parameter 𝜇, known as the Tabor parameter, given by 

 

𝜇  (
 ∆𝛾 

    3
)
   

                                                                                                                            (6.1) 

 

where          
           

      
  

 is the effective elastic modulus (symbols   and   

represent elastic modulus and Poisson’s ratio, respectively) and   is the interatomic equilibrium 

distance, typically on the order of a few angstroms. Tabor argued that the JKR model is suitable 

for compliant surfaces and relatively large radius of curvature (i.e., 𝜇 > 5), whereas the DMT 

model is more appropriate for stiff surfaces and small radius of curvature (i.e., 𝜇 < 0.1).  

 

Maguis (1992) used the Dugdale approximation to model surface adhesion and obtained a 

solution of  𝑜𝑓𝑓 in the transition range 0.1 < 𝜇 < 5, bounded by the DMT and JKR solutions. 
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Using the solution obtained by Maugis and a curve fitting method, Carpick et al. (1999) 

expressed  𝑜𝑓𝑓 in terms of 𝜆 (𝜆=1.16 𝜇 Wu (2008) used the same curve fitting method and a 

traction-separation law based on the Lennard-Jones (LJ) potential (1992), similar to that derived 

by Muller et al. (1980), Greenwood (1997), and Feng (2001), and obtained a numerical solution 

of  𝑜𝑓𝑓 similar to that reported by Carpick et al. 

 

In contemporary contact mechanics studies, surface adhesion has been represented by 

nonlinear spring elements with a force-displacement constitutive relation obeying traction-

separation laws derived from the LJ potential (Du et al., 2007; Song and Komvopoulos, 2011) 

Incorporating these spring elements into finite element method (FEM) models has allowed for 

elastic-plastic adhesive contacts, observed under different experimental settings (Maugis and 

Pollock, 1984; Wang et al., 2010), to be analyzed numerically. For example, it was shown (Song 

and Komvopoulos, 2011; Kadin et al., 2008) that in the presence of plasticity,  𝑜𝑓𝑓  can be 

significantly higher than that predicted by the JKR and DMT models. 

 

Contact instabilities caused by surface adhesion are common phenomena in microprobe-

based measurements and dynamic micromachines. Approach and retraction of two elastic 

spheres may occur smoothly (𝜇  ≤ 1) or abruptly (𝜇  > 1) (Greenwood, 1997), depending on 

surface and bulk material properties and contact geometry. According to the study of Greenwood 

(1997), the critical Tabor parameter for the transition from continuous (stable) to discontinuous 

(unstable) elastic contact behavior (such as instantaneous surface contact (jump-in) and 

detachment (jump-out) during surface approach and retraction, respectively) is 𝜇  = 1.0. This is 

also supported by studies of adhesive spherical contacts of Feng (2001) and Kadin et al. (2008). 

However, analytical results of Song and Komvopoulos (2011) show that for a rigid sphere 

interacting with a semi-infinite elastic medium 𝜇  = 0.5 and, in addition to the Tabor parameter, 

contact instabilities (especially jump-out) can be affected by the accumulation of plasticity. For 

example, excessive plastic deformation in an elastic-plastic half-space due to normal contact 

with a rigid sphere results in smooth surface detachment (i.e., no jump-out) even for 𝜇 > 𝜇 . 

 

Sridhar et al. (1997) obtained FEM solutions of the adhesion force for a wide range of 

contact radius, layer thickness, and elastic material properties and observed a strong dependence 

of  𝑜𝑓𝑓 on dimensionless adhesion parameter      Δ    𝑡 , where    is the effective elastic 

modulus of the layered medium and 𝑡 is the layer thickness. Based on the former study, Johnson 

and Sridhar (2001) examined adhesion effects at the scale of atomic force microscope 

measurements, while Sridhar and Sivashanker (2004) analyzed adhesive indentation of a multi-

layered medium. Sergici et al. (2006) used the Dugdale approximation to study the effects of 

layer thickness, layer-to-substrate elastic modulus ratio, and Maugis parameter on the 

constitutive relation of a layered medium in frictionless contact with a spherical indenter. Perriot 

and Barthel (2004) developed a quasi-analytical method for studying adhesionless contact of a 

layered medium, and later extended this method to study adhesive contact of elastic layered 

media and the dependence of various contact parameters on substrate inhomogeneity (2007). 

Based on the FEM model of Du et al. (2007), Eid et al. (2011) analyzed elastic-plastic adhesive 

contact of a rigid plate with a gold hemisphere coated with a thin ruthenium layer and reported a 

dependence of the adhesion force and contact radius on the layer thickness and maximum contact 

displacement (maximum compressive force). 
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The present study uses an FEM model to analyze adhesive contact of a rigid sphere with 

an elastic layer attached to an elastic-perfectly plastic substrate. Contact instabilities during 

surface approach (loading) and retraction (unloading) are interpreted in terms of the effective 

Tabor parameter, which depends on the layer thickness (substrate effect) and elastic properties of 

the layer and substrate materials. The effects of surface and bulk material properties (e.g., work 

of adhesion, elastic modulus, and yield strength), layer thickness, and maximum surface 

separation on the contact behavior of layered media with an elastic layer stiffer than the substrate 

are analyzed in the context of numerical results. Brittle- and ductile-like modes of surface 

separation (detachment) are discussed for a wide range of plasticity parameter and maximum 

surface separation. Simulations of cyclic adhesive contact provide insight into the accumulation 

of plasticity and propensity for delamination at the layer/substrate interface or in the bulk of the 

substrate due to repeated adhesive contact loading and unloading. 

 

 

6.2 Finite element model 

 

Figure 6.1(a) shows a rigid sphere of radius   in close proximity with a layered medium 

consisting of an elastic layer of thickness 𝑡  and a semi-infinite elastic-plastic substrate. The 

layered medium is shown displaced in the z-direction due to the effect of adhesion. Because of 

symmetry, the maximum deflection of the layered medium  𝑜 occurs at   = 0. Figure 6.1(b) 

shows the axisymmetric FEM model used in this study. The layer and the substrate are modeled 

by 4096 and 26656 axisymmetric, four-node, linear, isoparametric elements consisting of 4618 

and 27170 nodes, respectively. The nodes at the bottom boundary of the mesh and the axis of 

symmetry (  = 0) are constrained against displacement in the  - and  -direction, respectively. 

The distance between two adjacent nodes in the layer mesh is equal to ~0.003 . Surface 

adhesion is modeled by nonlinear spring elements obeying a traction-separation law derived 

from the LJ potential. More details about the nonlinear spring elements used in the present FEM 

model can be found elsewhere (Song and Komvopoulos, 2011). At any simulation stage, the 

layer/substrate interface is modeled as a continuous interface, i.e., no separation or relative slip 

due to normal and shear stresses arising at the interface. All quasi-static simulations were 

performed with the multi-purpose FEM code ABAQUS/Standard (version 6.9EF), using an 

implicit solver. 

 

           

           
 

Figure 6.1 (a) Schematic showing a rigid sphere of radius   in close proximity with a layered medium consisting of 

an elastic layer of thickness 𝑡 and an elastic-plastic substrate (center deflection  𝑜 is due to an adhesion (attractive) 
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surface force) and (b) finite element mesh of the layered medium, showing the nonlinear spring elements used to 

model interfacial adhesion. 

 

To confirm the validity of the FEM mesh and modeling assumptions, adhesive contact 

between a rigid sphere and a layered medium consisting of a rigid substrate and an elastic layer 

of fixed elastic modulus ( 𝑙 = 20 GPa) and dimensionless thickness 𝑡̅  𝑡   varied in the range 

of 4–152 was examined first. Figure 6.2 shows a continuous variation of the dimensionless pull-

off force  ̅𝑜𝑓𝑓   𝑜𝑓𝑓    ∆  with the layer thickness 𝑡̅. For 𝑡̅→1, the problem reduces to that 

of a rigid sphere in adhesive contact with a rigid half-space, for which the FEM solution 

approaches asymptotically to –1.0 (DMT solution). Alternatively, for 𝑡̅ > 10
2
, the problem can be 

approximated by that of a rigid sphere in adhesive contact with an elastic half-space, and the 

FEM solution approaches asymptotically to –0.79, which is the solution for an elastic half-space 

with elastic modulus equal to that of the layer. The results shown in Figure 6.2 indicate that the 

present FEM model is suitable for analyzing adhesive contact of layered media. 

 

 

 
 

Figure 6.2 Pull-off force  ̅𝑜𝑓𝑓 versus layer thickness 𝑡̅ for a layered medium consisting of an elastic layer of  𝑙  = 20 

GPa and a rigid substrate. 

 

 

6.3 Results and discussion 

                

             Numerical results from displacement-controlled quasi-static simulations are interpreted 

in this section in terms of dimensionless parameters, such as layer-to-substrate elastic modulus 

ratio 𝑬𝒍 𝑬𝒔 , plasticity parameter 𝜷   ∆𝜸 𝜺𝒀𝒔  (where 𝒀𝒔  is the substrate yield strength), 

effective Tabor parameter 𝝁𝒆𝒇𝒇 (introduced in section 6.3.1), layer thickness 𝒕̅, and maximum 

surface separation (interaction distance) 𝜹𝐦𝐚𝐱  𝜹 𝜺. In addition, to obtain general solutions, 

surface forces were normalized by 𝟐𝛑𝑹∆𝜸, while all dimensions were normalized by 𝜺, except 

the residual center height 𝒉𝒐,𝒓 which was normalized by 𝒕. 

 

6.3.1. Substrate Effect and Effective Tabor Parameter 
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The Tabor parameter is a dimensionless quantity representing the height of the elastic 

pile-up (neck) produced by an adhesion force during surface retraction (unloading) divided by a 

characteristic length of adhesion, such as the interatomic equilibrium distance. Therefore, the 

Tabor parameter is a governing parameter of adhesive elastic contact. Figure 6.3 shows FEM 

results of the center deflection  ̅𝑜   𝑜   before surface separation (detachment) as a function of 

𝜇 for a rigid sphere interacting with a homogeneous elastic half-space. From a linear fit through 

the FEM data, it follows that 

 

 ̅𝑜      𝜇                                                                                                                                 (6.2) 

 

 

 
 

Figure 6.3 Center deflection before surface separation  ̅𝑜 versus Tabor parameter 𝜇 for homogeneous elastic half-

space. 

 

Equation (6.2) cannot be used for layered media because it does not account for the effect 

of the layer thickness and mechanical properties. To obtain an effective Tabor parameter 𝜇 𝑓𝑓 for 

layered media, a series of adhesive contact simulations were performed for a rigid sphere and a 

layered medium with layer-to-substrate elastic modulus ratio  𝑙    in the range of 2.5–40, layer 

thickness 𝑡̅ between 4 and 152, and fixed substrate elastic modulus (  = 20 GPa). An effective 

Tabor parameter was calculated for each simulation case by substituting the obtained value of  ̅𝑜 

into Eq. (6.2). The effective Tabor parameter should be bounded by the Tabor parameters 

corresponding to a half-space with elastic modulus equal to  𝑙  and   , denoted by 𝜇𝑙  and 𝜇 , 

respectively. The effect of the substrate on 𝜇 𝑓𝑓 is represented by the dimensionless parameter 𝜃, 

defined as 

 

𝜃  
𝜇𝑒𝑓𝑓 𝜇𝑙

𝜇𝑠 𝜇𝑙
                  (0   𝜃   1)                                  (6.3) 

 

Equation (6.3) indicates that the higher the value of 𝜃 the stronger the substrate effect. 

Extreme values of 𝜃 represent trivial cases of homogeneous half-spaces with layer (𝜃 = 0) and 

substrate (𝜃 = 1) material properties. Figure 6.4 shows the dependence of the substrate effect 
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(indicated by 𝜃) on the layer thickness 𝑡̅ for  𝑙    in the range of 2.5–40. As expected, the 

substrate effect decreases nonlinearly with increasing layer thickness, and this trend becomes 

more pronounced with increasing  𝑙   . The more rapid transition from substrate- to layer-

controlled contact behavior observed with higher  𝑙    values is attributed to the layer stiffness 

effect. For fixed    and 𝑡̅, the overall contact stiffness increases with  𝑙   , resulting in less 

upward deflection of the layered medium due to the adhesion force exerted by the rigid sphere. 

Smaller surface vertical displacement implies smaller substrate effect. Similar to normalizing the 

contact radius with the layer thickness to obtain a general relation for the effective elastic 

modulus of layered media (King, 1987), the dimensionless maximum layer deflection at   = 0, 

hereafter referred to as the center layer deflection 𝜉, defined as 

 

𝜉  
  𝜇𝑒𝑓𝑓

𝑡
 

𝜇𝑒𝑓𝑓

𝑡̅
                           (6.4) 

 

can be introduced to study the substrate effect on the overall contact behavior of layered media.  

 

 

 
 

Figure 6.4 Substrate effect θ versus layer thickness 𝑡̅ for elastic layered medium with  𝑙    in the range of 2.5–40. 

 

 

          Figure 6.5 shows the variation of 𝜃 with 𝜉 for a wide range of  𝑙   . Curve fitting of the 

numerical data shown in Figure 6.5 yields, 

 

𝜃  
  𝜉

    𝜉
                               (6.5) 

 

Equations (6.3)–(6.5) lead to the following relation of the effective Tabor parameter of 

layered media with a layer stiffer than the substrate: 

 

𝜇 𝑓𝑓  
 

 
(𝜇  

𝑡̅

  
)  [

 

 
(𝜇  

𝑡̅

  
)
 

 𝜇𝑙 (
𝑡̅

  
)]

   

                                    (6.6)  
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For a homogeneous elastic half-space (𝜇𝑙  = 𝜇 ), Eq. (6.6) reduces to 𝜇 𝑓𝑓  = 𝜇𝑙  = 𝜇 , 

while for a layered medium with very thin or thick layer, Eq. (6.6) shows that 𝜇 𝑓𝑓|𝑡̅   𝜇  and 

𝜇 𝑓𝑓|𝑡̅ ∞  𝜇𝑙, respectively. 

 

 
 

Figure 6.5 Substrate effect θ versus center layer deflection ξ for elastic layered medium having a wide range 

of  𝑙   . 

 

6.3.2. Effect of Plasticity Parameter 

 

To elucidate adhesive contact of layered media, FEM simulations were performed for 

relatively wide ranges of  𝑙   ,   ,  𝑡̅ , and   ̅  . Figure 6.6(a) shows the surface force  ̅  
     ∆  as a function of surface separation  ̅      during a full loading cycle for  𝑙    = 10, 

  = 33.3, 𝑡̅ = 8, and   ̅   = 3.33, 10, and 16.67, while Figure 6.6(b) shows corresponding 

residual surface height distributions that provide information about the shape and size of the 

residual protrusion (neck) obtained after surface detachment. The increase of  ̅𝑜𝑓𝑓 with   ̅   is 

attributed to the increase in substrate plasticity that enhanced the surface conformity at the 

sphere/layer interface. Under the displacement-control conditions of this study, the rigid sphere 

did not detach from the elastic layer at the instant of  ̅𝑜𝑓𝑓. Instead, the adhesion surface force 

continued to decrease smoothly with the incremental retraction of the rigid sphere up to a critical 

surface separation when it abruptly reduced to zero, indicating the commencement of surface 

detachment (jump-out). It can be seen that the surface force at the instant of jump-out, termed the 

separation force  ̅   , is independent of   ̅  . This can be attributed to the similar radius of 

curvature (i.e., similar   𝑓𝑓) of the summits of corresponding residual surface profiles (Figure 

6.6(b)). The increase in residual surface height  ̅        with   ̅   seen in Figure 6.6(b) 

indicates more necking during unloading, suggesting that surface detachment exhibited an 

increasingly more ductile-like behavior with the increase of   ̅  . 

 

To examine the plasticity parameter effect on contact deformation, FEM simulations were 

performed with a layered medium of lower plasticity parameter (  = 6.67) than that in Figure 6.6 

and identical all other parameters. Compared to the case of    = 33.3, significantly different 
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plastic deformation behavior occurred during unloading for   = 6.67. Surface separation at the 

instant of jump-out increased (Figure 6.7(a)) and the residual surface profile changed from 

concave to convex (Figure 6.7(b)) with the decrease in   ̅  . In addition, it is difficult to identify 

 ̅    in the unloading responses shown in Figure 6.7(a). Instead of necking during unloading 

leading to the formation of a tall pile-up (neck) (Figure 6.6(b)), a residual impression was 

produced for   ̅   = 10 and 16.67 and a very shallow pile-up for   ̅   = 3.33 (Figure 6.7(b)). 

Because lack of necking during tensile stretching is considered to be indicative of brittle 

behavior, the residual surface profiles shown in Figure 6.7(b) reveal increasingly more brittle-

like behavior of surface detachment with increasing   ̅  . Furthermore, the concavity of the 

residual impressions for   ̅   = 10 and 16.67 and the merely flat summit surface of the shallow 

pile-up produced for   ̅   = 3.33 indicate a higher effective radius of curvature in the simulation 

case of   = 33.3, which also provides an explanation for the increase of  ̅    with decreasing  . 

 

 

          
 

Figure 6.6 (a) Surface force  ̅ versus surface separation  ̅ during loading (solid lines) and unloading (dashed lines) 

and (b) residual surface height  ̅  versus radial distance  ̅ for elastic-plastic layered medium,  𝑙    = 10,   = 33.3,  

𝑡̅ = 8, and   ̅  = 3.33, 10, and 16.7. (Pull-off force  ̅𝑜𝑓𝑓 and separation force  ̅    are defined in (a).) 

 

The opposite dependence of the separation mode and accumulation of plasticity during 

unloading on   ̅   for high and low   values can be explained by considering the competing 

effects of the adhesion surface force and the residual stress in the substrate adjacent to the 

interface. Both contact area and surface conformity of the layered medium with the rigid sphere 

increase with   ̅   during loading, resulting in a higher adhesion surface force conducive to 

necking. However, the concomitant increase in substrate plasticity with   ̅   inhibits elastic 

recovery during unloading, because the resulting residual impression constrains the elastic 

deflection of the layer in the upward direction (in response to the adhesion force applied by the 

retracting sphere), which plays an important role in necking. For high  , the effect of the 

characteristic surface stress due to adhesion ∆    (surface force) dominates the effect of the 

substrate yield strength    (substrate plasticity). Therefore, the increase of the surface force is the 

dominant factor and the separation mode demonstrates more ductile-like behavior (necking) with 

the increase of   ̅  . Alternatively, for low  , the effect of substrate plasticity (yield strength   ) 

is more prevalent than that of the surface force (adhesive stress ∆   ), and the high tensile 

residual stress at the layer/substrate interface due to plastic deformation in the substrate opposes 

necking by the adhesion surface force. Because the net surface force is reduced in the latter case, 
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less plastic deformation occurs during unloading and surface detachment commences before the 

formation of a neck, demonstrating more brittle-like behavior with the increase in   ̅  . A 

similar dependence of the separation mode on   ̅   and    has been reported for a rigid plate in 

adhesive contact with an elastic-plastic hemisphere (Du et al., 2008). 

 

 

         
 
Figure 6.7 (a) Surface force  ̅ versus surface separation  ̅ during loading (solid lines) and unloading (dashed lines) 

and (b) residual surface height  ̅  versus radial distance  ̅ for elastic-plastic layered medium,  𝑙    = 10,   = 6.67, 

𝑡̅ = 8, and   ̅  = 3.33, 10, and 16.7. 

 

To obtain additional insight into the dependence of the surface separation mode on  , 

parametric FEM simulations were performed for a wide range of   ̅   and  . Figure 6.8 shows 

the residual center height  ̅𝑜,   𝑜, 𝑡⁄  as a function of    ̅   for   in the range of 3.33–33.3, 

 𝑙    = 10, and 𝑡̅ = 8. For   = 33.3 and 22.2,  ̅𝑜,  increases monotonically with   ̅  , indicating 

an increasingly more ductile-like mode of surface separation. For   = 16.7 and 13.3,   ̅𝑜,   

demonstrates a non-monotonic dependence on   ̅  . This is attributed to the dominant effect of 

the increasing surface force and intensifying substrate plasticity (residual stress effect) in the low 

and high ranges of   ̅  , respectively, as evidenced by the increase and decrease in  ̅𝑜,  with 

  ̅  , i.e., ductile- and brittle-like modes of surface separation, respectively. For 11.1 ≥   ≥ 3.33, 

 ̅𝑜,  decreases monotonically with increasing   ̅  , indicating more brittle-like mode of surface 

separation. In view of the results shown in Figure 6.8, it may be inferred that surface detachment 

exhibits more ductile-like behavior (high  ) when  ̅𝑜,  > 0 and brittle-like behavior (low  ) 

when  ̅𝑜,  < 0. This phenomenological criterion of the surface separation mode is depicted in 

Figure 6.8 by a horizontal dashed line. Thus, for  𝑙    = 10 and 𝑡̅ = 8, ductile- and brittle-like 

surface separation always occurs for high and low  , i.e.,   > 13.3 and   < 6.67, respectively, 

while for intermediate   values (6.67 <   < 13.3), a transition from ductile- to brittle-like mode 

of surface separation is encountered with increasing   ̅  . 
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Figure 6.8 Residual center height  ̅𝑜,  versus maximum surface separation   ̅   for elastic-plastic layered 

medium,  𝑙    = 10,   = 3.33–33.3, and 𝑡̅ = 8. 

 

Further insight into the effect of plasticity on the loading/unloading response of layered 

media subjected to adhesive contact is provided by simulation results shown in following figures. 

Figure 6.9 shows the surface force  ̅ versus surface separation  ̅ and distributions of residual 

surface height  ̅  for  𝑙    = 10,   = 1.67, 6.67, and 33.3, 𝑡̅ = 8, and   ̅   = 10.  ̅𝑜𝑓𝑓 

demonstrates a non-monotonic dependence on  . For a low   value (  = 1.67), deformation is 

predominantly elastic because the high yield strength of the substrate prevents plastic 

deformation. As a consequence,  ̅𝑜𝑓𝑓  is close to the values predicted by the JKR and DMT 

models. For an intermediate   value (   = 6.67), the large force hysteresis indicates the 

accumulation of significant plastic deformation in the substrate. Thus, a much higher  ̅𝑜𝑓𝑓 arises 

due to the residual tensile stress at the layer/substrate interface induced by the adjacent plastic 

zone in the substrate. For a high   value (  = 33.3),  ̅𝑜𝑓𝑓  is less than that obtained with 

intermediate   values, despite the fact that plastic deformation in the substrate is much more 

extensive for   = 33.3 than   = 6.67. The dependence of  ̅    on   is similar to that of  ̅𝑜𝑓𝑓. This 

trend of  ̅    can be explained in the context of corresponding residual surface profiles, shown in 

Figure 6.9(b), Tabor parameter, and effective radius of curvature   𝑓𝑓 in adhesive contact (Song 

and Komvopoulos, 2011). In the low   range,   𝑓𝑓    because deformation in the layered 

medium is fully reversible (elastic), as evidenced by the overlapping of the loading and 

unloading curves for   = 1.67 (Figure 6.9(a)), for example. In the intermediate   range, however, 

the formation of a residual impression due to the evolution of plasticity in the substrate during 

loading yields a larger   𝑓𝑓 , while in the high   range, plastic deformation during unloading 

leads to the formation of a neck with a small summit radius of curvature, implying a decrease in 

  𝑓𝑓 . Thus, the non-monotonic variation of  ̅   with   observed in Figure 6.9(a) can be 

attributed to the indirect effects of substrate plasticity and necking on   𝑓𝑓. 

 

6.3.3. Effect of Layer-to-Substrate Elastic Modulus Ratio 
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In addition to the plasticity parameter, the layer-to-substrate elastic modulus ratio  𝑙 
   plays an important role in contact deformation of layered media. Although this effect has been 

studied extensively for adhesionless contacts (O’Sullivan, and King, 1987; Komvopoulos, 1988; 

Kral et al., 1995a, 1995b, Li and Chou, 1997; Perriot and Barthel, 1997; King, 1987), relatively 

less is known about the effect of  𝑙    on the mechanical response of layered media subjected to 

adhesive contact loads. Figure 6.10 shows representative results of the surface force  ̅ and 

residual surface height  ̅  for  𝑙    = 2.5, 10, and 40,   = 33.3, 𝑡 ̅= 8, and   ̅   = 10. ( 𝑙    was 

varied by changing  𝑙 while fixing    at 20 GPa.) The decrease in  ̅𝑜𝑓𝑓 with increasing  𝑙    is 

attributed to the decrease in substrate plasticity with increasing layer stiffness, a well-known 

effect (Komvopoulos et al., 1987, Komvopoulos, 1988; Kral et al., 1995a, 1995b). Low  ̅𝑜𝑓𝑓is 

desirable in microscopic devices demonstrating inherently low spring-back forces and, therefore, 

prone to fail due to excessive adhesion (stiction). In contrast to  ̅𝑜𝑓𝑓 ,  ̅    increases 

monotonically with  𝑙   . This trend can be explained by writing Eq. (6.6) in the following 

form: 
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Figure 6.9 (a) Surface force  ̅ versus surface separation  ̅ during loading (solid lines) and unloading (dashed lines) 

and (b) residual surface height  ̅  versus radial distance  ̅ for elastic-plastic layered medium,  𝑙    = 10,   = 1.67, 

6.67, and 33.3, 𝑡̅ = 8, and   ̅  = 10. 

 

 Because 𝑡̅ and 𝜇  were fixed in this simulation case (Figure 6.10), Eq. (6.7) indicates that 

𝜇 𝑓𝑓 ∝ 𝜇𝑙
   

. Thus, considering that 𝜇𝑙 ∝  𝑙
    

 (Eq. (6.1)), it follows that 𝜇 𝑓𝑓 ∝   𝑙    
    , 

because    was fixed, which implies a monotonic decrease in 𝜇 𝑓𝑓 with increasing  𝑙   . Hence, 

considering the dependence of  ̅    on 𝜇 𝑓𝑓 , it is concluded that  ̅    increases monotonically 

with  𝑙   . An alternative interpretation of the effect of  𝑙    on  ̅    can be obtained by 

considering the effect of  𝑙    on the residual surface height. As shown in Figure 6.10(b), 

necking becomes more pronounced with decreasing  𝑙   . Considering that the enhancement of 

necking is accompanied by a decrease in   𝑓𝑓 at the instant of surface detachment (discussed 

above), it follows that  ̅    increases monotonically with  𝑙   . 
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Figure 6.10 (a) Surface force  ̅ versus surface separation  ̅ during loading (solid lines) and unloading (dashed lines) 

and (b) residual surface height  ̅  versus radial distance  ̅ for elastic-plastic layered medium,  𝑙    = 2.5, 10, and 

40,   = 33.3, 𝑡̅ = 8, and   ̅  = 10. 

 

Figure 6.11 shows contours of equivalent plastic strain   ̅  obtained after complete 

unloading for  𝑙    = 2.5, 10, and 40,   = 33.3, 𝑡̅ = 8, and   ̅  = 10. Significant necking in the 

case of a relatively compliant layer   𝑙         is indicative of a ductile-like mode of surface 

detachment, whereas very low substrate plasticity and merely flat surface of the layered medium 

with a stiff layer   𝑙        are evidence of a brittle-like mode of surface detachment. The 

maximum equivalent plastic strain   ̅
     increases from approximately 0.3 to 2.1 with the 

decrease of  𝑙    from 40 to 2.5. For a stiff layer (Figure 6.11(c)),   ̅
     arises below the 

layer/substrate interface at   = 0, while for a compliant layer (Figure 6.11(a)),   ̅
     occurs at the 

layer/substrate interface close to the neck edge. Similar (although milder) deformation 

characteristics with those of the relatively compliant and stiff layers were observed for a layer of 

intermediate stiffness (Figure 6.11(b)). These results indicate that stiff surface layers suppress 

substrate plasticity and reduce the likelihood of interfacial delamination, provided that the elastic 

layer is sufficiently strong to resist brittle fracture and contact fatigue. 

 

The effect of the ratio of the layer to the substrate Poisson’s ratio is relatively secondary, 

because contrary to the significant mismatch of the layer and substrate elastic modulus, the 

variation of the Poisson’s ratio is less pronounced (typically, in the range of 0.2–0.4) and, most 

importantly, the Poisson’s ratio effect during unloading is secondary because excessive plastic 

deformation in the substrate dominates the unloading behavior. 

 

 

            
 

(a) (b) (c) 
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Figure 6.11 Contours of equivalent plastic strain   ̅ after complete unloading for elastic-plastic layered medium, 

 𝑙    = 2.5, 10, and 40,   = 33.3, 𝑡̅ = 8, and   ̅  = 10. 

 

6.3.4. Effect of Layer Thickness 

 

Another important factor affecting contact deformation in layered media is the layer 

thickness. Simulation results of surface force   ̅and residual surface height  ̅  for  𝑙    = 10, 

  = 33.3, 𝑡̅ = 4, 8, and 16, and   ̅  = 10 are shown in Figure 6.12.  ̅𝑜𝑓𝑓 decreases continuously 

with the increase of 𝑡̅ (Figure 6.12(a)) due to the decrease in substrate plasticity, while the mode 

of surface separation exhibits more ductile-like behavior with the decrease in 𝑡̅ (Figure 6.12(b)). 

However, an opposite trend is observed for  ̅   , which can be explained in terms of the first 

derivative of 𝜇 𝑓𝑓 with respect to 𝑡̅. From Eq. (6.6), it follows that 

 

 

      
 

Figure 6.12 (a) Surface force  ̅ versus surface separation  ̅ during loading (solid lines) and unloading (dashed lines) 

and (b) residual surface height  ̅  versus radial distance  ̅ for elastic-plastic layered medium,  𝑙    = 10,   = 33.3, 

𝑡̅ = 4, 8, and 16, and   ̅  = 10. 
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Equation (6.1) gives that 𝜇𝑙  𝜇  for  𝑙    . Thus, from Eq. (6.8) it follows that  

 𝜇 𝑓𝑓  𝑡̅⁄  < 0 for  𝑙    , implying that 𝜇 𝑓𝑓 increases with the decrease in 𝑡̅, which explains 

the monotonic increase in  ̅    with 𝑡̅ shown in Figure 6.12(a). This trend is also consistent with 

the results of the residual surface height shown in Figure 6.12(b). The neck profiles indicate that 

the decrease in 𝑡̅  is conducive to necking (i.e., high  ̅   ). 

 

6.3.5. Effect of Cyclic Contact Loading 

 

Contact fatigue due to repetitive loading is of particular importance in miniaturized 

devices, such as microscopic switches, relays, and electrical contacts. To obtain insight into the 

effect of cyclic loading in adhesive contact of layered media, quasi-static FEM simulations of 
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four consecutive loading cycles were performed for  𝑙    = 10,   = 6.67 and 33.3, 𝑡̅ = 8, and 

  ̅   = 10. Figures 6.13(a) and 6.13(b) shows the surface force  ̅ versus surface separation  ̅ and 

loading/unloading cycles for   = 33.3 and 6.67, respectively. The development of a force 

hysteresis suggests that energy was dissipated irreversibly in each loading cycle. In addition to 

energy dissipation due to contact instabilities (i.e., jump-in and jump-out), energy is also 

dissipated in the form of plastic deformation in the substrate. As expected, higher   yielded 

larger force hysteresis. After the first cycle, loading and unloading paths are essentially identical. 

For  = 33.3, subsequent loading half-cycles demonstrate smaller adhesion force and larger 

surface separation at the instant of jump-in compared to the first loading half-cycle (Figure 

6.13(a)). This is attributed to pronounced necking in the first unloading half-cycle (Figure 

6.9(b)), resulting in a smaller   𝑓𝑓 in subsequent loading half-cycles and, in turn, lower adhesion 

surface force and larger surface separation at the instant of jump-in. For   = 6.67, the residual 

impression produced in the first loading half-cycle (Figure 6.9(b)) yields a larger   𝑓𝑓  in 

subsequent loading half-cycles, which increases the adhesion surface force and causes jump-in to 

occur at a smaller surface separation than that observed in the first cycle.  

 

 

      
 

Figure 6.13 Surface force  ̅ versus surface separation  ̅ during loading (solid lines) and unloading (dashed lines) for 

four consecutive loading cycles, elastic-plastic layered medium,  𝑙    = 10, (a)   = 6.67 and (b) 33.3, 𝑡̅ = 8, and 

  ̅  = 10. 

 

The results shown in Figure 6.13 can be further interpreted by considering the variation 

of    along the axis of symmetry ( ̅ = 0) and the layer/substrate interface ( ̅     = –8) for   = 

33.3 and 6.67, shown in Figures 6.14 and 6.15, respectively. Both simulation cases demonstrate 

ratcheting, as evidenced by the evolution of   ̅ in the substrate with the accumulation of contact 

cycles. For   = 33.3,   ̅
     arises below the layer/substrate interface (Figure 6.14(a)) and along 

the interface at a radial distance corresponding to that of the edge of the residual pile-up (neck) 

(Figure 6.15(a)), whereas for   = 6.67,   ̅
     arises at the layer/substrate interface (Figure 

6.14(b)) and within the residual impression (Figure 6.15(b), suggesting that interface and 

substrate delamination are likely failure modes. The above cyclic contact simulations reveal a 

higher propensity for delamination in the substrate and the layer/substrate interface due to 

ratcheting in layered media characterized by low and high plasticity parameters. 

 

 



82 
 

    
 
Figure 6.14 Depth distributions of equivalent plastic strain   ̅ along the axis of symmetry (   ̅= 0) for four 

consecutive loading/unloading cycles, elastic-plastic layered medium,  𝑙    = 10,   = 6.67 and 33.3, 𝑡̅ = 8, and 

  ̅  = 10. 

 

 

         
 

Figure 6.15 Radial distributions of equivalent plastic strain   ̅ along the layer/substrate interface (  ̅= –8) for four 

consecutive loading/unloading cycles, elastic-plastic layered medium,  𝑙    = 10,   = 6.67 and 33.3, 𝑡̅ = 8, and 

  ̅  = 10. 

 

 

6.4. Conclusions 

 

A finite element analysis of adhesive contact between a rigid sphere and a layered 

medium was performed to elucidate the effect of adhesion on contact deformation. Adhesive 

surface interaction was modeled by nonlinear springs with a force-displacement constitutive 

relation derived from the LJ potential. An effective Tabor parameter was introduced for layered 

media with a layer stiffer than the substrate, which is a function of the layer thickness and Tabor 

parameters corresponding to half-spaces with the layer and substrate elastic modulus. The effects 

of plasticity parameter, layer-to-substrate elastic modulus ratio, layer thickness, maximum 

surface separation (interaction distance), and cyclic contact loading on adhesive contact behavior 

of layered media were elucidated in the context of simulation results. The pull-off force 

increased with the maximum surface separation due to the enhancement of necking or substrate 
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plasticity. Abrupt surface separation (jump-out) was not encountered at the instant of maximum 

pull-off force but at larger surface separation (smaller surface gap) and smaller surface force, 

controlled by the radius of curvature of the neck summit or residual impression produced after 

complete unloading, not the maximum surface separation. 

 

The dependence of the surface separation (detachment) mode on maximum surface 

separation was affected by the plasticity parameter. Results were interpreted in terms of 

competing effects between the adhesion (attractive) surface force and the residual stress at the 

layer/substrate interface induced by the adjacent plastic zone in the substrate. A separation mode 

map was constructed for different ranges of plasticity parameter and maximum surface 

separation. For high plasticity parameter, necking during surface retraction intensified with 

increasing maximum surface separation and surface detachment exhibited more ductile-like 

behavior, because the unloading response was controlled by the adhesion surface force. For low 

plasticity parameter, however, surface detachment demonstrated more brittle-like behavior with 

increasing maximum surface separation, because the unloading response was mostly affected by 

residual stresses caused by the residual impression formed during loading. A non-monotonic 

dependence of the surface separation mode on maximum surface separation was observed in the 

intermediate range of plasticity parameter, which was attributed to the dominant effect of the 

increasing adhesion surface force (residual stress) on the contact behavior in the low (high) range 

of maximum surface separation.  

 

The pull-off force decreased with increasing layer-to-substrate elastic modulus ratio, 

while the separation force demonstrated an opposite trend explained in terms of the effective 

Tabor parameter. Plastic deformation decreased significantly with the increase in layer stiffness 

and the maximum equivalent plastic strain shifted from the layer/substrate interface below the 

edge of the residual pile-up (neck) into the substrate below the center of the contact region, 

indicating a decreasing propensity for interfacial delamination with increasing layer stiffness. 

Substrate plasticity intensified and surface separation exhibited more ductile-like behavior with 

decreasing layer thickness. The dependence of the pull-off and separation forces on the layer 

thickness was interpreted in terms of the evolution of plasticity in the substrate and the effective 

Tabor parameter, respectively.  

 

FEM simulations of repetitive adhesive contact on layered media demonstrated the 

accumulation of incremental plasticity with loading cycles. Irreversible energy dissipation 

increased with plasticity parameter. Despite overlapping of unloading paths, surface force and 

surface separation at the instant of jump-in during the loading phase of each subsequent cycle 

deviated significantly from those in the first loading cycle due to differences in residual 

deformation produced in the first cycle (i.e., necking and residual impression). Profiles of 

equivalent plastic strain in the depth direction and along the layer/substrate interface revealed 

that interfacial and substrate delamination due to incremental plasticity (ratcheting) are likely 

failure mechanisms in layered media subjected to cyclic adhesive contact loading.   
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Chapter 7 

 
Delamination of an elastic film from an elastic-plastic substrate  

during adhesive contact loading and unloading 

 

 
7.1. Introduction 

 

Thin films are widely used as protective coatings of various devices having contact 

interfaces to maintain low friction and improve surface wear resistance. For example, thin 

diamond-like carbon films are used to protect the surfaces of hard disks and magnetic recording 

heads against mechanical wear caused intermittent contact during operation and to enhance the 

lifetime and reliability of contact-mode microelectromechanical systems (Komvopoulos, 1996, 

2000, 2003; Smallwood et al., 2006). In chapter 6, we have extended the finite element analysis 

of adhesive contact from homogeneous half-space to layered media, and obtained insight of 

substrate plasticity effect on contact instabilities and separation mode. However, the film-

substrate interface is assumed sufficiently strong, thus excludes the failure mode of interface 

delamination, which is one of the most widely observed failure modes in thin-film structure. In 

addition to the formation of ring and median cracks generated by tensile contact stresses, Chai 

(2003) demonstrated that delamination at the film/substrate interface may occur due to the 

mismatch of film. Bagchi and Evans (1996) showed that substrate elastic-plastic properties also 

play an important role in delamination. Marshall and Evans (1984) modeled a delaminating thin 

film as a rigidly clamped disc and used the indentation method to evaluate the fracture toughness 

of the film/substrate interface. Drory and Hutchison (1996) analyzed conical indentation of a 

brittle film on a ductile substrate and proposed a method for determining the interface fracture 

toughness in terms of applied normal load, delamination radius, film thickness, and mechanical 

properties of film and substrate materials. 

 

Delamination mechanics is generally complicated by geometry and material 

nonlinearities. In the presence of plasticity and absence of an initial defect at the film/substrate 

interface, analytical solutions are cumbersome or impossible and, consequently, numerical 

methods such as the finite element method (FEM) must be used to obtain a solution. Xia et al. 

(2007) simulated normal contact between a rigid spherical indenter and an elastic film on an 

elastic-plastic substrate and, using a cohesive zone model for the film/substrate interface, they 

observed shear cracking outside the contact area for indentations deeper than a critical depth and 

tensile cracking at the interface below the center of contact upon unloading. Chen et al. (2009) 

used a FEM model to examine wedge indentation of a soft film on a hard substrate and 

determined the critical indentation load for crack initiation as a function of interface toughness 

and strength, reporting good agreement between experimental and FEM results of interface 

properties for wedge angles equal to 90
°
 and 120

°
.  

 

Although the previous studies have provided insight into contact-induced delamination of 

film/substrate systems, the effect of surface adhesion on contact deformation was not examined. 

Pioneering studies of the role of surface adhesion in contact mechanics carried out by Johnson et 

al. (1971) and Derjaguin et al. (1975) have led to the development of analytical models of 
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adhesive contact between two elastic spheres, known as the JKR and DMT models, respectively. 

These models yield estimates of the pull-off force  𝑜𝑓𝑓, defined as the force at the instant of full 

separation of the adhering elastic spheres during unloading. Tabor (1977) has argued that the 

JKR and DMT models represent extreme conditions of adhesion systems, yielding accurate 

predictions of  𝑜𝑓𝑓  for 𝜇    and 𝜇     , respectively, where  𝜇  is referred to as the Tabor 

parameter. Maguis (1992) used the Dugdale approximation to describe the adhesive contact 

stress and obtained a solution of  𝑜𝑓𝑓 in the transition range 0.1  𝜇   5, which is bounded by 

the JKR and DMT solutions. Muller et al. (1980), Greenwood (1997), and Feng (2001) used a 

traction-separation law derived from the Lennard-Jones (LJ) potential to model the adhesive 

stress between contacting elastic spheres and obtained numerical solutions representing a smooth 

transition between the JKR and DMT solutions. Although the former solutions based on the LJ 

potential differ slightly from that reported by Maguis (1992), they reproduce adhesion-induced 

instability phenomena, such as instantaneous surface contact (jump-in) and separation (jump-

out), commonly observed with microprobe instruments and suspended microstructures. 

 

In recent FEM studies, nonlinear spring elements with a force-displacement constitutive 

relation derived from the LJ potential were used to model adhesive contact of a rigid plate with 

an elastic-plastic hemisphere (Du et al., 2007; Kadin et al., 2008) or a rigid sphere with an 

elastic-plastic half-space (Song and Komvopoulos, 2011). These studies have shed light into the 

effects of various geometrical, loading, and material parameters on the evolution of  𝑜𝑓𝑓 and 

contact instabilities. Eid et al. (2011) used the FEM model developed by Du et al. (2007) to study 

adhesive contact between a rigid plate and an elastic-plastic layered hemisphere and observed a 

dependence of the adhesion force and contact radius on maximum contact displacement 

(maximum compressive force) and film thickness. Song and Komvopoulos (2012) analyzed 

single and repetitive normal contact between a rigid sphere and a hard elastic film bonded to an 

elastic-perfectly plastic substrate and obtained a multi-parameter deformation map of brittle- and 

ductile-like surface separation of adhesive contacts.  

 

Despite important information about the role of adhesion in contact deformation provided 

by aforementioned studies, a comprehensive analysis of adhesion-induced delamination at 

film/substrate interfaces is still lacking. The objective of this study was to investigate the effect 

of surface adhesion, governed by the LJ potential, on interfacial delamination in elastic-plastic 

layered media with interfaces modeled by a cohesive zone obeying a bilinear traction-separation 

constitutive law. Interface damage (crack) initiation and evolution (delamination) during a full 

load-unload cycle are discussed in light of FEM results. Irreversible bending of the elastic film 

and crack-tip opening and closure before and after full unloading (jump-out) are interpreted in 

terms of residual cohesive zone and energy release rate concepts. The effects of minimum 

surface separation (maximum compressive force), substrate yield strength, interface work of 

adhesion, cohesive strength, and preexisting crack size are examined in light of numerical 

solutions. 

 

 

7.2. Contact model 

 

Figure 7.1 shows the axisymmetric problem under consideration, i.e., a rigid sphere of 

radius   in proximity with a half-space consisting of an elastic film of thickness 𝑡 and a semi-
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infinite elastic-perfectly plastic substrate. FEM meshes of the substrate and film media comprise 

4096 and 26656 axisymmetric, four-node, linear, isoparametric elements with a total of 4618 and 

27170 nodes, respectively. The nodes at the bottom boundary and axis of symmetry (   ) of 

the entire mesh are constrained against displacement in the  - and  -direction, respectively. The 

distance between adjacent nodes at the film surface and the film/substrate interface is equal to 

~0.006 . Adhesion between the sphere and the film is modeled by nonlinear spring elements 

with a prescribed traction-separation relation governed by the LJ potential. Details of the 

nonlinear spring constitutive equation can be found elsewhere (Song and Komvopoulos, 2011). 

All contact simulations were performed with the multi-purpose FEM code ABAQUS (version 

6.9EF). 

 

 

 
 

Figure 7.1 Model of a rigid sphere in close proximity with a layered medium consisting of an elastic film and a 

semi-infinite elastic-plastic substrate. 

 

Coherence at the film/substrate interface is modeled by a cohesive-zone law (Tvergaard 

and Hutchinson, 1994, 1996) that allows the film to separate from the substrate to simulate crack 

initiation and growth. Figure 7.2 shows a schematic of the bilinear traction-separation law of the 

cohesive interface, where    is the surface traction (normal or parallel to the film/substrate 

interface),   is the film-substrate separation,    is the cohesive strength,    is the film-substrate 

separation for damage (crack) initiation,    is the film-substrate separation for failure (permanent 

surface separation, i.e., delamination), and Γ is the interface work of adhesion, represented by 

area (OAB), i.e.,  

 

𝛤  
 

 
                                              (7.1) 

 

In the present analysis,   ,   ,   , and 𝛤 are assumed to be the same in both normal and 

in-plane interfacial directions. In all simulations,    (on the order of the interatomic distance) is 

fixed, while    (3–10 times   ) is varied with    and 𝛤 according to Eq. (7.1). Interface damage 

initiation and failure are respectively controlled by the following criteria:  
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   𝑡

    
                                           (7.2) 

 

 𝛤  𝛤𝑡  𝛤  𝛤                         (7.3) 

 

where subscript   denotes the normal direction and subscripts 𝑡 and 𝑠 denote the two in-plane 

directions at the film/substrate interface.  

 

 

 
 

Figure 7.2 Schematic representation of traction versus film-substrate separation constitutive law of a bilinear 

cohesive zone. Surface separation larger than    leads to either partial damage (point C) or full damage (point B), 

accompanied by a decrease in cohesive strength   . 

 

The traction-separation law at the interface of the layered medium is expressed as 

 

  

{
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ℎ 
)                           
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ℎ𝑐 ℎ 
)         

       
 

                                               

                        (7.4) 

 

For     , the traction increases linearly with film-substrate separation, implying purely 

elastic stretching at the interface, while for        , the traction decreases linearly from    

toward 0 due to damage accumulation. Damage leads to a different unloading path (CO) than the 

loading path (OA). Failure (full damage) occurs when     , resulting in locally traction-free 

interface.  

 

 

7.3. Results and discussion 
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Figures 7.3(a) and 7.3(b) show schematics of the deformed layered medium before and 

after full surface separation (jump-out), respectively. In general, three distinct interface regions 

can be observed before jump-out (Figure 7.3(a)): a fully damaged (white) region of zero strength 

(    ), representing an interfacial crack of radius    and crack-tip surface separation   , a 

partially damaged cohesive zone (gray) of strength less than    (       ), and an elastically 

stretched (red) region ahead of the damaged cohesive zone (      ). The fully damaged 

region (crack) together with the partially damaged cohesive zone represent a fictitious crack of 

radius  𝑓  and tip surface separation  𝑓  =   . After jump-out (Figure 7.3(b)), full unloading 

yields a crack-tip opening displacement CTOD and a residual fictitious crack of radius  𝑓 
res and 

crack-tip maximum tensile stress     . Although jump-out does not affect the crack radius, it 

reduces the radius of the elastically stretched (red) region and the damaged cohesive zone (gray) 

due to the elastic recovery of the film and nonuniform plastic deformation at the substrate face of 

the cohesive zone, respectively. This produces a closed region (blue) of cohesive zone between 

the residual fictitious crack and the elastically stretched region. As a consequence,  𝑓 
res   𝑓  

and  𝑓 
res    . (Superscript “res” indicates “residual” parameters obtained after full unloading 

(jump-out).) 

 

 

         
 
Figure 7.3 Schematics of deformed layered medium (a) before and (b) after complete separation (jump-out) of the 

elastic film from the rigid sphere. Formation of a crack and a cohesive zone (gray region), partial closure of the 

cohesive zone (blue region), and high tensile stresses (red region) can be encountered at the film/substrate interface 

during a full load-unload cycle, depending on the material properties and minimum surface separation (maximum 

compressive force). 

 

Results from displacement-control simulations are presented and discussed below in 

terms of dimensionless parameters, such as surface force  ̅         (where   is the work of 

adhesion of the sphere/film contact system), surface separation  ̅    𝑡 , minimum surface 

separation (maximum compressive force)   ̅in =   in 𝑡, interfacial separation 𝛥̅  𝛥   , film-

substrate separation below the center of contact 𝛥̅𝑜  𝛥𝑜   , residual film deflection at the 

center of contact   ̅res   res   , cohesive strength  ̅         (where   is the equilibrium 

interatomic distance), substrate yield strength  ̅      , interface work of adhesion 𝛤   𝛤  , 
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film deflection at the crack-tip location 𝛥̅𝑓  𝛥𝑓   , crack radius  ̅     𝑡, radius of fictitious 

crack  ̅𝑓   𝑓  𝑡, radius of residual fictitious crack  ̅𝑓 
res    𝑓 

res 𝑡, closure of residual fictitious 

crack 𝑐    ( 𝑓 
res  𝑓 )

 
, and radius of initial crack  ̅     𝑡. The film-to-substrate elastic 

modulus ratio  fi    sub and sphere radius-to-film thickness ratio   𝑡 on contact behavior are 

also important parameters. However, the focus in the present study is on adhesive contact of 

layered media with films much stiffer than the substrate, typical of hard protective films used in 

hard-disk drives and dynamic microelectomechanical devices. Thus, all simulation results 

presented below are for  fi    sub= 10 and   𝑡 = 10. Hereafter, a positive (negative) surface 

force will be designated as a compressive (tensile) force.  

 

7.3.1. Effect of minimum surface separation 

 

Figures 7.4(a) and 7.4(b) show the surface force  ̅ and corresponding film-substrate 

separation below the center of contact 𝛥̅𝑜 as functions of surface separation  ̅, respectively, for 

𝛤 = 0.125,  ̅ = 0.4,  ̅  = 0.075, and   ̅in = –0.5, –1.0, and –1.5. Because the three simulation 

cases demonstrate similar characteristics, the case of   ̅in= –1.5 is used to describe the general 

loading (solid lines) and unloading (dashed lines) contact behavior. For all three simulation 

cases, the variation of 𝛥̅𝑜 with  ̅ during loading is shown by the barely visible response at the 

bottom of Figure 7.4(b). At a critical surface separation ( ̅   0.25), abrupt contact (jump-in) 

occurs due to the effect of long-range surface attraction, resulting in the upward displacement of 

the layered medium, as evidenced by the development of a negative (tensile) surface force. As 

surface separation decreases further, a transition from tensile to compressive surface force is 

encountered in conjunction with the downward displacement of the layered medium. The linear 

force response from jump-in to minimum surface separation (point A) can be explained by a 

simple model of plate bending. Owing to the low yield strength of the substrate ( ̅       ) and 

significantly higher elastic modulus of the film, plastic deformation in the substrate below the 

center of contact leads to a situation approximately analogous to a circumferentially clamped 

circular plate (film) subjected to elastic bending by a concentrated force applied to its center. 

Thus, the linear loading path observed in Figure 7.4(a) is dominated by the bending behavior of 

the elastic film not contact deformation. This attribution is supported by results of a layered 

medium with a high-yield strength substrate (section 7.3.2) demonstrating a nonlinear increase in 

 ̅ with  ̅, characteristic of contact deformation. The appearance of a force hysteresis after full 

unloading indicates irreversible deformation, i.e., plastic deformation in the substrate and/or film 

debonding (delamination). Initial unloading is characterized by a purely linear elastic response 

(AB), with the film remaining fully bonded to the substrate (𝛥̅𝑜   ). Further retraction of the 

rigid sphere produces a nonlinear elastic-plastic force response (BC), because plastic 

deformation in the substrate accumulated during loading inhibits further elastic recovery. As a 

consequence, large strain gradients develop at the film/substrate interface, resulting in a cohesive 

tensile stress (𝛥̅𝑜 > 0) that causes re-yielding in the substrate adjacent to the interface. Interface 

damage initiation commences at a critical surface separation ( ̅   –0.8), as evidenced by the 

sharp change in slope of the force response (point C). Additional damage caused by further 

unloading decreases the cohesive stress and the resulting partial recovery of the upward 

displacement of the substrate leads to delamination (𝛥̅𝑜 = 1.0) and the decrease of the tensile 

surface force (CD). The subsequent increase of the tensile surface force (DE) is due to upward 

bending of the elastic film. Abrupt surface separation (jump-out) (point E) leading to full 
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unloading (point F) occurs when further elastic deflection of the film cannot be compensated by 

interfacial adhesion. Equivalent plastic strain contours in the highly deformed regions of the 

substrate adjacent to the interface (not shown here), corresponding to characteristic points of the 

unloading response for   ̅in = –1.5 shown in Figure 7.4, confirmed that accumulation of 

plasticity in the substrate during unloading occurred only along path BC, indicating that the 

cause of substrate re-yielding was the increase in cohesive stress with film-substrate separation 

(OA path in Figure 7.2). 

 

 

     
 

Figure 7.4 (a) Surface force  ̅ and (b) corresponding film-substrate separation below the center of contact  𝛥̅
𝑜 versus 

surface separation  ̅ for 𝛤 = 0.125,  ̅ = 0.4,  ̅  = 0.075, and   ̅in= –0.5, –1.0, and –1.5 (loading = solid lines; 

unloading = dashed lines). Characteristic points are shown for   ̅in= –1.5. 

 

Figure 7.5(a) shows contours of dimensionless residual normal stress  ̅𝑧𝑧
res   𝑧𝑧   for 

𝛤 = 0.125,  ̅ = 0.4,  ̅  = 0.075, and   ̅in = –1.5. Tensile stresses arise around the fictitious crack 

tip, whereas the stress field ahead of the fictitious crack tip is compressive. The presence of these 

regions of tensile and compressive residual stress can be explained by considering the evolution 

of plasticity in the substrate. Before jump-out (point E in Figure 7.4), a cohesive zone exists at 

the crack-tip front because the plastically deformed substrate cannot follow the upward 

deflection of the elastic film (Figure 7.3(a)). At the instant of jump-out (point F in Figure 7.4), 

the surface force decreases abruptly to zero, resulting in elastic spring-back of the film. However, 

plastic deformation in the substrate adjacent to the interface allows only partial crack closure 

(blue region in Figure 7.3(b)). This produces a residual cohesive zone of smaller radius and 

lower tensile stress, which accounts for the residual tensile stress at the fictitious crack tip seen in 

Figure 7.5(a). This residual tensile stress is responsible for the downward bending of the elastic 

film, quantified by the residual deflection  res at the center of contact (Figure 7.3(b)). Figure 

7.5(b) shows a linear variation of the dimensionless residual film deflection  ̅res with   ̅in for 

𝛤= 0.125,  ̅ = 0.4, and  ̅  = 0.075. 
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Figure 7.5 (a) Contours of  residual  ̅𝑧𝑧
res stress and (b) variation of residual film deflection  at the center of contact 

 ̅res with minimum surface separation   ̅in for 𝛤 = 0.125,  ̅= 0.4, and  ̅ = 0.075. 

 

The crack-tip opening displacement CTOD is a measure of fracture toughness in classical 

fracture mechanics, because it is proportional to the energy release rate 𝐺  and inversely 

proportional to the cohesive strength    (Anderson, 1995). Figure 7.6 shows the dimensionless 

crack-tip opening displacement   CTOD    after jump-out as a function of   ̅in for  𝛤 = 

0.125,  ̅  = 0.4, and  ̅  = 0.075. The increase of   with   ̅in implies an increase in fracture 

toughness with minimum surface separation, which can be associated with the increase in crack-

tip blunting with substrate plasticity. To interpret the dependence of   on   ̅in, it is instructive to 

consider the energy release rate before and after jump-out. Just before jump-out (point E in 

Figure 7.4),   = 1.0 and the energy release rate 𝐺  consists of the elastic strain energy in the film 

 𝑓, the plastic strain energy in the substrate   , and the interface work of adhesion 𝛤, i.e., 𝐺  

 𝑓     𝛤 . After jump-out (point F in Figure 7.4),  𝑓  is almost fully recovered (the film 

remains slightly deflected because of the tensile stress in the residual cohesive zone) and 𝛤 is 

almost unchanged because the fictitious crack exhibits only partial closure, i.e., 𝐺𝐹     𝛤. 

Thus, considering that CTOD  ∝ 𝐺 , the dimensionless crack-tip opening displacement after 

surface separation can be expressed as 
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Fig. 7.6 Crack-tip opening displacement   and film deflection at the crack-tip location 𝛥𝑓̅ versus minimum surface 

separation   ̅in for 𝛤= 0.125,  ̅= 0.4, and  ̅ = 0.075. 

 

   [  
 𝑓  𝑠

  𝛤  𝑠
]
  

                                                                                                                (7.5) 

 

As shown in Figure 7.6, the film upward deflection at the crack-tip location 𝛥̅𝑓  (Figure 

7.3(a)) decreases with increasing   ̅in . This can be attributed to the accumulation of more 

plasticity in the substrate during loading with increasing   ̅in , resulting in more residual 

deformation upon unloading and, in turn, less upward deflection of the film. Thus, considering 

that  𝑓 decreases with 𝛥̅𝑓  and that    increases with    ̅in, the tendency for   to increase with 

  ̅in can be explained in light of Eq. (7.5). 

 

7.3.2. Effect of substrate yield strength 

 

Figures 7.7(a) and 7.7(b) show the effect of the substrate yield strength  ̅ on the variation 

of the surface force  ̅ and corresponding film-substrate separation below the center of contact 𝛥̅𝑜 

with surface separation  ̅, respectively, for 𝛤 = 0.125,  ̅  = 0.075, and   ̅in = –1.0. As expected, 

the contact stiffness increases with substrate yield strength. For  ̅    , the loading curve almost 

overlaps with the unloading curve, indicating negligible substrate plasticity or film delamination. 

The higher values of 𝛥̅𝑜 and  ̅ at the instant of jump-out for  ̅ = 1.0 than 0.1 and 10 (Figure 

7.7(b)) suggest the existence of an intermediate yield strength range that is conducive to film 

delamination. This effect of the substrate yield strength can be better understood by considering 

the variation of the interfacial separation 𝛥̅  before (solid lines) and after (dashed lines) jump-out 

for 𝛤 = 0.125,  ̅ = 0.1, 1.0, and 10,  ̅  = 0.075, and   ̅in = –1.0, shown in Figure 7.8. For  ̅ = 

0.1, the relatively high cohesive strength leads to significant plastic deformation in the substrate 

during unloading that enhances the conformity of the deflected elastic film with the substrate 

(i.e., small 𝛥̅). For  ̅ = 1.0, strain incompatibility at the interface due to the mismatch of film and 

substrate material properties leads to film delamination. For  ̅  = 10, plastic deformation is 

negligible due to the high strength of the substrate and delamination is encountered before jump-

out because the elastic deflection of the film caused by surface adhesion can be compensated by 

the cohesive stress. However, because residual deformation in the substrate is negligible, film 

debonding from the substrate is less than that for  ̅ = 1.0. Consequently, elastic deflection of the 

film is fully recovered upon jump-out, resulting in full crack closure. The condition of maximum 

interface delamination cannot be determined from only three simulation cases and because of the 

effect of other important parameters, particularly    and    ̅in . Nevertheless, considering the 

results shown in Figure 7.8 and opposite effects of excessive plasticity during unloading for low 

 ̅ and negligible plasticity during loading for high  ̅, it may be inferred that maximum interface 

delamination is expected to occur in an intermediate  ̅ range. 

 



93 
 

      
 

Fig. 7.7 (a) Surface force  ̅ and (b) corresponding film-substrate separation below the center of contact  𝛥̅
𝑜 versus 

surface separation  ̅ for 𝛤= 0.125,  ̅ = 0.1, 1.0, and 10,  ̅  = 0.075, and   ̅in = –1.0 (loading = solid lines; unloading 

= dashed lines). 

 

 

 
 
Fig. 7.8 Interfacial surface separation 𝛥̅ before (dashed lines) and after (solid lines) jump-out versus radial distance 

 ̅ for 𝛤 = 0.125,  ̅= 0.1, 1.0, and 10,  ̅ = 0.075, and   ̅in = –1.0. 

 

7.3.3. Effect of interface work of adhesion 

 

Figures 7.9(a) and 7.9(b) show the surface force   ̅and corresponding film-substrate 

separation below the center of contact 𝛥̅𝑜 as functions of surface separation  ̅, respectively, for 
𝛤 = 0.125, 0.25, and 0.5,  ̅ = 0.4,  ̅  = 0.075, and   ̅in = –1.0. In all three simulation cases, the 

variation of  𝛥̅𝑜 with  ̅ during loading (solid lines) is shown by the barely visible response at the 

bottom of Figure 7.9(b). Characteristic points (similar to those shown in Figure 7.4) are shown 

for 𝛤 = 0.125. The loading response does not show a dependence on interface work of adhesion 
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because the dominance of compressive deformation during loading prevents delamination even 

for low interface work of adhesion (𝛤 = 0.125). This is also evidenced by the very small 

𝛥̅𝑜 values produced during loading (Figure 7.9(b)). Similar to loading, unloading (dashed lines) 

does not show a dependence on interface work of adhesion initially (AB). In this stage of 

unloading, a cohesive zone does not form ( 𝛥̅𝑜   ) because the interface is still under 

compression. However, further unloading induces localized film debonding characterized by a 

nonlinear force response (BC). Unloading up to the point of damage initiation (𝛥𝑜     ) is 

independent of 𝛤  because    and  ̅  are fixed in these simulation cases. However, upon the 

formation of a cohesive zone (point C), the unloading behavior shows a strong dependence on 

interface work of adhesion. For 𝛤 = 0.125, the surface force first decreases slightly (CD) and 

then increases gradually with further unloading up to the instant of jump-out (point E) when it 

decreases abruptly to zero (point F). Point D is not distinguishable in the simulation cases of 

𝛤   0.25 and 0.5 because the decrease in cohesive stress as a result of interfacial damage is 

limited by the relatively high 𝛤 and    values (Eq. (7.1)). Slightly lower   ̅ and significantly 

higher  𝛥̅𝑜 values were obtained at jump-out with higher 𝛤, implying smaller surface separation 

at jump-out for higher interface strength.   

 

 

 
 

Fig. 7.9 (a) Surface force  ̅  and (b) corresponding film-substrate separation  at the center of contact  𝛥̅
𝑜  versus 

surface separation  ̅ for 𝛤= 0.125, 0.25, and 0.5,  ̅= 0.4,  ̅  = 0.075, and   ̅in  = –1.0 (loading = solid lines; 

unloading = dashed lines). Characteristic points are shown for 𝛤 = 0.125. 

 

Figures 7.10(a) and 7.10(b) show the radius of the fictitious crack  ̅𝑓  and residual 

fictitious crack  ̅𝑓 
res (points E and F, respectively, in Figures 7.4 and 7.9) and fictitious crack 

closure upon jump-out c as functions of interface work of adhesion 𝛤 for  ̅ = 0.4,   ̅  = 0.075, 
  ̅in= –1.0, and similar  ̅𝑜𝑓𝑓, as evidenced from Figure 7.9. The monotonic decrease of  ̅𝑓   and 

 ̅𝑓 
res with increasing 𝛤  reveals an increase in interface resistance against interfacial damage 

initiation (    ) and delamination (    ) for fixed  ̅𝑜𝑓𝑓. Figure 7.10(b) shows that crack 

closure increases with interface work of adhesion, approaching asymptotically full closure (𝑐 = 1) 

for 𝛤 > 1.4. This implies that layered media characterized by high interface work of adhesion not 

only exhibit a higher resistance against interface delamination but also greater affinity for crack 

closure.  
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Fig. 7.10 (a) Radius of fictitious crack  ̅𝑓  and residual fictitious crack  ̅𝑓 
res and (b) closure of residual fictitious 

crack 𝑐 versus interface work of adhesion 𝛤 for  ̅= 0.4,  ̅  = 0.075, and   ̅in = –1.0. 

 

Figure 7.11 shows that the crack-tip opening displacement after jump-out   increases 

monotonically with interface work of adhesion 𝛤 for  ̅ = 0.4,  ̅  = 0.075, and   ̅in = –1.0. This 

trend can be attributed to the decrease of film deflection before jump-out with increasing 

interface work of adhesion. Indeed, as shown in Figure 7.11, the film deflection at the crack-tip 

location 𝛥̅𝑓 before jump-out decreases with the increase of 𝛤. Because this implies a decrease in 

 𝑓    (for fixed   ) with increasing 𝛤, the increasing trend of   seen in Figure 7.11 can be 

explained in light of Eq. (7.5). 

 

 

 
 

Fig.  7.11 Crack-tip opening displacement   and film deflection at the crack-tip location 𝛥𝑓̅ versus interface work of 

adhesion 𝛤 for  ̅ = 0.4,  ̅  = 0.075, and   ̅in = –1.0. 

 

7.3.4. Effect of cohesive strength 
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Figures 7.12(a) and 7.12(b) show the surface force   ̅and corresponding film-substrate 

separation below the center of contact 𝛥̅𝑜 as functions of surface separation  ̅, respectively, for 

𝛤= 0.125,  ̅= 0.4,  ̅ = 0.015, 0.075, and 0.2, and   ̅in= –1.0. As expected, the stiffness increases 

with the cohesive strength. For a relatively low cohesive strength ( ̅ = 0.015), the unloading 

response does not show any distinguishable discontinuity until the commencement of jump-out, 

implying a secondary effect of interface damage to the overall contact stiffness. For an 

intermediate cohesive strength ( ̅ = 0.075), however, the unloading behavior shows that the 

contact stiffness during damage (crack) initiation (BC) differs significantly from that obtained 

during damage evolution (delamination) (CD). Discontinuities in the surface force and film-

substrate separation (CD in Figures 7.12(a) and 7.12(b), respectively) responses were 

encountered only for a relatively high cohesive strength ( ̅   0.2), indicating unstable crack 

initiation at the interface. This behavior can be interpreted in terms of dimensionless parameter 

𝛬          , where   is the effective elastic modulus of the layered medium and   is the 

contact radius at minimum surface separation (Gao and Bower, 2004), representing the layered 

medium-to-interface stiffness ratio. Analytical and numerical results of the former study show 

that unstable crack initiation is characterized by low 𝛬 values. This is in good agreement with the 

finding of the present study that high  ̅  yields unstable crack initiation. Because low  ̅  

produces a high 𝛬 value (i.e., layered medium stiffness higher than the interface stiffness), the 

effect of the cohesive interface on the overall unloading response is secondary compared to that 

of the film’s elastic deflection. This suggests that damage (cracking) at a low cohesive strength 

interface does not affect the continuity of the unloading response up to the instant of jump-out, in 

agreement with the results for  ̅  = 0.015 and 0.075 shown in Figure 7.12(a).  

 

 

         
 

Fig. 7.12  (a) Surface force  ̅ and (b) corresponding film-substrate separation  at the center of contact  𝛥̅
𝑜 versus 

surface separation  ̅ for 𝛤 = 0.125,  ̅ = 0.4,  ̅  = 0.015, 0.075, and 0.2, and   ̅in = –1.0 (loading = solid lines; 

unloading = dashed lines). Characteristic points are shown for  ̅  = 0.075 and 0.2. 

 

Figure 7.13(a) shows the radius of the fictitious crack  ̅𝑓  and residual fictitious crack 

 ̅𝑓 
res as functions of cohesive strength  ̅  for 𝛤 = 0.125,  ̅ = 0.4, and   ̅in = –1.0. It is noted that 

 ̅𝑓  decreases monotonically with increasing  ̅  because the critical stress for damage initiation 

increases with  ̅ . However,  ̅𝑓 
res exhibits a non-monotonic dependence on  ̅  because of partial 

closure of the fictitious crack and approaches asymptotically to  ̅𝑓  with increasing  ̅ . Figure 
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7.13(b) shows that closure of the fictitious crack c after full unloading (jump-out) decreases 

sharply with the increase of  ̅ , approaching asymptotically to zero. This trend can be explained 

by considering that   ∝   
   for fixed 𝛤 (Eq. (7.1)). Thus, the decrease of crack closure with 

increasing cohesive strength can be attributed to the simultaneous decrease of   , which is 

conducive to failure (cracking). Figure 7.14 shows the crack-tip opening displacement after 

jump-out   and the film deflection at the crack-tip location before jump-out 𝛥̅𝑓 as functions of 

cohesive strength  ̅  for 𝛤 = 0.125,  ̅ = 0.4, and   ̅in = –1.0. The decrease in   with the increase 

of  ̅  can be interpreted as a decrease in interfacial fracture resistance with increasing cohesive 

strength. This counterintuitive result can be explained by considering that 𝛥̅𝑓 increases with  ̅ , 

implying a simultaneous increase in  𝑓   , which, in view of Eq. (7.5), explains the decrease of 

  with increasing  ̅ . 

 

 

     
 

Fig. 7.13  (a) Radius of fictitious crack  ̅𝑓  and residual fictitious crack  ̅𝑓 
res and (b) closure of residual fictitious 

crack 𝑐 versus cohesive strength  ̅  for 𝛤 = 0.125,  ̅ = 0.4, and   ̅in = –1.0. 

 

7.3.5. Effect of preexisting crack 

 

In all simulation cases discussed above, the film/substrate interface was assumed to be 

flawless, i.e., no preexisting defect. The effect of a penny-shaped crack of radius  ̅  located at the 

interface below the center of contact on the resulting surface force and contact behavior is 

examined in this section. Figures 7.15(a) and 7.15(b) show the surface force   ̅and corresponding 

film-substrate separation below the center of contact 𝛥̅𝑜 as functions of surface separation  ̅, 
respectively, for 𝛤 = 0.125,  ̅= 0.4,  ̅  = 0.015,   ̅in = – 1.0, and  ̅  = 1, 4, and 8. The increase of 

surface separation at jump-in and jump-out with crack radius is attributed to the decrease of the 

layered medium stiffness with increasing crack radius. The loading paths (solid lines) for 

different  ̅  values begin to gradually overlap after jump-in as the interface is increasingly 

compressed. The initial unloading response (dashed lines) is not affected by variations in  ̅  

because the interface is under compression ( 𝛥̅𝑜  = 0). However, beyond a critical surface 

separation ( ̅   –0.75) the unloading behavior shows a dependence on  ̅  (Figure 7.15(a)), and 

the film-substrate separation at jump-out increases significantly with crack radius (Figure 

7.15(b)). 
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Fig. 7.14  Crack-tip opening displacement   and film deflection at the crack-tip location 𝛥𝑓̅ versus cohesive strength 

 ̅  for 𝛤 = 0.125,  ̅ = 0.4, and   ̅in = –1.0. 

 

 

      
 

Fig. 7.15 (a) Surface force  ̅ and (b) corresponding film-substrate separation at the center of contact 𝛥̅
𝑜 versus 

surface separation  ̅ for 𝛤 = 0.125,  ̅ = 0.4,  ̅  = 0.075,   ̅in = –1.0, and  ̅  = 1, 4, and 8 (loading = solid lines; 

unloading = dashed lines). 

 

Figure 7.16 shows the critical surface separation at jump-in  i̅n   in 𝑡 and jump-out 

  ̅u    u  𝑡 versus initial crack radius  ̅  for 𝛤 = 0.125,  ̅ = 0.4,  ̅  = 0.075, and   ̅in= –1.0. 

For a very small initial crack (i.e.,  ̅  < 2),  i̅n  and   ̅u  are almost constant, implying that 

adhesion-induced contact instabilities are not affected by a relatively small interfacial defect. 

However, above a critical defect size (e.g.,  ̅  > 2.5),  i̅n  and   ̅u  demonstrate a linear 

dependence on  ̅ . This suggests that the size of a preexisting interfacial defect can be correlated 

to the surface separation at jump-in or jump-out, particularly jump-out that shows a higher 
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sensitivity to defect size, as indicated by the larger slope of the   ̅u  versus  ̅  linear fit shown in 

Figure 7.16. 

 

 

 
 

Fig. 7.16  Surface separation at jump-in  i̅n and jump-out   ̅u  versus initial crack radius  ̅  for 𝛤 = 0.125,  ̅ = 0.4, 

 ̅  = 0.075, and   ̅in = –1.0. 

 

 

7.4. Conclusions 
 

A finite element analysis of a rigid sphere in adhesive contact with a half-space 

consisting of an elastic film and an elastic-plastic semi-infinite substrate was performed to 

elucidate damage (crack) initiation and evolution (delamination) at the film/substrate interface. 

Surface adhesion was simulated by nonlinear springs obeying a force-displacement constitutive 

relation derived from the LJ potential. The film/substrate interface was modeled as an 

irreversible cohesive zone of fixed cohesive strength and work of adhesion. The overall contact 

behavior was analyzed by tracking the evolution of the surface force and surface separation at 

the interface during a full load-unload cycle.  

 

Differences in deformation response were most pronounced during unloading. Variations 

in the surface force and contact stiffness during unloading correlated with the initiation and 

development of interfacial damage (cracking). Re-yielding in the elastic-plastic substrate 

occurred only in the course of damage initiation during unloading, resulting in the formation of a 

cohesive zone at the interface. Substrate plasticity resulted in irreversible downward deflection 

of the partially delaminated elastic film and the formation of a residual cohesive zone at the 

interface that produced tensile stresses at the tip of the interfacial crack after full unloading 

(jump-out). The dependence of crack-tip opening displacement on minimum surface separation 

(maximum compressive force) was interpreted in the context of energy release rate 

considerations before and after jump-out. Crack-tip opening displacement increased whereas 
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residual deflection (bending) of the elastic film decreased with increasing minimum surface 

separation. 

 

Different unloading mechanisms were observed, depending on the yield strength of the 

elastic-plastic substrate. For a low-strength substrate, interface delamination was not observed 

during unloading, while for a substrate of intermediate strength, damage (crack) initiation and 

failure (delamination) at the interface occurred during unloading, leading to the formation of a 

residual crack upon jump-out. For a high-strength substrate, deformation during loading was 

essentially elastic and the interface crack formed during unloading exhibited almost complete 

closure upon jump-out.  

 

The interface work of adhesion affected the contact behavior only during unloading. In 

particular, both surface force and contact stiffness were influenced by the evolution of interfacial 

damage during unloading only in the case of relatively low interface work of adhesion. Crack 

closure and crack-tip opening displacement after jump-out increased with interface work of 

adhesion. 

 

The cohesive strength exhibited a significant effect on both loading and unloading 

behavior. Unstable crack initiation was found only in the case of high cohesive strength. This 

trend was interpreted in terms of a dimensionless parameter representing the layered medium-to-

interface stiffness ratio. Crack closure and crack-tip opening displacement after jump-out 

increased with the decrease of the cohesive strength due to the enhancement of cohesive zone 

closure and the increase of the critical surface separation for interfacial failure, respectively.  

 

The effect of an initial crack at the layer/substrate interface on the contact behavior was 

found to be significant only during unloading. Although the effect of the initial crack on the 

initial unloading response was insignificant, the surface force demonstrated a dependence on 

initial crack radius (size) at a later stage of unloading. Above a critical crack radius, surface 

separation at jump-in and jump-out increased linearly with crack radius.   
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Chapter 8 

 
Contact mechanics of elastic rough surfaces in the presence of adhesion: contact 

instabilities and strength of adhesion  

 

 
8.1. Introduction 

 
 In chapter 5-7, we have thoroughly analyzed the contact mechanics of smooth surfaces 

in the presence of adhesion. Great insight has been obtained on the adhesion-induced contact 

instabilities, plasticity accumulation and interface delamination. However, most of the real 

engineering surfaces are not smooth, but exhibit multi-scale roughness. To the best of author’s 

knowledge, most of previous contact mechanics and tribology study of rough surfaces does not 

account for surface adhesion, which exhibits first-order effects on the reliability and endurance 

of miniaturized devices and accuracy of measurements obtained with microprobe-based 

techniques, by affecting the contact and fatigue behavior at microscopic length scales. Moreover, 

owing to the wide range of surface features and microprobe tip sizes (from a few tens of 

nanometers to several micrometers), it is imperative that contact mechanics analyses account for 

the multi-scale surface roughness of the probed sample. Therefore, contact models based on 

simple geometrical configurations, such as a sphere in contact with a flat half-space, do not yield 

accurate solutions of the contact force and real contact area. 

 

Among the first contact analyses to consider adhesion effects on solid contact 

deformation are those of Johnson et al. (1971) and Derjaguin et al. (1975), who introduced 

elastic contact models for two adhering spheres, known as the JKR and the DMT model, 

respectively. These models yield that the pull-off force  𝑜𝑓𝑓 at the instant of surface detachment 

is equal to         Δ  (JKR model) and     Δ  (DMT model), where   is the reduced 

radius of curvature (             
  , where    and    are the radii of curvature of the two 

contacting spheres, respectively) and Δ  is the work of adhesion (Δ           , where    

and    are the surface energies of the two spheres, respectively, and     is the interfacial energy).  

 

Adhesive elastic contacts can be characterized by a dimensionless parameter 𝜇, known as 

the Tabor parameter (Tabor, 1977), which is defined as 

 

𝜇   [
 Δ𝛾 

    3
]
   

                                                                            (8.1) 

 

where          
           

      
  

 is the effective elastic modulus (  and   represent 

the elastic modulus and Poisson’s ratio, respectively) and ε is the equilibrium interatomic 

distance. Tabor (1977) has argued that the JKR model is suitable for compliant spherical bodies 

with a large radius of curvature (𝜇   ), whereas the DMT model is more appropriate for stiff 

spherical bodies with a small radius of curvature (𝜇     ). Maugis (1992) used the Dugdale 

approximation to represent the adhesive stress at the contact interface and obtained  𝑜𝑓𝑓 as a 

function of a dimensionless parameter 𝜆  (𝜆      𝜇 ) in the transition range of the Tabor 

parameter bounded by the DMT and the JKR solutions. Carpick et al. (1999) derived a semi-
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empirical equation of  𝑜𝑓𝑓  in terms of 𝜆 by using a curve-fitting method and numerical results 

obtained by Maugis (1992). Muller et al. (1980), Greenwood (1997), and Feng (2001) used the 

Lennard-Jones (LJ) potential to model interfacial adhesion in elastic contacts and a self-

consistent integration method to numerically analyze adhesive contact. The solution obtained 

from the latter approach represents a smooth transition between the DMT and the JKR solutions, 

but differs from that obtained by Maguis (1992) in the same range of the Tabor parameter. Using 

a curve-fitting method identical to that of Carpick et al. (1999), Wu (2008) obtained an equation 

of the dimensionless pull-off force  ̅𝑜𝑓𝑓   𝑜𝑓𝑓    ∆   in terms of the Tabor parameter, given 

by 

 

 ̅𝑜𝑓𝑓    
 

 
 (  

      𝜇3  

      𝜇3  
)                                                                                                                   (8.2) 

 

where the negative sign in Eq. (8.2) indicates an attractive force. The aforementioned self-

consistent integration method has been used in finite element analyses that model interfacial 

adhesion by nonlinear spring elements obeying a force-displacement constitutive relation derived 

from the LJ potential (Du et al., 2007; Kadin et al., 2008; Song and Komvopoulos, 2011). 

 

Although the previous studies have elucidated the role of adhesion in contact deformation 

of smooth solid bodies and single contacts, their applicability is limited because real surfaces 

exhibit multi-scale roughness. To overcome this limitation, different surface topography 

descriptions were used in contemporary adhesion studies of interacting rough surfaces. One of 

the first fundamental studies of adhesive contact between elastic rough surfaces is attributed to 

Fuller and Tabor (1975). Using the statistical rough-surface model of Greenwood and 

Williamson (1966), known as the GW model, and the JKR approximation at the asperity level, 

Fuller and Tabor showed that the strength of adhesion of contacting rough surfaces decreases 

with the dimensionless adhesion parameter 𝜃, given by 

 

 𝜃   
   3  

    Δ𝛾
  [

 

   3Δ𝛾  3     3]
   

                                                                                               (8.3) 

 

where  is the root-mean-square (rms) surface roughness. The physical meaning of 𝜃 can be 

understood by considering that it represents the ratio of the surface roughness to the elastic 

deformation caused by adhesion at the instant of surface separation, as shown by the second form 

of Eq. (8.3). The strength of adhesion between a smooth rubber sphere and a hard rough surface, 

evaluated in terms of 𝜃 (Eq. (8.2)), has been found to be in good agreement with experimental 

results (Fuller and Tabor, 1975). Maugis (1996) used a similar approach and the DMT model to 

study the contact behavior of adhering asperities and observed a contribution of the adhesion 

force outside the contact region of interacting asperities to the total normal force. The existence 

of an adhesion force in most contact systems explains the finite friction force obtained with a 

zero or negative (adhesive) normal force and the higher friction of clean surfaces. Morrow et al. 

(2003) incorporated an improved Maugis (1992) solution, originally derived by Kim et al. (1998) 

for the transition range bounded by the DMT and the JKR solutions, into the model of Fuller and 

Tabor (1975) and determined the adhesion force produced from non-contact and contact asperity 

regions in the entire range of 𝜆. 
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To examine the effect of multi-scale roughness on the elastic-plastic deformation of 

adhesive contacts, Sahoo and Chowdhury (1996) described the surface topography by fractal 

geometry. This model was later improved by Mukherjee et al. (2004), who analyzed elastic-

plastic deformation of adhering asperities by the finite element method. Li and Kim (2009) used 

a homogenized projection method to study the behavior of the effective cohesive zone in 

adhesive contact of rough surfaces and observed oscillations in the traction-separation response 

due to contact instabilities caused by adhesion and decohesion events between the adhering 

asperities. Experimental and analytical studies of Kesari et al. (2010) have shown that the force 

hysteresis observed in atomic force microscopy and nanoindentation measurements can be 

correlated to a series of asperity-contact instabilities attributable to adhesion and roughness 

effects. Kesari and Lew (2011) analyzed the compression of an elastic half-space by an 

axisymmetric rigid punch with random periodic undulations in the radial direction and observed 

multiple equilibrium contact regions during the loading and unloading phases by minimizing the 

potential energy of the system.  

 

Although the previous studies have yielded important insight into the contact behavior of 

adhesive rough surfaces, the majority of these studies are either restricted to “hard” contact at the 

asperity scale (i.e., negligible adhesion forces between noncontacting asperities) or rely on a 

solution derived by Maguis (1992) that does not reproduce important physical phenomena, such 

as contact instabilities due to instantaneous surface contact (jump-in) encountered with contact 

microprobes and suspended microstructures. The objective of this study was to develop an 

adhesive contact analysis of elastic rough surfaces, which models surface adhesion with 

nonlinear springs obeying a force-displacement law derived from the LJ potential. Jump-in 

contact instabilities are identified by the sharp increase of the interfacial force or the 

instantaneous establishment of surface contact. The motivation of this study is the different 

dependence of macrocontact instabilities on the Tabor parameter than single-asperity contacts, 

reported in a previous study (Song and Komvopoulos, 2011). The effects of surface roughness 

and Tabor parameter on the strength of adhesion and the evolution of the interfacial force and the 

contact area are discussed in the context of numerical solutions. It is shown that the classical 

adhesion parameter of Fuller and Tabor (1975) only governs the strength of adhesion of 

compliant rough surfaces (high 𝜇  range). Thus, a new adhesion parameter is introduced for 

relatively stiff contact systems (low 𝜇  range). The applicable ranges of the aforementioned 

adhesion parameters are determined for three different characteristic length scales at the single-

asperity and rough-surface levels and a generalized adhesion parameter is proposed for the entire 

range of the Tabor parameter.  

 

 

8.2. Analysis of single adhesive contacts 

 

Because contact between real (rough) surfaces comprises numerous microscopic asperity 

contacts, it is necessary to derive constitutive deformation relations that are applicable at the 

asperity level. The problem of two elastic spherical asperities in close proximity is equivalent to 

that of a rigid sphere of reduced radius of curvature    and an elastic half-space of effective 

elastic modulus   . In the presence of interfacial adhesive (attractive) pressure, the surface of the 

half-space deforms in the upward direction, as shown schematically in Fig. 8.1. 
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Fig. 8.1 Equivalent model of a rigid sphere of reduced radius of curvature R and an elastic half-space of effective 

elastic modulus   . 

 

For small deformation,       𝑜       , where   is the surface gap between the rigid 

sphere and the deformed surface of the elastic half-space,   is the horizontal (radial) coordinate, 

and  𝑜 is the minimum surface gap, which is always encountered at    . The former equation 

of      has been proven to fold for elastically deformed contacts (Song and Komvopoulos, 2011). 

Thus, the dimensionless elastic deflection at the center of the proximity region  ̅       can be 

obtained by integrating the solution of a point surface force acting on an elastic half-space 

(Boussinesq, 1885), i.e., 

 

 ̅  ∫
    

    

∞

 
      √  𝜇   [ ̅ 

    
 

    

    
 ̅ 

     
]                      (8.4) 

 

where  ̅𝑜   𝑜   is the dimensionless minimum surface gap and      is the adhesive pressure, 

derived from the LJ potential (Song and Komvopoulos, 2011). Consequently, the dimensionless 

minimum surface separation at    , defined as  𝑜̅    𝑜  , can be expressed as  

 

 𝑜̅    ̅𝑜    ̅𝑜                                                                                                                              (8.5) 

 

Analytical and finite element results (Song and Komvopoulos, 2011) show that jump-in is 

not observed for 𝜇      and the interfacial force   and contact area   vary continuously as the 

two asperities approach each other (Fig. 8.2(a)) and 8.2(c), respectively), while for 𝜇      

jump-in commences, as evidenced by the abrupt increase of the interfacial force (tensile) (Fig. 

8.2(b)) and the instantaneous establishment of surface contact (Fig. 8.2(d)). For elastic adhesive 

contacts, the maximum adhesion force      during the approach of the surfaces is equal to the 

maximum tensile force at the instant of surface detachment during unloading, referred to as the 

pull-off force  𝑜𝑓𝑓 . The critical (minimum) surface separation corresponding to      and the 

instant of initial contact (i.e., transition from zero to nonzero contact area) are denoted by  𝑜  
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and  𝑜
 , respectively (Fig. 8.2). The definition of the contact area may appear to be controversial 

because “hard” contact, such as that considered in classical contact mechanics, is not possible in 

the present analysis because of the repulsive term of the LJ potential (Greenwood, 1997; Feng, 

2000, 2001). Thus, for consistency with classical contact mechanics, the contact area is defined 

as the area of compressive normal traction. For 𝜇     , the contact area at the instant of      

can be either zero or nonzero. In particular, for very low 𝜇 values,      is encountered before 

contact (i.e.,  𝑜    𝑜
 ), for moderate 𝜇  values less than 0.5, contact commences before the 

occurrence of      (i.e.,  𝑜    𝑜
 ) (Figs. 8.2(a) and 8.2(c)), and for 𝜇     , both      and 

initial contact are encountered at the instant of jump-in (i.e.,  𝑜   𝑜
 ) (Figs. 8.2(b) and 8.2(d)). 

 

 
 

Fig. 8.2 Schematics of interfacial force and contact area versus minimum surface separation for smooth (𝜇     ) 

and discontinuous (𝜇     ) surface approach and retraction. 

 

Fig. 8.3 shows the dimensionless contact radius   ̅             corresponding to the 

critical minimum surface separation  𝑜  as a function of the Tabor parameter. Discrete data 

points represent numerical results obtained with a previous finite element model of adhesive 

contact (Song and Komvopoulos, 2011). Curve fitting of the numerical data yields 

 

 ̅                                                       𝜇                                                 (8.6a) 

 

 ̅        𝜇                                 𝜇                                                                  (8.6b) 
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Fig. 8.3 Critical contact radius  ̅  at the instant of maximum adhesive force versus Tabor parameter 𝜇. Discrete data 

points represent numerical data obtained with a previous finite element model of adhesive contact (Song and 

Komvopoulos, 2011). The solid curve is a best fit through the numerical data. 

 

Eqs. (8.6a) and (8.6b) indicate that, for 𝜇      ,      occurs before the establishment of 

surface contact (i.e.,  𝑜   𝑜
 ), while for 𝜇      , contact is established either before or upon 

the occurrence of      (i.e.,  𝑜   𝑜
 ), with the contact radius given by Eq. (8.6b). It is noted 

that it is impossible to obtain a closed-form solution of the contact area (defined as the surface 

region of compressive normal stress) at the instant of     , particularly the contact area 

instantaneously established upon jump-in (𝜇     ). Eq. (8.6b) is the first relation to yield the 

contact area at the instant of      in terms of the Tabor parameter. The validity of Eq. (8.6b) is 

confirmed by favorable comparisons with analytical solutions obtained for large 𝜇 values. For 

example, for 𝜇   , Eq. (8.6b) yields  ̅      𝜇    , which is in excellent agreement with the 

solution derived from JKR theory,  ̅      𝜇    (Eq. (B9) in Appendix B).  

 

Considering the significant effect of the jump-in instability on the evolution of the 

interfacial force and the contact area, two different sets of constitutive relations of adhesive 

asperity contacts must be derived – one set for continuous elastic contact and another set for 

discontinuous elastic contact due to the occurrence of the jump-in instability. Moreover, because 

of the transition from attractive- to repulsive-dominant contact behavior encountered with the 

decrease of the surface separation, different constitutive relations must be derived for the surface 

separation ranges of attractive and repulsive dominant force, i.e.,  𝑜    𝑜 ,  𝑜
    and  𝑜    𝑜 , 

 𝑜
   , respectively. 

 

 

8.2.1. Constitutive relations for surface separation range of dominant attractive force  

 

8.2.1.1. Elastic adhesive contacts without jump-in instability  

 



107 
 

In the absence of the jump-in instability (𝜇     ), the interfacial force   increases 

continuously from zero (large  𝑜) to a maximum adhesion force      with the decrease of  𝑜 to a 

critical value  𝑜  (Fig. 8.2(a)). Fig. 8.4 shows the dimensionless critical minimum surface 

separation  𝑜̅     𝑜     corresponding to      as a function of 𝜇 for adhesive elastic contacts 

that do not exhibit jump-in. From a linear fit through the numerical results (discrete data points), 

obtained with a previous finite element model (Song and Komvopoulos, 2011), it is found that 

 

  𝑜̅         𝜇                                                      (8.7) 

 

 

 
 
Fig. 8.4 Critical surface separation  𝑜̅  versus Tabor parameter 𝜇 for single contacts that do not exhibit jump-in 

instability (𝜇     ). Discrete data points represent numerical data obtained with a previous finite element model of 

adhesive contact (Song and Komvopoulos, 2011). The solid line is a best fit through the numerical data. 

 

           The validity of Eq. (8.7) is verified by qualitative comparisons. For instance, in the case of 

a rigid sphere in adhesive contact with a rigid half-space (𝜇   ),      occurs for  𝑜̅   , i.e., 

for a central surface separation equal to the equilibrium interatomic distance, which is the 

solution obtained by Bradley (1932). The increasing trend of  𝑜  with 𝜇, indicated by Eq. (8.7), 

is expected because  𝑜  at the instant of      increases with the half-space compliance (i.e., 

increase of 𝜇) due to the enhancement of the upward elastic deflection of the half-space surface 

with the increase of its compliance.  
 

Assuming small deformation in the elastic half-space for  𝑜̅   𝑜̅ , the dimensionless 

interfacial force  ̅       ∆ , obtained by integrating the surface traction applied to the 

undeformed surface of the half-space (Boussinesq, 1885), is given by 
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 ̅  
 

     ∆𝛾
∫            

∞

 

 

     ∆𝛾
∫ [

 ∆𝛾

  
(

 

 𝑜     ⁄
)
  

 (
 

 𝑜     ⁄
)
  

]
∞

 
       

 

 
( 𝑜̅

      𝑜̅
   )                  ( 𝑜̅   𝑜̅ )                                                                                         (8.8) 

 

Applying the boundary condition    ̅( 𝑜̅   𝑜̅ )   ̅            ∆ , where      is 

given by Eq. (8.2), because for elastic adhesive contact       𝑜𝑓𝑓 , while retaining the force-

distance proportionality that is intrinsic of the LJ potential (i.e.,  ̅ ∝  𝑜̅
      𝑜̅

   ), Eq. (8.8) can 

be modified as  

 

 ̅   [
 ̅𝑜

      ̅𝑜
   

 ̅𝑜𝑐
      ̅𝑜𝑐

   ]  ̅                 ( 𝑜̅   𝑜̅ )                                                                               (8.9) 

 

Fig. 8.5 shows analytical solutions (Eq. (8.9)) and finite element method (FEM) results 

(Song and Komvopoulos, 2011) of the dimensionless interfacial force  ̅ versus the dimensionless 

minimum surface separation 
o  at     for 𝜇 in the range of 0.091–0.425. The good agreement 

between analytical and FEM results validates Eq. (8.9). 

 

 

 
 

Fig. 8.5 Comparison of analytical solutions (Eq. (9)) and numerical results obtained with the model of a previous 

FEM study (Song and Komvopoulos, 2011) of interfacial force  ̅ versus minimum surface separation  𝑜̅ for Tabor 

parameter 𝜇 equal to (a)      , (b)      , (c)     , and (d)      . 
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Because the minimum surface separation occurs at    ,  𝑜
  is obtained for  ̅   . Thus, 

the following equation of the dimensionless critical minimum surface separation  𝑜̅
  at the instant 

of initial contact is obtained by substituting  ̅    into Eqs. (8.4) and (8.5): 

 

   𝑜̅
          𝜇                                                                                                                    (8.10) 

 

For the dimensionless contact area, defined as   ̅      , it follows that 

 

  ̅ = 0   ( 𝑜̅    𝑜̅
 )                                                                                                                   (8.11)     

                            

A transition value of the Tabor parameter equal to 0.19 is obtained by equating Eq. (8.7) 

with Eq. (8.10). For 𝜇      ,  𝑜̅
   𝑜̅ , implying that   ̅ = 0 at the instant of  ̅   , whereas for 

     𝜇     , a finite contact area is established before the occurrence of
 
 ̅   , which is in 

excellent agreement with the predictions of Eqs. (8.6a) and (8.6b).  

 

8.2.1.2. Elastic adhesive contacts with jump-in instability  

 

As mentioned earlier, when 𝜇     , initial contact and      occur simultaneously at the 

instant of jump-in (i.e.,  𝑜   𝑜
 ). The dimensionless critical surface gap   ̅𝑜   𝑜    at the 

instant of jump-in is the solution of the following equation (Song and Komvopoulos, 2011): 

 

     ̅𝑜 
   ⁄       ̅𝑜 

      𝜇                                                                     (8.12) 

 

For 𝜇     , Eq. (12) yields two solutions of
 
 ̅𝑜 , with the larger root corresponding to 

the jump-in instability given by 

 

 ̅𝑜          𝜇      
                                

(8.13) 

 

Substitution of Eq. (8.13) into Eqs. (8.4) and (8.5) yields 

 

 𝑜̅
   𝑜̅  

         𝜇    √  𝜇   [(        𝜇   )
    

 
    

    
(        𝜇   )

     
]                                

(8.14) 

 

For the critical Tabor parameter for jump-in (𝜇     ), Eq. (8.14) gives  𝑜̅    , which 

is significantly higher than  𝑜̅       , obtained from Eq. (8.7) for adhesive contacts not 

exhibiting jump-in. For  𝑜̅   𝑜̅   𝑜̅
 , elastic deformation can be ignored as negligibly small in 

comparison to the relatively large surface separation. Thus, an approximate expression of the 

interfacial force can be derived by integrating the surface traction for the undeformed 

configuration of the half-space, i.e., 

 

 ̅  
 

     ∆ 
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∞

 

       

    
 

     ∆𝛾
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 ∆𝛾
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)                    (8.15) 
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Fig. 8.6 Critical central gap  ̅𝑜  for jump-in instability versus Tabor parameter 𝜇. Discrete data points represent 

numerical data obtained with a previous finite element model of adhesive contact (Song and Komvopoulos, 2011). 

The solid curve is a best fit through the numerical data. 

 

As evidenced from Fig. 8.6 and Eq. (8.13), before the occurrence of jump-in,  ̅𝑜   . 

Thus from Eq. (8.5), it follows that  𝑜̅    is always true for 𝜇     , and because  𝑜̅ is the 

minimum surface separation, it is concluded that the surface traction is attractive everywhere and 

the contact area is zero, i.e., 

 

 ̅           𝑜̅   𝑜̅
                                                                                                                     (8.16) 

 

At the instant of jump-in ( 𝑜̅   𝑜̅   𝑜̅
 ), the interfacial force increases instantaneously 

from a value given by Eq. (8.15) to a value given by Eq. (8.2), with the simultaneous abrupt 

formation of a contact area of dimensionless radius 
ca  (Eq. (8.6b)). 

 

8.2.2. Constitutive relations for surface separation range of dominant repulsive force 

 

The decrease of the minimum surface separation  𝑜 below  𝑜  and  𝑜
  leads to the 

dominance of the repulsive term in the LJ potential and the dependence of the deformation 

behavior on the elastic material properties. The evolution of the interfacial force and the contact 

area was analyzed with a previous FEM model of adhesive contact (Song and Komvopoulos, 

2011), using 𝜇 in the range of 0.091 (no jump-in) to 1.971 (jump-in). Figs. 8.7(a) and 8.7(b) 

show the dimensionless interfacial force                     and the contact area    
   

       as functions of the dimensionless minimum surface separation   𝑜   𝑜    and 

  𝑜
   𝑜   , respectively. The good agreement between FEM results and analytical (Hertz) 

solutions suggests that the jump-in instability does not affect the constitutive relations in the 
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surface separation range dominated by the repulsive force. Hence, the following constitutive 

relations hold after the occurrence of      and the establishment of initial contact: 

 

(a) For adhesive elastic contacts not exhibiting jump-in (𝜇     ): 

 

  ̅   ̅     ̅   ̅    
 

   Δ𝛾
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      )   𝑜   𝑜  

       ̅    
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(b) For adhesive elastic contacts exhibiting jump-in (𝜇     ): 
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   𝑜 

  
  [     𝜇         𝑜̅

   𝑜̅]        ( 𝑜̅    𝑜̅
 )              (8.20)   

 

where subscript H denotes Hertz analysis. 

 

 

 

      
 

Fig. 8.7 Comparison of analytical solutions (Hertz analysis) and FEM results obtained with a previous finite 

element model of adhesive contact (Song and Komvopoulos, 2011): (a) interfacial force                 
   versus minimum surface separation   𝑜   𝑜     after the occurrence of maximum adhesive force and (b) 

contact area       
       versus minimum surface separation   𝑜

   𝑜    after the establishment of contact for 

Tabor parameter 𝜇 = 0.091–1.971. 

 

 

8.3. Contact analysis of elastic rough surfaces      
    
8.3.1. Rough surface model 
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Fig. 8.8 shows a cross-sectional schematic of the equivalent system of two rough surfaces 

consisting of a rigid rough surface and a flat elastic half-space at a mean surface 

separation    from the rough surface. The rough surface is represented by the GW model, 

consisting of uniformly distributed spherical asperities of fixed radius of curvature  , area 

density 𝜂, and randomly varying height  . The topography of an isotropic rough surface can be 

uniquely defined by  , 𝜂, and the standard deviation of the surface heights, referred to as the rms 

surface roughness  . The ratio of the standard deviation of the asperity heights    to the surface 

roughness  , denoted by  , can be expressed as (McCool, 1986) 

 

  
 𝑠

 
 [  

     ×   4

   𝜂  
]
   

                                                                                                    (8.21) 

 

The probability of an asperity height to be between z and z + dz is equal to 𝜙   d , 

where 𝜙    is the asperity height distribution function, described by a normal probability density 

function, which in dimensionless form can be written as  

 

𝜙̃  ̃  
 

√  
 x ( 

  𝑧 

 
)                                                                                                          (8.22) 

 

where  ̃     . (Hereafter, symbol ~ over a parameter denotes normalization by  .) For a rigid 

rough surface of asperity area density 𝜂  and apparent contact area  𝑜 , the total number of 

potentially contacting asperities is    𝑜𝜂. Because all the asperities possess the same radius of 

curvature, they are characterized by the same Tabor parameter.  

 

 

 
 

Fig. 8.8 Schematic of equivalent rough-surface contact model comprising a rigid rough surface and an 

elastic half-space. 

 

8.3.2. Constitutive contact relations for rough elastic surfaces without jump-in instabilities 

  

For rough elastic surfaces comprising asperity contacts that do not exhibit jump-in 

contact instabilities (i.e., 𝜇     ), the numbers of asperity contacts in the surface separation 
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range dominated by attraction (  ̃   ̃   ̃𝑜 ) and repulsion (  ̃   ̃   ̃𝑜 )     and    , 

respectively, where  ̃      is the dimensionless mean surface separation (Fig. 8) and  ̃𝑜  
  𝑜   , are given by  

 

       ∫ 𝜙̃  ̃   ̃
𝑑̃  ̃𝑜𝑐

 ∞
                       (8.23a) 

 

and 

 

      ∫ 𝜙̃  ̃   ̃
∞

𝑑̃  ̃𝑜𝑐
            (8.23b) 

    

where  ̃𝑜   𝑜    and  𝑜  is given by Eq. (7). 

 

Using Eqs. (8.2), (8.9), (8.17), (8.23a), and (8.23b), the dimensionless total interfacial 

force 𝐹̅ can be expressed as  
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The numbers of noncontacting and contacting asperities     and    , respectively, are given by  

 

     ∫ 𝜙̃  ̃   ̃
𝑑̃  ̃𝑜

 

 ∞
            (8.25a)  

 

and  

 

     ∫ 𝜙̃  ̃   ̃
∞

𝑑̃  ̃𝑜
  

                     (8.25b)    

 

where  ̃𝑜
   𝑜

    and  𝑜
  is given by Eq. (8.10).   

 

Using Eqs. (8.10), (8.18), (8.25a), and (8.25b), the dimensionless total contact area  ̅ can 

be expressed as 

 

 ̅  
𝑆

  0𝜂 
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[ ̃  ( ̃   ̃𝑜

 )]𝜙̃  ̃   ̃
 ∞
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                                                                         (8.26) 

 

8.3.3. Constitutive contact relations for rough elastic surfaces exhibiting jump-in instabilities 

  

For asperity contacts demonstrating jump-in contact instabilities (𝜇     ), all asperities 

in the surface separation range dominated by attraction are not in contact, whereas all asperities 
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in the surface separation range dominated by repulsion are in contact because  𝑜   𝑜
 . Thus, 

the corresponding asperity numbers are given by 

 

    ∫ 𝜙̃  ̃   ̃
𝑑̃  ̃𝑜𝑐

 ∞
            (8.27a) 

 

and 

 

       ∫ 𝜙̃  ̃   ̃
∞

𝑑̃  ̃𝑜𝑐
              (8.27b)    

 

where  ̃𝑜  is obtained from Eq. (8.16). 

 

Using Eqs. (8.2), (8.15), (8.19), (8.27a), and (8.27b), the dimensionless total interfacial 

force 𝐹̅ can be written as  
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From Eqs. (8.16), (8.20), (8.27a), and (8.27b), the dimensionless total contact area  ̅ can 

be obtained as 

 

 ̅  
𝑆
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 )]
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8.4. Results and discussion   
    
8.4.1. Effect of adhesion-induced instabilities at the asperity level on the contact behavior of 

rough surfaces 

 

          Figs. 8.9(a) and 8.9(b) show the dimensionless total interfacial force 𝐹̅  and the total 

contact area  ̅  of different rough surfaces as functions of the dimensionless mean surface 

separation  ̃, respectively, for fixed surface roughness (  = 2 nm) and 𝜇 in the range of 0.5–46.9. 

As expected, lower values of the Tabor parameter characterize stiffer contact systems. 

Differences in the adhesive contact behavior between a single asperity and a rough surface can 

be examined by considering the variation of the interfacial force for 𝜇 = 10. (The inset of Fig. 

8.9(a) shows a magnified plot of the interfacial force versus the mean surface separation for 𝜇 = 

10.) It can be seen that the dimensionless maximum adhesive force 𝐹̅    obtained for 𝜇 = 10 is 

significantly less than 0.75, which is the value predicted by the JKR model (single-asperity 

contact), and jump-in is not encountered despite that 𝜇     , which is the critical Tabor 

parameter for jump-in to occur in single-asperity adhesive contacts (Song and Komvopoulos, 

2011). Fig. 8.9(b) shows three distinct surface separation ranges of the evolution of the contact 

area. In the high range of mean surface separation, contact does not occur (range of zero contact 
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area) and the interfacial force is very low and attractive because the surfaces are sufficiently 

apart. The critical surface separation for initial contact increases with the Tabor parameter due to 

the enhancement of jump-in contact at the asperity level (Eq. (8.14)). In the intermediate range of 

mean surface separation, the contact area increases nonlinearly as the surfaces approach closer, 

especially for higher 𝜇 values. In this range, asperities on the rough surface jump into contact 

with the elastic half-space, causing abrupt surface contact and the rapid growth of the contact 

area. The evolution of the contact area in the intermediate distance range is more pronounced for 

contact systems characterized by high 𝜇  values, implying an enhancement of the jump-in 

instabilities with increasing Tabor parameter. In addition, the rate of increase of the contact area 

(slope of  ̅ curves) also increases with the Tabor parameter (Eq. (8.6b)). In the low range of 

mean surface separation, the contact area increases linearly with the decrease of the mean surface 

separation at a rate independent of 𝜇. In this range, the contact behavior is dominated by the 

repulsive term of the LJ potential and the linear response of the contact area is independent of 𝜇 

and is accurately described by Hertz theory (Eq. (8.20)). The observed evolution of the contact 

area, particularly in the intermediate distance range, suggests that even though jump-in 

instabilities at the asperity level are not reflected in the interfacial force response (Fig. 8.9(a)), 

they affect the contact behavior. Therefore, it is necessary for constitutive contact models of 

adhesive rough surfaces to account for such contact instabilities. 

 

 

     
 

Fig. 8.9 (a) Interfacial force 𝐹̅ and (b) contact area  ̅ versus mean surface separation  ̅ for fixed surface roughness 

(  = 2 nm) and Tabor parameter 𝜇 = 0.5–46.9. The inset in (a) is a magnified plot of the interfacial force for 𝜇    . 

 

8.4.2. Effect of surface roughness on strength of adhesion 

 

Fig. 8.10 shows the dimensionless maximum attractive force between rough surfaces 

𝐹̅   , hereafter referred to as the strength of adhesion, as a function of the surface roughness   

for 𝜇 = 0.1, 1.0, and 10. All three curves show the same general trend, i.e., an enhancement of 

the strength of adhesion with decreasing surface roughness. For a given surface roughness, the 

strength of adhesion increases with the Tabor parameter. The critical surface roughness for zero 

strength of adhesion also increases with the Tabor parameter, implying more pronounced 

adhesion effects with compliant surfaces. This is in agreement with the adhesion parameter 𝜃 of 
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Fuller and Tabor (1975), which predicts a higher strength of adhesion for smoother and more 

compliant surfaces (Eq. (8.2)). 

 

 

 
Fig. 8.10 Strength of adhesion 𝐹̅    versus surface roughness   for Tabor parameter 𝜇     ,    , and     

 

 

 

 
 

Fig. 8.11 Strength of adhesion 𝐹̅     versus Tabor parameter 𝜇 for surface roughness    0.5, 1.0, and     nm. 

8.4.3. Effect of Tabor parameter on strength of adhesion 
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Figure 8.11 shows the variation of the strength of adhesion 𝐹̅    with Tabor parameter 𝜇 

for σ = 0.5, 1.0, and 2.0 nm. Despite quantitative differences among the three curves, 𝐹̅    

increases asymptotically with the Tabor parameter to 0.75, which is the value of  ̅𝑜𝑓𝑓 obtained 

from JKR theory. This implies that the adhesive contact behavior of rough surfaces characterized 

by a sufficiently high value of 𝜇 (e.g., 𝜇    ) can be accurately represented by that of a single-

asperity contact. This finding is consistent with the decreasing effect of surface roughness on the 

strength of adhesion, observed earlier with the increase in Tabor parameter (Figure 8.10). It is 

also noted that for a given roughness, 𝐹̅    decreases sharply in the 0.1–10 range of 𝜇 , 

approaching asymptotically a small value that decreases with surface roughness. 

 

 8.4.4. New adhesion parameter and effective surface separation 

 

Numerical results of the strength of adhesion 𝐹̅     and the relative strength of adhesion, 

defined as   𝐹̅   |  ,   𝐹̅   |  , =    n  , for 𝜃 = 0.2, 1.0, and 5.0 and   in the range of 0–150 

nm are shown in Figs. 8.12(a) and 8.12(b), respectively. These results indicate that the strength 

of adhesion is governed by the adhesion parameter 𝜃 only for low 𝜃 values and/or high   values. 

Because 𝜇     𝜃    (Eqs. (8.1) and (8.3)), the former implies that 𝜃 is a governing parameter 

of the strength of adhesion only in the high range of the Tabor parameter, as evidenced by 

experiments with a smooth rubber sphere pressed into contact with a rough surface (Fuller and 

Tabor, 1975). Therefore, a different adhesion parameter must be used to describe the strength of 

adhesion in the low range of the Tabor parameter. 

 

 

         
 

Fig. 8.12 (a) Strength of adhesion 𝐹̅     and (b) relative strength of adhesion   versus surface roughness   for 

adhesion parameter 𝜃   0.2, 1.0, and 5.0. 

 

The numerical results shown in Fig. 8.13 indicate that       can be used to describe 

the strength of adhesion in the low range of 𝜇 . The relative strength of adhesion   sharply 

decreases with the increase of   in the low-roughness range, approaching asymptotically to 1 

(Fig. 8.12(b)). For fixed  ,   increases with  . Considering that 𝜇       (Eq. (8.1)), it may be 

interpreted that 𝜇 decreases with the increase of  . Therefore,   is a governing parameter of the 

strength of adhesion in the low 𝜇 range. Consequently, because 𝜇    Δ           represents 

the elastic deformation caused by adhesion and   characterizes the effective range of the 
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adhesion force, a generalized adhesion parameter for the entire range of the Tabor parameter can 

be defined as 𝜉    𝜇     . Surface roughness   characterizes the variation in the separation 

distance between individual asperities and the undeformed half-space (stress-free state), while 

asperity elastic deformation induced by adhesion is on the order of 𝜇  and the effective range of 

the adhesion force is on the order of  . Therefore, the effective surface separation between 

individual asperities and the elastically deformed half-space is on the order of  𝜇     , below 

which the adhesion force significantly affects the contact behavior. The fraction of the asperities 

in the surface separation range dominated by the attractive force decreases with the surface 

roughness and increases with the effective surface separation. 

 

The adhesion parameters 𝜃  and   represent asymptotic values of the general adhesion 

parameter 𝜉 . For 𝜇   , the effective surface separation is controlled by adhesion-induced 

elastic deformation of the asperities and 𝜉    𝜇  𝜃   , in agreement with the finding that 𝜃 

governs the strength of adhesion of contact systems characterized by a high Tabor parameter (Fig. 

8.12). Alternatively, for 𝜇 ≪  , the effective surface separation is controlled by the effective 

range of the adhesion force and 𝜉       , in agreement with the observation that   governs 

the strength of adhesion of contact systems characterized by a low Tabor parameter (Fig. 8.13).  

 

 

 
 

Fig. 8.13 Relative strength of adhesion   versus surface roughness   for adhesion parameter    0.2, 0.5, and 1.0. 

 

 

8.5. Conclusions     
 

Adhesive contact of elastic rough surfaces was examined within the framework of the 

GW rough surface model, modified to include contact instabilities (jump-in) at the asperity level. 

Constitutive relations of the interfacial force and the contact area of single-asperity contacts 

demonstrating continuous (𝜇     ) and discontinuous (𝜇     ) approach paths were obtained 

in the distance range of attractive- and repulsive-dominant surface force. These relations were 
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incorporated into the GW rough-surface model, and the interfacial force and contact area were 

expressed in terms of important parameters, such as surface separation, asperity radius, asperity 

area density, surface roughness, effective elastic modulus, surface energy, equilibrium 

interatomic distance, and the Tabor parameter.  

 

Rough surface contact demonstrated a three-stage behavior with decreasing mean surface 

separation: (1) zero contact area, (2) nonlinear and rapid increase of the contact area caused by 

jump-in instabilities at the asperity level (particularly for surfaces characterized by high 𝜇 

values), and (3) linear increase of the contact area (Hertz-like behavior) independent of 𝜇. The 

strength of adhesion decreased with increasing surface roughness and generally increased with 𝜇, 

approaching asymptotically to the value predicted by the JKR contact model of elastic spheres, 

implying a negligible surface roughness effect for 𝜇   . However, for 𝜇 ≪  , the strength of 

adhesion approached asymptotically to a very low value, which increased with decreasing 

surface roughness.   

 

The adhesion parameter 𝜃 proposed by Fuller and Tabor (1975) was shown to govern the 

strength of adhesion of surfaces characterized by high 𝜇 values. A new adhesion parameter  , 

defined as the ratio of the surface roughness to the equilibrium interatomic distance, was shown 

to describe the strength of adhesion of rough surfaces characterized by low 𝜇 values. Differences 

between 𝜃 and   parameters were interpreted in terms of the effective surface separation, defined 

as the sum of the effective distance range of the adhesion force and the elastic deformation of 

asperities caused by adhesion. It was shown that the strength of adhesion can be characterized 

over the entire range of the Tabor parameter by a generalized adhesion parameter ξ, defined as 

the ratio of the surface roughness and the effective surface separation, with θ and ζ representing 

asymptotic values in the high- and low-ranges of the Tabor parameter, respectively. 
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CHAPTER 9 

 
Conclusions 

 

 
Analytical and computational mechanics analyses were performed to study the adhesive 

contact behavior of smooth and rough, homogeneous or layered, elastic-plastic media. The 

results of this dissertation provide significant insight into contact mechanics behaviors over a 

wide range of length scales, with special emphasis on indentation and fretting mechanics, 

adhesion-induced contact instabilities and film delamination, and roughness effects. The main 

findings of this dissertation are summarized below.  

 

Finite element simulations of a rigid spherical indenter compressing an elastic-plastic 

half-space showed the existence of four different post-yield deformation regimes, namely linear 

elastic-plastic (LEP), nonlinear elastic-plastic (NLEP), transient fully-plastic (TFP) and steady-

state fully plastic (SSFP). While the residual elastic region disappeared at the inception of TFP, 

the mean contact pressure continued to increase and the material hardness (i.e., maximum 

contact pressure) was not achieved until the occurrence of SSFP. Moreover, the hardness-to-

yield strength ratio is a function of the elastic modulus-to-yield strength ratio (   ⁄ ). The 

formation of a residual elastic region between the spherical indenter and the plastic zone was 

observed in LEP regime. For low    ⁄  values, the plastic zone uniformly expanded toward the 

surface, producing a residual elastic strip adjacent to the spherical indenter, whereas for high 

   ⁄  values, the plastic zone first propagated to the edge of the contact region, producing a 

residual elastic core below the spherical indenter. Constitutive equations were derived 

numerically and the logarithmic dependence of the mean contact pressure on the indentation 

depth was shown to hold only in the LEP regime. The former constitutive model was extended to 

include strain hardening effects on the deformation behavior of indented elastic-plastic half-

spaces. Based on the concept of an effective yield strength, constitutive relations of the mean 

contact pressure and contact area that account for the effect of hardening on the material yields 

strength were derived for elastic-plastic half-spaces with different strain hardening characteristics.  

 

Equations for the residual indentation depth and the energy dissipated due to plastic 

deformation in indented elastic-perfectly plastic half-spaces after full unloading were extracted 

form finite element results. Constitutive equations derived for unloaded elastic-perfectly plastic 

half-space were further modified to include the effect of strain hardening by using the effective 

yield strength, which accounts for the change of the yield strength due to strain hardening. For 

high      values, only the first unloading was inelastic, i.e., all subsequent unloading resulted in 

elastic shakedown, whereas for low      values, indentation loading-unloading following initial 

unloading resulted in work dissipation due to plastic deformation, i.e., plastic shakedown or 

ratcheting. Deformation in a half-space with a low      value comprised the formation of a 

small plastic region adjacent to the indenter and near the center of the contact area were plasticity 

accumulated continuously (ratcheting), surrounded by a plastic region where plasticity occurred 

only in the first unloading cycle (elastic shakedown), and stressed region where irreversible 

deformation did not occur (elastic). For elastic-plastic half-spaces exhibiting isotropic/kinematic 
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hardening behavior, the effective stress in the vicinity of the circumference of the contact area 

increased incrementally and yielding occurred in subsequent loading-unloading cycles. 

 

A fretting contact model of a rigid (fractal) rough surface sliding against an elastic-plastic 

half-space that accounts for asperity-scale stick-slip interactions was developed. Both maximum 

tangential force and energy dissipation non-monotonically varied with surface roughness, 

characterized by an adhesion-dominant range and a plowing-dominant range, because of the 

simultaneous increase of the plastic contact area and the decrease of the elastic contact area, 

respectively. A higher nominal contact pressure yielded a lower maximum tangential force and 

less fretting energy dissipation because of the larger elastic contact area and lower slip index. 

Both maximum tangential force and energy dissipation increased with the oscillation amplitude, 

asymptotically approaching a plateau value. The maximum friction force increased with the 

decrease of    ⁄  due to the increase of the contact area, while the slip index showed an opposite 

trend because larger contact area implies more asperities in partial slip for a given oscillation 

amplitude. For small    ⁄  values, the slip index effect is more dominant and energy dissipation 

increases with    ⁄ , whereas for high    ⁄  values, the slip index effect is negligible and energy 

dissipation decreases. The effect of interfacial adhesion on contact behavior was found be more 

significant for relatively smooth surfaces, becoming secondary in the case of rough surfaces. 

This can be attributed to the larger elastic contact area produced with smooth surfaces and the 

larger plastic contact force produced from rougher surfaces. For a rough surface, energy 

dissipation due to fretting contact decreased with the increase of the interfacial adhesion 

parameter due to more asperities exhibiting partial slip.  

 

Contact instabilities, such as abrupt surface contact (jump-in) and detachment (jump-out), 

were examined by modeling adhesion between the interacting surfaces with the Lennard-Jones 

(L-J) potential. A condition of contact instability was established as an implicit function of the 

Tabor parameter. The critical Tabor parameter for contact instability was numerically determined 

to be μ* = 0.5, above which surface contact and separation exhibited unstable behavior. The 

discrepancy between the obtained critical Tabor parameter (μ* = 0.5) and that determined by 

Greenwood and later confirmed by others (μ* = 1.0) was attributed to differences in assumed 

apparatus stiffness. For finite element analysis, surface adhesion was represented by nonlinear 

spring elements with a constitutive force-distance law derived from the L-J potential. The pull-

off force obtained from finite element simulations was found to be much higher than that 

predicted by the JKR and the DMT models. A modified Tabor parameter was derived to 

characterize the influence of necking or residual impression due to excessive plastic deformation 

on contact instabilities. In repetitive normal contact, a high Tabor parameter and low plasticity 

parameter resulted in elastic shakedown, whereas a low Tabor parameter and high plasticity 

parameter led to plastic shakedown. Surface separation demonstrated a strong dependence on 

plasticity parameter. A high plasticity parameter enhanced necking, causing, in turn, a transition 

from abrupt to smooth surface separation.  

 

An effective Tabor parameter for layered media was obtained as a function of the layer 

thickness and the layer and substrate Tabor parameters. Surface separation (detachment) during 

unloading was not encountered at the instant of maximum adhesion (pull-off) force, but the 

layered medium continued to be stretched by the rigid sphere until the occurrence of the jump-

out instability. Brittle- and ductile-like mode of surface separation observed after full unloading 
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led to the development of a surface detachment map based on the maximum surface separation 

and substrate plasticity parameter. The dependence of the mode of surface separation 

(detachment) on the maximum surface separation was influenced by the plasticity parameter. 

This can be explained by considering the competing effects of the adhesion (attractive) surface 

force and the residual stress at the layer/substrate interface induced by the adjacent plastic zone 

in the substrate, both of which increased with the maximum surface separation. With the increase 

of the maximum surface separation, the unloading process exhibited more ductile- or brittle-like 

behavior for high or low values of the plasticity parameter, respectively. The pull-off force 

decreased with increasing layer-to-substrate elastic modulus ratio, while the separation force 

demonstrated an opposite trend, which was explained in terms of the effective Tabor parameter. 

Plastic deformation decreased significantly with the increase of the layer stiffness and the 

maximum equivalent plastic strain shifted from the layer/substrate interface below the edge of 

the residual pile-up (neck) to the substrate below the center of the contact region, indicating a 

decreasing propensity for interfacial delamination with increasing layer stiffness. Substrate 

plasticity intensified and surface separation exhibited more ductile-like behavior with decreasing 

layer thickness. Incremental plasticity (ratcheting) in the substrate was found to be the most 

likely steady-state deformation mechanism. Subsequent approach cycles produced a larger 

(smaller) adhesion force was larger and smaller (larger) critical surface separation for jump-in 

compared to the first cycle for low (high) β values. This trend was attributed to the residual 

impression (permanent pile-up) produced in the first cycle. 

 

A bilinear cohesive zone law, characterized by a cohesive strength and work of adhesion, 

that allowed for crack initiation and growth along the film/substrate interface was used in a finite 

element analysis of adhesive contact between a rigid sphere and an elastic-plastic layered 

medium. The unloading response was found to include five sequential stages: elastic recovery, 

interface damage (crack) initiation, damage evolution (delamination), film bending, and abrupt 

surface separation (jump-out), with plastic deformation in the substrate occurring only during 

damage initiation. Complete crack closure was prevented by plastic deformation in the substrate. 

A residual cohesive zone, formed after full unloading (jump-out), produced residual tensile 

stresses at the front of the crack tip that induced a downward deflection of the elastic film. For a 

low-strength substrate, interface delamination was not observed during unloading, while for a 

substrate of intermediate strength, damage (crack) initiation and failure (delamination) at the 

interface occurred during unloading, leading to the formation of a residual crack upon the 

occurrence of jump-out. For a high-strength substrate, deformation during loading was 

essentially elastic and the interface crack formed during unloading exhibited almost complete 

closure upon jump-out. The cohesive strength exhibited a significant effect on both loading and 

unloading behavior. Unstable crack initiation was only observed for a high cohesive strength. 

This trend was interpreted in terms of a dimensionless parameter representing the layered 

medium-to-interface stiffness ratio. Following surface jump-out, crack closure and the crack-tip 

opening displacement increased with decreasing cohesive strength due to the enhancement of 

cohesive zone closure and the increase of the critical surface separation for interfacial failure, 

respectively. The presence of an interfacial defect smaller than a critical size did not affect the 

loading-unloading behavior; however, beyond this critical size, the critical separation at the 

instant of the jump-in and jump-out instability increased linearly with the defect size. 
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Two sets of constitutive equations were developed for asperities exhibiting smooth and 

abrupt contact. Rough surface contact demonstrated a three-stage behavior with decreasing mean 

surface separation: (1) zero contact area, (2) nonlinear and rapid increase in contact area due to 

the jump-in instabilities occurring at the asperity level (particularly for surfaces characterized by 

high values of the Tabor parameter 𝜇 ), and (3) linear increase in contact area (Hertz-like 

behavior) independent of 𝜇 . The strength of adhesion decreased with increasing surface 

roughness and generally increased with 𝜇, approaching asymptotically to the value predicted for 

elastic spheres by the JKR contact model, implying a negligible surface roughness effect for 

𝜇   . However, for 𝜇 ≪  , the strength of adhesion approached asymptotically to a very low 

value, which increased with decreasing surface roughness. The adhesion parameter 𝜃 proposed 

by Fuller and Tabor was shown to govern the strength of adhesion of surfaces characterized by a 

high 𝜇 value (i.e., low 𝜃 and/or high surface roughness). A new adhesion parameter  , defined as 

the ratio of surface roughness to the equilibrium interatomic distance, was proven to describe the 

strength of adhesion of rough surfaces with a low 𝜇  value. Differences between 𝜃  and   

parameters were interpreted in terms of the effective surface separation, defined as the sum of the 

effective distance range of the adhesion force and the elastic deformation of an asperity due to 

adhesion. It was shown that the strength of adhesion can be characterized over the entire range of 

the Tabor parameter by a general adhesion parameter ξ, defined as the ratio of the surface 

roughness to the effective surface separation, with θ and ζ representing asymptotic values in the 

high- and low-range of the Tabor parameter, respectively. 

 

In summary, the contribution of the present dissertation in contact mechanics is the 

additional fundamental understanding of elastic-plastic deformation during loading and 

unloading and the role of surface adhesion in the contact behavior of both smooth and rough 

surfaces. Among the main findings summarized in this chapter, the most important results of this 

work are the first derivation ever of an analytical solution of the critical condition for adhesion-

induced contact instabilities and the introduction of a new adhesion parameter that characterizes 

the strength of adhesion between rough surfaces. In addition, numerical and analytical results of 

comprehensive adhesion contact studies yielded further insight into contact mechanics, fretting 

contact behavior, and the mechanical response of layered media to single and repetitive adhesive  

contact. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



124 
 

Bibliography 

ABAQUS User’s Manual, version 6.7.2, 2008. ABAQUS Inc., Rhode Island, USA. 

 

Anderson, T.L., 1995. Fracture Mechanics: Fundamentals and Applications, second ed., CRC 

Press, Boca Raton, FL. 

 

Attard, P., Parker, J.L., 1992. Deformation and adhesion of elastic bodies in contact. Phys. Rev. 

A 46, 7959–7971. 

 

Bagchi, A., Evans, A.G., 1996. The mechanics and physics of thin film decohesion and its 

measurement. Interface Sci. 3, 169–193. 

 

Barthel, E., and Perriot, A., 2007. Adhesive Contact of a Coated Elastic Substrate. J. Phys. D: 

Appl. Phys., 40, 1059–1067. 

 

Berthoud, P., Baumberger, T., 1998. Shear stiffness of a solid–solid multi-contact interface. 

Proceedings: Mathematical, Physical and Engineering Sciences 454 (1974), 1615–1634. 

 

Bhattacharya, A.K., Nix, W.D., 1988. Finite element simulation of indentation experiments. Int. 

J. Solids. Struct. 24, 881–891. 

 

Biwa, S., Storåkers, B., 1995. An analysis of fully plastic Brinell indentation. J. Mech. Phys. 

Solids 43, 1303–1333. 

 

Borri-Brunetto, M., Carpinteri, A., Chiaia, B., 1999. Scaling phenomena due to fractal contact in 

concrete and rock fractures. Int. J. Fracture 95, 221–238. 

 

Boussinesq, J., 1885.Application des potentiels à ľ étude de ľ équilibre et du mouvement des 

solides elastiques.  Gauthier-Villars, Paris, France. 

 

Bradley, R.S., 1932. The cohesive force between solid surfaces and the surface energy of solids. 

Phil. Mag. 13, 853–862. 

 

Brizmer, V., Kligerman, Y., Etsion, I., 2007. Elastic-plastic spherical contact under combined 

normal and tangential loading in full stick. Tribol. Lett. 25 (1), 61-70. 

 

Carpick, R. W., Ogletree, D. F., and Salmeron, M., 1999. A General Equation for Fitting Contact 

Area and Friction vs. Load Measurements. J. Colloid Interface Sci., 211, 395–400. 

 

Cattaneo, C., 1938. Sul contatto di due corpi elastici: Distribuzione locale deglisforzi. Rc Accad 

Naz Lincei 27, 474–478. 

 

Ciavarella, M., Demelio, G., Barber, J.R., Jang, Y.H., 2000. Linear elastic contact of the 

Weierstrass profile. Proc. R. Soc. Lond. A 456,387–405. 



125 
 

Chai, H., 2003. Fracture mechanics analysis of thin coatings under spherical indentation. Int. J. 

Fract. 119, 263–285. 

 

Chen, L., Yeap, K.B., Zeng, K.Y., Liu, G.R., 2009, Finite element simulation and experimental 

determination of interfacial adhesion properties by wedge indentation. Phil. Mag. 89, 

1395–1413. 

 

Cowles, B.A., 1996. High cycle fatigue in aircraft gas turbines – an industry perspective. Int. J. 

Fract. 80, 147–163. 

 

Derjaguin, B.V., Muller, V.M., Toporov, Y.P., 1975. Effect of contact deformations on the 

adhesion of particles. J. Colloid Interface Sci. 53, 314–326. 

 

Drory, M.D., Hutchinson, J.W., 1996. Measurement of the adhesion of a brittle film on a ductile 

substrate by indentation. Proc. R. Soc. Lond. A 452, 2319–2341. 

 

Du, Y., Adams, G. G., McGruer, N. E., and Etsion, I., 2008. A Parameter Study of Separation 

Modes of Adhering Microcontacts. J. Appl. Phys., 103, 064902(1)–064902(9). 

 

Du, Y., Chen, L., McGruer, N.E., Adams, G.G., Etsion, I., 2007. A finite element model of 

loading and unloading of an asperity contact with adhesion and plasticity. J. Colloid 

Interface Sci. 312, 522–528. 

 

Eid, H., Joshi, N., McGruer, N. E., and Adams, G. G., 2011. A Model of Contact With Adhesion 

of a Layered Elastic-Plastic Microsphere With a Rigid Flat Surface. ASME J. Tribol., 133, 

031406(1)–031406 (5). 

 

Eriten, M., Polycarpou, A., Bergman, L., 2011. Physics-based modeling of fretting behavior of 

nominally flat rough surfaces. Int. J. Solids. Struct. 48, 1436–1450. 

 

Eriten, M., Polycarpou, A., Bergman, L., 2011. Surface roughness effect on energy dissipation in 

fretting contact of nominally flat surfaces. J. Appl. Mech. 78, (021011) 1–8.  

 

Etsion, I., Kligerman, Y., Kadin, Y., 2005. Unloading of an elastic-plastic loaded spherical 

contact. Int. J. Solid. Struct. 42, 3716-3729 

 

Feng, J.Q., 2000. Contact behavior of spherical elastic particles: a computational study of 

particle adhesion and deformations. Colloid Surf. A:  Physicochem. Eng. Aspects 172, 

175–198. 

 

Feng, J. Q., 2001. Adhesive Contact of Elastically Deformable Spheres: A Computational Study 

of Pull-off Force and Contact Radius. J. Colloid Interface Sci., 238, 318–323. 

 

Fischer-Cripps, A. C., 2011. Nanoindentation. Springer-Verlag, New York, NY 

 



126 
 

Follansbee, P.S., Sinclair, G.B., 1984. Quasi-static normal indentation of an elasto-plastic half-

space by a rigid sphere–I. Analysis. Int. J. Solids. Struct. 20, 81–91. 

 

Fuller, K.N.G., Tabor, D., 1975. The effect of surface roughness on the adhesion of elastic solids. 

Proc. R. Soc. Lond. A 345, 327–342.  

 

Gao, Y.F., Bower, A.F., 2004. A simple technique for avoiding convergence problems in finite 

element simulations of crack nucleation and growth on cohesive interfaces. Modelling 

Simul. Mater. Sci. Eng. 12, 453–463. 

 

Giannakopoulos, A.E., Larsson, P.-L., Vestergaard, R., 1994. Analysis of Vickers indentation. 

Int. J. Solids. Struct. 31, 2679–2708. 

 

Greenwood, J.A., 1997. Adhesion of elastic spheres. Proc. R. Soc. Lond. A 453, 1277–1297. 

 

Greenwood, J.A., Johnson, K.L., 1998. An alternative to the Maugis model of adhesion between 

           elastic spheres. J. Phys. D: Appl. Phys. 31, 3279–3290. 

 

Greenwood, J.A., Williamson, J.B.P., 1966. Contact of nominally flat surfaces. Proc. R. Soc. 

Lond. A 295, 300–319 

 

Hardy, C., Baronet, C.N., Tordion, G.V., 1971. The elasto-plastic indentation of a half-space by 

a rigid sphere. Int. J. Numer. Meth. Eng. 3, 451–462. 

 

Hill, R., 1967. The Mathematical Theory of Plasticity. Oxford University Press, London, pp. 

128–149. 

 

Hill, R., Storåkers, B., Zdunek, A.B., 1989. A theoretical study of the Brinell hardness test. Proc. 

R. Soc. Lond. A 423, 301–330. 

 

Ishlinsky, A.Y., 1944. Axially symmetric problem in plasticity and Brinell’s hardness test. Prikl. 

Mat. Mekh. 8, 201–224.  

 

Israelachvili, J.N., 1992. Intermolecular and Surface Forces. 2nd ed., Academic Press, San Diego, 

CA. 

 

Jackson, R. L., Streator, J. L., 2006. A multi-scale model for contact between rough surfaces. 

Wear. 261, 1337-1347 

 

Johnson, K.L., 1955. Surface interaction between elastically loaded bodies under tangential 

forces. Proc. R. Soc. Lond. A 230 (1183), 531–548. 

 

Johnson, K.L., 1958. A note on the adhesion of elastic solids. Brit. J. Appl. Phys. 9, 199–200. 

 

Johnson, K.L., 1985. Contact Mechanics, Cambridge University Press, Cambridge, England. 

 



127 
 

Johnson, K.L., Greenwood, J.A., 1997. An adhesion map for the contact of elastic spheres. J. 

Colloid Interface Sci. 192, 326–333. 

 

Johnson, K.L., Kendall, K., Roberts, A.D., 1971. Surface energy and the contact of elastic solids. 

Proc. R. Soc. Lond. A 324, 301–313. 

 

Johnson, K. L., and Sridhar, I., 2001. Adhesion Between a Spherical Indenter and an Elastic 

Solid With a Compliant Elastic Coating. J. Phys. D: Appl. Phys., 34, 683–689. 

 

Kadin, Y., Kligerman, Y., Etsion, I., 2006. Unloading of an elastic-plastic contact of rough 

surfaces. J. Mech. Phys. Solids. 54, 2652-2674 

 

Kadin, Y., Kligerman, Y., Etsion, I., 2006. Multiple loading-unloading of an elastic-plastic 

spherical contact. Int. J. Solid. Struct. 43, 7119-7127 

 

Kadin, Y., Kligerman, Y., Etsion, I., 2008a. Loading-unloading of an elastic-plastic adhesive 

spherical microcontact. J. Colloid Interface Sci. 321, 242–250. 

 

Kadin, Y., Kligerman, Y., Etsion, I., 2008b. Cyclic loading of an elastic-plastic adhesive 

spherical microcontact. J. Appl. Phys. 104, 073522(1–8). 

 

Kadin, Y., Kligerman, Y., Etsion, I., 2008c. Jump-in induced plastic yield onset of approaching     

           microcontacts in the presence of adhesion. J. Appl. Phys. 103, 013513(1–8). 

 

Kesari, H., Doll, J.C., Pruitt, B.L., Cai., W, Lew, A.J., 2010. Role of surface roughness in 

hysteresis during adhesive elastic contact. Phil. Mag. Lett. 90, 891–902. 

 

Kesari, H., Lew, A.J., 2011. Effective macroscopic adhesive contact behavior induced by small 

surface roughness. J. Mech. Phys. Solids 59, 2488–2510. 

 

Kim, K.-S., McMeeking, R.M., Johnson, K.L., 1998. Adhesion, slip, cohesive zones and energy 

fluxes for elastic spheres in contact. J. Mech. Phys. Solids 46, 243–266. 

 

King, R. B., 1987. Elastic Analysis of Some Punch Problems for a Layered Medium. Int. J. 

Solids Struct., 23, 1657–1664. 

 

Kogut, L., Etsion, I., 2002, Elastic-plastic contact analysis of a sphere and a rigid flat. J. Appl. 

Mech. 69, 657-662 

 

Kogut, L., Etsion, I., 2003. Adhesion in elastic-plastic spherical microcontact. J. Colloid 

Interface Sci. 261, 372–378. 

 

Kogut, L., Komvopoulos, K., 2004. Analysis of the spherical indentation cycle for elastic-

perfectly plastic solids. J. Mater. Res. 19, 3641–3653. 

 



128 
 

Komvopoulos, K., 1988. Finite Element Analysis of a Layered Elastic Solid in Normal Contact 

With a Rigid Surface. ASME J. Tribol., 110, 477–485. 

 

Komvopoulos, K., 1996. Surface engineering and microtribology for microelectromechanical 

systems. Wear 200, 305–327. 

 

Komvopoulos, K., 2000. Head-disk interface contact mechanics for ultrahigh density magnetic 

recording. Wear 238, 1–11. 

 

Komvopoulos, K., 2003. Adhesion and friction forces in microelectromechanical systems: 

mechanisms, measurement, surface modification techniques, and adhesion theory. J. 

Adhes. Sci. Technol. 17, 477–517.  

 

Komvopoulos, K., Saka, N., and Suh, N. P., 1986. Plowing Friction in Dry and Lubricated Metal 

Sliding.  J. Tribol. 108, 3, 301–313. 

 

Komvopoulos, K., Saka, N., and Suh, N. P., 1987. The Role of Hard Layers in Lubricated and 

Dry Sliding. ASME J. Tribol., 109, 223–231. 

 

Komvopoulos, K., Gong, Z.-Q., 2007. Stress analysis of a layered elastic solid in contact with a 

rough surface exhibiting fractal behavior. Int. J. Solids. Struct. 44, 2109–2129. 

 

Komvopoulos, K., Yan, W., 1998. Three-dimensional elastic-plastic fractal analysis of surface 

adhesion in microelectromechanical systems. ASME J. Tribol. 120, 808–813. 

 

Komvopoulos, K., Ye, N., 2001. Three-dimensional contact analysis of elastic-plastic layered 

media with fractal surface topographies. ASME J. Tribol. 123, 632–640. 

 

Kogut, L., Etsion, I., 2002. Elastic-Cplastic contact analysis of a sphere and a rigid flat. J. Appl. 

Mech. 69 (5), 657-662. 

 

Kral, E.R., Komvopoulos, K., Bogy, D.B., 1993. Elastic-plastic finite element analysis of 

repeated indentation of a half-space by a rigid sphere. ASME J. Appl. Mech. 60, 829–841. 

 

Kral, E. R., Komvopoulos, K., and Bogy, D. B., 1995a. Finite Element Analysis of Repeated 

Indentation of an Elastic-Plastic Layered Medium by a Rigid Sphere, Part I: Surface 

Results. ASME J. Appl. Mech., 62, 20–28. 

 

Kral, E. R., Komvopoulos, K., and Bogy, D. B., 1995b. Finite Element Analysis of Repeated 

Indentation of an Elastic-Plastic Layered Medium by a Rigid Sphere, Part II: Subsurface 

Results. ASME J. Appl. Mech., 62, 29–42. 

 

Knapp, J.A., Follstaedt, D.M., Myers, S.M., Barbour, J.C., Friedmann, T.A., 1999. Finite-

element modeling of nanoindentation. J. Appl. Phys. 85, 1460–1474. 

 



129 
 

Lemaitre, J., Chaboche, J. L., 1994. Mechanics of Solid Materials. Cambridge University Press, 

Cambridge, U.K. 

 

Li, J., and Chou, T.-W., 1997. Elastic Field of a Thin-Film/Substrate System Under an 

Axisymmetric Loading. Int. J. Solids Struct., 34, 4463–4478. 

 

Li, Q., Kim, K.-S., 2009. Micromechanics of rough surface adhesion: a homogenized projection 

method. Acta Mechanica Solida Sinica 22, 377–390. 

 

Majumdar, A., Bhushan, B., 1990. Role of fractal geometry in roughness characterization and 

contact mechanics of surfaces. J. Tribol. 112, 205-216. 

 

Majumdar, A., Bhushan, B., 1991. Fractal model of elastic-plastic contact between rough 

surfaces. J. Tribol. 113, l-11. 

 

Mandelbrot, B.B., 1983. The Fractal Geometry of Nature. Freeman, New York. 1–83 and 116–

118. 

 

Marshall, D.B., Evans, A.G., 1984. Measurement of adherence of residually stressed thin films 

by indentation. I. Mechanics of interface delamination. J. Appl. Phys. 56, 2632–2638. 

 

Maugis, D., 1992. Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. 

Colloid Interface Sci. 150, 243–269. 

 

Maugis, D., Pollock, H. M., 1984. Surface forces, deformation and adherence at metal 

microcontacts. Acta Metall. 32, 1323–1334. 

 

Majumder, S., McGruer, N. E., Adams, G. A., Zavracky, P. M., Morrison, R. H., Krim, J., 2001. 

Study of contacts in an electrostatically actuated microswitch. Sensors and Acturators A. 

93, 19-26 

 

Marsh, D.M., 1964. Plastic flow in glass. Proc. R. Soc. Lond. A 279, 420–435. 

 

Mesarovic, S.D., Fleck, N.A., 1999. Spherical indentation of elastic-plastic solids. Proc. R. Soc. 

Lond. A 455, 2707–2728. 

 

Mesarovic, S.D., Johnson, K.L., 2000. Adhesive contact of elastic–plastic spheres. J. Mech. Phys. 

Solids 48, 2009–2033. 

 

Mindlin, R.D., 1949. Compliance of elastic bodies in contact. J. Appl. Mech. 16 (3), 259-268. 

 

Mindlin, R.D., Mason, W.P., Osmer, T.F., Deresiewicz, H., 1952. Effects of an oscillating 

tangential force on the contact surfaces of elastic spheres. Proceedings of the First US 

National Congress of Applied Mechanics 1951, 203-208 

 



130 
 

Morrow, C., Lovell, M., Ning, X., 2003. A JKR-DMT transition solution for adhesive rough 

surface contact. J. Phys. D: Appl. Phys. 36, 534–540. 

Mukherjee, S., Ali, S.M., Sahoo, P., 2004. An improved elastic-plastic contact model of rough 

surfaces in the presence of adhesion. Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 218, 

557–567. 

 

Muller, V.M., Yushchenko, V.S., Derjaguin, B.V., 1980. On the influence of molecular forces on 

the deformation of an elastic sphere and its sticking to a rigid plane. J. Colloid Interface 

Sci. 77, 91–101.  

 

O’Sullivan, T. C., and King, R. B., 1988. Sliding Contact Stress Field Due to a Spherical 

Indenter on a Layered Elastic Half-Space. ASME J. Tribol., 110, 235–240. 

 

Park, Y.J., Pharr, G.M., 2004. Nanoindentation with spherical indenters: finite element studies of 

deformation in the elastic–plastic transition regime. Thin Solid Films 447/448, 246–250. 

 

Pethica, J. B., Sutton, A.P., 1988. On the stability of a tip and flat at very small separations. J. 

Vac. Sci. Technol. A 6, 2490–2494. 

 

Perriot, A., and Barthel, E., 2004. Elastic Contact to a Coated Half-Space: Effective Elastic 

Modulus and Real Penetration. J. Mater. Res., 19, 600–608. 

 

Persson, B.N.J., Bucher, F., Chiaia, B., 2002. Elastic contact between randomly rough surfaces: 

comparison of theory with numerical results. Phys. Rev. B 65, (184106) 1–7. 

 

Sahoo, P., Chowdhury, S.K.R., 1996. A fractal analysis of adhesion at the contact between rough 

solids. Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 210, 269–279.  

 

Samuels, L.E., Mulhearn, T.O., 1957. An experimental investigation of the deformed zone 

associated with indentation hardness impressions. J. Mech. Phys. Solids 5, 125–134. 

 

Sergici, A. O., Adams, G. G., and Müftü, S., 2006. Adhesion in the Contact of a Spherical 

Indenter With a Layered Elastic Half-Space. J. Mech. Phys. Solids, 54, 1843–1861. 

 

Smallwood, S.A., Eapen, K.C., Patton, S.T., Zabinski, J.S., 2006. Performance results of MEMS 

coated with a conformal DLC. Wear 260, 1179–1189. 

 

Song, J., Srolovitz, D.J., 2006. Adhesion effects in material transfer in mechanical contacts. Acta 

Mater. 54, 5305–5312. 

 

Song, Z., and Komvopoulos, K., 2011. Adhesion-Induced Instabilities in Elastic and Elastic-

Plastic Contacts During Single and Repetitive Normal Loading. J. Mech. Phys. Solids, 59, 

884–897. 

 

Song, Z., Komvopoulos, K., 2012. Adhesive contact of a rigid sphere with a hard elastic film on 

an elastic-plastic substrate. ASME J. Appl. Mech. (accepted) 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WHR-4CX6R70-6B&_user=4420&_coverDate=09%2F30%2F1980&_rdoc=15&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236857%231980%23999229998%23511583%23FLA%23display%23Volume)&_cdi=6857&_sort=d&_docanchor=&_ct=49&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=fc01f46d686e9632f3596c85ed64589b
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WHR-4CX6R70-6B&_user=4420&_coverDate=09%2F30%2F1980&_rdoc=15&_fmt=high&_orig=browse&_srch=doc-info(%23toc%236857%231980%23999229998%23511583%23FLA%23display%23Volume)&_cdi=6857&_sort=d&_docanchor=&_ct=49&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=fc01f46d686e9632f3596c85ed64589b


131 
 

 

Song, Z., Komvopoulos, K., 2012. Spherical indentation of an elastic-plastic half-space: 

deformation map and evolution of plasticity. (Submitted) 

 

Sridhar, I., Johnson, K. L., and Fleck, N. A., 1997. Adhesion Mechanics of the Surface Force 

Apparatus. J. Phys. D: Appl. Phys., 30, 1710–1719. 

 

Sridhar, I., and Sivashanker, S., 2003. On the Adhesion Mechanics of Multi-Layer Elastic 

Systems. Surf. Coat. Technol., 167, 181–187. 

 

Tabor, D., 1951. The Hardness of Metals, Clarendon Press, Oxford, England. 

 

Tabor, D., 1977. Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2–13. 

 

Timoshenko, S.P., Goodier, J.N., 1970. Theory of Elasticity. 3rd ed., McGraw-Hill, New York, 

NY. 

 

Tvergaard, V., Hutchinson, J.W., 1994. Toughness of an interface along a thin ductile layer 

joining elastic solids. Phil. Mag. A 70, 641–656. 

 

Tvergaard, V., Hutchinson, J.W., 1996. Effect of strain-dependent cohesive zone model on 

predictions of crack growth resistance. Int. J. Solids Struct. 33, 3297–3308.  

 

Wang, S., Komvopoulos, K., 1994a. A fractal theory of the interfacial temperature distribution in 

the slow sliding regime: Part I – elastic contact and heat transfer analysis. J. Tribol. 116, 

812–823. 

 

Wang, S., Komvopoulos, K., 1994b. A fractal theory of the interfacial temperature distribution in 

the slow sliding regime: Part II – multiple domains, elastoplastic contacts and 

applications. J. Tribol. 116, 824–832. 

 

Wang, X.-D., Shen, Z.-X., Zhang, J.-L., Jiao, H.-F., Cheng, X.-B., Chen, L.-Y., and Wang, Z.-S., 

2010. Submicrometer Aluminum Spheres’ Adhesion to Planar Silicon Substrates. 

Langmuir, 26, 13903–13906. 

 

Wu, J.-J., 2008. Easy-to-Implement Equations for Determining Adhesive Contact Parameters 

with the Accuracy of Numerical Simulations. Tribol. Lett., 30, 99–105. 

 

Wu, Y.-C., Adams, G.G., 2009. Plastic yield conditions for adhesive contacts between a rigid 

sphere and an elastic half-space. J. Tribol. 131, 011403(1–7). 

 

Xia, S.M., Gao, Y.F., Bower, A.F., Lev, L.C., Cheng, Y.-T., 2007. Delamination mechanism 

maps for a strong elastic coating on an elastic-plastic substrate subjected to contact 

loading. Int. J. Solids Struct. 44, 3685–3699.  

 



132 
 

Yang, J., Komvopoulos, K., 2005. A mechanics approach to static friction of elastic–plastic 

fractal surfaces. J. Tribol. 127, 315–324. 

Yan, W., Komvopoulos, K., 1998. Contact analysis of elastic-plastic fractal surfaces. J. Appl. 

Phys. 84, 3617-3624 

 

Yan, S. L., Li, L. Y., 2003. Finite element analysis of cyclic indentation of an elastic-perfectly 

plastic half-space by a rigid sphere. Proc. Inst. Mech. Engrs. 217, 505-515 

 

Ye, N., Komvopoulos, K., 2003. Indentation analysis of elastic-plastic homogeneous and layered 

media: criteria for determining the real material hardness. ASME J. Tribol. 125, 685–691. 

 

Yin, X., Komvopoulos, K., 2010. An adhesive wear model of fractal surfaces in normal contact. 

Int. J. Solids. Struct. 47, 912-921 

 

Yu, N., Polycarpou, A.A., 2004. Adhesive contact based on the Lenard-Jones potential: a 

correction to the value of the equilibrium distance as used in the potential. J. Colloid 

Interface Sci. 278, 428–435. 

 

Zhao, Y.-P., Wang, L.S., Yu, T.X., 2003. Mechanics of adhesion in MEMS – a review. J. 

Adhesion Sci. Technol. 17, 519-546. 

 

Zait, Y., Kligerman, Y., Etsion, I., 2010. Unloading of an elastic-plastic spherical contact under 

stick contact condition. Int. J. Solid. Struct. 47, 990-997 
 

 

 

 

 

 

 

 

 

 



133 
 

Appendix A: Surface traction distribution due to the Lennard-Jones potential 

 For two-atom interaction described by a potential of the form  
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where r is the atom-to-atom distance, the interfacial energy per unit area of two planar surfaces is 

given by (Israelachvili, 1992) 
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where x is the distance between the planar surfaces and ρ1, ρ2 are the atomic densities of the two 

planar surfaces, respectively. 

 

 The L-J interatomic potential can be written as  
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where D is the minimum potential,  is the zero potential distance,
6

1 4 DC  , and 
12

2 4 DC  .  

 

 Using Eqs. (A2) and (A3) and setting n = 6 and 12 in V1 and V2, respectively, the 

interfacial energy per unit area is expressed as   

 











2

6

8

12

21
21

303
)()()(

xx

D
xVxVxV


                                                                          (A4) 

 

 The surface traction p(x) due to the L-J potential can then be obtained as the first 

derivative of Eq. (A4), i.e., 
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 The surface distance at equilibrium  is the solution of 0)( xp  and is given by 
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Substitution of Eq. (A6) into Eq. (A5) yields 
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 The work of adhesion   is given by 
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 Hence, from Eqs. (A7) and (A.8), it follows that  
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 A similar derivation of the surface traction due to the interatomic L-J potential has been 

reported by Yu and Polycarpou (2004). 
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Appendix B: Contact area at maximum adhesion force derived from the JKR 

theory 

In the JKR theory, the Hertzian equation of the contact radius  , modified to include the 

effect of surface energy, is given by (Johnson et al., 1971) 
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Substitution of           Δ  into Eq. (B1) leads to the following equation of the 

contact radius at the instant of     : 
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Using the same normalization scheme, i.e.,  ̅           , Eq. (B2) can be written in 

dimensionless form as follows 
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The contact radius given by Eq. (B3) consists of regions with compressive and tensile 

surface tractions, whereas in Eq. (8.6b) the contact radius is defined as the region of compressive 

surface traction. Therefore, for consistency, it is necessary to determine the contact region under 

compressive traction in the JKR solution. In the JKR theory, the effect of adhesion on Hertzian 

contact is included by balancing the external work with the surface energy and the elastic strain 

energy. The JKR model accounts for the effects of contact pressure and adhesion only within the 

contact area. The general solution of the contact pressure      can be obtained as the 

superposition of a compressive contact stress distribution due to the applied normal (compressive) 

force    and an adhesive (tensile) contact stress distribution due to a tensile force    applied by a 

rigid punch over the same contact radius (Eq. (B1)). Consequently,      is expressed as 

(Johnson, 1958) 
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where   is the radial distance from the center of contact. 

 

The Hertzian contact load    and the repulsive load    at the instant of      are given by 
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Substitution of Eqs. (B5) and (B6) into Eq. (B4) and use of the normalization   ̅  
          leads to the following equation of the normal stress distribution: 
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    3 )]                     (B7) 

 

Substitution of Eq. (B3) into Eq. (B7) yields,  
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]                                                  (B8) 

 

The contact radius    corresponding to the region of compressive surface traction, 

obtained by setting Eq. (B8) equal to zero, is given by       √ . Hence, using Eq. (B3), the 

dimensionless contact radius  ̅  can be expressed as 
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