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Synthesis of Eight-bar Linkages by Constraining a 6R

Loop

K. H. Sonawalea,∗, J. M. McCarthya

aRobotics and Automation Laboratory,Mechanical and Aerospace Engineering, University
of California, Irvine, California 92697, USA

Abstract

This paper presents a design system for planar eight-bar linkages that begins
with a user specified 6R planar loop and five required configurations, and
computes two RR constraints that yield an eight-bar linkage. There are
32 ways that these constraints can be added to the 6R loop to yield as
many as 340 different linkages, which include eight of the 16 eight-bar linkage
topologies. An analysis routine based on the Dixon determinant is used to
verify the performance of each design candidate. Random variation of task
configurations within user specified tolerance zones is used to increase the
number of candidate designs. The result is an effective system for the design
of eight-bar linkages, which is demonstrated by designing linkages that guide
movement though a symmetric and offset set of parallel task positions along
a straight line.

1. Introduction

This paper presents a design system for eight-bar linkages that adds two
RR dyads to a user-specified 6R planar loop shown in Figure 1. The approach
specifies five configurations and then uses five-position synthesis of two RR
dyads to constrain the relative movement of links in the 6R loop to obtain
an eight-bar linkage.

The design system generates all of the candidate linkages available from
the 32 ways the 6R loop can be constrained, and then evaluates their per-
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Figure 1: A 6R loop with hinged joints C1, . . . , C6 and links {1, . . . , 6}, together with its
linkage graph. Notice that the ground is link 1 and the end-effector is link 4.

formance to ensure successful designs. The number of design candidates is
increased by varying the task requirements within user specified tolerance
zones. This system is demonstrated by finding successful eight-bar linkage
designs for a set of parallel task positioned on a straight line.

2. Literature Review

A design theory for linkages with six, eight and 10-bars was presented
by Kempe (1877), who provided geometric techniques for the design of 8-
bar linkages that trace an exact straight line. Mueller (1954) introduced a
graphical approach for the synthesis of an eight-bar linkage. Also see the
work of Hain (1967) and Hamid and Soni (1973). Chen and Angeles (2008)
developed a method to synthesize an eight-bar linkage obtained by coupling
two four-bar linkages that can reach 11 specified task positions.

The use of two RR dyad to transform a 6R loop into an eight-bar linkage
was introduced by Soh and McCarthy (2007). Central to this process is
the calculation of an RR dyad that connects two relatively moving bodies
introduced by Burmester (1888), also Sandor et al. (1984). For a discussion
of Burmester’s work see Koetsier (1989).

The designer specifies five task configurations for the 6R loop, and the
design system calculates the inverse kinematics of the system to determine
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the position and orientation every link in the system, Murray et al. (1994).
The synthesis routine uses a graph theory based procedure to identify the
RR dyads that yield eight-bar linkages. This provides an automated way to
formulate the design equations for the 32 different cases yielding eight of the
sixteen eight-bar linkage topologies, McCarthy and Soh (2010).

The design system analyzes each candidate design in order to verify per-
formance. This is done using the analysis algorithm developed by Parrish et
al. (2014), which uses the adjacency matrix of a linkage graph to characterize
the design, Tsai (2000).

This paper is an extension of research on eight-bar linkage design system
presented in Sonawale and McCarthy (2014); Sonawale (2015). The initial
results in this area focused on adding three RR dyads to a 4R serial chain can
be found here, Sonawale and McCarthy (2015). Examples show this design
system yields a large number of successful designs even for a parallel set of
task positions distributed on a straight line.

3. Synthesis of an RR Constraint

The usual formulation of Burmester’s synthesis equations assumes that
the RR constraint connects a moving body M to a fixed body F . This can be
generalized for the purposes of this design system, by assuming five positions
of the first moving body represented by frames Mj and five positions of the
second moving body represented by frames Fj, j = 1, . . . 5, are known. Let
the 3× 3 homogeneous transformations [Rj] and [Sj] define the position and
orientation of Mj and Fj, j = 1, . . . 5, respectively, in the ground frame, given
by,

[Rj] =

cos γj − sin γj aj
sin γj cos γj bj

0 0 1

 , [Sj] =

cosσj − sinσj cj
sinσj cosσj dj

0 0 1

 ,
j = 1, . . . , 5. (1)

Let w = (wx, wy, 1) be the homogeneous coordinates of point fixed in the
frame M and, similarly, let g = (gx, gy, 1) be fixed in F , so

Wj = [Rj]w, Gj = [Sj]g, j = 1, . . . , 5. (2)

The constraint equations for an RR crank that connect the frames Mj and
Fj, j = 1, . . . 5, are given by,

(Wj −Gj) · (Wj −Gj) = R2, j = 1, . . . , 5, (3)

3



where the dot denotes the usual vector dot product, and R is a constant that
defines the length of the RR crank. These five equations can be solved for
the coordinates of w and g and the length R.

It is convenient to reformat the equations in (2) so that the coordinates
of the RR crank pivots are defined in the ground frame G as W1 = (x, y, 1)
and G1 = (u, v, 1). This is done by introducing the relative transformations,

[R1j] = [Rj][R1]
−1 [S1j] = [Sj][S1]

−1, j = 1, . . . , 5, (4)

so that
Wj = [R1j]W

1 Gj = [S1j]G
1, j = 1, . . . , 5. (5)

The constraint equations for the RR crank now take the form,

([R1j]W
1 − [S1j]G

1) · ([R1j]W
1−[S1j]G

1) = R2

j = 1, . . . , 5. (6)

Subtract the first of the equations (6) from the remaining to eliminate
R2 and obtain the four bilinear synthesis equations in four unknowns, r =
(u, v, x, y) as,

([R1j]W
1 − [S1j]G

1) · ([R1j]W
1 − [S1j]G

1)−(W1 −G1) · (W1 −G1) = 0,

j = 2, . . . , 5. (7)

The solution of these synthesis equations yields as many as four sets of design
parameters, r = (ui, vi, xi, yi), i = 1, 2, 3, 4, defining the RR cranks W1G1.
See Burmester (1888), Sandor et al. (1984) and McCarthy and Soh (2010).

4. Attachment of RR Dyads to a 6R Loop

In order to manage the attachment of two RR dyads to a 6R planar loop,
we introduce its linkage graph, see Tsai (2000). Let the graph, G =< V,E >,
be defined by the list of links V and the list of joints E, which represent the
two links they connect. Our convention for numbering the links of a 6R loop
is shown in Figure 1.

This yields a linkage graph for the 6R loop defined by,

G = < V,E >

= < {1, 2, 3, 4, 5, 6} , {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {1, 6}} > . (8)
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The eight-bar linkages obtained by adding two RR dyads to a 6R loop
can be viewed as defined by the linkage graphs L(ij)(kl) obtained from G by
adding two subgraphs,

Aij = < {i, j, 7} , {{i, 7}, {j, 7}} >,
Bkl = < {k, l, 8} , {{k, 8}, {l, 8}} > . (9)

The vertices (i, j) and (k, l) are to be enumerated to determine all possible
eight-bar linkages given by,

L(ij)(kl) = G ∪ {{7, 8} , {{i, 7}, {j, 7}, {k, 8}, {l, 8}}}. (10)

In order to enumerate the linkage graphs, L(ij)(kl), we introduce the vertex
list V6 of the 6R closed chain and the vertex list V7 of the linkage after Aij
is attached. Enumeration of pairs of vertices in the lists V6 and V7 that are
available for the attachment of the RR dyads yields the lists PA and PB,

PA ={(i, j) : i, j ∈ V6, i 6= j}, |PA| =
(

6

2

)
= 15,

PB ={(k, l) : k, l ∈ V7, k 6= l}, |PB| =
(

7

2

)
= 21. (11)

This shows that the maximum number of linkage graphs, L(ij)(kl) obtained
by combination of these lists is given by,

|L(ij)(kl)| = |PA||PB| = 315. (12)

However, these 315 linkage graphs are reduced by constraints imposed to
eliminate duplicate graphs, to remove links that combine to form a structure,
and to add preferred design features to the eight-bar linkage.

4.1. Ordering

The possibility that two different linkage graphs describe the same eight-
bar linkage can be eliminated by introducing an ordering to the labeling of
the attached RR dyads. Specifically, introduce the convention,

i < j, k < l. (13)

Now, order the linkage graphs L(ij)(kl), such that the pairs (ij)(kl) are listed
in order of the first entries i and k and then in order of the second entries j

5



and l. This means the two dyads connecting links {2, 6} and {3, 5} are listed
as (26)(35) while the dyads connecting links {2, 6} and {2, 3}, are listed as
(23)(26).

This ordering eliminates 105 duplicate graphs reducing the number of
linkage graphs to 210.

Figure 2: RR dyads connecting the links {2, 7, 8} yields three joints {{2, 7}, {2, 8}, {7, 8}}
that form a structure.

Figure 3: The sequence of links {2, 3, 4, 7} form a quadrilateral. A dyad connecting vertices
{2, 4} or {3, 7} forms a structure.

4.2. Structure Subgraphs

There are two cases in which the addition of two RR dyads creates a
substructure, which collapses several links into one. The two cases are at-
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tachments that:

1. Form a triangle: If three links {r, s, t} are connected by three joints
{{r, s}, {s, t}, {t, r}}, the result is a pin-jointed triangle which forms a
structure with no relative movement. An example is the sequence of
edges {{2, 7}, {2, 8}, {7, 8}} shown in Figure 2.

2. Connect opposite sides of a quadrilateral: If four vertices {r, s, t, w}
form a quadrilateral, then the addition of a dyad connecting either {r, t}
or {s, w} will forms a structure with no relative movement. Figure
3 shows the case where links {2, 3, 4, 7} forms a structure with the
addition of the dyad connecting {3, 7}.

Eliminating the linkage graphs that have these substructures reduces the
number of eight-bar linkage graphs to 69.

4.3. Design features

This last condition is artificial in the sense that it imposed to achieve
designs that have a particular feature. Our experience shows that an im-
portant concern of linkage designers is the location of attachment points to
the ground frame. For this reason, we restrict the eight-bar linkage graphs
to include only the two connections to the ground frame that were specified
as part of the 6R loop. This removes 37 linkage graphs that include a third
base pivot. The result is 32 eight-bar linkage graphs.

5. The Design Requirements

The eight-bar linkage design system requires specification of the five task
positions for the end-effector and the dimensions of the 6R loop in the first
position, see Figure 4. Specifically, the user defines the following require-
ments,

1. the five transformations, [Dj], j = 1, . . . , 5, that define the movement
of the end-effector frame,

[Dj] =

cosφj − sinφj d1x,j
sinφj cosφj d1y,j

0 0 1

 , j = 1, . . . , 5; (14)

2. the coordinates of the two base pivots, C1 : g1 = (g1x, g1y, 1), and
C6 : g2 = (g2x, g2y, 1) ;
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Figure 4: Five required task positions, and the configuration of the 6R loop in the first
position.

3. the coordinates of the two moving pivots attached to the end-effector,
measured in the end-effector frame, C3 : h1 = (h1x, h1y, 1) and C4 :
h2 = (h2x, h2y, 1);

4. the dimensions, l2 = |C1C2|, l3 = |C2C3|, l5 = |C4C5| and l6 = |C5C6|;
and,

5. whether the elbow pivots C2 and C5 are configured in the positive or
negative configurations.

This data is used to determine the position and orientation of each link
of the 6R loop in each of the task positions. The relative positions of links
in the 6R loop are then used to synthesis the RR dyads using equation (7).

5.1. Inverse kinematics of the 6R loop

The position and orientation of the each of the links of the 6R loop can
be determined by considering the inverse kinematics of the two 3R chains,
{C1, C2, C3} and {C6, C5, C4}, that form the 6R loop, see Figure 4.

Using the Denavit Hartenberg convention, the kinematics equations for
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Figure 5: (a) is the positive configuration for elbow C2, and (b) is the negative configura-
tion for elbow C2 for the left 3R chain {C1, C2, C3}.

the 3R chain {C1, C2, C3} are given as,

[Dj] = [T (g1)][Z(θ2,j)][X(l2)][Z(θ3,j − θ2,j)][X(l3)][Z(φj − θ3,j)][T (−h1)],

j = 1, . . . , 5;
(15)

where the homogenous transformation matrices [T (g)], [Z(θ)] and [X(l)] and
are given as,

[T (g)] =

1 0 gx
0 1 gy
0 0 1

 , [Z(θ)] =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , [X(l)] =

1 0 l
0 1 0
0 0 1

 .
(16)

In order to determine the angles θ2,j and θ3,j, rearrange the kinematics
equations into the form,

[Kj] = [Z(θ2,j)][X(l2)][Z(θ3,j − θ2,j)][X(l3)][Z(−θ3,j)],
j = 1, . . . , 5; (17)
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where [Kj] is the matrix of known constants,

[Kj] = [T (g1)]
−1[Dj][T (−h1)]

−1[Z(−φj)]. (18)

Expand equation 18 to obtain from the third column of [Kj], the vector
kj = (kx,j, ky,j), given by

kx,j = d1x,j + h1x cosφj − h1y sinφj

ky,j = d1y,j + h1y cosφj + h1x sinφj (19)

Next, simplify the right hand side of equation 17 to obtain,

kx,j = l2 cos θ2,j + l3 cos θ3,j

ky,j = l2 sin θ2,j + l3 sin θ3,j, j = 1, . . . , 5. (20)

Introduce the angle ωj that defines the direction of the vector kj, which
is given by

ωj = arctan

(
ky,j
kx,j

)
, j = 1, . . . , 5. (21)

This combined with the cosine law of the triangle formed by C1C2C3 yields,

θ2,j = ωj ± arccos

(
l22 + |kj|2 − l23

2l2|kj|

)
, j = 1, . . . , 5. (22)

The arccos function yields positive and negative values for θ2,j, which corre-
spond to the positive and negative configurations of the elbow C2 as shown
in Figure 5(a) and (b) respectively.

The angle θ3,j is now obtained from the equation (20), as

θ3,j = arctan
( ky,j − l2 sin θ2,j
kx,j − l2 cos θ2,j

)
. (23)

A similar analysis yields the angles angles θ4,j and θ5,j, the result is that
the position and orientation of each link in the 6R loop is defined in each
task position.
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5.2. Synthesis equations

This data allows the determination of the position and orientation of each
of the links, Vµ, µ = 1, . . . , 6, of the 6R loop, in each of five task configura-
tions, Dν , ν = 1, . . . , 5. The result is the set of transformations,

[Kµ,ν ] =

cos θµ,ν − sin θµ,ν aµ,ν
sin θµ,ν cos θµ,ν bµ,ν

0 0 1

 , µ = 1, . . . , 6, ν = 1, . . . , 5. (24)

The synthesis equations for an RR dyads between the links Vi and Vk are
obtained by substituting,

[Rν ] = [Ki,ν ], [Sν ] = [Kk,ν ], ν = 1, . . . , 5, (25)

into equation (7). Notice that for convenience the symbol ν replaces the
symbol j in the synthesis equations. Once the first RR constraint is applied,
it is available for attachment for the second RR constraint. Hence, following
the application of first RR constraint, which forms the link 7, the list of
transformations, [Kµ,ν ] from equation 24, is updated for this new link 7.

6. Calculating Candidate Designs

The design system solves the synthesis equations (7), to calculate the two
RR constraints, for each of the of the 32 unique linkage graphs L(ij)(kl). The
number of solutions must account for RR constraint solutions that satisfy
the synthesis equations and are already part of the linkage.

This is done by distinguishing two cases, (i) sets of two RR constraints
that include only the vertices, {1, 2, 3, 4, 5, 6} of the original 6R closed chain,
which we refer to as independent constraints, and (ii) sets of two RR con-
straints, that include one connection to a vertex in the set {7}, which we
refer as dependent constraints.

Independent constraints:. A set of two RR constraints that connect to
the vertices i, j, k, l ∈ {1, 2, 3, 4, 5, 6} can be applied independent of each
other. There are 17 unique ways of attaching the independent constraints as
shown in Fig.12.

In order to count the number of design candidates obtained from the
synthesis equations, consider the linkage graph example (24)(26) shown in
Figure 6. Observe that for the attachment of the first RR constraint A24,
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one solution C2C3 already exists, thus the synthesis equations yield at most
three new RR constraints. This is true for the second RR constraint B26 as
well. In this case, the various combinations of the RR solutions yields as
many as 3× 3 = 9 candidate designs.

A systematic count for all the 17 linkage graphs with independent con-
straints, yields as many as 178 eight-bar candidate linkage designs.
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Figure 7: Eight-bar linkage graph (24)(67) can produce a maximum of 12 candidate linkage
designs.

Dependent constraints:. A set of two RR constraints with i, j, k ∈
{1, 2, 3, 4, 5, 6} and l ∈ {7}, will have the second RR constraint attached to
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the first RR constraint. There are 15 unique ways of attaching the dependent
constraints as shown in Fig.13.

In order to count the number of design candidates obtained from the
synthesis equations, consider the linkage graph (24)(67) shown in Figure 7.
Observe that for the attachment of the first RR constraint A24, one solution
C2C3 already exists, thus the synthesis equations yield at most three new RR
constraints. For the application of second RR constraint B67, all the four RR
constraint solutions are available. In this case, the various combinations of
the RR solutions yields as many as 3× 4 = 12 candidate designs.

A systematic count for all the 15 linkage graphs with dependent con-
straints yields as many as 162 eight-bar linkage candidate designs.

Finally, this yields a total of 340 eight-bar designs for the 32 linkage
graphs.

7. Performance Verification

The performance of a eight-bar linkage design is analyzed to determine
the movement of the end-effector for each assembly. The end-effector must
pass through the five task positions in a single assembly in order for the
candidate linkage to be a successful design.

We use the automated system developed by Parrish et al. (2014) for the
analysis of eight-bar linkages. This algorithm reads the location of the pivots
of the eight-bar linkage in the first task position and the adjacency matrix
of the linkage graph to formulate the three loop equations of the eight-bar
linkage. These equations are solved analytically using the Dixon determinant
approach in order to obtain all the assemblies of the linkage at each value of
the input angle.

A sorting algorithm collects the result of the analysis routine into a max-
imum of 16 assemblies that define the values of the 10 joint angles for k
iterations of the input angle θ2. Note that θ1 is the angle made by the
ground link which remains constant. The results are the joint trajectories
for each of the 16 assemblies,

Θ1 ={{θ1,1, θ1,2, . . . , θ1,10}k}, k = 1, . . . , n,

Θ2 ={{θ2,1, θ2,2, . . . , θ2,10}k}, k = 1, . . . , n,

...

Θ16 ={{θ16,1, θ16,2, . . . , θ16,10}k}, k = 1, . . . , n. (26)
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Figure 8: Configurations trajectories (branches) for an defect-free eight-bar linkage. All
the five task position configurations lie on the same branch 1

For more details about sorting solutions into linkage assemblies to verify
performance, see Plecnik and McCarthy (2013).

Figure 8 is an example where each assembly trajectory is represented by
its joint angle θ3, . . . , θ10 trajectories, for the given input joint angle θ2. In
order to meet the performance requirements, all the task positions must lie
on one trajectory, or branch, for all the joint angles. In addition to this
requirement the designer may also require the link lengths of the linkage to
meet certain criteria to be of practical use.

8. Tolerance Zones

McCarthy and Choe (2010) showed that kinematic synthesis equations
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regularly fail to yield designs that meet the performance requirements, be-
cause the task positions fall on separate branches. This challenge has been
overcome by introducing small variations to the task within designer spec-
ified tolerance zones. The result is a reliable synthesis procedure that has
been implemented in the MechGen series of design systems, Sonawale et
al. (2013).

For the example of rectilinear motion linkage discussed later, we random-
ize the location of the ground pivots C1 and C6, instead of the task positions.
The initial pass through the design algorithm, k = 1, uses the user defined
task positions and 6R loop data {C1, . . . , C6}. For each subsequent iter-
ation k = 2, . . . , q, where q are the number of iterations specified by the
user, the ground pivots are randomized and successful eight-bar linkages are
saved. The ground pivots C1 = {C1x, C1y} and C6 = {C6x, C6y} positions
are modified by the addition of random variations in the tolerance zones
(±∆C1x,±∆C1y) and (±∆C6x,±∆C6y) respectively, given by

C1k ={C1x + Rand(±∆C1x), C1y +Rand(±∆C1y)} (27)

C6k ={C6x + Rand(±∆C6x), C6y +Rand(±∆C6y)}, k = 2, . . . , q.

where Rand denotes the random selection of a value in the given range. This
introduction of random variations to the ground pivots within user-defined
tolerance zones increases the number of successful eight-bar linkage designs.

Table 1: Five parallel task positions along a straight line

Task Orientation (θ) Location(x, y)
(degrees)

1 0◦ (−50.0, 0.0)
2 0◦ (−25.0, 0.0)
3 0◦ (0.0, 0.0)
4 0◦ (25.0, 0.0)
5 0◦ (50.0, 0.0)

9. Design of Rectilinear Eight-bar Linkages

In order to demonstrate this design system, we present the synthesis of
eight-bar linkages that trace a set of task positions on a straight line. Two
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Table 2: 6R closed chain symmetric to the task positions.

Pivot Location(x, y)
C1 (−50.00,−150.00)
C2 (−142.11,−110.81)
C3 (−100.00,−20.00)
C4 (0.00,−20.00)
C5 (91.98,−59.24)
C6 (50.00,−150.00)

Table 3: Number of successful eight-bar designs for symmetric task positions

Linkage Successful Computation
Iterations Candidates Designs Time

1 46 9 0.737 min
10 411 98 7.084 min
100 4583 1031 68.208 min

cases are shown (i) five task positions that are place symmetrically relative
to the 6R loop, and (ii) five task positions that start at the center and extend
to one side.

9.1. Symmetric task positions

The five task positions selected for this example extend over 100mm and
are separated by 25mm, see Tab.1. The 6R loop was initially specified as
hexagon with 100mm sides, however, this symmetry does not produce solu-
tions. This was corrected by introducing a 0.1mm addition to the length of
the links C1C2 and C2C3, that is |C2C3| = |C2C3| = 100.1mm. The resulting
joint coordinates of the 6R closed chain in the first task position is given in
Table2.

In order to expand the number of potential designs, a random variation
within ±5mm was introduced for both the (x, y) coordinates of the ground
pivots C1 and C6. The number of eight-bar designs for 1, 10 and 100 iterations
are shown in Table 3. The calculations were performed on an AMD Phenom
II, 3.3 GHz, 6 core desktop computer.
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Figure 9: An eight-bar linkage design obtained for the symmetric set of task positions.

Figure 10: SolidWorks rendering of the selected eight-bar linkage from Example 1 stacked
in three levels for amplifying the rectilinear movement from 100mm to 300mm.

Figure 9 is an example of a successful design, which in this case is formed
by the RR dyads (24)(46). The coordinates of the 10 pivots, (C1, . . . , C10), are
listed in Table 4. This linkage deviates from the rectilinear task requirements
by a maximum of 0.5 micro radians and 26.5 micrometers in the y-direction.

The structure of this eight-bar linkage has the property that it can be
assembled in layers to amplify the rectilinear movement, Figure 10. The
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Table 4: Selected eight-bar linkage solution for Example 1

Pivot Location(x, y)
C1 (−50.00,−150.00)
C2 (−142.11,−110.81)
C3 (−100.00,−20.00)
C4 (0.00,−20.00)
C5 (91.98,−59.24)
C6 (50.00,−150.00)
C7 (−164.50,−13.25)
C8 (−146.05, 3.48)
C9 (46.10, 3.42)
C10 (43.42, 28.18)

layers are interconnected by a four-bar function generator so the system
moves with one degree of freedom, and provides a maximum deviation in the
y direction of 79.5 micrometers.

9.2. Offset Task Positions

For this design, each of the task positions in Table 1 are shifted in the x
direction by the amount of 50mm. Thus, the 6R loop is centered on the first
task position and the remaining are placed over the range of 100mm in the
positive x direction. The coordinates of the 6R loop has the same dimensions
as in the first example, but the new placement of the task positions yields a
new set of coordinates, Table 5. As before random variations within ±5mm
were introduced to the coordinates of the base pivots C1 and C6 for each
iteration. The results of the calculations are presented in Table 6.

An example eight-bar linkage obtained from this calculation is shown
in Figure 11. The linkage is obtained by constraining the 6R closed chain
robot with two RR constraints (26)(35). The coordinates of its 10 joints,
(C1, . . . , C10), are provided in Table 7. The maximum angular deviation
from horizontal is 5 micro radians and the maximum vertical deviation from
the straight line is 5.23 micrometers.
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Table 5: 6R closed chain data for Example 2

Pivot Location Data (x, y)
C1 (50.00,−150.00)
C2 (−126.12,−85.00)
C3 (−50.00,−20.00)
C4 (50.00,−20.00)
C5 (125.99,−85.00)
C6 (50.00,−150.00)

Table 6: Multi-iteration run for the design algorithm for Example 2

Candidate Successful Computation
Iterations Linkages Designs Time

1 60 5 1.74 min
10 741 65 15.61 min
100 7857 584 1 hr 52.80 min

Figure 11: An eight-bar linkage design obtained for the offset set of task positions.

10. Conclusions

This paper presents a design system for eight-bar linkages that uses five-
position synthesis to computer two RR dyads that constrain a planar 6R
loop. A systematic procedure yields as many as 340 candidate designs that
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Table 7: Selected eight-bar linkage solution for Example 2

Pivot Location Data (x, y)
C1 (50.00,−150.00)
C2 (−126.12,−85.00)
C3 (−50.00,−20.00)
C4 (50.00,−20.00)
C5 (125.99,−85.00)
C6 (50.00,−150.00)
C7 (−60.80,−159.89)
C8 (59.01,−159.91)
C9 (−57.08,−12.10)
C10 (58.18,−12.11)

are evaluated to ensure they meet the task requirements. Random variations
of the requirements within user-defined tolerance zones increase the number
of successful eight-bar linkage designs.

This design system is demonstrated by calculating the dimensions of
eight-bar linkages that guide an end-effector through five parallel task posi-
tions along a straight line. In one case the task positions are placed symmet-
rically relative to the 6R loop and the second they are offset to one side.

A single iteration of this algorithm required one and two minutes respec-
tively, and yielded over 40 successful eight-bar linkages designs for both cases.
100 iterations required approximately 1 hour and 2 hours for the respective
cases, and yielded thousands of successful designs. This system provides a
practical methodology for the design of these complex mechanical systems.
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Appendix: Eight-bar linkage graphs obtained by attaching two RR
constraint to a 6R closed chain

The 32 linkage graphs (ij)(kl) are separated into (i) independent con-
straints that have i, j, k, l ∈ {1, 2, 3, 4, 5, 6}, Fig.12, and (ii) dependent con-
straints that have i, j, k ∈ {1, 2, 3, 4, 5, 6} and l ∈ {7}, Fig.13.
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Figure .12: The 17 eight-bar linkage graphs (ij)(kl) obtained by adding two independent
RR dyads, with i, j, k, l ∈ {1, 2, 3, 4, 5, 6}.
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Figure .13: The 15 eight-bar linkage graphs (ij)(kl) obtained by adding the second RR
dyad to the link of the first RR dyad, that is with i, j, k ∈ {1, 2, 3, 4, 5, 6} and l ∈ {7}.
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