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Abstract

DEMIS: Dynamic EMI Shifting

by

Daphne Irene Gorman

Processors emit non-trivial amounts of electromagnetic radiation, creating interference at fre-

quencies that are used by wireless communication technologies such as cellular, WiFi, and

Bluetoooth. I introduce the problem of in-band radio frequency interference as a form of elec-

tromagnetic interference (EMI) to the computer architecture community as a technical challenge

to be addressed.

My research is the first to provide insights in the new area of dynamically shifting the

EMI generated by a processor by evaluating several platforms and showing the EMI is sensi-

tive to many architectural and compilation parameters through exhaustive measurements. Using

these measurements, I propose the new idea of Dynamic EMI Shifting (DEMIS), where archi-

tectural and/or compiler changes allow the EMI to be shifted at runtime by a processor. DEMIS

processors dynamically move the interference from frequency bands used during communica-

tion to other, unused frequencies. Unlike previous works that leverage static techniques, DEMIS

dynamically targets specific frequency bands; the type of techniques used in my research are

only possible from an architectural perspective.

Despite the fact that the EMI generated by a processor is deterministic, modeling

the EMI has proven to be a complex challenge. Moreover, EMI has been shown to be layout

dependent (affected by the location of functional units on the chip and the lengths of the wires)

viii



and binary dependent (affected by not only the application but also on the compilation options).

I propose a Model for EMI from an SoC (MESC), a framework for modeling electromagnetic

emissions from a core. MESC takes into account some layout information and the switching

activity of a process to model the expected EMI emitted by an SoC. I validate MESC against a

core running on an FPGA. My evaluation shows that MESC is able to predict EMI within 95%

accuracy across time and across the frequency spectrum, even when using statistical sampling

to obtain activity rates.

Using the results from MESC, I am able to propose that two different layouts of a

single RTL can be leveraged to dynamically shift EMI using my technique EMI Core Hopper

(EMI CHopper), a layout-based implementation of DEMIS. EMI CHopper uses a multi-core

system, where each core has a different layout but the same RTL, and utilizes thread migration

to have an application “hop” between cores to reduce in-band EMI on the fly. Leveraging

MESC, EMI CHopper reduces in-band EMI by up to 50%, with only a small performance

impact.

In order to implement DEMIS for existing systems, I propose utilizing higher level

techniques, such as compiler optimizations and clock speeds. My evaluation over real systems

shows a decrease of in-band EMI ranging from 3 to 15dB, with less than a 10% average perfor-

mance impact. A 15dB EMI reduction for LTE can represent a bandwidth improvement of over

3 times for EMI bound communication.

The research presented in this thesis offers a new, architectural perspective on a preva-

lent problem in wireless communications. My findings based purely on architectural techniques

show significant promise in improving wireless communications, and the tools I described offer
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many opportunities for further research.
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Chapter 1

Introduction

Communication breakdown

It’s always the same

I’m having a nervous breakdown

Drive me insane!

Led Zeppelin

The advances in integrated circuits and digital devices in recent years have brought to

market a growing number of connected devices, which are getting smaller each generation. To

meet commercial and technological goals, the space being allocated to electronic components

is only a fraction of the already small device size, which requires tighter integration. However,

a processor in a SoC can produce electromagnetic interference (EMI) that can disrupt wireless

communication, reducing the effectiveness of the device.

As mobile devices become more ubiquitous and wireless communication technolo-

gies become more diverse, we want our mobile devices to be able to interact with a wide variety

1



of communication technologies. I present to the computer architecture community the prob-

lem of in-band EMI caused by the processor. That is, when a processor is running, it may be

emitting Radio Frequency (RF) interference, or EMI, at the same frequencies the device is using

for wireless communication, causing interference. Unfortunately, the Shannon-Hartley theorem

(explained more extensively in Section 2.1) states that this interference constrains the speed that

data can be sent wirelessly.

Computer processors emit measurable amounts of electromagnetic radiation; enough

that the EMI can be exploited as a security risk [15,16]. In addition to being a security concern,

EMI can also interfere with wireless communication, which is the focus of the work presented

in this thesis. Even when running just the operating system, the processor will emit radiation

at some frequencies. The EMI produced by a processor can create significant desensitization of

the antenna, and is a well-known obstacle in the field, which many different publications and

patents are dedicated to addressing [6, 21, 33, 38]. Currently, one way to mitigate this problem

is to place the computer processor as far away as possible from the antennas [21, 35] to mini-

mize the effect of the processor’s EMI. However, modems are placed as close as possible to the

antennas in order to mitigate losses before the signals are processed. With the introduction of

more integrated chips such as the Snapdragon series [42], some of which include wireless com-

munication processors, designers may no longer be able to physically separate the CPUs and

the antenna in this way. This problem also tends to worsen with the emergence of smaller, more

integrated devices such as wearables, as processors and RF components (particularly antennas)

can no longer be physically separated. This is because even though the transmitted power may

be less, the power recieved decreases linearly with transmit power and quadratically with dis-

2



tance, which will be discussed more in depth in Chapter ?? during my analysis of Equation 2.4.

Much of this work is based on the observation that wireless communication systems

use many frequency bands, but not all the bands are used simultaneously. This observation

can alleviate the proposed problem by moving RF interference out of the bands being used for

communication in a given time.

To illustrate this potential, Figure 1.1 shows the interference level captured from a

spectrum analyzer for a Exynos 5422 processor (a 28nm chip running with a clock frequency of

2GHz) running SPEC2006 hmmer application. This type of plot has frequency in the x-axis and

radiated power in dBm in the y-axis. The higher the radiated power the higher the EMI. The

plot shows a SuperWiFi XR7 frequency band. From a communication point of view, we want

the lowest possible amount of noise. Each line shows a different compilation option for hmmer

from the SPEC2006 benchmark suite. The second option has a small 3% performance impact,

but it has close to 6dB (or 4× power) reduction of in-band noise. A more in depth analysis of

this measurement will be provided in Chapter 3.

Since workload, compiler, architecture, and layout are necessary for understanding

and addressing this problem, this belongs to the classical architectural domain where impact

on execution performance and the interface between compiler/architecture/VLSI layers have

different trade-offs. Computer architects are uniquely suited to provide solutions for minimizing

in-band EMI from the processor.

Despite the fact that EMI is deterministic, there are no usable tools or methodology

for modeling EMI for a given application, particularly at the micro-architecture level. This is

because, despite its consistency, there are numerous factors that contribute to the EMI a proces-

3
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Figure 1.1: Changing compile options for the SPEC2006 hmmer benchmark on an ODROID-
XU4 (Exynos 5422 chip) causes a significant difference in noise in the SuperWiFi XR7 fre-
quencies (grey) with only a small change in performance.

sor produces. EMI can be theoretically modeled as a combination of electromagnetic radiation

being produced by alternating current in each wire of a processor. In any modern design, the

complexity both in number of wires and in the data patterns on them do not make this predic-

tion an easy task. The use of a full-wave simulation software [3,24,43] would provide accurate

results, but takes an extremely long time, as the processor’s layout would have to be taken into

account as well as the activity of each wire. Also, because GDSII is necessary for this type of

simulation, these tools are unusable until just before tapeout, which may be too late for signif-

icant design changes. To some extent this is similar to requiring a full SPICE simulation for a

whole chip, which is not really feasible. However, the extreme accuracy provided by these full-

wave simulators is most likely unnecessary for addressing the problem of processor-generated

interference on wireless technologies, since compensation mechanisms, such as redundancy and

error-correcting codes, already exist for wireless communication and make “interference-free”

4



communication unnecessary. Designers lack usable models, and these models would be too

complicated to actually run. Typically, designers do not realize they have an EMI problem until

after a system has been prototyped and evaluated, which puts them in the unfavorable position

of having to apply costly and usually ineffective patches, or going back and redesigning the

system [21].

Furthermore, the EMI is also application/binary dependent, so the same layout will

produce different EMI depending on the program executing. This adds additional challenges

for designers, as it is difficult to account for the multitudinous, essentially infinite, applica-

tions a processor may execute. Then, modeling the EMI will necessarily imply characterization

through specific benchmarks that can represent the EMI of a large range of applications. Thus,

any model for EMI must be flexible enough to account for different processes.

In this thesis, I introduce the problem of in-band RF interference as a form of EMI

generated by a processor, with an emphasis on micro-architecture. Included is a thorough ex-

ploration of the problem space as I analyze the effects specific architectural parameters have on

EMI, as well as the concept of Dynamic EMI Shifting (DEMIS) to reduce in-band interference.

Additionally, this thesis includes a technique for modeling the EMI a processor will generate as

it executes an application and two implementation of DEMIS.

Chapter 2 provides background information relevant to my research. First, I provide

a short description of wireless communication and some specific technologies. Then, I briefly

cover some of the reasons EMI is produced in processors before providing a survey of other

computer architectural research that focuses on EMI.

In Chapter 3, I provide an in-depth exploration of the architectural problem space

5



as it affects in-band EMI. This analysis consists of manipulating specific architectural and

compilation parameters and measuring the resulting changes in RF interference.

MESC, the first Model for EMI from an SoC, is proposed in Chapter 4. MESC takes

into account some basic layout information of a processor and the activity rates of individual

nets for a process in order to approximate the expected EMI from that process.

Building on the model described in Chapter 4, Chapter 5 proposes the DEMIS tech-

nique for reducing in-band EMI emitted by a processor, EMI CHopper (EMI Core Hopper).

EMI CHopper reduces EMI by causing processes to “hop” between cores that have the same

RTL but different layouts.

The DEMIS technique for reducing in-band EMI, for existing processors is proposed

in Chapter 6. This DEMIS implementation consists of shifting the EMI at runtime by changing

architectural and/or compiler parameters during execution time.

Finally, Chapter 7 concludes with the significance and main findings of my research

as well as some opportunities for future work.

6



Chapter 2

Background

Get your facts first, then you can distort

them as you please.

Mark Twain

This chapter covers some background information about EMI, how it is produced in

a core, and other useful information. I put special focus on the fact that communication does

not use the entire frequency spectrum at a given time, but rather uses a single band. Thus, a

processor does not need to minimize the EMI over the entire frequency spectrum, but rather just

the frequencies being used for communication at that time.

Additionally, I will cover some of the current techniques and tools being used by

architects today concerning EMI.

7



2.1 Wireless Communication Technologies

My work deals with the electromagnetic radiation from the processor that causes in-

terference for the device’s wireless communication. Since EMI may be an unfamiliar topic to

parts of the computer architecture community, this section aims to provide an overview of the

main concepts and technologies involved. This is not meant to be a complete introduction to

the subject.

Wireless communication is an important feature of most modern computational sys-

tems, particularly for mobile devices. Wireless communication usually relies on allocating a

specific frequency band in which data is transmitted according to a technology-specific proto-

col. Regardless of which specific protocol is being used, the theoretical amount of data that can

be transferred through a channel depends on a certain number of factors, like the bandwidth and

the Signal to Noise Ratio (SNR). This relation is governed by the Shannon-Hartley Theorem,

C = B∗ log2(1+
S
N
), (2.1)

which states that the channel capacity (C), or the theoretical upper bound on the net bit rate,

is affected by the bandwidth (B) and the SNR ( S
N ). Since SNR is the quotient between noise

and signal strength, the lower the noise the higher the channel capacity. Figure 2.1 shows

a visualization of the Shannon-Hartley Theorem for typical values for the LTE standard for

cellular communication, with a bandwidth of nine megahertz.

Therefore, for a fixed bandwidth and signal strength, increasing the amount of noise

will reduce the total channel capacity available, reducing the total amount of data that could be

transmitted through that channel. Throughout my research, I explore the noise emitted by the

8
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Figure 2.1: The amount of noise drastically changes the maximum theoretical throughput at a
particular frequency at different signal strengths (S = signal strength in dBm).

processor that could interfere with the wireless communication technologies in a device.

The focus of this work is to improve the SNR by reducing the noise. Particularly, I

focus on reducing the noise caused by processor generated EMI. Increasing the SNR will result

in an improved channel capacity.

Unfortunately, EMI is produced any time current is present in a system, and thus

computer processors constantly emit non-trivial amounts of noise. Fortunately, wireless com-

munication is dependent on specific frequencies, and thus a device only needs certain frequency

bands to be less noisy at a given time. Common sources of noise are the clock, its harmonics,

memory accesses, and even power converters; these will be discussed later.

9



Table 2.1: Wireless technology frequency ranges and maximum bandwidth used at a given time.

Network Range (MHz) Max Channel Bandwidth (MHz) Max Bandwidth (MHz)

LTE 698–5925 20 181

Bluetooth 2400–2485 1 1

WiFi 2400–2500 22 40

WiFi 5GHz 5150–5850 160 160

Super WiFi 54–790 5 32

WiFi HaLow 755–928 4 16

2.1.1 LTE

LTE (Long Term Evolution) is the current standard for cellular communication and

was developed with the main objective of improving the communication rates to and from a

cell phone. However, with the invention of smartphones, the noise emitted from the phone’s

CPU can interfere with communication. This section provides a brief introduction to cellular

communication technology LTE with a focus on components related to my research. LTE (and

wireless communication in general) is commonly divided into frequency bands allocated to

different users and uses.

The band selection is determined by many factors such as signal strength and band

congestion and is usually out of the control of the user, since it is mostly defined by the tower,

but higher-frequency bands are usually preferred since they can send more data.

Different times and situations may require different LTE frequency bands to be clear.

For example, low frequencies can permeate solid objects better, so when using LTE inside, we

would prefer to use a low-frequency band such as band 12 (699 to 716MHz). However, higher

1LTE can utilize a total of 18 MHz, but the frequencies do not necessarily have to be contiguous. Future LTE
technologies may expand this 18 MHz to 19.8 MHz, as the largest channel bandwidth is actually 20 MHz, but the
edges of the band remain unused in order to prevent noise in adjacent bands.
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frequencies can send more data, so when outside, it would be better to use a higher frequency

band such as band 4 (1710 to 1755MHz).

In order to connect to a network tower, a device utilizes two different radio links, one

for uplink (where the data goes from the device to the tower) and one for downlink (tower to

device) [22]. Most LTE bands are Frequency-Division Duplex (FDD) meaning that the uplink

(UL) and downlink (DL) connections operate at different frequency bands between 10 and

400MHz apart, thus allowing them to happen at the same time [1], meaning communication

happens at multiple frequencies simultaneously. However, some LTE bands use Time-Division

Duplexing (TDD), which means that UL and DL occur at the same frequency, but at different

times.

Depending on which network carrier a device is utilizing, it accesses to different LTE

bands. Currently in the US, there is no overlap between the bands provided by AT&T (bands

2, 4, 5, 17) and Sprint (bands 25, 26, 41). Furthermore, different countries use different bands

as well. For example, the US and most of Europe tend to use FDD bands, whereas China tends

to use TDD bands. Thus, the amount of viable frequencies for an LTE connection is largely

dictated by which cellular network provider a device is using.

Cell networks can trigger a band switch when the EMI interference is high. An in-

frequent noisy spike at a certain frequency is enough to drop a call or lose data, but is not

necessarily enough for a cellular network to switch frequency bands. On the other hand, if

some noise does trigger a band switch, it is likely that the mobile device is now operating on a

slower band. For example, when using the T-Mobile network in the US, a device may be using

band 4 because it had less interference and congestion, but because it is currently running a
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process that creates in-band noise, the device will switch the noisier and more congested band

12. If the noise generated by the device were out of the band 4 frequencies, the device would

have continued to operate on the higher band.

A noisy band may lead the network to trigger a band switch. The noise may be due

to congestion, interference with other networks or simply because the CPU on the cell phone is

emitting EMI. In my work, I show that architectural parameters can be manipulated to reduce

the amount of in-band EMI while communication is happening to reduce interference from the

core to the antenna.

The implication for my research is that to improve LTE bandwidth, only one or two

bands of communication need to be cleared. The band to be cleared is not known a priori, and

thus a dynamic band EMI management has high potential benefits.

2.1.2 Bluetooth

Another technology that is commonly implemented in mobile devices and could suf-

fer from processor EM radiation is Bluetooth. Bluetooth operates at 2.4GHz, and the entire

Bluetooth spectrum spans 83MHz. Each of the 79 Bluetooth channels has a bandwidth of

1MHz [10]. The reason for so many channels is that Bluetooth utilizes a Frequency Hopping

Spread Spectrum (FHSS) technique, which utilizes each channel in a preset sequence negoti-

ated by both the master and slave when they are first connected. The channel hopping occurs

regularly according to that predetermined sequence known to both the transmitter and the re-

ceiver.

Bluetooth’s high frequency limits the communication distance and also makes it more
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susceptible to interference. Therefore, it is more crucial to prevent noise from a nearby source,

such as that device’s own CPU. Like in LTE, DEMIS and EMI CHopper can further reduce

interference focusing on the bands being used at the moment.

2.1.3 WiFi and WLAN

Finally, another ubiquitous technology that may suffer from EMI from the CPU is

WiFi, present in virtually every mobile device on the planet. WiFi operates at both the 2.4GHz

and 5GHz (802.11a, n, and ac) frequencies. Older WiFi protocols use frequency hopping (sim-

ilar to Bluetooth) or spread spectrum transmissions, while newer versions use Orthogonal Fre-

quency Division Multiplexing.

Additionally, the 802.11af standard (also known as White-Fi or Super WiFi) operates

in the 54 to 790MHz range (in bands licensed for TV, VHF, and UHF) and has been in use since

2014. White-Fi uses frequency channels with bandwidths ranging from 6 to 8MHz, and can use

up to four channels at once in one or two contiguous blocks.

Although operating at different bands and having different bandwidths, WiFi also di-

vides the spectrum in different bands, dynamically assigned to each device. The communication

speed of WiFi and WLAN can also be reduced due to the presence of in-band noise created by

the CPU, and thus could also be improved by DEMIS and EMI CHopper.
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2.2 EMI Causes in Processors

From an RF perspective, any wire with a time dependent current passing through it

behaves as an antenna. Traditionally, in integrated circuit design, one of the only concerns is

capacitive coupling, and sometimes wires being subject to bit-flips within a wire, which can

cause data corruption and/or invalid behavior in the circuit. In this work, I look into wires as

transmitters. I am thus interested in the EMI being emitted by each wire with respect to the

wireless communication.

2.2.1 EMI as an effect of processor layout

In general, the power and direction of the radiation depend on the form of an antenna

and on the distance from which the interference is being measured. For instance, for very long

wires, (L � d, where L is the wire length and d is the distance of interest), the radiation occurs

uniformly throughout the wire axis, varying only with distance. In that particular case edge

effects are usually ignored. Another example is with closed loop antennas, where the radiation

is directional and perpendicular to the loop plane. In the specific case of interest of my research,

L is a length within a die and d is a distance within a device, thus usually d � L. Also, there is a

large number of wires that will act as an antenna array, possibly emitting at multiple frequencies,

all with different magnitudes. The resulting EMI will, thus, be a combination of all the EMI

emitted by each wire.

For a real system, the wireless communication antenna will be located in the same

plane as the chip, since mobile devices tend to be relatively flat. This can reduce the EMI
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observed by the antenna with regards to the maximum EMI observed in a plane parallel to the

die plane. For the sake of simplicity, my model takes into account the maximum EMI, which is

a more conservative approach since it is not known at design time which will be the direction

of the die in respect to the antenna(s) in the device.

There are a few antenna equations that are relevant to my work regarding a processor

layout’s effect on interference, but the most relevant is the basic equation for antenna gain,

G =
4πA
λ 2 . (2.2)

Equation 2.2 states that the gain of an antenna (G), or power multiplier, is directly proportional

to the aperture, or effective area, A. While this works for aperture antennas, we also must

consider linear antennas, for example a short dipole, which has a total radiated power of

Ptotal =
π

12
I2
0 Z0(

L
λ
)2, (2.3)

where I0 is the current amplitude (the signal fed into the dipole), Z0 is the admittance of free

space ≈ 376Ω, and L is the length of the dipole, which to qualify as “short” must satisfy L � λ

10 .

Another important formula, known as Friis Transmission Formula,

PR =
PT GT GRλ 2

(4πd)2 =
PT GT GRc2

(4πd f )2 , (2.4)

states that the received power PR is the product of the transmitted power PT multiplied by the TX

and RX gains GT and GR multiplied by the wavelength squared (or multiplied by c2 and divided

by the frequency squared f 2) all divided by 4π times the distance between the two antennas

d. This means that the received power is proportional to λ 2 or inversely proportional to f 2. In
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decibels, this formula is

PR = PT +GT +GR +20log10(
λ

4πd
). (2.5)

These equations [36] are used throughout my research, particularly in designing MESC.

One thing that is important to note is that most EMI measurements are taken in the

frequency domain. That is, EMI is typically depicted as the amount of power being radiated at

each frequency. Most of the measured and modeled plots in this thesis are also in the frequency

domain. In my work, I utilize the Fast Fourier Transform (FFT) to convert samples taken over

time (in the time domain) into the frequency domain. One important aspect of taking an FFT

over a set of time-domain values is that the FFT can only provide values for frequencies up to

half of the sampling frequency, the Nyquist frequency. Therefore, to get the frequency domain

up to a frequency f , the sampling rate need to be 2 f . As the primary objective in this work is

to model and then reduce in-band EMI, using the frequency domain is a good way to visualize

and isolate specific frequencies, as opposed to trying to determine frequencies from periodicity

in time-domain plots.

The equation for the FFT is

Xk =
N−1

∑
n=0

Xn × ei2πnk/N , (2.6)

where Xn are time domain samples, Xk are frequency domain samples, N is the number of time

domain samples, and k spans the integers from 0 to N − 1. To get back into the time domain

from the frequency domain, the Inverse FFT (IFFT),

Xn =
1
N
×

N−1

∑
k=0

Xk × ei2πnk/N , (2.7)
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can be used.

RF Integrated Circuits (ICs) are vulnerable to on-chip in-band interferers [5], and

may contain circuit-level RF noise couplings that would have a significant impact on system-

level performance of wireless communication performance. Unfortunately, finding the cause

of interferers is extremely complicated and have so many technical aspects, that achieving a

reliable estimation using computer simulations is impossible.

2.2.2 Layout and Metal

To apply these RF principles to a processor, I work under the assumption that metal

wires in the processor act as “antenna elements” or “radiators” that emit EMI. One fundamental

rule is that the radiated power of an antenna is proportional to the antenna aperture, or the

effective size. This means that if an antenna has twice as much metal, we would expect twice as

much power to be radiated, as the gain has doubled (see Equation 2.2). Applied to a processor

layout, a net that is twice as long or twice as wide should contribute twice as much EMI.

Furthermore, long traces may add inductance, which could increase the EMI.

Additionally, the EMI power is proportional to the integral of the current distribution

along the antenna. Basically, this means that areas on the chip that have higher current will

radiate higher power EMI. If a circuit contains a loop, that loop may couple with an external

magnetic field and act as a strong transmitting antenna. However, this effect can be minimized

by reducing the size of the loop. Also, loops are not widespread in chip designs due to inductive

effects that are usually undesirable.
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2.2.3 Square Waves

As my research focuses focuses on digital processors, a basic understanding of the

EMI of square waves is required, as they have some unique properties that are not shared with

simple sinusoidal waves.

One important observation about square waves is that square waves produce strong

odd harmonics and weaker even harmonics. That is, for a square wave for a frequency of f we

would expect large amounts of power at f , 3 f , 5 f , 7 f , etc.. However, at the even harmonics 2 f ,

4 f , 6 f , we would expect some radiated power, but significantly less than at the odd harmonics.

Figure 2.2 shows the wave created by adding the first ten odd harmonics of a square wave as

in the equation 0.5+ 2
π

∑
10
k=1 sin(2π(2k − 1)t)/(2k − 1), which produces a square wave with

a frequency of 1Hz and an amplitude of 1. Below that is the same square wave depicted in

the frequency domain, which shows the odd harmonics to have significant power, but the even

harmonics to be zero.

Another common occurrence are power spikes that occur at subharmonics ( f
2 , f

3 , f
4 ,

etc.). Potentially, we may even observe significant power at the harmonics of the subharmonics,

which would could potentially put power spikes at unexpected frequencies.

An important observation is that in most data buses in a processor, the data is not truly

periodic, that means that there is not a single frequency being produced over time. For instance,

a bit of data can have a non-periodic pattern of values over time, like “00100011101” (where

each bit corresponds to the value at a given clock cycle).

In order to design a realistic model, we must take into account all of these complexi-
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Figure 2.2: A 1Hz square wave in the time domain (top) and the frequency domain (bottom). A
square wave is constructed from a sine wave and its odd harmonics.

ties. In my model, we start from a cycle-accurate execution trace of the wires in the processor

and, assume it is a relatively square wave to perform a Fourier transformation, which allows us

to determine which frequencies are being affected by a specific data pattern.
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2.3 EMI in Computer Architecture

This section provides descriptions of some of the current research on EMI generated

by processors. This section briefly covers topics from wireless communication, profiling, and

security.

2.3.1 Profiling

Recently, there has been a push towards using EMI to profile code. Callan et al.

[14] proposed ZOP: a zero-overhead approach to obtain profiling information via EMI mea-

surements. ZOP first goes through a training phase in which it builds a model that associates

different wave forms with different parts of the code. Using that model, ZOP can then go

through its profiling phase, which monitors the EMI and can match the current EMI with what

part of the code is being executed at that time.

Sehatbakhsh et al. [40] were able to exploit the processor’s EMI to perform zero-

overhead spectral profiling. They have shown a correlation between the amount of time a loop

takes (T ) and a frequency “spike” in the EMI ( f = 1/T ). Some of our findings may be influ-

enced by this phenomenon.

However, the measurements presented in my work show that two processors can ex-

hibit very different EMI, even when the two processors have the same RTL and are running

the same benchmark compiled with the same options. This clearly shows that Spectral Pro-

filing [40] has potential, but it is not obviously applicable, and I consider it future work for

potential improvements.
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2.3.2 Security

There has been substantial research on EMI and security, and many tools have been

published that address the EMI security side channel. One notable publication proposes FASE [16],

which is a methodology for finding periodic signals (such as a clock signal) whose amplitude is

dependent on processor or memory activity. The authors found that the signals generated by a

processor fall into three main categories: strong signals from voltage regulators and power filter-

ing components at the switching frequencies of the regulators, signals from memory-refreshes,

and high frequency clock signals and clock harmonics, especially DRAM clocks. They note

that all three of these types of signals are affected by what the processor is doing. For example,

the signals from the voltage regulators are affected by how much activity is occurring in the

processor —the more activity, the higher power consumption, the stronger the signal. The sig-

nal caused by memory refreshes are caused by activity by the memory controller, and the EMI

from the DRAM clocks are dependant on DRAM activity.

Another tool, SAVAT [15] determines the impact a single instruction has on the RF

signal produced by running a program. The authors were able to distinguish single instruc-

tions via studying differences in EM radiation. Thus, showing that radiation patterns of some

hardware is dependent on what software is running. We can conclude that manipulating the

architectural components of a processor will modify the EM emissions, as the same program

will be executed differently.

As opposed to the publications that show how vulnerable processors are to side chan-

nel attacks, some publications use EMI to discern whether or not a process has been modified.
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For example, EDDIE detects code injections without introducing any overheads or changing

the hardware or software [34].

2.3.3 Other EMI Models

Wang et al. have published a measurement procedure that searches for amplitude-

modulated EMI [47]. The algorithm utilizes FASE and SAVAT in order to determine which

circuits in a processor are most susceptible to EMI side channel attacks.

Werner et al. have proposed a method for determining the instruction-dependent mag-

netic field sources [48]. Their model determines the locations of the magnetic field sources at

a single frequency. In fact, the user is encouraged to choose a “less noisy” frequency for this

model. This is different from my proposed model MESC, which models the EMI over multiple

frequencies from the processor, instead of modeling the processor from the EMI.

2.3.4 VLSI and System-Wide Tools

In general, not many tools for modeling or minimizing the EMI from a processor exist,

even for a system-wide or VLSI perspective. Some PCB simulation tools contain rule checking

for EMI, such as Hyperlynx [24], but that is only to comply with Federal Communications

Commission (FCC) approval. Commercial full-wave simulation tools such as ANSYS [32],

CST Microwave Studio [43], Ansoft HFSS [3] are all available and would provide in-depth and

highly accurate predictions of the EMI created by a processor. However, these tools are costly

and have long simulation times, and thus are not used in my work.

Most techniques implemented to minimize EMI from a system perspective address the
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EMI generated by the clock. One widely used technique that is implemented in most modern

processors is Spread Spectrum clock generation [26]. This lowers the EMI generated by the

harmonics of a clock signal by modulating the clock. After modulation, the harmonic power

decreases significantly. Another technique used to minimize the high frequency EMI produced

by the system clock while keeping the skew and power minimal by changing buffer placement

and sizing using dynamic programming [29].

Although not strictly EMI, EmerGPU [45] detects and mitigates resonance voltage

noise (which causes EM noise) in GPUs. In order to reduce voltage noise, some techniques

include reducing the slope of current changes via hardware or software mechanisms.

2.3.4.1 Interference from the clock

There has been a lot of work done on minimizing the interference from the clock [26,

27, 29, 30]. As clock speeds tend to be lower than the frequencies used by wireless communi-

cations, it is the clock harmonics that have an adverse affect on signal. Therefore, it is common

for chips to have modulated clock signals, slightly changing the cycle time of the clock every

cycle. By modulating the clock signal, the attenuation for the harmonics is significantly in-

creased, and therefore the harmonics at the communication frequencies are much lower than for

an unmodulated clock signal.
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2.3.4.2 Static Techniques to Reduce EMI

Currently, for LTE, the interference reduction techniques being utilized include only

static techniques2. These techniques address two separate cases: noise from on-die interferers,

and noise from an external source (such as the antenna itself).

The most consistent on-die interferer is the clock. Even low-frequency clocks tend

to interfere with communication frequencies, as even the twenty fifth harmonic can create fre-

quency spikes that add significant in-band EMI. In fact, some devices fully power down their

cores in order to avoid noise during the transmit (TX) phases of communication.

Off-chip interference can be caused by power coupling issues. Even with separate

power converters, some parasitics still propagate from core to core. Additionally, during si-

multaneous TX and receive (RX) actions, noise from the transmit antenna can overpower the

received signal, and thus multiple high- and low-pass filters are utilized, and in some cases,

the TX signal is fully subtracted out of the received communication. Furthermore, DRAM is

often the cause of interference, especially when placed off-chip. However, moving the DRAM

on-chip creates less interference.

For Bluetooth, successful operation in the presence of external interferers such as

microwave ovens or WiFi networks is to provide some shielding or distance from the cause of

the noise [11]. As Bluetooth operates at a relatively high frequency, any in-band interference

degrades quickly as distance increases, and even more rapidly through physical objects.

However, if the same device is utilizing both WiFi and Bluetooth, reducing the in-

terference becomes more complex. Currently, collaborative techniques (such as alternating

2Information described in this and the following two paragraphs was acquired from personal contacts in industry.
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transmissions between Bluetooth and WiFi, or managing packet transmissions based on sig-

nal strength) and non-collaborative techniques (such as classifying the Bluetooth channels and

altering the channel hopping algorithm to avoid noisy channels) are being investigated [11].
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Chapter 3

DEMIS Problem Space Exploration through

Measurements

To boldy go where no one has gone

before!

Jean-Luc Picard

In this chapter, I provide measurements of several processors running different appli-

cations to provide insights about EMI and better understand the problem space1. As expected

(and shown in previous work [15, 16]), running different processes on the same core will pro-

duce different EMI. My work shows and quantifies that small changes in the application may

cause significant EMI shifts. I show that running the same application on two different chips

causes very different EMI, to the point that an application can have almost no EMI in a core,

and that very same application produces strong interference when running on another core. Al-

1This work is part of my publication at The 50th International Symposium on Microarchitecture, October
2017 [23].
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though some processors have the same RTL, if they are manufactured in different fabs, they

may not produce similar EMI. Running the same application on different processors may yield

vastly different EMI.

In particular, I show that the interaction between core, process, and application has

a deterministic, but very unpredictable result in EMI interference for a given frequency band.

I experimentally show that small architectural changes with small performance impact have a

profound impact on EMI. The main contributions of this chapter are as follows:

• Showing that EMI produced by the core is dependent on architectural parameters

• Measuring several real devices to quantify the EMI produced

• Presenting the problem of in-band radio frequency interference as a form of EMI to the

computer architecture community

3.1 Setup

In this section, I describe the experimental setup used in order to determine the ef-

fect architectural parameters have on EMI, to clearly define the problem space my research

addresses. This section also includes a description of the hardware used and the benchmarks

that were executed.

3.1.1 Test Equipment

The measurements were taken using a Near-Field Probe set made by Keysight Tech-

nologies, which was attached to an N9342C Handheld spectrum analyzer from Agilent Tech-
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Table 3.1: System specifications for each device measured.

Device Commercial Name Processor ARM Core Operating System

A8_A10 Allwinner A10 Allwinner A10 Cortex A8 Ubuntu

A53_K620 HiKey (LeMaker version) Kirin 620 Cortex A53 Linaro

A11_PI2 Raspberry Pi 2 Broadcom BCM2835 ARM11 Arch Linux, Raspian (Dual Boot)

A53_C2 ODROID-C2 Amlogic S905 Cortex A53 Arch Linux

A15_XU4 ODROID-XU4 Exynos 5422 Cortex-A15 Ubuntu MATE

nologies. This setup had a noise floor at −120dBm and all measurements were taken in a

Faraday cage. The deployment is depicted in Figure 3.1. Additionally, I fixed the probe onto

each device for consistency, as there can be a substantial differences in measured power when

measuring different locations.

The relevant specifications of each of the five devices measured are provided in Ta-

ble 3.1. One of each type of device was measured. The rest of this thesis will refer to the devices

as in the first column of Table 3.1.

3.1.2 Benchmarks

I measured each device while it was idling as well as while it was running a se-

ries of benchmarks. I utilized a set of in-house benchmarks, described in Section 3.2 and

SPEC2006 [28] applications to determine if using architectural techniques would be effective

for manipulating EMI in specific bands. From there, I utilized the SPEC2006 benchmarks to

determine the effects on larger processes.

Each device ran all the benchmarks from the SPEC2006 benchmark suite2 natively

2Due to compilation issues, gobmk, omnetpp, and xalancbmk were not included in this experiment.
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Figure 3.1: I utilized a spectrum analyzer and near-field probes to accurately measure the EMI
from multiple hardware platforms running a set of benchmarks.

during measurements with the default settings for each device (without modifying the clock

speed, etc.) as a baseline. Then, the benchmarks were run when changing different architectural

parameters, including compiler optimizations.

In the interest of avoiding repetitiveness, the results provided in this section focus

more the mcf, sjeng, and libquantum benchmarks. These benchmarks were chosen because

they emphasize specific architectural parameters: mcf is memory intensive, with many RAM

accesses; sjeng causes many branch mispredictions and calculations; and libquantum triggers

many cache misses and prefetching.
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3.1.3 Bands Analyzed

The noise was measured in the scope of wireless communication technologies and is

reported as the difference between emitted power when running the benchmark and idling for

five different RF communication frequency bands, described in Table 3.2.

Table 3.2: Wireless technology frequency ranges and maximum bandwidths used at a given
time. This work will refer to each band as described in the first column.

Band Technology Lower Bound (MHz) Upper Bound (MHz)

LTE 800 Lower LTE band 18 (UL and DL) 815 875

LTE 700 LTE bands 12, 13, 14, 17 (UL and DL) 699 798

LTE 450 LTE band 31 (UL and DL) 452.5 467.2

SuperWiFi XR7 Ubiquity XtremeRange7 WiFi 698 746

SuperWiFi 600 SuperWiFi in TV spectrum 600 630

3.2 Insights and Measurements

This section uses physical measurements of real systems to identify the effects of

architectural and compiler parameters on RF interference. Through measuring in-house bench-

marks on the hardware described in Table 3.1, I was able to determine that different parameters

affect the RF interference differently. This section will describe my findings from measuring

the differences in interference when applying different architectural manipulations.

3.2.1 Measurement Repeatability and Accuracy

In order to ensure that the measurements taken are consistent, I measured the A53_K620

running the mcf benchmark 12 times. The results are provided in Figure 3.2.
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Figure 3.2: The EMI created by the A53_K620 running the mcf benchmark is consistent across
multiple measurements. These measurements were taken on at different times on different
days. The standard deviation of the radiated power across these measurements is negligible in
comparison to the total EMI.

As we can see, the measurements are repeatable across different days and times, with

a maximum standard deviation of about 0.5dBm, a value that is a negligible amount compared

to the measured power. Therefore, the rest of the measurements provided throughout this doc-

ument will be presented without an error threshold.
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3.2.2 Compiler Impact on EMI

To evaluate small binary changes impact on EMI, I use different compilation op-

tions (different schedulers or optimizations) that should have small performance impact to see

the EMI effect. For example, using the -O2 or the -O3 compilation options, or changing the

scheduling using the -mtune option.

Figure 3.3 shows the interference level and the IPC for the first 100 seconds of exe-

cution of mcf when executed on the A11_PI2. The IPC plot shows that the performance does

not change when switching from -O2 (option 1) to -O3 (option 2) for mcf. Nevertheless, we see

over 3dB interference reduction in the most noisy band (LTE 700) using -O2, while the LTE

450 band has an increase in interference with -O3. This means that for the mcf application, if

we want to avoid interference in the LTE 450 band we should use -O3, whereas -O2 should be

used if the communication is in the LTE 700 band.

I repeated the same experiment on the A8_A10 platform to understand the impact of

hardware changes. The interference levels across the spectrum are shown in Figure 3.4, which

also shows the baseline interference level when the core is powered on, but idle. Unlike in the

A11_PI2 case, the -O2 improves interference compared to the -O3 option for both LTE 700 (by

2dB) and LTE 450 (by 3dB). Again, for mcf the -O2 and -O3 does not significantly change the

performance in this platform.

To analyze its impact on another application, Figure 3.5 depicts the EMI of the

A53_K620 processor running the sjeng benchmark after being compiled -O3 and -O2. In this

case, the -O3 compilation option yields a 1% speedup. The interference shifts in frequency
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Figure 3.3: Running mcf with different compile options on the A11_PI2 yielded minimal dif-
ference in IPC, while still yielding a 3dB swing in maximum EMI at certain bands.

slightly, and in most cases the -O3 has a higher EMI. For this board mcf showed a similar

behavior as sjeng with -O2 having less interference.

Figure 3.6 shows the case that only -mtune option is changed for hmmer applica-

tion. I keep the default -march=native, which implies -mtune=native, and change the -mtune to

cortex-a57. In this case, it has no performance difference when executing in the A11_PI2. The

plots shows another case of clear shift in the frequency around 600MHz with little performance
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Figure 3.4: Different compilation options change the EMI in the mcf benchmark on the A8_A10
processor without performance impact.

impact.
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Figure 3.5: When running sjeng on the A53_K620 processor, the EMI being produced changed
based on the optimization the benchmark was compiled with.

The maximum interference reduction for the 5 analyzed bands playing with -O2, -O3

and -mtune options was 8dB in the bzip2 benchmark (not shown in the plots). Also, as expected,
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the compilation options can have a big performance impact. For example, in bzip2 the -mtune

has over 30% improvement when applied in the A15_XU4 board (also not shown). For the

applications of these findings, I exclude the cases with high performance impact.
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Figure 3.6: Compiling hmmer with different -mtune options has no performance impact but a
change in EMI.

In an attempt to further understand the effect of the compiler on the EMI, we per-

formed an exhaustive set of measurements on the A53_K620 board. I measured the EMI across

multiple bands, disabling only one minor optimization from the full -O3 optimizations at a time.

There are 11 gcc flags that differentiate between -O2 and -O3 with gcc 6.3.1.

Figure 3.7 shows the normalized execution time versus the normalized EMI for LTE

700 for each of the compilation options. Each dot corresponds to the -O3 optimization with

one of the 11 flags disabled. Since we also keep the -O3 optimization, there are 12 points

per benchmark. The x-axis shows execution time normalized to the fastest execution for that

benchmark, and the y-axis shows the EMI improvement with respect to the worst EMI for LTE

700 in dB. Unfortunately, I was unable to discern a consistent correlation between optimization,
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Figure 3.7: In-band EMI in the LTE 700 band emitted by the A53_K620 board with respect to
execution time. I was unable to find a correlation between efficiency and EMI.

runtime, and EMI. For example, disabling the fgcse-after-reload optimization has a 40 dB EMI

reduction with small slowdown for mcf, but only a 2 dB EMI reduction for hmmer, and 9 dB

for sjeng (both also with small slowdowns).

In Figure 3.7, the points marking the fastest runtime and best EMI improvement are

marked for each benchmark. For the hmmer benchmark, the point marked “h-e” for best EMI

improvement ran with the fpeel-loops optimization disabled, and had a 1 dB improvement over

the fastest run (marked “h-t”), which had the ftree-partial-pre optimization disabled. In the

case of this benchmark, there is a 0.3x slowdown between the best EMI and the fastest execu-

tion time. The mcf benchmark ran fastest with the ftree-loop-vectorize optimization disabled

(“m-t”), but with a 0.009x slowdown, disabling the fcse-after-reload optimization (marked “m-

e”) offered a 12 dB improvement. Lastly, the sjeng benchmark ran fastest with fpredictive-

commoning disabled (“s-t”), but disabling the ftree-slp-vectorize optimization (“s-e”) offers

over 25 dB improvement with only a 0.03x slowdown.
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Clearly, there is no correlation between the optimizations that is standard across

benchmarks, even across different bands, there is no discernible relationship. Although po-

tential for future work, we decided not to use multiple binaries, and we restrict ourselves to

just -O2 vs -O3 in the rest of the thesis. Keeping many binary files would take up an excessive

amount of space and raise tune/selection algorithm issues.

The main conclusion is that by adjusting the compilation options and constraining

cases to a small performance impact, we can achieve up to 8dB interference reduction levels

with many cases providing 3dB reduction. A source of difficulty managing the system is that

the effect is not only compiler dependent but compiler/core/platform dependent. The same

compilation options yield opposite results in different processors.

In Chapter 6 (which directly applies the techniques discussed in this chapter), when

compiler techniques are mentioned, I mean to change the compiler options (-O2/-O3/-mtune)

and select the binary with the lower interference in the band to protect. Although not covered,

a JIT based system would be the best platform allowing to dynamically perform small binary

changes to mitigate interference while monitoring the interference level impact.

3.2.3 Benchmark Impact on EMI

Clearly, EMI is different depending on the application [15, 16]. However, EMI also

changes on a per-band basis. Figure 3.8 shows the average and maximum EMI in the five

different RF bands on the A53_K620 and the A11_PI2. The interference depicted is the differ-

ence between emitted power when running the benchmark at each frequency with respect to an

idling processor. However, it is hard to see a relationship between the in-band interference and
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Figure 3.8: Interference created in each band running SPEC2006 benchmarks on the A53_K620
and the A11_PI2, without the base EMI created by the processors running only the operating
system.

benchmark that is consistent across processors.

Thus far, all the measured data presented in this thesis have been the average of inter-

ference per frequency over a sustained amount of time. However, many programs go through

different phases during execution. As the different phases tend to run different types of in-

structions, it stands to reason that the radiation at different frequencies will be different during

different phases.
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Figure 3.9: IPC and EMI for mcf on A11_PI2. The processor goes through phases with different
EMI patterns. In this case, it seems that when there is lower IPC, there is more EMI.

Figure 3.9 shows these phases as the mcf benchmark is run on the A11_PI2 processor

over time, the interference is shown as a color map per frequency and time. Interestingly, as the

IPC decreases, there appears to generally be more RF emanations. From these results it is not

clear why this behavior happens, but it could be related to changes in processor activity.

Figure 3.10 depicts the IPC and phases of the A53_K620 processor running the sjeng

benchmark. In contrast to the A11_PI2 running mcf, in many cases the A53_K620 has more

interference when the IPC is higher for the sjeng benchmark. Nevertheless, the clear EMI

fluctuations are related to IPC changes but it is not a direct function of IPC because sometimes

higher IPC means lower interference in some bands (which can be seen in in the LTE 800 Lower

band in Figure 3.10.

In addition to only observing the phases per benchmark, I also performed some mea-

surements over time with different input sets. Although the different input sets caused each

benchmark to spend different amounts of time in each phase, the EMI during each phase re-
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Figure 3.10: For the sjeng benchmark on the A53_K620, it is more clear that the processor goes
through phases with different EMI patterns. When compared with the IPC, there is no clear
higher/lower EMI correlation, just change.

mained unchanged for the benchmarks measured in this thesis.

The main conclusion is that there are clear program phases in IPC and EMI as the

application executes, but the IPC phases are not necessarily correlated with EMI phases. Al-

though sometimes an IPC increase results in an EMI increase, in many phases an IPC increase

results in an EMI reduction. Adapting through phases has potential benefit and the phases can

be detected with IPC phase changes.

3.2.4 Cache Impact on EMI

Cache accesses consistently affect the amount of RF interference being emitted by

each chip. In order to observe how cache accesses affected the RF interference created by
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each processor, we utilized a synthetic program that emphasizes accessing a large 2D array and

injected a delay before the cache misses (Listing 3.1).

1 i n t main ( ) {

2 i n t t o t a l = 0 ;

3 f o r ( i n t i =0; i <8192; i++) {

4 f o r ( i n t j =0; j <8192; j++) {

5 //asm("nop") ;

6 t o t a l += matrix [ j ] [ i ] ;

7 }

8 }

9

10 p r i n t f ( " t o t a l=%d\n" , t o t a l ) ;

11 }

Listing 3.1: Function for testing code with frequent cache accesses. Delays (nop calls) were
inserted at line 5. The numbers in lines 3 and 4 were manipulated based on the cache sizes for
each processor in order to ensure the desired cache misses were occurring (L1 or 2).

The first thing I noticed was that there was a distinct difference in frequency and

amplitude between L1 and L2 cache accesses, as shown in Figure 3.11, which I determined by

manipulating lines 3 and 4 in Listing 3.1. Clearly, L2 cache accesses trigger more interference

than L1 cache misses, presumably because an L1 cache access (miss) is required for an L2 cache

access to trigger. However, at some frequencies L1 cache accesses are noisier, which may be

attributed to the fact that L2 caches are slower and would therefore interfere with different

frequencies. Unfortunately, a processor would take a huge performance hit should it forgo

accessing the L1 cache in favor of the L2 cache, so I focused on techniques that would take less
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Figure 3.11: The interference created by accessing the L1 and L2 caches on the A8_A10 pro-
cessor is significantly different.

critical performance hits, despite the EMI benefits.
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Figure 3.12: The interference created by accessing the L1 cache with and without delay on the
A8_A10 processor is significantly different.

Instead of switching which cache to access, I tried injecting a minimal delay before

accessing the L1 cache by uncommenting line 5 in Listing 3.1. When I delayed the cache
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Figure 3.13: By changing the SDRAM speed for the A11_PI2, I was able to move the noisy
peaks in frequency.

access slightly, I was able to reduce the interference, as shown in Figure 3.12. Clearly, there

is a significant affect on the frequency response of the device: consistently a frequency shift of

about 15MHz. Injecting this minimal single nop delay was able to trigger a significant response,

where the power spike has moved more than a Bluetooth channel and most LTE channels.

The main conclusion is that caches have a big impact in delay and misses in the L2

tend to have a higher impact at lower frequency bands. Although this has potential to be a

good technique, the DEMIS technique in Chapter 6 does not trigger cache delays or misses, I

was constrained to measurements in real systems; it is not clear how to introduce affect cache

behavior at runtime without RTL access.

3.2.5 Memory Impact on EMI

On the A11_PI2, modifying the DRAM speed was a simple matter of modifying the

BIOS parameters. I measured the EMI when the processor was running nothing but the OS. As
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shown in Figure 3.13, modifying the sdram_freq parameter in the config.txt file that serves as

boot settings for the A11_PI2 changes the frequency of certain noisy spikes when idling.

These frequency spikes appear to be directly caused by memory accesses because

they occur at the DRAM frequency and at its harmonics. When the DRAM frequency was

shifted to 360MHz, I was able to see the spikes shift accordingly: from 400MHz to 360MHz,

and from 800MHz (the first harmonic) to 720MHz.

I measured the EMI produced by the A11_PI2 with the default DRAM speed of 400

MHz as well as with a 10% slower speed of 360MHz. This time, however, I took these mea-

surements while running the mcf and sjeng benchmarks. The results of these measurements are

presented in Figure 3.14. The libquantum benchmark produced negligible EMI on the A11_PI2

processor, so the results are omitted.

Reducing the DRAM decreases interference by 3dB in the SuperWiFi 600 band, but

adds a spike in the SuperWiFi XR7 band for the mcf benchmark. However, the default settings

have less interference in the SuperWiFi XR7 band and more interference in the SuperWiFi

600 band for the same benchmark, so depending on what type of WiFi is being used, different

DRAM speeds are better for this application.

Similar effects can be seen for the sjeng benchmark as well. For example, the default

DRAM speed is better for the SuperWiFi XR7 and worse for the LTE 700 frequency bands than

the slower DRAM speed.

The main conclusion is that DDR creates big spikes in interference. Even when the

processor is idle there are big spikes because the DDR clock is kept running. If the band in use

is affected by DDR, the only solution is to shift the DDR operating frequency. For the analyzed
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Figure 3.14: When running the mcf and sjeng benchmarks on the A11_PI2, changing the
DRAM speed as little as 10% has a significant impact on EMI.

cases, small 10% DDR frequency change is enough to move the spikes out of most bands. For

many benchmarks like sjeng, this has no performance impact but some benchmarks like mcf

are very sensitive resulting in a 10% performance impact.

The DDR clock is one of the strongest EMI spikes I observed, even stronger than the

processor clock. The reason is that processor clocks have a more effective modulation of the
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clock signal. Future DDR designs may want to consider a better clock modulation requirement.

3.2.6 Execution Core Impact on EMI

As seen in Figure 3.8, even the same benchmark will emit different EMI when run

on different processors. Therefore, I launched a more specific investigation on the impact the

execution core itself has on EMI.

1 i n t main ( ) {

2 i n t t o t a l = 0 ;

3 f o r ( i n t k=0;k<10000;k++) {

4 f o r ( i n t i =1; i <10000; i++) {

5 t o t a l += k/ i ;

6 //asm("nop") ;

7 }

8

9 }

10 p r i n t f ( " t o t a l=%d\n" , t o t a l ) ;

11 }

Listing 3.2: Function for testing computation heavy code. This code was used for testing the
FPU by changing all data types from int to float. Delays were added by uncommenting line 6,
and adding as many nops as desired.

In order to test the interference generated from using the FPU, I performed multiple

divisions, once using the int data type and once using the float data type. The source code for

the benchmark used is in Listing 3.2 in the A8_A10 hardware.

I noticed a substantial difference in EM radiation between the two test cases on the
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Figure 3.15: When utilizing the FPU as opposed to doing simply integer calculations on the
A8_A10 processor, there was much less RF interference. Furthermore, different frequencies
were affected differently.
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Figure 3.16: RF interference created when performing integer calculations on the A8_A10
processor. The frequency response differs with the addition of a single nop in the loop.

A8_A10 as in Figure 3.15. Not only did the interference decrease, but I also observed that

the lower frequencies tended to exhibit a more consistent interference during floating-point

calculations, whereas higher frequencies observed consistently more interference from integer-
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only calculations.

By injecting even a single nop into the calculations (uncommenting line 6 in List-

ing 3.2), I was able to observe a distinct difference between frequency responses for both integer

calculations and floating point calculations as seen in Figure 3.16.
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Figure 3.17: RF interference created when performing floating-point operations on the A8_A10
processor. The frequency response differs with the addition of a single nop in the loop.

As the interference generated from the integer calculations exhibited frequent changes

in power in each frequency, it is easy to determine that the power spikes undergo a frequency

shift when one nop is injected into the code. Furthermore, the frequency spikes tend to have

less power in the benchmark with a delay by almost 7dB in the lower bands and 5dB at higher

frequencies. The measured power is presented in Figure 3.16.

Figure 3.17 shows the difference in frequency responses when running the floating

point benchmark with and without a nop delay. As opposed to the integer calculations, the

floating point calculations have wide-band low-frequency interference. However, by injecting a

nop into the inner for loop, I was able to move the interference to different frequencies.
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Figure 3.18 shows the radiated power from the A53_C2 and A53_K620 processors

when running the three benchmarks without changing any of the default settings on the boards.

The benchmarks were compiled without any optimizations. It is clear in these two figures

that each benchmark yields a distinct radiation pattern on each processor. Also, the benchmarks

tend to behave similarly across processors. As the processors all run at different frequencies, we

expect some variations, but in general it is clear that specific architectural components produce

distinct interference patterns.

It is important to note that the A53_C2 and the A53_K620 processors are fabricated

from the same RTL in the same fab and process node. Therefore, it is surprising that the EMI is

so different between the two processors.

Additionally, on the A53_C2 processor, the libquantum benchmark produces less in-

terference than sjeng, but on they are switched on the A53_K620 processor. I found this to be

quite common throughout our investigation.

I was also able to measure these benchmarks on an out of order (OoO) processor, the

A15_XU4 which features four OoO cores and four in-order cores. The results are provided in

Figure 3.19. Interestingly enough, the OoO core appears to only emit noticeable radiation in

frequencies less than 600MHz, which is below most wireless communication bands. However,

running the libquantum benchmark introduces multiple 10dB spikes into the LTE 450 band,

which could cause significant connectivity degradation.

The main conclusion is cores have a high impact in processor interference, with some

cores like the A15_XU4 having less interference at higher frequencies. The high power blocks

like the FPU can produce interference but adding delays, which sort of behaves like a frequency
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Figure 3.18: When running the different benchmarks on the A53_C2, and A53_K620 proces-
sors, the EMI being produced varied noticeably. A53_C2 and A53_K620 are fabricated from
the same RTL.

modulation of the FPU, changes the interference level. Even the same RTL (A53) has a very

different behavior in absolute and relative terms between applications. This means that other

factors besides architecture can have a big impact, but as show small core fluctuations can

compensate for the interference.
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Figure 3.19: When using the A15_XU4, the EMI varied significantly across benchmarks. How-
ever, no significant EMI was produced above 600MHz, and therefore is irrelevant to most wire-
less technology frequencies.

3.2.7 Further Insights

In addition to the hardware described in Table 3.1, some experiments were also per-

formed on a MYiR z-turn Board, running Ubuntu on a Xilinx ZYNQ chip that includes an

FPGA on chip. Unfortunately, the measurements were all too noisy to provide usable results, as

the processing noise was overpowered by noise that I believe was generated by the FPGA itself.

However, I was able to note that when starting and ending a process, all frequencies measured

experienced a significant increase in noise (more than 30dB). I hypothesize that this noise may

have been caused by components being powered on or off during that time.

3.3 Conclusion for DEMIS Problem Space Exploration

In this chapter, I performed a thorough investigation of the problem space and proved

that computer architectural parameters have a significant effect on EMI. Additionally, I offered
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insights into multiple different architectural parameters, and investigate their effect on EMI. Of

the multiple parameters studied, cache access schemes, clock speed, and small process delays

had little impact on processor efficiency. However, small dynamic changes of these produced

a significant reduction of in-band interference. These observations were expanded to include

more system-level techniques for reducing in-band EMI such as changing compilation options.
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Chapter 4

MESC: Model for EMI from an SoC

Those who have knowledge don’t

predict. Those who predict don’t have

knowledge.

Lao Tzu

In this chapter, I propose MESC, Model for EMI from an SoC1. MESC takes into

account the activity rate of individual wires in a process and the layout to approximate the

expected EMI from that process. This is in distinct contrast to previous works that utilize

measured EMI to profile programs [14, 40] or to isolate the on-chip location of magnetic field

sources [48], as I aim to model the EMI from the layout, not the other way around. MESC uses

some basic initial power measurements of a device as well as statistical sampling of switching

activity in order to model the expected EMI of a processor. MESC is a simpler model than

full-wave simulators [3, 24, 43], with a more convenient runtime in order to allow design space

1This work is part of the publication I have submitted to The 51st Annual IEEE/ACM International Symposium
on Microarchitecture.
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exploration. In my evaluations, I used traces obtained by statistically (temporal) sampling an

FPGA emulation to get activity, but traces from RTL simulation could also be used. I also

propose spatial sampling, i.e., not considering all the wires in a core, only considering the

longest wires on a processor. The rationale behind this is that longer wires have more impact in

the EM radiation.

To evaluate MESC, I perform FPGA emulations and measure the EMI using a spec-

trum analyzer. I then compare the expected EMI profile across different frequencies with the

measured EMI. Even by using temporal and spatial sampling, MESC is able to predict with an

average of less than 1% error. The frequencies at which we observe peaks of EMI are correctly

predicted by MESC and the main source of error is with relation to the magnitude of the EMI.

This is particularly important since predicting the frequency bands at which interference occurs

is more important than predicting the exact magnitude of the EMI.

The main contributions of this chapter are:

• MESC: a novel methodology for modeling the EMI of a processor running on a processor

• Validation of MESC with FPGA measurements of a processor’s EMI

4.1 MESC Flow

In this section, I discuss each step in MESC used to model the expected EMI. The

EMI produced by a net depends on the net length and waveform present in the net. In theory,

the shape of the net would also have an influence on EMI, but from preliminary tests, I noticed

that this has a lower impact on the overall EMI produced. Sampling all the nets in a core, all the
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time would generate a lot of overhead, both in terms of hardware needed and in performance

impact. On the other hand, not all nets contribute equally to EMI.

4.1.1 Sampling Strategy

Because monitoring every net on a processor would be impractical, MESC only mon-

itors a subset of the wires in the core. Since EMI is proportional to wire length, only long

wires will emit a significant amount of EMI. Therefore, I chose which nets to monitor based on

length: after excluding reset and clock nets, I choose the longest nets until at least 80% of all the

metal in the processor was being probed. A histogram of the total length covered when choos-

ing the longest nets is provided in Figure 4.1 (details in Section 4.2). For each net used, MESC

requires information on length and width (metal layer). This is summarized as a single number.

We call the combination of this information for all nets used “layout profile.” Metal layer is im-

portant since different layers have different metal pitch, which alters the current (thicker wires

have lower resistance per length unit). My implementation of MESC targets an FPGA, so metal

layer is not taken into account, but would be necessary in an ASIC implementation of MESC.

Additionally, in the interest of minimizing the amount of data that is necessary, I

decided to take samples of the switching activity as well, basically this means that at every

period of time, the data in each wire of interest will be collected for a certain number of cycles.

As shown in previous works [14,23], the EMI changes as processors execute different phases of

a process. For the purposes of this work, determining which execution phase is being processed

is sufficient.

In my evaluation, I show that 1024 samples per monitored net and ≈ 600 nets are
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Figure 4.1: By choosing the longest nets first, MESC is able to cover 90% of the total length
covered by all nets by using only the longest 600 nets of the total 646,952 nets.

enough to get accurate EMI estimate. Those figures can be be reduced at the expense of accu-

racy.

Once I have obtained the switching activities of each sample net in different time

slices and the relative amount of metal that each net has, I have all the data necessary to build

MESC.

4.1.2 Converting to the Frequency Domain

After retrieving the switching activities, I perform an FFT on each net of each sample,

converting these time slices into the frequency domain. When putting together the MESC EMI

for the entire processor, I must also take into account the relative amounts of metal each net has,

in the case of an FPGA, how long the net is. Thus, each net is assigned a weight equal to its

relative length.

Despite these nets being linear, and thus the total radiated power expected to be pro-

portional to the square of the wire length (Ptotal ∝ L2 as in Equation 2.3), the FPGA is split up
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into wire segments of equal length with buffers in between. Therefore, each net can be consid-

ered to be multiple radiators of equal dimensions instead of one single long wire. Therefore, in

my implementation of MESC for FPGAs, the net is weighted by its length, not the square of its

length. In the future, further analysis of wire lengths and buffer placement must be performed

in order to create an appropriate weighting algorithm for ASICs, but due to resource and time

constraints, I did not pursue this in my research. Additionally, for this implementation of MESC

on an FPGA, each wire has the same signal strength and is therefore disregarded, but for ASICs,

the drive strength of each wire will need to be taken into account.

The weight is multiplied by its frequency domain value before the weighted value of

each net is added together for every frequency. This yields a total power over frequency from 0

to half of the sampling frequency, which in this case is the clock frequency, as our tools sample

the values each clock cycle.

clk

sample

0 1 0 1 1 0

0 0 1 1 0 0 1 1 1 1 0 0

fclk sampling

2fclk sampling

Figure 4.2: One clock cycle has the same value, so MESC can artificially increase the sampling
frequency, thus increasing the accuracy of the model.

However, only being able to obtain the frequency domain until up to half of the clock
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frequency is insufficient for this model. Therefore, to implement MESC, before taking the FFT,

I repeat the value of each clock cycle to artificially increase the sampling frequency. I argue that,

because we are dealing with square waves for this FPGA application, the value should remain

unchanged throughout each clock period. For example, a switching activity sample containing

the values ‘0 1 0 1 1 0’ with a clock frequency of 1MHz would only yield a Fourier transform

that corresponds to values up to 0.5MHz. However, if we inject an extra sample per clock

cycle, we can use the values ‘0 0 1 1 0 0 1 1 1 1 0 0’ with a sampling frequency of 2MHz, and

we are able to get values in the frequency domain up to 1MHz. This is shown in Figure 4.2.

When implementing MESC for ASICs, we would have to take into account less square waves,

and add values that are calculated based on the rise and fall times of the data for that specific

processor. In the future, it would be possible to implement MESC for FPGAs that also account

for less square waves, but for this application I found approximating the waves to be square was

sufficient while adding simplicity.

For this implementation of MESC, I used 8 samples per clock cycle, as after inves-

tigation, I found that injecting more samples yielded a small increases in accuracy for a large

increase in compute time.

4.1.3 Adding Harmonics

Once the samples have been converted to the frequency domain, MESC must compen-

sate for each signal’s harmonics. Remember from Chapter 2 that square waves are comprised

of a signal and its odd harmonics. Thus, MESC adds the odd harmonics of the signal to account

up to the highest desired frequency for the model, dividing the power by the value of the har-
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monic. That is, for a signal at frequency f with strength p, the nth harmonic will be added at

the frequency f n with strength p/n, provided that n is odd.

However, because the FFT takes into account harmonics, this is only necessary for

frequencies above half the artificially increased sampling frequency. Adding these higher fre-

quencies increases the model’s accuracy without adding a significant compilation time, as this

is a linear operation and the FFT is O(n logn).

4.1.4 Artifacts and Shielding

Packaging, board and other off-chip components affect the observed EMI. Off-chip

components may create additional spikes in frequencies that were not expected by simply mod-

eling on-chip wires; I call these artifacts. Also, packaging, cooling components and sockets

may create an EMI filtering at certain frequencies, and I call this effect shielding.

In my model, I consider both artifacts and shielding. First, to detect artifacts, the

chip must be on without processing anything. In the case of an FPGA, I was able to observe

that these artifacts existed even when the FPGA had not been programmed. Figure 4.3 shows

an example of artifacts that were measured on the FPGA used in my work. The FPGA was

programmed with a simple bus, that was run at different frequencies (40MHz and 50MHz), as

expected, an EMI spike is observed in those frequencies. However, there is a consistent artifact

at frequency 60MHz. We can therefore conclude that this spike does not come from the design

implemented, but rather from some other component, either on the FPGA itself or on the board.

The process of detecting artifacts is static and can be done once in the lifetime of a

chip. The process involves finding EMI peaks that are consistent regardless of the application
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Figure 4.3: To detect artifacts, we run the FPGA at different frequencies. The figure shows
the measurements artifacts at 46 and 60MHz for our FPGA setup when running a simple 40 or
50MHz bus.

Additionally, as I am unable to measure the EMI of the processor directly, I must

take into account any shielding created by the housing (packaging, cooling, board, etc.). I

am able to determine this by measuring the power emitted from a single bus with a consistent

width and length carrying varying clock frequencies. With the peak power at each frequency,

I am able to construct a linear function over frequency that must be taken into account when

measuring the EMI. Figure 4.4 shows the EMI emitted by a single bus, designed in Vivado for

this experiment, with consistent length and width switching at different frequencies. As shown,

there is a significant difference in power as the frequency changes. However, I was able to

determine an approximate logarithmic decay, with a power decrease of 20log10( f ), which we
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would expect after an inspection of the logarithmic Friis Transmission Formula (Equation 2.5).
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Figure 4.4: Interference of a single bus toggling at 40, 80, 120, and 160MHz. From this, I
can infer that our measurement setup is not without some shielding as a function of frequency,
which must be compensated for in MESC for accuracy.

4.1.5 Other physical factors

There are other factors that affect EMI. In general, any parameter that can affect the

current will also affect EMI. Here, I discuss how some parameters are expected to affect EMI.

Incorporating those parameters in MESC is left as future work, since they would require an

ASIC tapeout.

Dynamic Voltage Frequency Scaling (DVFS) is a technique that adjusts the supply

voltage during execution [13]. The current, and thus the EMI, is expected to be scaled linearly

with voltage in wires. Since this is a dynamic technique, it needs to be taken into account during

61



the model computation.

Buffers are sometimes added in long wires to improve the overall delay of the path [2].

The layout profile for MESC in this work only takes into account the total size of a wire and not

the presence of buffers. However, adding buffers to a wire will increase the overall current and

therefore the EMI. In my FPGA based evaluation, it was not possible to evaluate the addition

of buffers to a wire, since buffers were already pre-allocated in the FPGA, however to get more

accuracy in the model, buffers would also need to be considered.

MESC should also be extended when the metal lines in an ASIC have different widths.

In the current model, I assume all the metals to have the same length. This is fine in this

evaluation because we pick the longest wires, and in an FPGA all of them have the same width.

In a ASIC, this is not necessarily the same.

Another important issue that may arise in particular for ASICs is slew and load. Slew

is the rate at which a signal changes in the beginning of a cycle. A signal that has high slew

or signals with high load will be “less square.” This will mostly affect harmonics of the main

signal frequency. Since harmonics have lower amplitude, the error due to non-square waves

is expected to be small. In cases where more accuracy is needed, this can be considered by

calculating the load in each of the wires of interest.

MESC could be extended to consider the DVFS, voltage fluctuations, buffer insertion,

and different ASIC metal lines. As the evaluation shows, this does not seem to be an issue for

FPGAs. A potential tapeout for ASICs could create a validation setup for the model.
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Figure 4.5: MESC consists of collecting execution traces for each of the sampled wired, cal-
culating the FFT individually, and some processing before combining the FFTs. The final EMI
model is provided after inserting the artifacts and compensating for shielding effects.

4.1.6 Final Flow

The final MESC flow consists thus into collecting execution traces for the sampled

wires at sampled intervals, calculating the FFT of the traces in each wire, adding harmonics,

multiplying by wire length and combining all the wires FFTs into a single FFT. The artifacts

and shielding are added to the final FFT. Figure 4.5 depicts the flow.

4.1.7 Alternate MESC Application: EMI vs Power Tradeoff

In Chapter 5, I propose EMI CHopper as a use-case for MESC. However, MESC

enables architects to model EMI for other applications as well. Thus far, EMI has been only
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evaluated in architecture papers from measurements in real hardware. With the possibility of

modeling EMI without real hardware may allow EMI estimation to be included in higher level

architectural exploration.

For instance, another application for MESC would be to determine the effect of in-

creasing the clock frequency, but only sending the values over the bus every couple of cycles,

which should change the EMI produced by the clock without changing the processor speed.

One drawback would be that there would be an increase in power consumption as a tradeoff for

manipulating the EMI.

4.2 Setup

Before I go into the evaluation of MESC, I will discuss the measurement setup, some

challenges associated with the measurements taken, and how they were handled throughout the

construction of the model.

Since my approach requires two different layouts, I decided to take measurements

out of an FPGA to avoid taping-out a chip. Therefore, the clock frequencies used are much

lower than what would be feasible in an ASIC. Thus, in my research, I was unable to use

real communication frequencies due to the constraints of running processes on an FPGA core

instead of an ASIC processor. However, I believe that this proof of concept is sufficient to show

that MESC (and EMI CHopper, proposed in Chapter 5) is feasible on a real chip.

All EMI measurements were taken using a N9342C handheld spectrum analyzer with

a Near-Field probe set from Keysight Technologies. I used the Digilent Genesys 2 Kintex-7
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FPGA Development Board to develop and verify MESC. In order to evaluate the Spec2006

benchmarks using different core layouts, I employed the use of the OpenPiton [8] core with dif-

ferent placement optimizations for our FPGA. OpenPiton was synthesized using Vivado 2017.4.

The run frequency of OpenPiton in the FPGA is 66.6MHz, and for simpler experiments without

cores the clock frequency is variable and mentioned in the evaluation on a per-experiment basis.

Figure 4.6: Depicts the measurement setup used for FPGA measurements.
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4.2.1 Setup Verification

My first task was to ensure the RF principles described in Chapter 2 were applicable to

my setup. I had some concerns that applying some of the principles described in Chapter 2 to an

FPGA might yield some inconsistent results, as “wires” on an FPGA are broken up with buffers

and routing resources such as crossbars and multiplexers. Additionally, FPGAs also contain a

considerable number of additional electrical components, such as logic for clock generation,

memories, IO connects, that could be active even if not used. Thus, I started with a series

of smaller tests to see how implementing circuitry on an FPGA compared with the theoretical

expectations.

My first tests consisted of creating buses of varying length, number of bits, and shape

that transmitted clock signals at multiple different frequencies. As expected, buses that were

twice as long or twice as wide emitted twice the amount of power at the signal frequency, an

increase of dB.

Once I determined that the buses radiated EMI as expected, I implemented a debug

core in Vivado that monitored the activity of each net on the FPGA. From the switching activity

of each net, as one might find in a Value Change Dump (VCD) file, I was able to perform

a discrete FFT of the values of each net at every clock cycle in order to obtain the signal’s

distribution in the frequency domain.

Using these simple tests, I was able to monitor the activity of all the nets, but moving

forward, it was clear that monitoring every net on a processor would not be feasible.
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4.3 Evaluation

I start this evaluation by validating MESC. Figure 4.7 shows a comparison of the

output of MESC vs the measured EMI from the namd benchmark on OpenPiton running on a

FPGA. The model yields an estimated EMI that is quite accurate, with only 5dB maximum dif-

ference between MESC and the measured output. It is reasonable to conclude from these results

that MESC is able to accurately estimate the magnitude of the EMI and, most importantly, the

frequency at which EMI peaks occur.
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Figure 4.7: MESC of namd compared with the actual measured EMI of namd running with the
same layout. The maximum difference between two is 10dB.

To go more into details on the accuracy and limitations of the MESC, I want to analyze

other examples. The first point that I want to analyze is the effect of shielding in the model. The

next set of results use a simple design with three buses, each running at different toggle rate.
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One switches at a rate of 200MHz, one that switches at a rate of 57MHz, and one that switches

in a “random” 7-bit pattern that keeps repeating itself. These activities were chosen in order

to ensure that the harmonics would not overlap. Figure 4.8 shows the measured and estimated

EMI for the three buses.
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Figure 4.8: Compares MESC, without compensating for shielding, with the measured EMI of
a small test case with three buses after adding the artifacts. From this figure, I concluded that
compensating for shielding effects improves MESC accuracy.

As depicted in Figure 4.8, I started with small test cases to verify the accuracy of my

model. One challenge for comparing measured EMI with my model was some of the inconsis-

tencies in the amount of power being measured as the frequency changed. Figure 4.8 clearly

shows that, at the lower frequencies, the peaks tend to be a lower magnitude than the actual

measured EMI, whereas the higher frequencies tend to match up more accurately.

Next, I evaluate the need for artifact insertion in the model. Figure 4.7 also has a peak
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Figure 4.9: Shows the power emitted by the FPGA before it is programmed. When the device
is on, but even before it is programmed, it emits non-uniform EMI, with 9 considerable power
spikes in our frequency range.

at 135MHz that did not originally appear in my model. Unfortunately, this deviation is unable

to be detected by MESC as it is being produced consistently by the FPGA, even when the FPGA

is not programmed. Thus, this peak is not being produced by the core that MESC is modeling,

but rather by the device in which it is being implemented. Figure 4.9 shows the measured EMI

when the FPGA is not programmed with any circuitry at all. As shown, there is a significant

spike in EMI at 40, 60, 120, 135, 150, 170, 180, and 200MHz. Therefore, MESC must add

these consistent peaks produced by a device after calculating the EMI from the activity rates.

Without inserting those artifacts into the final estimated EMI, there would be an extra source of

error in MESC. For other applications, artifacts also need to be measured and considered when

estimating EMI.
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Once the artifacts and the shielding have both been integrated into MESC, I was able

to run the set of SPEC2006 benchmarks on the OpenPiton processor. With that information, I

was able to determine that MESC provides accuracy within 5% across all benchmarks, with an

average deviation of less than 1%.
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Figure 4.10: Shows the percent error over frequency for each benchmark.

Finally, I verify that MESC is consistent across a set of SPEC benchmarks running

on the OpenPiton core. I measure EMI with the spectrum analyzer and calculate the estimated

EMI from MESC. Then I take the percentage difference for each frequency. Figure 4.10 shows

the percent error over frequency of MESC compared with the measured EMI. The average error

across all benchmark is about 1% and the maximum observed error was of 5%.

One interesting thing to note in Figure 4.10 is that around both 20 and 45MHz, there is

what seems to be a systematic error that is making the modeled EMI smaller than the measured
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EMI. Even though this error is small, it is consistent across benchmarks. This type of systematic

error could be easily compensated for, even without knowing what the source of the error is.

However, for this work, I decided not to do this compensation, since the magnitude of the error

is small and I was unable to find a cause.

4.4 Conclusion for MESC

MESC is an EMI model that architects can integrate with their simulators. The model

requires some layout information of the SoC and the ability to get traces for the longest wires.

This information allowed me to build an EMI model that can be used in different ways.

My evaluation shows measurements for MESC with less than 5% error compared

against multiple OpenPiton FPGA layouts on real FPGA Xilinx hardware. The model details

how to choose samples, select wires, perform FFTs, and account for artifacts and package

shielding.
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Chapter 5

EMI CHopper: DEMIS for Layout

Don’t be too proud of this technological

terror you’ve constructed.

Darth Vader

Once I designed and verified a usable model, I leveraged MESC from Chapter 4 to

model the EMI of a core with different layouts, I propose EMI Core Hopper (EMI CHopper),

a technique to reduce in-band interference by “hopping” between cores with the same RTL

but different layouts1. EMI CHopper uses the expected EMI provided by MESC in order to

determine which of the different core layouts would produce less in-band interference, and may

switch a process to the other core depending on the tradeoffs between processing efficiency and

RF interference. I show that EMI CHopper is able to reduce the in-band interference by up to

50%, with very low impact on performance.

The main contributions of this chapter are:

1This work is part of the publication I have submitted to The 51st Annual IEEE/ACM International Symposium
on Microarchitecture
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• Proposing EMI CHopper: a technique for in-band EMI via thread migration

• Validation and evaluation of EMI CHopper

5.1 Related Work

Thread migration, or “core hopping” has been a topic of research for years, with

applications ranging from power and leakage optimizations to performance improvements, but

I am the first to propose utilizing this technique for reducing in-band EMI.

Kumar et al. [31] propose to use heterogeneous cores that implement the same

Instruction Set Architecture (ISA). A thread can be migrated from a core to another to reduce

power. Authors report a reduction in power of 39% with only a 3% reduction in performance.

To enable this type of migration, a Heterogeneity-Aware scheduler [41] is also proposed. The

schedule bases its decision on a signature that estimates the performance of a thread in each

core. The same type of schedules could be adapted to be used by EMI CHopper, however,

in my research, I purely focus on reducing the in-band EMI, and not to combine this with

performance metrics. Thus, the only metric used to determine whether to migrate a thread is

the estimated EMI of the thread in each core.

A similar approach is evaluated in Alpha cores [9], where only two core sizes are

used. One important lesson is that, although there may be advantages of migrating the threads,

it is necessary to take into account the overhead of switching the context from a core to the

other.

PIE [46] uses a more elaborated performance predictor to decide whether and to
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which cores threads should be migrated. It collects CPI stack, MLP and ILP profile infor-

mation to estimate performance in each core. The recommended approach is to use dynamic

scheduling, where migration overhead needs to be taken into account. The paper also shows

that there is an impact on whether or not a shared Last Level Cache (LLC) is present or not. A

shared LLC can reduce the performance overhead of migration of cache to less than 2%.

I propose using these techniques or similar ones to implement EMI CHopper, but

evaluating these techniques lies outside the scope of my research.

5.2 Flow

Now that we can estimate the EMI emitted by a core using MESC, I want to use the

estimate to reduce the EMI emitted in a specific communication band. The main objective is

to clean bands that are being used for communication of interference. EMI CHopper proposes

hopping from core to core to reduce in-band EMI. This is usually referred to as thread migration

and has been proposed for performance and power [9, 31, 46]. In this chapter, I propose using

two cores that are architecturally identical, i.e., will yield the same performance and power, but

that have different layouts. The difference in layout will affect how EMI is produced for a given

process running in each core, which is the basis for our proposal.

EMI CHopper works as a dynamic scheduler that estimates EMI for each available

core, using MESC, when wireless communication is being used. The layout profiles from

MESC for each core are known at design time and are static. If EMI in the band of interest

would be reduced by running the application in a different core, EMI CHopper may decide to
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migrate the thread. To prevent migrating for trivial reductions in EMI, EMI CHopper takes a

threshold parameter, and thus the migration only occurs if the reduction in EMI is larger than

the threshold.

5.2.1 Modeling thread migration cost

It is important to note that there is some execution overhead associated with migrating

a thread [9, 18]. The thread migration cost may be elevated, in particular when considering

rebuilding the state of the cache and branch predictor [9, 46]. There is a clear tradeoff between

paying the cost of transferring cache, branch predictor, etcbetween cores or going through a

warm-up period, where these structures will be organically filled during execution. The most

natural solution is to not transfer those states and let the execution take care of it, which is

assumed throughout this thesis.

The migration cost comes from various sources, ordered here in order of magnitude

(least impact first):

1. Migrating the architectural state (PC, RF, etc)

2. Warming-up branch predictor tables, prefetcher state, etc

3. Warming-up the cache state

Overall, a few clock cycles can be assumed to transfer the architectural state between cores [9].

For branch predictors, prefetcher and other predictor tables, it is harder to estimate the impact,

but since their state is not transferred in this approach, it will show as a reduction in IPC due to

mispredictions. For caches, the impact can be potentially throughout a large number of cycles,
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since caches take much longer to warm-up [18]. However, by using a shared last level cache

(LLC), even after migration, the penalty of misses will be largely reduced [46]. In fact, when

using a shared LLC, even by migrating every 2.5ms, the performance impact is expected to be

lower than 1%.

The impact on performance is dependent on the frequency at which the threads are

migrated [18]. For wireless communication and EMI reduction, there is no need for fine grained

thread migration, thus I do not expect frequent migrations. For EMI CHopper, I limit the mi-

gration to at most one thread migration per second, which should reduce any impacts on perfor-

mance. In my evaluation, I show that even 1s migration is frequent enough for any communi-

cation purposes.

5.2.2 Implementing EMI CHopper in real hardware

EMI CHopper requires each core to keep track of the activity in the longest wires, and

then calculate FFT for each wire. This requires some dedicated hardware. Since keeping 1024

samples for 600 wires would imply in too much storage, EMI CHopper proposes taking samples

of each wire at a time. Thus, EMI CHopper requires only 1024 bits of storage, pipelined FFT

implementation and some arithmetic circuitry per core.

Taking one EMI CHopper sample will thus take 600 wires ×1024 cycles =≈ 600K

cycles. At 1GHz, this means that is possible to calculate over 16k samples per second. This is

more than enough for 1 hop every second proposed by EMI CHopper. However, more buffering

and a larger number of FFT accelerators can be used to speed-up the process.

The overall implementation of EMI CHopper is illustrated in Figure 5.1. Each core
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Figure 5.1: EMI CHopper requires a single FFT and arithmetic operations in addition to a
small storage to calculate MESC for each application in each core and decide whether or not to
migrate threads from a core to the other.

provides EMI CHopper with the execution traces for the monitored wires. The FFT is per-

formed individually per wire trace and then multiplied by wire length from the layout profile

information. The aggregated data will guide the EMI CHopper decision to hop applications

from one core to the other.

5.3 Evaluation

After determining the accuracy and validity of MESC, I am able to apply it to im-

plement and verify EMI CHopper. In this section, I evaluate the potential of EMI CHopper to

reduce EMI in specific frequency bands.

77



The two layouts were generated by slightly changing the placement parameters in

Vivado. Manual placement or floorplanning could also have been used but would, most likely

result in a change in the frequency achieved by synthesis. The parameters that I used allowed

the core to be run at the same frequency, which was desirable to evaluate EMI CHopper.

Figure 5.2 shows the EMI produced by sjeng in each of the layouts. In the top the

EMI is shown as a heat map for frequencies between 0 and 200MHz over time and in the

bottom for 100MHz only, but for two layouts. My model shows a significant change in EMI

as an application goes through different phases. Furthermore, when comparing two different

layouts, we can clearly see that in one case, after the phase change, the EMI increases, but the

opposite occurs for the other layout. In the figure, a phase change occurs right after 15 seconds

of execution, and Layout 1 has a decrease in EMI at the 100MHz frequency, whereas Layout 2

has an increase for 100MHz.

To assess the impact on performance, I look into how frequently EMI CHopper would

have a thread migrate from a core to the other. For each benchmark, I obtained switching

activity samples for 30 seconds in order to evaluate EMI CHopper. I was able to obtain the

MESC model over time for each of these samples on the two layouts described above. From

there, I analyzed the number of hops a thread would make to reduce EMI. Figure 5.3 shows the

number of migrations a thread would perform if it were to switch cores every time the core on

which it is executing would have higher in-band EMI than the other core within a threshold.

Across all benchmarks, dealII had the most hops (18), and namd had the least, only 5.

However, because there is a migration overhead associated with moving a process

from one core to another, I also investigated changing constraints to how frequently a thread
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Figure 5.2: Interference over time for two different layouts, 100MHz, sjeng. On the top is the
EMI for a single layout over time at all frequencies from 0 to 200MHz. On the bottom is the
EMI over time for two different layouts for 100MHz.

can hop between core. Figure 5.4 shows the correlation between the migration frequency and

the EMI reduction at 100MHz.

For my default constraint (a maximum of one migration per second), I was able to
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Figure 5.3: EMI CHopper migrates the thread between cores in order to reduce EMI. I limit the
number of switches per benchmark for a maximum of one migration every 1 second. The figure
shows the number of times EMI CHopper decided to migrate each application over a period of
30 seconds.

see an average reduction of 37% of the EMI power across all frequencies, or about 2dB by

reducing the constraints to a maximum migration frequency of 10× per second (once every

0.1s). However, there was an average reduction of 47% in EMI power for the 100MHz band.

5.4 Conclusion for EMI CHopper

I propose EMI CHopper, a method that uses MESC to reduce in-band interference for

a multi-core processor. EMI CHopper proposes a homogeneous multi-core with two different

core layouts, but the same RTL. It shows that migrating between two cores at low granularity

(like every second) can reduce power across all frequencies by 37%. If a single frequency band
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is targeted, the reduction is even higher.
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Chapter 6

DEMIS for Existing Processors

Actually, all I have is the phrase “I have a

foolproof plan.” Beyond that, I’m wide

open

Shawn Spencer

This work proposes a DEMIS enabled platform for existing processors, which lever-

ages the insights about techniques from Chapter 3 to dynamically shift the interference to out

of a band of interest after a processor has already been taped out.1 Notice that DEMIS does

not reduce noise in all the bands like static EMI techniques. Instead it reduces the interference

in the band currently used for communication. Figure 6.1 shows my proposal for the DEMIS

system, which will monitor its own EMI and adjust its execution accordingly. The layout of this

system is based on the Snapdragon 821 layout, which contains the Qualcomm Snapdragon X12

LTE modem and the Qualcomm Kyro CPU on die, but has an additional small DEMIS unit (in

1This work is part of my publication at The 50th International Symposium on Microarchitecture, October
2017 [23].
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grey) that provides directives to the CPU based on the interference.

DEMIS Unit

Modem

CPU

Other
Components

SoC Die
Package

Antenna

Figure 6.1: Proposed DEMIS architecture monitors the EMI and provides directives to the
processor to change emitted interference.

The main contributions presented in this chapter are:

• Proposing DEMIS for existing processors, a dynamic methodology based on EMI mea-

surements to reduce in-band EMI during runtime via manipulation of architectural and

compiler parameters

• Evaluation of the impact DEMIS has on EMI and processor performance

6.1 Related Work

As shown throughout my research, the EMI signature of a process is dependent on

several factors and is different when run on processors with the same RTL but manufactured in

different fabs. This makes it virtually impossible to know beforehand the EMI signature of a

process. Furthermore, a processor will not know which bands will be used for communication

during the runtime of that process. Hence the decision of which techniques to use to reduce
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in-band noise needs to be done at runtime. This section highlights some current techniques that

a DEMIS processor could utilize, but evaluation of these techniques is out of the scope of this

thesis and is reserved for future work.

With DEMIS, I leverage the fact that the EMI signature of a process can be changed

by changing architectural parameters such as introducing delays, changing compiler options

and so on. This is not possible with regular compilation/execution flows, as those changes need

to be made at compile time and cannot be changed during runtime. However, there are tools

a DEMIS processor can utilize to change how a process is executed at runtime such as Just In

Time compilers (JITs) and interpreted languages. For non-JIT systems, it is possible to switch

binaries at runtime, assuming multiple binaries compiled with different compilation options are

available. Though this is not standard operation, it is not hard to do so form an OS perspective.

Most mobile devices already use JITs, e.g., the discontinued Dalvik [12] and the new

JIT introduced in Android 7.0 Nougat [19]. Furthermore, many JITs have been developed

for Java [4, 44, 50]. JITs are also widely used during internet browsing on all platforms, with a

strong emphasis on JavaScript [17,20,25,37,39,49]. Although these tools are almost exclusively

geared towards efficiency, they can be repurposed to minimize in-band EMI.

In addition to JITs, there are other tools that dynamically switch how a process is

being executed. For example, Dynamo [7] switches between binaries during execution in order

to capitalize on runtime optimization opportunities. There are also many other tools that switch

binaries at runtime.

I propose utilizing these techniques for implementing a DEMIS processor, but evalu-

ation of these techniques does not fall within the scope of my research.
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6.2 Evaluation

While Chapter 3 provided insights, this section evaluates a DEMIS approach. In this

section, I evaluate the efficacy of the techniques proposed in Chapter 3 using the same hardware

running SPEC2006 benchmarks. Once again, I utilized the hardware described in Table 3.1 and

performed measurements using the same N9342C Handheld Spectrum Analyzer from Agilent

Technologies and Keysight Technologies’ Near Field Probe Set.

I propose utilizing the techniques in Section 6.1 for a DEMIS-enabled core to mitigate

the EMI from the processor during execution. As shown in Figure 6.1, a DEMIS processor will

be able to monitor its own EMI, and when the in-band interference exceeds a certain threshold,

will switch to another processing configuration. Because DEMIS is only useful for devices with

wireless communication, I suggest using the existing antenna on the device to monitor the EMI,

leveraging the data from the modem to determine when the processor is generating significant

interference. However, the purpose of this chapter is to show that using computer architectural

techniques is effective in mitigating in-band EMI, and therefore designing and implementing

this fully DEMIS-enabled core is beyond the scope of my research.

To evaluate DEMIS, I run all the different compile options, core, and DDR frequen-

cies. I evaluate the effectiveness for each of the 5 analyzed bands (LTE 800, LTE 700, LTE

450, WiFi XR7 and WiFi 600). For the baseline, I pick the compile option and frequencies with

the highest performance. For the DEMIS solution, I pick the configuration with the highest

interference reduction as long as it that does not have more than 10% slowdown. To illustrate

the selection process, Figure 6.2 shows all the options for just the LTE 800 band in an Exynos
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Figure 6.2: Interference for all the configurations in the LTE 800 band with the A15_XU4 core.

A15 core. Each bar shows the interference level. For the baseline and hmmer run, the fastest

(speed not shown on the plot) is the configuration with default CPU speeds and using the -O2

compilation option with the default scheduling algorithm. The lowest EMI with less than 10%

slowdown is the configuration with the CPUs running with a 5% slowdown and using the O3

optimization. While the first configuration is selected for the baseline hmmer point, the second

configuration is selected for the DEMIS hmmer point.

I apply this process over all the bands. The result is shown in Figure 6.3. This plot

summarizes the main results with a 6% average EMI reduction, with an average of only 5.5%
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Figure 6.3: DEMIS has a significant EMI reduction across all the bands on the A15_XU4.

performance reduction

While the main results only show data for the A15 core, I performed the same pro-

cess on all the platforms. Different cores have different benefits, the A11_PI2 has an average

interference reduction of 6.5% across the five bands analyzed with the highest reduction being

in the SuperWiFi XR7 band with a 8dB reduction. This is done with less than 10% slowdown.

6.3 Conclusion for DEMIS for Existing Processors

The main conclusion is that DEMIS provides opportunities to reduce interference

across the different frequency bands. Doing architectural and frequency changes I have been

able to measure EMI reductions from 3 to over 8dB across multiple platforms. I do so capping
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the maximum slowdown under 10% with a modest average of 6% across SPEC2006 applica-

tions. I think that these results open a new opportunity to dynamically manage EMI.
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Chapter 7

Conclusion and Future Work

I love deadlines. I like the whooshing

sound they make as they fly by.

Douglas Adams

Throughout this thesis, I have addressed the wireless communications problem of

in-band EMI from an architectural perspective.

In Chapter 3, I offer insights into multiple different architectural parameters and in-

vestigate their effect on EMI, including compilation settings, applications, caches, memory, and

execution core. My work on this topic introduced to the computer architecture community the

wireless communications challenge of EMI, and the opportunities for applying architectural

techniques to address the challenge in dynamic solutions.

In Chapter 6, I proposed and evaluated DEMIS, my purely architectural solution that

integrates the dynamic manipulation of the techniques described in Chapter 3 to reduce the

interference in the frequency bands used by cellular, WiFi, and Bluetooth communication tech-

89



nologies. My results show that a 15dB EMI reduction for LTE can represent over 3× bandwidth

improvement for EMI bound communication.

Chapter 4 describes and validates MESC, the first architectural framework for mod-

eling emission from a core. MESC takes into account the switching activity of a process and

some layout information to provide an approximate model for EMI. MESC is validated against

a core running on an FPGA, and I

Chapter 5 proposes EMI CHopper, which uses a multi-core system - where each core

has the same RTL but different layouts - and causes thread migrations between these cores to

reduce in-band EMI when it interferes with wireless communications. Using EMI CHopper, I

was able to reduce in-band EMI by up to 50%, with a low impact on performance.

7.1 Future work

My research shows that more research on RF interference emitted by processors with

on-chip FPGAs and out of order processors should be conducted. Additionally, current wire-

less standards take into account a small amount of noise. Therefore, improving the SNR as I

do using my techniques would open up opportunities for improved bandwidth, as these stan-

dards would be able to take into account a higher maximum throughput as the EMI decreases.

Furthermore, I would recommend looking into dynamically switching between binaries of the

same code (with different compilation arguments) during runtime, and if it would be a feasible

solution for mitigating in-band EMI as a program enters noisy phases. Additionally, DRAM

clock modulation and introducing a time delay between two cores are interesting prospects that
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I was unable to fully test due to lack of resources.

Furthermore, the introduction of MESC allows for many opportunities of future work.

For example, the power vs EMI tradeoff described in Chapter 4 can utilize MESC in order to de-

termine the effect of increasing the clock frequency, but only sending values over the bus every

couple of cycles in an attempt to change the EMI from the clock, but not requiring changing the

processor speed. However, there would be a significant power consumption increase, so MESC

can be used as a tool for analyzing these tradeoffs. Another application for MESC would be for

architects to study the effects of introducing activity in wires, which would increase power but

would move the EMI frequency. Similarly, researchers can combine MESC with a DVFS and

estimate the EMI reduction.

Expanding on EMI CHopper, which assumes duplicates of the same RTL but different

layouts, a logical evolution would be to have to different types of cores.

The research presented in this thesis offers a new, architectural perspective on a preva-

lent problem in wireless communications. My findings based purely on architectural techniques

show significant promise in improving wireless communications, and the tools I described offer

many opportunities for further research.
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