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Abstract

Background—Most patients with juvenile myelomonocytic leukemia (JMML) are curable only 

with allogeneic hematopoietic cell transplantation (HCT). However, the current standard 

conditioning regimen, busulfan-cyclophosphamide-melphalan (Bu-Cy-Mel), may be associated 

with higher risks of morbidity and mortality. ASCT1221 was designed to test whether the 

potentially less-toxic myeloablative conditioning regimen containing busulfan-fludarabine (Bu-

Flu) would be associated with equivalent outcomes.

Procedure—Twenty-seven patients were enrolled on ASCT1221 from 2013–2015. Pre- and 

post-HCT (starting Day +30) mutant allele burden was measured in all and pre-HCT therapy was 

administered according to physician discretion.

Results—Fifteen patients were randomized (6 to Bu-Cy-Mel and 9 to Bu-Flu) after meeting 

diagnostic criteria for JMML. Pre-HCT low-dose chemotherapy did not appear to reduce pre-HCT 

disease burden. Two patients, however, received aggressive chemotherapy pre-HCT and achieved 

low disease-burden state; both are long-term survivors. All 4 patients with detectable mutant allele 

burden at Day +30 post-HCT eventually progressed, as compared to 2 of 9 patients with 

unmeasurable allele burden (p=0.04). The 18-month event-free-survival of the entire cohort was 

47% (95% CI, 21–69%); and was 83% (95% CI, 27–97%) and 22% (95% CI, 03–51%) for Bu-

Cy-Mel and Bu-Flu, respectively (p=0.04). ASCT1221 was terminated early due to concerns that 

the Bu-Flu arm had inferior outcomes.

Conclusions—The regimen of Bu-Flu is inadequate to provide disease control in patients with 

JMML who present to HCT with large burdens of disease. Advances in molecular testing may 

allow better characterization of biologic risk, pre-HCT responses to chemotherapy, and post-HCT 

management.
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INTRODUCTION

Juvenile myelomonocytic leukemia (JMML) is classified as an overlapping 

myeloproliferative/myelodysplastic neoplasm, with a median age of diagnosis of <2 years.1,2 

Patients frequently present with high disease burdens and severe symptoms, including 

massive hepatosplenomegaly, pulmonary infiltrates, fevers, and rash.3 The precise role of 

pre-transplant chemotherapy to attempt to minimize disease-burden is not yet determined.1,4 

The majority of patients are now molecularly diagnosed via identification of mutations in 

PTPN11, NRAS, KRAS, RRAS, RRAS2, CBL, SETBP1, or NF1.5

With few exceptions, long-term event-free survival (EFS) has only been achieved following 

allogeneic hematopoietic cell transplantation (HCT).6 The most common conditioning 

regimen utilized is busulfan, cyclophosphamide, and melphalan (Bu-Cy-Mel).1 Young 

children with JMML are known to be at risk for transplant-related mortality (TRM), with 

reported rates of 10–22% in patients with JMML,1,2,7 Identification of a less-toxic 

conditioning regimen may help improve short- and long-term outcomes. The conditioning 

regimen of busulfan and fludarabine (Bu-Flu) had decreased toxicity and equivalent survival 

compared with the Bu-Cy-Mel regimen in a non-randomized study of patients mainly with 

acute myeloid leukemia (AML) in remission.8 Pharmacokinetic analysis of busulfan 

demonstrated that adding a third alkylating agent increases the risk of acute toxicities, 

including sinusoidal obstruction syndrome (SOS) and graft-versus-host disease (GVHD).9

Here we report the findings of the randomized Phase II Children’s Oncology Group (COG) 

study ASCT1221 in patients with de novo JMML. The objective was to pick the winner of 

two different conditioning regimens on the basis of the one with the lowest risk of TRM, as 

long as EFS was comparable.

METHODS

Eligibility

ASCT1221 (registered at www.clinicaltrials.gov as NCT 01824693) activated in June 2013 

and approved by the National Cancer Institute Central Institutional Review Board (IRB) and 

local center IRBs. Legal guardians signed written informed consent. Patients with suspected 

JMML were eligible for Part 1 of the study to confirm the diagnosis. Central review of 

clinical characteristics, pathology, cytogenetics (including G-banding and interphase FISH 

analysis for monosomy 7), and molecular testing was performed to ensure that patients met 

consensus criteria for JMML10 prior to proceeding to HCT on Part 2 of the study. Patients 

with germline mutations in PTPN11 or who had progressed to AML (>20% blasts) were 

excluded.
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Pre-HCT Therapy

ASCT1221 did not mandate the use of, or a particular approach to, pre-HCT therapy 

(including the potential use of splenectomy), which was left to the discretion of the treating 

physician. The use of pre-HCT chemotherapy was captured and defined as: none, low-dose 

(including treatment with 6-mercaptopurine [6-MP] and/or cis-retinoic acid), or AML-like 

(cytarabine ≥1 g/m2/day +/− other agents).

Conditioning and Transplant

All patients who met eligibility criteria (appropriate donor identified, adequate organ 

function, absence of uncontrolled infection) could proceed to HCT per the treating 

physician. Donor selection was per treating physician and included matched siblings (MSD), 

adult unrelated donors (URD), and umbilical cord blood (UCB), but not haploidentical-

related donors. Allele-level HLA-matching at ≥7/8 loci was required for URD. For UCB, 

≥4/6 serologic HLA-matching at HLA-A and –B (with allele level at HLA-DR), and a dose 

≥5×107 nucleated cells/kg were required. Stratified randomization occurred based on donor 

type and the presence of PTNP11 mutations, which have been considered high-risk.11–13

Conditioning regimen A (Bu-Cy-Mel) was intravenous busulfan (initial 3.2–4 mg/kg/day, 

with 1–2 therapeutic dose adjustments to achieve a cumulative area under the curve [AUC] 

of 59–98 mg*h/L, or 3600–6000 μM/L*Min per day) on Days −8 to −5, cyclophosphamide 

(60 mg/kg/dose with prophylactic mesna 60 mg/kg/day) on Days −4 to −3, and melphalan 

(140 mg/m2, or 4.67 mg/kg for patients <10 kg) on Day −1. Conditioning regimen B (Bu-

Flu) was intravenous busulfan (as above) on Days −8 to −5, and fludarabine (40 mg/m2/

dose, or 1.33 mg/kg/dose for patients <10 kg) on Days −5 to −2. Rabbit anti-thymocyte 

globulin (2 mg/kg/dose) was added to recipients of cells from URD (on Days −4 to −1) or 

UCB (on Days −8 to −5).

GVHD prophylaxis was tacrolimus (starting on Day −1 with goal level of 5–12 ng/mL; taper 

starting by Day +60 and complete by Day +98 for MSD; taper starting by Day +100 and 

complete by Day +180 for URD/UCB), and mycophenolate mofetil (15 mg/kg/dose every 8 

hours; from Day +1 to Day +30 for MSD, or Day +45 for URD/UCB).

Response Criteria and Definitions

Disease response was defined according to international consensus criteria.14 Mutant allele 

burden was measured at diagnosis, prior to HCT and at regular intervals after HCT, with the 

first measurement occurring at Day +30. Primary graft failure was defined as failure to 

achieve an absolute neutrophil count of ≥500/mm3 after 42 days or <5% donor cells in bone 

marrow by Day +42, without evidence of JMML. SOS was defined by the Baltimore criteria.
15 Grade 3/4 toxicities were collected using CTCAEv4.0. Acute (aGVHD) and chronic 

GVHD were scored using consensus criteria.16,17 For the purpose of this analysis, clinical 

high-risk disease at diagnosis was defined as being >2 years of age,11,13,18 platelets <40 × 

109/L,18 or having a hemoglobin F elevated for age.1,18 Biologic high-risk disease was 

defined as having any cytogenetic abnormality,2,13 secondary mutations,19 or DNA-

methylation designation of intermediate or high.20

Dvorak et al. Page 4

Pediatr Blood Cancer. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Correlative Biologic Studies

JMML Mutation Testing—All patients enrolled on ASCT1221 were sequenced to 

determine their JMML mutation status in real-time, using a CLIA-certified assay at 

diagnosis, pre-HCT, at defined time-points post-HCT, and at relapse (when applicable). The 

entire coding sequence of Ras-pathway genes including NF1, NRAS, KRAS, PTPN11 and 

CBL were analyzed and the allele fraction of each mutation was reported to the treating 

physician. All patients were analyzed on the Ion-Torrent platform using a tumor-normal 

approach to distinguish germline from somatic mutations, as described previously.21 Tumor 

samples were obtained from mononuclear cells from blood or bone marrow. Germline 

samples were obtained from buccal swabs or bone marrow fibroblasts.

UCSF500 Sequencing—After ASCT1221 was closed, our group reported on the 

presence of secondary mutations in 11 additional genes, including SETBP1, JAK3, ASXL1 
and SH2B3. Patients who were randomized and received a HCT on study had diagnostic 

material sequenced using the UCSF500 assay. This assay compares tumor to normal for 

approximately 500 genes that are commonly altered in cancer. Twelve of 15 transplanted 

patients had samples (buccal or bone marrow fibroblasts and relapse, when available) 

evaluated. Analysis and determination of pathogenic variants was performed, as previously 

described.21

Exome Sequencing—Three of 15 transplanted patients who had relapse samples 

available were analyzed using whole exome sequencing (WES) with a trio approach 

(normal-diagnosis-relapse). Analysis and determination of pathogenic variants and copy 

number were performed, as previously described.21,22

DNA Methylation Analysis—Fourteen of 15 transplanted patients had diagnostic tumor 

DNA available for genome-wide DNA methylation analysis performed using the Illumina 

450k BeadChip platform. Patient samples from ASCT1221 were compared to a cohort of 39 

distinct JMML patients, and using a “nearest centroid neighbor” approach were classified 

with a low, intermediate or high methylation-cluster designation, as previously described.20

Statistical Analysis

ASCT1221 was powered to accrue 54 patients in each arm in order to pick-the-winner of 

regimens, Arm A and Arm B in terms of TRM and EFS, with the outcome determined after 

all eligible patients had ≥18 months of follow-up, as patients with JMML rarely relapse >18 

months post-HCT.1,2 An interim analysis of outcomes at 2 years after the start of the study 

was planned to look at rates of graft failure, relapse, and TRM. Primary response measures 

were TRM, EFS, overall survival (OS), and relapse/disease progression as of June 30, 2017. 

The Kaplan-Meier method was used to estimate probabilities of EFS and OS. Events were 

defined as relapse/progression or TRM. The probabilities of relapse/progression, TRM, 

SOS, and GVHD were estimated using the method of cumulative incidence that accounts for 

competing events (i.e. death). The significance of observed differences in proportions was 

tested using the Fisher’s exact test. Clopper-Pearson was used to calculate confidence 

intervals. Comparison of median between arms was done using Wilcoxon rank-sum test. All 

tests were two-sided with P values <0.05 considered statistically significant.
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RESULTS

Patient Characteristics

Thirty patients were enrolled, however 3 patients were determined to not meet diagnostic 

criteria for JMML (Supplemental Figure S1). The baseline characteristics of the remaining 

27 patients are listed in Table 1. No patient had evidence of neurofibromatosis type-1; 96.3% 

of patients had a canonical Ras-pathway mutation. High-risk disease was noted 

retrospectively in 15%, 19%, and 47% of patients based on the presence of cytogenetic 

abnormalities, secondary mutations, or DNA hypermethylation, respectively.2,13,19,20

One patient withdrew consent shortly after enrollment. Two patients (with KRAS p.G12D 

and KRAS p.G13D) were not eligible for Part 2 of the study due to progression to AML. 

Thus, 24 patients were eligible to proceed to HCT, of which 15 patients were randomized 

(Table 2). One patient (with PTPN11 p.E76K) refused HCT and died of progressive disease. 

Four patients (with NRAS p.G12D, CBL p.Y371H, CBL p.Y371splice_site, and without an 

identifiable mutation) were intentionally observed without HCT per physician preference, all 

without signs of progression at last follow-up. Four patients were treated with non-protocol 

HCT, three after randomization was suspended.

Baseline characteristics between Arm A (Bu-Cy-Mel) and Arm B (Bu-Flu) were notable for 

33% (2/6) of patients in Arm A retrospectively identified to have high-risk biological 

features compared to 67% (6/9) of patients in Arm B (p=0.31). In the 15 randomized 

patients, mutant allele burden was measured at the time of diagnosis and within 2 weeks of 

start of conditioning. As shown in Figure 1, the use of low-dose pre-HCT chemotherapy did 

not impact mutant allele burden compared to no chemotherapy, however, the two patients 

given AML-like chemotherapy achieved low mutant allele burdens (0 and 1.4%) upon count 

recovery. No patient underwent splenectomy prior to HCT.

HCT Toxicities & GVHD

Cumulative busulfan exposure was similar between the 2 arms (p=0.64). Day 100 TRM 

occurred in one patient (7% overall), who was assigned to Arm B. This patient had 

significant disease burden at time of HCT, and subsequently developed SOS and multi-

system organ failure on Day+12 post-HCT. In total, SOS developed in 50% (3/6) and 22% 

(2/9) of patients on Arms A and B, respectively (p=0.33). Other notable grade 3–4 toxicities 

that occurred prior to Day 100 included oral mucositis (33% in both Arms), and febrile 

neutropenia (33% in both Arms). No SOS or Grade 3–4 toxicities were reported in 2/6 

(33%) and 4/9 (44%) of patients in Arms A and Arm B, respectively.

Three patients developed Grade I aGVHD, while no patient developed Grade II aGVHD. 

The cumulative incidence of Grade III-IV aGVHD by 100 days was 27% (95% CI, 8–51%), 

with no difference between Arms (p=0.48). However, despite the presence of severe 

aGVHD, 3/4 patients eventually relapsed. Chronic GVHD occurred in only 1 patient total 

(in Arm A), for an 18-month cumulative incidence of 7% (95% CI, 0.33–28%).
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Disease Progression Post-HCT

All patients had evidence of primary neutrophil recovery. One patient in Arm B had 

secondary graft loss (no detectable donor chimerism) in conjunction with JMML 

progression. For the other 13 patients, the median initial whole blood chimerism was 100% 

(range, 98–100%) for patients in Arm A, compared to 97% (range, 51–100%) in Arm B 

(p=0.03). Patient-level risk-characteristics and outcomes are shown in Table 3. The 

cumulative incidence of disease progression by 18-months was 17% (95% CI, 0.4–55%) and 

55% (95% CI, 16–83%) for patients on Arms A and B, respectively (p=0.19).

Two general patterns of disease progression were noted (Figure 2). Two patients (both in 

Arm B) entered HCT with large disease burdens (clinically and molecularly). Although both 

recovered neutrophils (and 1 had Grade III aGVHD), they also continued to have clinical 

and molecular signs of residual JMML and were scored as non-responders. Two patients 

(both in Arm B) appeared to be in clinical remission post-HCT, however, they continued to 

have low mutant allele burden (0.8–1.9%) measured at Day +30 post-HCT. Both eventually 

progressed clinically, with a corresponding increase in their molecular burden, and were 

scored as relapses. In contrast, nine patients had no evidence of mutant allele burden at Day 

+30 post-HCT, and only 2 of them (one in Arm A and 1 in Arm B) progressed (p=0.04).

Monosomy 7 was present at diagnosis in 13% (2/15) patients. Of the three relapsed patients 

who were analyzed using WES, two developed chromosome 7 derangements (Supplemental 

Figure S2). Neither had monosomy 7 detected (by FISH, conventional cytogenetics, nor 

WES) at diagnosis, implying that clonal evolution contributed to relapse in these patients.

Post-HCT Survival

The estimated 18-month post-HCT EFS of the entire cohort was 47% (95% CI, 21–69%), 

with a median follow-up time of 29 months (range, 13–44 months) in surviving patients. As 

shown in Figure 3, the estimated 18-month EFS was 83% (95% CI, 27–97%) and 22% (95% 

CI, 03–51%) in Arms A and B, respectively (p=0.04). When this imbalance in events 

became apparent, the Data and Safety Monitoring Committee suspended further 

randomization and ASCT1221 was closed. Patients who relapsed/progressed post-HCT were 

taken off-study and treated per physician-discretion. The estimated 18-month post-HCT OS 

was 64% (95% CI, 34–83%) overall, with 83% (95% CI, 27–97%) and 48% (95% CI, 12–

77%) in Arms A and B, respectively (p=0.26).

Patients with biological high-risk disease (classified retrospectively) had a similar 18-month 

EFS compared to standard-risk disease: 50% (95% CI, 15–77%) and 43% (95% CI, 10–

73%), respectively (p=0.41), though small numbers limits ASCT1221’s power to address 

this question. The 18-month EFS was 17% (95% CI, 0.77–52%) in patients not treated with 

any chemotherapy, 57% (17–84%) in patients who were given low-dose chemotherapy, and 

100% in the 2 patients treated with AML-like chemotherapy (p=0.08).

DISCUSSION

JMML is a rare disease of early childhood that is typically curable only with HCT. However, 

5-year EFS with current approaches remain sub-optimal, ranging from 39–53%.1,2 On 
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ASCT1221, we tested two conditioning regimens (busulfan-cyclophosphamide-melphalan 

versus busulfan-fludarabine) in a randomized fashion. While the overall 18-month EFS of 

47% was similar to that of other reported JMML HCT cohorts, ASCT1221 was suspended 

early for excessive events in the Bu-Flu arm.

Conclusions regarding the optimal conditioning regimen are limited by small numbers, 

possible imbalances in disease severity between the arms, and differing approaches to pre-

HCT chemotherapy; the latter two potentially having a substantial impact on post-HCT 

outcomes. Nevertheless, ASCT1221 is the first prospective trial wherein all transplanted 

patients were molecularly characterized and confirmed to have JMML, an important 

consideration given that there are known mimics of the disease, such as Wiskott-Aldrich 

Syndrome23 and Infantile Osteopetrosis.24

In regards to disease severity, to date a consensus risk-stratification system for patients with 

JMML is lacking. High-risk features that have been reported in some cohorts include older 

age,1,2,11,13,18 mutations in PTPN11,11,13 presence of monosomy 7 or other cytogenetic 

abnormalities,2,11,13 low platelet counts,18,19 elevated HgbF,1,18 increased blasts or an AML-

like gene-expression profile,1,13 DNA hyper-methylation,20,25,26 and the presence of >1 

somatic mutation in genes such as SETBP1, SH2B3, ASXL1, JAK3, and others.19,27,28 The 

exact weighting of these different factors in determining an overall risk-status is not yet 

known. ASCT1221 was designed to stratify only by PTPN11 status and donor type, and not 

on age or newer biologic risk-factors. Nevertheless, the better outcomes with the more 

intensive Bu-Cy-Mel supports the hypothesis that treatment-delivered remains an important 

prognostic factor, in that standard-risk patients may still relapse/progress if not adequately 

challenged with aggressive chemotherapy either pre-HCT or during conditioning.

Treating physicians were allowed to choose whether or not to administer any pre-HCT 

chemotherapy, therefore patients presented to HCT with markedly-different disease burdens. 

We noted that the use of 6-MP, while capable of reducing some of the clinical symptoms, 

had minimal effect on mutant allele burden, supporting in vitro data that JMML myeloid 

progenitors are often resistant to 6-MP.29 Some patients were not treated with any 

chemotherapy pre-HCT, on the basis of the EWOG-MDS/EBMT study results that patients 

who received either no therapy or low-dose chemotherapy compared to AML-like 

chemotherapy had nearly-identical 5-year EFS, relapse, and TRM on univariate analysis.1 

However, since the choice of pre-HCT chemotherapy in the EWOG-MDS/EBMT study was 

left to the treating physician’s discretion, patients with more aggressive disease may have 

been more intensively pre-treated. Furthermore, the EWOG-MDS/EBMT study included 

10% of patients with AML transformed out of JMML, which had 0% 5-year EFS. It is 

possible that inclusion of these very high-risk patients (who may have received AML-like 

chemotherapy) might have obscured a potential benefit to intensive chemotherapy in a 

“standard” patient with JMML. In the 2013 EUROCORD/CIBMTR retrospective UCB 

study (excluding patients with >20% blasts) there was improved EFS in patients who 

received AML-like therapy compared to none or low-dose chemotherapy (55% vs. 32%; 

p=0.048).2 COG AAML0122 evaluated the efficacy of a pre-transplant window therapy with 

a farnesyl transferase inhibitor followed by two cycles of intensive AML-type chemotherapy 

using fludarabine and cytarabine.30 For patients who achieved a complete response (defined 
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as normalization of WBC count and resolution of organomegaly) there was a trend towards 

improved 5-year EFS (54% vs. 33%, p=0.144) and 5-year relapse rate (38% vs. 57%, 

p=0.154); though AAML0122 was not powered to address this question. The Japanese 

Pediatric MDS Study Group’s JMML HCT report included three patients who received 

AML-like chemotherapy prior to HCT; all remained relapse-free.7 The European community 

is currently testing the potential role of azacytidine in decreasing pre-HCT disease burden 

with the goal of improving post-HCT outcomes.31,32

An established principle of pediatric allogeneic HCT for hematologic malignancies is that 

patients who come to HCT with lower disease burden have improved post-HCT outcomes, 

typically due to lower relapse rates. Therefore, for acute lymphoblastic leukemia,33 AML,34 

and myelodysplastic syndrome with excess blasts,35–38 pre-HCT chemotherapy aiming to 

achieve the best possible remission status is considered standard-of-care. This also holds for 

the adult JMML-like disease chronic myelomonocytic leukemia.39 One potential explanation 

may be that the alloreactive graft-versus-leukemia (GVL) effect is typically incapable of 

controlling large disease burdens.40 Although the numbers were small, we noted that all 

patients who developed GVHD (a surrogate for GVL) on the intensive Arm A (Bu-Cy-Mel) 

remained disease-free at 18 months, while all patients on Arm B (Bu-Flu) who developed 

GVHD still relapsed. As such, the more intensive Bu-Cy-Mel regimen may be required to 

provide optimal de-bulking when patients present to HCT with large disease burdens. 

Conversely, the less-intensive Bu-Flu regimen, or other less-toxic regimens, may still be a 

potential option for patients who receive effective pre-HCT chemotherapy, with the caveat 

that our numbers are too small to make any definitive conclusions. Finally, we did not test 

the regimen which adds Melphalan to Busulfan and Fludarabine, and this could potentially 

be as efficacious as Bu-Cy-Mel.7

Finally, the particular Bu-Flu regimen used on ASCT1221 administered busulfan and 

fludarabine on separate days. However, in vitro data suggests improved killing of AML cells 

when the two are administered together.41 In addition, the patients on the Bu-Flu arm had a 

low cumulative busulfan exposure (median 68 mg×h/L) compared to the recently-identified 

optimal AUC of 78–101 mg×h/L when using a single alkylator,9 which also may have 

contributed to poor outcomes in this group. Despite these modest busulfan levels, SOS rates 

were high in both Arms, suggesting that JMML patients may need additional SOS 

prophylaxis.

In conclusion, JMML patients with high pre-HCT disease burden have a poor outcome when 

treated with a conditioning regimen of busulfan-fludarabine. Advances in molecular testing 

now allow better characterization of pre-HCT responses to chemotherapy. In addition, 

improved understanding of precise pre-HCT risk-stratification will potentially facilitate 

future risk-adapted treatment approaches. Further efforts at studying novel approaches to 

improving the outcomes of rare patients with JMML will likely require international 

cooperation, as well as detailed molecular risk-profiling to ensure that comparisons between 

regimens are valid.
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FIGURE 1. 
Allele Burden by Pre-Transplant Therapy
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FIGURE 2. 
Allele Burden by Conditioning Regimen
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FIGURE 3. 
Estimated 18-month Event-Free Survival by Treatment Arm
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TABLE 1

Clinical and Molecular Characteristics at Time of Diagnosis for Eligible Patients

Total Enrolled 27

Male Sex 17 (63%)

Median Age at Diagnosis (range) 13.3 months (0.7–148 months)

Splenomegaly at Diagnosis 24 (89%)

Median WBC Count, × 109/L (range) 26.9 (7–122)

Median Absolute Monocyte Count, × 106/L(range) 4430 (1120–96,000)

Median Platelet Count, × 109/L (range) 46 (10–227)

Median Peripheral Blood Blasts (range) 2% (0–13%)

Median Bone Marrow Blasts (range) 3% (0–16%)

Median Hemoglobin F (range) 8% (1–66%)

RAS-Pathway Mutation Identified

 PTPN11 11 (41%)
p.E76K (N=8); p.E76G (N=1); p.D61Y (N=1); p.E69K (N=1);

 KRAS 6 (22%)
p.G13D (N=3); p.G13Y (N=1); p.G12D (N=1); p.G12V (N=1)

 NRAS 3 (11%)
p.G12D (N=2); p.G13D (N=1)

 RRAS 1 (4%)
p.Q87L (N=1)

 RRAS2 1 (4%)
p.Q72L (N=1)

 CBL 4 (15%)
p.C404R (N=1); p.Y371H (N=1); pY371splice_site (N=1);

 None 1 (4%)

Median Mutant Allele Burden (range)* 43.5% (8.1–50.2%)

Cytogenetic Abnormality

 Monosomy 7 3 (11%)

 Other [t(3;5)] 1 (4%)

 None 23 (85%)

Secondary Mutations 5 (19%)

DNA Hypermethylation (Transplanted Patients Only)

  Low 7 (47%)

  Intermediate 4 (27%)

  High 3 (20%)

  Not Available 1 (6%)

Median IgG, mg/dL (range) 1045 (15–2990)

Direct Antibody Test (Coomb’s) Positive 5/23 (22%)

 Elevated IgG for Age or DAT Positive 5/11 (46%) with RAS mutation;
7/16 (44%) without RAS mutation

*
For patients with mutations in PTPN11, KRAS, NRAS, or RRAS
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TABLE 2

Risk and Transplant Characteristics by Treatment Assignment

Risk Factors & HCT Characteristics Arm A: Busulfan-Cyclophosphamide-Melphalan 
(N = 6) Arm B: Busulfan-Fludarabine (N = 9)

High-Risk Clinicallyˆ 3 (50%) 7 (78%)

 Age >2 years at Diagnosis 1 (16%) 4 (44%)

 Platelets <40 × 109/L at Diagnosis 2 (33%) 4 (44%)

 Hemoglobin F elevated for age 2 (33%) 6 (67%)

High-Risk Biologically* 2 (33%) 6 (67%)

 Cytogenetic Abnormality 1 (16%) 2 (22%)

 Secondary Mutations 1 (16%) 3 (33%)

 DNA Methylation (Intermediate or High) 2 (33%) 5 (63%)1

Time from Diagnosis to HCT (range) 1.4 months
(0.7–3.5 months)

1.2 months
(0.5–3.7 months)

Pre-HCT Therapy

 None 2 (66%) 4 (45%)

 Low-Dose 4 (67%) 3 (33%)

 AML-Like 0 2 (22%)

Median Pre-HCT Allele Burden (range) 39.4% (23%-46.8%) 46.9% (0–50.3%)

Donor

 HLA-Matched Related 2 (33%) 3 (33%)

 8/8 HLA-Matched Unrelated 3 (50%) 5 (56%)

 <8/8 HLA-Mismatched Unrelated 1 (16%) 1 (11%)

Stem Cell Source

 Bone Marrow 6 (100%) 7 (78%)

 Peripheral Blood 0 1 (11%)

 Umbilical Cord Blood 0 1 (11%)

Busulfan Cumulative AUC (mg*h/L) 71 (58–87) 68 (62–80)

ˆ
Defined as the presence of at least 1 of the following: a) age >2 years at diagnosis; b) platelets <40 × 109/L at diagnosis; c) hemoglobin F elevated 

for age

*
Defined as presence of at least 1 of the following: a) cytogenetic abnormality; b) secondary mutation; or c) DNA Methylation Intermediate or 

High

1
Of 8 patients tested
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