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Abstract

Trials in a two-alternative forced-choice (2AFC) recognition-
memory task require individuals to choose the stimulus in a
pair that they deem as having been previously studied. Be-
cause of the relative nature of the judgments made, 2AFC tri-
als are typically considered to be free from response biases
concerning the old/new status of stimuli. Recent studies have
suggested that this assumption is incorrect, and individuals of-
ten resort to single-stimulus old-new (ON) judgments instead.
The present study tests this claim by joint modeling 2AFC
and ON judgments using extended SDT models that include
the possibility of ON contamination. Results show that the
relative-judgment assumption provides an excellent account of
the data, providing no support for the notion of ON contami-
nation in typical experimental designs.
Keywords: Recognition memory, bias, signal detection,
forced choice, mixture

Introduction

One important aspect in the study of recognition memory is
the need to disentangle the impact of response biases (e.g.,
a general tendency to recognize stimuli as “old”) from gen-
uine mnemonic ability. This is usually achieved by character-
izing the data with a Signal Detection Theory (SDT) model
(Green & Swets, 1966; Kellen & Klauer, in press; Macmil-
lan & Creelman, 2004). Consider a typical Old-New (ON)
single-stimulus recognition task in which individuals are pre-
sented with a list of previously-studied stimuli, intermixed
with new stimuli (i.e., old and new stimuli, respectively). Par-
ticipants’ task is then, for each stimulus, to judge them as
“old” or “new”. According to the SDT model, stimuli are
judged according to their respective familiarity or memory
strength, represented by ψ, based on whether they surpass
a previously-established response criterion τ. As shown in
Figure 1, each stimulus type – in this case old and new stim-
uli – is represented by a latent distribution with densities f
and cumulative-distribution functions F . These distributions
are usually assumed to be Gaussian, with mean and standard
deviation parameters {μs,σs} and {μn,σn}, respectively. The
smaller the overlap between the two distributions, the greater
the stimulus discriminability. The probabilities of old and
new stimulus being judged as “old” – Hits (H) and False
Alarms (FA) – are given by

P(“old”|old) = P(ψs > τ) =
∫ +∞

τ
fs(x) dx, (1)

P(“old”|new) = P(ψn > τ) =
∫ +∞

τ
fn(x) dx. (2)

New Old

τ "New"  "Old" 

Familiarity / Memory Strength

Figure 1: Gaussian SDT model for ON task.

Although one can use the SDT model to disentangle the
role of discriminability and response bias, researchers often
rely on data from two-alternative forced-choice (2AFC) tasks
in which they have to choose the old stimulus in a pair. It
is typically assumed that responses are unbiased in a 2AFC
task, as individuals only need to engage in a relative judg-
ment of which stimulus is stronger or most familiar (i.e., a
MAX decision rule), in contrast with an ON task where one
engages in ‘absolute’ judgments regarding single stimuli (see
also Kellen & Klauer, 2014).

The assumption that 2AFC judgments are unbiased has
been questioned throughout the years, but only recently has
it received a greater deal of attention. For instance, Hockley
(1984) found that among two vertically-arranged stimuli, the
proportion of correct responses, PC2AFC, was higher in the
top position than in the bottom position. Responses were also
faster in the former than the latter. These results, which were
recently expanded by Jou, Flores, Cortes, and Lekas (2016)
using an horizontal display, suggest that participants judge the
‘first’ stimulus as either old or new and produce a response
based on that alone. In the former study the ‘first’ stimulus
was the top one, in the latter study it was the left one.

In a recent eye-tracking study, Starns, Chen, and Staub
(2017) replicated these above-mentioned bias effects, and
also found that a considerable portion of individuals’ re-
sponses were made without looking at the second (right po-
sition) stimulus. The conclusion coming from these stud-
ies is that 2AFC judgments are often contaminated by ON
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judgments. This possibility is not inconsequential, given that
much of our understanding of people’s performance in real-
world scenarios such as eyewitness accuracy in lineups ver-
sus showups is informed by our conceptualization of ON and
2AFC tasks (e.g., Wixted & Mickes, 2014).

The goal of the present work is to directly test for assump-
tion violations in 2AFC judgments. The test implemented
here relies on the implications that contamination by ON
judgments would have on a well-known theoretical result –
the area theorem. Using individual data from a paradigm in-
termixing 2AFC and old-new trials (Jang, Wixted, & Huber,
2009; Smith & Duncan, 2004), we will compare the tradi-
tional Gaussian SDT model against two extended models that
can violate decision rule assumed in the area theorem.

The Area Theorem (and its Violation)

For convenience of exposition – but without any loss of gener-
ality – let us establish the densities of the old and new stimuli
on the [0,1] interval and denote them by ∗ fs and ∗ fn, respec-
tively.1 As described by Green and Moses (1966), the area
theorem establishes the relationship between ON judgments
and 2AFC judgments. First, note that the Receiver-Operating
Characteristic (ROC) function for ON judgments, ON-ROC,
defines how the random variable H changes as a function of
variable FA, such that H =∗ Fs(

∗F−1
n (FA)), where ∗F−1

n is
the inverse of the cumulative distribution for new stimuli.2

Again, without loss of generality, let us assume that ∗ fn is
uniformly distributed, such that FA = P(ψn > κ) = 1−κ and
H = P(ψs > κ) = ∗Fs(1− κ). In a 2AFC task, we will as-
sume that individuals follow a MAX decision rule: choose
the option with the highest familiarity.

From this it follows that the probability of a correct re-
sponse corresponds to the expectation of the ROC function
(i.e., the area under it):3

PC2AFC =
∫ 1

0
(1−P(ψn > κ))P(ψs > κ) dκ

=
∫ 1

0
κP(ψs > κ) dκ

= E(H).

(3)

Figure 2 illustrates how these assumptions would be rep-
resented in terms of the Gaussian SDT model, with two dis-
tributions representing the differences in familiarity between
the two stimuli.

1The superscript ∗ is only placed to avoid confusions with the
specification otherwise used in which fs and fn are established on
the real line.

2The ROC corresponds to the expected relationship between H
and FA when discriminability is constant. One way to obtain an
ROC is by plotting the cumulative distributions of confidence rat-
ings.

3Iverson and Bamber (1997) generalized this result to M-
alternative forced-choice paradigms, showing that the proportion
correct in M-AFC corresponds to the (M-1)th moment of the ON-
ROC function.

Left
old

Right
old

κ3κ2κ1 κ4 κ5

    1         2            3             4            5       6

Figure 2: Gaussian SDT model for 2AFC task with a confi-
dence rating ranging from “1: very sure left” to “6: very sure
right”.

The presence of position-based response biases

The area theorem can be violated in different ways. One way
is that individuals might be biased towards one of the stim-
ulus positions (see DeCarlo, 2012). In Figure 2, this would
correspond to the response criterion κ3 not being located at
0. Under unbiased test conditions (old stimulus is as likely to
appear on the left as one the right), this kind of a response bias
would lead to lower PC2AFC, which in turn imply an under-
estimation of the area under the ON-ROC. Fortunately such
biases can be of little consequence, as one can use a model
like the Gaussian SDT model (assuming that it is a suitable
model) to estimate the different response criteria and compute
the expected Pc in the absence of response bias.

Response biases of this kind were reported by Jou et al.
(2016), with κ3 < 0. Under this response bias, less evidence
is needed to select the stimulus on the left as old, which will
lead to a greater amount of correct responses when the old
stimulus is on the left compared to trials in which it is on the
right. Moreover, if we assume that response speed is a func-
tion of the distance from κ3, then we should expect faster re-
sponses when the old stimulus is on the left (see Weidemann
& Kahana, 2016), as also observed by Jou et al.

Contamination by ON judgments

One can also violate the area theorem by not following the
MAX decision rule and instead rely on absolute judgments in
some or all of the 2AFC trials. This is the type of violation
assumption that Jou et al. (2016) and Starns et al. (2017) as-
sociated their results with. For instance, when presented with
two stimuli side by side, one could simply judge the left stim-
ulus as either old or new, as one would do in an ON trial, and
proceed based on the outcome of this judgment. If the left
stimulus is judged as old, one could simply produce a “left”
response. If the left stimulus is deemed to be new, at least
two alternatives could be pursued: (1) a “right” response is
produced, or (2) one moves on to evaluate the right stimulus
and compare the familiarity of the two. In any case, the intro-
duction of ON judgments in 2AFC trials will lead to an un-
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derestimation of the area under the ON-ROC. The proportion
of correct ON judgments corresponds to the area of the poly-
gon with vertices (0,0), (FA,H), (1,1), and (1,0), which is
bound to be smaller or equal to the area under the ON-ROC.4

Testing the Predictions of the Area Theorem

The precise relationship between ON and 2AFC data allows
us to test for assumption violations in the latter. If 2AFC
trials are indeed contaminated by ON judgments at a non-
negligible rate, then this assumption violation should be ob-
servable when fitting ON and 2AFC data jointly. The data
used for these comparisons come from Smith and Duncan
(2004, Experiment 2) and Jang et al. (2009), with 30 and 33
participants, respectively. As illustrated in Figure 3, partici-
pants studied a single list of words and were later tested with
a intermixed set of ON and 2AFC trials. In both types of tri-
als, responses were given using a six-point confidence scale.
Because the two experiments are virtually equivalent, we will
consider them together, as a single dataset with 63 individu-
als.

Extended SDT Models

In order to estimate the contamination of ON judgments in
2AFC trials, we extended the traditional Gaussian SDT model
(12 parameters for 20 degrees of freedom). Specifically, judg-
ments in the 2AFC trials were established as coming from a
binary mixture of ON and 2AFC judgments, with weights ω
and 1−ω, respectively. Based on the previous work by Jou
et al. (2016) and Starns et al. (2017), we assumed that the
ON contaminants always pertained to the left stimulus. Two
model variants were considered (each with 13 parameters).

Unlike previous work that mostly focused on binary re-
sponse rates or PC2AFC, we will consider the overall shape of
the 2AFC-ROC. As shown below, the contamination by ON
judgments will affect the overall shape of the 2AFC-ROC.
Note that in the specification below, we recoded the rating
scales in Figure 1 such that they range from ‘1: very sure
new’ to ‘6: very sure old’, and from ‘1: very sure left’ to ‘6:
very sure right’.

In the first model variant, SDTE1, we simply assumed that
with probability ω, individuals in a 2AFC trial respond by
judging the left stimulus as old or new, using the exact same
formulation as for the ON judgments: If the left stimulus was
recognized, a “left” response would follow. Alternatively,
if the left stimulus was rejected as new, a “right” response
would take place instead. The confidence associated with
these judgments was also based on the response criteria used
in ON judgments (e.g., a ‘very sure old’ judgment would be
mapped onto a ‘very sure left’ response). Let κ0 ≤ κi ≤ κ6,
with κ0 = −∞ and κ6 = ∞ denote the criteria used in ON
judgments, and criteria τ0 ≤ τi ≤ τ6 their 2AFC counterparts.

According to to SDTE1, the probability of confidence rat-
ings C2AFC in 2AFC trials, from 1: very sure left to 6: very

4This assumes that the ROC function is ‘proper’ (Zhang &
Mueller, 2005): Monotonically increasing, with monotonically de-
creasing slope, and with endpoints (0,0) and (1,1).

sure right are given by:

P(C2AFC = i | old left) = ω
∫ κ6−i+1

κ6−i

fs(x) dx

+(1−ω)
∫ ∞

−∞
fn(y)[Fs(y− τi−1)−Fs(y− τi)] dy

(4)

P(C2AFC = i | old right) = ω
∫ κ6−i+1

κ6−i

fn(x) dx

+(1−ω)
∫ ∞

−∞
fs(y)[Fn(y− τi−1)−Fn(y− τi)] dy

(5)

The second variant, model SDTE2, is inspired by Starns et
al.’s (2017) results and assumes that responses in 2AFC tri-
als are based on ON judgments only when the left stimulus
was recognized as ‘old’. If the left stimulus was not recog-
nized, the model reverts back to a comparison between two
familiarity values.

For 1 ≤ i ≤ 3:

P(C2AFC = i | old left) = ω
∫ κ6−i+1

κ6−i

fs(x) dx

+ω
∫ κ3

−∞
fs(y)[Fn(y+ τi)−Fn(y+ τi−1)] dy

+(1−ω)
∫ ∞

−∞
fn(z)[Fs(z− τi−1)−Fs(z− τi)] dz

(6)

P(C2AFC = i | old right) = ω
∫ κ6−i+1

κ6−i

fn(x) dx

+ω
∫ κ3

−∞
fn(y)[Fs(y+ τi)−Fs(y+ τi−1)] dy

+(1−ω)
∫ ∞

−∞
fs(z)[Fn(z− τi−1)−Fn(z− τi)] dz

(7)

whereas for 4 ≤ i ≤ 6:

P(C2AFC = i | old left) = ω
∫ κ3

−∞
fs(y)[Fn(y+ τi)−Fn(y+ τi−1)] dy

+(1−ω)
∫ ∞

−∞
fn(z)[Fs(z− τi−1)−Fs(z− τi)] dz

(8)

P(C2AFC = i | old right) = ω
∫ κ3

−∞
fn(y)[Fs(y+ τi)−Fs(y+ τi−1)] dy

+(1−ω)
∫ ∞

−∞
fs(z)[Fn(z− τi−1)−Fn(z− τi)] dz

(9)

As shown in Figure 4, for both extended SDT models, the
increase of ω leads to a reduction of PC2AFC, an increase
in response bias, but also leads to increasingly asymmet-
ric 2AFC-ROCs. However, these differences are relatively
small, which suggest that they might be difficult to detect on
a subject-by-subject basis.

Modeling Results

Models were fitted to the individual data with R package
MPTinR (Singmann & Kellen, 2013), using the maximum-
likelihood method. The model fits for SDTE1 and SDTE2,
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Figure 3: Illustration of the experimental design used by Smith and Duncan (2004, Experiment 2) and Jang et al. (2009). Note
that ON and 2AFC trials were intermixed. Also, note that in the body of text, the ON and 2AFC confidence scales are redefined
as going from 1 to 6.
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Figure 4: Effects of ON contamination on the expected
2AFC-ROC. These predictions were obtained with μs = 1.5
and σs = 1.3

summarized in Table 1, were generally good, as the mod-
els were rejected at rates only slightly higher than the nomi-
mal 5% under the null hypothesis that they are the true data-
generating model. The fits were slightly better for SDTE2
though, but by a negligible difference across all sixty-three
participants (summed ΔG2 = 9.18). Overall, none of the ex-
tended models relied much on the contamination of 2AFC
trials with ON judgments. In fact, ω was estimated to be 0
in 54% and 56% of the participants, when using the SDTE1
and SDTE2 models respectively, with mean estimates of .09

Table 1: Model Fitting and Comparison Results, and Mean
Parameter Estimates. Parameters μn and σn are fixed to 0 and
1, respectively, without loss of generality.

Model ΣG2 % Sig. % AIC μs σs ω
SDTE1 533.62 10 5 1.66 1.49 .09
SDTE2 524.44 10 8 1.66 1.50 .20
SDT 556.61 10 87 1.64 1.50 —

and .20 (see Table 1). These results are also reflected in the
number of participants for which the baseline SDT provided a
better account, according to the Akaike Information Criterion
(AIC; see Table 1).

The hypothesis of no ON contamination of 2AFC trials
across all participants was assessed via null-hypothesis test-
ing. Under the null hypothesis, goodness-of-fit tests compar-
ing two nested models are assumed to follow a χ2 distribution
with the degrees of freedom (df) corresponding to the differ-
ence in the number of parameters (in this case 63, one per
individual). But this assumption cannot be followed in the
present analysis because the restriction ω = 0 is at the lower
boundary of that parameter’s permitted range. As discussed
by Self and Liang (1987) and Shapiro (1985), the sampling
distribution of the test statistic follows a mixture of χ2 distri-
butions, usually referred to as a χ̄2 distribution. In the present
case of summed ΔG2, it follows the following mixture:

χ̄2 ∼
63

∑
i=0

(
1
2

)63(63
i

)
χ2

df=i, (10)

which has a critical ΔG2 value (p = .05) of 47.24. The ob-
served summed ΔG2 comparing the baseline SDT and SDTE1
and SDTE2 were 22.99 and 32.17, with p-values .83 and .44,
respectively. At the individual level, the χ̄2 distribution fol-
lows 1

2 χ2
df=0 +

1
2 χ2

df=1, with critical value ΔG2 of 2.71. Over-
all, the null hypothesis was only rejected in 3% and 2% of the
individual datasets, when considering the SDTE1 or SDTE2 as
the alternative, respectively. The top panel of Figure 5 shows
that the baseline SDT model fits the 2AFC data rather well.
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Figure 5: Top Panel: Observed and expected PC2AFC based
on the individual joint fits of the baseline SDT to ON-ROC
and 2AFC-ROC data. Bottom Panel: Predicted 2AFC-ROC
based on the SDT fit to the ON-ROC alone (aggregated data).

When inspecting the data, we failed to find any evidence
for a larger proportion of correct responses when the old stim-
ulus was on the left side (Wilcoxon W = 703, p = .94, one-
tailed). If anything, the proportion of correct judgments was
slightly higher when the old stimulus was on the right side
(the means were .77 and .79, respectively).

Finally, one simple way to assess the general success of the
baseline SDT model and its assumptions is to consider how
it can successfully predict the 2AFC-ROC based on the ON-
ROC data alone. The bottom panel of Figure 5 shows that
the model is able to successfully predict the 2AFC data, a
symmetrical 2AFC-ROC with the point corresponding to the
binary “left”-“right” choice being pretty much on top of the
negative diagonal, suggesting no response bias.

Evaluation of Statistical Power

The success of the baseline SDT model relative to its exten-
sions can be due to low statistical power (see Figure 4). After
all, individuals might only be relying on ON judgments in
a small portion of the 2AFC trials, which might be difficult
to detect in the experimental design of Smith and Duncan
(2004), and Jang et al. (2009). To evaluate this possibility,
we relied on model simulations. In these simulations, we as-
sumed that for all individuals ω = .20. We focused on the test
of summed individual ΔG2 values.

In step 1, we created a new set of individual response fre-
quencies via non-parametric bootstrap, which we then fitted
with the baseline SDT model using the maximum-likelihood
method. In step 2, based on the parameter estimates ob-
tained and a plugged-in value of ω = .20, we generated new
individual data using SDTE1/SDTE2. In step 3, we fitted
the simulated data with the baseline SDT model and the
SDTE1/SDTE2, and tested their summed ΔG2. In step 4,
we repeated steps 1-3 one-thousand times. The resulting p-
values were found to be concentrated at lower boundary, tak-
ing on values below .05 in 97% and 99% for EVSDTE1 and
EVSDTE2, respectively. These results suggest that we would
have been able to detect relatively small ON contaminations
in 2AFC trials, if indeed they were generally present across
participants.

Discussion

Given the widespread use of forced-choice tasks in both lab-
oratory and applied settings, it is important to better under-
stand whether the underlying assumptions hold. Previous
work (e.g., Hockley, 1984; Jou et al., 2016; Starns et al.,
2017) reported evidence suggesting that these assumptions
are typically violated. However, none of these studies fitted
a model that directly captured assumption violations. The
present work fills that gap by providing two different SDT
models that, capitalizing on the constraints introduced by the
area theorem, allow for 2AFC trials to be contaminated by
ON judgments. The present results show that the baseline
SDT provided an excellent joint fit of the ON and 2AFC data,
with the extended models only providing marginal improve-
ments. Contrary to Jou et al. (2016) and Starns et al. (2017),
we found no support for ON contamination.

It should be made clear that the present work is not claim-
ing that assumption violations are not possible in 2AFC tasks.
Our argument is that researchers should try to directly esti-
mate contamination by ON judgments using an appropriately
extended SDT model, instead of engaging in speculations
based on 2AFC data alone. Using the data from Smith and
Duncan (2004) and Jang et al. (2009), we found the baseline
SDT model succeeding with flying colors. Although these
results suggest that the assumptions typically associated with
2AFC judgments hold under a “vanilla” paradigm, it is en-
tirely possible that they might fail when other experimental
paradigms are used. It is therefore relevant to discuss the dif-
ferences between the present data, and other studies by Hock-
ley (1984), Jou et al. (2016) and Starns et al. (2017). For
both Hockley (1984) and Jou et al. (2016), the differences
observed in PC2AFC and respective RTs can be attributed to a
small shift in response criteria, not necessarily a contamina-
tion by ON judgments. One key difference between the cur-
rent data and Jou et al.’s was the intermixing of related and
unrelated stimulus lists in their study and test phases, which
could have contributed for their results. Specifically, individ-
uals could have relied on single-item recognition strategy, for
instance, basing some of their judgments on whether a stim-
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ulus was semantically related to the ones previously studied.
In the case of Starns et al. (2017), it is possible that the as-

sumption violations observed with an eye tracker were due to
the experimental setup adopted: In order to guarantee a clear
classification of 2AFC trials based on the eye-tracking data,
the two stimuli were presented at the left and right margins
of the screen. This specific presentation format could have
encouraged participants to respond based on single-stimulus
evaluations. Future eye-tracking studies are necessary to ex-
plore the possibility of modeling contaminants directly, using
a mixture modeling approach similar to the one used here (see
DeCarlo, 1998). Specifically, one can use the eye-tracking-
based classifications to estimate the ON contaminant distri-
butions in the 2AFC data.

In addition to alternative experimental designs, future work
should consider going beyond the 2AFC paradigm and rely
on trials with a larger number of alternatives. The SDT model
establishes strong accuracy predictions across M-AFC trials
that can be directly tested. These predictions are known as
Block-Marschak inequalities (see Block & Marschak, 1960;
Iverson & Bamber, 1997; Kellen & Klauer, in press):

PC(M+1) ≥ PC(M), for M ≥ 2,
PC(M−1) +PC(M+1) ≥ 2PC(M), for M ≥ 3,

PC(M−2) +3PC(M) ≥ 3PC(M−1) +PC(M+1), for M ≥ 4, (11)
etc.

These inequalities do not require the latent familiarity dis-
tributions to take on any specific parametric form (e.g., Gaus-
sian) – they hold for any model assuming that responses are
on the application of a MAX decision rule over samples from
univariate distributions.
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