
A Framework for Managing Heterogeneous Memory for Large Scale Machine Learning Workloads

By

MARK HILDEBRAND
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Venkatesh Akella, Chair

Jason Lowe-Power

Soheil Ghiasi

Committee in Charge

2022

i

Contents

Abstract iv
Acknowledgments vi

Chapter 1. Introduction 1
1.1. Introduction 1
1.2. Intel Optane DC PMM 2
1.3. Research Motivation 5
1.4. Dissertation Contributions and Organization 6

Chapter 2. Limitations of Hardware Managed Gigascale DRAM Caches 8
2.1. Introduction 8
2.2. Background and Related Work 10
2.3. Evaluation Methodology and Validation 10
2.4. DRAM Cache / 2LM Mode 15
2.5. Case Study 1: Convolutional Neural Networks 20
2.6. Case Study 2: Graph Processing 25
2.7. Discussion and Mitigation Strategies 29

Chapter 3. Compiler-Based Heterogeneous Memory Management for Statically Analyzable
Workloads 31

3.1. Introduction 31
3.2. Background 33
3.3. AutoTM 36
3.4. Implementation Details 41
3.5. Evaluation Methodology 43
3.6. Results 45
3.7. Extending AutoTM 53
3.8. Related Work 57
3.9. Conclusions 58

Chapter 4. Generalizing Heterogeneous Memory Management 60
4.1. Introduction 60
4.2. A Generic Heterogeneous Memory Management System 61
4.3. Basis for the Data Manager and Modular Policy 69
4.4. CachedArrays Implementation 77
4.5. Annotations for CNN Workloads 81
4.6. Evaluation Methodology 85
4.7. Results 90
4.8. Related Work 95

ii

4.9. Discussion 96

Chapter 5. DLRM Case Study 100
5.1. Introduction 100
5.2. Embedding Table Implementation 102
5.3. Embedding Table Experiments 107
5.4. Software Caches for Gigascale Embedding Tables 116
5.5. DLRM Implementation 123
5.6. End-to-End DLRM Performance of CachedEmbeddings 126
5.7. Related Work 130

Chapter 6. Conclusions and Future Work 132
6.1. Limitations 132
6.2. Hardware Support for Data Tiering 133

Appendix A. OneDNN Wrapper 136
A.1. OneDNN Summary 136
A.2. Exposing the C API 137
A.3. Exposing Types to Julia 140
A.4. Putting it all Together 142

Bibliography 144

iii

Abstract

The memory requirements of emerging applications, especially in the domain of machine learn-

ing workloads, is outpacing the capacity of traditional memory devices like DRAM. At the same

time, heterogeneity in the memory hierarchy is emerging on multiple fronts both with high-capacity,

low-bandwidth devices like Intel Optane Data-Center (DC) Persistent Memory Modules (PMM),

and low-capacity, high-bandwidth devices like High Bandwidth Memory (HBM). A fundamental

question introduced by this heterogeneity is: how do we efficiently manage application data to fully

exploit the properties of the underlying memory technologies? This work explores techniques and

ideas towards answering this question and understanding the performance implications of hetero-

geneous memory.

First, Intel’s DRAM cache mode for Optane DC is reverse engineered using a suite of micro-

benchmarks and large scale machine learning applications. It is discovered that for machine learning

training applications with large memory footprints and large-scale graph analytics, the DRAM cache

behaves poorly with significant access amplification and low bandwidth utilization. There are three

reasons for this performance degradation: (1) inflexible direct mapped policy leading to conflict

misses, (2) poor traffic shaping cause by on-demand accesses and metadata management, and (3)

lack of program semantic insight leading to many unnecessary and slow dirty data writebacks.

Next, AutoTM, a profile-guided compiler-based optimization technique that uses Integer Linear

Programming to derive optimal tensor placement and movement for machine learning training in

heterogeneous memory systems, is presented. The nGraph compiler is modified to implement

AutoTM for two different systems: a CPU-based system with a combination of DRAM and Optane

DC and a GPU-based system capable of using both GPU and CPU memory For DRAM/Optane

DC systems, AutoTM outperforms the DRAM cache by as much as 3× and as much as 4× for the

transparent cudaMallocManaged for GPU/CPU systems.

The third part of this work generalizes memory management primitives. A generic hetero-

geneous memory management framework can be broken into three parts: the system (the entity

responsible for managing data and metadata), the policy (the entity orchestrating the placement

and movement of data), and the abstract runtime (the application or runtime that is actually using

the data). The key insight is the modularity of this organization. Upon this framework is built

iv

CachedArrays, a policy/system package implemented in the Julia programming language. Unlike

AutoTM, CachedArrays works for applications with dynamic control flow and improves end-to-end

convolutional neural network (CNN) training performance by up to 2× over the DRAM cache.

Finally, to demonstrate the generality of this framework, it is applied to gigabyte scale em-

bedding tables for large DLRM workloads. A performance analysis of the design space embedding

table lookup and update operations on Xeon CPUs is conducted. This leads to the implementation

of CachedEmbeddings, an instance of the generic heterogeneous memory management framework

optimized for small-sized random memory accesses. Using a high-performance DLRM implemen-

tation, CachedEmbeddings out performs the DRAM cache for end-to-end DLRM training by up to

1.45× by using a modular, distribution-dependant policy.

v

Acknowledgments

This dissertation would never have seen the light of day were it not the selfless aid of many

individuals along the way.

First, I wish to express my sincere gratitude towards my advisors and mentors Professor

Venkatesh Akella and Professor Jason Lowe-Power. Venkatesh recruited my to work with some-

thing called “Optane” at a crucial point in my degree adventure, and I’ll forever be grateful for his

patience, guidance, and expertise, both for this dissertation and for the papers published along the

way. Jason is the one of the best researchers I have ever met and is a role model professor in all

areas. I am very grateful to have worked with him.

Special thanks to Professor Soheil Ghiasi for serving on my dissertation and qualifying examina-

tion committees. I appreciate your valuable feedback and insightful questions. I also wish to thank

Professors Zhou Yu and Houman Homayoun for serving on my qualifying examination committee.

This work would not have been possible without the support Jawad B. Khan and Sanjeev

Trika, the project’s sponsors at Intel. I deeply appreciate their expertise, feedback, and insights

regarding Optane DC memory. It was a joy working with you two! I would also like to thank the

Intel corporation and especially the IT professionals working there for providing access to Optane

equipped servers for running experiments.

Many thanks to Terry O’Neill for his mentorship and worldly wisdom. I am also thankful for

Julian T. Angeles for our collaboration in understanding the implications of Intel’s DRAM cache

and for our adventures in general programming mayhem. Thanks should also go to Bobby Bruce

for his endless encouragement and bottomless pot of coffee.

Thanks should also go to the other members of the Davis Architecture Research Group not

previously mentioned, including but by no means limited to Mahyar Samani, Maryam Babaie,

Ayaz Akram, Hoa Nguyen, Kaustav Goswami, Toluwanimi Odemuyiwa, Marjan Fariborz, Kramer

Straube, Professor Matthew Farrens, Professor Chris Nitta, Melissa Katherine Jost, Kelly Nguyen,

Bradley Wang, Nikitha Muddireddy, and Nima Ganjehloo.

I would also like to acknowledge the members of the VLSI Computation Lab where I spent

the first few years of my PhD journey. In particular, Professor Bevan Baas, Brent Bohnenstiehl,

vi

Timothy Andreas, Satyabrata Sarangi, Shifu Wu, Professor Aaron Stillmaker, Jon Pimentel, Arthur

Hlaing, and Filipe Borges.

I want to express my deepest gratitude towards my friend Matthew Toney. I do not think I

would have seen this through without your support and steadfast example. You are an inspiration

Matt!

I also want to thank Fishstix for all the joy the furry feline brought into my life. May she rest

in peace.

Thank you to all my coworkers at the Rocknasium for creating a comfortable and supportive

atmosphere. It has been such a blessing to be able to retreat to the climbing gym over these years.

Finally, I wish to extend my sincerest appreciation towards my brother and parents for all their

support. To my father, Brent Hildebrand, in particular, who passed away before I finished my

degree: thank you for everything. I will try to live my life with honor and integrity, as you did

yours.

vii

CHAPTER 1

Introduction

1.1. Introduction

For years, researchers, scientists, and engineers have been claiming the death of Moore’s Law,

the observation of exponential growth in silicon-based transistor density. And while foundries like

TSMC continue to extract more performance out of silicon, it is undeniable that we have entered a

new age of computer architecture design and programming paradigms. Programmers can not rely

on general purpose hardware simply getting faster to fulfill the needs of modern data-center and

machine learning workloads. Instead, we’ve entered an era of specialization.

In particular, the memory requirement of modern applications, particularly those related to ma-

chine learning (ML), are outpacing the improvement in capacities of memory devices. Often brought

up in discussions about increasing memory pressure are the absurdly large language models being

developed by the likes of OpenAI, Microsoft, and NVidia. For instance, in early February 2020,

Microsoft announced Turing-NLG1, a 17-billion parameter language model. Later that same year,

OpenAI announced the 175-billion parameter GPT-3 in 2020 [10]. Not to be out-done, Microsoft

teamed up with NVidia to produce Megatron-Turing NLG in late 2021, with a memory footprint

of nearly 17 TB required for training [98]. It can be debated whether further language model

inflation is the best way of improving model performance versus, for example, improving model

architecture. Nevertheless, this provides an example of workloads taxing the memory capacity of

server-scale computers.

Deploying and training such models requires significant infrastructure, consisting of hundreds

of GPUs. To illustrate how extreme this gets, results from MLPerf Training 0.7 [63] (a benchmark

suite for comparing system performance for Machine Learning (ML) models) shows Nvidia dis-

tributing training to over 2000 GPUs and Google using over 4000 TPU-v32. The cost of these large
1https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
2https://mlperf.org/training-results-0-7

1

https://mlperf.org/training-results-0-7

scale deployments is such that only the largest companies are capable of pushing the boundaries in

large scale ML research.

As models continue to grow, memory capacity and bandwidth will continue to be key bottle-

necks. Existing approaches to distribute these models such as data parallelism and model parallelism

might not be sufficient. For example, data parallelism requires large batchsizes to achieve high com-

putational performance on each worker. However, too large a batchsize may require more time to

train a network due to poor convergence [64]. Model parallelism is promising, but brings with it

its own challenges including effectively managing communication delay and synchronization.

At the same time, the computing industry is moving more and more towards heterogeneity in

the memory system [8, 39, 48, 101]. This heterogeneity introduces different memory technologies

within the same computing system, with various trade-offs. One such example is Intel Optane

Data-Center (DC) [39], an emerging non-volatile memory technology offering significantly higher

memory capacities than DRAM albeit with lower performance. Applications with increasing mem-

ory requirement may take advantage of the capacity offered by this technology, but only if doing

so does not incur an unacceptable performance penalty. In this dissertation, we will investigate

techniques for managing heterogeneous memory systems, for deciding when to place data in a small

fast memory (e.g., DRAM) or a large slow memory (e.g., Optane DC) to utilize the advantages of

both. Thanks to the generosity of this project’s sponsors, a real DRAM/Optane DC based system

will be used as a test-bed for the ideas presented within this dissertation. However, it is hoped that

these ideas generalize to the broader landscape of emerging heterogeneous memory systems.

1.2. Intel Optane DC PMM

Intel Optane Data-Center (DC) Persistent Memory Modules (PMM) are non-volatile random

access memory (NVRAM) devices based on phase change memory designed for direct load/store

random access similar to DRAM [39,48]. The first two generations of these devices were designed

to live on the DRAM bus, using a modified protocol called “DDRT”. Due to the modified DDRT

protocol, Optane DC required CPUs with modified memory controllers. Because of their residence

on the DDR bus, direct loads and stores to these devices are possible.

2

Figure 1.1. App Direct persistent memory programming model.

Low-level configuration provisioning of these devices is performed through the ipmctl3 tool and

the ndctl4 tool is used to expose these devices to the host operating system and user-level appli-

cations. There are three main ways in which persistent memory (PM) is available to applications.

1.2.1. App Direct. Unlike traditional block-based storage devices, persistent memory (PM)

devices support “direct access” (DAX) file systems (Figure 1.1). Using this type of file system

changes the behavior of memory mapping files. Instead of maintaining a DRAM buffer, the kernel

instead directly memory maps the backing file into the user application. After mapping, any loads

and stores to the corresponding virtual addresses go directly to the underlying media, bypassing

kernel layers entirely [48].

When used as volatile memory (i.e., persistence is not required), an application can treat the

memory obtained from this memory mapping exactly as it would normal memory. However, if

persistence is required, than care needs to be taken by the application to preserve data integrity in

the case of an interrupting event. For example, a power failure midway through a large write can

result in a torn write, leaving the file on persistent memory in an inconsistent state. To that end,

libraries like PMDK5 and new x86 hardware instructions like clflushopt and clwb (described in

Table 1.1) allow write to PM to occur transactionally (i.e., either completely succeed or completely

fail).
3https://github.com/intel/ipmctl
4https://github.com/pmem/ndctl
5https://github.com/pmem/pmdk

3

https://github.com/intel/ipmctl
https://github.com/pmem/ndctl
https://github.com/pmem/pmdk

Instruction Description
clflushopt Evict the corresponding cache line from all levels of the CPU cache

hierarchy. Unlike the older clflush operation, clflushopt may be
executed out of order with other clflushopt instructions, leading to
potentially better performance of many such instructions.

clwb Write back the corresponding cache line to main memory. The cache
line may be retained in the CPU cache hierarchy.

Table 1.1. Extensions to the x86 ISA to support persistent memory. When cache
line writes destined for PM reach the memory controller, they enter the persis-
tency domain where they are guaranteed to commit even in the event of a power
failure [81].

The focus of this dissertation is on using PM as volatile memory for bandwidth intense applica-

tions. As such, we will not explore the implications of PM transactions. While conceptually simple

to use in an application, Optane DC cannot serve as a drop-in replacement for DRAM as load/store

latency is on the order of 3× higher than DRAM with 60% lower bandwidth [109]. What these

devices offer, instead is capacity with up to 512 GB per module. At this size, a Xeon CPU with 6

memory channels can have up to 3 TB of random access persistent memory in addition to DRAM.

Because of these trade-offs (higher capacity, but lower bandwidth/higher latency), Optane DC

serve as an excellent real-world test case for heterogeneous data tiering and management.

1.2.2. Memory Mode (2LM). Persistent memory modules can be used in the so-called 2LM

(also known as memory mode or cached) [48], where PM act transparently as system memory. In

this mode, system DRAM serves as a direct mapped cache for the non-volatile memory. The access

granularity of this cache is 64B, matching the cache line size of the underlying CPU. While not

mentioned explicitly, Intel patents suggest that cache tags are stored along with ECC data [84].

ECC DRAM is implemented by adding an extra DRAM module to each DIMM. Thus, each 64B

data transaction for each DIMM is accompanied by 8 B (64 bits) of ECC. Of these 64 bits of

ECC data, only 20 [13] are required to provide Single Error Correction/Double Error Detection

redundancy, leaving ample room for tag metadata, including both physical address and cache line

state. Our data is consistent with this approach.

This operating mode was likely introduced as a way to lower the barrier to adoption of PM,

though only for the capacity aspect and not for persistence. For example, when operating in 2LM,

4

a system like that described above may see as much as 3 TB of memory per socket. DRAM caches

have been well studied in simulation [17,18,50,51,59,61,80]. However, these previous works have

not taken all of the realistic implementation details (e.g., tracking “coherence” of request issued

to PM) leaving gaps between research proposals and the actual implementation. Chapter 2 will

discuss the design of this DRAM cache in detail and outline many of the performance problems

introduced by such a cache.

1.2.3. PM as a NUMA Node. A third way to use to PM as volatile memory is to use the

daxctl6 tool expose the persistent memory modules as extra NUMA nodes. This allows existing

NUMA aware allocation and memory pinning to take advantage of the extra capacity offered by

PM. However, this still does not address the main question: how to efficiently use this memory?

1.3. Research Motivation

The question to answer in heterogeneous memory systems, regardless of whether it’s for ma-

chine learning or more general applications, is where to place data and when should it be moved

between memory devices. One approach is to simply use something like the transparent DRAM

cache described in the previous section. Unfortunately, as we will show in Chapter 2, this can

lead to sub-optimal performance. For machine learning training on GPUs, bespoke solutions like

vDNN [89] and ZeRO [83] use application specific knowledge to answer this question. However,

these specialized approaches approaches only apply to heterogeneous memory systems where only

memory in the “device local” memory location is directly byte-level accessible. This is quite different

from what emerging heterogeneous memory systems will look like.

1.3.1. Examples of Emerging Heterogeneous Memory Systems. Recent advances in

interconnect technology and device packaging have lead to new classes of heterogeneous mem-

ory systems. One example is the previously mentioned Optane DC, which allow byte-level access

through the DDR bus. Additionally, emerging technologies like CXL will extend byte-level ad-

dressability and cache-coherence to fabric-attached devices [101]. New generations of Intel CPUs

like Sapphire Rapids, in addition to CXL attach Optane PM, will also include on-package high-

bandwidth memory (HBM) for yet another level of heterogeneous memory. [8].
6https://github.com/pmem/ndctl/tree/main/daxctl

5

https://github.com/pmem/ndctl/tree/main/daxctl

All of these emerging technologies and many more like them will involve different trade-offs and

decisions to be made when it comes to heterogeneous memory management. Existing solutions like

block-based caches [43,48], virtual page-management [54,108], and manual programmer develop-

ment [33] are either not efficient enough or scalable enough. Furthermore, while tools like Intel’s

Persistent Memory Developement Kit7 and Samsung’s recent Scalable Memory Development Kit8

are providing tools for exposing heterogeneous memory to an application, there’s still the question

of how to use this memory effectively.

1.3.2. Summary. In this work, we seek to understand some of the potential performance pit-

falls associated with Optane PM and develop techniques for scalably managing the proliferation of

emerging heterogeneous memory technologies. While the bulk of this dissertation targets a hetero-

geneous CPU-based system with DRAM and Optane PM targeting machine learning workloads,

the goal is for the techniques and insights developed here to generalize to other similar systems

as well. For example, in Chapter 3, we will show that the techniques developed indeed generalize

to a GPU-CPU heterogeneous system. Finally, while extracting the best performance of a system

requires a detailed understanding of the memory technologies involved and their respective trade-

offs, we will show in Chapters 4 and 5.1 that a common approach to developing a heterogeneous

memory management framework can be used for two very different classes of problems.

1.4. Dissertation Contributions and Organization

The rest of this dissertation is organized as follows. Chapter 2 reverse engineers the so called

“2LM” DRAM cache implementation on Intel Cascade-Lake servers. Using several machine learning

and graph processing benchmarks running on real hardware, it is shown that the hardware only

nature of this approach to heterogeneous memory management suffers in a number of key areas

such as low bandwidth utilization and a lack of program semantic information.

Chapter 3 introduces AutoTM, a Integer Linear Programming (ILP) based technique for opti-

mizing memory location and movement between DRAM and Optane PM for CNN training. This

technique yields up to a 3x performance over the native 2LM hardware DRAM cache. AutoTM is

further extended to manage GPU-CPU memory for GPU-based training.
7https://github.com/pmem/pmdk
8https://github.com/OpenMPDK/SMDK

6

Chapter 4, we demonstrate a generalized runtime framework for managing heterogeneous mem-

ory. A generalized API for a multi-level memory manager is presented and implemented in the

Julia programming language. Using this approach, the dependency for incorporating heterogeneous

memory into application development can be inverted. That is, this framework may be used as a

compositional building block for application development rather than developing bespoke memory

management solutions for applications, such as the case in AutoTM.

Chapter 5.1 builds on the memory management API to implement two-level memory manage-

ment for the fine-grained memory access pattern found Deep Learning Recommendation Model

(DLRM) embedding table lookups. An abstract API for embedding table lookup and updates is

presented the DLRM implemented with it outperforms a state-of-the-art PyTorch implementation

from Intel.

7

CHAPTER 2

Limitations of Hardware Managed Gigascale DRAM Caches

2.1. Introduction

Large scale machine learning and large scale graph analytics represent workloads of interest for

high performance server in the forseeable future. Emerging machine learning models in NLP and

recommendation engines (such as GPT3 [10] and DLRM [67]) can have over 100 billion parameters

requiring hundreds of gigabytes to terabytes of memory for training. Similarly real world graphs

can have hundreds of billions of edges, requiring hundreds of gigabytes to just store the graphs [72].

As a result, the cost of memory (DRAM) is becoming an important concern in datacenters and

other high performance computing facilities dealing with large scale data analysis [30,31].

To address this challenge Intel, as mentioned in Chapter 1, introduced Optane Data-Center

Persistent-Memory-Modules (DC PMM), a persistent memory (PM)1) technology based on phase

change memory that can serve as a drop-in replacement for conventional DRAM [39]. While

programmers can use the PM as a main memory DRAM replacement using normal load and store

instructions, the latency is 3× higher and the bandwidth is at least 60% lower than DRAM [109].

Traditionally, to hide high memory latency and limited bandwidth, computer architects have turned

to hardware caches. In this tradition, Intel Cascade Lake systems implement a DRAM cache for

PM. DRAM caches have been well studied in simulation [17,18,50,51,59,61,80]. These previous

works have not taken all of the realistic implementation details (e.g., tracking “coherence” of request

issued to PM) leaving gaps between research proposals and the actual implementation.

In this chapter, we analyze the performance of an actual implementation of the DRAM cache

in Intel’s Cascade Lake based servers on workloads whose memory footprint greatly exceeds the

capacity of DRAM. We first analyze the behavior of the DRAM cache with microbenchmarks to

reverse engineer its design and understand pathological performance cliffs. It is well known that
1This chapter uses the term “PM” to refer to memory located on the Optane DC DIMMs.

8

this DRAM cache is implemented as a direct-mapped [48], and we find that the tags are stored

ECC bits of the DRAM DIMMs to limits the access overhead. However, we also find that in many

cases there are extra DRAM accesses required to update the cache metadata (e.g., tag reads before

writes) which can significantly decrease the performance of miss-heavy workloads. In fact, using

microbenchmarks on real hardware, we find that a single demand request can require up to 5

memory accesses.

After using microbenchmarks to understand the cache behavior and implementation, we analyze

two memory capacity limited workloads: training large convolutional neural networks (CNNs) [41,

46,97,100] and graph analytics [33]. We show that in these realistic workloads, the DRAM cache

can hurt performance even with a modest cache miss rate. We show that for the CNN workload,

software management can increase performance by up to 3× over the DRAM cache. Furthermore,

we show significant access amplification and bandwidth reduction for graph based workloads.

Fundamentally, we find three characteristics of this DRAM cache implementation which causes

performance degradation for workloads with large working sets.

(1) The direct-mapped, insert on miss cache is inflexible and many conflicts can increase the

miss rate.

(2) Under high miss rates, memory bandwidth is poorly utilized with extra bandwidth used

for non-demand accesses (e.g., fills, writebacks, and tag checks).

(3) For some workloads the data in the DRAM cache is temporary or dead from the program’s

perspective leading to wasted data movement.

While some of these characteristics may be alleviated in future hardware, we can use these

three insights on today’s hardware to improve the performance of heterogeneous memory systems.

The rest of the chapter is organized as follows. We start with the quick background on Intel’s PM

technology and related work in the area of benchmarking PM from recent literature. In Section 2.3

we present the details of the evaluation and validation framework. Section 2.4 follows up with a

detailed analysis of the DRAM cache in these systems. Next we use two representative case studies

from deep learning and graph analytics to corroborate the findings from the microbenchmark

experiments. We end the chapter with a discussion of the results and ideas for software based

mitigation strategies in Section 2.7.

9

2.2. Background and Related Work

There have been several efforts in research literature that focus on evaluating the system level

performance of Optane DC [48, 76, 77, 92, 102], especially in comparison with DRAM. More re-

cently, Wang et. al [107] developed a profiler and PM simulator to model the microarchitecture of

PM in general. However, to the best of our knowledge there has been no effort in trying understand

the performance of DRAM caches in large scale PM-based systems. However, the tools described by

Wang [107] could be used for hardware/software codesign of DRAM caches in the future, building

on the findings in this chapter.

On the application front there has been work on the design of data structures and algorithms

to mitigate the disadvantages of PM, chiefly the slower and asymmetric read/write latency and

bandwidth [12,26,71,75,95]. Dhulipala et. al [26] and Gill et. al [33] evaluate the performance

of large scale graph analytics on PM based systems. These works focus on application performance

evaluation and optimization but do not delve into the details of behavior of the DRAM cache (the

2LM mode) and why they do not work well on these applications. The goal of this work is to fill

this gap. In fact, one could view Sage [26] as a software technique to mitigate the limitations of

DRAM caches in PM based systems as discussed in Section 2.6 and Section 2.7

2.3. Evaluation Methodology and Validation

2.3.1. Test System. Our test machine is a two-socket Xeon server (illustrated in Figure 2.1)

equipped with 24-core Cascade Lake engineering sample CPUs. The CPU on each socket has

two integrated memory controllers (IMC), each with three memory channels. Integrated memory

controllers are responsible for performing the actual reads and writes to DRAM and PM. Each

memory channel is populated with a 32 GiB DDR4 DRAM DIMM and a 512 GiB Optane DC

DIMM.

2.3.2. Evaluation Methodology.

2.3.2.1. Kernel Benchmark Generator. To test the basic bandwidth performance of DRAM

and PM, both in 1LM and 2LM, we made a custom open source benchmark generator2 written in

Julia [7]. The generator uses Julia’s metaprogramming and just-in-time compilation to generate
2https://github.com/darchr/KernelBenchmarks.jl

10

https://github.com/darchr/KernelBenchmarks.jl

Figure 2.1. Diagram of our test platform. Each socket has 192 GiB of DRAM and
3 TB of PM spread across six memory channels.

custom low overhead load and store loops. Memory can be accessed either sequentially or pseudo-

randomly. When accessed pseudo-randomly, we ensure that each addresses is touched exactly once

(i.e. no repeats) using a maximum length Linear Feedback Shift Register to generate array indices.

Furthermore, for pseudo-random iteration, access granularity ranges from 64 B to 512 B. We found

sequential iteration is largely indifferent to access granularity, so only a single result for sequential

access is reported. For these experiments, we used read-only, write-only, and read-modify-write

operations. We explore both standard or nontemporal instructions for all stores. Nontemporal

stores bypass the on-chip cache, allowing us to directly study the behavior of LLC writes to the

memory controller. Data is partitioned evenly across threads when multithreading is used.

Listing 2.1 shows the generated x86 code for a 512 B, nontemporal write-only workload that

pseudo-randomly accesses array addresses using a LFSR. Lines 1-3 load arguments where r8 is the

base pointer for the array segment and r9 is the starting seed for the LFSR. The write-only data

is broadcast to the 64 B AVX512 register (zmm0) in lines 4 and 5. The main loop body encompases

lines 7 to 32. The 512 B write takes 8 nontemporal vector stores (vmovnts). Lines 22 to 32 implement

the LFSR as annotated in the listing. Listing 2.2 illustrates x86 assembly for a sequential read-

modify-write kernel that uses 16 B loads and stores. As can be seen, the generated assembly for

these microbenchmarks is minimal, providing high-performance implementations of the kernels in

question.

11

� �
1 mov rax, qword ptr [rdi]
2 mov r8, qword ptr [rax]
3 mov r9, qword ptr [rsi + 16]
4 movabs rax, offset .rodata.cst4
5 vbroadcastss zmm0, dword ptr [rax]
6 mov rdx, r9
7 L29:
8 mov rax, rdx
9 shl rax, 9

10 vmovntps zmmword ptr [rax + r8 - 512], zmm0 # + 512 B contiguous write.
11 vmovntps zmmword ptr [rax + r8 - 448], zmm0 # |
12 vmovntps zmmword ptr [rax + r8 - 384], zmm0 # |
13 vmovntps zmmword ptr [rax + r8 - 320], zmm0 # |
14 vmovntps zmmword ptr [rax + r8 - 256], zmm0 # |
15 vmovntps zmmword ptr [rax + r8 - 192], zmm0 # |
16 vmovntps zmmword ptr [rax + r8 - 128], zmm0 # |
17 vmovntps zmmword ptr [rax + r8 - 64], zmm0 # +
18 mov rdi, qword ptr [rsi]
19 mov rax, qword ptr [rsi + 8]
20 nop dword ptr [rax + rax]
21 L112:
22 mov ecx, edx # + Generate the next term in the LFSR sequence.
23 and ecx, 1 # |
24 neg rcx # |
25 and rcx, rax # |
26 sar rdx # |
27 xor rdx, rcx # +
28 cmp rdx, r9 # + Compare with seed (if equal, done with iteration).
29 je L141
30 cmp rdx, rdi # + Compare with max length. If exceeding, iterate again to yield an
31 jg L112 # + in-bounds index.
32 jmp L29
33 L141:
34 vzeroupper
35 ret
36 nop word ptr cs:[rax + rax]� �

Listing 2.1. Auto Generated code for 512B non-temporal writes using pseudo-
random array indexing.

2.3.2.2. Hardware Performance Counters. To measure DRAM and PM traffic, we use uncore

hardware performance counters located in each IMC. These counters capture column access strobes

(CAS) for DRAM reads and writes. The Cascade Lake generation added IMC counters for PM

read and write requests, and 2LM tag statistics including tag hit, tag miss clean, and tag miss

dirty, which will be explained in more detail later. Event codes and masks for the counters used

in this work are given in Table 2.1. Results from the hardware performance counters are validated

with the expected data movement and benchmark wall clock time.

12

� �
1 mov rcx, qword ptr [rsi]
2 mov rax, qword ptr [rsi + 8]
3 sub rax, rcx
4 jl L81
5 mov rdx, qword ptr [rdi] # + Bounds check and prepare loop induction variable.
6 mov rdx, qword ptr [rdx] # |
7 mov rsi, qword ptr [rdi + 8] # |
8 shl rsi, 2 # |
9 shl rcx, 4 # |

10 add rcx, rsi # |
11 add rcx, rdx # |
12 add rcx, -20 # |
13 inc rax # +
14 movabs rdx, offset .rodata.cst4 # + Broadcast increment variable to register.
15 vbroadcastss xmm0, dword ptr [rdx] # +
16 nop word ptr [rax + rax]
17 L64:
18 vaddps xmm1, xmm0, xmmword ptr [rcx] # + Main loop body.
19 vmovaps xmmword ptr [rcx], xmm1 # |
20 add rcx, 16 # |
21 dec rax # |
22 jne L64 # +
23 L81:
24 ret
25 nop word ptr cs:[rax + rax]� �

Listing 2.2. Generated code for a sequential read-modify-write kernel using 16 B
loads and stores.

Metric Event Code Umask
DRAM Reads 0x04 0x3
DRAM Writes 0x04 0xC
PM Reads 0xEA 0x2
PM Writes 0xEA 0x4

2LM Tag Hit 0xD3 0x1
2LM Tag Miss Clean 0xD3 0x2
2LM Tag Miss Dirty 0xD3 0x4

Table 2.1. Event codes and umasks for IMC performance counters used to gather
data on DRAM, PM, and 2LM behavior. The events listed here all count 64B trans-
actions. Events highlighed in bold were introduced in the Cascade Lake generation
of processors.

Each benchmark was executed on a quiet system. Unless otherwise specified, all six Optane

DC DIMMs are configured as a single interleaved set and experiments are run on a single socket to

avoid NUMA overheads.

2.3.3. PM Performance Results. The results obtained here are in line with observations

made by other researchers [33,48,76,92]. We highlight results that are relevant to our upcoming

13

4 8 16 24
0

10

20

30

Number of Threads

B
an

dw
id

th
(G

B
/s

)

Random 64 B Random 128 B Random 256 B Random 512 B Sequential

(a) Read bandwidth using standard load instructions.

4 8 16 24
0

5

10

Number of Threads

B
an

dw
id

th
(G

B
/s

)

(b) Write bandwidth using nontemporal store instructions.

Figure 2.2. Bandwidth to 6 interleaved 512 GiB PM DIMMs.

discussion in Section 2.4 on the 2LM DRAM cache. Since read and write bandwidth to Optane

DC is asymmetric, we will consider these separately. Figure 2.2a shows the read bandwidth of six

interleaved 512 GB PM modules under varying thread counts. Sequential bandwidth scales with

the number of threads up to a maximum 30 GB/s with 8 threads, at which it stops increasing. This

result is slightly different than the 39 GB/s reported in other works [48] because our system uses

512 GiB DIMMs instead of 128 GiB or 256 GiB DIMMs. The 512 GiB DIMMs provide a maximum

read bandwidth of 5.3 GB/s read bandwidth per DIMM while the others provide 6.8 GB/s [21].

Figure 2.2b demonstrates the write bandwidth of PM when using nontemporal stores. In addi-

tion to bypassing the on-chip cache, nontemporal stores do not need a Read-For-Ownership (RFO),

a step in Intel’s usual cache coherence protocol [22], and are critical for high PM write band-

width [109]. Write bandwidth peaks with four threads, and is roughly the same for sequential

and random access exceeding 256 B. Limited buffer space within the Optane DIMM decreases the

media controller’s ability to merge sequential 64 B writes into a single 256 B write, leading to write

14

Table 2.2. Summary of generated reads and writes for 2LM. Figure 2.3 shows
details of why these requests generate these actions. The dirty data optimization
(DDO) allows the IMC to elide the tag check for some writes.

LLC Read LLC Write
Hit Miss Hit Miss DDO

Clean Dirty Clean Dirty
DRAM Read 1 1 1 1 1 1
DRAM Write 1 1 1 2 2 1
PM Read 1 1 1 1
PM Write 1 1
Amplification 1 3 4 2 4 5 1

amplification and the observed drop in bandwidth [109]. In summary, with this system we can

achieve just over to 30 GB/s read and 11 GB/s write to PM.

2.4. DRAM Cache / 2LM Mode

As discussed in Section 1.2, Optane DIMs can act as system memory with DRAM operating as

a transparent, hardware managed, direct-maped cache. In this section, we use microbenchmarks to

try to deduce the performance implications of the Cascade Lake DRAM cache design. Our results

are summarized in Table 2.2 and Figure 2.3.

2.4.1. Methodology. To study the behavior of the 2LM DRAM cache, we used the same

benchmarks discussed in Section 2.3 and the same methodology for measuring bandwidth. In this

case, data gathered from the performance counters allows us to differentiate DRAM and PM traffic.

Furthermore, the tag related performance counters in each IMC allows us to correlate tag events

with memory traffic. Each IMC only allows four events types to be recorded at a time. Since

our benchmarks are long running and largely deterministic, we run them twice to obtain both

bandwidth and tag events.

Table 2.2 summarizes the observed actions required for each type of access to the IMC. We

define two types of requests to the IMC. An LLC Read is a request from the LLC for data from

the DRAM cache or PM. This request is generated on a load or store miss at the LLC. Stores can

generate an LLC read as they may require a RFO. An LLC Write is a request from the LLC to

write back dirty data to the DRAM cache. LLC write requests are generated either when a dirty

line is evicted from the LLC or from a nontemporal store.

15

Furthermore, the hardware performance counters differentiate between three different types of

cache accesses: hit, clean miss, and dirty miss. A hit implies that address accessed by an LLC

request is present in DRAM. A miss means that an address is not resident in DRAM and must

be fetched from PM. Since this cache is direct mapped, a miss implies that some other data is

occupying the set corresponding to the requested address. A miss is dirty if this aliasing data has

been modified since its original insertion and thus must be written back to PM upon eviction.

To study read and write hits, we use the read-only and write-only benchmarks respectively on a

51 GiB array backed by 1 GiB hugepages to mitigate TLB overheads. Because the array is far larger

than the 38 MB LLC cache, each CPU load generates an LLC read and each CPU nontemporal

store generates an LLC write. This array is also small enough to fit in the DRAM cache without

aliasing. Thus, all LLC reads/writes accesses will be cache hits.

Generating clean LLC read misses and dirty LLC write misses is also straightforward. We use

a 420 GB array, which is over twice the size of the 192 GB DRAM cache per socket. Applying the

read-only benchmark to this array for several iterations ensures a clean LLC read misses for each

CPU load. Similarly, the write-only benchmark ensures that each nontemporal store generates a

dirty LLC write miss.

Testing dirty LLC read misses and clean LLC write misses is more complicated. For dirty LLC

read misses, we first prepare the 420 GB array from before by writing to it, making the entire

DRAM cache is dirty. We then perform a single iteration of the read-only kernel. Thus, each

CPU load early in the iteration generate LLC reads that will be a dirty miss in the cache. As the

iteration progresses, however, a larger portion of these loads become clean misses as the dirty cache

is replaced by clean data. Consequently, we determine cache behavior based on data collected early

in the iteration. We use a similar procedure to prime and test clean LLC write misses.

When testing the behavior of the cache, we use nontemporal stores when writing. This ensures

that the behavior shown by the IMC is purely the result of the incoming store and not an earlier

RFO. For all benchmarks, we also compute an effective bandwidth as seen by the application. This

is obtained using the size of the array and wall clock time for each benchmark.

16

Figure 2.3. Flowchart showing the operation of the DRAM for LLC read misses
which occur on a processor load or store which misses in the LLC and LLC write-
backs which occur when a dirty block is evicted from the LLC. The miss handler is
the same for reads and writes and is factored out on the right. Underlines indicate
where the actions end, and bold shows the hardware actions. A summary of total
memory accesses is given in Table 2.2.

While we only outlined several key benchmarks to test the different regimes of the DRAM

cache, we also applied a whole range of microbenchmarks with different thread counts and access

patterns to fully characterize the behavior of the cache and validate the results presented here.

2.4.2. 2LM Observations. Table 2.2 summarizes our findings for the cache events and Fig-

ure 2.3 demonstrates a flow chart of IMC logic that models this behavior. We describe each of

these columns in turn. To help with our discussion, we use the term access amplification [62] as

the ratio of memory accesses (i.e., both DRAM and PM) to demand accesses.

LLC read hits are simple. The IMC initiates a DRAM read, which fetches data along with the

tag in the ECC bits. A tag check is performed and since the tag matches, the data is immediately

forwarded with no access amplification.

Figure 2.4a shows bandwidth for the read-only benchmark in the 100% clean miss scenario. Note

a 3× access amplification for each miss. Essentially, the tag miss is serviced by a miss handler,

which fetches the requested cache line from PM, inserts into DRAM, and forwards to the CPU.

17

Dirty read misses are handled much the same as clean read misses. The only change is that the

cache line evicted from DRAM must be written back to PM.

LLC write hits incur a 2× access amplification because the IMC must first emit a DRAM read

to perform a tag check. Only upon verification of the tag can the line be safely written.

Next, we discuss dirty LLC write misses. Figure 2.4b shows collected bandwidth for the write-

only benchmark where each nontemporal store is a dirty tag miss. Observe a 2× access amplification

in DRAM writes alone. Upon receiving a completely dirty cache line store yielding a tag miss, we

would expect the IMC to write the evicted line to PM and directly insert the incoming line to

DRAM. This would yield a total of 1 DRAM read (for the tag check), 1 PM write, and 1 DRAM

write. However, the data in Figure 2.4b suggests that this is not the case. Our best guess is that the

memory controller always inserts on a miss (regardless of whether that miss was a read or write).

The second DRAM write is thus the actual write of cache line to DRAM. Clean LLC write misses

are similar dirty write misses without the PM write back.

2.4.3. Dirty Data Optimization. Finally, this brings us to the phenomenon that we call the

Dirty Data Optimization (DDO). At times, the memory controller is able to elide the tag check (i.e.

DRAM read) and instead directly forward LLC writes to DRAM. This can be seen in Figure 2.4c

which shows the distribution of traffic for the read-modify-write benchmark in a 100% dirty LLC

miss scenario using standard stores. The CPU load initiates a dirty LLC read miss (dirty from a

previous write), accounting for one DRAM read (tag check) plus the traffic associated with a cache

insert. Since standard stores are used, the subsequent CPU store will remain in the LLC for some

time before being evicted and written to memory. Thus, there is low temporal locality between a

cache line’s load and its write back.

Due to this low locality, we would expect this delayed LLC write to require another tag check,

resulting in a total of two DRAM reads per CPU load-store pair. However, this is not the case and

it appears this second tag check is elided. While this could be explained by an inclusive cache, we

found that this is not the case as it is possible to have small amounts (< 8 KiB) of aliasing data

simultaneously within the CPU cache. Thus, we are not sure the exact mechanism driving this

optimization.

18

Random
64 B

Random
128 B

Random
256 B

Random
512 B

Sequential
0

10

20

M
ea

n
B

an
dw

id
th

(G
B

/s
)

DRAM Read DRAM Write PM Read PM Write Effective

(a) Read-only benchmark, clean LLC read misses, 24 threads.

Random
64 B

Random
128 B

Random
256 B

Random
512 B

Sequential
0

5

10

M
ea

n
B

an
dw

id
th

(G
B

/s
)

(b) Write-only benchmark, dirty LLC write misses, 24 threads, nontemporal stores. Using
4 threads only increases the maximum write bandwidth by 1 GB/s.

Random
64 B

Random
128 B

Random
256 B

Random
512 B

Sequential
0

5

10

15

M
ea

n
B

an
dw

id
th

(G
B

/s
)

(c) Read-modify-write benchmark, dirty LLC read miss followed by a later DDO LLC
write, 4 threads, standard stores. Sequential achieves the highest PM write bandwidth of
any 2LM benchmark with neglibile difference between nontemporal and standard stores.

Figure 2.4. Benchmark results on a large array exceeding the size of the DRAM
cache. Because the array size exceeds DRAM, the miss rate in the DRAM cache
is 100%. The “effective” bar illustrates performance as seen by the application,
computed by wall clock time and data accessed.

2.4.4. Discussion. We described our observation of 2LM’s mechanics, but what does this

mean for user applications? There are two points we want to make. First, contrast Figure 2.4,

which shows the effective NVDIMM bandwidth in 2LM with a high miss rate, with Figures 2.2a and

19

2.2b, showing the maximum speed of PM. The highest PM read bandwidth in 2LM (Figure 2.4a)

is 23 GB/s and the highest write bandwidth (Figure 2.4b) is 8 GB/s. This is 60% and 72% the

demonstrated achievable bandwidth of our system’s PM. This is the ideal case with well formed

traffic. We expect applications with a large memory footprint (exactly those that would benefit

from the large memory pool provided by PM) and a high DRAM cache miss rate to experience a

severe bandwidth bottleneck. Second, cache misses are costly in terms of extra traffic generated,

with LLC read and write misses generating up to 3× and 5× access amplification. This is costly

both in terms of energy and lost bandwidth.

So far, we have demonstrated the potential for applications to experience bandwidth bottle-

necks in 2LM. In the next two sections, we provide case studies demonstrating this effect on real

applications.

2.5. Case Study 1: Convolutional Neural Networks

In this section, we will take a deep dive into some of pitfalls a bandwidth and compute heavy

application can fall into when running under 2LM. Specifically, we consider the problem of training

deep Convolutional Neural Networks (CNNs) whose working set size greatly exceeds the physical

DRAM of a system, requiring the extra memory provided by PM.

CNNs are typically expressed as a directed acyclic graph of computation primitives such as

convolutions and matrix multipications, that are heavy on compute, and operations such as batch

normalization and concatenation that are heavy on bandwidth requirements. At a high level, a

single iteration of training consists of a forward pass, during which the network is evaluated (almost)

normally on a batch of training data (some kernels like Batch Normalization have slightly different

versions for training and inference [47]). The output of the forward pass is compared to an expected

output to generate a loss value, which is used in the backward pass to compute the partial derivative

of the loss with respect to each of the trainable parameters of the network. The parameters of the

network are adjusted based on the these derivatives. An important aspect of the backpropagation

algorithm is that many intermediate values computed during the forward pass must be preserved to

compute the backward pass. Thus, the active memory footprint of the network during an iteration

20

of training increases during the forward pass, then decreases during the backward pass. It takes

many such iterations of training across different input samples to fully train a CNN.

2.5.1. Methodology. We implemented three popular large CNNs: Inception v4 [100], Resnet

200 [41], and DenseNet [46] using the ngraph compiler [24] on the PM-based system described

earlier. Intel’s ngraph compiler is an optimizing compiler specifically targeting static deep neural

networks that takes advantage of the Xeon CPU ISA. For these large networks, we scaled the

training batch size until the overall footprint of these applications exceeded 650 GB, well beyond

the capacity of the DRAM cache. All networks were run on a single NUMA node and assigned all

24 physical cores on that node with no hyper-threading. These networks were run for two warm

up iterations to trigger on-demand paging by the OS and to prepare the state of the DRAM cache.

During the execution of these networks, we sampled hardware performance counters for band-

width and tag statistics. Furthermore, we modified the ngraph compiler in two ways. First, we

added an option to emit high resolution timestamps when beginning the execution of each compute

kernel, allowing us to correlate these events with performance counter data. Second, we exposed

information regarding the memory assignment of intermediate tensors. This allows us to examine

which regions of memory are being accessed throughout the network execution.

2.5.2. Results. For the deep dive, we present the results for DenseNet [46], a CNN with a

complicated dataflow pattern. In Figure 2.5 we break down the bottlenecks of a single iteration of

training for DenseNet 264 with batchsize 3072. The baseline memory footprint for this application

is around 688 GB. Figure 2.5a demonstrates the system’s retired instruction rate through time.

Figure 2.5b shows the number of tag hits, dirty tag misses, and clean tag misses throughout the

iteration.

Key observations to make are: (1) there very few clean tag misses, (2) there is a high percentage

of dirty tag misses, both in the forward pass and the backward pass, and (3) there noticeable regions

of high tag hits at the beginning of the forward and backward passes with a corresponding drop

in dirty tag misses. Finally, Figure 2.5c breaks down the read and write bandwidths to DRAM

and PM. Regions of high dirty miss rate correspond to low bandwidth and instruction throughput.

Reasonable system performance is only achieved when the hit rate is high.

21

0 50 100 150 200 250 300 350 400 450 500
0

2

4

·104

Time (s)
M

IP
s

RetiredInstructions

(a) System MIPS.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

Time (s)

B
ill

io
n

Ev
en

ts
/

S Tag Hit Tag Miss Clean Tag Miss Dirty

(b) DRAM cache statistics.

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

Time (s)

B
an

dw
id

th
(G

B
/s

)

DRAM Read DRAM Write
PM Read PM Write

(c) Memory bandwidth through time. PM read and write bandwidths
are similar, thus the PM read line is hidden behind the PM write line.

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

Forward Pass Backward Pass

Size of DRAM
Cache

Time (s)

M
em

or
y

Po
sit

io
n

(G
B

)

(d) Live memory in the ngraph heap. Memory that is highlighted gray
indicates memory that will be read before written (i.e., live memory).
Blue indicates a write is happening. Red indicates a read is happening.
White shows memory that will be written before read.

Figure 2.5. Memory behavior of a single iteration of training for DenseNet 264
with a batchsize of 3072.

22

So, a good question at this point is - Why are so many dirty tag misses generated, and why are

there regions of high cache hit rate? Two related phenomena can explain this.

Figure 2.5d shows the memory usage of DenseNet through time for a single iteration of training.

Before execution, the ngraph compiler allocates a single buffer for the entire network. The offset

from the base of this buffer is shown on the vertical axis of Figure 2.5d. The change in memory

state through time is shown using different colors. The color white indicates that the region of

memory is free (semantically speaking). That is, it will always be written to before it is read by

the program. A blue highlight indicates that a region of memory is being actively written to, red

indicates a read, and gray indicates that the memory will be read from in the future.

For an iteration of training, first the forward pass of the model is computed (up to time around

220, annotated in Figure 2.5d). Throughout the forward pass, some of the generated intermediate

tensors must be held in memory to facilitate computation of the backward pass. Thus, the amount

of live memory (gray) accumulates through the forward pass. Once a preserved tensor is used on

the backward pass, the region in memory where it was stored is free for further use (white). The

ngraph compiler takes advantage of this newly freed area to allocate intermediate tensors required

to compute the backward pass. This is the very subtle streak of blue on the right shoulder of

Figure 2.5d.

However, from the perspective of the 2LM cache, the fact that writes are occurring to a region

of memory on the backward pass makes memory is dirty with respect to the DRAM cache. Hence,

even when this region of memory is semantically free from the program’s perspective, the cache

must still generate a dirty write back upon eviction. Because the DRAM cache is unaware of the

meaningful lifetime of memory, it generates a large amount of unnecessary traffic.

Finally, the regions of high DRAM cache hit rate occur at the beginning of the forward and

backward pass because the area of active memory folds back on itself. Recent data is in the cache,

so all accesses are cache hits. This continues until the entire cache has been read, at which point

further accesses are cache misses.

2.5.3. Problematic Kernels. To wrap up this section, we will explain the relatively high

frequency periodic behavior that is noticeable in the Tag Hit line of Figure 2.5b. DenseNet is

composed of a linear chain of “dense blocks” where each dense block consists of a sequence of

23

152 154 156 158 160
0

20

40

60
ConvolutionBias

Concat
Batch

NormTrainingRelu

ConvolutionBias

Batch
NormTrainingRelu

ConvolutionBias

Concat
Batch

NormTrainingRelu

ConvolutionBias

Batch
NormTrainingRelu

ConvolutionBias

Concat

Time (s)

B
an

dw
id

th
(G

B
/s

)

DRAM Read
DRAM Write

PM Read
PM Write

Figure 2.6. Snapshot of periodic bandwidth behavior during the forward pass of
training DenseNet 264 in 2LM. Vertical bars mark the start of kernel execution.
Very short running kernels have been excluded for clarity.

Concat, BatchNorm, Conv, BatchNorm, and Conv operators. Figure 2.6 shows a high resolution

snapshot of the bandwidth for two such dense blocks during the forward pass of DenseNet. The

point where kernels begin execution is annotated on the graph. The main performance bottlenecks

apparent in Figure 2.6 are Concat and BatchNorm. These are both memory-bound kernels with

little data reuse and are more affected by the low bandwidth associated with a high dirty tag

miss rate. The second BatchNorm within each dense block operates on much smaller intermediate

tensors, and is thus less impactful on overall performance. Similar problematic kernels exist on the

backwards pass as well, including BatchNormBackprop and the back-propagation kernels for the

filter/bias inputs of 3x3 convolutions.

2.5.4. Discussion. In summary, the overall performance of CNN training in 2LM mode in

PM-based systems is affected by two factors: (1) low effective bandwidth with a high miss rate and

(2) a significant amount of unnecessary dirty writebacks. From the microbenchmarks, the first of

these is not too surprising. However, the second exposes a performance pathology not demonstrated

by the microbenchmarks, made worse by the relatively low write bandwidth of PM. Next, we will

look at a different class of algorithms that suffer similarly.

24

2.6. Case Study 2: Graph Processing

In this section, we perform a preliminary study on applications known for having diverse per-

formance characteristics and irregular memory access patterns. To accomplish this, we evaluate a

variety of graph processing algorithms on large real world graph inputs using Galois [68], a high

performance shared memory graph analytics framework.

2.6.1. Background. Large graph processing has garnered substantial research interest across

a variety of use cases, including the identification of social media influencers and decision makers,

or finding fraudulent actors within a business network. These real world large systems require

frameworks process representative graphs with tens of billions of nodes and trillions of edges,

incurring a high memory footprint that is expensive to accommodate in DRAM. Depending on the

topology of the input graph and the processing algorithm being used, the memory access pattern

can vary wildly. This presents a challenge when optimizing such workloads for systems with limited

main memory.

To address this issues, several efforts [26,33] have explored leveraging PM for graph analytics

on a single machine. However, such works focused on performing an analysis and comparison of

different graph processing frameworks and system settings to optimize the use of Optane for graph

workloads. Here, we evaluate the bandwidth characteristics of such irregular workloads in 2LM.

2.6.2. Methodology. Graph kernel experiments were run on the shared memory graph ana-

lytics framework Galois. Specifically, our evaluations consisted of 4 benchmarks from the lonestar

suite: breadth-first search (bfs) [20], connected components (cc) [93, 96], k-core decomposition

(kcore) [25], and pagerank-push (pr) [73]. These kernels were chosen based on their diverse execu-

tion characteristics [6]. Our workloads were run with the settings by Gill et al. [33]. For bfs, the

source node was the maximum out-degree node. The tolerance of pr was set to 10−6 and we used

the k = 100 for kcore. Each kernel ran until convergence, except for pr which ran for 100 rounds.

We used two realistic unweighted massive input graphs: wdc12 [72], the largest publicly avail-

able graph, and kron30 [60], a randomized scale free graph generated using a graph500 based

kronecker generator [34]. Each were chosen to highlight the differences between when a graph fit

and did not fit in the DRAM cache. While these graphs have different structures, we can still draw

25

conclusions from kernels’ relative performance on these graphs. Both were processed using the

provided graph-converter in Galois and resulted in binaries of size 507 GB and 73 GB respectively.

In 2LM, all benchmarks were run on two NUMA nodes and assigned all 96 threads. Since two

sockets are used, the size of the DRAM cache is effectively doubled to 384 GB with 6 TB of PM.

The total NUMA interleaving and 2 MiB hugepages were used with no page migration to maximize

performance [33].

To find the baseline data movement required by the algorithms, we configured the PM regions

on each socket as extra NUMA nodes. This is facilitated through the daxctl3 tool with the machine

in 1LM. Since Galois uses a NUMA preferred policy, the threads on each socket will initially allocate

memory on that socket’s DRAM. When DRAM is exhausted, further allocations are serviced by

PM. By summing the traffic to DRAM and PM, we can establish the baseline memory traffic

required by each application.

As with our previous experiments, measurements on bandwidth and tag statistics were gathered

using hardware performance counters.

2.6.3. Results. Figure 2.7 compares the observed bandwidth when running the graph kernels

on kron30 and wdc12. When processing kron30, the kernels have a working set that largely fits

within the DRAM cache while the working set when processing wdc12 greatly exceeds the DRAM

cache. When the working set does not fit in the DRAM cache, there is a significant decrease in

DRAM bandwidth during an algorithm’s execution.

Figure 2.8 shows the total amount of data moved in the NUMA and 2LM configurations for PM.

Since page migration was disabled, Figure 2.8a shows the true demand accesses of the workload.

Comparing this with Figure 2.8b we see significant access amplification.

Figure 2.9 shows the workload characteristics of the pagerank-push algorithm for both kron30

and wdc12. Figure 2.9a shows the algorithm’s bandwidth when its working set largely fits in the

cache. Bandwidth is stable at 70 GB/s with roughly equal DRAM reads and writes.

On the other hand, Figure 2.9b demonstrates the bandwidth of pagerank-push when its working

set does not fit in the DRAM cache. Not only is the average bandwidth significantly lower, but

there is also an excess of DRAM reads coupled with heavy PM traffic. The tag metrics shown in
3https://docs.pmem.io/ndctl-user-guide/daxctl-man-pages

26

https://docs.pmem.io/ndctl-user-guide/daxctl-man-pages

bfs cc kcore
0

20

40

60

M
ea

n
B

an
dw

id
th

(G
B

/s
)

DRAM Read DRAM Write PM Read PM Write

pagerank
0

20

40

60

(a) Performance of graph kernels on kron30 which fits in DRAM

bfs cc kcore
0

20

40

60

M
ea

n
B

an
dw

id
th

(G
B

/s
)

pagerank
0

20

40

60

(b) Performance of graph kernels on wdc12 which exceeds DRAM capacity

Figure 2.7. Graph kernel performance in 2LM run on 96 threads. When the input
graph does not fit in the DRAM cache, bandwidth significantly drops.

bfs cc kcore
0

500

1,000

1,500

To
ta

lD
at

a
M

ov
ed

(G
B

)

DRAM Read DRAM Write PM Read PM Write

pagerank
0

2

4

6

·104

(a) PM as extra NUMA nodes.

bfs cc kcore
0

500

1,000

1,500

To
ta

lD
at

a
M

ov
ed

(G
B

)

pagerank
0

2

4

6

·104

(b) PM as system memory with a DRAM cache.

Figure 2.8. Total amount of data moved during the execution of a graph kernel
when the input graph does not fit in the DRAM cache.

27

0 20 40 60 80 100 120 140

0

50

100

Time (s)

B
an

dw
id

th
(G

B
/s

)

DRAM Read DRAM Write PM Read PM Write

(a) Bandwidth trace for kron30, which largely fits within the DRAM cache.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

0

20

40

60

Time (s)

B
an

dw
id

th
(G

B
/s

)

DRAM Read DRAM Write PM Read PM Write

(b) Bandwidth trace for wdc12, which greatly exceeds the capcity of the the DRAM
cache.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

0

0.5

1

Time (s)

B
ill

io
n

Ev
en

ts
/

S

Tag Hit Tag Miss Clean Tag Miss Dirty

(c) Tag trace for wdc12.

Figure 2.9. Traces for the pagerank-push algorithm. Figure 2.9a demonstrates be-
havior when the graph largely fits within the DRAM cache. Conversely, Figures 2.9b
and 2.9c shows behavior when the working set greatly exceeds the DRAM cache.

Figure 2.9c show the presence of both clean and dirty tag misses as well as the correlation between

hit rate and DRAM bandwidth.

28

2.6.4. Discussion. As with CNN training, large scale graph processing is a workload with a

high DRAM cache miss rate. This is made worse since traditional graph algorithm implementations

involve mutating the in-memory representation of the graph [33]. In 2LM, this mutation will mark

the corresponding memory as dirty. Thus, not only is the miss rate high, but many of these

misses require PM write backs, which we have demonstrated to be inefficient. As a result, it is not

surprising that 2LM behaves poorly for these particular implementations.

2.7. Discussion and Mitigation Strategies

In this chapter, we demonstrated that the DRAM cache as currently implemented in Intel’s

Cascade Lake systems performs poorly for applications with a high miss rate. We showed that

a DRAM cache miss can cause 3–5× more memory accesses than the original demand requests.

Further, we showed that this causes performance degradation in two bandwidth-limited workloads:

CNN training and graph analytics which are important use cases for PM since they have extremely

large memory footprints. Furthermore, we show that certain data reuse semantics at the program

level can cause severe degradation.

For instance, in the deep neural network training workload, a significant amount of the data

movement from the DRAM cache to PM is useless as this data was only meant to be used tem-

porarily by the program and will be overwritten before it is read again. This dirty temporary data

dominates the DRAM cache leading to more misses than necessary and limiting performance to

the smaller PM write bandwidth.

2.7.1. Software-managed multi-level memory. So what can be done about this? In this

section, we look briefly at an example of software-managed memory for graph analytics. We

propose that through software-managed memory, better performance can be obtained than using

the hardware-managed cache in 2LM mode for these miss heavy bandwidth-bound workloads. In

the next chapter, we will look at software management techniques for tackling memory management

for CNN training.

Software management relies on decoupling the DRAM and PM memory pools. So far, this

chapter focused on the 2LM (or “memory mode”) of the PM systems, these systems can also be

29

configured in “app-direct mode” or 1LM where the programmer has full control over the data

location and movement. PM is simply mapped into a program’s address space.

2.7.1.1. Graph Analytics. As pointed out in Section 2.6, graph algorithm implementations in

Galois and other graph frameworks often mutate graph data structure. With PM, this is an issue

due its low write bandwidth (which is further exacerbated by 2LM’s write amplification). To tackle

this issue, the authors of Sage [33] designed that software specifically with PM in mind. Their key

approach is to (as much as possible) use PM for read only data.

When running algorithms that require tracking state (such a nodes visited for bfs), an auxiliary

DRAM-based data structure is used. This data structure is greatly compressed and supplements

the read-only PM-based adjacency list. Mutation is only performed on the auxiliary data structure,

and hence write traffic is only generated to DRAM. To optimize for multiple sockets, Sage takes

advantage of PM’s capacity to keep a full copy of the graph on both CPU sockets. With these

techniques, they were able to design algorithms 1.87× faster on average than GBBS and 1.94×

faster on average than Galois in 2LM [33].

This is an example demonstrating that clever software management can over come the band-

width limitations of PM. Conversely, these same limitations are exacerbated by access amplification

caused by the DRAM cache.

2.7.1.2. Techniques for CNNs. In the next chapter, we will present AutoTM, a heterogeneous

memory management technique for CNNs. Unlike Sage’s approach to graph analytics, CNN’s

cannot use PM as just read-only memory. Thus, AutoTM uses mathematical optimization to

determine where to place intermediate data and when to move this data between memory pools.

30

CHAPTER 3

Compiler-Based Heterogeneous Memory Management for

Statically Analyzable Workloads

3.1. Introduction

Deep Neural Networks (DNNs) have been dramatically successful over the past decade across

many domains including computer vision [57], machine translation and language modeling [99],

recommendation systems [67], speech [110] and image synthesis [111], and real-time strategy

game control [105]. This success has in turn led practitioners to pursue larger, more expressive

models. Today, state of the art models in language modeling and translation have 100s of billions

of parameters [94] which requires 100s of GB of active working memory for training. For instance,

large models such as BigGAN [9] found significant benefits from increasing both model size and

training batch size, and Facebook’s recent DLRM recommendation system [67] contains orders of

magnitude more parameters than conventional networks. Additionally, to reach beyond human-level

accuracy these models are expected to grow even larger with possibly 100× more parameters [42].

The large memory footprints of these models limits training to systems with large amounts of

DRAM which incur high costs.

As the memory capacity demands of DNN training are growing, new high density memory

devices are finally being produced. Specifically, Intel® Optane™ DC Persistent Memory Modules

(PM) [33, 48] can now be purchased and are up to 2.1× lower price per capacity than DRAM.

These devices are on the main memory bus, allowing applications direct access via load and store

instructions and can be used as working memory. Thus, in this chapter we ask the question “what

are the design tradeoffs of using PM in training large DNN models, and more specifically, can PM

be used as a DRAM replacement when training for large DNN models?”

Figure 3.1 shows the training performance for three different memory systems: an all PM

system (lowest cost), an all DRAM system (highest cost), and a heterogeneous system (moderate

31

0

40

80

All PM NUMA AutoTM All DRAM

System with
160 GB PM

(lowest cost)

System with 128 GB PM
and 32 GB DRAM

(mid cost)

System with
160 GB DRAM
(highest cost)

It
er
at
io
n
s
P
er

H
o
u
r

Figure 3.1. Performance of Inception v4. Batch size of 1472.

cost). The all PM bar shows that naively replacing DRAM with PM results in poor performance

(about 5× slowdown) for training large DNN models. The first-touch NUMA [56] bar shows that

current system support for heterogeneous memory is lacking, providing only a small benefit over

the all PM case. However, AutoTM provides 3.7× speedup over the PM case and is within 20% of

the all DRAM system. Thus, we find that a small fraction of DRAM reduces the performance gap

between PM and DRAM, but only if we use smart data movement.

Use of heterogeneous memory to reduce DRAM has been studied in the past. Facebook has used

SSDs to reduce the DRAM footprint of databases [30]. Bandana [31] uses SSD based persistent

memory to store deep learning embedding tables [19] with DRAM as a small software cache.

In the context of machine learning, vDNN [89], moDNN [15], and SuperNeurons [106] develope

system-specific heuristics to tackle heterogeneous memory management between the GPU and

CPU to overcome the low memory capacity of GPUs. Furthermore, future HPC systems will be

increasingly heterogeneous with DRAM, PM, and HBM [82], so we need a solution that is general

and automatic.

In this chapter we introduce AutoTM—a framework to automatically move DNN training data

(tensors) between heterogeneous memory devices. AutoTM enables training models with 100s of

billions of parameters and/or with large batch sizes efficiently on a single machine. We exploit

the static nature of DNN training computation graphs to develop an Integer Linear Programming

(ILP) [91] formulation which takes a profile driven approach to automatically optimize the location

and movement of intermediate tensors between DRAM and PM given a DRAM capacity constraint.

32

We evaluate the effectiveness of AutoTM on a real system with Optane PM by implementing

our approach in the nGraph compiler [24]. Our experiments show that naive use of PM is not

effective, but intelligent use of PM and DRAM is required. Furthermore, using initial public pricing

information, we evaluate the cost-performance benefits DRAM-PM based systems. We show that

ratios of 8 : 1 or 4 : 1 of PM to DRAM can be more cost effective than only DRAM or only PM.

We also compare our approach to the existing hardware DRAM cache implemented in current

Intel platforms [48] and find AutoTM offers up to 2× performance improvement over hardware-

managed caching.

Finally, we demonstrate that AutoTM can be further generalized beyond PM-DRAM hetero-

geneity by applying AutoTM to CPU-GPU systems. The approach taken by AutoTM uses minimal

problem specific heuristics and is thus a general approach toward memory management for many

different heterogeneous systems.

The chapter is organized as follows. In Section 2 we present a quick overview of training deep

neural networks and Intel’s Optane DC PM. In Section 3 we will present the details of AutoTM

and in Section 4 we will describe implementation details, followed by our evaluation methodology

in Section 5, and the main results in Section 6. We will present extensions to AutoTM in Section

7 and conclude with related work and directions for future work.

3.2. Background

3.2.1. Deep Learning Training. Deep neural networks (DNNs) are often trained using a

backward propagation algorithm [58] and an optimizer such as stochastic gradient descent. Popular

deep learning frameworks such as Tensorflow [1] and nGraph [24] implement DNNs as a compu-

tation graph where each vertex or node in the computation graph represent some computational

kernel. Common kernels include convolutions (CONV), pooling (POOL), matrix multiplication,

and recurrent cells such as LSTM or GRU. Each kernel has its own characteristics such as number

of inputs, number of outputs, computation time, and computational complexity. Directed edges

in the computation graph between kernels denote data or control dependencies between kernels.

An edge representing a data dependency is associated with a tensor, which we consider to be a

contiguous region of memory with a known size.

33

Figure 3.2. A simple example of a computation graph. The k nodes are the com-
pute kernels in the graph and t edges (tensors) show the data dependency between
kernels. Intermediate tensors have a finite live range that can be exploited to reduce
the memory footprint of the computation graph.

Figure 3.2 shows a simple example computation graph with 5 kernels and 3 tensors. Nodes in

the graph are compute kernels, each with zero or more inputs and outputs. The inputs and outputs

of a kernel are immutable tensors. Each tensor is annotated with its producing kernel, each user

of the tensor, and the last user of the tensor. After its last use, a tensor’s memory may be freed

for future tensors.

We focus on the case where the computation graph describing the training iteration is static.

That is, the computation graph contains no data-dependent control behavior and the sizes of all

intermediate data is known statically at compile time. While many DNN graphs can be expressed

statically, there are some networks that exhibit data-dependent behavior [94]. In Chapter 4, we

will develop techniques suitable for dynamic computation graphs.

3.2.2. Intel Optane DC PM. As discussed previously, there are two operating modes for

Optane DC PM. In 2 Level Mode (2LM or cached) PM act as system memory with DRAM as a

direct mapped cache. This operating mode allows for transparent use of the PM at the overhead of

maintaining a DRAM cache. App Direct Mode allows users manage the PM directly. The PM

are mounted on a system as direct access file systems. Files on the PM devices are then memory

mapped into an application. When using a direct access aware file system, loads and stores to

addresses in this memory mapped file go directly to the underlying PM. Note that in App Direct

34

0 5 10 15 20 25

0

20

40

60

80

100

120

Number of Threads

Ba
nd

w
id

th
G

B/
s DRAM Read

DRAM Write
PM Read
PM Write
PM → DRAM
DRAM → PM

Figure 3.3. Read and write bandwidths between DRAM and PM. All operations
were performed using AVX512 load and stores. Copies between DRAM and PM
were done using streaming load and store intrinsics.

DRAM
DRAM

DRAM
PM

PM
DRAM

PM
PM

0

1

2

3

P
er
fo
rm

an
ce

re
la
ti
ve

to
al
l
IO

in
D
R
A
M

Figure 3.4. Execution time of a CONV kernel with input (upper label) and out-
put (lower label) feature maps varied between DRAM and PM. The performance of
the kernel is largely unaffected by the location of the output feature map. The
CONV kernel had a filter size (3, 3, 128, 128) and a input feature map size of
(112, 112, 128, 16) and was executed using 24 threads.

mode, the total available memory is the sum of DRAM and PM while in 2LM only the PM capacity

is counted. In this work, we focus on using the PM in App Direct mode, and make comparisons

between our optimized data movement and 2LM.

Figure 3.3 shows the read, write, and copy bandwidth of DRAM and PM on our test system with

six interleaved 128 GB PM. The read, write, and copy operations were implemented by splitting a

region of memory into contiguous blocks and assigning a thread to each chunk. AVX-512 streaming

35

Figure 3.5. System Overview.

loads and stores were used to implement the copy operation as they provide significantly higher

throughput between DRAM and PM.

From Figure 3.3, we make the following observations about PM bandwidth is significantly

lower than DRAM, read bandwidth scales with the number of threads, write bandwidth peaks

at a low number of threads and diminishes with a higher number of threads, copy bandwidth

from DRAM to PM scales with the number of threads, copy bandwidth is chiefly limited by PM

write bandwidth, and there is significant read/write asymmetry. These findings agree with the

performance evaluation of Optane PM presented in Chapter 2.

The read/write asymmetry has implications on the performance of kernels with inputs and

outputs in PM or DRAM. Figure 3.4 demonstrates the performance impact on a single CONV

kernel. We observe that when the input to the CONV kernel is in PM and the output is in DRAM,

the performance of the kernel is comparable to when both input and output are in DRAM. However,

in the cases where the output is in PM, the kernel runs over two times slower. Any system seeking

an optimal runtime with a memory constraint must take these relative timings into consideration

when making decision on where to assign data. In the next section, we will describe the details of

AutoTM and how it manages these performance characteristics.

3.3. AutoTM

An overview of the proposed framework is shown in Figure 3.5. A DNN model is given to

nGraph, which optimizes the network DAG according to the selected backend (e.g. CPU, GPU

etc.). As part of the compilation process, our system inspects the nGraph DAG data structure to

extract (1) the order and types nodes in the graph, (2) the tensors produced and consumed by each

node, and (3) the specific kernels chosen by nGraph.

36

(a) Static assignment. Tensors are created into ei-
ther PM or DRAM and stay there.

(b) Synchronous Movement. Tensors are allowed to
move just before or just after the kernels that use
or produce them. This movement blocks program
execution.

Figure 3.6. Overlap of multiple tensor graphs and their interactions with kernels.
Following the color coordination in Figure 3.2, orange denotes the producer of a
tensor, lilac is the last user, gray marks the user of a tensor. We define the term
component to refer to the subgraphs within each shaded region.

We then perform profiling on every kernel in the computation graph by varying its inputs and

outputs between the different memory pools (i.e., DRAM or PM) and recording the execution

time of the kernel in each configuration. Since this step is potentially time consuming and DNNs

typically contain many identical kernels, we keep a software cache of profiled kernels. By keeping

a profile cache, profiling for a given DNN only needs to be performed once. Profiling and DAG

information is then fed into a Memory Optimizer (described in Section 3.3.1) along with a DRAM

capacity constraint, that mutates the nGraph data structure with the tensor assignments and data

movement nodes.

A user of this system only needs a nGraph function, which is a collection of “Node” and “Tensor”

data structures describing computations and data flow of the compute graph. These functions can

be created by using one of the nGraph front ends, or directly using C++. Profiling, optimization,

and code generation all happen as part of the nGraph compilation process and is transparent to

the user.

In the rest of this section, we first give a high level introduction to the memory optimizer. Then

we present the details of the optimizer’s underlying ILP formulation.

37

3.3.1. Memory Optimizer. The goal of the Memory Optimizer is to minimize execution

time by optimizing intermediate tensor movement and placement. The inputs to the optimizer are

(1) the types of kernels in the computation graph in topological order, (2) the set of all valid tensor

input/output locations for each kernel as well as profiled execution time for each configuration,

(3) the sizes of all intermediate tensors, as well as their producers, users, and final users, (4)

synchronous copy bandwidths between DRAM and PM, and (5) a DRAM limit. The output of the

optimizer describes the location and date movement schedules for all intermediate tensors that will

minimize the global execution time of the graph.

Since the Memory Optimizer is implemented as an ILP, we need to model tensor location and

movement using integer or binary variables and constraints [70]. For each tensor t, we create

a separate network flow graph Gt = (Vt, Et) that traces the tensor’s location during its lifetime.

Examples of such graphs are given in Figure 3.6a and 3.6b. The structure of these graphs allows

us to customize the semantics of possible tensor locations and movements.

Using this graph structure, we investigate two separate formulations, static and synchronous.

The static formulation (Figure 3.6a) allows no tensor movement between memory pools. A tensor

is assigned to either DRAM or PM and remains there through its lifetime. The synchronous

formulation (Figure 3.6b) allows tensors to be moved between memory pools but blocks program

execution to perform this movement. We further generalize the ILP formulation to an asynchronous

formulation that allows overlap between computation and data movement in Section 3.7.

Network flow constraints [35] are placed on each tensor flow graph Gt so that flow out of the

source vertex is 1, flow into the sink vertex is 1, and flow is conserved for each intermediate node.

The solution to this network flow describes the movement of the tensor. For example, the bold

path in Figure 3.6b implies the following schedule for tensor t1: (1) created by kernel k1 in DRAM,

(2) remains in DRAM until the execution of kernel k2, (3) after k2, synchronously moved t1 into

PM, (4) prefetch t1 into DRAM right before k4, (5) move t1 out of DRAM after k4, (6) tensor t1

is in PM for the execution of kernel k5, (7) after k5, tensor t1 is no longer needed and can be freed

from all memory pools.

3.3.2. Objective Function. We wish to minimize the execution time of the computation

graph under a DRAM constraint. In our framework, computation kernels are executed sequentially.

38

Therefore, in the static formulation where there is no tensor movement, the objective function

(expected execution time) is

(3.1) min
∑
k∈K

ρk

where K is the set of all kernels k in the computation graph and ρk is the expected execution

time for kernel k. Note that ρk depends on the locations input and output tensor for kernel k.

The selection of input and output tensor locations is not trivial because of dependencies between

kernels. For example, if tensor t3 in Figure 3.2 is assigned to PM, then kernel k2 must produce t3

into PM and kernels k3 and k4 must reference t3 in PM, which has a performance impact.

Given the lower performance of PM relative to DRAM, the cost of moving a tensor from DRAM

to PM may be amortized by a resulting faster kernel execution. In the synchronous formulation,

tensor movement that blocks computation graph execution and may only happen between kernel

executions. The objective function then becomes

(3.2) min
∑
k∈K

ρk +
∑
t∈T

M sync
t

where T is the set of all intermediate tensors t in the computation graph and M sync
t is the total

amount of time spent moving tensor t. Note that a tensor t may be moved multiple times during

its lifetime, so M sync
t represents the sum of movement times of all individual moves of t.

3.3.3. DRAM Variables. As noted above, the execution time of a kernel depends on the

locations of its input and output tensors. We must also keep track of all live tensors in DRAM to

establish a constraint on the amount of DRAM used. Thus, we need machinery to describe for each

kernel k whether the input and output tensors of k are in DRAM or PMEM and which tensors are

in DRAM during the execution of k.

For each kernel k ∈ K and for each tensor t ∈ T where t is an input or output of k, we introduce

a binary variable

(3.3) tDRAMt,k =


1 if t is in DRAM during k

0 if t is in PM during k

39

In practice, this variable is implemented as tDRAMt,k = 1 if and only if any of the incoming edges to

the DRAM node in the component in the network flow graph Gt for k are taken.

To determine tensor liveness, we introduce binary variables

(3.4) tDRAMt,k+ =


1 if t is in DRAM after kernel k

0 if t is in PM after kernel k

for each kernel k ∈ K and for each tensor t ∈ T where t is an output or output of k. These variables

describe whether a tensor is written into DRAM after the execution of a kernel, and if it remains

in DRAM until the next time it is used. In practice, this is implemented as tDRAMt,k = 1 if and only if

the outgoing DRAM to DRAM edge is taken from the DRAM node in the component in network

flow graph Gt for k.

We make these two distinct class of variables to handle the case in the synchronous formulation

where a tensor is prefetched from PM to DRAM as an input to some kernel k and then moved back

to PM immediately after k.

3.3.4. DRAM Constraints. Our main goal here is to establish a constraint on the amount

of DRAM used by the computation graph. We must ensure that the sum of sizes of all live tensors

in DRAM at any point is less than some limit LDRAM

We use the DRAM variables discussed in the previous section. First, define a helper function

ref(k, t) = k′ where k, k′ ∈ K and t ∈ T with k′ defined as latest executing kernel earlier or equal

to k in the topological order of the computation graph such that there exists DRAM node in Gt for

kernel k′. For example, in Figure 3.6a, ref(k3, t1) = k1 and in Figure 3.6b, ref(k3, t1) = k2.

We want to ensure that at the execution time for each kernel k ∈ K, the cumulative size of

all live tensors resident in DRAM is with some limit LDRAM. Using the ref function, we add the

following constraint for each k ∈ K:

∑
t∈IO(k)

|t|tDRAMt,k +
∑

t∈L(k)

|t|tDRAMt,ref(k)+ ≤ LDRAM,k(3.5)

where |t| is the allocation size of tensor t in bytes, IO(k) is the set of input and output tensors for

k, and L(k) is the set of all non-input and non-output tensors that are “live” during the execution

40

of k. We assign a separate limit LDRAM,k for each kernel k initialized to LDRAM to address the

memory fragmentation issue discussed in Section 3.4.2

3.3.5. Kernel Configurations and Kernel Timing. For each kernel k ∈ K, we use an

integer variable ρk for the expected execution time of k given the locations of its input and output

tensors. First, we define a configuration c as a valid assignment of each of a kernel’s input and

output tensors into DRAM or PM. For example, a kernel with one input and one output tensor

may have up to four configurations, consisting of all combinations of its input and output in DRAM

or PM.

The definition of ρk is then

(3.6) ρk =
∑

c∈C(k)

nk,cdk,c

where C(k) is the set of all valid configurations c for kernel k, nk,c is the profiled execution time of

kernel k in configuration c, and dk,c is a one-hot indicator with dk,c = 1 if and only if kernel k’s

input and output tensors are in configuration c.

3.3.6. Tensor Movement Timing. The movement cost of a tensor t is the size of the tensor

|t| divided by bandwidth between memory pools. Since bandwidth may be asymmetric, we measure

and apply each separately. For each tensor t ∈ T , the total synchronous movement time M sync
t is

the sum of the number of taken edges in Gt from DRAM to PM multiplied by the DRAM to PM

bandwidth and the number of taken synchronous edges from PM to DRAM multiplied by the PM

to DRAM bandwidth.

In our case where tensors are immutable, we may apply an optimization of only producing or

moving a tensor into PM once. Any future movements of this tensor into DRAM references the

data that is already stored in PM. Further movements from DRAM to PM become no-ops.

3.4. Implementation Details

In this section, we describe some of the implementation details which are not directly part of

the ILP formulation. The memory optimizer itself was implemented in the Julia [7] programming

language using the JuMP [29] package for ILP modeling. Gurobi [38] was used as the backend

41

ILP solver. We chose nGraph [24] over other popular machine learning frameworks based on

static computation graphs as our backend because it is optimized for the Intel hardware and is

relatively easy to modify. However, AutoTM is a general technique that can be integrated into

other frameworks with similar underlying semantics.1

3.4.1. nGraph Compiler Backend. The nGraph compiler is an optimizing graph compiler

and runtime developed by Nervana Systems/Intel for deep learning (DL) applications aiming to

provide an intermediate representation (IR) between DL frameworks and hardware backends. The

nGraph IR is a directed acyclic graph (DAG) of stateless operations nodes, each node with zero

or more inputs, outputs, and constant attributes. Inputs and outputs of each node are multidi-

mensional arrays called tensors with an arbitrary layout. Backend kernels used to implement a

node is chosen based on the attributes of the node as well as the sizes, data types, and layouts of

each of its inputs and outputs. nGraph will also apply generic and backend specific whole graph

optimizations such as kernel fusion and algebraic simplification.

Memory location for intermediate tensors is performed using ahead-of-time heap allocation by

traversing the function DAG and maintaining a list of live tensors. When tensors are last used, the

memory space occupied by those tensors is freed and used for future tensors.

3.4.2. Managing Memory Fragmentation. The ILP formulation presented thus far as-

sumes perfect memory management, which means that if the sum of sizes of live tensors is under

the memory limit, then all tensors will fit within memory. In practice, this is not always the case.

The process of allocating and freeing tensors may fragment memory resulting in a larger memory

requirement.

To manage this, we use an iterative process of reducing the DRAM limit for kernels where the

the following limit is exceed and rerunning the ILP.

(1) We initialize the kernel-wise DRAM limits LDRAM,k to the LDRAM.

(2) We solve the ILP using the current values of LDRAM,K. nGraph translates the resulting

schedule and then executes its memory allocator pass.
1All of the AutoTM code can be found on GitHub at https://github.com/darchr/AutoTM.

42

https://github.com/darchr/AutoTM

(3) We collect the set of kernels Kfrag where the total amount of memory allocated exceeds

LDRAM due to fragmentation. If this set is empty, we are done.

(4) Otherwise, we apply an update LDRAM,k = 0.98LDRAM,k for all k ∈ Kfrag and go back to

step (2).

Thus, the ILP solver may have to run multiple times before a valid solution is found. In practice,

this process is usually only done 1 to 2 times with a maximum of 5 as discussed in Section 3.6.6.

3.4.3. Data Movement Implementation. Synchronous movement operations are integrated

as new move nodes in the nGraph compiler, which are automatically inserted into the nGraph com-

putation graph following memory optimization. The implementation of these move nodes uses a

multithreaded memory copy with AVX-512 streaming load and store intrinsics followed by a fence.

Operation scheduling in nGraph consists of a simple topological sort of the nodes in the com-

putation graph, beginning with the input parameters. This creates unnecessary memory usage

with move nodes as they are scheduled ad hoc, resulting in tensor lifetimes that are longer than

necessary. Thus, we extended the nGraph scheduler so that if a tensor is moved from DRAM to

PM after some kernel k, we ensure that this movement occurs immediately after the execution of

k. Conversely, if a tensor is moved from PM to DRAM to be used for kernel k, we ensure this

occurs immediately before the execution of k.

3.5. Evaluation Methodology

3.5.1. System. Our experimental Optane DC system was a prototype dual socket Xeon

Cascade-Lake server. Each socket had 6× 32 GB of DRAM and 6× 128 GB Intel Optane DIMMs.

Each CPU had 24 hyperthreaded physical cores. In total, the system had 384 GB of DRAM and

1.5 TB NVDIMM storage.

NUMA policy was set to local by default. Unless specified otherwise, all experiments were

conducted on a single socket with one thread per physical core. Each workload was run until exe-

cution time per iteration (traversal of the computation graph) was constant. Since these workloads

contain no data dependent behavior, performance will be constant after the first couple of itera-

tions. Checks were used to ensure no IEEE NaN or subnormal numbers occurred, which can have

a significant impact on timing [3].

43

Our approach does not change the underlying computations performed during training; it is

a transparent backend implementation optimization. Thus, the performance of our benchmarks

across a few training iterations is sufficient to obtain performance metrics.

We chose to evaluate AutoTM with a multicore CPU platform because Optane PM are only

available for CPU platforms. However, the ILP formulation of AutoTM should apply to any

heterogeneous memory system. We explore one other example with CPU and GPU DRAM in

Section 3.7.

3.5.2. DNN Benchmarks. We choose a selection of state of the art Deep Neural Networks

for benchmarking our approach. A summary of the benchmarks and batch sizes used is given in

Table 3.1. Conventional CNNs for the Optane DC system were Inception v4 [100], Resnet 200 [41],

DenseNet 264 [46], and Vgg19 [97]. All but Vgg19 have complex dataflow patterns to stress test

AutoTM. The batch sizes were chosen to provide a memory footprint of over 100 GB for each

workload. These batch sizes, while larger than what is typically used, mimic future large networks

while still fitting within the DRAM of a single CPU socket of our test system.

We also compare our approach against the native 2LM mode, which is a hardware solution

to data management that uses PM transparently with CPU DRAM as a cache. Since we can not

change the physical amount of DRAM used by 2LM, we used very large neural networks that exceed

the CPU DRAM and require the use of PM to train. These very large networks include Vgg416 [89]

(constructed by adding 20 additional convolution layers to each convolution block in Vgg16) and

Inception v4 with a batch size of 6144.

3.5.3. Experiments. We want to determine whether PM is cost effective for training DNNs,

and how AutoTM compares against existing solutions to use PM.

For the conventional benchmarks, we consider the impact of performance with different ratios

between PM and DRAM. These ratios are given in the form a : b where a is the amount of PM

relative to b the amount of DRAM used to train the network. A ratio of 1 : 1 indicates that a

network was trained with half PM and half DRAM. For a network requiring 128GB total to train

would have a split of 64 GB PM and 64 GB DRAM. Setting a ratio such as this may lead to a larger

total memory footprint in total due to memory fragmentation in both PM and DRAM. However,

44

Benchmark Batchsize System Baseline Memory (GB)
Inception v4 1024 PM 111
Resnet 200 512 PM 132

Vgg 19 2048 PM 143
DenseNet 264 512 PM 115
Inception v4 6144 Large PM 659

Vgg 416 320 Large PM 658
Resnet 200 2560 Large PM 651

DenseNet 264 3072 Large PM 688
Inception v4 64, 128, 256 GPU 7.6, 14.7, 29.8
Resnet 200 32, 64, 128 GPU 8.7, 16.9, 32.2

DenseNet 264 32, 64, 128 GPU 8.5, 16.8, 32.4
Vgg 19 64, 128 GPU 7.1, 12.6

Table 3.1. Summary of the benchmarks used in this work.

in practice the total memory footprint expansion is minimal with an observed maximum observed

value of 3.83% occuring in the static formulation for Inception v4. A ratio of 0 : 1 denotes a system

where only DRAM is used while 1 : 0 is a system using only PM.

We use a baseline of a first-touch NUMA allocation policy with DRAM as a near node and PM

as a far node for the conventional benchmarks. The NUMA policy was encoded in our framework

by assigning intermediate tensors to DRAM as they are created until the modeled memory capacity

of DRAM is reached. Future tensors can only reside in DRAM if existing tensors are freed.

For the large benchmarks, we compare our approach to the 2LM hardware managed DRAM

cache to determine the effectiveness of AutoTM relative to an existing approach.

3.6. Results

3.6.1. Conventional Networks. Figure 3.7 shows the speedup provided by our scheduling

for over training solely with PM (ratio 0 : 1). The horizontal axis is the ratio of PM to DRAM

used to train the network. We observe that when PM is used as a direct substitute for DRAM,

performance is poor with a 3x to 8x increase in training time (red horizontal line). However, with

a minimal amount of DRAM such as an 8 : 1 PM to DRAM ratio, we are able to dramatically

improve performance without changing the overall memory footprint of the application. Further,

adding more DRAM only marginally increases performance.

45

8:1 4:1 1:1

1

2

3

4

5

S
p
ee
d
u
p
ov
er

al
l
P
M

Inception v4

8:1 4:1 1:1

1
2
3
4
5
6

Resnet 200

8:1 4:1 1:1

1

2

3

PM to DRAM Ratio

S
p
ee
d
u
p
ov
er

al
l
P
M

Vgg19

8:1 4:1 1:1

1
2
3
4
5
6
7
8

PM to DRAM Ratio

DenseNet 264

numa static-AutoTM sync-AutoTM All DRAM

Figure 3.7. Results for conventional networks. Note different y-axes. The baseline
(1.0 in the graphs) is a system with only PM (ratio of 0 : 1).

This above performance gain does not occur using conventional first-touch NUMA. This is

because first-touch NUMA [56] works by allocating tensors into DRAM as they are used by the

computation graph until the DRAM capacity is reached. In the training of DNNs, tensors produced

early on in the forwards pass are used during the backwards pass and thus must be live for the

majority of the graph’s computation [89]. With first-touch NUMA, these long lived tensors are

assigned to DRAM forcing future short-lived tensors into PM.

AutoTM, on the other hand, is aware of the performance implication of these long lived ten-

sors. The general strategy AutoTM takes is to prioritize short-lived tensors for DRAM placement

(Section 3.6.4). These short-lived tensors mainly include intermediate tensors generated during the

backwards pass. By prioritizing short-lived tensors, AutoTM ensures that more tensors overall may

reside in DRAM.

46

Vgg416
(320)

Incepti
on v4 (6144)

Resnet
200 (2560)

DenseNe
t 264 (3072)

0

1

2

3

S
p
ee
d
u
p
ov
er

2
L
M

static-AutoTM sync-AutoTM

Figure 3.8. Performance of the static and synchronous formulations relative to
2LM cached mode.

Vgg is an outlier due to its extremely large second convolution layer. With small DRAM sizes,

some or all of the input and output tensors of this large layer must be placed in PM, incurring a

performance penalty. Once these tensors can be placed in DRAM, we see a significant performance

improvement as can be seen in the performance jump from the 4 : 1 ratio to the 1 : 1 ratio. Another

interesting feature of this network is that the synchronous formulation performs slightly worse than

the static formulation for an 8 : 1 ratio. This is caused by the interaction between the insertion of

move nodes and the defragmentation procedure.

3.6.2. Comparison to a hardware DRAM cache. We use very large networks to compare

AutoTM to a hardware-controlled DRAM cache (2LM mode). The results from the large bench-

marks Vgg416 and the large batchsize Inception v4 are shown in Figure 3.8. The static formulation

has performance comparable to 2LM with the synchronous formulation running 23% faster. We

see further improvement for the other networks, with Resnet 200 running over 2x faster than 2LM.

Inception v4, on the other hand, runs almost 2x faster under the synchronous formulation than

under 2LM.

As predicted in Chapter 2, there are several reasons why AutoTM outperforms the DRAM

cache. First, AutoTM is aware of the difference between semantically live data versus dead data

and thus elide the unnecessary dirty write-backs on the backward. This can be seen in Figure 3.9,

which shows the trace of bandwidth through out a single iteration of training for the large DenseNet

model under AutoTM. Contrast this with Figure 2.5c, showing the 2LM bandwidth for the same

model. AutoTM only generates PM writes during the forward pass (where it is storing intermediate

47

Table 3.2. Comparison of data moved and execution time for three common CNNs
running in 2LM and under AutoTM. All DRAM and PM values are in GB.

2LM AutoTM
DRAM Read DRAM Write PM Read PM Write Runtime (s) DRAM Read DRAM Write PM Read PM Write Runtime (s)

Inception v4 8338 4254 1019 919 572 8103 3459 543 473 304
Resnet 200 8565 3914 950 903 514 8565 3316 652 467 229
DenseNet 264 7418 3559 1027 969 524 7419 2947 639 510 169

0 20 40 60 80 100 120 140 160 180
0

20

40

60

Time (s)

B
an

dw
id

th
(G

B
/s

) DRAM Read DRAM Write PM Read PM Write

Figure 3.9. Memory bandwidth under AutoTM. Samples are averaged over a 2.5
second sliding window to filter high frequency components.

activations for use on the backward pass). Similarly, AutoTM only generates PM reads during the

backward pass. Table 3.2 compares the total amount of data moved for these workloads in 2LM

and under AutoTM. AutoTM generates similar amounts of DRAM traffic, but only 50% to 60% of

the PM traffic.

The average read and write bandwidth that AutoTM achieves is to PM is also significantly

higher than that achieved during 2LM. This is because AutoTM is designed to read and write to

PM in the patterns discussed in Section 2.3 for achieving high bandwidth. However, the aver-

age bandwidth in Figure 3.9 does not tell the whole story. Under AutoTM, tensors are usually

moved between DRAM and PM (and vice versa) synchronously between compute kernel execution.

Therefore, during kernel execution, there is no data movement. Thus, we are seeing the band-

width averaged over times of data movement and times of no data movement, implying the active

bandwidth is much higher.

3.6.3. Cost-Performance Analysis. Does PM deliver a cost performance advantage over

DRAM for training large DNNs? Table 3.3 provides a summary of module cost and cost per GB

48

1:0 8:1 4:1 1:1
0

0.2

0.4

0.6

0.8

1

PM to DRAM Ratio

P
er
fo
rm

an
ce

R
el
a
ti
ve

to
a
ll
D
R
A
M

Vgg19 DenseNet 264
Resnet 200 Inception v4

0

0.2

0.4

0.6

0.8

1

$ $ $
$

M
em

or
y
co
st
re
la
ti
v
e
to

al
l
D
R
A
M

Figure 3.10. Price–performance analysis. The bars (left axis) show the network
performance relative to all DRAM while the dollar signs (right axis) show the mem-
ory system price relative to all DRAM. The regions where the bars are higher than
the dollar signs are regions where price–performance is lower.

for a selection of server class DRAM and Optane DIMMs, as quoted by Lenovo2. The price per GB

of DRAM stays roughly constant across module sizes. PM, on the other hand, increases in price

per GB as capacity increases. Prices are driven by business decisions. Because a 512 GB DRAM

DIMM is not available, a premium can be charged for this capacity module.

For our analysis, we use the price of the cheapest PM at $7.85 per GB and the cheapest DRAM

at $16.61 per GB. This means the cost-per-GB advantage of PM over DRAM is about 2.1x. In

Figure 3.10 we only include the cost of the memory actually used. Since Optane DC is a new

technology, prices are still adjusting, and as the technology matures, price will likely decrease,

improving its cost-effectiveness.

Figure 3.10 shows the relative performance of AutoTM for our workloads (bars, left axis) as

well as the cost of memory used by the application relative to the case where all DRAM is used

(dollars, right axis). The use of PM can be cost effective if the performace lost by replacing some

DRAM with PM is less than the cost reduction. We observe that only using PM directly is not
2accessed August 14, 2019

49

Capacity (GB) Price per DIMM Price per GB
DRAM 8 $190.45 $23.81
DRAM 16 $265.82 $16.61
DRAM 32 $602.50 $18.83
DRAM 64 $1,255.75 $19.62
DRAM 128 $2,512.00 $19.63
Optane 128 $1,004.50 $7.85
Optane 256 $3,466.75 $13.54
Optane 512 $10,552.00 $20.61

Table 3.3. Lenovo price summary of Optane and server class DRAM. (see footnote 2)

cost effective, the performance loss caused by the slower devices is not offset by the lower price.

However, for PM to DRAM ratios of 4 : 1 and 1 : 1, AutoTM can provide a cost-performance

benefit. This cost-performance benefit may be reduced when taking the whole system into account,

but the cost of memory is usually the dominant cost in large systems.

3.6.4. Understanding the ILP Solution. In this section, we present some insight to how

and why AutoTM works using Figure 3.11. Figure 3.11a shows the slowdown of the static and

synchronous relative to all DRAM. With a small amount of DRAM, performance improves rapidly.

This trend continues until a critical threshold where adding DRAM yields diminishing returns.

To understand this behavior, we look at the input and output memory locations for each kernel

as well as the amount of data moved. Figure 3.11b shows the percent by memory footprint of

kernel input and output tensors in DRAM. We see a trend to assign as many kernel inputs and

outputs into DRAM, with a slight priority on output tensors. This is consistent with the lower

write bandwidth of PM. Furthermore, the point where almost 100% of output/input tensors are in

DRAM corresponds to the critical point in the performance graphs. This implies a general strategy

to maximize kernel read and write memory accesses in DRAM, followed by data movement to PM

when DRAM capacity constrained.

This idea is reinforced by Figure 3.11c, which shows the total amount of memory moved between

DRAM and PM in the synchronous formulation. With a DRAM limit near zero, no data movement

occurs since no data may be moved into DRAM. A small DRAM allowance, however, is followed

by a dramatic increase in data movement, again with an emphasis on moving data from DRAM

to PM. Once the DRAM limit allows almost all tensor inputs/outputs to reside in DRAM, the

50

0 20 40 60 80 100 120

1

2

3

4

DRAM Limit (GB)

S
lo
w

D
ow

n
R
el
at
iv
et
o
a
ll
D
R
A
M

static
synchronous

(a) Slowdown relative to all DRAM.

0 20 40 60 80 100 120

0

0.5

1

DRAM Limit (GB)

P
er
ce
n
t
o
f
K
er
n
el

IO
in

D
R
A
M

static: input tensors
static: output tensors

synchronous: input tensors
synchronous: output tensors

(b) Percent by memory size of all kernel inputs and
outputs in DRAM.

0 20 40 60 80 100 120

0

50

100

150

DRAM Limit (GB)

M
em

or
y
M
ov
ed

(G
B
)

sync DRAM to PMEM
sync PMEM to DRAM

(c) Amount of data moved between DRAM and
PM.

Figure 3.11. AutoTM’s solution strategy for Inception v4.

amount of data movement decreases. The region of gradual slowdown seen in the performance plot

is caused primarily by data movement rather than kernel slowdown from more memory accesses to

PM.

3.6.5. Kernel Profiling Accuracy. To evaluate the accuracy of our profile based approach,

we show the error between the expected runtime and the measured runtime in Figure 3.12. The

worst case error occurs for in the static formulations for DenseNet 264 (19%). This error is likely

due to CPU caching. During profiling, move nodes are placed at the inputs of kernels under test to

allow the inputs and outputs of the kernel to be varied between DRAM and PM. Kernels cannot be

directly profiled due to levels of indirection used in nGraph. Because move nodes are implemented

51

1:0 8:1 4:1 1:1 0:1

0

10

20

DRAM Limit (GB)

R
el
at
iv
e
P
re
d
ic
te
d

R
u
n
ti
m
e
E
rr
or

%

Inception v4 - static Resnet 200 - static
Vgg19 - static DenseNet 264 - static
Inception v4 - synchronous Resnet 200 - synchronous
Vgg19 - synchronous DenseNet 264 - synchronous

Figure 3.12. Comparison of actual execution time and execution time predicted
by kernel-wise profiling for the conventional networks.

using streaming instructions, no data is resident in CPU caches following these instructions. Hence,

our profiling step is essentially measuring the cold-performance of these kernels. This results in an

overestimation in run time for the static formulation since no move nodes are used. Vgg19 is less

affected due to its very large intermediate layers.

The expected runtime for the synchronous formulation closely follow the predicted runtime

because of the use of move nodes placed in the computation graph. The error in the 1 : 0 all PM

case exists for similar reasons.

3.6.6. ILP Solution Times. It is important that the memory optimizer is able to run in a

reasonable amount of time. Although ILP is inherently NP -hard, recent solvers can find solutions

to many problems quickly. Table 3.4 shows the total amount of time optimizing the ILP. The

number of retries due to memory fragmentation is shown in parentheses. Solution time increases

with model complexity. Since the optimized computation graph will run for days or weeks to

fully train the DNN, this optimization overhead will be amortized. The worst case is the static

formulation for DenseNet which takes a little less than an hour to fully solve.

52

Static Synchronous
Network 8 : 1 4 : 1 1 : 1 8 : 1 4 : 1 1 : 1

Vgg19 0.40 (1) 0.70 (2) 0.82 (2) 2.5 (5) 1.7 (3) 0.94 (2)
Inception v4 37.9 (5) 16.4 (2) 13.7 (2) 50.3 (6) 15.3 (2) 16.4 (2)
Resnet 200 2846 (2) 3105 (3) 91.9 (1) 710 (2) 571 (2) 79.9 (2)
DenseNet 3307 (1) 2727 (1) 2582 (1) 1448 (3) 2021 (3) 1404 (2)

Table 3.4. Gurobi ILP solver time to a relative MIP gap of 0.01 for the static and
synchronous formulations for the conventional networks. Entries of the form a (b)
indicate the total time a in seconds it took to solve the ILP b times. Multiple
solutions are needed in the case of memory fragmentation management.

3.7. Extending AutoTM

In this section, we discuss two extensions to AutoTM: allowing asynchronous data movement

and performing kernel implementation selection. We explain why these extensions were not in-

cluded in the original formulation and demonstrate their viability on a CPU-GPU platform. These

extensions and the GPU implementation of AutoTM show that it is a general and flexible framework

for managing heterogeneous memory.

The first extension we investigate is asynchronous offloading and prefetching of intermediate

tensors between memory pools. This allows data movement to be overlapped with computation,

improving the throughput of the application as a whole. We implemented asynchronous data

movement on the PM system, but found it performed poorly on existing CPU only systems for a

number of reasons. Neither a dedicated copy thread nor DMA provided sufficient performance to

mitigate the overhead of these approaches. However, a PCIe connected GPU offers a high speed

asynchronous data copy API, which is ideal for implementing this extension.

The second extension to the formulation is performing kernel implementation selection. The

underlying library used by nGraph to perform forward and backward convolutions for the GPU

backend is cuDNN [16], a deep learning library from Nvidia. This library exposes several different

implementations for each convolution, each with performance and memory footprint tradeoffs.

Generally, faster implementations require more memory. In a memory starved case, this larger

memory footprint may require more offloading of previous tensors, resulting in a global slowdown.

53

Since nGraph does not expose any kernel selection options for the CPU backend, we implement

this on the GPU instead.

3.7.1. ILP Formulation Modifications. Since AutoTM is implemented using an ILP for-

mulation, we can extend it to be aware of the performance and memory footprint of these different

kernels and globally optimize tensor movement and implementation selection. Here, we provide a

high level overview of the additions to the ILP formulation to express asynchronous data movement

and kernel implementation selection.

3.7.1.1. Objective Function: In our formulation, we allow an arbitrary number of tensors to be

moved between GPU and CPU DRAM concurrently with a single kernel. This results in a new

objectives function

(3.7) min
∑
k∈K

max

ρk,
∑

t∈ASYNC(k)

Masync
t,k

+
∑
t∈T

M sync
t

where ASYNC(k) = {t ∈ T : t can be move concurrently with k} and Masync
t,k is the amount of

time (if any) spent moving tensor t during the execution of k. The max operation is implemented

using standard ILP techniques.

3.7.1.2. Tensor Graphs: We must extend the tensor flow graphs Gt to encode points of asyn-

chronous tensor movement. We identify kernels that can be overlapped with data movement and

add a component in each tensor’s graph (like those shown in Figure 3.6b) for each kernel with

which the tensor can be moved concurrently.

3.7.1.3. Asynchronous Data Movement: Asynchronous move times for tensor t must be gener-

ated for each kernel k across which t may be moved. This comes directly from the extended tensor

graph

(3.8) Masync
t,k =

(
|t|

BWASYNC
P→D

)
eP→D +

(
|t|

BWASYNC
D→P

)
eD→P

where eP→D (eD→P) is the binary edge variable in Et corresponding to the asynchronous movement

of t from PM to DRAM (DRAM to PM) across kernel k.

54

3.7.1.4. Selecting Kernel Implementations: Let I(k) = {1, 2, . . . , nk} be an enumeration of the

implementations for kernel k. We generate one-hot binary variables vi,k for all i ∈ I(k) where

vi,k = 1 implies implementation i is to be used for kernel k.

3.7.1.5. DRAM Constraints: Constraining DRAM is similar to the static and synchronous

formulations, but now includes kernel memory footprints with

∑
i∈I(k)

sk,ivk,i +
∑

t∈IO(k)

tDRAMt,k +
∑

t∈L(k)

tDRAMt,ref(k)+ ≤ LDRAM(3.9)

where sk,i is the memory footprint of implementation i of k.

3.7.1.6. Kernel Timing: The expected runtime of a kernel is now dependent on which imple-

mentation of the kernel is chosen. Building on the example given in Section 3.3.5, assume that

k has two implementations (i.e. I(k) = {1, 2}). The expected execution time for ρk kernel k is

modeled as

(3.10) ρk =
∑

c∈C(k)

∑
i∈I(k)

nk,c,i(dk,c ∧ vi,k)

with nk,c,i is the profiled runtime of implementation i of kernel k in IO configuration c. This

approach does not account for the performance impact of memory conflict between data movement

and the computation kernel. However, the maximum memory bandwidth of our GPU is 616 GB/s

while the maximum bandwidth of PCIe is 16 GB/s. Thus, the impact of asynchronous data

movement is likely low.

3.7.2. Implementation. We modified the GPU backend of nGraph to support synchronous

and asynchronous tensor movement as well as to allow for kernel selection of forward and backward

convolution kernels. All GPU kernels are profiled with inputs and outputs in GPU memory. When

implementation selection is available, all possible implementations of a kernel are profiled as well.

Asynchronous movement was implemented using two CUDA [69] streams: one for computation

and the other for data movement via cudaMemcpyAsync. These streams are synchronized before

and after an asynchronous movement/computation overlap to ensure data integrity.

55

3.7.3. Methodology. Our system used a Nvidia RTX 2080 Ti with 11 GB of GDDR6 using

CUDA 10.1 and cuDNN 7.6. The host system was an Intel Core i9-9900X with 64 GB of DDR4

DRAM.

We use the same convolutional neural networks used earlier. The networks and batch sizes used

are given in Table 3.1. We compare the results of AutoTM with the performance of cudaMalloc-

Managed, which is a memory virtualization layer offered by Nvidia for automatically moving data

from the CPU to the GPU in the event of a GPU page fault and moving unused pages from GPU

DRAM to CPU DRAM.

3.7.4. GPU Results. The results for the GPU experiments are given in Figure 3.13. For

networks that fit on the GPU, our approach has no overhead as the ILP optimizer realizes no data

movement is needed. As the intermediate working set increases, we observe a several fold improve-

ment with AutoTM over cudaMallocManaged due to the lack of runtime overhead of our approach

and its algorithm awareness. AutoTM provides considerable speedup when data movement be-

tween the CPU and GPU is required. The asynchronous extension outperforms the synchronous

formulation with its ability to overlap data movement and computation. However, the asynchro-

nous extension is limited to overlapping tensor movement with a single kernel at a time. Since the

RTX 2080 Ti executes kernels faster than data movement, time must be spent to synchronize the

two CUDA streams.

The synchronization overhead of overlapping tensor movement with a single kernel can be

seen by comparing the achieved performance with the theoretical best performance, calculated

by assuming infinite GPU DRAM capacity and using the fastest possible implementations for all

kernels. As the memory requirement for training increases, AutoTM achieves a lower fraction of

this best performance due to synchronization.

We did not compare our results directly against vDNN [89] for two reasons. First, the RTX

2080 Ti GPU is much faster than the Titan X used in that work and thus we cannot compare results

directly. Second, the code for vDNN is not available, making direct testing on our GPU difficult.

However, while vDNN leverages the same characteristics as AutoTM (communication overlap-

ping, kernel selection, and liveness analysis), AutoTM uses mathematical optimization rather than

heuristics providing a more general solution.

56

1
2
3
4
5
6
7
8

64 128 256 32 64 128 32 64 128 64 128
Inception v4 Resnet 200 DenseNet 264 Vgg19

S
p
ee
d
u
p
ov
er

C
u
d
a
M
a
ll
o
cM

a
n
a
ge
d

synchronous asynchronous oracle

Figure 3.13. GPU performance of AutoTM relative to cudaMallocManaged.

3.8. Related Work

As an emerging technology Intel Optane DC has been explored in several recent works. These

include in depth performance analysis [48], large graph analytics [33], and database I/O primi-

tives [103]. Research into using Optane PM for virtual machines demonstrates that only a small

amount of DRAM is needed [45]. Flash based SSDs have also been used to reduce the DRAM

footprint in database [30] and ML [31] workloads. These approaches use a software managed

DRAM cache to mitigate the slow performance and block level read/write granularity of NVM

SSDs. Operating system support for managing heterogeneous memory [2, 108] and support for

transparent unified memory between GPU and CPU [49,74] have been studied extensively in the

past. However, to the best of our knowledge, the proposed work is the first to explore the design

space and cost–performance tradeoffs of large scale DNN training on systems with DRAM and PM.

Previous works such as vDNN [89] exploit heterogeneous memory between GPUs and CPUs by

recognizing that the structure of DNN training computation graphs has a pattern where interme-

diate tensors produced by early layers are not consumed until much later in the graph execution.

The authors of vDNN exploit this to develop heuristics for moving these tensors between GPU and

CPU DRAM during training to free GPU memory. SuperNeurons [106] and moDNN [15] build on

vDNN. SuperNeurons introduces a runtime manager for offloading and prefetching tensors between

57

GPU and CPU memory as well as a cost-aware method of applying recomputation of forward pass

layers during the backward pass to reduce memory. Similar to our approach, moDNN allows ten-

sors to be offloaded and uses profiling information of kernel runtime and expected transfer time to

determine how it will overlap computation and communication. AutoTM differs from these previ-

ous approaches in that we use mathematical optimization rather than problem specific heuristics.

AutoTM also generalizes the location of data across DRAM and PM instead of requiring data to

be in DRAM for computation.

Integer Linear Programming and profile guided optimization have been used widely to address

similar problems in research literature. For example, work in the embedded system space [4] uses

ILP in to optimize the allocation of heap and stack data between fast SRAM and slow DRAM. ILP

has also been used in register allocation [36] and automatic program parallelization [40]. ILP has

been used to optimize instruction set customization and spatial architecture scheduling [70]. Profile

guided optimization has been used for dynamic binary parallelization [112], process placement on

SMP clusters [14] and online autotuning of CPU and GPU algorithm selection [78]. AutoTM builds

on these ideas to address the new problem of data movement in heterogeneous memory systems.

3.9. Conclusions

We present AutoTM, an ILP formulation for modeling and optimizing data location and move-

ment in static computation graphs such as those used for training and inference of DNNs. AutoTM

uses profile data to optimally assign kernel inputs and outputs into different memory pools and

schedule data movement between the two pools to minimize execution time under a memory con-

straint. With AutoTM, we can obtain 2x performance improvement over hardware DRAM caching

solutions. We further find Intel Optane PM can reduce the DRAM footprint of DNN training by

50 to 80% without significant loss in performance. Given the lower cost of Optane PM, this can

yield a cost-performance benefit in systems with mixed DRAM and PM over a system with only

DRAM.

AutoTM uses minimal problem specific heuristics, making it generally applicable to different

systems and networks. We demonstrate this flexibility by extending AutoTM to GPUs, and believe

58

it can be further extended to further heterogeneous systems, such as those with multiple GPUs or

multi-level systems with HBM, DRAM, and PM.

59

CHAPTER 4

Generalizing Heterogeneous Memory Management

4.1. Introduction

In the previous chapter, we presented AutoTM [44], an ILP based technique for managing tensor

location and movement during CNN training. When implementing this in the ngraph compiler,

the compiler and runtime itself was modified in order to use multiple levels of memory. That

is, we added bespoke heterogeneous memory support to an existing framework. This can lead to

scalability issues - for every framework, we must add support for data tiering. Furthermore, as

more memory technologies come available, support for them in each modified framework must be

added individually at the cost of developer effort.

In this chapter, we will explore ideas to generalize of the heterogeneous memory management

techniques demonstrated in AutoTM. We explore a possible memory management/data-tiering

runtime upon which multiple applications can be built. CachedArrays is a new memory management

framework which allows programmers (or the runtime) to direct the heterogeneous memory aware

memory manager via application-specific policies. Table 4.1 shows how CachedArrays compares to

other data management (data tiering) solutions.

In this work, we focus on a unique layer in the stack: the compiler and the runtime of a managed

language. By focusing on this layer, we can gain the benefits of algorithmic-specific optimizations

Work Abstraction Layer Granularity Programmability Mechanism

SAGE [26] Algorithm Data Structure Application Specific Maunally Partitioned
Data Structures

AutoTM [44], Sentinel [87] Compiler Tensor Transparent Profile Guided
Optimization

vDNN [89] Application Tensor Application Specific Manual Partitioning
Nimble [108], KLOC [54], Thermostat [2] Operating System Page Transparent Virtual Memory

Memory Mode (in Intel PMem)) Hardware Cache Block Transparent HW Managed Cache

Kona [11] Hardware Cache Block Transparent SW Runtime based on
Cache Coherence

CachedArrays (This work) Application Variable Sized Object Transparent (optional
annotations)

Type System/Runtime

Table 4.1. Landscape of Related Work in Data Tiering in Heterogeneous Memory
Systems.

60

through simple programmer annotations and track data status at the object granularity. We do

not track metadata at a fixed fine (64-byte block or page) granularity, and we are not restricted

only to tensors or specific data structures. Additionally, by targeting the compiler/runtime layer,

our techniques can improve performance when combined with other data management techniques

(e.g., DRAM caches).

We present a case study focusing on training large CNNs since this workload has a regular and

easy to exploit data reuse pattern. We show that our generalized framework can provide similar

performance improvements as the specialized AutoTM implementation [44]. In Chapter 5.1, we will

further generalize CachedArrays to apply these ideas to a DLRM workload that has significantly

different usage patterns than the kernel-based CNNs studied so far.

In this chapter:

• We describe CachedArrays, an approach to heterogeneous memory management which

separates the data management policy from the data management engine and bridges the

semantic gap between the algorithm-level objects and the underlying memory devices.

• We implement CachedArrays in Julia and show how programmers can either transparently

use CachedArrays or provide hints for more efficient data management.

• We present a case study using CachedArrays for training deep learning models and demon-

strate CachedArrays provides 1.19 to 1.74× speedup over a real hardware DRAM cache

for CNN training.

Rest of the chapter is organized as follows. In Section 4.2 we present high level overview of our

approach with examples. In Section 4.4 we describe the detailed implementation of the proposed

framework in Julia. This will be followed by a detailed case study in Section 4.7 with results from

experiments on real hardware. We end the chapter with a discussion in Section 4.9.

4.2. A Generic Heterogeneous Memory Management System

From prior work in this area (both that highlighted in Table 4.1 as well as that conducted in

the previous chapters), we can make two observations:

61

(1) There will not likely be a single one-size fits all implementation for heterogeneous memory

management. For example, mechanisms suitable for large data sizes will likely fail for

workloads that require fine-grained management.

(2) Even with a strong data movement implementation, the policy that decides where to place

data and when to move will vary from application to application, requiring program-level

semantic information.

To that end, we explore the common characteristics between all heterogeneous memory man-

agement systems. We develop a more disciplined approach to heterogeneous memory management

by implementing a generic system that can be specialized to suit a particular application. Fig-

ure 4.1 presents a high level overview of a generic heterogeneous memory management system. The

programmer/application/runtime (summarized as the abstract runtime) interacts with objects, each

of which is associated with one or more regions. Regions are the unit of memory management and

themselves reside on devices (e.g., DRAM or PM). The system (right side of the figure) consists of

all the devices capable of hosting regions and some amount state that helps track the relationships

between regions and objects.

Between the abstract runtime and the system sits the policy, acting as a bridge between the

two. The primary goal of the policy is to coordinate the assignment of objects and regions to

improve the performance of the abstract runtime. This can involve making intelligent decisions

about when objects are assigned regions in a faster memory and when to migrate the primary

region for an object from a faster memory to a slower memory. To facilitate this, the policy uses

the data management API exposed by the system. The system may also be able to help in the

decision process by returning runtime statistics about objects and regions, such as the number of

read and write requests. The abstract runtime influences the location and properties of its objects

through an API exposed by the policy. Table 4.2 provides common terms and definitions associated

with this generic approach.

4.2.1. Memory Mode as an Instance of a Generic Heterogeneous System. To make

the discussion more concrete, we will explore how the memory controller in Intel’s memory mode

(2LM) follows the pattern of this generic heterogeneous memory management framework and im-

plements the ideas outlined in Table 4.2. First, we identify the main components.

62

Figure 4.1. High level idea of a generic heterogeneous memory management sys-
tem. The abstract runtime interacts with objects which are backed by regions located
on some device. The abstract runtime influences the location of objects using the
policy API. The policy communicates with the system through a data management
API. The system consists of one or more devices, each capable of hosting multi-
ple regions, and state which maintains the relationship between objects and their
regions/primary region. Each device in the manager can have different properties
(e.g., speed, persistence). For best performance, the policy implementation should
consider the constraints imposed devices.

• Devices: The 2LM memory controller consists of two devices, DRAM and persistent

memory (PM). While physically these are made up of several components (i.e., the DIMMs

whose address space is interleaved), we will treat these as a unified device with a contiguous

physical address space.

• System: The system consists of the devices mentioned above and metadata. The meta-

data is composed of several items. First, since the DRAM cache in memory mode is direct

mapped, there is an implicit mapping from physical cache line address to potential DRAM

cache line address (i.e., DRAM region) using the modulo of the total DRAM size. Second,

each DRAM cache line has associated metadata stored in previously unused ECC bits.

This metadata includes a valid bit, a physical tag of the upper-order bits of the region’s

linked PM region (cache line address), and a dirty bit indicating if this cache line must be

written back to PM upon eviction.

• Objects: In this system, an object is a physical cache line address. From the CPU’s

perspective, it simply asks the memory controller for the data corresponding to a cache

63

Term Definition
System A system consists of one or more devices and state. The state can include

the assignment of objects to regions, relationships between regions, policy
specific state, etc.

Policy Intermediate layer between the system and abstract runtime. The goal
of the policy is coordinate the assignment of objects to regions in order
to improve performance of the abstract runtime.

Abstract Runtime The entity that interacts with the policy that actually uses and manip-
ulates objects. This can be an application, a runtime environment, the
OS etc.

Devices Sources of memory like DRAM or memory heaps. Devices host the
memory for regions and are spanned (either implicitly or explicitly) by
the regions contained within.

Object An object is an application entity for memory management. For exam-
ple, in machine learning workloads, an object might be a “tensor” (a
multidimensional strided array). For hardware caches, an object might
be a physical address (or more precisely, the base physical address of a
cache line).

Region A unit of contiguous memory, used as the backing store for a “objects”.
Linked Regions Two regions are linked if they both belong to the same object. For

example, in a DRAM cache, a valid cache line in DRAM is linked to its
parent cache line in PM.

Primary Region When two or more regions belong to the same object - there is the
question of what actions to take when writes are performed to the object.
Are all regions updated, or is a single region updated and marked as dirty
with respect to the other regions? In the case of the latter, the region
that contains the most up-to-date version of the data is the primary
region.

Table 4.2. Common patterns and phenomena in a generic heterogeneous memory
management system.

line address. The memory controller is the entity responsible for mapping this address to

the DRAM or PM devices and retrieving the data.

• Regions: Regions are references to the actual backing memory behind objects. In the

case of the 2LM memory controller, this is a device address in either DRAM or PM. The

memory controller uses the state described above to determine and update which regions

(device addresses) are associated with objects (physical address).

• Policy: In the case of the memory controller, the policy is built into the hardware as a

state machine. To the CPU and LLC, the policy exposed by the memory controller is a

64

Figure 4.2. Pseudo-code algorithm for an “insert-on-miss” read operation for the
memory controller when in memory mode. In this system, DRAM regions (i.e.,
cache line) are linked with PM regions using a tag. If an object (physical address)
has a DRAM region, than that region is implicitly its primary region.

very simple API: read_cacheline and write_cacheline. All steps taken by the policy happen

as side effects of these two operations.

• Abstract Runtime: The abstract runtime is the user of the API exposed by policy.

Thus, the runtime is the CPU system as a whole (anything capable of emitting read or

write requests to the memory controller).

Figure 4.2 outlines pseudo-code modeling the memory controller’s insert-on-miss cache line read.

Recall, the policy uses functionality exposed by the system to update state and initiate reads and

writes to the underlying devices. In particular, the system supports logical functions like belongsto

which queries whether a DRAM region belongs to a particular physical address (implemented by

comparing the tag with the appropriate bits of the address) and discovering linked regions (again

making use of the tag).

One important thing to note is that while the policy logically exists separate from the system

(implemented by synthesizing behavior of the system), the policy is still dependent on and limited by

the system. For example, the DRAM cache implemented by Intel’s memory mode is direct mapped

because the system cannot efficiently maintain the metadata required for a higher-associativity

cache.

65

4.2.2. Separation of Objects and Regions. At first glance, the separation of the idea of an

object (the abstract entity through with the runtime interacts) and region (the contiguous memory

backing the object) may seem a little strange. However, there is significant precedent for this

separation.

For example, consider the vector implementation from the C++ standard template library

(STL). The vector consists of a start pointer, an end pointer, and a pointer to the maximum

capacity to which the vector can grow with its current allocation.1 This demonstrates a separation

of an object (the vector itself) from the region (virtual memory) backing the object. When the user

calls a function like push_back on the vector, the vector may need to reallocate its backing memory

if it runs out of capacity. In other words, the same object is reassigned to a new region without the

user needing to worry about such low level details.

Another example more closely related to heterogeneous memory comes from virtual memory.

Applications running on top of modern operating systems use a virtual address space which the

OS and hardware cooperatively assign to physical addresses on a page level granularity. In this

context, a virtual page is the object and the physical page is the region. Existing mechanisms like

NUMA migration and Nimble pages [108] exploit this by reassociating the virtual address with a

new physical address, potentially on a different NUMA node.

4.2.3. Linked Regions. In the case of our previous example of virtual memory, there is

generally a one-to-one correspondence between objects (virtual pages) and regions (physical pages).2

With current virtual memory implementations, it does not necessarily make sense for a virtual page

to be assigned to multiple physical pages. However, there are many examples in which multiple

regions are used to back a single object.

Take, for instance, the CPU cache hierarchy where we can take the view that physical cache

line addresses are objects. Then regions are either addresses in main memory (if the corresponding

cache line is not cached) or some location within the CPU cache system. If a particular line is

in the CPU cache, then there are at least two regions backing that physical address: the cached

location of the line and its home in main memory. Indeed, there may even be multiple instances
1The vector may also contain a reference to its allocator if a custom allocator is used.
2Though it is possible for multiple virtual pages to map to the same physical page.

66

of the cache line all throughout the CPU if multiple cores are reading the same data, all of which

are linked because they back the same physical address. When a write occurs to a cache line, the

cache coherence protocol ensures that all stale copies of that cache line are invalidated. In this

case, the location in the CPU cache of that written line becomes the primary region as it is the

most up-to-date copy of the data. This will eventually be written back to the corresponding region

in main memory when that line is evicted from the CPU cache.

Turning back to the virtual memory example, previous works investigating Cache-Only Memory

Architectures (COMA) [32] would use a node-local page cache for pages located on a remote

node. Though COMA style memory management generally did not make its way into mainstream

architectures (which instead generally use some form of cache-coherent NUMA), the page cache in

COMA provides another example of using multiple regions (i.e., physical pages - one local in the

page cache, others potentially distributed among other nodes) to back a single object (i.e., data

page).

Nonlinked Regions in “Fast Memory” One limitation of the previous example of the CPU

cache hierarchy is that regions in “fast memory” (i.e., in the cache) almost always have linked

regions in main (slow) memory because CPU caches are inclusive with respect to main memory.

This does not necessarily have to be the case with general heterogeneous memory systems. In

AutoTM, a tensor could live its entire life in DRAM (fast memory) without ever having a region

in PM. Conversely, if a tensor ever had a region in PM, that region would persist for the lifetime

of the tensor avoiding the need to copy tensors back and forth between the two devices.

4.2.4. Mapping of Framework to Previous Work. Table 4.3 identifies some of the key

components of the generic heterogeneous memory management framework in the related work given

in Table 4.1. An insight generated by this table is the relative richness versus sparseness of the

various interfaces (i.e., the data management API and policy API) and how tightly coupled the

components are. For example, the policy in 2LM is very tightly coupled with the system as these

are both implemented in hardware in the memory controller. On the other hand, management

systems like Kona [11] are more flexible as there is a software component that can make high-level

decisions about data management that can incorporate better heuristics.

67

Work Entity Description

vDNN [89]

Object Tensors.
Region Virtual memory allocations either in GPU memory or CPU

memory.
System The vDNN runtime.
Policy Built into the runtime, configurable between various static

and dynamic strategies.
Runtime Applications running in vDNN.

Nimble [108]

Object Virtual memory page.
Region Physical memory page either in a near or far memory.
System CPU and OS virtual memory subsystem.
Policy Integrated policy in the Linux kernel, sparse API.

Runtime Applications in userspace.

Memory Mode (2LM)

Object Physical cacheline address.
Region Device Address (DRAM or PM).
System Memory Controller.
Policy Insert on Miss tightly coupled with memory controller.

Runtime CPU Cores (anything generating memory controller read or
write requests.

Kona [11]

Object Virtual cacheline address.
Region Managed physical address (directed to main memory di-

rectly or to a software managed cache for remote memory
in main memory).

System CPU cache-coherence, page-table management, and
runtlime library “KLib”.

Policy Baked into “KLib” runtime, coarse API consisting of func-
tions like malloc and free.

Runtime Applications in userspace.
Table 4.3. Identification of the various components of the generic heterogeneous
memory management framework to existing memory management frameworks.

For interface richness, cache-based schemes like 2LM or Kona do not provide the user with

much. In Kona, actions like malloc or free allow the user to acquire distributed memory that

is cached-locally, but don’t allow communication between the user and the policy regarding data

semantics. The 2LM DRAM cache has an even sparser user interface as described in Section 4.2.1.

Page based mechanisms like Nimble pages [108] provides the abstract runtime with more knobs

to tune through the Linux kernel’s NUMA subsystem. NUMA allows applications to specifically

request allocation of memory on specific nodes, use a generic policy regarding page allocation, or

request page migrations. However, without higher-level abstractions, this requires the application

68

to reason about program objects on a page-level basis, which may not always be the most natural

approach.

We’d argue that coupling between various components in the heterogeneous memory manage-

ment framework should be kept as loose as possible and the interfaces as rich as possible. This

provides the most modularity for tuning (like making modifications to the policy) and passing

program level semantic information to the policy whether through manually inserted annotations

or compiler generated hints.

4.3. Basis for the Data Manager and Modular Policy

In this section, we will discuss the driving requirements and APIs behind CachedArrays. Recall,

the end goal here is a runtime memory management system that can be used both as a building

block for AutoTM style machine learning applications as well as future applications where memory

management is not as well studied. Julia [7] was used as the language to implement this proto-

type. Julia is a “just-in-time” compiled, garbage collected, dynamically typed language that allows

both low-level programs (e.g., memory allocators) and high-level programs (e.g. machine learning

training) to be implemented in the same language.

Objects and Regions: Data movement optimization should be done on the “object” level

within a program. The object level is where the programmer, compiler, and runtime have specific

knowledge of the semantics of the data within their program which can be used to drive data

movement and placement considerations. For instance, the programmer knows whether an array

will be accessed sparsely or densely, which can affect caching decisions. In DNN-based workloads,

memory is passed around as tensors, which are relatively large (> 100s of KiB) contiguous chunks of

memory. In these workloads, we would use the tensors, (or more generally multi-dimensional arrays)

as the objects to consider for data movement optimization. Other transparent data movement

techniques like NUMA and hardware caches lose the semantic information of the application (e.g.,

data that is semantically dead and will never be re-read may be written back to main memory

wasting bandwidth and energy) [43].

As with AutoTM, we will focus on machine learning frameworks that use the kernel programming

model. The kernels may be offloaded to accelerators or optimized CPU primitives (e.g., OneDNN).

69

Importantly, while CachedArrays tracks the use of data on the object level, the objects are backed

by array-like constructs. When implemented above the language level, this introduces an extra

level of indirection as an array reference must traverse from the array to the object, then from the

object to the actual backing memory. In kernel programming style, this extra level of indirection

has no performance overhead as the extra pointer is dereferenced once and the raw data is passed

to the computational kernel.

CachedArrays also supports moving objects between different memory pools and construction of

higher order constructs like two-level caches. Thus, regions, which are contiguous slices of virtual3

memory that either hold the current data for an object (which we call the primary region) or copies

of the data for an object (where we call each copy a secondary). Two regions are said to be linked

if they both are either primary or secondary regions for the same object. These secondary regions

may be valid if the primary is read only, or stale if the primary has been updated and has not

propagated these updates to all its secondaries. Currently, CachedArrays requires all memory used

by an application to be acquired from the OS prior to execution (i.e., no dynamic memory allocation

from the OS through system calls like mmap). In practice, if an application requires hundreds of

gigibytes of memory, then it’s likely one of few applications running (to avoid memory contention)

and would probably want to minimize system calls for virtual memory anyways because these tend

to be quite slow.

4.3.1. Data Manager. The goal of CachedArrays is to separate the mechanism of data track-

ing and movement from the policy driving this management. Our proposed data manager tracks

(1) all objects that live in the program, (2) the primary region for each objects, and (3) all linked

regions for all primary primary. The data manager may also contain multiple devices upon which

regions may be allocated. In our case studies, these devices are memory heaps for DRAM and PM

(persistent memory or NVRAM), but this is not a fundamental restriction of CachedArrays.

The data manager supports allocation and deallocation of regions, linking and unlinking of

regions, high-performance memory copying of data between regions, and safe reassignment of an

object’s primary region. A list of the data manager’s actions is given in Table 4.4.
3While this work is limited to working in the virtual address space, the data manager could be implemented at the
OS or hardware level using physicial addresses as well.

70

Signature Description
Objects

primary(object) -> Region Get the current primary region for object.
set!(object, region) Set region region as the primary region for object.

Regions
allocate(device, bytes) ->

Region Allocate a region of length bytes in the specified device.

free(region) Free region to its source memory device.
link!(a, b) Link regions a and b.
unlink!(a, b) Unlink regions a and b.

copyto!(dst, src) Copy memory from region src to region dst.
sizeof(region) -> UInt64 Return the size of region seg in bytes.

getlinked(region, device) ->
Union{Region, Nothing} Get the linked region for region region on device if it

has one.
in(region, device) -> Bool Return true if region region is on device.

markdirty!(region) Mark region as dirty with respect to any linked regions.
markclean!(region) Mark region as clean with respect to any linked re-

gions.
isdirty(region) -> Bool Return whether or not region has been marked as

dirty.
parent(region) -> Object Return the object to which is assigned to region.

Devices
evictfrom!(cb, device, region, size) Starting at region on device, free up enough space so

a contiguous allocation of size can be made. On each
encountered region on device that is not free, pass that
region to a callback cb, after which the region will be
assumed to be free.

Table 4.4. Base level API for a data management engine.

There are three broad categories of functions: those working on objects, those working on

regions, and those working on devices. The former consists of just four functions, primary, to obtain

the primary region for an object and set!, and to update an object’s primary.

Functions in the second category include allocate and free methods for each supported device,

as well as a fast memory copy between and within devices. Regions can be linked or unlinked

using link! and unlink! respectively. The function copyto! provides a way copying data from one

region to another. The next three functions (sizeof, sibling, and in) are queries for obtaining the

size of a region, asking if a region has a sibling on the specified device, and querying the device

to which a region belongs. Regions can be marked and queried as dirty or clean, which helps

71

Figure 4.3. Illustration of the logic behind evictfrom!. Starting at the entry region,
the function traverses each region. Free regions are gathered for free. If a region is
not free, handling of the region is delegated to a callback. In practice, this callback
implements a function like evict! outlined in Listing 4.1. After the callback, region
processing continues. Once the requested amount of contiguous space has been
collected, the spanned range is coalesced into a single contiguous free region.

maintain consistency when an object is associated with multiple regions. Finally, parent provides a

mechanism of going from a region to its associated object.

The devices in CachedArrays also expose the evictfrom! function. As illustrated in Figure 4.3,

the goal of this function is to free up enough space on the device in order to satisfy a contiguous

allocation of the requested size. Beginning at the requested region, the device steps forward (or

backward) across its address space. Each occupied region experienced during the walk is passed

to a callback. The purpose of this callback is basically to evict the data within the region to slow

memory so that after the execution of the callback, the address space for the region is available.

Once enough regions have been collected, the device coaslesces all the freed space into a single

free region, which can be used to fulfill a future allocation. The primary reason for implementing

evictfrom! in this callback style is that it hides the tedious details of walking through the heap from

the user of the API, allowing the user to focus on correctly implementing the callback using the

other API functions exposed by the data manager.

4.3.2. Policy. The last portion of our framework is the policy. Because, data management API

previously described is not trivial to use, application programmers should be shielded from these

low-level details through a simpler policy API. Essentially, the policy is a program written by the

72

Operation Description
alloc_fast(bytes) -> Object Allocate a new object in fast memory of size bytes.
alloc_slow(bytes) -> Object Allocate a new object in slow memory.
in_fast(object) -> Bool Return whether or not the primary region for object is in

fast memory.
read_use(object) Indicate that object has been used in a read only context.
write_use(object) Indicate that object has been used in a write context.

unsafe_free(object) Preemptively free object (before GC mark-and-sweep).
prefetch!(object, [force = false]) Move object into fast memory (if it isn’t already). If force

== true, than forcibly evict objects from fast memory if re-
quired.

evict!(object) Force evict object from fast memory.
softevict!(object) Prioritize object for LRU-based eviction.

Table 4.5. The policy for CachedArrays exposes the API above to allow applica-
tions to provide hints and annotations regarding memory location and movement.
These hints can either be placed manually by the programmer or inserted as the
result of a high-level compiler pass (like was the case in AutoTM). Functions deal-
ing with the DRAM heap (alloc_fast and prefetch!) have the option to force the
operation to happen. This means that the policy will evict regions from the DRAM
heap in order to fulfill the request.

application or runtime programmer that uses the data management API to efficiently orchestrate

data movement. In this section, we describe how one may use the data manager API to implement

a simple two-level heterogeneous memory caching system.

For this example, suppose one level of this system is fast memory, and the other the slow

memory. Table 4.5 shows the API exposed by the policy for managing objects at the application

level. We are able to allocate new arrays from either memory and free existing arrays. The

functions read_use and write_use communicate to the policy that the corresponding objects have

been used. This has the potential to influence future eviction decisions by the policy based on

least-recently-used (LRU) heuristics. If desired, write_use can be used to mark regions as dirty. We

expand on the semantics of the remaining functions below:

• prefetch!: Cache x from slow to fast memory. This is useful if we know x is going to

be heavily used in the near future. Additionally, prefetch! has the option to force the

movement into fast memory to occur. When fast memory is full, this causes the policy to

evict objects from the fast memory in order to successfully allocate space for xfast. The

choice of which objects to evict is left as an implementation detail of the policy. Upon

73

caching in fast memory, there remains the question of what to do with xslow. If we assume

that the slow memory is not capacity limited, then it doesn’t hurt to keep xslow and in

fact may enable some clean eviction optimizations outlined below. It is up to the policy

whether to keep the backing region or deallocate it. Our policy implementation chooses

to keep xslow.

• evict!: Forcibly from fast to slow memory. If x will not be used for some time, then it may

be beneficial to move it out of the fast memory to make space. If x already has a sibling in

the slow memory, only a simple copy and free of xfast is needed. As an optimization, the

copy of xfast to xslow can be elided if xfast is not dirty with respect to xslow. Otherwise,

xslow needs to be allocated.

• softevict!: As mentioned previously, forcing operations like prefetch or alloc_fast can

result in the eviction of other objects from fast memory. To allow the application developer

to communicate program semantics to the policy, the function softevict! prioritizes an

object for such an eviction. Unlike evict! which eagerly moves the objects to slow memory,

softevict! requires no such immediate movement. The application programmer can use

this function if they know an object will not be used for a while but might prefer that

object remains in fast memory if possible.

We discuss two of these functions in detail using the data management API. Throughout the

discussion, keep in mind that the policy maintains the following invariant: if an object has a region

in fast memory, then this region will be the primary region for that object.

Listing 4.1 shows an example implementation of the evict! function. The goal of this function

is to move an object from fast memory to slow memory. If the primary region is already in slow

memory, then there’s nothing to be done (recall the primary region invariant). Now, the object’s

primary region x may already have a sibling in slow memory. In this case, we will want to use this

existing region. This logic can be seen on lines 4 to 9 where we first check for an existing region

before allocating a new one. Line 10 shows a potential optimization: if we can track whether or

not x has been modified while in fast memory (i.e., it was moved from slow to fast for a read-only

operation), then we may be able to elide the expensive copy operation. Line 13 updates the object’s

primary region y. If a linked region existed in slow memory, we need to unlink the fast and slow

74

� �
1 function PolicyAPI.evict!(policy, object)
2 x = DataAPI.primary(object)
3 if DataAPI.in(x, FAST)
4 y = DataAPI.getlinked(x, SLOW)
5 allocated = false
6 if y === nothing
7 y = DataAPI.allocate(SLOW, DataAPI.sizeof(x))
8 allocated = true
9 end

10 if DataAPI.isdirty(x) || allocated
11 DataAPI.copyto!(y, x)
12 end
13 DataAPI.set!(object, y)
14 if !allocated
15 DataAPI.unlink!(x, y)
16 end
17 DataAPI.free(x)
18 end
19 end� �

Listing 4.1. An example of building an eviction function from the CachedArrays
data manager API. Functions belonging to the data management API are prefixed
by DataAPI.

� �
1 function PolicyAPI.prefetch!(policy, object, force::Bool = false)
2 x = DataAPI.primary(object)
3 if DataAPI.in(x, SLOW)
4 y = DataAPI.allocate(FAST, DataAPI.sizeof(x))
5 if y === nothing && force
6 start_region = select_via_heuristic(policy)
7 DataAPI.evictfrom!(FAST, start_region, DataAPI.sizeof(object) do region
8 PolicyAPI.evict!(policy, DataAPI.parent(region))
9 end

10 y = DataAPI.allocate(FAST, DataAPI.sizeof(x))
11 @assert y !== nothing
12 else
13 return
14 end
15 DataAPI.copyto!(y, x)
16 DataAPI.link!(x, y)
17 DataAPI.set!(object, y)
18 end
19 return
20 end� �

Listing 4.2. Building a prefetching/caching function out of the data movement
API. This implementation maintains a region in the SLOW memory, which can
potentially accelerate eviction (Listing 4.1). Functions belonging to the data
management API are prefixed by DataAPI.

regions (line 14). This does not need to be performed if the slow region was just allocated because

the slow and fast regions were then never linked to begin with. Finally, we need to free x. If y

already existed as a linked region, then we must first unlink x and y to stay consistent.

75

As a more complicated example, Listing 4.2 shows a possible implementation of prefetch!. In

line 2, the primary region for the object is retrieved. Line 3 checks the device that region resides

in. If the region is already in fast memory, there is nothing to be done. Line 4 tries to allocate

a similar sizes region in the fast memory. If the operation fails (because fast memory is full) and

the operation is forced, then the policy will forcibly free memory from the fast memory using

some heuristic like LRU. This forced eviction uses the evictfrom! operation described previously.

Following the eviction, the fast memory allocation is performed again. Data is copied (line 15), the

two region are linked as siblings (line 16) and the fast memory region is assigned as the primary

region (line 17).

Overall, the policy API is much simpler to understand and use than the data manager API,

enabling the programmer to communicate application level semantics to the data manager to drive

its decisions.

4.3.3. Summary of CachedArrays Benefits. CachedArrays enables the following optimiza-

tions which are not possible with fully transparent data management mechanisms such as NUMA

and hardware caching. Importantly, these are the same optimizations which are exploited by

algorithm-specific data management strategies like Sage [26] and AutoTM [44]. At a high level,

CachedArrays tracks semantic data usage information at the object level enabling simple and

straightforward policy implementations with programmer hints or fully transparent runtime control

of data allocation, placement, and movement (further discussed in Section 4.4). Other benefits are

listed below:

• Initially allocate data only in one specific device (e.g., fast memory). Hardware caching

requires an initial movement from backing memory to the cache. Doing this greatly reduces

data movement.

• Elide useless writebacks from one device to another when the data is deallocated. Sec-

tion 4.7 shows this optimization significantly reduces PM writes compared to the hardware

managed cache.

• Move data at a large granularity instead of at the block-level which more efficiently uses

memory devices [43,48]. Section 4.7 shows that in CNN applications with a simple policy,

76

CachedArrays has higher average memory bus utilization than the hardware managed

cache.

4.4. CachedArrays Implementation

We implemented a software prototype of our data management API in Julia [7], a high-level

compiled language targeting technical computing. The main idea behind our implementation is

to implement an array datatype called a CachedArray in Julia backed by objects. Policy hints take

the form of function calls that are forwarded from a CachedArray to the management policy, which

uses the data management API to control the segments backing the objects. Using Julia’s type

system and metaprogramming capabilities, we create mechanisms that allow a developer to supply

policy hints to the policy in deep learning models without needing to modify the original source.

Eventually, as Julia’s compiler infrastructure matures, these kinds of annotations can be moved

into custom compiler passes.

Section 4.4.1 describes the basic implementation of the data manager and objects allocated by

the manager. Section 4.4.2 describes the array datatype that is created around allocated objects.

4.4.1. Base Implementation. The conceptual structure of our implementation is shown in

Figure 4.4. 1 At the base, we have heaps (i.e., devices) that supply memory. The figure shows

two heaps representing a fast memory (e.g., DRAM) and a slow memory (e.g., PM). These heaps

are responsible for allocating the segments 2 . Two regions are shown in the figure - one allocated

from the fast memory and one allocated from the slow memory. These regions shown are linked as

siblings 3 , which is achieved through pointers in each segment’s header.

The programmer interacts with the object 4 . Each object contains an explicit pointer to the

primary segment as well as a reference to its data controller. In this example, the primary segment

is the one allocated from fast memory. To update the primary segment, the manager mutates

the corresponding field of the object. Julia uses a generational, non-compacting, mark-and-sweep

garbage collector (GC). To allow objects to be reclaimed by the GC, the manager maintains GC

invisible (i.e., raw pointer) references to each object and its corresponding primary region. Objects,

on the other hand, have GC visible references to their manager to ensure that the manager can

be transparently reached from any object. Finalizers are used to keep the system consistent.

77

Figure 4.4. Overview of our the CachedArraysdata manager in Julia. Objects are
visible to the GC and implicitly backed by segments. Segments are allocated from
either fast memory (DRAM) or slow memory (PM). The data manager is capable
of updating the primary segment of any object. When freed by the GC, an object’s
primary segment is queued onto the “free buffer”.

Finally, the policy 6 is attached to the data controller to control the global behavior of all

allocated objects. The policy contains LRU data structures that can be used to determine which

regions should be evicted (if any) when a new region is allocated. Since objects contain references

to the manager, the programmer is able to supply policy hints to objects and have those hints

forwarded to the policy. To provide simple thread safety, the manager and policy are protected by

a single lock.

Note that even through the policy is contained within the manager as an implementation detail,

it still implements the policy API described in Table 4.5. Thus, the policy API is exported by the

manager which then forwards requests to the policy.

4.4.2. CachedArray Implementation. In Julia, the AbstractArray interface is a minimal

API that allows subtypes to inherit a large amount of behavior. This includes operators like

matrix multiplication (including dispatch to the underlying BLAS library if the particular array

type supports it). We implement a CachedArray data type using this interface. A CachedArray is a

multidimensional array that can hold arbitrary plain-bits types, where a plain-bits type is either
78

a primitive type like UInt64 or Float32, or a composite struct of plain-bits types (no references to

Julia allocated objects are allowed). The backing memory for a CachedArray is provided by an Object

and therefore can live in either fast or slow memory. Our ultimate goal is to use CachedArrays to

build use the policy API described in Table 4.5 and design the CachedArray type such that methods

located deep inside a software library can be extended.

A sketch of CachedArray’s implementation is illustrated in detail in Listing 4.3. The definition of

Object is given on lines 1 to 7. An Object contains a pointer to its primary segment and a reference

back to its manager. As part of our policy integration, an extra type parameter S is added to the

CachedArray type to provide finer grained read and write behavior. This parameter is one of the

types ReadWrite (array can be both read and written), Readable (read only), or NotBusy (can neither

be read nor written). These access type parameters are defined on lines 10 through 13. Conversion

between these states (demonstrated on lines 44-48) is cheap (merely constructing a new wrapper

CachedArray around the same Object) yet provides a mechanism by which usage of the array can be

communicated to the policy. For example, transitioning an array to ReadWrite has the side effect

of calling write_use on the underlying object which communicates to the policy that the object has

been used (for LRU information) and marks the object’s primary region as “dirty”. The manager

can monitor frequently accessed arrays (as determined by frequent conversions to either readable

or writable) and prioritize keeping these arrays in fast memory.

Lines 16 to 19 define the CachedArray type, which contains an Object and array dimensions. Con-

venience type aliases are defined on lines 22 to 27 to help control function dispatch. Implementation

of Julia’s AbstractArray API occupies lines 30 to 41. Note that the read accessor method getindex

is only defined for ReadableCachedArrays. This ensures that a CachedArray has been transitioned into

the correct state (with that state communicated to the cache manager), otherwise an error will be

thrown. A similar approach is used for setindex!.

As a usage example, Listing 4.4 shows the performance implication of matrix multiplication

using CachedArrays with prefetch and eviction annotations. The function mul! perform matrix

multiplication A * B and stores the results into C. Line 3 constructs the data manager, whose

arguments are omitted for simplicity. Lines 4-6 construct three large matrices. Input arrays A and

B are allocated directly through the DataManager. The destination array C is created based on A

79

� �
1 # Object Definition
2 mutable struct Object{C<:AbstractController}
3 ptr::Ptr{Nothing}
4 manager::C
5 end
6 Base.pointer(o::Object) = o.ptr
7 write_use(o::Object) = write_use(o.manager, o)
8
9 # Statuses

10 abstract type Status end
11 struct NotBusy <: Status end
12 struct ReadOnly <: Status end
13 struct ReadWrite <: Status end
14
15 # Cached Array Definition
16 struct CachedArray{T,N,S<:Status,C<:AbstractController} <: DenseArray{T,N}
17 object::Object{C}
18 dims::NTuple{N,Int}
19 end
20
21 # Convenience aliases
22 const Readable = Union{ReadOnly,ReadWrite}
23 const Writable = ReadWrite
24
25 const ReadableCachedArray = CachedArray{T,N,<:Readable,C} where {T,N,C}
26 const WritableCachedArray = CachedArray{T,N,<:Writable,C} where {T,N,C}
27 const UnreadableCachedArray = CachedArray{T,N,NotBusy,C} where {T,N,C}
28
29 # AbstractArray API
30 Base.pointer(A::CachedArray{T}) where {T} = Ptr{T}(pointer(A.object))
31 Base.size(A::CachedArray) = A.dims
32 Base.IndexStyle(::Type{<:CachedArray}) = Base.IndexLinear()
33 function Base.getindex(A::ReadableCachedArray, i::Int)
34 @boundscheck checkbounds(A, i)
35 return unsafe_load(pointer(A), i)
36 end
37
38 function Base.setindex!(A::WritableCachedArray, x, i::Int)
39 @boundscheck checkbounds(A, i)
40 return unsafe_store!(pointer(A), x, i)
41 end
42
43 # Example Status Conversions
44 writable(A::WritableCachedArray) = A
45 function writable(A::CachedArray{T,N,S,C}) where {T,N,S,C}
46 write_use(A.object)
47 CachedArray{T,N,ReadWrite,C}(A.object, A.size)
48 end� �

Listing 4.3. Sketch of implementing a CachedArray in Julia satisfying the basic
AbstractArray interface. Type parameters: T is array element type, C is the type of
the manager, and N is the dimensionality of the array.

using the function similar. The arrays are moved into DRAM using prefetch! and we perform the

matrix multiplication. Next, all arrays are moved into PM using the evict! function and we rerun

the matrix multiplication. The execution time for the next matrix multiplication is much lower

reflecting lower performance of PM compared to DRAM.

80

� �
1 # Construct a data manager and initialize large
2 # matrices `A`, `B`, and `C`.
3 manager = DataManager(...)
4 A = CachedArray(randn(Float32, 10000, 10000), manager)
5 B = CachedArray(randn(Float32, 10000, 10000), manager)
6 C = similar(A)
7 # Move all arrays into DRAM
8 prefetch!(A, B, C)
9 @time mul!(C, A, B)

10 # stdout> 0.768280 seconds (1 allocation: 32 bytes)
11
12 # Move all arrays into PM
13 evict!(A, B, C)
14 @time mul!(C, A, B)
15 # stdout> 3.235098 seconds (1 allocation: 32 bytes)� �

Listing 4.4. Usage of CachedArray usage in code.

4.5. Annotations for CNN Workloads

For our DNN implementations in Julia, we implemented the back-propagation algorithm [58]

using ChainRules.jl4 style reverse rules (rrule). Briefly, an rrule (see Listing 4.5) is a function that

returns the primal value y (i.e., result of a normal evaluation) of a function f and a pullback function.

The pullback function maps the adjoint5 of the output ȳ and returns a tuple of the adjoints of each

of the function’s input variables. In the case of DNN training, this pullback is a closure capturing

intermediate activations. Automatic differentiation frameworks can use these pullback definitions

to construct the full forward and backward passes for neural networks.

� �
1 function ChainRulesCore.rrule(f::F, x...) where {F}
2 ...
3 return y, pullback
4 end� �

Listing 4.5. General signature for an rrule. The primal return value y must be
equal to f(x...) and the pullback is a function mapping the adjoint ȳ to the adjoints
of the arguments (f̄, x.̄..).

Implementing the policy annotations is critical to achieving high performance for large scale

workloads, as demonstrated in previous chapters. Our strategy for data movement and placement

is taken from heuristics described by vDNN [89] and AutoTM [44]. Upon a kernel execution, we
4https://github.com/JuliaDiff/ChainRules.jl
5Adjoint: Partial derivative with respect to the whole network’s loss variable.

81

https://github.com/JuliaDiff/ChainRules.jl

� �
1 function ChainRulesCore.rrule(conv::Conv, x::UnreadableCachedArray)
2 # Prefetch the input tensor `x` and weight/bias tensors stored in `conv`.
3 prefetch!(conv, x; force = true)
4
5 # Execute the convolution by recursing with a readable CachedArray.
6 # Marking `x` as readable will dispatch to the correct `rrule` implementation.
7 # * `y`: The primal value of the convolution operation.
8 # * `pullback`: Closure implementing the backwards operation.
9 y, pullback = @noescape manager(x) ChainRuleCore.rrule(conv, readable(x))

10
11 # Wrap `pullback` in another closure to annotate the backwards operation.
12 function pullback_wrapper(dy)
13 # Prefetch intermediate tensors `x` and `y` (lexically scoped)
14 prefetch!(x, y, dy; force = true)
15
16 # Execute the backwards kernel.
17 # Variable `dargs` contains the propagated partial derivatives.
18 dargs = @noescape manager(x) pullback(readable(dy))
19
20 # Cleanup intermediate state that is no longer needed.
21 cleanup!((y, dy, pullback), preserve((conv, x)))
22 softevict!(conv)
23 return dargs
24 end
25
26 # Prioritize for eviction if needed.
27 softevict!(conv, x)
28 return release(y), pullback_wrapper
29 end� �

Listing 4.6. Full memory annotation used for a convolution layer during VGG training.

prefetch all inputs to be used by that kernel into DRAM, ensuring that all outputs are also located

in DRAM. On the forward pass, we then mark all kernel inputs as eviction candidates, meaning

that if the policy experiences memory pressure these objects will be prioritized for eviction on an

LRU basis. During the backward pass, we aggressively free the variables captured by the pullback

closure that were used to compute the backward pass to progressively reduce memory consumption

during the whole backward pass.

Listing 4.6 demonstrates a manual CachedArray annotation used in VGG style networks. In detail,

the annotated function first prefetches its argument array x and the weight/bias arrays held within

conv. The original implementation for ChainRulesCore.rrule(::Conv, ::DenseArray) is then manually

called by converting x to Readable, which also allows the policy to infer array usage6. The backwards

pass closure pullback is then annotated by wrapping it in yet another closure pullback_wrapper.
6More powerful techniques for calling the intended method are available if this approach is insufficiently expressive.

82

Note that the pullback wrapper also eagerly frees intermediate state that was captured by the

original pullback closure (line 9) using the preserve and cleanup! utility functions. In essence, this

is the freeing of intermediate state that techniques like AutoTM [44] and vDNN [89] use. Finally,

both the primal and pullback implementations use softevict! to prioritize the argument x and

weight/bias arrays for eviction should memory pressure arise.

Most of our annotations follow the pattern given in Listing 4.6 and are tailored to each network.

For example, since VGG style networks are linear, we can call cleanup! after each layer on the

backward pass. This does not work for networks like ResNet or DenseNet, however, due to the

more complicated data flow. Instead, we create larger abstractions such as the ResidualBlock for

ResNet and perform object cleanup on this coarser level.

4.5.1. The Need for Memory Optimizations. The example policy implementation in List-

ing 4.6 contains two memory lifetime related optimizations: cleanup! and @noescape. These are used

to reduce reliance on the garbage collector. In particular, Julia’s GC heuristics aren’t well tuned

for types like CachedArrays. As a result, allocated arrays may be kept alive much longer than needed.

This is problematic when fast memory is at a premium because these arrays will likely be evicted

in the future, resulting in an unnecessary and slow write-back to PM. The utility macro @noescape

implements escape analysis to eagerly free short lived CachedArrays that were allocated during a

function call. The function cleanup! frees intermediate activations that were used to compute the

backwards operation. Together, these optimizations can increase memory reuse.

4.5.2. Policy Implementation Details. Here, we describe the machinery required to imple-

ment functions like cleanup!. The goal of these functions is to call a function (in the case of cleanup!,

this function is unsafe_free from the policy API) on all Objects contained within their argument

variables. What makes these tricky is that these functions need to work on arbitrary types. For

example, in Listing 4.6 the closure pullback is passed to the cleanup! function. In Julia, closures are

anonymous structs with captured variables as members of the struct. Furthermore, these closures

themselves might contain more closures resulting in arbitrarily complicated type hierarchies.

To that end, we introduce the onobjects function shown in Listing 4.7. The main goal of

this function is to recursively traverse tree-like types (no circular references) and call the provided

83

� �
1 # Base case - end of recursion
2 onobjects(f::F, x::Object) where {F} = f(x)
3 onobjects(f::F, x::CachedArray) where {F} = onobjects(f, x.object)
4
5 # Handle containers
6 function onobjects(f::F, x::Union{NamedTuple,Tuple,AbstractArray}) where {F}
7 for i in eachindex(x)
8 onobjects(f, x[i])
9 end

10 end
11
12 # generic fallback using reflection
13 # specialized on each type `T`.
14 function onobjects(f::F, x::T) where {F,T}
15 isbitstype(T) || iszero(fieldcount(T)) && return nothing
16 for name in fieldnames(T)
17 onobjects(f, getfield(x, name))
18 end
19 return nothing
20 end� �

Listing 4.7. Implementation sketch for onobjects to traverse tree-like types (no
circular references) and all the provided function f on each CachedArrays.Object
discovered during the traversal.

function f on each CachedArrays.Object discovered in the traversal. Lines 2 and 3 implement the base

cases where an Object or CachedArray is encountered. In these cases, the underlying Object is passed

to the function f. For collections like Tuples or Arrays (lines 6 to 10), each item in the collection

visited. The generic implementation for composite types is shown on lines 11 to 17. This uses

Julia’s reflection capabilities to traverse arbitrary types. Because Object are mutable types (i.e.,

have a stable address and are tracked by the GC), they cannot be held within isbitstypes. This

allows the optimization on line 12 which can avoid excess compilation overhead. With this utility,

the function prefetch!, for example, can be called on all nested objects with x using the following:

onobjects(prefetch!, x). Note, however, that the example implementation in Listing 4.7 does not

generate the most efficient code and more powerful techniques like Julia’s @generated functions are

required for highest performance.

More complicated utility functions are demonstrated in Listing 4.8. The function preserve adds

all encountered Objects to an associative data structure. Function cleanup! will call unsafe_free

on encountered objects, unless these objects are explicitly preserved. Finally, noescape takes a

function f and with the help of the data manager, free all Objects allocated during the execution

of f that don’t escape the function call. To do this, it samples the current highest object id from

84

� �
1 # `onobjects` implementation.
2 # Helper functions
3 function preserve(x)
4 ids = Set{Object}()
5 onobjects(o -> push!(ids, o), x)
6 return ids
7 end
8 cleanup!(x, keep::Set{Object}) = onobjects(o->(in(o, keep) || unsafe_free(o)), x)
9

10 # noescape
11 function noescape(manager, f, args...; kw...)
12 start = readid(manager)
13 result = f(args...; kw...)
14 saved = preserve((result, f, args...))
15 stop = readid(manager)
16
17 # Manually free any objects.
18 for id in start:stop
19 # Get the object from the manager using a unique `id`.
20 # If that `id` doesn't exist, then `getobject` will return `nothing`.
21 object = getobject(manager, id)
22 if object !== nothing && !in(object, saved)
23 unsafe_free(manager, object)
24 end
25 end
26 end� �

Listing 4.8. Utility functions building towards user-defined escape analysis utilities.

the manager, then calls the function f. All objects discovered within the result of f, f itself, and

all arguments are then collected and the highest object id from the manager is sampled again.

Because the object id monotonically increments for each allocation made through the manager, all

intermediately allocated objects lie within the range of ids from start to stop. In lines 18 to 25,

the manager is queried to determine if an Object with the given id exists. If so and that object

isn’t preserved as either an argument or return value, than the object is eagerly freed. Note:

This assumes that (1) noescape is running in a single-threaded context, (2) the function f does not

mutate its arguments, and (3) no arguments contain circular references. With engineering effort,

all of these restrictions can be loosened.

4.6. Evaluation Methodology

In this section, we describe the general methodology used evaluate the performance of CachedAr-

rays. Unless otherwise specified, our case studies were performed as the sole user of a 2-socket 56

core (112 thread) Intel Xeon Platinum 8276L running Ubuntu 21.10 with 192 GiB (6x32 GiB)

85

Model Batchsize Footprint
DenseNet 264 1536 526 GB
ResNet 200 2048 529 GB
VGG 416 256 520 GB

Table 4.6. Large scale CNN Benchmarks

DRAM and 1.5 TB (6x256 GiB) Optane DC PM per socket. Experiments were conducted on a

single socket, with one thread per physical core.

To implement deep learning primitives, we wrote a Julia wrapper around Intel’s oneDNN [23]

library. OneDNN is a library the provides kernels such as convolutions, dense layers, and batch

normalization that are tailored for high performance on Intel CPUs. Our wrapper library uses

the oneDNN C-API to create and execute these kernels from Julia. Memory for kernel input

and output tensors comes from the Julia side, and our library has been written such that this

memory is backed by some suitable AbstractArray. This allows our library to be its own stand-alone

library independent of CachedArrays while still offering full support for its memory management

capabilities. More details about this wrapper library are provided in Appendix A.

4.6.1. Large Networks - Comparison With 2LM. The Xeon server used to run these

experiments can be configured in two modes, allowing multiple different use cases for PM. The

memory mode (2LM) configures PM as main memory with DRAM serving as a transparent, direct-

mapped cache [43]. App direct allows PM to be used directly. In this mode, PM can either be

configured as an extra NUMA node to be used automatically by the OS, or mounted as a direct

access (DAX) file system. In the latter case, files memory mapped from the PM-based DAX file

system are directly mapped into the program’s address space with reads and writes sent directly

to the PM devices. Our full CachedArrays based policy uses this last option.

To compare against 2LM, the overall memory footprint of the models used for benchmarking

needs to greatly exceed the size of DRAM cache on a single socket. This was achieved though a

combination of deep networks and large batchsize. For large traditional networks, we used ResNet

200 [41] and DenseNet 264 [46], two networks with complex data flow. As an extra comparison

point, we implemented VGG 416 [89], which is essentially a greatly extended VGG 16. A summary

86

is provided in Table 4.6 along with the approximate minimum memory footprint required for a

single iteration of training.

Furthermore, we want to investigate the relative impact of the various optimizations described

in Section 4.5. These optimizations include:

• Memory Optimizations (M): Section 4.5 describes memory optimizations like cleanup!

and @noescape to free memory as soon as possible. By doing this, we reduce the amount of

data kept alive longer than necessary by the garbage collector. If this intermediate data

is kept alive, than it must be written to PM if evicted to maintain correctness, resulting

in unnecessary slow PM writes. Disabling this optimization means we need to rely on the

garbage collector for resource management which involves explicitly triggering collection

when memory pressure is detected.

• Local Temporary Allocations (L): As discussed in Section 4.2.3, CachedArrays has

been designed to support unlinked regions in fast memory. In essence, this allows newly

created arrays to be allocated in DRAM only as opposed to a true cache which would

always have a backing region in PM. In combination with the memory optimizations, this

is a potent tool for reducing PM traffic. Our policy can be modified to disable local allo-

cations, in which case a newly created array must first be allocated in PM and then copied

into DRAM before use. The purpose of disabling this optimization is to more directly

compare with a naive 2LM implementation. Since 2LM operates as a DRAM cache, each

physical cache line must ultimately have a copy in PM. By effectively generating a com-

pulsory miss on first access with CachedArrays, we can more closely model the behavior

of 2LM.

• Prefetching (P): The discussion in Section 4.5 discussed prefetching any arrays that

would be used during kernel execution. However, Figure 3.4 suggests that kernel execution

time may be less sensitive to the location of read-only arguments. Further, prefetching

requires making room in DRAM for the prefetched arguments, which could result in other

arrays being evicted to PM. To explore this trade-off, we also prefetching to be disabled

globally.

87

Abbreviation Description
2LM: ∅ 2LM with no memory optimizations. Garbage collector will be invoked

when the heap reaches 80% utilization.
2LM: M 2LM with memory freeing optimizations. Invocation of the garbage

collector is not needed.
CA: ∅ CachedArrays with no memory optimizations or prefetching. Further-

more, all arrays begin in PM and must be moved into DRAM before
use, mimicking what would happen in a true cache. Like “2LM: ∅”, the
GC will be invoked if the PM heap reaches 80% utilization.

CA: L CachedArrays with no memory optimization or data prefetching. How-
ever, unlike “CA: ∅”, arrays can be allocated in DRAM only and don’t
need a linked region in PM.

CA: LM CachedArrays with memory optimizations but no data prefetching.
CA: LMP CachedArrays with memory optimizations and prefetching.
Table 4.7. Combinations of operating modes and optimizations explored for the
very large CNN models.

The combination of optimizations and operating modes is outlined in Table 4.7. Comparing

“2LM: ∅” and “2LM: M” will show the impact that the higher virtual memory reuse induced by the

memory optimizations has on the performance of the DRAM cache. The CachedArrays based runs

will then show how CachedArrays compares against 2LM as well as impacts of various optimizations.

All runs in 2LM were conducted with a maximum memory size of 1300 GB. When we run in

app direct mode, CachedArrays is configured with the same hardware limits of 180 GB DRAM and

1300 GB PM. After each training iteration (forward + backward pass), the GC was invoked to

clean up all temporary memory, leaving only the model weights and computed gradients. The local

heap was than defragmented before the next run to help keep behavior similar across iterations

(defragmentation overhead is negligible compared to the iteration time). Each model was run for

8 iterations and performance metrics were checked to ensure that behavior for each iteration was

consistent. Input data was randomly generated using a normal distribution.

For each experiment, we used hardware performance counters to capture read and write traffic

to DRAM and PM. For the 2LM based runs, the same hardware counters were used to also capture

DRAM cache statistics including cache hits, clean cache misses, and dirty cache misses. All memory

heaps used by CachedArrays are pre-allocated before running our experiments, ensuring that the

OS assigns physical pages to all virtual pages within the heap. This in itself provides a large

speedup over Julia’s default allocator. For large allocations, normal allocators typically memory
88

Model Batchsize
DenseNet 264 504
ResNet 200 640
VGG 116 320

Table 4.8. Small scale CNN benchmarks for sensitivity analysis. The memory
footprint for these networks is between 170 and 180 GB.

2LM: ∅
2LM: M

CA: ∅
CA: L

CA: LM
CA: LMP

0

100

200

300 291

211 216

178

131 143

It
er

at
io

n
T

im
e

(s
)

(a) DenseNet 264

2LM: ∅
2LM: M

CA: ∅
CA: L

CA: LM
CA: LMP

0

200

400 361

227
264

244

169 176
It

er
at

io
n

T
im

e
(s

)

(b) Resnet 200

2LM: ∅
2LM: M

CA: ∅
CA: L

CA: LM
CA: LMP

0

200

400

600

450

366

468
427

365 353

It
er

at
io

n
T

im
e

(s
)

(c) VGG 416

Figure 4.5. Average execution time for a single iteration of training for the large
networks, categorized by operating mode and applied optimizations. Refer to Ta-
ble 4.7 for a description of the x-tick marks.

map new more memory from the OS, which must be zero-initialized and the virtual to physical

address translation established. Because of this overhead, we do not present results with Julia’s

default allocator and instead use 2LM with the CachedArrays allocator as the baseline.

4.6.2. Small Networks - Sensitivity Analysis. As with AutoTM, we can vary the amount

of DRAM available to CachedArrays to see how our simple policy holds up as we decrease the

DRAM allowance. To that end, we use the networks and batch sizes provided in Table 4.8. These

are chosen such that the memory footprint required for training fits within 180 GB and thus can

fit within the DRAM of a single socket of our benchmark machine. We then vary the DRAM

budget from the full 180 GB down to 0 GB (PM only). Note that for this experiment, we use VGG

116 instead of VGG 416 in order to mantain a reasonably high batch size. All of these runs were

conducted in the “CA: LM” mode as this tends to perform well across all networks.

89

0 50 100 150 200 250 300 350
0

500

1,000

Iteration Runtime (s)

M
em

or
y

U
se

d
(G

B
)

2LM 2LM: M
CA: LM CA: LM

Figure 4.6. Resident heap memory through a single iteration of ResNet training.
The 2LM based experiments have a single memory heap which is implicitly managed
by Intel’s DRAM cache. Full CachedArrays explicitly managed two heaps, one for
DRAM (local) and one for PM (remote).

4.7. Results

Figure 4.5 shows the absolute runtime for a single iteration for the large CNN benchmarks.

First, we explore the performance of “2LM: ∅” (2LM with no optimizations) and “2LM: M” (2LM

with memory optimizations). Memory optimizations improve the performance of 2LM by 1.38×,

1.59×, and 1.23× for DenseNet 264, Resnet 200, and VGG 416 respectively. For CachedArrays,

“CA: L” (supporting local-only allocation) is faster than “CA: ∅”, and applying memory optimiza-

tions further improves performance. Prefetching hurts performance for DenseNet and ResNet, but

improves performance for VGG. In summary, the fastest version of CachedArrays is 1.38×, 1.34×,

and 1.04× faster than the fastest version of 2LM.

Two behaviors lead to CachedArrays’ performance improvement: memory reuse distance and

traffic shaping. To understand the former, consider Figures 4.6 and 4.7. Figure 4.6 shows the

occupancy of the memory heaps for a single iteration of ResNet under three operating regimes.

The two 2LM based runs only have a single memory heap that is implicitly managed by the

hardware DRAM cache while CachedArrays (with memory optimizations and local allocation) has

two heaps: one DRAM based and one PM based. Without any memory optimizations (“2LM:

∅”), memory usage keeps increasing until the GC is run (around time 220 s) which causes the

monotonically increasing behavior of that curve. In contrast, when the annotated run (“2LM: M”)

begins its backward pass, (around time 100s) it proactively frees memory produced on the forward

90

2LM: ∅ 2LM: M
0

0.2

0.4

0.6

0.8

1

0.634
0.813

0.083 0.041

0.283
0.147

Fr
ac

tio
no

fA
cc

es
se

s

Hits Clean Misses Dirty Misses

Figure 4.7. Tag statistics when running in memory mode for a single iteration of
training ResNet 200.

pass. This results in more reuse of the physical pages backing that memory, leading to fewer cache

misses and less data movement.

Supporting this idea is Figure 4.7, which shows the average DRAM cache hit, clean miss, and

dirty miss rates for the two 2LM runs. The annotated run has a 18% higher hit rate 50% lower

dirty miss rate, both of which improve 2LM performance [43]. By adding semantic information,

we achieved better utilization of the underlying data movement mechanism.

To understand the performance difference between 2LM and CachedArrays, we also need to

understand the total amount of memory moved for a single iteration of training. Figure 4.8 shows

the total amount of DRAM and PM traffic for a single iteration of training for each of our large

networks, further broken into reads and writes. With no optimizations, CachedArrays is slower than

memory-optimized 2LM and in the case of VGG is even slower than unoptimized 2LM. For DenseNet

and ResNet, “CA: ∅” generates similar read and write traffic to “2LM: ∅”, though with generally

fewer PM writes. The saving of PM writes occurs because even though memory optimizations are

not applied, we still run the garbage collector after every iteration of training. In 2LM, this does

not really help because physical addresses used on the backwards pass are still dirty with respect

to the DRAM cache (see the discussion in Section 2.5.2). However, this does help CachedArrays,

resulting in better performance.

Even through this still applies to VGG, “CA: ∅” is still slower than “2LM: ∅”. This is where

traffic shaping comes into play. From Chapter 2, we know that large sequential accesses provide

the highest bandwidth for PM. In 2LM, PM traffic is haphazard and results from conflict misses

91

2LM: ∅ 2LM: M CA: ∅ CA: L CA: LM CA: LMP
0

2,000

4,000

6,000

8,000 4,879

4,883

4,757

4,806

4,192

4,650

3
,835

2,865

3,454

1,986

1,987

2,337

1
,866 881

2
,125 679

517

436

1,417 680

1
,045

1
,126 348

370
D

at
a

M
ov

ed
(G

B
)

DRAM Read DRAM Write PM Read PM Write

(a) DenseNet 264

2LM: ∅ 2LM: M CA: ∅ CA: L CA: LM CA: LMP
0

5,000

10,000

6
,527

6
,522

6
,0
56

5
,802

5
,5
88

6,2
79

4,495

3
,309

4
,040

2
,208

2
,320

2
,685

2,195

1,00
1

2,760

1,278

681

37
0

1,690 8
17

1,099

1,2
13

362

368
D

at
a

M
ov

ed
(G

B
)

(b) Resnet 200

2LM: ∅ 2LM: M CA: ∅ CA: L CA: LM CA: LMP
0

5,000

10,000

15,000

20,000

11
,297

11
,30

2

8
,4
51

8
,436

8
,9
32

10
,8655,8

29

4
,651

5
,409

3
,851

3
,854

4
,202

1,994

800

4,7
07

3,170

1,952

35
6

1,530

5
56

1,047

1,0
64

340

342
D

at
a

M
ov

ed
(G

B
)

(c) VGG 416

Figure 4.8. Amount of data moved for a single iteration training for the large CNNs.

2LM: ∅
2LM: M

CA: ∅
CA: L

CA: LM
CA: LMP

0

0.1

0.2

0.3

0.063

0.047 0.085
0.06

0.036 0.025

0.179
0.254 0.222 0.192

0.273 0.299

B
us

U
til

iz
at

io
n

DRAM PM

(a) ResNet 200.

2LM: ∅
2LM: M

CA: ∅
CA: L

CA: LM
CA: LMP

0

0.1

0.2

0.3
0.046 0.022

0.072 0.058
0.037

0.012

0.223 0.256
0.174 0.169 0.206 0.25

B
us

U
til

iz
at

io
n

DRAM PM

(b) VGG 416.

Figure 4.9. Average utilization of the six channel 2.666 MT/s DRAM bus.

in the DRAM cache. With CachedArrays, PM traffic is the result of explicit, well shaped memory

copies.

Figure 4.9 shows the average utilization of the memory bus for a single iteration of training for

VGG 416 and ResNet 200. For ResNet, “CA: ∅” achieves a higher average utilization than “2LM: ∅”

92

while the situation is reversed for VGG. The memory movement engine in CachedArrays is highly

multithreaded, specifically targeting large memory sizes. This works great for ResNet because the

large batch size of 2048 results in large memory transfers. However, a much smaller batch size of

256 is used for VGG, leading to smaller data transfers and more parallelization overhead. Note,

however, that bus utilization isn’t the whole story and must be considered in the context of overall

memory moved. As optimizations are applied via CachedArrays, bus utilization tends to increase

and overall all traffic generated tends to decrease, both resulting in better performance.

Impact of Local Allocation: Adding the local allocation optimization to CachedArrays

significantly decreases the PM read and DRAM write traffic (due to the elision of the initial memory

copy). The performance difference between these two is largely due to the decreased time spent

synchronously moving data.

Impact of Memory Optimizations: Memory optimizations decrease memory pressure by

freeing memory as soon as possible. This avoids many unnecessary writes to PM, which can be

seen in Figure 4.8. In particular, observe the difference in PM reads and writes in Figure 4.8a

between “CA: L” and “CA: LM”. For “CA: L”, the number of PM writes exceeds the number of

PM reads, implying that unnecessary data is being moved to PM. This is the result of intermediate

allocations not being freed as soon as possible. When applying memory optimizations (“CA: LM”),

the number of PM writes for DenseNet drops from 1̃100 GB to 3̃50 GB, with PM reads exceeding

PM writes. The other networks (Figures 4.8b and 4.8c) experience similar decreases in PM writes

when applying memory optimizations. The local allocation and memory optimizations reduce the

amount of PM writes down to a bare-minimum.

Impact of Prefetching: Enabling data prefetching harms performance for DenseNet and

ResNet. As can be seen in Figure 4.8a and 4.8b, prefetching decreases PM read traffic and increases

DRAM read traffic because arrays are moved from PM to DRAM where there are referenced

multiple times to compute the backwards pass. However, as indicated in Figure 3.4, some operations

are not particularly sensitive to the bandwidth of their read-only arguments. Hence, this prefetch

wastes time and potentially evicts other arrays. In the case of VGG, on the other hand, prefetching

does slightly improve performance since it significantly decreases PM read traffic by a factor of

5.4×. This shows that there is no “one size fits all” approach to memory management.

93

0 50 100 150
0

50

100

150

200

DRAM Allowance (GB)

R
un

tim
e

(s
)

Including Movement Time
Excluding Movement Time

(a) DenseNet 264.

0 50 100 150
0

50

100

150

200

DRAM Allowance (GB)

R
un

tim
e

(s
)

Including Movement Time
Excluding Movement Time

(b) ResNet 200.

0 50 100 150
0

100

200

300

400

DRAM Allowance (GB)

R
un

tim
e

(s
)

Including Movement Time
Excluding Movement Time

(c) VGG 116.

Figure 4.10. Average runtime for a single training iteration for the small CNNs.
Results are shown for both absolute wall clock time (blue) and projected time if data
movement could be perfectly hidden behind computation (red). These runs were
conducted with local allocation and memory optimizations, but without prefetching
enabled.

In summary, full CachedArrays results in less DRAM and PM traffic overall, because CachedAr-

rays is aware that data freed on the backwards pass is semantically dead, and thus does not need to

be written back to PM. Hardware caches do not have this semantic insight and thus must always

act conservatively. Furthermore, Figure 4.8 shows the average DRAM bus utilization though out

an iteration of training. CachedArrays maintains a higher average utilization while also moving

less total data. With CachedArrays, we are able to both maintain the memory semantics required

to elide unnecessary dirty writebacks and use traffic shaping achieve high bandwidth.

4.7.1. Results for Small Networks. The runtime for a single iteration of training for the

smaller networks is shown in Figure 4.10. As with AutoTM, running with only PM results in a

3–4× performance penalty. However, with even just a little DRAM, we’re able to get most of that

performance back. These results are consistent across the models used.

Figure 4.10 also shows what the performance would be if CachedArrays had perfectly asyn-

chronous data movement (as opposed to purely synchronous) and could overlap movement with

execution. One possible implementation of this asynchronous data movement would be to keep two

distinct thread pools, one for compute and one for data movement, and launching both kinds of

operations concurrently. For DenseNet and ResNet, this projected performance varies only slightly

as the DRAM budget decreases. VGG, on the other hand, still experiences a slow-down due to

more and more reads being generated to PM. These results are consistent with the large network

94

results where it was observed that DenseNet and ResNet had lower performance with prefetching

while VGG’s performance improved with prefetching. Evidently, the kernels composing VGG are

more sensitive to read bandwidth.

To understand why only a small amount of DRAM is needed for a large performance improve-

ment over all PM, refer to Figure 3.3 which, amongst other things, shows the scaling of DRAM to

PM copy bandwidth with threads. Contrary to the behavior of pure DRAM, DRAM to PM copy

bandwidth actually decreases with increasing threads. Furthermore, the copy kernel implemented

in Figure 3.3 uses nontemporal stores to PM, which are crucial for best performance7. OneDNN

kernels are not optimized for writing to PM and as such result performance with all PM is slow8.

When a small amount of DRAM is used, than the output parameters of the computation kernels

can placed in DRAM and any movement of data from DRAM to PM goes through code-paths op-

timized to get the best write performance out of PM. An interesting area for future research would

be to explore computation kernel implementations that specialize based on the memory location of

its arguments (much like the specialization via just-in-time compilation based on the dimensions

of the arguments).

The above results demonstrates that while simple policies can achieve good performance, there

is still room for more advanced memory management policies like AutoTM.

4.8. Related Work

Table 4.1 presented a high level summary of the work closely related to this paper. Data tiering

at the OS level uses intelligent page migration [27, 28, 53, 55, 86] to move pages between slower

and faster memories based on heuristics such as hotness and probability of reuse based on runtime

characteristics. Techniques such as Nimble Pages [108] and KLOC [54] explore different page

granularities, efficient page swapping, and tailoring page migration to specific data structures such

as kernel objects. However, none of these workloads address deep learning workloads, especially

those with very large memory footprints and sparse embeddings which are the focus of this work.
7Standard stores require a read from PM for cache-coherence reasons, resulting in a mix of read and writes to PM.
8Recall that Optane DC (PM) is primarily bandwidth limited during writes.

95

For deep learning workloads there has been a plethora of work in the CPU/GPU heterogeneous

environments to overcome the memory limitations of GPUs. Works like vDNN [89] and its deriva-

tives [15,83,85] exploit the unique characteristics of the backpropagation algorithm. These works

were generalized in frameworks such as AutoTM [44] that formalize the optimal tensor placement

and movement problem in the backpropagation algorithm using mathematical optimization tech-

niques, and Sentinel [87] by taking advantage of the runtime profiling information of PM/DRAM

based heterogeneous memory systems. However, these techniques cannot be directly applied to

workloads such as DLRM that have sparse embedding tables and workloads where the reuse pat-

terns are less straightforward. Sage [26] explores this problem for large scale graph analytics. The

authors propose new data structures and algorithms that partition the data so that writes are di-

rected to DRAM while read heavy data is stored in PM. In contrast, CachedArrays is applicable to

both “simple” backpropagation algorithms and sparse accesses such as embedding tables (covered

in the next chapter) by allowing specialization of the policy.

4.9. Discussion

This chapter presented an API and abstraction layer that can facilitate algorithmic development

using heterogeneous memory. However, policy implementation is largely left to the programmer,

whether through direct injection of commands like prefetch! or through customization of the policy

component of the cache manager. The example policy used for the CNN case study has been

studied by works like vDNN [89] and AutoTM [44] and as such, this chapter focused more on

demonstrating the mechanism rather than the policy. In this section, we will explore techniques

that can build on top of CachedArrays to automatically implement policies. As an example, we will

sketch how one might implement AutoTM on top of our CachedArrays and OneDNN libraries.

In Julia, the relationship between compile-time and run-time is blurrier than many static lan-

guages such as C++ or Rust. Much of the Julia compiler is itself written in Julia and can be

invoked and inspected at runtime. Staged compilation features such as the @generated function

allow function bodies to be programatically generated. This has lead to packages like Cassette.jl

[88] and IRTools.jl9 which allow the user to inject context-specific transformations into the Julia
9https://github.com/FluxML/IRTools.jl

96

https://github.com/FluxML/IRTools.jl

� �
1 using Cassette
2 Cassette.@context MyCtx
3 Cassette.prehook(::MyCtx, f, args...) = println("MyCtx: ", f, typeof.(args))
4
5 # Test Function
6 inc(x) = x + 1
7 mul(x, y) = x * y
8 inc_double(x) = mul(inc(x), inc(x))
9

10 # Run the function normally.
11 inc_double(10)
12 # stdout> 121
13
14 # Run under Cassette
15 Cassette.overdub(inc_double, 10)
16 # stdout> MyCtx: inc(Int64,)
17 # stdout> MyCtx: +(Int64, Int64)
18 # stdout> MyCtx: add_int(Int64, Int64)
19 # stdout> MyCtx: inc(Int64,)
20 # stdout> MyCtx: +(Int64, Int64)
21 # stdout> MyCtx: add_int(Int64, Int64)
22 # stdout> MyCtx: mul(Int64, Int64)
23 # stdout> MyCtx: *(Int64, Int64)
24 # stdout> MyCtx: mul_int(Int64, Int64)
25 # stdout> 121� �

Listing 4.9. Example of creating a contextual code transformation using
Cassette.jl [88]. In this example, our custom context MyCtx simply prints the
name and argument types of each sub-function called using the prehook mechanic
(a function called on a function f and arguments args before recursively calling f(
args...)). Note that the implementation of inc_double does not need to know of the
existence of Cassette in order to be modified by Cassette.

compiler. An example of this is shown in Listing 4.9, which shows a simple method for printing

out all lower-level functions called to implement the top function inc_double.

A more powerful version of the toy example provided in Listing 4.9 is implemented by the

package Ghost.jl10. This package creates a linearized Wengert list [5] for a given function. This list

can then be inspected, modified, and compiled. An example of a simplified trace for Vgg19 using

the OneDNN framework is shown in Listing 4.10. Here, we can see the function calls for individual

convolutions (e.g. lines 4 and 8), pooling (line 11), and the final dense layers (lines 26 to 35).

To implement AutoTM, one could inspect this list, profile intermediate kernels with inputs in

combinations of DRAM and PM (using CachedArrays), One could then construct tensor graphs

by inspecting the tape, perform the ILP optimization, modify the tape to insert the appropriate

prefetch and eviction instructions, and finish by compiling the tape.
10https://github.com/dfdx/Ghost.jl

97

https://github.com/dfdx/Ghost.jl

� �
1 ...
2 %9 = getfield(%6, 1)::OneDNN.Conv{..., typeof(relu), 2}
3 %10 = getfield(%6, 2)::Int64
4 %11 = %9(%2)::Memory{Float32, 4, Array{Float32, 4}}
5 ...
6 %15 = getfield(%12, 1)::OneDNN.Conv{..., typeof(relu), 2}
7 %16 = getfield(%12, 2)::Int64
8 %17 = %15(%11)::Memory{Float32, 4, Array{Float32, 4}}
9 ...

10 %21 = getproperty(%3, maxpool)::Pooling{OneDNN.Lib.dnnl_pooling_max, 2}
11 %22 = %21(%17)::Memory{Float32, 4, Array{Float32, 4}}
12 ...
13 %149 = first(%147)::OneDNN.Dense{..., typeof(relu)}
14 %150 = %149(%144)::Memory{Float32, 2, Matrix{Float32}}
15 %151 = tail(%148)::Tuple{OneDNN.Dense{..., typeof(relu)}}
16 %152 = first(%148)::OneDNN.Dense{..., typeof(relu)}
17 %153 = %152(%150)::Memory{Float32, 2, Matrix{Float32}}
18 %154 = tail(%151)::Tuple{}
19 %155 = first(%151)::OneDNN.Dense{..., typeof(relu)}
20 %156 = %155(%153)::Memory{Float32, 2, Matrix{Float32}}
21 const %157 = logsoftmax::typeof(OneDNN.logsoftmax)
22 %158 = %157(%156, 1)::Memory{Float32, 2, Matrix{Float32}}� �

Listing 4.10. Truncated, linearized execution tape for Vgg19 using OneDNN
generated by the Ghost.jl package. The tape is represented as a Static Single
Assignment (SSA) representation.

Now, this implementation sketch ignores many engineering details required to actually make

such a system work and robust. Nevertheless, it demonstrates a feasible path towards implementing

automatic heterogeneous memory management using CachedArrays as a building block, rather than

modifying an existing framework to be aware of heterogeneous memory.

4.9.1. Enabling Dynamic Policies. The policies explored in this chapter were fixed. That

is, annotations like prefetch! where either universally enabled or disabled. However, as seen in

Figure 4.5, some networks benefit from prefetching while others don’t. A more powerful implemen-

tation might be able to make these decision on the fly using online profiling.

AutoTM used offline profiling of kernels to drive its mathematical decision making. A similar

technique could be used for online profiling. For instance, every time a kernel was executed, the

policy could be notified. During the profiling phase, the policy could explore different combinations

of argument locations in DRAM and PM, building an online profile of kernel behaviors. This

behavior could then be used to drive future decisions about whether to prefetch or not (e.g.,

kernels that aren’t sensitive to the location of their arguments wouldn’t require prefetching).

98

In the context of Julia, proper implementation would require care. OneDNN kernels could

opt-in to this kind of profiling through modifications to the source code of the wrapper library.

However, operations can be implemented in pure Julia as well. In the latter care, we can again use

compiler transformations like Cassette to annotate specific kernels as “profile points”. The function

dispatch tuple (i.e., for a function f(args...), its dispatch tuple is Tuple{typeof(f),typeof.(args)...})

as well as properties of the arguments (such as size of any arrays occurring in the arguments) could

be used to as a key for the profile table. However, such profiling must be done at an appropriate

granularity to avoid unnecessary overheads.

4.9.2. Limitations. Our CachedArrays prototype was implemented in user space and while

it provides significant performance improvements, there are limitations. For instance, on current

hardware, memory copying must be performed using the CPU cores, removing clock cycles from

compute. Our prototype also only supports ML algorithms written in Julia.

4.9.3. Generalizing to Other Languages. Languages with more aggressive memory man-

agement like C++ or Rust may have simpler implementations and may require fewer manual

memory annotations. We can implement CachedArrays in the STL containers in C++ using the

allocator interface. Python based frameworks like PyTorch or Tensorflow have robust compiler and

runtime infrastructures that allow memory optimization passes and custom allocators.

99

CHAPTER 5

DLRM Case Study

5.1. Introduction

In the last chapter we introduced CachedArrays, a data-tiering API and implementation as a

Julia abstract array data type. Using this datatype, we were able achieve similar heterogeneous

memory management results as AutoTM using a bottom-up approach, rather than a top-down.

In this chapter, we will again use CachedArrays and the data management ideas developed in

the previous chapter, but targeting a Deep Learning Recommendation Model (DLRM) workload

instead. Specifically, we will target the embedding table lookup and gradient descent update

operations. Unlike CNNs which have a predictable access pattern to large dense arrays, these

embedding table operations are characterized by sparse, low-volume, data-dependent accesses.

Figure 5.1. Generalized DLRM architecture, taking a mix of dense and sparse
input features. Sparse features are converted to dense features using embedding
tables. Output of the bottom MLP and embedding lookup are mixed and finally
processed by a final top MLP.

100

The general DLRM architecture shown in Figure 5.1 is used by Facebook and other companies to

serve recommendations (e.g. link recommendations, movie recommendations, or ads) to users [67].

As shown in the figure, the model operates on a collection of dense features and sparse features.

Dense features are processed by a standard Multi-Level Perceptron (MLP) network. The sparse

features, on the other hand, are used to index into embedding tables to extract dense features.

Sparse features can encode information such as a user id, product id, etc. The outputs of the

individual embedding table lookups are concatenated together and combined with the output of

the bottom MLP using various feature interaction techniques. Post interaction tensors are processed

by a final top MLP before yielding a final result.

The architectural implications of these networks has been investigated in depth in the litera-

ture [37]. Embedding table lookup and update operations are memory bandwidth intensive while

the dense MLP layers, on the other hand, are compute intensive. This combination stresses many

architecture subsystems. Further complicating matters is the size of these embedding tables, which

can occupy tens to hundreds of gigabytes and are expected to grow [37, 52]. In essence, these

embedding table operations require fast, random access to small regions of data (ranging from 64 B

to 1024 B) originating from a large pool.

DLRM style models are not the only application for embedding tables. Many other popular

deep learning models like transformers [104] use such tables as well.

Naive methods for heterogeneous memory embedding table management may fall short for

several reasons. First, just placing the tables in PM will not yield good performance if the tables

are large due to the significantly lower performance of PM when compared with DRAM. Next, the

reuse pattern of entries within an embedding table can vary significantly from essentially random

highly local and can change over time [31]. This suggests the need for a dynamic policy that is

capable of meeting these different requirements.

Researchers have investigated using heterogeneous memory to store portions of these embedding

tables [31]. However, these works tend to focus on using NVMe SSDs for their tiered storage. The

main issue with simple caching is that embedding table are sparsely accessed and lookups have

essentially no spatial locality and varying temporal locality. In this chapter, we will discuss our

high-performance implementation of DLRM in Julia, including an extendable abstract API for

101

embedding table lookup and update, and compare our implementation with a state of the art

PyTorch implementation from Intel [52]. We also propose applying our memory management

framework to the embedding table lookup and update operations, modifying our definition of

“object” to become an entry in the embedding table and taking advantage of the byte level access

granularity offered by Optane DC.

The contributions of this chapter are as follows. In Section 5.2, we present a high-performance

implementation of the embedding table lookup and stochastic gradient descent operations. Sec-

tion 5.3 benchmarks the performance of our implementation in both DRAM and PM, demonstrates

the benefits of certain optimizations, and illustrates certain performance pitfalls like overfetching

by hardware performance counters. Section 5.4 introduces CachedEmbeddings, our approach to

fine-grained heterogeneous memory management for embedding table operations and compares its

performance with standard embedding tables. We then discuss our high-performance DLRM im-

plementation in Section 5.5 and finally study the performance of CachedEmbeddings in the context

of end-to-end DLRM training in Section 5.6.

5.2. Embedding Table Implementation

In this section, we will discuss the details of the embedding table and stochastic gradient

descent (SGD) update operations, characterizing some performance optimizations and traps on

real hardware.

5.2.1. Embedding Table Lookup and Update. Figure 5.2 shows a simplified example of

a reducing embedding lookup and update. The embedding table M consists of a number of feature

vectors (5 in the case of the example figure). The feature vectors are all of uniform length n

(ranging from as low as n = 16 to n > 256) and consist of uniform primitive types (typically

Float32 or BFloat16 [31]). Typically, feature vectors are n-dimensional encodings of categorical data

(e.g., words in a dictionary or users of an application) derived using a process like word2vec [65]. In

this discussion, we assume embedding tables are laid out in row-major order. That is, each feature

vector in the embedding table is interpreted as a row in the embedding table.

During the lookup operation 1 , each row in the output matrix A is constructed by summing

together multiple rows from the input table M in a gather operation. The indices in M to be

102

Figure 5.2. Example of embedding table lookup and updates. In the lookup step,
entries in the embedding table are accessed, accumulated, and written to the des-
tination. In the update step, entries adjoint A are accessed and accumulated. For
an embedding table row j, the gradient consist of all indices i in A such that j was
used to compute the ith entry of the primal A. All indices are in index-1 encoding.

summed 2 can be encoded as a matrix, vector of vectors, or logically similar container. For

example, to compute A3, we perform the operation A3 = M1 +M4 +M5.

The pullback computation 3 1 is like the forward computation in reverse where the table adjoint

M is computed by summing together rows in the adjoint A. Conceptually, a row i in A is part of

the sum to compute row j in M if and only if Mj was used to compute Ai.

We use a reindexing procedure to transform the lookup indices into an collection of update

indices 4 . Internally, the reindexed indices are stores in a CSR-like format and the reindexing

operation itself is done in three major steps. First, a histogram is computed, mapping each seen

index j of M to its count and the order in which it was seen. Second, a prefix sum can be performed

over the histogram to compute offsets in the update CSR array. Finally, a second pass over the
1The back-propagation kernel that takes the adjoint A (i.e. ∂y

∂A
where y is the loss of the model) and computes M .

103

Word Definition
Featuresize The number of element in a feature vector (embedding table element).

Accesses The number of feature vectors accessed and reduced (via a binary oper-
ator like elementwise addition) to compute a single output vector.

Batchsize The number of independent lookup operations grouped together for com-
putational benefit.

Ensemble Collection of embedding tables, each of which is accessed via indepen-
dent lookup operations. In the case of DLRM, the outputs of an ensem-
ble lookup are concatenated together to form a large two-dimensional ar-
ray. This post-op concatenation can be fused with the ensemble lookup.

Table 5.1. Parameters that define a particular instance of the embedding table
lookup and gradient descent update problem.

indices in M is used in conjunction with both the histogram and the previous prefix sum to populate

the entries of the CSR array2.

The computation of the adjoint M is followed by the application of the gradient descent algo-

rithm (not shown in Figure 5.2) where the new embedding table M ′ is computed via M ′ = M−αM

for a learning rate α ∈ R [58]. While other optimizers like momentum or ADAM can be used, we

focus on simple SGD in this work.

Table 5.1 presents a taxonomy of parameters. Figure 5.2 illustrates the case where three rows

in the embedding table are summed to produce a single output row (accesses = 3) and three such

independent operations are performed (batchsize = 3). It could be the case that accesses = 1, in

which case each independent lookup operation is essentially a memcpy. Furthermore, a particular

instance of a DLRM model may use an ensemble of embedding tables, in which case each embedding

table experiences its own lookup and update operations.

5.2.2. Embedding Table API. We seek to apply our framework ideas to embedding tables

lookup and updates. To do this, we separate the algorithm implementation from the embedding

table data structure implementation using the small, well defined API shown in Table 5.2. The

function featuresize simply return the number of elements (e.g. Float32, Float16, etc.) within each

vector. This is implemented such that it may be known at compile time, enabling code generation

customized for a particular featuresize. The function rowpointer returns a pointer to the first element
2The curious reader can see the implementation of this reindexing procedure at the following link: https://github.
com/darchr/EmbeddingTables.jl/blob/269f0b3c5b295af21aef2160c60f0efe2ad635ea/src/utils.jl#L87-L192

104

https://github.com/darchr/EmbeddingTables.jl/blob/269f0b3c5b295af21aef2160c60f0efe2ad635ea/src/utils.jl#L87-L192
https://github.com/darchr/EmbeddingTables.jl/blob/269f0b3c5b295af21aef2160c60f0efe2ad635ea/src/utils.jl#L87-L192

Function Description
eltype(A) Return the element type (e.g. Float32, Float16) of embedding table

A.
featuresize(A) Return the number of elements in each row of embedding table A.

Note: This may be known at compile time.
rowpointer(A, i, [context]) Return a pointer to row i of embedding table A. May additionally

take a context that denote lookup or updating context.
nvectors(A) Return the number of vectors stored in embedding table A.
example(A) Return an instance of some backing array in embedding table A

that may be passed to similar.
Table 5.2. Minimal API required for our embedding table library implementation.

� �
1 function lookup!(dst::AbstractArray, src::AbstractEmbeddingTable, indices)
2 @inbounds for (dst_row, src_row) in enumerate(indices)
3 src_ptr = rowpointer(src, src_row, Forward())
4 dst_ptr = rowpointer(dst, dst_row, Forward())
5 for i in OneTo(featuresize(src))
6 x = unsafe_load(src_ptr, i)
7 unsafe_store!(dst_ptr, x, i)
8 end
9 end

10 return dst
11 end
12
13 function lookup(src::AbstractEmbeddingTable, indices::AbstractVector{T}) where {T <: Integer}
14 # Range check
15 @assert all(>(zero(T)), indices)
16 @assert all(<=(nvectors(src)), indices)
17 # Allocate destination and perform lookup
18 dst = similar(example(src), eltype(src), (featuresize(src), length(indices)))
19 return lookup!(dst, src, indices)
20 end� �

Listing 5.1. Sample embedding table lookup implementation. The optional
context Forward may be used by the embedding table implementation to specialze
for this operation. The function lookup! is implemented such that the destination
array may be an array view, allowing for fusion with a post-op concatenation.

of the requested row. We provide an optional context argument that includes types like Forward and

Update, allowing embedding table implementations to specialize their pointer return strategy. The

final two functions are straightforward, nvectors returns the number of vectors in a table, allowing

for bounds checking, and example provides a mechanism to use custom array types for the embedding

table and to have these custom arrays propagated to the destination.

Example usage of this API to implement a non-reducing embedding table lookup (accesses = 1)

is shown Listing 5.1. The top level function lookup (line 13) performs bounds checking, allocates

105

� �
1 .text
2 mov r8, qword ptr [rdi + 32] # Load Length of Index Vector
3 test r8, r8 # Check if Index Vector is Empty
4 je L88
5 mov r9, qword ptr [rdx] # Base Pointer of Index Vector
6 mov rax, qword ptr [rsi] #
7 mov rdx, qword ptr [rax] # Base Pointer of Source Array
8 mov rsi, qword ptr [rdi] # Base Pointer of Destination Array
9 mov rdi, qword ptr [rdi + 24] # Destination Featuresize

10 add rsi, 32 # Shift base pointer
11 shl rdi, 2 # Adjust Featuresize for Float32 elements
12 xor eax, eax
13 nop word ptr cs:[rax + rax]
14 L48:
15 mov rcx, qword ptr [r9 + 8*rax] # Load lookup index
16 shl rcx, 6 # Adjust for static featuresize
17 vmovups ymm0, ymmword ptr [rcx + rdx - 64] # Load data into AVX Registers
18 vmovups ymm1, ymmword ptr [rcx + rdx - 32]
19 vmovups ymmword ptr [rsi - 32], ymm0 # Store data to destination
20 vmovups ymmword ptr [rsi], ymm1
21 add rsi, rdi # Increment dest base pointer
22 inc rax # Increment Index Vector Index
23 cmp r8, rax # Check if done
24 jne L48
25 L88:
26 vzeroupper
27 ret
28 nop dword ptr [rax]� �

Listing 5.2. Generated x86 assembly code for an embedding table lookup
operation. In this case, each vector in the embedding table consists of 16 Float32
elements. The featuresize (16) is encoded in the type domain, allowing the compiler
to specialize on this amount. As a result, the generated code for the memory copy
(lines 17-20) is completely unrolled.

the destination array, and then delegates the implementation to lookup! (line 1). Now, lookup! is

implemented such that the destination array dst is simply an AbstractArray. In particular, this

allows dst to be a view into a larger array, allowing fusion the post lookup concatenation used in

DLRM.

The example code in Listing 5.1 over simplifies the implementation. In practice, we use ag-

gressive loop unrolling and LLVM vectorizer hints to obtain light-weight loop assembly. We also

supply sufficient machinery such that compile time optimizations can be applied if the result of

featuresize is known at compile time. These optimizations include simpler loop level logic (or even

complete loop unrolling) since the number of iterations required for a memory copy or vector ad-

dition are known at compiler time. Furthermore, if the featuresize is small enough, we can keep all

intermediate partial sums within and x86 CPU’s vector registers, significantly reducing pressure on

106

the L1 cache. This effect is demonstrated in Listing 5.2, which shows the light-weight x86 assembly

for a non-reducing embedding table lookup for a table with a statically-known featuresize of 16

Float32. Note that the memory copy operation (lines 17-20) is completely unrolled and implemented

in just 4 instructions! These optimizations are applied to both the lookup and pullback operations,

with the capability of fusing a model optimizer (like SGD or Adam) directly with the pullback

implementation, avoiding the need to allocate M entirely.

5.2.3. Parallelization Strategy. In the case of DLRM, it’s natural to parallelize lookups

across the ensemble of embedding tables. However, just on its own, this parallelism may not fine-

grained enough for efficient load balancing. Observe that if our lookup or update operations use

data structures like the CSR arrays shown in Figure 5.2, then (1) each entry in the offsets vector

corresponds to a unique destination and (2) the offsets vector can be efficiently partitioned into

smaller chunks since its elements are uniform in size. A thread can work on one of these chunks

and update the corresponding destination rows lock free. Thus, we supplement the inter-table

parallelism with intra-table parallelism to achieve good load balancing across many threads.

5.3. Embedding Table Experiments

In this section, we will explore the tradeoffs in some of the performance optimizations made in

the embedding table library. This information will be used to drive future memory management

procedures.

5.3.1. Methodology. A wide number of tests were conducted over the design space described

below.

• Single vs Multiple Threads: While the full implementation of the lookup and update

operations uses all available threads on a socket to maximize performance, running single

table lookups on a single thread can help distinguish which parts of the implementation

are computationally bound and which are memory bound.

• Static vs Dynamic Cases: As mentioned in previous sections, the embedding table

library has the capability of storing the featuresize as a compile-time parameter (which

will be referred to as the static case. The dynamic case stores the featuresize as a runtime

variable (though this parameter has the same value in both cases). The static case allows

107

for optimizations not available to a simple implementation of the dynamic case, including

complete loop unrolling and storing partial sums in registers.

• Featuresize: We sweep the featuresize from 16 to 256 (with element type of Float32).

Smaller feature sizes have smaller random reads (worse for memory bandwidth perfor-

mance) but lower computation requirements.

• Number of Accesses: Non-reducing lookups have congruent read and write bandwidths

while reducing lookups with a high number of accesses are more read heavy.

• Number of Tables: We vary the number of tables in an ensemble from as low as 10 to

as high as 80. Lower numbers of tables can require intra-table partitioning for better load

balancing.

• Table Location: Placing the tables in DRAM and PM has a considerable impact on

performance.

• Direct vs Indirect Lookup: Eventually, we would like to manage the location of each

individual featurevector. Doing this would require adding a level of indirection to each

vector access. That is, one memory access to retrieve the pointer to the vector and one

more memory access to retrieve the vector. This is opposed to the direct lookup method

that stores all vectors in a contiguous region of memory where vector access is performed

through a base plus offset calculation.

• Standard vs Non-Temporal Stores (Update only): When conducting the final write

of an embedding table update, the library provides the ability to use either standard or

non-temporal stores. Note that in this case, non-temporal stores do not elide the read-for-

ownership for the corresponding cache lines because these lines were already read as part

of the application of gradient descent. However, using non-temporal stores can provide

some measure of grouping together write to adjacent memory locations.

• Number of Worker Threads (Update only): Based on the data presented in Fig-

ure 2.2b, the write performance of Optane PM may degrade when using a large number

of threads. To that end, we also conduct gradient descent update operations with fewer

threads.

108

16 64 128 256
0

2,000

4,000

5
1
1

1,2
5
8

2
,1
4
0

4
,3
1
7

8
1
4

1,2
3
0

2,4
9
4

4
,5
2
7

Featuresize

R
un

tim
e

(u
s)

Static Dynamic

(a) Non-reducing lookup using DRAM.

16 64 128 256
0

2,000

4,000

6,000

8,000

5
9
4

1,9
4
3

3
,98

0

8
,0
90

2,2
10

2,0
0
3

4,1
17

7
,8
2
6

Featuresize

R
un

tim
e

(u
s)

Static Dynamic

(b) Non-reducing lookup using PM.

16 64 128 256
0

50

100

150

8

2
5

5
0

1
0
1

4
1 40

8
1

1
55

Featuresize

R
un

tim
e

(m
s)

Static Dynamic

(c) Reducing lookup (40 accesses) using DRAM.

16 64 128 256
0

100

200

300

2
1

6
7

1
2
5

2
2
7

1
28 96

1
74

34
0

Featuresize

R
un

tim
e

(m
s)

Static Dynamic

(d) Reducing lookup (40 accesses) using PM.

Figure 5.3. Comparing embedding table lookup performance with a single thread,
single-precision element types between statically sized and dynamic kernel sizes. All
runs used a batchsize of 16384 and nvectors = 10, 000, 000.

All experiments were conducted on a single NUMA node. Single-threaded experiments were

pinned to a single core within that NUMA node to avoid any core-migration by the operating sys-

tem. The experiments consisted of running the kernel of interest multiple times until 20-seconds of

wall-clock time had elapsed, the execution time for each invocation was logged. For each invocation

of the kernel, new lookup/update indices where generated randomly from a uniform distribution.

Execution time for the gradient descent update kernels includes the time for reindexing. In addition

to execution time, hardware performance counters for DRAM and PM read and write traffic were

also collected.

All experiments used a large batchsize of 16384. This is high enough to reliably test the memory

subsystem and batch sizes this large can be seen in practical DLRM training instances. For exmple,

submissions to MLPerf training [63] often use batchsizes in the high 10s to low 100s of thousands.

Embedding tables were sized to occupy a memory footprint between 1 GiB and 80 GiB to minimize

the effect of the L3 cache. The Float32 element type was also used for all experiments.

5.3.2. Results. In this section, we present relevant and interesting results from the large

number of experiments conducted.

109

5.3.2.1. Static and Dynamic Featuresize. Figure 5.3 shows runtime differences between static

and dynamic featuresizes for both non-reducing and reducing (accesses = 40) single embedding

table lookups. It further shows performance for both DRAM and Optane PM. In the non-reducing

case, the static case only speeds up the case where the vector featuresize is 16. This is because

the dynamic case uses loop unrolling that is too aggressive and hence slower fallback code is used.

For the larger featuresizes, the unrolled innerloop is executed in the dynamic case, bringing the

performance on-par with static case.

The story is different for the reducing experiments where the dynamic case is consistently 50%

slower than the static case. In the static case, intermediate partial sums are kept inside the AVX-

512 registers while in the dynamic case the partial sums must be spilled into the L1 cache. This

suggests an strategy for the dynamic case is to tile the lookup aggregation into statically sized

chunks instead of operating on the entire feature vector directly. However, while this improves

computational performance, it (1) loses the bandwidth efficiency of featuring the entire featurevec-

tor as a contiguous chunk and (2) increases the kernel code footprint to include all possible corner

cases.

Finally, the performance of PM in these applications is on the order of 2× slower than DRAM

demonstrating that even for a single thread, memory location matters.

This demonstrates that kernel implementation matters and knowledge of the underlying hard-

ware is key to achieving high performance for these types of workloads.

5.3.3. Efficiency of Parallel Lookup Implementation. To check the performance of the

parallel ensemble lookup, hardware performance counters were used monitor DRAM and PM band-

widths. The results for one such benchmark are given in Table 5.3. When the tables are located in

DRAM, we achieve close to 100 GB/s of read bandwidth. This is close to the theoretical bandwidth

of 110 GB/s achieved in Figure 3.3, especially considering that lookups are largely random instead

of sequential.

The PM bandwidth achieved during ensemble lookup is somewhat less than what can be

achieved ideally (see Figure 2.2a) but still seems reasonable considering the mix of DRAM reads

and write that must occur on the same physical DDR bus.

110

Featuresize
Table

Location
DRAM
Read

DRAM
Write

PM
Read

PM
Write

16 DRAM 97.2 2.45 0 0
64 DRAM 98.3 2.29 0 0
256 DRAM 103.6 1.57 0 0
16 PM 0.78 0.28 10.4 0
64 PM 0.36 0.47 18.2 0
256 PM 0.12 0.39 25.0 0

Table 5.3. DRAM and PM bandwidth (given in GB/s) for reducing ensemble
lookups with 80 tables (1 million columns each), 40 accesses per output, batchsize
16384, and 28 worker threads.

From this, we can conclude that the lookup implementation is reasonably performant, achieving

close to the theoretical bandwidth of the platform.

5.3.4. Adding Indirection to Lookup Operations. Figure 5.4 shows the effect that adding

an extra level of indirection to each vector access has on the performance of an ensemble lookup. An

extra level of pointer chasing causes a slight slowdown when embedding tables are in DRAM and

roughly performance parity when the tables are in PM. In this bandwidth constrained environment

with a large number of threads, the overhead introduced by an extra level of pointer chasing is

negligible. The largest performance loss occurs for a DRAM based lookup with 40 accesses and a

featuresize of 16 where the amount of data moved for each vector access is relatively small.

Therefore, we should be able to add a level of indirection, allowing individual feature vectors

to be located in either DRAM or PM, without a large sacrifice in performance.

5.3.5. SGD Update Performance - Worker Threads and Nontemporal Stores. Fig-

ure 5.5 shows an example ensemble gradient update performance broken down between DRAM and

PM, number of worker threads, and usage of standard versus non-temporal stores. The behavior

of DRAM (Figures 5.5a and 5.5b) is straightforward - performance increases with the number of

threads with little performance difference between standard and nontemporal stores during the

update phase.

Persistent memory (Figures 5.5c and 5.5d) exhibits more nuanced behavior. Because the write

bandwidth to PM is much lower, reindexing time is less of a bottleneck than it is for DRAM.

Furthermore, non-temporal stores tend to perform significantly better, especially for larger feature

111

16 64 128 256
0

20

40

3

12

23

49

4

13

24

51

Featuresize

R
un

tim
e

(m
s)

Direct Indirect

(a) Tables in DRAM with 1 access.

16 64 128 256
0

20

40

60

80

8

18

29

87

9

18

31

83

Featuresize

R
un

tim
e

(m
s)

Direct Indirect

(b) Tables in PM with 1 access.

16 64 128 256
0

200

400

600

800

3
6

1
50

2
9
8

8
7
1

6
8

18
5

3
36

9
04

Featuresize

R
un

tim
e

(m
s)

Direct Indirect

(c) Tables in DRAM with 40 accesses.

16 64 128 256
0

1,000

2,000

3,000

3
1
8

7
3
6

1
,1
9
3

3
,5
65

3
2
2

6
91

1,0
90

3
,4
2
1

Featuresize

R
un

tim
e

(m
s)

Direct Indirect

(d) Tables in PM with 40 accesses.

Figure 5.4. Ensemble lookup performance when adding an extra level of indirec-
tion for each vector access. 80 independent tables were used with 1 million vectors
each along with 28 worker threads and a batchsize of 16384.

sizes. As mentioned previously, this is not because the RFO for the corresponding data is elided

since this data is already cached from a previous read. Instead, this is likely because non-temporal

stores evict the corresponding cachelines from the cache. This causes the writes to appear at the

memory controller essentially as a group allowing for write-combining within the Optane memory

controller (recall that this generation of Optane DIMMs have a 256 B access granularity). Without

non-temporal stores, the corresponding cache lines only arrive at the memory controller when

evicted from the L3 cache, leading to lower spatial locality.

For these experiments, the time taken by the reindexing procedure is mostly constant and takes

a large fraction of the overall execution time when the embedding tables are in DRAM. This is

largely because the reindexing procedure is largely targeted for situations where the number of

unique indices accessed is relatively small compared to the number of vectors in the table. A

choice of data structures and reindexing operation targeted more specifically at this “high density”

situation may reduce the this time.

5.3.6. Effect of Hardware Prefetchers. Modern CPUs use hardware prefetchers which

can detect patterns in load instructions and preemptively fetch cache lines consistent with those

112

16 (S)
16 (NT) 64 (S)

64 (NT)
256 (S)

256 (NT)
0

500

1,000

737

259

788

261

62

258

194

254

57

258

164

254

Featuresize (Storetype)

R
un

tim
e

(m
s)

Index Time Update Time

(a) Tables in DRAM with 12 threads.

16 (S)
16 (NT) 64 (S)

64 (NT)
256 (S)

256 (NT)
0

200

400

600

800

644

253

625

253

40

256

129

253

39

256

124

254

Featuresize (Storetype)

R
un

tim
e

(m
s)

Index Time Update Time

(b) Tables in DRAM with 28 threads.

16 (S)
16 (NT) 64 (S)

64 (NT)
256 (S)

256 (NT)
0

10,000

20,000

30,000

29403

254

28653

253
732
256

2591

254
1095
256

4490

254

Featuresize (Storetype)

R
un

tim
e

(m
s)

Index Time Update Time

(c) Tables in PM with 12 threads.

16 (S)
16 (NT) 64 (S)

64 (NT)
256 (S)

256 (NT)
0

10,000

20,000

30,000

29621

254

34408

254
903
256

4874

253
1428
256

5911

256

Featuresize (Storetype)

R
un

tim
e

(m
s)

Index Time Update Time

(d) Tables in PM with 28 threads.

Figure 5.5. Embedding table SGD application performance comparing the use of
nontemporal and standard stores. The type of store is indicated by (S) for standard
and (NT) for nontemporal. 40 independant tables were used with 1 million vectors
each, 40 tables accesses per output, batchsize 16384.

patterns. One in particular is called the “streaming prefetcher” [90], which can detect patterns

of loads to sequential memory addresses. This can have a detrimental impact on embedding table

performance due to over fetching. To understand this, we first need to compute the expected

amount of data moved for embedding table lookup and update operations.

For lookups, this can be computed as follows:

(5.1) table_accessed = num_tables ∗ batchsize ∗ accesses ∗ featuresize ∗ sizeof(Float32)

where table_accessed is the amount of bytes read from an ensemble of embedding tables,

(5.2) index_accessed = num_tables ∗ batchsize ∗ accesses ∗ sizeof(UInt32)

113

where index_accessed is the number of bytes read from the index arrays used to access the em-

bedding tables, and

(5.3) destination_accessed = num_tables ∗ batchsize ∗ featuresize ∗ sizeof(Float32)

is the number of bytes written to the output arrays.

The update process is a little harder to estimate because of the reindexing procedure. However,

we can still estimate the amount of traffic generated to the embedding table. This traffic depends

on the number of unique rows accessed during a lookup. For a uniform index distribution, the

expected value for unique rows is

(5.4) unique_rows ≈ n

(
1−

(
n− 1

n

)k
)

where n is the number of rows in each table and k is the total number of independent accesses to

the table. In the context of embedding table operations, k = batchsize ∗ accesses. From this, we

have

(5.5) bytes_accessed ≈ num_tables ∗ unique_rows ∗ featuresize ∗ sizeof(Float32)

Figure 5.6 compares the estimated amount of data moved with the actual data moved for em-

bedding table lookup and updates as measured by hardware performance counters. Figures 5.6a

and 5.6b show ensemble lookups with the embedding tables in DRAM and PM respectively. In

general, the estimates align well with the measured movement until featuresize 256, where the

amount of data accessed from the table is significantly higher than expected. This is because a

featuresize of 256 (corresponding to a contiguous access of 1024 bytes) is long enough to trigger the

streaming prefetcher into fetching more data than necessary. Because ensemble lookups are band-

width limited, this degrades overall throughput. We observe a similar phenomenon in Figure 5.6c,

which just shows the memory traffic to an embedding table ensemble during a gradient descent

update operation. Again, at a featuresize of 256, the amount of data read from PM is nearly double

the expected amount.

With the streaming prefetcher enabled, this suggests again that it might be beneficial to tile

lookups/updates for large featuresizes into multiple smaller operations with a sub-featuresize small
114

16 64 256
0

20,000

40,000

60,000

80,000

3,542

14,713

90
,199

89

343

1,365

3,649

13,967

55
,239

84

336

1,342

Featuresize

D
at

a
M

ov
ed

(M
B

)

Actual: DRAM Read Actual: DRAM Write
Estimated: DRAM Read Estimated: DRAM Write

(a) Lookup - table in DRAM.

16 64 256
0

20,000

40,000

60,000

80,000

3,298

13
,366

89,031

246

266

4399
0

343

1,377

3,439

13,757

55
,029

210

210

2108
4

336

1
,342

Featuresize

D
at

a
M

ov
ed

(M
B

)

Actual: PMM Read Actual: DRAM Read
Actual: DRAM Write Estimated: PMM Read

Estimated: DRAM Read Estimated: DRAM Write

(b) Lookup - table in PM. In this case, DRAM read traffic is the result of accessing the
index arrays.

16 64 256
0

5,000

10,000

15,000

20,000

0 0 00 0 0

1,231

4,92
3

19
,691

1
,23

1

4,923

19,691

Featuresize

D
at

a
M

ov
ed

(M
B

)

Actual: PMM Read Actual: PMM Write
Estimated: PMM Read Estimated: PMM Write

(c) Update - data in PM. This figure just shows the traffic to the embedding table. PM
reads for featuresize 256 are significantly higher than expected.

Figure 5.6. Comparison of estimated and actual data moved for embedding ta-
ble lookup and update operations as measured by hardware performance counters.
For small featuresizes, the estimated and actual values are close. However, for a
featuresize of 256, the amount of data read is significantly higher than anticipated
because hardware prefetchers are detecting the streaming pattern and over-fetching
data. This phenomenon disappears when the streaming prefetcher is disabled.

enough to evade detection by the prefetcher. This would lose some streaming locality in the

memory accesses, but would synergize well with our previous observation of keeping partial sums

in the AVX registers as much as possible. The phenomenon of over-fetching disappears when

115

the streaming prefetcher is disabled in the BIOS. However, disabling the streaming prefetcher has

implications for computational based workloads. To that end, we decide to leave the prefetcher

enabled and take the performance regression for larger featuresizes, recognizing that there may be

future optimization opportunities.

5.3.7. Discussion. There are a number of conclusions that can be drawn from these embed-

ding table experiments. First, placing the tables in PM results in lower performing lookup and

update operations than DRAM. This is expected within the context of what has discussed earlier in

this dissertation. Further, this highlights the need to perform some kind of heterogeneous memory

management to get the capacity advantage of PM without paying the full performance price.

Second, higher performance implementations of embedding table operations requires coopera-

tion with and understanding of the underlying hardware and the best implementation can change

depending on the particular operation. For example, the use of nontemporal stores for update op-

erations is beneficial for performance when embedding tables are in PM, but makes little difference

when DRAM is used.

Finally, in the context of multithreaded ensemble lookups and updates, an extra level of indirec-

tion can be tolerated without much of a performance penalty. This is the main idea behind our idea

of memory management for these tables which will be presented in the next section. Adding this

indirection allows individual vectors to be stored in either PM or DRAM. With careful selection, we

should be able to move frequently accessed vectors into DRAM while leaving infrequently accessed

ones in PM, providing most of the performance of an all DRAM with the capacity advantage of

PM.

5.4. Software Caches for Gigascale Embedding Tables

In this section, we discuss how to apply the framework of heterogeneous memory management

to embedding table lookups and updates into an approach called CachedEmbeddings. Key aspects

to keep in mind are that (1) access to each embedding table is performed on the granularity of

feature vectors, (2) there is no reason to expect accesses to exhibit spatial locality, and (3) accesses

may exhibit temporal locality. The key insight of CachedEmbeddings is to add an extra level of

indirection to each feature vector access, allowing individual feature vectors to be placed in either

116

Figure 5.7. Overview of a CachedArrays embedding table. Base data lives in
PM, (with a base address of 0x1000 as an example). In this example, each feature
vector occupies 16 bytes. A pointer table tracks the actual location of each vector
with the least significant bit indicating whether it’s cached. Upon a lookup access,
vectors are moved into cache pages. Each page contains backedges for each entry,
which indicates whether the corresponding slot is filled and if so, the vectors original
location.

PM or DRAM. From Section 5.3.4, we observe that adding this extra level of indirection doesn’t

drastically harm performance in highly-parallel scenarios. Here, we define a software cache to

exploit this.

Figure 5.7 shows an overview of our approach. In the vocabulary of our management framework,

the abstract feature vectors (rows) of the embedding table are the “objects” with the actual pointers

to where each vector resides being the “regions”. Base data for the embedding table is located in

PM (beginning at address 0x1000 in the example). Each embedding table maintains a cache in

DRAM that vectors can be migrated to. Internally, the embedding table maintains a vector of

pointers, one for each row, pointing to where the primary region for that row is. Since embedding

table rows are relatively large (> 64B), these pointers have unused lower order bits. We use the

least significant bit (LSB) to encode whether the corresponding row is in the base data or in a

cache page. The second LSB is used as a lock-bit. A thread wanting to move a row uses an atomic

compare-and-swap to gain ownership of the row. If ownership is acquired, then the thread is free

to move the row into the cache and then unlock the row.

117

To support multithreaded access, the cache is composed of multiple cache pages. In order to

allocate space for a feature vector, each cache page maintains a bump pointer. Upon an allocation,

the bump pointer is atomically incremented with the old value of the pointer serving as the location

for allocation. A page becomes full when this bump pointer reaches the end of the memory region

allocated for the page. If the most recent cache page is full, then the thread must acquire a lock for

the table in order to allocate new cache page. The cache has a configurable maximum size, beyond

which no more feature vectors can be migrated until the cache is flushed. Each cache page also

maintains a vector of backedge pointers to each cached row’s original location (or null if the slot is

empty) to facilitate this flushing.

Because bump pointers are used to allocate space for feature vectors, the cache is flushed one

page at a time. If the cache page is entirely clean (in the case that only lookups were performed

with no update operations), flushing a cache page simply involves updating the pointer table back

to each vector’s original location and then deleting the cache page. If the vectors are dirty (e.g.

the table was used during training) then the vectors within the cache page must also be written

back to their original location.

The size of the cache is determined by two parameters:

• cachelower: Soft lower bound for the size of the cache. When the cache is flushed, pages

will be sequentially flushed until the size of the cache is less than cachelower.

• cacheslack Flexible space to allow the cache to grow. New vectors can be cached until

the total size of the cache exceeds cachelower + cacheslack.

Thus, the size of the DRAM cache for each table can fluctuate between cachelower and cachelower +

cacheslack. Note that the size of the cache can also be lower than cachelower at the very beginning

of program execution when no vectors have been cached.

Table 5.4 outline the API for a CachedEmbeddingTable. The functions access_and_cache and

access provides methods for retrieving feature vectors while optionally migrating vectors into the

table’s DRAM cache. Setters set_cachelower and set_cacheslack are used to modify their corre-

sponding cache size parameter variables. Finally, flush_clean and flush_dirty provide methods for

reducing the size of the cache to enable future vector accesses to be cached.

118

Operation Description
access_and_cache Get the pointer for the requested feature vector, caching it in DRAM if

(1) the cache is not full, (2) the vector is not already cached, and (3)
ownership of the row is acquired. Internally, this is connected to the
rowpointer function introduced in Table 5.2 and connected to the Forward
access context.

access Get the pointer for the requested feature vector without caching. This
function is connected to the rowpointer function for all other access con-
texts besides Forward.

set_cachelower Set the cachelower variable.
set_cacheslack Set the cacheslack variable.

isfull Return true if the cache is full. Otherwise, return false.
flush_clean Purge the oldest cache pages until the size of the cache is less than

cachelower. Do not write back data from cache pages to the base array.
flush_dirty Purge the oldest cache pages until the size of the cache is less than

cachelower. Do write back data from cache pages to the base array.
Table 5.4. API for a CachedEmbeddingTable.

5.4.1. CachedEmbeddings Performance. In this section, we perform experiments to deter-

mine the performance of the CachedEmbeddings.

5.4.1.1. Methodology. When comparing the performance of CachedEmbeddings to standard em-

bedding tables, we focus on the lookup operation performance. This is because, in the context of

DLRM training, feature vectors will be cached in DRAM during the lookup operation and sim-

ply accessed during the gradient descent operation. The performance of this update operation

and subsequent cache flushing is harder to micro-benchmark for a couple of reasons. First, in the

context of DLRM training, we’d expect all embedding tables entries accessed during the update

phase to already be cached. Second, the frequency of a flush operation is dependent on the input

index distribution and thus doesn’t necessarily occur on every training iteration. Consequently,

we will examine update performance when we study then end-to-end performance of DLRM with

CachedEmbeddings.

For our benchmarks, we want to target conditions where a mix of DRAM and PM makes sense

(i.e., the total memory footprint is high). To that end, we investigate ensemble lookups with 80

tables and 28 threads with featuresizes of 16 and 256 and accesses of 1 and 40. Furthermore, each

table consisted of 1 million vectors and a batch size of 16384 was used. To investigate the effects

119

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

10

20

30

3 4

1
1

18

25

28

8

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(a) Featuresize 16 - Uniform Distribution

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

5

10

2

3

4

5

7

9

4

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(b) Featuresize 16 - Zipf (α = 1) Distribution

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

50

100

4
9

58

71

85

99

10
8

87

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(c) Featuresize 256 - Uniform Distribution

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

20

40

60 41

48

48

50

55

60 58

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(d) Featuresize 256 - Zipf (α = 1) Distribution

Figure 5.8. Comparison of CachedEmbeddings with standard embedding tables
located in DRAM or PM for nonreducing lookups. Runs were conducted with 80
embedding tables and 28 worker threads.

of cache size, we set cacheslack to be 5% and cachelower to 10%, 25%, 50%, 75% and 100% of each

table’s total memory footprint.

To investigate the effects of temporal locality, the lookup indices for each table are drawn from

either a uniform distribution (which has low temporal locality) or a Zipf [79] distribution with

α = 1 (which has high temporal locality). In order to avoid spatial locality introduced by the Zipf

distribution, the index sampling is followed by a maximum length linear feedback shift register

(LFSR) using a different seed for each table.

For comparison points, the same experiments were run for standard embedding table with either

all data stored in DRAM or PM and no indirection in the lookup accesses.

As before, each lookup operation is invoked multiple time with different indices until the total

benchmark runtime exceeds 20 seconds. For the experiments conducted using CachedEmbeddings,

the flush_clean operation is run after each invocation.

5.4.1.2. Results. Figure 5.8 shows the results for a non-reducing embedding table ensemble

lookup. The left-most and right-most bars in each figure show the performance of a standard

embedding table with all DRAM and PM respectively. In between is shown the performance of a

120

CachedEmbeddings, with the label giving the sum of cachelower and cacheslack as a percent of the

ensemble’s total memory footprint.

Initially, this does not look too great for CachedEmbeddings. For a featuresize of 16 (Figure 5.8a

and 5.8b), the overhead of cache management overheads dominates resulting in significant slowdown

over the all PM simple table. Even with the larger featuresize of 256, CachedEmbeddings requires

a fairly large cache size to outperform the all PM standard table.

There are a number of reasons for this. First, non-reducing lookups are essentially a memory

copy from either DRAM to DRAM or PM to DRAM. This higher DRAM write traffic can, to

some extent, help mitigate the lower read bandwidth of PM which we can see with the 2× lower

performance of the PM based simple tables than the DRAM based ones for the uniform distribution.

Second, because flush_noclean is called after every invocation and only at most 16384 are accessed

on each lookup (around 1.6% of the embedding table) the table never reaches the state where

the cache is full (recall that cacheslack was set to 5% of the overall table size). This means that

the CachedEmbeddings table is always doing extra work and cannot necessarily take advantage of

preexisting cached vectors.

Figure 5.9, on the other hand, provides some hope for the situation. This figure shows the

performance of CachedEmbeddings for reducing lookups (with accesses = 40). Again, the smaller

feature sizes yield poorer performance advantages (or even performance regressions at smaller cache

sizes) because the time spent moving data around is so low enough that the extra steps required by

CachedEmbeddings can dominate. However, for larger feature sizes like 64 and 256, the performance

of CachedEmbeddings nearly interpolates linearly between the performance of all DRAM and all

PM. This is because with a batchsize of 16384 and 40 accesses per batch, a large portion of each

embedding table is accessed on each lookup operation, resulting in the each embedding table’s

cache staying “full” for a large portion of the lookup operation. When full, the extra level of

indirection for the embedding tables is amortized by the large number of worker threads, providing

a performance benefit over all PM when an accessed vector is in DRAM with little overhead when

it is not. This effect is magnified with the Zipf distribution which yields a very high DRAM hit

rate with only a modest cache size.

121

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

100

200

300

3
7

88

20
4

23
9

30
5

34
7 31
9

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(a) Featuresize 16 - Uniform Distribution

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

50

100

150

1
9

58

94

13
2

15
4

16
3

12
3

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(b) Featuresize 16 - Zipf (α = 1) Distribution

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

200

400

600

800

1
50

204

338

39
9

54
1

63
2

73
6

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(c) Featuresize 64 - Uniform Distribution

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

100

200

300

7
5

114

16
3

21
3

23
9

24
9

31
4

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(d) Featuresize 64 - Zipf (α = 1) Distribution

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

1,000

2,000

3,000

8
71

92
8

1,2
5
8

1,5
85

2,254

2
,72

3

3
,5
9
0

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(e) Featuresize 256 - Uniform Distribution

All
DRAM

1.05 0.80 0.55 0.30 0.15 All
PM

0

500

1,000

1,500

4
5
4

57
6

6
22

7
2
4

8
0
0

8
63

1
,8
0
0

Cache Size (Percent of Whole Table)

R
un

tim
e

(m
s)

(f) Featuresize 256 - Zipf (α = 1) Distribution

Figure 5.9. Comparison of CachedEmbeddings with standard embedding tables
located in DRAM or PM for reducing lookups with 40 Runs were conducted with
80 embedding tables and 28 worker threads using the preallocation strategy.

5.4.2. Discussion. As we have seen, there are several regimes where this approach of fine-

grained heterogeneous memory management can be effective. When the hit rate into the managed

DRAM cache is sufficiently high (in the case of the Zipf index distribution) and the feature size is

large enough to amortize the overhead of adding indirection to vector access, then CachedEmbed-

dings can outperform all PM with a relatively small amount of DRAM. Even in cases where the hit

rate is not particularly high (the case of the uniform index distribution), CachedEmbeddings can

still achieve a level of performance between all DRAM and all PM provided the cache becomes full

and the amount extra work involved on each access decreases. At this operating point, each vector

access just adds a level of indirection, sometimes hitting in DRAM and sometimes hitting in PM.

122

Those accesses to DRAM are accelerated while those to PM have little penalty over the all PM

case.

This suggests another use strategy for CachedEmbeddings called the static approach. If the

input distribution is known to have little locality or if hot entries in the distribution are known

a priori, than an appropriate subset of the table can be preemptively moved to DRAM (using

access_and_cache) until the table’s cache is full. At this point, further accesses will only fetch and

not move feature vectors. This approach will not respond dynamically to changes in the input

distribution, but as we pointed out, may be appropriate is some situations.

Finally, we can discuss using CachedEmbeddings in the context of DLRM training. By fetching

all accessed feature vectors during the lookup phase of a training iteration, we are guaranteed that

all these vectors will be in the DRAM cache during the gradient descent update phase. Depending

on the index distribution, this has the potential to accelerate that phase. Whether the overhead

of cache management (i.e. flush_dirty) are worth it, though, will be investigated over the next

couple of sections.

5.5. DLRM Implementation

In order to investigate the performance of CachedEmbeddings in the context of end-to-end

DLRM training, we first need implement the rest of the DLRM model. We’ve already discussed

the implementation of embedding table lookup and gradient descent update. In this section, we

describe how we implemented the rest of the model and compare its performance a state-of-the-art

CPU implementation in PyTorch.

5.5.1. Dense Computation. The rest of our model consisted of MLP layers made up of

oneDNN kernels (facilitated by our Julia wrapper library), custom written interaction layers, and

usage of CachedArrays for memory allocation. The interaction layer is implemented in pure Julia.

Note that this shows the flexibility of our approach to implementing DLRM. When applicable,

oneDNN can be used to accelerate the operations that are implemented by that library. However,

when functionality is needed that is not provided by that library, it can be easily and performantly

implemented in a way that inter-operates nicely.

123

Small Mode Large Model
Featuresize 16 128

Num Embeddings Tables 26 26
Embedding Table Sizes min = 3, max = 8.9e6, µ ≈ 1.2e6, σ = 2.6e6

Bottom MLP 512-256-64-16 512-256-128
Top MLP 512-256-1 1024-1024-512-256-1
Batchsize 8192 32768

Table 5.5. Model hyperparameters used for DLRM PyTorch comparison.

5.5.2. Comparison with Optimized PyTorch (DRAM Only). To verify our model per-

formance, we compared our DLRM implementation Intel’s optimized PyTorch [52] submission to

MLPerf [63]. This reference model using custom PyTorch extensions to enable BFloat16 for high

performance dense network computations. We were able to acquire temporary access to an Intel

Cooperlake server, a generation equipped with vector instructions for BFloat16 based dot products.

Since our implementation is build on top of oneDNN (which supports the BFloat16 datatype), we

incorporated the BFloat16 data type into our model as well.

5.5.2.1. Methodology. We used two models for comparison, a small model used as Facebook’s

official DLRM sample model and the model used in MLPerf 2019 training [63]. The hyper pa-

rameters for these tables is shown in Table 5.5. The optimized PyTorch implementation used split

SGD [52] for their BFloat16 weights. With this optimizer, MLP and embedding table weights are

kept in BFloat16, and each weight array is associated with a similar sized array filled with 16-bit

integers. During the weight update phase of training, these BFloat16 variables are concatenated

with their respective 16-bit integer in their sibling array to create a full 32-bit float. The gradient

update is applied to this 32-bit value, which is the decomposed back into a BFloat16 and 16-bit

“mantissa”. Using this strategy, the authors keep a full 32 bits of precision for training while using

16 bits of precision for inference. Importantly, this technique does not decrease the memory re-

quirement of the embedding tables. Consequently, we implement the split SGD trick for the MLP

layers of our implementation, but keep our embedding tables in full Float32.

Training data came from the Kaggle Display Advertising Challenge dataset3. Both small and

large models were run for a single epoch of training on the dataset, iterating over the data in the

same order. Further, both our model and the PyTorch model began with the same initial weights.
3https://www.kaggle.com/c/criteo-display-ad-challenge/data

124

https://www.kaggle.com/c/criteo-display-ad-challenge/data

0 1,000 2,000 3,000 4,000 5,000

0.45

0.5

0.55

Iteration

Lo
ss

Intel’s
Ours

(a) Small model, training loss per iteration.

0 50 100 150

0.45

0.5

0.55

Time (S)

Lo
ss

Intel’s
Ours

(b) Small model, training loss through time.

0 200 400 600 800 1,000 1,200

0.5

0.55

Iteration

Lo
ss

Intel’s
Ours

(c) Large model, training loss per iteration.

0 100 200 300

0.5

0.55

Time (S)

Lo
ss

Intel’s
Ours

(d) Large model, training loss through time.

Figure 5.10. Convergence comparison between the PyTorch optimized DLRM and
ours. Our model has a slightly higher loss per iteration, but lower loss per wall clock
time.

5.5.2.2. Results. Figure 5.10 shows the loss progression of our model and the optimized PyTorch

model for the small and large networks. Figures 5.10a and 5.10c show loss as a function of iteration

number while Figures 5.10b and 5.10d show loss as a function of time. We can see that our model

has slightly higher (worse) loss per iteration, implying our treatment of BFloat16 is not quite as

precise as the PyTorch. However, our model has a significant lead in loss over time because each

iteration is processed much more quickly.

Figure 5.11 shows the time breakdown of each iteration for both implementations and models.

Our performance benefit comes from three major areas. First, our MLP backward pass is much

faster. This is because we are using an up to date version of oneDNN to compute our backward

pass kernels while the PyTorch model at the time was using libxsmm4. It should be noted that

Intel’s extensions for PyTorch have since switched to using oneDNN. Second, our implementation

has a faster embedding table and weight update through our parallel embedding table update and

parallel weight update strategies. Note that even though the wall-clock time for the large network
4https://github.com/hfp/libxsmm

125

https://github.com/hfp/libxsmm

Optimized
PyTorch

Julia
0

50

100

150

200

250

300

8.17

10.26

40

35.31

4.69

12.55

8.56

15.89
170

93.35

30
22.4819.84 4.02

R
un

tim
e

(m
s)

(a) Large Network

Optimized
PyTorch

Julia
0

5

10

15

20

25

30

1

0.5

3

2.33

0.32

0.91

0.89

0.79

9

6.63

5

1.91

8.92

0.29

R
un

tim
e

(m
s)

Embedding Lookup
Mlp Forward
Interaction

Interaction Back
Mlp Backward
Weight Update

Misc

(b) Small Network

Figure 5.11. Timing breakdown of key layers in our DLRM comparison.

embedding lookup is slightly larger than PyTorch, we’re moving twice the amount of data because

our tables were kept in Float32 while PyTorch used BFloat16. Finally, our implementation has less

miscellaneous overhead, a factor especially apparent for the small network where PyTorch spends

a considerable in tensor addition, zeroing, and emptying.

5.5.2.3. Discussion. There are two points we would like to make in our brief discussion of these

results. First, convergence results are not conclusive as neither model was trained to completion.

Nevertheless, this comparison supports our model’s correctness and performance. Second, we’re a

little loose with our loss comparison per iteration compared to PyTorch. There are a large number

of sources that can cause such error (e.g., different computation kernels with slightly different

numerical results, different treatment of the Float32 to BFloat32 converstions etc.). However, the

goal here is to explore the effect of memory optimizations, which don’t have an impact on numerical

precision. Thus, we’re close enough to draw meaningful conclusions.

5.6. End-to-End DLRM Performance of CachedEmbeddings

In this section, we investigate the performance of CachedEmbeddings for full DLRM train-

ing. We investigate several different management schemes built on top of CachedEmbeddings and

compare their performance with Intel’s built-in 2LM hardware managed DRAM cache.

126

Parameter Value Parameter Value
Number of Tables 64 Rows per Table 6000000

Featuresize 256 Lookups per Output 100
Bottom MLP Length 8 Bottom MLP Width 2048

Top MLP Length 16 Top MLP Width 4096
Batchsize 512

Table 5.6. Parameters for the large DLRM model used for benchmarking.

5.6.1. Policies. We implemented three simple policies on top of CachedEmbeddings. The sim-

ple policy leaves all embedding vectors in PM, using DRAM to store the results of an embedding

table lookup and intermediate data for the dense computations. This policy uses a simple em-

bedding table without the level of indirection required for a CachedEmbedding table. The static

policy allocates a specified amount of memory in DRAM as cache pages, fills these cache pages

with random rows, then disables all dynamic row caching. At run time, a row access will either be

serviced from DRAM (if one of the rows that was cached ahead of time) or from PM. The dynamic

policy involves dynamically moves feature vectors into cache pages in DRAM. During lookup of a

particular row, the current thread checks if the accessed row is cached and if so directly returns

a pointer. If the row is not cached, then the thread attempts to dynamically cache the row using

the mechanism described above before returning the pointer. Note that if the row fails to obtain

ownership of the row, then a pointer to the base data is given.

Over time, the dynamic policy will increase the footprint of the cache pages as more rows are

moved into DRAM. In order to compare fairly with memory mode (which has access to all of

DRAM), we need a per-table cache size small enough to fit in DRAM along side all memory used

by the dense computations but large enough to achieve high utilization of the available DRAM.

Thus, we set a cache size limit of 2 GiB for each table for a total memory footprint of 128 GiB

across the ensemble. Cache pages are sized to be a fraction of this limit and when the limit is

reached, the oldest cache page is cleaned up.

If the sparse input distributions are known, then policies can be updated on a per-table basis,

(e.g., changing the amount of cache allowed for a table).

5.6.2. Methodology. To test CachedEmbeddings, we used a very large DLRM with the hyper

parameters shown in Table 5.6. This model has large and deep MLPs and a memory footprint of

127

2LM CE
Simple

CE
Static

CE
Dynamic

0

500

1,000

1,500

694 226

133 171

233
659

447 480

532 417 422 423

R
un

tim
e

(m
s)

(a) Uniform.

2LM CE
Simple

CE
Static

CE
Dynamic

0

200

400

600

800 173
136

84
60131 337 240 163

548
416 418 418R

un
tim

e
(m

s)

Lookup Update
Computation

(b) Zipf (α = 1.0)

Figure 5.12. Performance with different sparse input distributions. Operations
“Lookup” and “Update” refer to embedding table lookup and update respectively.
All other operations are grouped into “Computation”. Abbreviation “CE” stands
for “CachedEmbeddings”.

around 393 GB for its embedding tables. For this large model, both embedding table operations

and dense computations take a significant fraction of overall training iteration time. Models with

smaller dense networks will be more bottlenecked on embedding table operations, and models with

fewer tables or with fewer lookups per output will be more compute bound.

The input distributions for embedding tables used in industry are proprietary, though literature

suggest that there is at least some temporal locality. In this work, we chose to select two extremes.

First, we use a uniform random input distribution for all tables. This is nearly the worst case for

caching as there is limited reuse. Second, we use a Zipf [79] distribution with α = 1 for each table,

scrambling the input for each table using a maximum length LFSR starting at a random phase.

This distribution has significant temporal locality. Dense inputs were generated using a normal

distribution.

As a baseline, we ran the large network in memory mode, using CachedArrays for fast memory

allocation.

5.6.3. Results. The results for out large DLRM model are shown in Figure 5.12. Figure 5.12a

shows performance when a uniform distribution is used to drive sparse accesses while Figure 5.12b

demonstrates the same model for the Zipf distribution.

128

5.6.3.1. Understanding Uniform Results. We first discuss the results for the uniform distribu-

tion, beginning by comparing the 2LM only run with CachedArrays simple. Between the two,

CachedArrays simple is around 3.07× faster for embedding table lookups, despite using no DRAM

for embedding table vectors. To understand this, we must characterize the steady-state of the

DRAM cache as training progresses. Recall that our embedding tables greatly exceed the size of

DRAM and are driven by a uniform distribution. In training, each row in the table that is accessed

during the forward pass is updated on the backward pass and hence becomes dirty with respect

to the DRAM cache. After sufficient iterations, the DRAM cache will become nearly completely

dirty. The lookup phase will then trigger a large number of dirty writebacks. Combined with

the random access behavior of embedding tables, the cache operates in a highly undesirable state,

decreasing performance. However, in 2LM, feature vectors accessed during the lookup phase will

be moved into the DRAM cache. Thus, gradient updates to these vectors will hit in the DRAM

cache, accelerating the subsequent update phase to be 2.83× faster than the simple policy which

always write to PM. Indeed, the timings of the lookup and update phase essentially swap between

the 2LM and simple runs. In 2LM, the dirty cache also lowers performance of the dense layers due

to spurious dirty misses, demonstrating that performance optimization in the presence of a DRAM

cache cannot be performed component by component.

Now we discuss the three CachedEmbeddings based runs. Observe that for all three of these

runs, the performance of the dense layers is nearly the same. This is expected since now all dense

computations are performed with memory in DRAM. The simple case is capable of achieving nearly

the whole bandwidth of the PM devices. However, since embedding table updates must be done

directly into PM, we see a performance degradation due to the low PM write bandwidth. The

static policy performs the best. In this mode, embedding table lookup and update operations are

serviced from both DRAM and PM. Thus, there is a performance benefit if for accessing rows in

DRAM over the simple policy without a performance loss if the vector is in PM. The dynamic

policy is able to perform a little better than the simple one because all embedding table updates go

to DRAM. However, it is slower then static for embedding table lookups because the eager caching

of embedding table vectors incurring more DRAM write bandwidth, competing with PM reads.

129

Further more, dynamic incurs a slightly higher update penalty due to cache management (writing

back dirty rows from old cache pages).

5.6.3.2. Understanding Zipf Results. When switching from a uniform distribution (low reuse)

to a Zipf distribution (α = 1, high reuse), we observe speedups in embedding table and lookup

performance across the board. Several factors are at play here. First, with this level of reuse, CPU

caches become effective, reducing overall memory traffic. The embedding table update sees further

performance increases due to our gradient aggregation strategy where the entire gradient for each

embedding table vector is accumulated before applying the optimizer. With higher reuse, there are

fewer unique indices per lookup triggering lower write traffic to PM.

Finally, we can see the effect of 2LM and CachedEmbeddings based caching mechanisms. The

lookup performance of 2LM increases by 4× as the DRAM cache stops experiencing such a high

miss rate. Further, the performance of dynamic improves by 2.85× compared to with the uniform

distribution, surpassing the static strategy since it is able to correctly cache the hot vectors in

DRAM. Indeed, we observe that there is even a slight performance regression of simple when

compared to 2LM as there is enough locality in the accessed vectors to overcome some of the issues

associated with the hardware managed DRAM cache.

We again see the benefit of adding knowledge of program behavior to the memory management

policy. When the sparse input distribution is uniform, our cache is too small to have a high enough

hit rate to offset the overhead of moving vectors into the cache. In this case, a static partition of

the data structures results in better utilization of the multiple levels of memory. However, when

there is enough temporal locality in the input distribution for caching to be effective, fine grained

memory management is exactly what we need. Tailoring of policy to the specifics of hardware and

runtime situation is essential for performance.

5.7. Related Work

Bandana [31] aims to reduce the amount DRAM required for DLRM inference workloads on

CPU clusters by using a combination of DRAM and SSDs, using heuristics to determine how to

cache embedding vectors in DRAM. Like our work, Bandana also caches hot vectors in DRAM.

However, Bandana needs to overcome the coarse read granularity of SSDs and must use hypergraph

130

partitioning to group vectors with spatial locality to the same sector within the SSD. Persistent

memory does not have this limitation, so this work investigates fine-grained vector caching while

still maintaining high read and write bandwidth to PM.

There are two state-of-the-art implementations of DLRM systems in recent literature. Face-

book’s NEO [66] is software/hardware codesign of large scale DLRM models on a custom GPU-

based hardware platform called ZionEX. It uses a customized 32-way set-associative software cache

with LRU and LFU cache replacement policies and enables fine grain control of caching and re-

placement. Though NEO is focused on the GPU ecosystem, it provides motivation for the need of

software managed caches to deal with large embedding tables. Intel’s DLRM implementation [52]

focuses on efficient parallelization across multiple CPU and a novel implementation of the SGD

optimizer targeting mix-precision training. We extend this work by proposing a scale-up solution

taking advantage of heterogeneous memory. We compare with Intel’s implementation (Section 5.5),

yielding a 1.4-2× speedup on the same hardware resources.

131

CHAPTER 6

Conclusions and Future Work

6.1. Limitations

The implementation of data tiering outlined in this work has many limitations. For one, the

allocator used for CachedArrays would not scale well to facilitate even moderate levels of concurrent

allocation and deallocation. Even if this were solved, there would be scalability issues regarding

Julia’s garbage collector, itself not very parallel friendly, which is required to track allocated object

in order to call finalizers.

Furthermore, the applications studied in this thesis largely revolved around kernel-based pro-

grams. Heterogeneous memory management for these programs is relatively straightforward due to

� �
1 # Function definition
2 julia> function thrash(x::CachedArray)
3 Threads.@threads for tid in 1:2
4 if tid == 1
5 x .= 0
6 elseif tid == 2
7 CachedArrays.evict!(x)
8 end
9 end

10 end
11
12 julia> manager = DataManager(...);
13
14 julia> x = CachedArray(ones(Int64, 2_000_000_000), manager);
15
16 # All entries are one.
17 julia> sum(x)
18 2000000000
19
20 julia> thrash(x);
21 # Some entries got set to zero but not all.
22 julia> sum(x)
23 1749999992� �

Listing 6.1. Function showing synchronization issues that can occur when using
CachedArrays. The function thrash launches two threads, the first zeros the passed
array and the other evicts it. This results in a race condition where the array is
evicted part-way through writing, resulting in a torn write.

132

regular synchronization. That is, while individual kernels like convolutions or dense inner-products

are heavily parallelized, the time between kernel invocations is serial. This provides a natural

synchronization point for memory management.

If, instead, a program is more concurrent with its memory management, issues can arise. This

is demonstrated in Listing 6.1 which shows an instance of an CachedArray eviction during a write,

resulting in an indeterminate result. Synchronization issues like this aren’t new and indeed can

show up in existing code using normal constructs like std::vector when the backing memory is

reallocated concurrently with other accesses. The point here is that memory management in the

context of concurrent access requires more careful synchronization.

A strategy to mitigate this is to use the ReadOnly and ReadWrite attributes to control array

access. Upon conversion of a CachedArray to ReadWrite or ReadOnly, the policy could restrict any kind

of eviction or prefetching of the array until the array is released back to a NotBusy state.

Since Julia is a relatively young language, there do not exist many state-of-the-art applications

written solely within the language to serve as benchmarks for testing heterogeneous memory. We

were able, through engineering effort, able to build somewhat competitive CNN and DLRM mod-

els, but these very much lack the actual robustness that would be required for production scale

implementations. Possible future directions could involve using the Julia’s differential equations1

ecosystem for more workloads, though for the current incarnation of CachedArrays, this would

necessitate focusing on problems that memory limited.

6.2. Hardware Support for Data Tiering

6.2.1. Data Movement Engines. Next generations of processors will contain dedicated

memory movement engines such as Intel’s data streaming accelerator (DSA) [8]. These accel-

erators serve as high performance memory copy, fill, and delta generation engines accessible from

user-space and capable of operating on virtual addresses. One of the primary benefits behind

such accelerators is offloading the task of data movement from the CPU cores. In the context of

CachedArrays, this would be helpful for implementing the copyto! function in the data manager
1https://diffeq.sciml.ai/stable/

133

https://diffeq.sciml.ai/stable/

API. Currently, this function uses a multi-threaded memory copy to quickly move regions around

so such accelerators could be helpful.

These accelerators could also be beneficial in the context of CachedEmbeddings as well. Move-

ment of a feature vector in CachedEmbeddings requires the use of the AVX registers in the CPU.

However, as discussed in Section 5.3, use of the AVX registers to hold partial products for reduc-

ing lookups is helpful for performance. Thus, movement of a vector part-way through a reducing

lookup either can require spilling some registers to memory. It’s unclear yet if the DSA will work

well for small movement sizes, but if it does, than CachedEmbeddings style of memory management

could benefit from this accelerator.

6.2.2. Support Via Virtual Memory. Perhaps one of the biggest limitations of the current

CachedArrays implementation is its ability to efficiently support sub-object segmentation. As a

motivating example, consider the case of using a very fast on-chip SRAM scratchpad to accelerate

a computation (e.g., a linear algebra routine on a large matrix). If the matrices involved are

sufficiently large such that they cannot fit within the SRAM cache in their entirety, they will

need to be partitioned according to some strategy. CachedArrays cannot support transparent

partitioning since an array is assumed to be contiguous in memory. Instead, either appropriately

sized intermediate arrays will need to be allocated and explicitly used, or some higher-order array

type constructed from multiple CachedArrays would have to be used. The latter is not ideal

because it would involve multiple levels of indirection to access array elements and would result in

the higher-order object no longer having a strided memory layout and thus unsuitable for BLAS

libraries. An argument can be made for the former in that it requires programs to be explicit about

data movement and scratchpad management, and won’t necessarily require arrays to be aligned

with page boundaries.

Now, modern computers already have support hardware accelerated indirect memory accesses

through the virtual memory subsystem. That is, array-like objects can be contiguous in the virtual

memory address space without being contiguous in physical address space. From a heterogeneous

data-tiering standpoint, this can be used to partition a large contiguous array into multiple trans-

parent objects (i.e., pages) which can be independently moved between different memory tiers.

This would require rearchitecting the virtual memory subsystem to (1) support fast reassignment

134

of virtual addresses to physical addresses, preferably without causing a TLB shootdown and its

associated overheads and (2) preferable happen without incurring an expensive OS context switch.

Both of these seem difficult from an implementation and coherence stand point.

Orthogonally, hardware can support concurrent data movement and access. As discussed previ-

ously, concurrent array access and movement in CachedArrays will result in a data race. This neces-

sitates either global synchronization (as is the case in CNN training) or per-object locks/semaphores

for correct behavior. Operating system/hardware support for data management through the vir-

tual memory subsystem could provide mechanisms like allow trapping upon access to a migrating

object, simplifying the user-level burden of synchronization.

6.2.3. Hardware Support for Policy Implementations. Another aspect in which hard-

ware support can help efficient data management is in providing real time telemetry on address

range usage. For example, policy mechanisms like read_use or write_use within CachedArrays can be

used to communicate to the policy when the corresponding arrays are used. However, this cannot

necessarily describe to the policy how how heavily a given array is accessed. For example, entries

in array A may be accessed only once, or maybe sparsely, while entries in array B may be accessed

many times with high temporal and spatial locality. Now, the policy may be able to indirectly infer

usage with profiling techniques like those used in AutoTM, but this may require profiling overhead.

Instead, we can imagine hardware support for registering objects (i.e., address ranges) as regions

of interest within the CPU core. All loads and stores to addresses within these objects can be

accumulated in registers that can be queried by the policy to determine which objects are hotly

accessed. This, in turn, can influence the policy’s decision on how to handle these objects. We can

take this even further and allow the policy to expose object usage statistics to the application to

allow the application to provide better hints to the policy.

135

APPENDIX A

OneDNN Wrapper

A.1. OneDNN Summary

A software component critical to the later chapters in this work is oneDNN1. This is an Intel

library offering high-performance implementations of many deep-learning primitives such as con-

volutions, dense-layers, batch normalization etc. This appendix will cover exposing the library’s

functionality to Julia.

A.1.1. Operations. OneDNN kernels are implemented as primitives, which are essentially

type-erased implementations of deep-learning operations. Primitives first begin as operation de-

scriptors, which include the type of operation to perform, the sizes and layouts of all arguments

and output parameters, and other miscellaneous parameters like optional post-ops, constant values,

etc. Operation descriptors are then used to construct primitive descriptors. Primitive descriptors

take a provided execution backend and operation descriptor and will fill out any missing details

from the operation descriptor. For example, primitive descriptors can determine the optimal lay-

out of arguments, which can then be queried. Finally, primitive descriptors are used to construct

primitives, which use just-in-time code generation along with all metadata stored in the primitive

descriptor to generate a high performance implementation of the requested operation.

Primitives can then invoked with all input and output parameters.

A.1.2. Memory. Memory for primitive input and output parameters is supplied through the

memory class. OneDNN supports a large number of exotic tiled memory formats to accelerate

primitive operation. The format of a particular memory instance can be queried through its memory

descriptor, which includes other relevant information like logic size and padded memory footprint.

The actual pointer for the memory can come from either the oneDNN library or from the user

application. This latter approach is used in this work.
1https://github.com/oneapi-src/oneDNN

136

https://github.com/oneapi-src/oneDNN

� �
1 # Before Macro Expansion
2 @apicall dnnl_primitive_get_primitive_desc(primitive, _pd)
3
4 # Post Macro Expansion
5 hummingbird = (OneDNN.Lib).dnnl_primitive_get_primitive_desc(
6 OneDNN.dnnl_convert(primitive),
7 OneDNN.dnnl_convert(_pd),
8)
9 if hummingbird != (OneDNN.Lib).dnnl_success

10 OneDNN.error("DNNL Failure: " * string(hummingbird))
11 end
12 hummingbird
13
14 # Default definition for `dnnl_convert`
15 dnnl_convert(x) = x� �

Listing A.1. Example lowering of the @apicall macro. The conversion helper
dnnl_convert is called on each argument. By default, this function is a no-op. The
return code is also checked for success or failure.

A.2. Exposing the C API

A.2.1. Generating FFI Functions. OneDNN has a C-interface composed of hundreds of

functions. While Julia has native support for calling C, manually writing Julia for each C function

is tedious and error prone. Instead, the Julia package Clang.jl2 was used. This is a package that

interfaces with Clang and LLVM to take C header files and automatically generate equivalent Julia

types and wrapper functions for all C types and functions in the header.

A.2.2. C Calls and Type Conversion. The oneDNN library uses integer return types to

denote failure or success of an operation. Additionally, some conversion may be required between

Julia types and the corresponding oneDNN type for seamless use. To this end, the @apicall (shown

in Listing A.1) macro was introduced for optional argument conversion and error handling.

In addition to dnnl_convert, Julia’s normal ccall conversion (shown in Listing A.2) provides two

more, Base.cconvert and Base.unsafe_convert. By default, the implementation of these functions is

simple and often completely by the compiler. However, there are two illustrative cases where we

can take advantage of this type conversion pipeline.

First, we would like to reconcile ABI issues with Julia’s representation of dnnl_dims_t, the type

that contains the logical dimensions of a tensor. On the C side, this is represented as
2https://github.com/JuliaInterop/Clang.jl

137

https://github.com/JuliaInterop/Clang.jl

� �
1 # Inside the C function wrapper
2 function dnnl_primitive_get_primitive_desc(primitive, primitive_desc)
3 return ccall(
4 (:dnnl_primitive_get_primitive_desc, libdnnl),
5 dnnl_status_t,
6 (const_dnnl_primitive_t, Ptr{const_dnnl_primitive_desc_t}),
7 primitive,
8 primitive_desc,
9)

10 end
11
12 # `ccall` argument conversion expansion
13 function dnnl_primitive_get_primitive_desc(primitive, primitive_desc)
14 return ccall(
15 (:dnnl_primitive_get_primitive_desc, libdnnl),
16 dnnl_status_t,
17 (dnnl_primitive_t, Ptr{dnnl_primitive_desc_t}),
18 Base.unsafe_convert(dnnl_primitive_t, Base.cconvert(dnnl_primitive_t, primitive))
19 Base.unsafe_convert(dnnl_primitive_desc_t, Base.cconvert(dnnl_primitive_desc_t,

primitive_desc)),
20)
21 end� �

Listing A.2. Example of normal Julia lowering of ccode, providing two methods for
potential conversion: Base.cconvert and Base.unsafe_convert. The result of cconvert is
protected from early garbage collection (if applicable) while unsafe_convert is meant
to handle conversion of pointer types.

� �
1 typedef dnnl_dims_t int64_t[12];� �

while on the Julia side this is:

� �
1 const dnnl_dims_t = NTuple{12,Int64}� �

When calling C functions accepting dnnl_dims_t, the C function expects a pointer while Julia wants

to pass the tuple on the stack. We can’t change the Julia definition of dnnl_dims_t to an array because

downstream bits types like dnnl_memory_desc_t have dnnl_dims_t as a member, so changing dnnl_dims_t

’s definition would break all kinds of things. Furthermore, we can’t redefine Base.unsafe_convert nor

Base.cconvert because that would be type piracy and may have undefined consequences3. Instead,

we can simply define:

� �
1 dnnl_convert(x::NTuple{12,Int64}) = Ref(x)

3https://docs.julialang.org/en/v1/manual/style-guide/#Avoid-type-piracy

138

https://docs.julialang.org/en/v1/manual/style-guide/#Avoid-type-piracy

� �
The function Base.unsafe_convert will then perform the correct conversion to a pointer and every-

thing is happy.

Another example where we can use this conversion pipeline to our advantage is by implementing

strict type checks for pointer conversions. By default, Julia is perfectly happy converting a pointer

from one type to another. For example, the following is allowed, despite whether or not it makes

sense:

� �
1 ptrA = Ptr{Int}(0)
2 ptrB = Base.unsafe_convert(Ptr{NTuple{4,Float32}}, ptrA)� �

Many of the functions on the oneDNN C API take various types by pointers, which means that

if this kind of free pointer conversion is allowed, then when we accidentally mess up the order of

types passed to the ccall, then we get a rather unhelpful segfault instead of a more helpful error

message. This is fixed by teaching Clang.jl’s wrapping script to explicitly turn incorrect pointer

conversion of oneDNN defined types into an error, as illustrated below.

� �
1 struct dnnl_engine end
2 function Base.cconvert(::Type{Ptr{dnnl_engine}}, x::Ptr{dnnl_engine})
3 return x
4 end
5 function Base.cconvert(::Type{Ptr{dnnl_engine}}, x::Ptr)
6 error("Refusing to convert \$(typeof(x)) to a Ptr{\$(dnnl_engine)}!")
7 end
8 function Base.cconvert(::Type{Ptr{Ptr{dnnl_engine}}}, x::Ptr{Ptr{dnnl_engine}})
9 return x

10 end
11 function Base.cconvert(::Type{Ptr{Ptr{dnnl_engine}}}, x::Ptr)
12 msg = join((
13 "Refusing to convert ",
14 typeof(x),
15 " to a Ptr{Ptr{dnnl_engine}}",
16))
17 error(msg)
18 end� �

Listing A.3. Automatically generated code to disable implicit pointer conversions
for the dnnl_engine type. Similar conversion restrictions are used for all critical types
exposed by the oneDNN C-API.

139

� �
1 mutable struct Memory
2 handle::dnnl_memory_t
3 Memory() = new(dnnl_memory_t())
4 end
5
6 # Helper Constructors
7 # Function `memorydesc` returns a oneDNN type that describes the memory layout
8 # of the array `A`.
9 function Memory(A::DenseArray, desc = memorydesc(A); kw...)

10 return Memory(convert(Ptr{Nothing}, pointer(A)), desc)
11 end
12
13 function Memory(ptr::Ptr{Nothing}, desc; engine = global_engine())
14 memory = Memory()
15 @apicall dnnl_memory_create(memory, desc, engine, ptr)
16 finalizer(memory) do _memory
17 @apicall dnnl_memory_destroy(_memory)
18 end
19 return memory
20 end
21
22 # Automatic conversion to C-types
23 Base.unsafe_convert(::Type{dnnl_memory_t}, x::Memory) = x.handle
24 function Base.unsafe_convert(::Type{Ptr{dnnl_memory_t}}, x::Memory)
25 return Base.unsafe_convert(Ptr{dnnl_memory_t}, Base.pointer_from_objref(x))
26 end� �

Listing A.4. Exposing the dnnl_memory oneDNN type to Julia.

A.3. Exposing Types to Julia

The oneDNN C-API uses a large number of opaque struct pointers such as dnnl_memory_t. On

the Julia side, this is easily modeled as

� �
1 # Doesn't really matter if `dnnl_memory` is `mutable` or not since it is never
2 # actually materialized, we only deal with `Ptr{dnnl_memory}`.
3 struct dnnl_memory end
4 const dnnl_memory_t = Ptr{dnnl_memory}� �

Many of these types have cleanup code that must be called when the types are destroyed. The

fix is straightforward: we introduce a mutable type wrapper for the various opaque pointers and use

a finalizer to call the appropriate destructors. The pattern looks something like Listing A.4. The

function doing the heavy lifting is on lines 13 to 20. This allocates the dnnl_memory pointer (line 14

- since Memory is a mutable struct, it is guaranteed to have stable memory address), create the actual

memory object using the appropriate oneDNN C function (line 15), and attaches a finalizer to the

allocated Memory that will clean up the C allocated data structures using the appropriate destructor

140

(line 16-18). To allow for automatic C function type conversion, we define the conversion functions

one lines 23 to 26, allowing for conversions of a Memory to a C dnnl_memory* and to a dnnl_memory**.

This pattern of type wrapping is used for enough oneDNN types that a macro (@wrap_type) was

created to automatically generate most of the boiler-plate.

A.3.1. Primitive Argument Pipeline. OneDNN’s API for primitive arguments (i.e., source

and destination tensors) involves passing a C array of dnnl_exec_arg_t whose Julia equivalent is

defined as

� �
1 struct dnnl_exec_arg_t
2 arg::Cint
3 memory::dnnl_memory_t
4 end� �

Where the arg field is essentially an enum describing the arguments role. For example, DNNL_ARG_SRC_0

has a value of 1 while DNNL_ARG_DST_0 has a value of 17. All such arguments are gathered into an

array (or tuple) and passed to oneDNN as a pointer. When the number of arguments is small and

known, it is more efficient to use a tuple since Julia’s optimizer can elide any allocation and simply

pass oneDNN a pointer to the variables on the stack.

As is the case with many of these oneDNN bridging functions, manually constructing the

collection of arguments can be tedious and error prone. To that end, a macro “@dnnl_args” is

introduced to perform the heavy lifting. An example usage is shown below

� �
1 # Macro Invocation for
2 @dnnl_args src dst
3 @dnnl_args src scale_shift dst mean variance workspace
4 @dnnl_args dst multiple_src
5
6 # Expanded Macros
7 OneDNN.make_args(
8 OneDNN.dnnl_arg((OneDNN.Lib).DNNL_ARG_SRC, src, OneDNN.Reading()),
9 OneDNN.dnnl_arg((OneDNN.Lib).DNNL_ARG_DST, dst, OneDNN.Writing())),

10)
11 OneDNN.make_args(
12 OneDNN.dnnl_arg((OneDNN.Lib).DNNL_ARG_SRC, src, OneDNN.Reading()),
13 OneDNN.dnnl_arg((OneDNN.Lib).DNNL_ARG_SCALE_SHIFT, scale_shift, OneDNN.Reading()),
14 OneDNN.dnnl_arg((OneDNN.Lib).DNNL_ARG_DST, dst, OneDNN.Writing()),
15 OneDNN.dnnl_arg((OneDNN.Lib).DNNL_ARG_MEAN, mean, OneDNN.Reading()),
16 OneDNN.dnnl_arg((OneDNN.Lib).DNNL_ARG_VARIANCE, variance, OneDNN.Reading()),
17 OneDNN.dnnl_arg((OneDNN.Lib).DNNL_ARG_WORKSPACE, workspace, OneDNN.Writing()),

141

18)
19 OneDNN.make_args(
20 OneDNN.dnnl_arg((OneDNN.Lib).DNNL_ARG_DST, dst, OneDNN.Writing()),
21 OneDNN.dnnl_arg((OneDNN.Lib).DNNL_ARG_MULTIPLE_SRC, multiple_src, OneDNN.Reading()),
22)� �

There are several things to note about the expanded macro. First, the name of the variable on

the Julia side is used to find the correct integer value to describe that argument’s role (e.g., src is

converted into OneDNN.Lib.DNNL_ARG_SRC). This means that any code using this macro needs to keep

its variable names in alignment with the oneDNN API, which is useful for code clarity as variable

names on the Julia side will match the oneDNN documentation. Second, a table is kept regarding

the usage of each argument type. For example, we know that any ”source” arguments will be read

and any ”dst” arguments will be written. This can be used to provide context to argument creation

(e.g., OneDNN.Reading()), which in turn allows packages like CachedArrays.jl to record read and write

accesses to the memory buffers backing the dnnl_memory_t objects.

A.4. Putting it all Together

An example implementation of elementwise operations is shown in Listing A.5. This uses much

of the machinery developed previously to build and execute kernels performing an operation on

each element of a tensor (exposed as the Memory type in Julia).

Note that creation of the primitive from the primitive descriptor (handled by the temp_primitive

function, results in JIT compiling the kernel. The compiled kernel implementation is specialized on

most aspects of the kernel, including element type, tensor dimensions, and tensor layout. To avoid

recompiling the primitive implementation each time, the oneDNN library maintains a primitive

cache, using the primitive descriptor as key for this cache. Thus, there is a small overhead of

accessing the cached primitive implementation, but this is usually negligible compared to the overall

execution time of the primitive.

Through these means, we were able to expose the functionality of oneDNN to implement high-

performance deep neural networks. Furthermore, because memory allocation was controlled on

the Julia side, CachedArrays could be used as the memory allocator for oneDNN memory types.

This provides full control of the location (i.e., DRAM or PM) of each kernel’s input and output

parameters, allowing for heterogeneous memory management of oneDNN operations.

142

� �
1 # Map Julia functions to OneDNN `eltwise` arguments.
2 forward_expand(::typeof(Base.abs)) = (Lib.dnnl_eltwise_abs, zero(Float32), zero(Float32))
3 function forward_expand(::typeof(Flux.sigmoid)) ■ Missing reference: sigmoid
4 return (Lib.dnnl_eltwise_logistic, zero(Float32), zero(Float32))
5 end
6 forward_expand(::typeof(Base.sqrt)) = (Lib.dnnl_eltwise_sqrt, zero(Float32), zero(Float32))
7 forward_expand(::typeof(Flux.relu)) = (Lib.dnnl_eltwise_relu, zero(Float32), zero(Float32))
8 forward_expand(::typeof(Base.log)) = (Lib.dnnl_eltwise_log, zero(Float32), zero(Float32))
9

10 # Implement `eltwise~.
11 eltwise(f::F, src::Memory) where {F} = eltwise(src, forward_expand(f)...)
12 eltwise(::typeof(identity), src::Memory) = src
13 function eltwise(
14 src::Memory, kind::dnnl_alg_kind_t, alpha = one(Float32), beta = zero(Float32)
15)
16 # Keep similar format to source
17 dst = similar(src)
18 eltwise!(dst, src, kind, alpha, beta)
19 return dst
20 end
21
22 function eltwise!(
23 dst::Memory,
24 src::Memory,
25 algo::Lib.dnnl_alg_kind_t,
26 alpha = one(Float32),
27 beta = zero(Float32),
28)
29 # Create an operation descriptor.
30 opdesc = Ref{Lib.dnnl_eltwise_desc_t}()
31 @apicall dnnl_eltwise_forward_desc_init(opdesc, Inference(), algo, src, alpha, beta)
32
33 # From the operation descriptor, create a primitive descriptor and then the primitive.
34 temp_primitive(opdesc, noattributes(), global_engine(), noforward()) do primitive, _
35 execute!(primitive, @dnnl_args dst src)
36 end
37 return dst
38 end� �

Listing A.5. Implementation of elementwise operations. Methods forward_expand
turn Julia functions into triplets including the oneDNN operation enum and scaling
factors alpha and beta. The function eltwise takes a Memory (a wrapper type for
oneDNN’s tensor type with memory allocated by Julia), constructs a similar sized
destination for the operation using similar, and calls the mutating eltwise!. Inside
the implementation of eltwise, first an operation descriptor opdesc is created. This
is then passed to a function temp_primitive, which create a primitive descriptor
and finally the primitive itself. Both of these objects are passed to the body of
the temp_primitive’s closure. With the primitive, oneDNN arguments are created
(@dnnl_args) and the execute! is called. This function is responsible for any required
scratchpad allocation and finally executes the primitive.

143

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,

V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, Tensorflow: A system for large-scale machine

learning, in 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah,

GA, 2016, USENIX Association, pp. 265–283.

[2] N. Agarwal and T. F. Wenisch, Thermostat: Application-transparent page management for two-tiered

main memory, in Proceedings of the Twenty-Second International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017, 2017, pp. 631–

644.

[3] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H. Shacham, On subnormal

floating point and abnormal timing, in Proceedings of the 2015 IEEE Symposium on Security and Privacy, SP

’15, Washington, DC, USA, 2015, IEEE Computer Society, pp. 623–639.

[4] O. Avissar, R. Barua, and D. Stewart, Heterogeneous memory management for embedded systems, in

Proceedings of the 2001 International Conference on Compilers, Architecture, and Synthesis for Embedded

Systems, CASES ’01, New York, NY, USA, 2001, ACM, pp. 34–43.

[5] M. Bartholomew-Biggs, S. Brown, B. Christianson, and L. Dixon, Automatic differentiation of al-

gorithms, Journal of Computational and Applied Mathematics, 124 (2000), pp. 171–190. Numerical Analysis

2000. Vol. IV: Optimization and Nonlinear Equations.

[6] S. Beamer, Understanding and improving graph algorithm performance, PhD thesis, UC Berkeley, 2016.

[7] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical computing,

SIAM review, 59 (2017), pp. 65–98.

[8] A. Biswas, Sapphire rapids, in 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–22.

[9] A. Brock, J. Donahue, and K. Simonyan, Large scale GAN training for high fidelity natural image synthesis,

in 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,

2019, 2019.

[10] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,

G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,

D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,

144

J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, Language models are

few-shot learners, 2020.

[11] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf, O. Mutlu, and A. Kolli, Rethinking

software runtimes for disaggregated memory, in Proceedings of the 26th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems, 2021, pp. 79–92.

[12] E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool, O. Schwartz, and H. V.

Simhadri, Write-avoiding algorithms, in 2016 IEEE International Parallel and Distributed Processing Sym-

posium (IPDPS), IEEE, 2016, pp. 648–658.

[13] C. L. Chen and M. Y. Hsiao, Error-correcting codes for semiconductor memory applications: A state-of-the-

art review, IBM Journal of Research and Development, 28 (1984), pp. 124–134.

[14] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn, MPIPP: an automatic profile-guided parallel

process placement toolset for SMP clusters and multiclusters, in Proceedings of the 20th Annual International

Conference on Supercomputing, ICS 2006, Cairns, Queensland, Australia, June 28 - July 01, 2006, 2006,

pp. 353–360.

[15] X. Chen, D. Z. Chen, and X. S. Hu, modnn: Memory optimal dnn training on gpus, in 2018 Design,

Automation Test in Europe Conference Exhibition (DATE), March 2018, pp. 13–18.

[16] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer,

cudnn: Efficient primitives for deep learning, CoRR, abs/1410.0759 (2014).

[17] C. Chou, A. Jaleel, and M. K. Qureshi, Bear: Techniques for mitigating bandwidth bloat in gigascale dram

caches, in 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA), 2015,

pp. 198–210.

[18] C. C. Chou, A. Jaleel, and M. K. Qureshi, Cameo: A two-level memory organization with capacity of main

memory and flexibility of hardware-managed cache, in 2014 47th Annual IEEE/ACM International Symposium

on Microarchitecture, 2014, pp. 1–12.

[19] R. Collobert and J. Weston, A unified architecture for natural language processing: Deep neural networks

with multitask learning, in Proceedings of the 25th international conference on Machine learning, ACM, 2008,

pp. 160–167.

[20] T. Cormen, C. Leiserson, R. Rivest, and e. Clifford Stein, Introduction to Algorithms, MIT Press,

2001.

[21] I. Corporation, Optane dc persistent memory brief.

[22] , Intel 64 and IA-32 Architectures Software Developer’s Manual, Intel Corporation, August 2016.

[23] , onednn. https://github.com/oneapi-src/oneDNN, 2021.

[24] S. Cyphers, A. K. Bansal, A. Bhiwandiwalla, J. Bobba, M. Brookhart, A. Chakraborty, W. Con-

stable, C. Convey, L. Cook, O. Kanawi, R. Kimball, J. Knight, N. Korovaiko, V. Kumar, Y. Lao,

145

https://github.com/oneapi-src/oneDNN

C. R. Lishka, J. Menon, J. Myers, S. A. Narayana, A. Procter, and T. J. Webb, Intel ngraph: An

intermediate representation, compiler, and executor for deep learning, CoRR, abs/1801.08058 (2018).

[25] N. S. Dasari, R. Desh, and M. Zubair, Park: An efficient algorithm for k-core decomposition on multicore

processors, in 2014 IEEE International Conference on Big Data (Big Data), 2014, pp. 9–16.

[26] L. Dhulipala, C. McGuffey, H. Kang, Y. Gu, G. E. Blelloch, P. B. Gibbons, and J. Shun, Sage:

Parallel semi-asymmetric graph algorithms for nvrams, Proc. VLDB Endow., 13 (2020), p. 1598–1613.

[27] T. D. Doudali, D. Zahka, and A. Gavrilovska, Cori: Dancing to the right beat of periodic data movements

over hybrid memory systems, in 2021 IEEE International Parallel and Distributed Processing Symposium

(IPDPS), IEEE, 2021, pp. 350–359.

[28] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran, J. Jackson, and K. Schwan,

Data tiering in heterogeneous memory systems, in Proceedings of the Eleventh European Conference on Com-

puter Systems, 2016, pp. 1–16.

[29] I. Dunning, J. Huchette, and M. Lubin, Jump: A modeling language for mathematical optimization, SIAM

Review, 59 (2017), pp. 295–320.

[30] A. Eisenman, D. Gardner, I. AbdelRahman, J. Axboe, S. Dong, K. M. Hazelwood, C. Petersen,

A. Cidon, and S. Katti, Reducing DRAM footprint with NVM in facebook, in Proceedings of the Thirteenth

EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018, 2018, pp. 42:1–42:13.

[31] A. Eisenman, M. Naumov, D. Gardner, M. Smelyanskiy, S. Pupyrev, K. M. Hazelwood, A. Cidon,

and S. Katti, Bandana: Using non-volatile memory for storing deep learning models, CoRR, abs/1811.05922

(2018).

[32] B. Falsafi and D. A. Wood, Reactive numa: A design for unifying s-coma and cc-numa, SIGARCH Comput.

Archit. News, 25 (1997), p. 229–240.

[33] G. Gill, R. Dathathri, L. Hoang, R. Peri, and K. Pingali, Single machine graph analytics on massive

datasets using intel optane dc persistent memory, Proc. VLDB Endow., 13 (2020), p. 1304–1318.

[34] GitHub, Graph500. https://github.com/graph500/graph500, 2019.

[35] A. Goldberg, E. Tardos, and R. Tarjan, Network flow algorithms, (1989), p. 80.

[36] D. W. Goodwin and K. D. Wilken, Optimal and near-optimal global register allocations using 0–1

integer programming, Softw. Pract. Exper., 26 (1996), pp. 929–965.

[37] U. Gupta, X. Wang, M. Naumov, C. Wu, B. Reagen, D. Brooks, B. Cottel, K. M. Hazelwood, B. Jia,

H. S. Lee, A. Malevich, D. Mudigere, M. Smelyanskiy, L. Xiong, and X. Zhang, The architectural

implications of facebook’s dnn-based personalized recommendation, CoRR, abs/1906.03109 (2019).

[38] L. Gurobi Optimization, Gurobi optimizer reference manual, 2018.

[39] F. T. Hady, A. Foong, B. Veal, and D. Williams, Platform storage performance with 3D XPoint technology,

Proceedings of the IEEE, 105 (2017), pp. 1822–1833.

146

https://github.com/graph500/graph500

[40] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S. Liao, E. Bugnion, and M. S.

Lam, Maximizing multiprocessor performance with the SUIF compiler, Digital Technical Journal, 10 (1998),

pp. 71–80.

[41] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, CoRR, abs/1512.03385

(2015).

[42] J. Hestness, N. Ardalani, and G. Diamos, Beyond human-level accuracy: Computational challenges in deep

learning, in Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming, PPoPP

’19, New York, NY, USA, 2019, ACM, pp. 1–14.

[43] M. Hildebrand, J. T. Angeles, J. Lowe-Power, and V. Akella, A case against hardware managed dram

caches for nvram based systems, in 2021 IEEE International Symposium on Performance Analysis of Systems

and Software (ISPASS), 2021, pp. 194–204.

[44] M. Hildebrand, J. Khan, S. Trika, J. Lowe-Power, and V. Akella, Autotm: Automatic tensor movement

in heterogeneous memory systems using integer linear programming, in Proceedings of the Twenty-Fifth Inter-

national Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS

’20, New York, NY, USA, 2020, Association for Computing Machinery, p. 875–890.

[45] T. Hirofuchi and R. Takano, The preliminary evaluation of a hypervisor-based virtualization mechanism for

intel optane DC persistent memory module, CoRR, abs/1907.12014 (2019).

[46] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, Densely connected convolutional networks,

in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2261–2269.

[47] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal

covariate shift, in Proceedings of the 32nd International Conference on Machine Learning, F. Bach and D. Blei,

eds., vol. 37 of Proceedings of Machine Learning Research, Lille, France, 07–09 Jul 2015, PMLR, pp. 448–456.

[48] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J. Soh, Z. Wang, Y. Xu, S. R.

Dulloor, J. Zhao, and S. Swanson, Basic performance measurements of the intel optane DC persistent

memory module, CoRR, abs/1903.05714 (2019).

[49] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and D. I. August, Automatic CPU-

GPU communication management and optimization, in Proceedings of the 32nd ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, 2011,

pp. 142–151.

[50] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, Unison cache: A scalable and effective die-stacked

dram cache, in 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, 2014, pp. 25–37.

[51] D. Jevdjic, S. Volos, and B. Falsafi, Die-stacked dram caches for servers: Hit ratio, latency, or bandwidth?

have it all with footprint cache, SIGARCH Comput. Archit. News, 41 (2013), p. 404–415.

147

[52] D. D. Kalamkar, E. Georganas, S. Srinivasan, J. Chen, M. Shiryaev, and A. Heinecke, Optimizing

deep learning recommender systems’ training on CPU cluster architectures, CoRR, abs/2005.04680 (2020).

[53] S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan, Heteroos: Os design for heterogeneous mem-

ory management in datacenter, in Proceedings of the 44th Annual International Symposium on Computer

Architecture, 2017, pp. 521–534.

[54] S. Kannan, Y. Ren, and A. Bhattacharjee, Klocs: kernel-level object contexts for heterogeneous memory

systems, in Proceedings of the 26th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, 2021, pp. 65–78.

[55] J. Kim, W. Choe, and J. Ahn, Exploring the design space of page management for multi-tiered memory

systems, in 2021 {USENIX} Annual Technical Conference ({USENIX}{ATC} 21), 2021, pp. 715–728.

[56] C. Lameter, Numa (non-uniform memory access): An overview, Queue, 11 (2013), pp. 40:40–40:51.

[57] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, nature, 521 (2015), p. 436.

[58] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition,

Proceedings of the IEEE, 86 (1998), pp. 2278–2324.

[59] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee, A fully associative, tagless dram

cache, in Proceedings of the 42nd Annual International Symposium on Computer Architecture, ISCA ’15, New

York, NY, USA, 2015, Association for Computing Machinery, p. 211–222.

[60] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, Kronecker graphs: An

approach to modeling networks, J. Mach. Learn. Res., 11 (2010), p. 985–1042.

[61] G. H. Loh and M. D. Hill, Efficiently enabling conventional block sizes for very large die-stacked dram caches,

in 2011 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2011, pp. 454–464.

[62] J. Lowe-Power, On Heterogeneous Compute and Memory Systems, PhD thesis, University of Wisconsin,

Madison, 2017.

[63] P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius, D. Patterson, H. Tang, G.-Y. Wei,

P. Bailis, V. Bittorf, D. Brooks, D. Chen, D. Dutta, U. Gupta, K. Hazelwood, A. Hock, X. Huang,

A. Ike, B. Jia, D. Kang, D. Kanter, N. Kumar, J. Liao, G. Ma, D. Narayanan, T. Oguntebi,

G. Pekhimenko, L. Pentecost, V. J. Reddi, T. Robie, T. S. John, T. Tabaru, C.-J. Wu, L. Xu,

M. Yamazaki, C. Young, and M. Zaharia, Mlperf training benchmark, 2019.

[64] S. McCandlish, J. Kaplan, D. Amodei, and O. D. Team, An empirical model of large-batch training, 2018.

[65] T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector

space, 2013.

[66] D. Mudigere, Y. Hao, J. Huang, Z. Jia, A. Tulloch, S. Sridharan, X. Liu, M. Ozdal, J. Nie, J. Park,

L. Luo, J. A. Yang, L. Gao, D. Ivchenko, A. Basant, Y. Hu, J. Yang, E. K. Ardestani, X. Wang,

R. Komuravelli, C.-H. Chu, S. Yilmaz, H. Li, J. Qian, Z. Feng, Y. Ma, J. Yang, E. Wen, H. Li,

148

L. Yang, C. Sun, W. Zhao, D. Melts, K. Dhulipala, K. Kishore, T. Graf, A. Eisenman, K. K.

Matam, A. Gangidi, G. J. Chen, M. Krishnan, A. Nayak, K. Nair, B. Muthiah, M. khorashadi,

P. Bhattacharya, P. Lapukhov, M. Naumov, A. Mathews, L. Qiao, M. Smelyanskiy, B. Jia, and

V. Rao, Software-hardware co-design for fast and scalable training of deep learning recommendation models,

2021.

[67] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman, J. Park, X. Wang, U. Gupta, C. Wu,

A. G. Azzolini, D. Dzhulgakov, A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,

V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia, L. Xiong, and M. Smelyanskiy,

Deep learning recommendation model for personalization and recommendation systems, CoRR, abs/1906.00091

(2019).

[68] D. Nguyen, A. Lenharth, and K. Pingali, A lightweigth infrastructure for graph analytics, in Proceedings

of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, New York, NY, USA,

2013, Association for Computing Machinery, pp. 456–471.

[69] J. Nickolls, I. Buck, M. Garland, and K. Skadron, Scalable parallel programming with cuda, Queue, 6

(2008), pp. 40–53.

[70] T. Nowatzki, M. Ferris, K. Sankaralingam, C. Estan, N. Vaish, and D. Wood, Optimization and

mathematical modeling in computer architecture, Synthesis Lectures on Computer Architecture, 8 (2013), pp. 1–

144.

[71] I. Oukid, D. Booss, A. Lespinasse, W. Lehner, T. Willhalm, and G. Gomes, Memory management

techniques for large-scale persistent-main-memory systems, Proceedings of the VLDB Endowment, 10 (2017),

pp. 1166–1177.

[72] A. Outman, Web data commons - hyperlink graphs, tech. rep., 2017.

[73] L. Page, S. Brin, R. Motwani, and T. Winograd, The pagerank citation ranking: Bringing order to the

web., Technical Report 1999-66, Stanford InfoLab, November 1999.

[74] S. Pai, R. Govindarajan, and M. J. Thazhuthaveetil, Fast and efficient automatic memory management

for gpus using compiler-assisted runtime coherence scheme, in International Conference on Parallel Architectures

and Compilation Techniques, PACT ’12, Minneapolis, MN, USA - September 19 - 23, 2012, 2012, pp. 33–42.

[75] W. Pan, T. Xie, and X. Song, Hart: A concurrent hash-assisted radix tree for dram-pm hybrid memory

systems, in 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), IEEE, 2019,

pp. 921–931.

[76] O. Patil, L. Ionkov, J. Lee, F. Mueller, and M. Lang, Performance characterization of a dram-nvm hybrid

memory architecture for hpc applications using intel optane dc persistent memory modules, in Proceedings of

the International Symposium on Memory Systems, MEMSYS ’19, New York, NY, USA, 2019, Association for

Computing Machinery, p. 288–303.

149

[77] I. B. Peng, M. B. Gokhale, and E. W. Green, System evaluation of the intel optane byte-addressable nvm,

in Proceedings of the International Symposium on Memory Systems, 2019, pp. 304–315.

[78] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley, and S. Amarasinghe, Portable performance on

heterogeneous architectures, in Proceedings of the Eighteenth International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS ’13, New York, NY, USA, 2013, ACM, pp. 431–

444.

[79] D. M. W. Powers, Applications and explanations of Zipf’s law, in New Methods in Language Processing and

Computational Natural Language Learning, 1998.

[80] M. K. Qureshi and G. H. Loh, Fundamental latency trade-off in architecting dram caches: Outperform-

ing impractical sram-tags with a simple and practical design, in 2012 45th Annual IEEE/ACM International

Symposium on Microarchitecture, 2012, pp. 235–246.

[81] A. Raad, J. Wickerson, G. Neiger, and V. Vafeiadis, Persistency semantics of the intel-x86 architecture,

Proc. ACM Program. Lang., 4 (2019).

[82] M. Radulovic, D. Zivanovic, D. Ruiz, B. R. de Supinski, S. A. McKee, P. Radojković, and

E. Ayguadé, Another trip to the wall: How much will stacked dram benefit hpc?, in Proceedings of the 2015

International Symposium on Memory Systems, MEMSYS ’15, New York, NY, USA, 2015, ACM, pp. 31–36.

[83] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, Zero: Memory optimizations toward training trillion

parameter models, in Proceedings of the International Conference for High Performance Computing, Networking,

Storage and Analysis, SC ’20, IEEE Press, 2020.

[84] R. K. Ramanujan, R. Agarwal, and G. J. Hinton, Apparatus and method for implementing a multi-level

memory hierarchy having different operating modes, Feb. 2 2017.

[85] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, Deepspeed: System optimizations enable training deep

learning models with over 100 billion parameters, in Proceedings of the 26th ACM SIGKDD International

Conference on Knowledge Discovery; Data Mining, KDD ’20, New York, NY, USA, 2020, Association for

Computing Machinery, p. 3505–3506.

[86] A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Peter, Hemem: Scalable tiered memory management

for big data applications and real nvm, in Proceedings of the ACM SIGOPS 28th Symposium on Operating

Systems Principles CD-ROM, 2021, pp. 392–407.

[87] J. Ren, J. Luo, K. Wu, M. Zhang, H. Jeon, and D. Li, Sentinel: Efficient tensor migration and allocation on

heterogeneous memory systems for deep learning, in 2021 IEEE International Symposium on High-Performance

Computer Architecture (HPCA), IEEE, 2021, pp. 598–611.

[88] J. Revels, V. Churavy, S. Schaub, T. Besard, L. White, S. Kadowaki, M. J. Innes, T. Koolen,

N. Daly, C. de Graaf, D. Aluthge, K. Fischer, K. Carlsson, M. Schauer, M. Piibeleht, R. Deits,

and Rogerluo, Julialabs/cassette.jl: v0.3.9, Sept. 2021.

150

[89] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler, vdnn: Virtualized deep neural

networks for scalable, memory-efficient neural network design, in The 49th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO-49, Piscataway, NJ, USA, 2016, IEEE Press, pp. 18:1–18:13.

[90] A. Rohan, B. Panda, and P. Agarwal, Reverse engineering the stream prefetcher for profit, in 2020 IEEE

European Symposium on Security and Privacy Workshops (EuroS PW), 2020, pp. 682–687.

[91] A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, Inc., New York, NY, USA,

1986.

[92] A. Shanbhag, N. Tatbul, D. Cohen, and S. Madden, Large-scale in-memory analytics on intel® optane™ dc

persistent memory, in Proceedings of the 16th International Workshop on Data Management on New Hardware,

DaMoN ’20, New York, NY, USA, 2020, Association for Computing Machinery.

[93] L. G. Shapiro, Connected component labeling and adjacency graph construction, in Topological Algorithms

for Digital Image Processing, T. Y. Kong and A. Rosenfeld, eds., vol. 19 of Machine Intelligence and Pattern

Recognition, North-Holland, 1996, pp. 1 – 30.

[94] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. E. Hinton, and J. Dean, Outrageously

large neural networks: The sparsely-gated mixture-of-experts layer, CoRR, abs/1701.06538 (2017).

[95] Y. Shen and Z. Zou, Efficient subgraph matching on non-volatile memory, in International Conference on

Web Information Systems Engineering, Springer, 2017, pp. 457–471.

[96] Y. Shiloach and U. Vishkin, An o(logn) parallel connectivity algorithm, Journal of Algorithms, 3 (1982),

pp. 57 – 67.

[97] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, in

International Conference on Learning Representations, 2015.

[98] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari, J. Casper, Z. Liu, S. Prabhumoye,

G. Zerveas, V. Korthikanti, E. Zhang, R. Child, R. Y. Aminabadi, J. Bernauer, X. Song, M. Shoeybi,

Y. He, M. Houston, S. Tiwary, and B. Catanzaro, Using deepspeed and megatron to train megatron-turing

nlg 530b, a large-scale generative language model, 2022.

[99] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to sequence learning with neural networks, in Advances

in neural information processing systems, 2014, pp. 3104–3112.

[100] C. Szegedy, S. Ioffe, and V. Vanhoucke, Inception-v4, inception-resnet and the impact of residual connec-

tions on learning, CoRR, abs/1602.07261 (2016).

[101] S. Van Doren, Abstract - hoti 2019: Compute express link, in 2019 IEEE Symposium on High-Performance

Interconnects (HOTI), 2019, pp. 18–18.

[102] A. van Renen, L. Vogel, V. Leis, T. Neumann, and A. Kemper, Persistent memory i/o primitives, in

Proceedings of the 15th International Workshop on Data Management on New Hardware, 2019, pp. 1–7.

151

[103] A. van Renen, L. Vogel, V. Leis, T. Neumann, and A. Kemper, Persistent memory I/O primitives,

CoRR, abs/1904.01614 (2019).

[104] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polo-

sukhin, Attention is all you need, in Advances in Neural Information Processing Systems, I. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds., vol. 30, Curran Associates,

Inc., 2017.

[105] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. M. Czarnecki, A. Dudzik,

A. Huang, P. Georgiev, R. Powell, et al., Alphastar: Mastering the real-time strategy game starcraft ii,

DeepMind Blog, (2019).

[106] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and T. Kraska, Superneurons: Dynamic

GPU memory management for training deep neural networks, CoRR, abs/1801.04380 (2018).

[107] Z. Wang, X. Liu, J. Yang, T. Michailidis, S. Swanson, and J. Zhano, Characterizing and modeling

non-volatile memory systems, in IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020.

[108] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, Nimble page management for tiered memory sys-

tems, in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019, 2019, pp. 331–345.

[109] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, An empirical guide to the behavior

and use of scalable persistent memory, in 18th USENIX Conference on File and Storage Technologies, FAST

2020, Santa Clara, CA, USA, February 24-27, 2020, 2020, pp. 169–182.

[110] H. Ze, A. Senior, and M. Schuster, Statistical parametric speech synthesis using deep neural networks, in

2013 ieee international conference on acoustics, speech and signal processing, IEEE, 2013, pp. 7962–7966.

[111] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas, Stackgan: Text to photo-

realistic image synthesis with stacked generative adversarial networks, in Proceedings of the IEEE International

Conference on Computer Vision, 2017, pp. 5907–5915.

[112] R. Zhou and T. M. Jones, Janus: Statically-driven and profile-guided automatic dynamic binary parallelisa-

tion, in Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization,

CGO 2019, Piscataway, NJ, USA, 2019, IEEE Press, pp. 15–25.

152

	Abstract
	Acknowledgments
	Chapter 1. Introduction
	1.1. Introduction
	1.2. Intel Optane DC PMM
	1.3. Research Motivation
	1.4. Dissertation Contributions and Organization

	Chapter 2. Limitations of Hardware Managed Gigascale DRAM Caches
	2.1. Introduction
	2.2. Background and Related Work
	2.3. Evaluation Methodology and Validation
	2.4. DRAM Cache / 2LM Mode
	2.5. Case Study 1: Convolutional Neural Networks
	2.6. Case Study 2: Graph Processing
	2.7. Discussion and Mitigation Strategies

	Chapter 3. Compiler-Based Heterogeneous Memory Management for Statically Analyzable Workloads
	3.1. Introduction
	3.2. Background
	3.3. AutoTM
	3.4. Implementation Details
	3.5. Evaluation Methodology
	3.6. Results
	3.7. Extending AutoTM
	3.8. Related Work
	3.9. Conclusions

	Chapter 4. Generalizing Heterogeneous Memory Management
	4.1. Introduction
	4.2. A Generic Heterogeneous Memory Management System
	4.3. Basis for the Data Manager and Modular Policy
	4.4. CachedArrays Implementation
	4.5. Annotations for CNN Workloads
	4.6. Evaluation Methodology
	4.7. Results
	4.8. Related Work
	4.9. Discussion

	Chapter 5. DLRM Case Study
	5.1. Introduction
	5.2. Embedding Table Implementation
	5.3. Embedding Table Experiments
	5.4. Software Caches for Gigascale Embedding Tables
	5.5. DLRM Implementation
	5.6. End-to-End DLRM Performance of CachedEmbeddings
	5.7. Related Work

	Chapter 6. Conclusions and Future Work
	6.1. Limitations
	6.2. Hardware Support for Data Tiering

	Appendix A. OneDNN Wrapper
	A.1. OneDNN Summary
	A.2. Exposing the C API
	A.3. Exposing Types to Julia
	A.4. Putting it all Together

	Bibliography

