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Abstract

Impacts of climate variability, decision-making and digital information on agricultural

outcomes in sub-Saharan Africa

by

Natasha T. Krell

Climate variability poses significant threats to agricultural production, particularly for

small-scale and rainfed farmers who are often the first to feel the impacts of extreme

weather and are the most vulnerable to climate change. Timely information dissemi-

nated via mobile phones is one pathway to manage risk and reduce vulnerabilities to

a changing climate. However, poor service coverage, technological inequities and lack

of awareness about mobile phone-based services pose significant barriers to access and

use of information. In my dissertation, I asked questions about the impacts of climate

variability on small-scale farming systems and investigated the roles of information com-

munications technologies (ICTs) in the diffusion of digital-based information.

This dissertation focuses on small-scale agriculturalists in central Kenya and on

telecommunications access in Zambia. In Chapter 2, I conducted a household survey

to report on the use of mobile phones for agriculture in central Kenya. I found that while

most respondents owned a mobile phone, the overall percentage of adoption of mobile

phone services for agriculture is low. Leveraging farmer groups is a potential path for-

ward in the spread of digital information. In Chapter 3, I developed an ecohydrological

model and simulated rainfall to model crop water stress for maize. I highlighted non-

linearities between season rainfall and yield that led to divergent outcomes for farmers.

Given the impacts of climate variability which are already being realized, there is an

opportunity to disseminate real-time alerts via mobile phones. In Chapter 4, I returned

xiii



to the question of access to telecommunications and applied a Gibbs point process model

to the location of cell towers in Zambia. I found persistent disparities in telecommuni-

cations access between rural and urban residents and remote regions disconnected from

road networks. These three studies provided key insights into the changing landscape

of small-scale farming, and offered practical guidance for improving dissemination and

uptake of targeted and mobile-based agro-meteorological information, services and alerts.
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Chapter 1

Introduction

While small-scale farmers have historically had to manage fluctuations in weather and

year-to-year variability, they now must deal with unprecedented and erratic climate pat-

terns (Morton, 2007) which are likely to be exacerbated by climate change (IPCC, 2014).

Rising temperatures and shifting patterns of rainfall are projected to negatively impact

agricultural output (Niles and Brown, 2017; Funk and Brown, 2009; Lobell et al., 2011;

Ray et al., 2019), particularly in sub-Saharan Africa (SSA) where the majority of land

is arid and semiarid, and smallholder systems dominate agricultural production (Muller

et al., 2011). Small-scale farms produce the majority of the world’s food and yet they

only make up 12% of global farmland (Ricciardi et al., 2021). These farmers face growing

pressure of climate-induced losses in production (Ricciardi et al., 2021).

Sub-Saharan Africa (SSA) is the most vulnerable region to climate variability and

change (Slingo et al., 2005) due to several factors linked to its physical geography (e.g.

already high temperatures) and reduced adaptive capacity (Downing et al., 1997; Mc-

Carthy et al., 2011). SSA agriculture is highly sensitive to climate shocks (e.g. spikes in

temperature and precipitation, and extreme weather events), is characterized by lack of

irrigation infrastructure, limited access to inputs (e.g. high yield seed varieties, fertiliz-

1



Introduction Chapter 1

ers, etc.) (Becker-Reshef et al., 2020) and has a sizeable rural population dependent on

agricultural livelihoods and domestic economies (Dinar et al., 2008). The combination of

these factors make climate change adaptation challenging in SSA. Low yield variance is

important for stable farmer incomes (Reidsma et al., 2010), reliable food supply (Lobell

et al., 2011; Slingo et al., 2005), and preventing spikes in food prices (Ray et al., 2012).

To some extent, African farmers are already adapting to climate variability (Kuruku-

lasuriya et al., 2006). Increasing temperatures, altered rainfall patterns, and extreme

weather such as droughts and floods, threaten SSA agricultural production and may

force marginal land out of production (Kurukulasuriya et al., 2006).

One path forward for improving adaptation of agriculture is through the dissemination

of crop advisories, seasonal rainfall forecasts, and early warning alerts. In a report by

the Global Commission on Adaptation, it was found that strengthening Early Warning

Systems is an area with a high benefit-cost ratio (10:1) compared to improving resilience

of new infrastructure, making water resources management more resilient or improving

dryland agriculture crop production (Bapna et al., 2019). Satellites and remote sensing

technologies provide us with Earth observation (EO) datasets that provide critical and

life-saving information and data (Nakalembe, 2020). This information can aid early

warning about natural hazards such as droughts (Nakalembe, 2018), flooding (Kilavi

et al., 2018) and pest outbreaks such as locusts (Cressman, 2013; Nakalembe, 2020).

Typically, this information has focused on rescue operations after natural disasters occur.

However, additional resources need to be allocated to improve monitoring and early

warning systems in order to be proactive about such events (Nakalembe, 2020).

Mobile phones can be a powerful tool in the dissemination of potentially life-saving

information in the face of climate hazards. Information accessed by African farmers via

mobile technologies continues to rise (Baumüller, 2018) with the exponential increase

in mobile phone ownership since the early 2000s (World Bank, 2018a). Cellular net-

2
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works enable individuals to communicate and collaborate via information communica-

tion technologies (ICTs) and provide access to financial services such as mobile banking.

Increasingly, real-time information on extreme weather, pest and disease outbreaks, and

other agro-climatic services are disseminated through ICT devices, including smartphones

(Nakasone et al., 2014; Baumüller, 2018). However due to systematic and prevailing in-

equalities, women and other marginalized groups are often left without access to ICTs

(UN Women, 2015).

Overall, this dissertation seeks to advance the science on climate impacts on rainfed

maize cropping systems and the landscape that would be make early warning systems

accessible and usable at the household and community levels. The purpose of an early

warning system is to prompt an early response before a crisis manifests which then

requires substantial resources to remediate (Becker-Reshef et al., 2020). Given that

climate change is not going away anytime soon, funds and research endeavors need to

focus on proactive warning rather than only dealing with the consequences after the fact.

I conducted research in two African countries: Zambia and Kenya. Kenya is a leader

in innovation and use of ICTs and Kenyan smallholder agriculture is highly susceptible

to spatio-temporal fluctuations in rainfall. With the majority of its population residing

in rural areas, Zambia poses a challenge to widespread coverage of ICTs in part due to

its sparse population spread diffusely across the country. This dissertation focuses on

the following overarching questions: (1) What are the impacts of rainfall variability on

small-scale production in rainfed agricultural systems and what management strategies

can be employed to minimize crop failure? (2) How does access to and use of information

communication technologies (ICTs) vary at community- and national-scales; specifically,

who uses climate information services for agriculture? (3) What is the spatial distribution

of cell towers in Zambia?

3



Introduction Chapter 1

1.1 Permissions and Attributions

1. Chapter 2 is an Accepted Manuscript of an article published by Taylor & Francis

in Climate and Development on 9 April 2020, available online1. The article was

in collaboration with Dr. Stacey Giroux (Indiana University), Dr. Zack Guido

(University of Arizona), Dr. Corrie Hannah (University of Arizona), Dr. Sara

Lopus (California Polytechnic State University), Dr. Kelly Caylor (University of

California, Santa Barbara), and Dr. Tom Evans (University of Arizona). It is

reproduced here with the permission of Taylor & Francis.

2. Chapter 3 is a manuscript currently under review in the journal Water Resources

Research. The article was in collaboration with Bryn Morgan (University of Cali-

fornia, Santa Barbara), Dr. Drew Gower (University of Maryland), and Dr. Kelly

Caylor (University of California, Santa Barbara).

1https://www.tandfonline.com/doi/full/10.1080/17565529.2020.1748847
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Chapter 2

Smallholder farmers use of mobile

phone services in central Kenya

Abstract Information and services delivered through mobile phones, “m-services”,

have transformative potential to provide rural African farmers with important agro-

meteorological information. However, a greater understanding is needed regarding the

types of m-services available to farmers, how farmers access that information, and possi-

ble factors affecting m-service use. With a study of smallholder farming communities in

central Kenya, we examine factors affecting the likelihood of Kenyan farmers’ adoption

of m-services specifically related to agriculture and livestock information, buying and

selling products, and alerts about agricultural or livestock activities. According to a sur-

vey of 577 farming households, 98% of respondents own a mobile phone. Approximately

25% use it to access information about agriculture and livestock, 23% access information

about buying and selling products, and 18% receive alerts. Personal smartphone owner-

ship increases the likelihood of m-services use (p < 0.001), as does membership in farmer

organizations (p < 0.001). We find that age and income are not significantly related to

m-service use, and we discuss this result in terms of intersections between smartphone

5
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ownership, gender, and education. Consistent with prior qualitative research, our quan-

titative results further support the need for m-services providers to design m-services for

basic or feature phone users. Understanding how gender and broad socioeconomic differ-

ences shape farmers’ access to and use of mobile phones for agriculture provides baselines

about diverse sets of users, which can help inform efficient and targeted dissemination of

agro-meteorological information services1.

2.1 Introduction

Lack of access to information and knowledge transfer can hamper agricultural pro-

duction in rural farming communities in sub-Saharan Africa (SSA). Agricultural, market,

and weather information is critical to agricultural productivity, especially for reducing

uncertainty and risk associated with extreme weather events and disease (Baumüller,

2013). The dissemination of agro-meteorological information can improve livelihoods by

reducing uncertainty and enable improved inputs and technology adoption (Hansen et al.,

2007). Access to information through mobile phones and mobile internet can also help

agriculturalists manage risk and reduce vulnerabilities to a changing climate (Baumüller,

2013).

Information communication technologies (ICTs) such as mobile phones are touted

as digital platforms with transformative potential to reach many farmers at once across

rural settings (World Bank, 2018a; Santosham and Lindsey, 2015). As the cost of mobile

phones have fallen and connectivity has spread, phone ownership and internet access

have become possible for populations in the continent’s lowest-income areas (Wyche and

Olson, 2018). With this uptake of mobile phones, users can subscribe to receive mobile

1This is an Accepted Manuscript of an article published by Taylor & Francis in Climate and Devel-
opment on 9 April 2020, available online: online https://www.tandfonline.com/doi/full/10.1080/

17565529.2020.1748847.

6
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phone-enabled services or “m-services” to access agro-meteorological (Baumüller, 2013)

and market information (Wyche and Steinfield, 2016).

M-services deliver electronic media content through mobile technologies and is an

umbrella term that includes m-agri, m-commerce, m-banking or m-payments. M-services

come in varied forms, including Short Message Service (SMS), Unstructured Supple-

mentary Service Data (USSD), mobile applications (apps) and helplines. The difference

between SMS and USSD protocol is that SMS is a text messaging service whereas USSD

protocol are in the form of “Quick Codes”. Depending on the electronic media m-services

contain, they can be accessed by phones with and without internet access. M-services

can be used to connect buyers to sellers, disseminate general information about farming

and livestock (such as market information on prices), and send alerts on pest and disease

threats (Baumüller, 2018). Some m-services are free to use or may require a cost to

use advanced features, while others are entirely proprietary. For example, Ujuzi Kilimo

in Kenya offers actionable recommendations to farmers through subscription-based SMS

and USSD services2.

Whether m-services can improve agricultural livelihoods is a question facing scholars

and development programs focused on addressing rural livelihood vulnerability. Qiang

et al. (2012) showed that increased access to climate, crop disease, and market infor-

mation via m-services improved farmers’ production and profitability in Kenya. How-

ever, wealthier, educated, and typically urban populations have greater access and there-

fore benefit from m-services in comparison to rural, poorer populations, especially rural

women (Souter et al., 2005; Porter et al., 2012; Wyche and Olson, 2018; Wyche et al.,

2019). As a result of this limited access to information for some populations, scholars

have questioned whether mobile-based market information can improve circulation of

market prices and reduce information asymmetries between farmers and buyers. Srini-

2https://www.ujuzikilimo.com/sms.html
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vasan and Burrell (2013) and Wyche and Steinfield (2016) have detailed the underlying

barriers to using mobile phones for accessing Market Information Systems (MIS). These

barriers include, but are not limited to, cost of airtime, challenges with charging faulty

and low-quality batteries, language, and literacy (Srinivasan and Burrell, 2013; Wyche

and Steinfield, 2016).

However, in the literature on ICT use in SSA, far less attention has been placed

on understanding the different types of information communicated via m-services, how

farmers access that information, and possible factors affecting the likelihood of m-service

use. Our study addresses these knowledge gaps by drawing on a sample of more than 500

smallholder farmers in rural central Kenya. We first identify who uses m-services, the

types of m-services that survey respondents use, and how the m-services are used. We

then assess the factors that affect the likelihood of m-service use by modeling the associa-

tions between individual-level characteristics and three classes of agricultural information

available via m-services: farming information, buying and selling farming products, and

alerts on farming activities. The latter helps us understand the underlying factors imped-

ing m-services adoption. We then discuss the interactions between education, income,

and gender with smartphone ownership; the important role that farmer organizations

play in m-services adoption; and how developers of m-services can use this information

to target unreached individuals.

2.2 Literature review

2.2.1 ICTs, adaptive capacity, and vulnerability

ICTs are often cast as technologies that can increase access to information and re-

sources and connect individuals. Information disseminated via m-services are therefore
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seen as important tools for helping farmers adapt and to address vulnerability (Eakin

et al., 2015), where vulnerability, per the IPCC (2007) is “the degree to which an en-

vironmental or social system is susceptible to, and unable to cope with, adverse effects

of climate change, including climate variability and extremes” (p. 883). Vulnerability

is often conceptualized as including three interlinking elements: exposure, sensitivity,

and adaptive capacity (Adger, 2006). While exposure relates to the degree and type

of the perturbation, adaptive capacity relates to the capacity of individuals or groups

to manage and influence their resources and risks in the face of a perturbation (Waters

and Adger, 2017). Both the degree of exposure and adaptive capacity shape a system’s

sensitivity to that perturbation. Many determinants of household-level adaptive capacity

have been identified, which can relate to access to assets and resources (Moser, 1998). At

the local level, one such determinant has been access to information resources and the

ability of decision-makers to marshall the information (Smit and Wandel, 2006; Fawcett

et al., 2017). Within this context, ICTs provide an efficient means to reach a growing

user base and build adaptive capacity through enabling access to critical information and

facilitating a process of learning (Eakin et al., 2015).

There is, however, contradictory evidence about how useful ICTs are or can be for

addressing vulnerability, with some studies finding positive effects and others no impact.

In a review of climate change adaptation and ICTs in the Caribbean and Latin Amer-

ica, Eakin et al. (2015) suggest that ICTs support adaptation through increasing social

capital, improving access to critical information for decision-making, and coordinating

actors. Marenya and Barrett (2007) found that lack of access to information, land, and

credit, constrained natural resource management efforts and thus rendered smallholder

farmers in western Kenya more vulnerable to climate variability. Similarly, researchers

contended that in Laikipia county, Kenya, limited access to agro-meteorological infor-

mation hampers adaptive capacity (Wiesmann, 1998; Ogalleh et al., 2012). Bryan et al.
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(2009) came to similar conclusions that lack of access to information is a main barrier

to adaptation among Ethiopian farmers. Specific to the impact of DrumNet, a phone-

based MIS, Ogutu et al. (2014) found a positive influence on labor productivity, seeds,

fertilizers and land in three Kenyan provinces.

A growing body of literature criticizes ICTs for development programs and provides

evidence for why they do not work. In the domain of distributing market price infor-

mation through MIS, Camacho and Conover (2011) and Fafchamps and Minten (2012)

showed poor adoption of MIS and their lack of impact on agricultural outcomes. Follow-

ing this work, Burrell and Oreglia (2015) sought to better understand Ugandan and Chi-

nese agriculturalists’ decision-making processes and need for market price information.

They suggested that using mobile phones to collect and distribute market information

through MIS is of limited relevance since information about price is only one of several

factors that aids decision-making (Burrell and Oreglia, 2015). Similarly, Srinivasan and

Burrell (2013) suggest that mobile phones should not be given an over-privileged role in

seeking market price information. Finally, although there are many apps for agriculture

in Kenya and SSA, it is still unclear how many people actually use them after initially

subscribing and/or downloading them.

2.2.2 Adoption and utilization of m-services in Kenya

Adoption of mobile phones and m-services is attributed to several factors related

to the local context. In Kenya, agriculture and livestock are key economic sectors and

contribute to more than one third of total gross domestic product (GDP) (Kenya Bu-

reau of Statistics Economic Survey, 2017). The Communications Authority of Kenya

(2018) reports that as of March 2018, 95.1 percent of the adult population had a mobile

phone subscription and 42.9 percent had access to broadband internet. The growing
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affordability of internet access coincides with an impressive number of m-services avail-

able for Kenyan farmers to utilize. For instance, Twiga Foods connects horticultural

farmers to buyers using a mobile-based buyer-to-buyer platform3, and Mkulima Online,

M-Farm, provides access to crop prices and connects buyers and sellers (Baumüller, 2013;

Baumüller, 2015). The high adoption rates of mobile phones in Kenya compared to other

sub-Saharan African countries, see Figure 2.1, may be one factor for the multitude of

m-services available.

Given the ubiquity of mobile phone ownership in Kenya, ICTs may continue to have

increased importance in the sphere of agricultural extension. The aim of agriculture

extension is to provide services and advice to rural farmers and their families so they

may maximize the resources made available to them (Katz and Barandun, 2002). Private

extension services exist in Kenya in part due to the inefficiency of public extension,

which was identified as a factor that impedes agricultural development and perhaps an

explanation for low yields (Muyanga and Jayne, 2008). M-services can serve as a gap-

filling mechanism for the agriculture extension system. While governments may provide

their own m-services through websites and/or SMS or USSD services, partnerships with

other sectors such as private companies, NGOs, and research institutions can help bolster

farmer productivity and improve the limited capacity of government programs (Caine

et al., 2015; Donovan, 2017).

2.2.3 Factors that influence adoption and use of M-services

Factors that influence technology adoption and use are typically related to education

level, age, and gender (Meso et al., 2005); however cost may also pose a barrier to

usage. Ogutu et al. (2014) found a significant difference in average age between DrumNet

participants and nonparticipants; however no difference in gender. Wyche and Steinfield

3https://twiga.ke
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(2016) investigated factors that impede adoption of the m-service M-Farm in western

Kenya. The majority of interviewees owned feature phones, and while participants could

theoretically access M-Farm with those phones, they did not. Wyche and Steinfield

(2016) note a variety of barriers including limited amounts of phone credit which stifles

SMS use, phone charging limits, phones with considerable wear and tear that prohibited

use, as well as the perception that mobile phones are for voice communication rather

than SMS-interaction.

After initial adoption of m-services, appropriate use of information requires having

credible information and trusting in that information. Mittal et al. (2010) found that

farmers use mobile-enabled agricultural information when the information is timely, of

good quality, and when they trust the information. For SMS information specifically,

trust needs to be established: the recipient is unlikely to take SMS information coming

from an unknown sender in the slurry of other spam SMS (Crandall, 2012; Cheney, 2018).

Research also suggests that individuals’ perceptions are important determinants of

individual technology use. Thiga and Ndungu (2015), for example, identify lack of aware-

ness as the primary reason why agriculture extension officers do not utilize ICTs in

Kenya. Mobile applications in particular were the least utilized form of ICT among

respondents (Thiga and Ndungu, 2015). Since agriculture extension officers provide out-

reach to farmer organizations such as agricultural and livestock cooperatives they are

positioned to be agents of change and advancement within a community. However, in

cases where the extension agents are not exhibiting high adoption or promotion of these

useful services, farmers may benefit from information transfer through other routes such

as mobile devices and their non-extension social networks.
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2.3 Research methodology

2.3.1 Study area

Laikipia, Meru and Nyeri counties meet at the northern and western slopes of Mount

Kenya in the semiarid highlands of Kenya. We focus on 35 smallholder farming commu-

nities within the following sub-counties: Laikipia North and Laikipia East (Laikipia), Bu-

uri, North and Central (Meru), and Kieni East (Nyeri). Many of the households are part

of farmer organizations, which can be classified as farmer cooperatives, farmer groups,

or local water resource governance groups called Community Water Projects (CWPs).

In this study, we characterize farmer cooperatives and CWPs as formal organizations in

comparison to farmer groups, which are informal organizations.

Farmer cooperatives are official, government-registered forms of collective action that

are typically composed of smallholder farmers working together across a large area on

agricultural production, sale of products, and opportunities to enter higher-value markets

(Narrod et al., 2009; Markelova and Mwangi, 2010). They follow a formal structure of

organization with written rules. One of the main benefits of farmer cooperative member-

ships is the reduction of transaction costs among smallholder agriculture producers who

are often located in remote areas and have limited economic capacity to enter produc-

tion systems (Markelova and Mwangi, 2010). In contrast to farmer cooperatives, farmer

groups are informal and may not be officially registered with the government. Farm-

ers either self-organize or are organized into groups by agricultural extension agents to

facilitate trainings and knowledge exchange. Members in these informal organizations

typically share information about best practices in agriculture. They may also collec-

tively pool savings to help afford agricultural inputs or assist group members in times

of need. Community Water Projects (CWPs) are a third type of farmer organization.

CWPs use formal institutions where members officially meet and interact with each other
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on a weekly to monthly basis to attend meetings, maintain irrigation infrastructures, and

access irrigation water resources. To become a CWP member, farmers typically pay a

joining fee to connect to irrigation water via piped networks from rivers off Mount Kenya,

as well as monthly maintenance fees.

2.3.2 Data collection

A team of eight Kenyan enumerators conducted the household survey using Qualtrics

(2019) software between June and July 2018 (Qualtrics, Provo, UT). The multilingual

team of six women and two men conducted the survey in Kiswahili, Kikuyu, or Kimeru,

depending on the respondent’s background. We interviewed 605 respondents; however

577 responses were used for the study. We removed respondents who either did not

indicate farming as their primary occupation, were flagged by enumerators as giving

incomplete answers, or refused to answer or did not know their level of education at-

tained. Respondents were not compensated for their participation in the study. See

Supplementary Info (S.I.) for more information on survey methodology4.

The households selected for the study are a representative sample of households that

receive water from CWPs. Additionally, our sample is not representative of all Kenyan

smallholders. These households were selected as part of a five-year multi-institutional

research project conducted in the region (McCord et al., 2017; Lopus et al., 2017). The

five-year study assesses agronomic decision-making of irrigated (CWPs) and non-irrigated

households in Laikipia, Meru and Nyeri counties. At the start of the project, we used a

randomized sampling approach of farmers within CWPs. As the project expanded, we

gathered longitudinal data as well as data from non-CWP members because we could

not get in contact with everyone who had previously been sampled. Thus, we augmented

our dataset with the help of local guides and selected neighboring households within the

4https://doi.org/10.6084/m9.figshare.12107166.v1
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communities. Respondents were either the head of household or spouse of the household

head.

The survey took 90 minutes on average and covered a range of topics including agricul-

tural management, perceptions of rainfall and climate change, use of weather and climate

services, use and barriers to use of ICTs, migration, and household socio-demographics.

The ICT module was administered about halfway through the survey and took approx-

imately 20 minutes. The ICT module followed the design of the U.S. Agency for Inter-

national Development’s (USAID) toolkit on gender and ICT (Highet et al., 2017) and

comprised of three parts: demographics, access and use of ICTs, and mobile farming use.

The USAID practical toolkit offers quantitative and qualitative methods for data

collection on access, usage, barriers and perceptions of ICTs such as mobile phones, radios

and other internet-enabled devices. We selected and modified questions from the toolkit

and we pre-tested the questions in three pilot interviews. Additionally we used a four-day

enumerator training session to refine the questionnaire; however no major corrections

were made. Our analysis focuses on use and non-use of three m-services, which was

determined by the responses to the question: “During the last growing season, did you use

your mobile phone to access any of the following services for your agricultural/livestock

management? (e.g. includes Facebook, Mkulima Bora, WhatsApp, M-Farm through

SMS, apps such as Mkulima Bora)”. Respondents then answered “yes” or “no” to the

following m-services: Accessing farming (either livestock or agriculture) information,

buying and selling agricultural or livestock products, and receiving important information

or alerts on agriculture/livestock activities. We also asked respondents to provide the

names of agricultural, livestock, or weather services apps accessed through their phones

during the last growing season and included these summarized open-ended responses in

the S.I5.

5https://doi.org/10.6084/m9.figshare.12107166.v1
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2.4 Data analysis

2.4.1 Description of variables

We selected three m-services as our dependent variables: farming and livestock in-

formation, buying and selling products, and alerts on agricultural or livestock activities.

For brevity we refer to these as farming, buying and selling, and alerts, respectively. The

following explanatory variables were taken from the household survey and grouped into

the following categories. We note the theorized effect of the explanatory variables on the

dependent variables in Table 2.1.

Personal Smartphone: We asked the farmer whether their mobile phone had access

to the internet and the ability to download apps. If the farmer responded “yes” to

both of those attributes, we classified them as owning a “smartphone” (i.e. a handset

able to access the internet and download apps). We compared these to owners of non-

smartphone phones which include basic and feature phones. “Basic” phones (mulika

mwizi in Kiswahili) cannot download apps or access the internet. “Feature” phones

are able to access the internet because they come pre-loaded with applications such as

Facebook or Twitter but they do not have the ability to download apps. An example

of a basic phone available for purchase in Kenya is Nokia 1110 whereas a feature phone

pre-loaded with Facebook is Tecno T351. If respondents had more than one phone, we

asked about their primary handset, i.e. the one used most often.

Membership in Farmer Organizations: We recorded membership in three types of

farmer organizations (agricultural cooperatives, farmer groups, and Community Water

Projects), and combined the responses to reflect the total number of farmer organization

types (0-3) for which a farmer is a member.

Farm Size: Respondent provided the areas of their land under production and fallow,

in acres, during the March-April-May 2018 growing season. We combined these two areas
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to get total farm size.

Livestock Assets: We asked the respondent to count the number of livestock owned

by the household from a list of common animals including cattle, goats and sheep. We

subsequently used a weighted formula to convert this livestock count to Tropical Livestock

Units (TLU) (Jahnke, 1982).

Income: We asked the respondent to select household monthly income from a se-

lection of ranges (none, 100-2,000 ksh, 2,001-6,000 ksh, 6,001-18,000 ksh, 18,001-36,000

ksh, 36,001-54,000 ksh, 54,001-72,000 ksh, or more than 72,000 ksh) from the following

sources: casual labor, regular salary, small business, charcoal sales, horticulture, sale of

forest products, livestock, remittances, rental income, pension, and savings group. We

computed the income variables in multiple ways which produced similar results (see S.I.6)

and ultimately selected the median value from those ranges. We summed the median

values of the various incomes to estimate monthly income in Kenya shillings. We reduced

the number of income categories by computing quartile incomes: 25% = 28,837 ksh, 50%

55,000 ksh, 75% = 86,575 ksh.

Assets: We used a simple index reflecting household ownership of a television, car,

motorcycle, and/or computer (including tablets). We added the ownership values to-

gether and treated the sum as a continuous variable (0-4). However, because only four

households owned all four assets, we combined those households with the households who

owned three of the four assets (0-3).

Age: We asked for the respondent’s year of birth and then calculated their age relative

to the year 2018.

Education: Kenya follows the 8-4-4 educational system with eight years in primary

school, four years in secondary, and four years of university or vocational training. We

asked for the highest level of education completed by the respondent. The options were

6https://doi.org/10.6084/m9.figshare.12107166.v1
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coded as follows: No formal education or some primary (level = 1; reference), Com-

pleted primary or some secondary (2), Completed secondary or some post-secondary (3),

Completed post-secondary or vocational training (4).

County: Farmers were located in one of three counties: Laikipia, Meru, or Nyeri.

We created dummy variables for Meru and Nyeri residents with Laikipia as the reference

category.

Gender: Men were the reference category (coded as 0).

2.4.2 Logistic regression analysis to identify drivers of M-service

adoption

We used a binary logistic Generalized Linear Model (GLM) to test the likelihood

that a respondent adopts various m-services. We estimated the odds ratio (OR) for each

dichotomous dependent variable: use or non-use of buying and selling information, infor-

mation about agriculture and livestock, or important alerts on agriculture and livestock

activities.

Because several farmers were part of the same water governance groups or farmer

organizations, household-level data were not fully independent. Therefore, we also ran

the regressions using a Generalized Linear Mixed Effects Model (GLMM) to account for

possible overdispersion and clustering by requiring a group factor. Random effects mod-

eled the correlation between the groups using community subsets called Water Resource

User Associations (WRUAs) as the group factor. For more information regarding the

treatment of WRUAs and grouping variables in the GLMM, see our Methodological Ap-

pendix (S.I.7). To test for the difference between the models with and without random

effects, we used a nested ANOVA model comparison. We determined to proceed in using

7https://doi.org/10.6084/m9.figshare.12107166.v1
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the GLM without random effects because the Aikake information criterion (AIC) values

were lower for the GLMs compared to the GLMMs.

We cleaned data and developed the model specification using Python programming

language (Python Software Foundation, 2019). The logistic regression analysis was com-

pleted using the lmer function in the lme4 library in R (Bates et al., 2015).

2.5 Results

2.5.1 Descriptive statistics

We begin by compiling the rates of phone ownership (smartphone, feature phone,

basic phone) by gender to identify the extent to which lack of access to internet-enabled

phones could underlie gender-based differences in the use of m-services in Table 2.3.

Approximately 34 percent of respondents own a smartphone: a greater proportion of

men own smartphones compared to women. Basic phones are owned by 56% of women

compared to 48% of men. Considering that access to a smartphone is meaningful for m-

services access, we investigated differences in age, education, and membership in farmer

organizations between smartphone owners and non-owners, as shown in Table 2.4. The

average education and number of farmer organizations is greater for smartphone owners

compared to non-owners. The variance of those statistics is similar between smartphone

owners and non-owners.

To help discern whether education, age, and membership in farmer organizations

influences access to m-services we compare differences in these socioeconomic factors be-

tween men and women m-services users and non-users. As shown in Table 2.5, the average

age and education level is lower for female m-services users than male. Similarly, women

are on average members of fewer farmer organizations. The variances of those statistics
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Table 2.2: Summary statistics of outcome variables and demographic characteristics
of respondents. DV stands for Dependent Variable and IDV stands for Independent
Variable.

Type Variable Levels n %

DV Farming No use 435 75.4
Use 142 24.6

Buying & selling No use 445 77.1
Use 132 22.9

Alerts No use 473 82.0
Use 104 18.0

IDV Personal smartphone No 381 66.0
Yes 196 34.0

Membership in farmer None 100 17.3
organizations One farmer organization 263 45.6

Two farmer organizations 172 29.8
Three farmer organizations 42 7.3

Membership in Community No 125 21.7
Water Project Yes 452 78.3

Membership in informal No 346 60.0
farmer group Yes 231 40.0

Membership in agricultural No 500 86.7
cooperative Yes 77 13.3

Education (highest No formal education or some primary 105 18.2
attained) Completed primary of some secondary 240 41.6

Completed secondary or some post-secondary 161 27.9
Completed post-secondary or vocational training 71 12.3

Income quartile1 <28,837 Ksh 144 25.0
28,838 - 55,000 Ksh 135 23.4
55,001 - 86,575 Ksh 143 24.8
86,576 Ksh and above 155 26.9

County Laikipia 299 51.8
Meru 150 26.0
Nyeri 128 22.2

Sex Women 327 56.7
Men 250 43.3

1 Income is monthly and in Kenya shillings. We reduced the number of income categories by computing
quartile incomes: 25% = 28,837 ksh, 50% 55,000 ksh, 75% = 86,575 ksh.
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Table 2.3: Types of handset owned by respondent. Sample size for women n = 327
and men n = 250

Gender Phone Type No. of Respondents Proportion

Women Basic 184 56.27
Feature 42 12.84
Smartphone 101 30.89

Men Basic 121 48.40
Feature 34 13.60
Smartphone 95 38.00

Table 2.4: Descriptive statistics of smartphone non-owners and owners membership
in farmer organizations, age, and education

Variable Statistic Non-Owner Owner

Farmer Organizations1 Mean 1.13 1.54
σ 4 0.823 0.780

Age2 Mean 52.6 47.8
σ 4 12.0 12.1

Education3 Mean 2.13 2.76
σ 4 0.839 0.918

1 Farmer organizations reported in binary membership in
farmer groups, CWP, and/or agricultural cooperative.

2 Age reported in years.
3 Education reported in highest level attained (see De-

scription of variables for more information).
4 Standard deviation

are generally similar between men and women. We use these differences between men

and women to contextualize the importance of these socioeconomic factors in governing

m-service use, despite them not always being significant in the logistic regression models.
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Table 2.5: Summary statistics of m-services users and non-users by gender

Alerts Buying and selling Farming

No use Use No use Use No use Use

W1 M2 W M W M W M W M W M

Age
Mean 50.4 52.7 45.8 52.2 50.1 52.6 48.1 52.5 50.6 52.7 46.7 52.4
σ3 12.22 11.98 10.39 13.74 12.57 12.40 9.67 12.38 12.42 12.30 10.18 12.63

Farmer organizations
Mean 1.17 1.25 1.44 1.71 1.14 1.25 1.48 1.64 1.11 1.18 1.56 1.78
σ 0.829 0.815 0.769 0.803 0.835 0.838 0.731 0.753 0.800 0.810 0.828 0.736

Education 4

Mean 2.20 2.44 2.35 2.68 2.23 2.48 2.23 2.55 2.17 2.37 2.43 2.82
σ 0.939 0.933 0.635 0.811 0.938 0.907 0.745 0.926 0.941 0.887 0.714 0.893

1 W, Women
2 M, Men
3 Standard deviation
4 Education level is highest attained. Where no formal education or some primary (1); (reference), Completed
primary or some secondary (2), Completed secondary or some post-secondary (3), Completed post-secondary
or vocational training (4).

2.5.2 Logistic regression results

Smartphone ownership

Personal smartphone ownership, defined as owning a handset with access to internet

and ability to download apps, increases the likelihood of m-services use in all three models

as shown in Table 2.6. Smartphone owners are between 1.83 and 2.72 times as likely as

non-smartphone owners to use m-services (p < 0.05 for buying and selling and p < 0.001

for farming, and alerts).

Farmer organizations

We find that membership in farmer organizations positively influenced m-service use.

As shown in Table 2.6, respondents in farmer organizations are 1.64 to 2.06 times more

likely than non-members to use m-services across the three types of farmer organiza-

tions, which include farmer cooperatives, informal farmer groups, and Community Water
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Projects (p < 0.001). When disaggregating by farmer organization type in Table 2.7 our

results show that members of informal farmer groups are between 1.82 and 2.87 times

more likely to use farming (p < 0.01), buying and selling (p < 0.01), and alerts (p <

0.001) m-services. However members of agricultural cooperatives are only more likely to

use m-services for obtaining farming information (p < 0.01). Members of CWPs are only

more likely to use m-services for accessing information about buying and selling (p <

0.001).

Wealth, gender and socio-economic factors

Household-level characteristics, such as household assets and livestock assets, and

individual-level characteristics such as education are also associated with m-service use.

After accounting for whether a respondent owns a smartphone, we do not find age or

farm size to be significantly related with m-service use any model iterations (p > 0.1,

Table 2.6 and Table 2.7). Income is significantly related to one m-service use in Ta-

bles 2.6 and 2.7 in the highest income quartile only. Other measures of wealth such as

livestock assets (TLU), household assets, and the interaction between assets and TLU.

Household and livestock assets are both significantly associated with likelihood of using

m-services. Household assets are significantly associated with alerts m-services (p <0.01)

while livestock assets are significantly associated with all three models in Table 2.7 and

buying and selling and alerts m-services in Table 2.6. Although the coefficients on live-

stock assets and household assets were less than one, the interaction term was greater

than one, pointing to a complex relationship between various forms of wealth and the

adoption of m-services. As described in our Methodological Appendix (S.I.)8, the results

presented here are largely consistent with results of other iterations of the models, which

controlled for interactions between wealth variables, including smartphone ownership.

8https://doi.org/10.6084/m9.figshare.12107166.v1
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Additionally, in one iteration of the model, we replaced farm size as a proxy for income.

We did not find any statistical significance for farm size or income.

We find some levels of educational attainment to be significantly correlated with m-

service use in Table 2.6. Compared with the reference educational level, respondents who

completed primary school or some secondary school were 3.16 and 4.55 times as likely

to use farming and alerts m-services (p < 0.01). Similarly, respondents who completed

secondary or some post-secondary school were 3.46 and 3.53 times more likely than the

reference group to use farming and alerts m-services (p < 0.01 and p < 0.05, respectively).

Respondents who completed post-secondary school or vocational training were 2.58 times

more likely than the reference group to use farming m-services (p < 0.05). The results

in Table 2.7 are similar for those education levels.

The coefficient on being a male respondent is positive in all iterations of the models

(Tables 2.6, 2.7). In the models that do not distinguish between farmer organization

types, Table 2.6, the association between gender and m-service use is significant for

buying and selling m-services (p < 0.01) and alerts (p < 0.001). Men are 1.20 and 1.35

times more likely to use m-services for buying and selling and alerts.

We asked respondents who did not select use of m-services for accessing farming and

livestock information to respond to a list that describes barriers preventing their use of

m-services as shown in Figure 2.2. Compared to men, a greater proportion of women

perceive barriers to mobile agriculture/livestock services across all of the categories. How-

ever, irrespective of gender, the foremost barriers limiting use of m-services are lack of

awareness, lack of availability, and lack of understanding about how m-services work.

Of these three categories, women are less aware and knowledgeable about how to use

m-services compared to men.
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2.6 Discussion

2.6.1 The role of smartphones in m-services use

We find smartphone ownership to be a significant factor in m-services use. However,

smartphone ownership across our study site is far from ubiquitous with 31% ownership

for women and 38% ownership for men (Table 2.3). GSMA (2016) estimates 226 million

smartphone connections exist in Africa, approximately a quarter of all connections, and

is reflected most strongly in established mobile markets including Kenya, Egypt, Nigeria,

and South Africa. Thus, compared to the rates of smartphone adoption in east Africa

(17% of the population in 2015) (GSMA, 2016), smartphone ownership is relatively high

among survey respondents. The prevalence of smartphone ownership as a predictor of m-

service use may be due to the nature of how m-services tend to be designed: technology

developers generally design for smartphones rather than basic or feature phones (Wyche

and Murphy, 2012; Cheney, 2018). Our results indicate that m-services, created by

developers and designers focused on smartphone applications, have indeed reached the

segments of the population who own smartphones. Considering that the majority of

respondents own basic or feature phones (as shown in Table 2.3), m-services designed

for smartphone-based applications may be failing low-income and basic phone-owning

subscribers.

As suggested by several previous studies (e.g. Wyche and Steinfield (2016); Wyche

and Murphy (2012); Wyche et al. (2019)), designing m-services with the needs of ba-

sic phone users in mind is a clear way to expand accessibility of m-services beyond

smartphone users. Developers need not only to design for basic phones but also the con-

straints commonly experienced in developing countries. After relating barriers of basic

phone use to lack of airtime credit, exhausted batteries, difficulty charging and lack of

capital to upgrade to a smartphone, Wyche and Murphy (2012) provide an alternative
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design vision given the challenges faced by rural and often unconnected agriculturalists

in Kenya. They suggest that mobile phone designers and developers assume off-grid

use with unreliable electricity sources for agriculturalists in rural and peri-urban Kenya

(Wyche and Murphy, 2012). Lastly, another consideration is to focus on USSD protocol

and voice call services aimed for widely spread simple and cheap phones rather than

power-intensive functionalities of smartphones which are not ubiquitously used (Wyche

and Murphy, 2012). These intersections need to be addressed by ICT for development

programs—such as those described in the USAID toolkit used for survey collection—for

proper information dissemination.

2.6.2 Membership in farmer organizations increases likelihood

of m-service use

Membership in informal farmer groups increased the likelihood of m-services use

across all types of m-service use in comparison to formal farmer organizations (e.g. farmer

cooperatives and CWPs). Unlike formal farmer cooperatives or the CWPs, informal

farmer organizations are free to join. Yet, one benefit of paying to join an agricultural

cooperative or CWP is access to information services and networks provided by these

organizations. In other words, these types of formal organizations provide a ‘club good’

version of agricultural information (i.e., information exclusively available to members of

an organization) (McNutt, 1999). Members gain exclusive access to and benefit from

agricultural information at the price of paying a monthly membership fee to belong to

these organizations.

Contrary to formal agricultural information, members of informal farming groups may

make greater use of publicly-available agricultural information, which is a ‘public good’

(i.e., where an individual’s use of information available to the public does not diminish
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others’ use of the same information) (McNutt, 1999). Most m-services platforms do not

require an explicit joining fee to access information and are therefore offering agriculture

information as a publicly available good. Thus, we would expect that farmers in informal

farming groups would have a greater incentive to use and seek out m-services agriculture

information that they can freely access without having to pay the types of membership

fees required of formal farmer organizations.

Farmers with membership in agricultural cooperatives or CWPs were significantly

more likely to use only one type of m-service. Farmers in cooperatives already benefit

from exclusive information and alerts that are embedded in their membership to a coop-

erative and the facilitated access to extension services. Thus, we would not expect these

farmers to make substantive use of freely available m-services information. Rather than

using the buying and selling function of m-services, farmers in formal cooperatives are

likely already benefiting from their farmer cooperative membership with greater access

to opportunities for marketing and buying and selling their products in higher-value mar-

kets (Narrod et al., 2009; Markelova and Mwangi, 2010). Similarly, farmers with CWP

membership are likely to access agricultural information as an additional benefit to the

primary benefit of obtaining water. In Kenyan CWPs, members interact on a weekly to

monthly basis through labour activities for maintaining irrigation infrastructures and to

attend meetings regarding irrigated water resources management. These activities would

likely offer both informal and formal opportunities to obtain agricultural information. As

with agricultural cooperatives, CWP membership likely provides access to exclusive agri-

cultural information, and thereby reduces the incentive to access additional agricultural

information via m-services.

By framing agricultural information access in the context of club and public goods, we

can explain why farmers in informal farmer organizations are more likely to use m-services

across all use types in comparison to those farmers belonging to agricultural cooperatives
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or CWPs. We conclude that membership in informal farmer groups is a strong predictor

of m-services use due to their greater incentive to use publicly-available m-services com-

pared to their agricultural cooperative and CWP counterparts, who inherently already

have access to access these types of services via cooperative or CWP membership. We

discuss endogeneity challenges related to farmer organizations and related explanatatory

variables in the S.I9.

2.6.3 Wealth indicators and education

The non-significant results for income and farm size, along with the ubiquity of mobile

phones among respondents, point to the maturity of phone ownership in the study area

relative to income. In earlier phases of mobile phone adoptions, higher income levels were

associated with phone ownership, but over time, mobile phones have become accessible to

even low-income households, as indicated by the 98% ownership of mobile phones among

survey participants. However this ubiquity in phone ownership of all types does not

represent a ubiquity of smartphone ownership, which is associated with higher incomes.

Although mobile phone ownership and use have been expanding across communities

and throughout Kenya irrespective of wealth, smartphone ownership is the factor that

separates the wealthy from the poor in m-service use. Moreover, smartphones open access

to potentially the most comprehensive and/or useful m-services which are applications

and/or internet-based platforms. Since Kenya is on the forefront of ICT use and mobile

phone ownership compared to other countries in the region (see Figure 2.1), our results

can serve as a model for future trajectories of development regarding use of mobile phones

for climate and agriculture information. While these wealth indicators are non-significant

across our models, we recognize that cost is still a major barrier to farmers using phones

9https://doi.org/10.6084/m9.figshare.12107166.v1
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Figure 2.1: Growth rate of cellular usage as defined by mobile phone subscriptions per
100 people between 1990-2017. Mobile phone subscriptions in Kenya appear higher
than mobile phone subscriptions of least developed countries according to UN Classi-
fication and Sub-Saharan African countries excluding high income. Data accessed on
June 18, 2019. Data source: World Bank.

as much as they would like (see S.I.)10. We cannot conclude that access to smartphones

means that farmers are using the internet. However given that purchasing airtime credit

and/or data bundles is the chief reason why respondents do not use their phones (of any

type) as much as they would like, we can infer that across all phone types, cost is still

the greatest inhibitor of mobile phones and m-services use.

Educational attainment is an important factor in determining m-service use. The

differences in average education level and age in m-service use for women, and to a

lesser extent, men (Table 2.5) point at the importance of these socioeconomic factors in

governing m-service use, despite them not always being significant in the models. While

age does not significantly affect the likelihood of m-service use in our models, we do find

that the average age of women using m-services is younger than those women who do

not (Table 2.5), and the education level of those using m-services across both genders is

10https://doi.org/10.6084/m9.figshare.12107166.v1
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higher than those who do not use m-services (Table 2.5).

2.6.4 Gendered barriers to m-service use

The previously described intersections between gender and wealth, smartphone own-

ership, and education affect m-service use in complex ways. At the household level,

men’s and women’s roles on Kenyan farms are different, and therefore levels of agri-

cultural decision-making may vary depending on gender roles when men are head of

household. Braimok (2017) found in some cases that in the presence of a male head,

female Kenyan dairy farmers did not perceive themselves as making or finalizing choices.

A variety of reasons govern these gendered barriers in use. Santosham and Lindsey

(2015) concluded that cost is the greatest barrier to ownership and usage of mobile phones

for women, due to their reduced financial independence compared to men. Although

mobile phone use is nearly ubiquitous in our study site for both men and women, the

increased costs associated with smartphone ownership and use present a potential barrier

to women’s ownership of smartphones, which may explain why women lag behind men in

smartphone ownership (Table 2.3). Wyche and Olson (2018) found that mobile use and

therefore m-service access among rural women remains limited due to technical literacy,

mobile phone conditions, perceptions of the Internet, time required to learn how to use

the Internet, and seasonal income fluctuations.

2.7 Implications for future m-services in Kenya

Membership in farmer organizations, the relative cost to own a smartphone, and

smartphone usability are important considerations of future access to mobile agricultural

services in Kenya. Although smartphone ownership is a driver of m-service use and smart-

phones are more expensive and difficult to use (Wyche and Steinfield, 2016), Karlsson
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Figure 2.2: Bar plot showing barriers to m-service use by gender. We elicited specific
reasons for farmers’ non-use of mobile service in response to the question: What
are the reasons why you don’t access information about farming (either livestock or
agriculture): I’m not aware of these services; These types of services are not available
in my area/on my network; I don’t know how to use these types of services; I get my
information from other sources (e.g. my community); My phone has no internet; I do
not have an ID or required documents; The content is not in a language I understand;
The content isn’t relevant to me; I have trouble reading the content; I have trouble
understanding the content; They are too expensive; My family doesn’t allow it; I’ve
used it in the past but did not find it useful and/or did not like using it; I’ve used it
in the past but it is no longer available.

et al. (2017) show that increasingly affordable smartphones are on the rise and commer-

cially sound. African consumers can now purchase the affordable Mara X phone, which is

designed in partnership with Google and fully manufactured in Rwanda11 as well as Chi-

nese designed smartphones that are expected to become more prevalent among African

phone markets12.

Beyond affordability, however, and from a supply point of view, m-services are not

typically designed for low income, rural, and less educated groups, such as women, who

use basic phones (Santosham and Lindsey, 2015; Wyche and Olson, 2018). Our quanti-

tative findings corroborate previous qualitative studies and show that women were less

likely to use m-services in comparison to men and that m-service users had higher levels

of income and educational attainment. Increasing m-service use involves addressing both

11https://maraphones.com/blog/best-value-smartphone-africa/
12https://qz.com/africa/1374404/chinas-transsion-dominates-africas-phone-market-with-tecno-itel/
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smartphone affordability and designing m-services for audiences with lower technological

literacies.

Our study introduces additional novel findings that demonstrate linkages between

adoption rates and the role of informal and formal farmer groups. Membership in in-

creased numbers of farmer organization—formal or informal—was a significant predictor

of m-service use. However, farmers not part of formal agriculture groups, such as agri-

cultural cooperatives and water governance groups, were more likely to use m-services

than farmers who were involved in informal farmer groups. Understanding that not all

m-service users are embedded in formal agricultural groups is important for m-service

design. Specifically, agricultural information shared amongst farmers in formal groups

may be different than the m-services information accessed by farmers in informal groups.

Overall, dissemination of meaningful and useful agro-meterological information via m-

services requires consideration of the types of individuals that are currently accessing

m-service information.

2.8 Conclusions

We investigated factors that influence farmer use of agriculture information from

mobile phones, specifically m-services. While much of the literature in academic and

government spheres stress the importance of age, location and education in defining the

digital gender gap, our results highlight additional drivers of m-services use including

participation in farmer organizations, higher-levels of education, and smartphone owner-

ship. Each of these factors interacts with gender to highlight the disproportionate access

of these services by women. Our results show that age and income are not significantly

related to farmer use of mobile phone services; however smartphone ownership is a metric

of individual wealth and assets that is significantly related to m-service use.
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The prevalence of smartphone ownership across our models point to the trend that

m-services are increasingly designed for advanced mobile phone features. Thus, we sug-

gest that m-services providers design for the user, which is predominantly a basic or

feature phone owner in the case of rural Kenyan farmers. Additionally, while rates of

mobile phone ownership in Kenya are high, smartphone ownership is not as widespread.

Although phones have been expanding through rural communities, smartphones are the

item that separates the wealthier from the poorer. Smartphones can give farmers ac-

cess to potentially the most useful of climate and agriculture related m-services. Mobile

phones and other ICTs will continue to play important roles in managing risks and vul-

nerabilities associated with a changing climate (Eakin et al., 2015). Efforts in the climate

adaptation policy space should address the general affordability of m-services and mobile

phones, and better target under-served groups of users, particularly women and those

not belonging to farmer organizations to improve efficient and targeted dissemination of

agro-meteorological information services.
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Chapter 3

Consequences of dryland maize

planting decisions under increased

seasonal rainfall variability

Abstract Shifts in rainfall frequency and intensity can lead to heavy crop loss in rain-

fed agricultural systems. Small-scale farmers who plant with limited resources need to

carefully select management strategies that are well suited for their environment. Farm-

ers must choose between planting higher-yielding varieties that take longer to mature and

lower-yielding varieties that can be harvested sooner. To better understand the inter-

actions between rainfall variability, cultivar choice, and cropping success, we implement

an ecohydrological model that accounts for variation in daily soil moisture and converts

water stress to crop yield. We apply the model to growing conditions of dryland farmers

in central Kenya, which is a drought-prone and semiarid region with spatially hetero-

geneous rainfall. To simulate stochastic daily rainfall, we derive parameters in 10-day

increments from a 30+ year daily rainfall dataset. We use these properties to model the

stochastic seasonal water availability for cultivars with different maturation lengths. In
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agreement with past studies, our analysis shows that storms are becoming more intense

and less frequent. We show that maize crops are prone to water deficit in the part of

the growing season when crop water requirements are highest. Despite the potential

for higher-yielding, late maturing varieties to improve total harvest, we find that early-

maturing varieties that are drought-avoidant have the lowest likelihood of failure. In

light of reduced rainfall totals, we show that the historical probability of crop failure was

lowest in the past and is now increasing.

3.1 Introduction

In semiarid and arid regions of sub-Saharan Africa rising temperatures and shifting

rainfall patterns are projected to negatively impact agricultural output (Downing et al.,

1997; Slingo et al., 2005; Muller et al., 2011; Branca et al., 2011). Changes in rainfall

associated with climate variability directly impact crop growth as storms are projected

to become more intense with longer periods between rainfall events (Meehl et al., 2007;

Donat et al., 2016; Harrison et al., 2019). The stochastic nature of rainfall during the

growing season leaves crops susceptible to water stress during critical stages of develop-

ment and can lead to crop failure (Sah et al., 2020; Salgado-Aguilar et al., 2020). Small

rainfed farms cultivated by single families on plots less than 5 hectares represent the

most prevalent form of agriculture in sub-Saharan Africa and are particularly vulnerable

to climate variability and change (Samberg et al., 2016). Because of their dependence on

rainfed agriculture (Dinar et al., 2008), smallholder livelihoods are susceptible to climate

shocks that affect food prices (Ray et al., 2012), variability in production and supply

(Lobell et al., 2011; Slingo et al., 2005), and farmer incomes (Reidsma et al., 2010).

Farmers make a variety of choices before and during the growing season that impact

their agricultural production and thus food security and livelihood. Cultivar choice is one
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of the most critical choices a smallholder makes (Kalanda-Joshua et al., 2011). Because of

the uncertainty associated with climate variability, farmer decision-making is becoming

increasingly complex and uncertain at the expense of input use efficiency and profitability

(Hansen et al., 2011; Waldman et al., 2019; Guido et al., 2020). Management options

that were optimal for past or average climatic conditions may no longer be suited for

increasingly common growing season weather. Additionally, traditional crop varieties

may no longer be best suited for a farmer’s environment, which has led to the development

of hybrid and fast growing varieties (Smale and Jayne, 2010). Given ongoing changes in

rainfall patterns, farmers need to select cultivars well suited for their local context that

can lead to the greatest payoff in terms of yield while also minimizing the risk of crop

failure. To date, however, no modeling exercise to understand the effect of stochastic

rainfall variability on maize yields for various cultivars exists for dryland environments

in sub-Saharan Africa.

To evaluate the impact of farmer decision-making and climate variability on agri-

cultural outcomes, both field and modeling approaches have been employed (Bharwani

et al., 2005; Ziervogel et al., 2005; Roudier et al., 2014; Vervoort et al., 2016; Wood et al.,

2014; Choi et al., 2015). While field studies provide empirical evidence of environmental

impacts on farmer outcomes, they can be limited to certain conditions, especially when

panel data are absent (Patt et al., 2005; Hansen et al., 2011) and are difficult to extrapo-

late to scenarios where the climate is changing. Alternatively, crop models can be useful

when field data are unavailable, but such models can also be limited in applicability and

need to be carefully parameterized with special attention to how stochastic rainfall is

modeled. However, given that daily rainfall observations with long temporal extents are

generally unavailable for rainfed agricultural systems it is difficult to robustly estimate

rainfall parameters. In rainfed contexts, variability in inter- and intra-annual rainfall is

closely linked to variability in production. Crop models and agronomic studies in general
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focus on annual, seasonal or monthly rainfall totals (Barron et al., 2003) and do not

provide a much-needed evaluation of interannual variability of within-season dynamics,

which has important implications for crop yields (Recha et al., 2012). Dryland regions

in particular necessitate careful modeling of rainfall patterns that are heterogeneous in

space and time. An improved understanding of rainfall variability considers the tempo-

ral distribution of rainfall through analyses of the average amount of rain during rainfall

events and the average length of time between successive events (Recha et al., 2012).

In order to develop a better way to study these systems, two concerns must be ad-

dressed. First a more accurate consideration of rainfall dynamics in semiarid environ-

ments is needed. Considering the stochastic nature of rainfall rather than the seasonal

averages is important in these systems where the frequency and duration of rainfall lead

to important consequences for vegetation response (Katul et al., 2007; Porporato et al.,

2002). Localized convective storms arrive in pulses that beget nonlinear vegetation re-

sponse (Katul et al., 2007; Baudena et al., 2007). Second, in addition to considerations

of the hydroclimatic environment, the representation of vegetation needs to be specific

to a crop of interest. While researchers have separately undertaken modeling exercises to

understand the impact of climate variability on crop growth and the stochastic nature of

rainfall on vegetation structure, there have been fewer efforts to link stochastic rainfall

dynamics to the probability of crop failure for staple crops such as maize. Specifically,

understanding the influence of cultivar choice on the success of a crop has not been

considered.

This study is motivated by the need to better understand the coupled dynamics of

water and rainfed agricultural systems in dryland regions occupied by smallholder farm-

ers. In general, the relationship between soil moisture and maize yields is poorly resolved

(Rigden et al., 2020). We address this need by presenting a model of stochastic seasonal

soil water availability that evaluates the impacts of intra-seasonal rainfall variability on
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crop production in a smallholder agricultural system. This model is based on a previ-

ously explored stochastic soil water balance model (Laio et al., 2001b,a; Rodŕıguez-Iturbe

et al., 2001; Porporato et al., 2001) that simulates the interactions between soil, plants,

and climate. The point-based model is nonspatial and determines daily growing and

harvest season values of runoff, interception, leakage and evapotranspiration for a given

soil type and cultivar. Rainfall is represented as a marked Poisson process expressed as

the mean depth of daily rainfall and the mean probability of storm arrival, which forces

the model at the daily time step.

We apply this model to a study site in central Kenya that exhibits a high degree

of rainfall variability. Using a long-term daily precipitation dataset and a characteristic

soil type for the region we estimate climate and soil parameters for the model. We use

the stochastic soil water balance model to determine yield outcomes and the probability

of crop failure, which are a function of plant water deficit (dynamic water stress). We

compare and evaluate our model results for various maize varieties with late, medium

and early harvesting periods. We aim to answer the following questions for our study

area:

1. What do historical records (40+ years) indicate about interannual rainfall trends?

2. How does intra-seasonal rainfall variability interact with the static and dynamic

stress of a maize crop?

3. How do varying maize cultivars moderate the effect of climate variability on changes

in yields and crop failure?

4. Has the average yield of maize production and likelihood of crop failure changed

over an 80 year period?

The following paper is organized as follows: We first describe our study site and
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Figure 3.1: Maps showing: a) Inset of study site within central Kenya; b) Study site
in Kenya noted by black box. Point data is from 80 stations. Jacobson Farm and Ol
Jogi Farm are denoted with a triangle and circle icon, respectively. Shades of blue
indicate historic annual rainfall based on enhanced Climate Hazards Group InfraRed
Precipitation with Station (CHIRPS) data that was created by blending 710 quality
controlled station observations with the publicly available CHIRPS product averaged
over 10-day periods in 1983-2016. Contours were delineated using the GeoClim Con-
tour Tool using an interval of 200 mm.

the hydro-meteorological data necessary to apply the soil water balance model in the

methods section. We then introduce our modeling framework and metrics for converting

stress into yield. Our results demonstrate the impact of intra-seasonal rainfall variability

on the seasonal water availability of maize varieties. We discuss these findings in the

context of smallholder farmer decision-making and explore the implications of the results

in the context of historical trends in rainfall and thus crop failure. We conclude with a

discussion of model limitations and suggest additional research agendas appropriate for

our proposed model.
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3.2 Methods

3.2.1 Study site

We apply our model to the smallholder farming communities on the western slope

of Mount Kenya, specifically the Laikipia plateau, in East Africa shown in Figure 4.1.

Laikipia county is located on the western (leeward) side of Mount Kenya and is adja-

cent to Meru and Nyeri counties in central Kenya. The county comprises smallholder

agriculturalists, growing urban areas, and wildlife conservatories that attract tourism.

The presence of dryland agriculturalists along a heterogeneous rainfall gradient makes

the area suitable for an analysis of rainfall variability and cropping outcomes. The main

cropping season for maize is planting around day 100 (first week of April) and harvesting

around day 300 (last week of October) (Ray et al., 2015).

Laikipia is a semiarid region prone to severe water deficits due to unreliable rain-

fall and high spatial and temporal variability. Rainfall in Kenya is characterized by a

high coefficient of variability, which is common to semiarid environments (Herrero et al.,

2010). Furthermore, Laikipia has a heterogeneous landscape and complex topography

that results in a rainfall gradient. While the the foothills of Mount Kenya often receive

between 800-900 mm of rainfall annually, the northern end of the county receives less than

500 mm annually (Wiesmann, 1998). The annual distribution of rainfall is bimodal with

two rainy seasons: the long (roughly March through May) and short (roughly October

through December) rains.

The Laikipia region of Kenya serves as an ideal study site to model the relationships

between smallholder agriculture and climate variability for two reasons: (1) the tight

couplings between food production and rainfall and (2) the prevalence of maize cultiva-

tion under various rainfall climatologies. In the region’s drylands smallholder farmers

face considerable challenges as rainfall arrives in pulses and in limited quantities for the
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majority of the year. Because the country has experienced a number of droughts in re-

cent years, the Government of Kenya is especially interested in drought mitigation and

increasing food security (Government of Kenya, 2010). Maize is an appropriate crop to

study because it is grown under rainfed conditions and is an annual crop subject to both

intermittent and terminal drought. Intermittent drought is caused by finite periods of

inadequate water availability which does not necessarily result in crop failure whereas

terminal drought is a progressive reduction in water availability that leads to crop failure

before the end of the growing season (Neumann, 2008).

Soil types

We use the ISRIC Africa SoilGrids soil data base (Leenaars, 2014) to determine the

soil textures found at depth 5-15 cm in our study site (Figure 4.1). The region has a

heterogeneous mix of soil textures. The most prevalent soil textures, at the points of

the rainfall gauges, are clay, clay loam and sandy clay loam. Soils in our catchment are

geologically young soils derived from basaltic volcanic rock and are generally fertile but

susceptible to erosion. The clay soils have high water storage capacities, which can be

suitable for growing maize (Muchena and Gachene, 1988). In Table 3.1 we show the

corresponding values for the soil matrix potential at the hygroscopic point Ψsh , and at

field capacity Ψsfc , the porosity n, and the saturated hydraulic conductivity Ks according

to the values found in Clapp and Hornberger (1978).

Interannual trends in long-term rainfall records

To assess whether interannual trends are changing across Laikipia, we use long-term

records of daily rainfall data for stations across the study site provided by the Centre for

Training and Integrated Research in Arid and Semi-Arid Lands Development (CETRAD)

in Nanyuki, Kenya. The gauges, shown in Figure 4.1, have record lengths between 7 to
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79 years. For computing statistics in Table 3.4, we used stations with records of 40+

years. We considered temporal trends in the two parameters: the average depth per

rain event (α) and the average rain event frequency per day (λ) during the two rainy

seasons: long (March-May) and short (October-December) rains. We used these daily

records to calculate mean rain depth per event (α), and rain event frequency (λ), values

for the regional trend analysis shown in Table 3.4, which is different than the calculation

of 10-day estimates of rain depth and rain event frequency described in section 3.2.2 and

used for the model parameters.

To analyze interannual trends in the total seasonal rainfall, rain depth per event

and rain event frequency parameters for the two seasons, we used a modified Mann-

Kendall statistical test and the Theil-Sen estimator. We use a variance corrected Mann-

Kendall test proposed by Yue and Wang (2004), which is appropriate for rainfall data

and calculates an effective sample size using the lag-1 autocorrelation coefficient. We

used the modified-mk package in R (Patakamuri and O’Brien, 2020).

Maize varieties and yields

In addition to being a function of environmental conditions and management deci-

sions, total yields also depend on the maize variety. To define maximum potential yields

for our simulations, we use empirical yield potentials for maize varieties typically grown

by smallholder farmers in Laikipia. These data were sourced from Kenya Seed Company

(see Figure 3.3). The gap between yields reported by seed companies which were grown

under controlled conditions and on small-scale farmers’ fields is likely greatest in sub-

Saharan Africa compared to other regions (Setimela et al., 2017). Evidence from Zambia

shows that yields attained by seed companies in optimal settings and the actual realized

yields by small-scale farmers can be vastly different (Blekking et al., 2021). Thus, the

values of yields used in our model should be considered as the “potential” yield attained
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Figure 3.2: Time series for the Jacobson Farm station which has a 79-year record
length. Significant trends (p <0.05) are shown in plots a, c, d, e, f per the modified
Mann-Kendall test.
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Figure 3.3: Linear regression with 95% confidence interval. Data are maize varieties
sold by Kenya Seed Company. We removed two varieties from the dataset (PH1 and
PH4) because the days to maturity information from Kenya Seed contradicted what
is known about these four-month varieties. Data retrieved August 19 2019 from
https://web.archive.org/web/20190216031348/http://kenyaseed.com/gallery/maize/.

by farmers rather than what is realized in-field. We discuss the uncertainty between these

measures in A.1. We use the linear regression trend to set maximum potential yields for a

range of maize varieties with maturity periods between 80 and 180 days, which is further

discussed in section 3.2.3. For each maize variety, we calculate a maximum potential

yield, Ymax, which is used in Eq. 3.17.

3.2.2 Model description

Hydrological water balance

To characterize the field-scale water balance we use a simple single-layer model of soil

moisture at a point. The overall water balance is given by:
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Table 3.1: Parameters associated with three prominent soil textures found within the
study site.

Soil type Ψs (MPa)b bb Ks (cm/d)b nb sh sfc
Clay −3.97× 10−3 11.4 11.1 0.482 0.503 0.830
Clay loam −6.17× 10−3 8.52 21.2 0.476 0.420 0.821
Sandy clay loam −2.93× 10−3 7.12 54.4 0.420 0.319 0.711
aWe calculated values of sh and sfc assuming a soil water potential Ψh = −10.0 MPa
and Ψsfc = −0.03 MPa (Laio et al., 2001b).
bClapp and Hornberger (1978).

nZr
ds(t)

dt
= R(t)− I(t)− ET (s(t))− L(s(t))−Q(s(t)), (3.1)

where n is porosity [-], Zr is the rooting depth [mm], s(t) is the saturation, or relative

soil moisture content (0 ≤ s(t) ≤ 1), R(t) is the rainfall rate [mm day−1], I(t) is the

amount of rainfall lost through canopy interception [mm day−1], E(s(t)) is the rate of

evapotranspiration [mm day−1], L(s(t)) is the rate of leakage [mm day−1], and Q(s(t), t)

is the runoff rate [mm day−1]. This is analogous to Eq. 1 from Rodriguez-Iturbe, et al.

(2001).

Rainfall How rainfall varies within seasons and between seasons is highly important

to dryland agriculturalists, and we capture both of these aspects of rainfall variability in

our model. First, we wanted to capture the within seasonal variability of rainfall, which

we model using two parameters: the average depth per rain event, α and the rain event

frequency, λ. Rainfall is treated as a time-varying marked Poisson process. In each 10-day

increment i, rainfall occurs with a probability, λi [day−1], and the depth of rainfall events

are drawn from an exponential distribution with a mean value, αi [mm]. Values of λ and

α used to model daily rainfall are estimated over 10-day fixed window intervals from a

long-term rainfall record of daily station rainfall data, which was described previously

in section 3.2.1. To capture the seasonal variation in rainfall parameters, we selected a
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10-day fixed window instead of monthly intervals to estimate α and λ, which are then

used to simulate daily rainfall during the season. The choice of a 10-day interval allowed

rainfall parameters to vary within each month, which is important for capturing the onset

and end of the rainy seasons in this region. However, even with multiple decades of data

(e.g. 31 years of data at the Ol Jogi station), there are not enough observations of rainfall

to justify daily parameter estimates.

Second, we wanted to model the interannual variability of total seasonal amounts

in a way that most closely represented observations from our rain gauge record. We

found that using a fixed rainfall climatology across seasons led to underestimations of

the variance in seasonal rainfall from year-to-year and did not accurately represent the

observed coefficient of variation in seasonal rainfall for our rain gauge locations of interest.

As described earlier, our intraseasonal estimates of λ and α are average values derived

from multi-year averages of the rainfall process for each 10-day interval. However it is

likely that inherent variability in these parameters from year-to-year leads to increased

variance in seasonal totals compared to what we see when using the same average values

for each season. To account for this additional variability in the rainfall process between

seasons, we modify all of the 10-day λ increments for each season of our simulation using

multiplicative Gaussian noise. Specifically, for each season, we multiply the original λi for

each 10-day time interval by the same seasonal scale factor, which is drawn randomly for

each season from a normal distribution with a mean of 1 and a standard deviation of 0.35.

The scale factor of 0.35 was selected in order to match the coefficient of variation and

seasonal totals from the Ol Jogi and Jacobson Farm stations. We recognize that there

are many possible mechanisms that could increase the variability of seasonal rainfall

totals and that some of these mechanisms would be tied to the daily rainfall process

itself in ways that would require modification of the time-varying poisson model we

have proposed. However, the addition of the random multiplicative noise offers a simple
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approach for capturing interseasonal variability in rainfall without making additional and

more complex assumptions regarding the probabilistic nature of the daily rainfall process.

Interception and Evapotranspiration In maize systems, rainfall interception by the

canopy is proportional to canopy Leaf Area Index (LAI) and will therefore be highest

during tasseling (reproductive) and maturity stages (Zheng et al., 2018). We included a

simple estimate of interception I(t) such that

I(t) = LAI ∗ Ie (3.2)

where the crop LAI, defined in equation 3.5, is transformed linearly by an interception

efficiency term Ie which converts the units of LAI to canopy interception [mm day−1].

Zheng et al. (2018) found that canopy interception loss accounted for almost 50 percent of

rainfall events less than 5 mm in a semiarid region in China. In our model, the maximum

interception value is the maximum value of LAI, which is 3 mm.

Evapotranspiration depends on both the soil moisture, s, and the time into the grow-

ing season, t. We separate evapotranspiration into its two components, soil evaporation

E(s, t) and plant transpiration T (s, t) such that

ET (s, t) = E(s, t) + T (s, t). (3.3)

Soil evaporation depends on both the amount of soil moisture and the extent of the crop

canopy, which intercepts radiation and reduces energy available for soil evaporation. We

define evaporation as

E(s, t) =


0 0 ≤ s < sh(
s−sh
1−sh

)qe
ETmaxe

−0.5·LAI(t) sh ≤ s ≤ 1

, (3.4)
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where qe represents the non-linear rate at which soil evaporation declines as soil moisture

drops below saturation, LAI denotes the crop leaf area index [mm2 mm−2], a measure of

canopy density, and sh is the soil moisture at the hygroscopic point. ETmax is both the

maximum PET and maximum bare soil evaporation. LAI(t) varies depending on the

time into the growing season, t, and is calculated from the maximum leaf area index of

a given crop, LAIc,max and the crop coefficient, Kc(t), as follows:

LAI(t) = LAIc,max
Kc(t)

Kc,max

(3.5)

We use a convex function of soil moisture for evaporation because with a 400 mm

depth uniform layer we cannot easily resolve the problem of different evaporation curves

for a two layer model. Rather, we consider that evaporation drops off relatively fast

below saturation and thus we might be under estimating evaporation in certain cases

such as in large rainfall events early in the season or when the soil is very wet, which

is a method applied in previous studies (Caylor et al., 2005; Porporato et al., 2003).

Many bucket models neglect early season evaporation all together, and our model is an

improvement to this. Future research could try to make a bucket model with Stage 1

and Stage 2 evaporation but we have found that this is not usually done in models but

rather is included in empirical studies of deep soil moisture.

Seasonal variation in the Crop coefficient The growing season is divided into four

stages of crop phenology, through which the crop coefficient varies, peaking in mid-season

after the reproductive stage. The crop coefficient is determined as

52



Consequences of dryland maize planting decisions under increased seasonal rainfall variability
Chapter 3

Kc(t) =



Kc,ini t ≤ fi

Kc,max−Kc,ini

fd−fi
(t− fi) +Kc,ini fi < t ≤ fd

Kc,max fd < t ≤ fms

Kc,eos−Kc,max

fls−fms
(t− fms) +Kc,max fms < t < fls

Kc,eos t = fls

(3.6)

where fi, fd, fms, and fls denote the fraction of the growing season in days from the

beginning of the growing season to the vegetative period (initial), reproductive period

(development), maturity period (mid-season), and end of season (late season), respec-

tively. The values of Kc during vegetative and maturity periods are constant functions

of time and the values of Kc during reproductive and senescence stages are linearly inter-

polated between the values for the start and end of each period. We use crop coefficient

(Kc) values based on those listed in FAO guidelines for 180-day maize (grain) in high

altitude East Africa, which are defined as 0.3, 0.3, 1.2, 1.2, and 0.6 and correspond to

0%, 16%, 44%, 76% and 100% of the growing season (Allen et al., 1998). We selected

this metric for Kc because it is widely used in the Crop Water Requirement Satisfaction

Index (WRSI) (Senay, 2004) when locally appropriate values are absent.

The rate of plant transpiration, T (s), is given as

T (s) =


0 s < sw

s−sw
s∗−swKcTmax sw ≤ s < s∗

KcTmax s∗ ≤ s ≤ 1

(3.7)

where Tmax is the maximum transpiration rate of the plant, sw is the soil moisture at the
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Figure 3.4: Evaporation, transpiration, and evapotranspiration as functions of relative
soil moisture where LAI is 1.5 and sh is 0.42. Other climate and crop parameters are
those listed in Table 3.3.

wilting point, and, s∗ is the soil moisture at the stress point.

Having solved for the components of Eq. 3.3, we can use Eqs. 3.4 and 3.7 express

ET (s) as follows:

ET (s) =



0 0 ≤ s < sh(
s−sh
1−sh

)qe
ETmaxe

−0.5·LAI sh ≤ s < sw(
s−sh
1−sh

)qe
ETmaxe

−0.5·LAI + s−sw
s∗−swKcTmax sw ≤ s < s∗(

s−sh
1−sh

)qe
ETmaxe

−0.5·LAI +KcTmax s∗ ≤ s ≤ 1

(3.8)

Figure 3.4 shows the functional form of evaporation and transpiration as a function

of relative soil moisture content for a clay loam soil in which sh is 0.42, sw is 0.53, and

s∗ is 0.78.
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Leakage Whenever daily soil moisture exceeds the soil field capacity, sfc, we calcu-

late leakage of water out of the plant root zone. The instantaneous rate of leakage is

determined by the hydraulic conductivity, K(s) [mm/day], which is given by

L(s) = K(s) =
Ks

eβ(1−sfc) − 1
(eβ(s−sfc) − 1), (3.9)

where Ks is the saturated hydraulic conductivity [mm/day] and β is a soil-specific pa-

rameter that governs the shape of the relationship between saturation and hydraulic

conductivity; that is, β = 2b + 4, where b is a coefficient governing the power-law form

of the soil-water retention curve (Laio et al., 2001b).

Ψs = Ψ s s
−b (3.10)

where Ψs is the soil matrix potential at a given value of soil moisture and Ψ s is the

geometric mean of the soil matrix potential values in the curve. Values of b are based

on soil texture and are taken from the empirically-determined coefficients presented in

Clapp and Hornberger (1978).

Following an input of rainfall such that s0 > sfc, Eq. 3.1 becomes an expression of

soil moisture decay. In the absence of evaporative losses, we can simplify leakage to

L(s) = −nZr
ds

dt
(3.11)

Then we use Eqs. 3.9 and 3.11 to solve for the initial condition, s0, which yields the

analytical solution for total daily leakage when s > sfc:

L =
nZr

β
ln
[
eβ(s0−sfc) − e−mβ(eβ(s0−sfc) − 1)

]
(3.12)

where
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m =
Ks

nZr (eβ(1−sfc) − 1)
(3.13)

Runoff Our model only considers saturation excess overland flow, so that when the

balance of daily rainfall, evaporation, and leakage leads to an excess of soil saturation,

the excess is converted to surface runoff. Thus, we can write

Q(s) =


0 0 ≤ s ≤ 1

(s− 1)nZr s > 1

(3.14)

Plant water stress

Water stress during the growing season affects the physiology of plants and is crucial

in determining the success of a crop. Soil moisture excursions below the wilting point, sw,

and the point at which transpiration is reduced, s∗, can lead to reduced biomass produc-

tion and eventual crop failure. By defining the duration and frequency of soil moisture

deficits probabilistically, we gain insight into the yield reductions from intense water

stress such as drought and the likelihood of crop failure. The mathematical derivations

for these dynamics are described in previous work (e.g. Rodŕıguez-Iturbe and Porporato

(2007).)

First we calculate static water stress: a measure of the mean vegetation water stress

incurred during a given excursion below s∗ (Porporato et al., 2001).

ζ(t) =

[
s∗ − s(t)
s∗ − sw

]qstress
, for sw ≤ s(t) ≤ s∗ (3.15)

where ζ(t) is the static water stress and qstress represents the crop’s sensitivity to the

magnitude of excursions below the stress point.
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Although the static stress describes the mean water deficit relative to s∗ and sw, we

are also interested in the duration and frequency of water deficit. Following the work of

(Rodŕıguez-Iturbe and Porporato, 2007, p. 67), we also define two other random variables:

the average length of time in days in which soil moisture is below the threshold, Tζ , and

the number of times the threshold is crossed during a season, nζ . Next, we calculate

dynamic water stress, θ, a measure of the crop’s total water stress during the growing

season that characterizes the duration and frequency of exposure to water stress:

θ =


(
ζ Ts∗
kLGP

)n−r
s∗

, ζ Ts∗ < kLGP

1 , ζ Ts∗ ≥ kLGP

(3.16)

where ζ is the average static water stress incurred over the growing season; T s∗ is the

average duration of excursion; ns is the number of occurrences of these excursions during

the growing season; LGP is the length of the growing period in days; k is the portion of

the season that stress can occur before the crop fails; and r is a normalization parameter

for the number of excursion below the stress point. We use the values for r and k noted in

Table 3.3. The r parameter is defined as in Porporato et al. (2001), and the k parameter

is selected in order to approximate a characteristic rainfall yield relationship such as in

Guan et al. (2017). Lastly, we calculate seasonal crop yields, Y , as a function of dynamic

water stress:

Y = Ymax(1− θ) (3.17)

where the maximum yield per unit area (hectare) is Ymax. This value of Ymax is specific to

the LGP of the crop as estimated by the linear regression in Figure 3.3. The maximum

potential yield for a variety with a 180 day LGP is 4.26 metric tons per hectare. We

conducted a sensitivity analysis to test different values of r, k, qstress, and qe on yields in
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Table 3.3: Model parameters and their sources.
Type Parameter Value
Climate parameters LGP 180 days
Crop parameters Ie 1 (dim)

Zr 400 mma

Tmax 4.0 mm day−1

ETmax 6.5 mm day−1b

Kc,max 1.2 (dim)c

LAIc 3.0 mm2 mm−2d

qe 1.5 (dim)
qstress 2 (dim)
r 0.5 (dim)e

k 0.25 (dim)
Ymax 4.26 t ha−1

Soil parameters (clay loam) sw 0.53 (dim)f

s∗ 0.78 (dim)f

Simulation parameters Nsim 10,000 seasons
Nburn sim 1,000 seasons
Tburn 60 days

aNyakudya and Stroosnijder (2014)
bBarron et al. (2003)
cAllen et al. (1998)
dWilliams and Albertson (2004)
ePorporato et al. (2001)
fClapp and Hornberger (1978)

Figure A.1 and discuss the need for improved measurements of intra-seaonal crop stress

in A.2.

3.2.3 Model implementation

In order to conserve the water balance, we implement the model piecewise. First, we

calculate saturation excess, Q(t), which is caused by an input of rainfall that leads to the

soil moisture being above saturation (i.e. s > 1). Therefore, any rainfall that causes s to

be greater than 1 is instantaneously routed as runoff, and thus there is an explicit upper

bound of s which is 1 as shown in equation 3.8. We then calculate both leakage and
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evapotranspiration using the same s value and within the same time step. Lastly, once

we have values of L(t) and ET (t), we update the water balance and the soil moisture.

We run the model for 10,000 simulations using the following initial conditions and

parameters. We use the Ol Jogi Farm rainfall climatology (10-day rainfall parameters

estimated from daily rainfall records between 1967-1998), a clay loam soil texture, and

180-day maize variety, which are typical values for the study site. We selected a plant-

ing date of March 1 (Julian day 60) for model calibration and simulations. Farmers

vary in their planting practice but generally plant at the start of the long rains after

approximately 20 mm of rainfall has fallen. We selected March 1 because it was the most

frequently planted week for the long rains among surveyed farmers in our study site. To

determine the initial condition for our simulations, we first run the model for sixty days

(Tburn) before the planting date and run 1,000 simulations (Nburn sim) to get an average

value of s for the first day of the season. Then we use this average value as the initial

condition for each of our subsequent simulations of the growing season.

Impacts of maize variety on farming outcomes

We continue with the model parameters previously described to compare yield out-

comes for different maize varieties (e.g. Ol Jogi rainfall climatology, clay loam soil,

planting day 60 etc.). We run the simulations for three categories of varieties: early,

medium, and late maturing. The simulations have the same precipitation forcing for all

the varieties, and the only lever that is being changed for this experiment is the length

of the growing period (LGP ). The maize varieties have different times to maturity that

vary in five-day increments between 80 and 180 days: early maturing between 80 and

110 days, medium maturing between 115 and 145 days, and late maturing between 150

to 180 days (all inclusive). We designate 21 different maize varieties to represent all of

the five-day increments between 80 and 180 days. These 21 varieties are each simulated
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500 times, resulting in 10,500 total simulations.

Impacts of rainfall climatologies on farming outcomes

We use two rainfall gauges to determine the 10-day average rain depth per event (α)

and rain event frequency (λ) used as model parameters parameters, which are described

in Table 3.2. First, we use the long-term average Ol Jogi Farm rainfall climatology for

running the model as this location is climatologically representative of semiarid small-

scale producers in the region who depend on rainfall. We use this station for the model

simulation results in sections 3.3.1 through 3.3.3.

We use the longest station gauge record (79 years), Jacobson Farm rainfall climatol-

ogy, to analyze long-term temporal changes in crop production and crop failure in section

3.3.5. We define three eras of crop production: two extreme conditions (1930s rainfall

climatology and 2010s rainfall climatology) and the average rainfall conditions. We ex-

tract 10-day rain depth per event (α) and rain event frequency (λ) values as follows. To

represent average annual change in either parameter, we use the average 10-day α and λ

values, which considers the entire rainfall record and corresponds to the climate in the

middle of the record. We adjust the long-term average values for each 10-day increment

in order to obtain historical (1930s) or present (2010s) values of the parameters 10-day

increment. To estimate the past, “1930s”, 10-day rain depth per event (α) and rain event

frequency (λ) values we simply apply the trend line to each of the individual average 10-

day increment. For example, we calculate the 10-day rain depth per event (α) for the

1930s climatology by taking the average 10-day alpha and subtracting it by the slope of

the trend line multiplied by 40 years. For the present “2010s” values we add the slope of

the trend line multiplied by 40 years. We then use these three sets of average rain depth

per event (α) and rain event frequency (λ) values to run the simulations for the three

subsetted periods. We run 100,000 simulations for each period with the parameters used
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in Table 3.3. Therefore, the only source of variability in this counterfactual analysis of

crop failure and yields is the rainfall generator.

3.3 Results

3.3.1 Time-varying impacts of seasonal water availability using

the Ol Jogi rainfall climatology

Figure 3.5 (bottom panel) shows the average soil moisture content for 10,000 growing

seasons of a 180 day variety planted on day 60 (approx. March 1) using the Ol Jogi

rainfall climatology. The 10-day rain depth per event (α) and rain event frequency (λ)

parameters used to generate rainfall are variable over the 6 month period. The rain

event frequency, λ, increases more than three-fold during the first 80 days of the season

while the average depth per storm, α, stays relatively constant throughout the 180 day

growing season with values between 8-13 mm of rain (Fig. 3.5, top). On dekads 15 and

16 (approx. 80-90 days into the growing season), the rain event frequency, λ, drops and

levels off indicating the cessation of the long rains season. During this period of rainfall

variability, the crop coefficient follows a step-wise function in which water requirements

are low before steadily increasing when the crop begins to develop (Fig. 3.5, middle plot).

For the first 80 days of crop growth, the soil moisture levels increase steadily. At

approximately day 80, the crop coefficient peaks at a value of 1.2, which is subsequently

met with a decline in the soil water content (Fig. 3.5, bottom). During this stage of

peak water requirements from day 80 to 140, the crop enters its reproductive stage in

which flowering and grain-filling occur. Concurrently, the water availability decreases as

λ values decline near the end of the long rains and the relative soil moisture, s decreases

from ca. 0.7 to 0.6. At the end of the growing season, the soil moisture levels slowly
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Figure 3.5: Three time-varying model parameters: 10-day average rain depth per event
(α) and rain event frequency (λ) values starting with the planting date (March 2-11 in
non-leap year) (top); daily crop coefficient (middle); and daily saturation (bottom).

decline and flatten until day 180 when the crop coefficient linearly decrease to a final

value of 0.6. Interestingly, the crop coefficient and s align reasonably well over the course

of the season. This alignment indicates that the Kc function that we use, which is derived

from regional studies conducted by the FAO and previously described in section 3.2.2,

works reasonably well for our study location as shown for a late maturing 180-day variety.

We then investigate the impact of stochastic rainfall on soil water availability for

a single season. Figure 3.6a shows an example time series of simulated daily rainfall

for a late maturing 180-day variety planted on day 60 using the Ol Jogi Farm rainfall

climatology. As we expect, soil saturation increases in the early to middle part of the

season (around days 50 to 100 in Fig. 3.6b), which aligns with the peak of the rainfall

season Fig. 3.6a. The crop is moderately stressed over the entire season because the

majority of the soil saturation time series falls between the stress and wilting points. In

this particular simulation, the crop experiences the lowest levels of stress between days

60 to 80 whereas the highest levels of stress occur for the first 40 days of the growing
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Figure 3.6: Time series of precipitation (a), relative saturation (b), and static stress (c)
for a single simulation. Rainfall climatology is determined by Ol Jogi Farm station
data, soil texture is clay loam, maize variety is 180 days, and planting date is day
of year 60. Soil wilting point is red dashed line. Stress point (the point at which
transpiration starts being reduced) is the solid red line. For a clay loam soil the stress
point in units of saturation is 0.78 and the wilting point is 0.53.

season and between days 130 and the end of the growing season.

For the simulated 10,000 growing seasons, we investigate the distributions and time

series of average soil saturation and static stress in Fig. 3.7. We find a seasonality in

water availability in which soil moisture peaks between days (day of year) 135 and 145

for all simulations. The average soil moisture begins to decrease around day 145 before

stabilizing around day 170. The simulations are prone to water deficit during the earliest

and latest parts of the season in which the average saturation starts at 0.5 and ends the

season around 0.55, on average. The crop is at the highest points of average static stress

during these periods as shown in Fig. 3.7d.

The crop is generally stressed over the course of the season because the stress point is

0.78 and the saturation time series in Fig. 3.6b falls below and around the stress point for

the majority of the season. The stress values of the crop ranges between 0 and 1, and in

the time series, we see a larger increase in stress compared to the relative saturation time

series. Additionally, we see greater variability in stress values compared to saturation

values as the confidence intervals for stress are very wide especially in the later part of
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Figure 3.7: Probability distribution functions and time series of average soil satura-
tion and stress with 90 and 10% confidence intervals for 10,000 simulations. Model
parameters used are the same as those in Figure 3.6.

65



Consequences of dryland maize planting decisions under increased seasonal rainfall variability
Chapter 3

the season. This is due to the nonlinearity introduced in the conversion from relative

saturation to stress.

3.3.2 Dynamic water stress

To convert average static stress into a yield metric that allows for the probability of

crop failure, we use the dynamic stress equation. Dynamic water stress considers both

the frequency and duration of excursions below the stress point and is used to estimate

end-of-season yield as a fraction of the maximum possible yield for that variety as shown

in equation 3.17. Calculating yield in this way is typical in the literature on numerical

simulations of climate variability and crop yields (Van Ittersum et al., 2013; Roche et al.,

2020). We show the PDF of dynamic water stress in figure A.2.

As shown in Fig. 3.8 for the 180-day variety, the relationship between rainfall and

yield is not a linear one, but rather is asymptotic. We also include the relationships

between seasonal rainfall and yield for the early, medium, and late maturing varieties

categories in A.4. As the crop experiences more rainfall, yields increase up to a ceiling

which is defined by the yield potential of the cultivar. We find that yields are closer to the

maximum potential yield with seasonal rainfall totals greater than ca. 600 mm. When

the seasonal rainfall totals are less than approximately 450 mm, the possibility of crop

failure is introduced. We find that seasonal rainfall totals between ca. 200 and 450 mm,

there is a large range in possible outcomes for farmers. For a given seasonal total within

this range, we find that farmers can reach up to 60-75 percent of the maximum possible

yields while others experience total crop failure. This relationship also holds true for

early and medium maturing varieties as shown in A.4. For seasonal rainfall totals below

200 mm or so, the majority of simulations result in total crop failure. Therefore while

the seasonal total of rainfall is important, there are also characteristics of within season
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Figure 3.8: Scatterplot of seasonal rainfall and yield for 180-day maize and study site
conditions. End of season yields are normalized by the maximum yield for all 10,000
simulations: 2.8 t/ha.

rainfall that have a pronounced effect on yield outcomes.

3.3.3 Cultivar choice mediates probability of crop failure

We then investigate the effect of cultivar choice (i.e. LGP ) on yield and crop failure

using the methods described in section 3.2.3. Figure 3.9 shows the joint probability

distribution of yield and rainfall for three categories of maize varieties: early, medium

and late maturing. The average rainfall and yield for each category of maize varieties is

denoted as a black “x”. In Table 3.5, we provide the average statistics that correspond

with Fig. 3.9. We find that the average seasonal rainfall increases in proportion to

the length of the growing season for each of the maize varieties categories. Because early

maturing varieties require less time to grow (e.g. 80-110 days) compared to late maturing

varieties (e.g. 150-180 days), they receive less average seasonal rainfall.

Despite having lower seasonal totals due to their shorter maturity period, early-

maturing crops are more likely reach their maximum potential yields while medium and
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Figure 3.9: Joint probability distribution of three maize varieties categories using Ol
Jogi rainfall climatology. The average rainfall and yield for each subplot is denoted
with ‘x’. Non-zero values of yield were used to calculate this average..

Table 3.5: Summary statistics for three maize variety categories. These results are
from the methodology described in section 3.2.3 and explained in section 3.3.3. Av-
erage seasonal rainfall is increasing in proportion to the length of the growing period
(LGP ) in which early maturing varieties take between 80-110 days to grow; medium
maturing take 115-145 days; and late maturing take 150-180 days.

Statistic Early Medium Late
Average Seasonal Rainfall (mm) 221.6 270.8 328.1
Average Yield (t/ha) 1.18 1.23 1.45
Crop Failure (%) 26.77 31.97 34.94

later maturing crops only gain a fraction of their maximum yields (A.4). Additionally,

under low seasonal rainfall totals, medium- and-late maturing crops have a higher inci-

dence of crop failure, which is indicated by the spread of probability densities around 0

yield between 0 and 300 mm of rainfall in Fig. 3.9. In comparison, early-maturing crops

are less likely to fail, which is indicated by the less dense probabilities below 200 mm of

rainfall. These trends are reflected in the percentage of simulations that resulted in crop

failure: approximately 27%, 32%, and 35% for early-maturing, medium-maturing, and

late-maturing, respectively, as shown in Table 3.5. Late-maturing varieties also have a

larger spread in potential yields compared to early- and medium-maturing varieties.
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3.3.4 Regional rainfall climatology trends

We investigated interannual trends in seasonal totals, storm depth and inter-storm

arrival rate for the two rainy seasons. Overall, we find that changes in seasonal totals

are minimal across the stations, shown in Table 3.4, and as visualized for Jacobson Farm

in Figure 3.2. However, we do find significant trends for increasing intensity, α, and

decreasing frequency, λ in both rainfall seasons (p < 0.05, Table 3.4) using the modified

Mann-Kendall statistical test. Comparatively, total rainfall for both seasons and annual

rainfall shows a muted change with fewer stations showing significant trends. Our results

are consistent with those of Franz et al. (2010), which analyzed a less recent dataset

of 11 stations in the same region. In Figure 3.2, we use the Jacobson Farm rain gauge

which has the longest record (79 years) to show the shifts in rainfall processes that occur

in this region. Here, we see that while total rainfall for either season does not change

significantly, we see an increase in α and decrease in λ over the period (p < 0.05, Fig. 3.2).

This indicates that storms are becoming more intense and less frequent. The relevance

of this interannual variability in rainfall is further discussed in section 4.5.

3.3.5 Long-term trends in yield and crop failure using the Ja-

cobson Farm rainfall climatology

After changing 10-day average rain depth per event (α) and rain event frequency (λ)

values to represent those in an earlier era (1930s) and present day (2010s) at Jacobson

Farm, we show how cropping outcomes have changed over the 80 year record in Fig. 3.10

and Table 3.6. During this period, we see the rain depth per event (α) and rain event

frequency (λ) change where the average α values increased from 5.71 mm per storm event

in the 1930s to 10.99 mm per storm event in the 2010s. Conversely, the average λ values

decreased from 0.35 rainfall events per day in the 1930s to 0.16 rainfall events per day
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Figure 3.10: Historical change in seasonal rainfall and yields for Jacobson Farm cli-
matology. We defined three eras of rainfall conditions in which we set the rain depth
per event (α) and rain event frequency (λ) parameters based on the relative trend
line in Figure 3.2. The average rainfall and yield for each subplot is denoted with ‘x’.
Non-zero values of yield were used to calculate this average.

in the 2010s. We see a marked shift in the average seasonal rainfall generated from the

simulations, which exhibits an inverted U-shape. There is an increase in average rainfall

between the 1930s and the middle of the record from 362 mm (standard deviation, SD,

139 mm) to 385 mm (SD 154 mm), and a decrease to the later part of the record in the

2010s of 316 mm (SD 136 mm). The average seasonal rainfall total in the latest part of

the record was dramatically lower than the earlier two data points.

Interestingly, average crop yields also follow the inverted-U shape: At the start of the

record, average crop yields were the lowest at 0.72 t/ha. Crop yields increased to the

maximum of these three eras in the middle of the record to 1.05 t/ha and then decreased

again to 0.84 t/ha in the 2010s. Crop failure rates show a similar pattern in which the

crop failure rate was lowest in the middle part of the record (31%) and highest during

the early part of the record (48%) and the present day crop failure rate is in between at

33%. The coefficient of variation of rainfall increased from 0.38 in the 1930s to 0.43 in

the 2010s.

3.4 Discussion
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3.4.1 Rainfall trends and impacts on maize production

Warming global temperatures directly cause interannual variability in rainfall—i.e.,

the shift towards fewer and more intense storms (IPCC, 2007)—as observed at Jacobson

Farm and other gauges in the field site (Table 3.4). With air temperatures and atmo-

spheric water vapor rising in East Africa as well as globally, extreme precipitation events

are expected to increase (Trenberth, 2011; Solomon et al., 2007). We find that while

rainfall seasonal totals are not changing, the average rainfall event depth and frequency

have changed in several sites in Laikipia, Meru and Nyeri counties.

When considering the extremes of the 80-year rainfall record (i.e. 1930s versus 2010s

rainfall climatology), we see changes in cropping outcomes among maize farmers. Overall,

we find an inverted-U shaped relationship from the three time periods of interest where

the average yields peaked and the probability of crop failure was lowest in the middle

of the time series. We found that the average seasonal rainfall shifted from a period of

high seasonal rainfall in the 1970s and lower seasonal rainfall in the 2010s. Our results

indicate that the environmental conditions for growing maize were most difficult in the

earlier part of the record, they became easier in the 1970s, and now are becoming more

difficult again. The reasons for these changes stem from the interactions between shifts

in mean seasonal rainfall, increasing storm depths, and decreasing storm even frequency.

It is notable that despite the very low seasonal rainfall totals in the 2010s, the average

yield is not lowest and the crop failure rate is not the highest seen across the three eras.

The lack of correlation between average seasonal rainfall and crop yields highlights the

nonlinearities between seasonal totals, rainfall statistics (average depth and frequency)

and yield that interact and make it difficult to predict yield using a single metric. Previous

work has demonstrated similar findings such that the intensity and duration of individual

rainfall events is important for hydrological partitioning of precipitation in addition to
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annual or seasonal totals (Taylor et al., 2013; Apurv et al., 2017; Singer and Michaelides,

2017; Kipkemoi et al., 2021). We also find an increase in the coefficient of variation in

rainfall showing that farmers experience increasingly variable rainfall conditions.

Previous studies have sparked concern over the future of rainfall in East Africa and

formed a consensus about the role of climate change in influencing rainfall patterns

(Nicholson, 2017; Shongwe et al., 2011). Specifically, these studies have demonstrated

negative trends in the magnitude of the long rains (March-May) in East Africa and

the Horn of Africa Drylands (HAD) (Lyon and DeWitt, 2012; Liebmann et al., 2014;

Williams and Funk, 2011; Funk et al., 2018b, 2019). Other studies have shown regional

trends towards more extreme rainfall events (Harrison et al., 2019), particularly for the

short rains (October-December) (Shongwe et al., 2011) and in central Kenya (Schmocker

et al., 2016). In addition to decreased seasonal totals, trends towards more extreme

rainfall events will likely contribute to decreased end of season yields and increased rates

of crop failure due to the timing and nature of rainfall and crop water requirements of

maize over the season. Increasingly heavy rainfall events pose a threat to crop production

due to extreme surface runoff and subsequent erosion or from flood events (Liniger and

Thomas, 1998; Liniger and Weingartner, 1998).

Small-scale producers depend on reliable rainfall. We show that maize yields are lower

in the present day in comparison to yields 40 years ago due to reduced seasonal rainfall

totals and increased rainfall variability. In order to attain end of season yields that are

profitable, maize growers must avoid both sodden conditions due to extreme rainfall and

drought conditions caused by dry spells (Rigden et al., 2020). Our results show that

despite having seasonal rainfall totals that should be adequate for maize growth, the

end of season yields and chance of crop failure are highly variable. This is because the

crop coefficient of maize does not necessarily align with the periods of highest rainfall

when planting is conducted in early March and in these systems where irrigation may be
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absent. For this reason, hybrid maize has been developed to withstand variable rainfall

and drought during the growing season. We also find that intraseasonal rainfall variability

has a pronounced impact on farmer outcomes for varieties with different maturity periods.

3.4.2 Cultivar choice moderates exposure to stress

Varieties with shorter maturation periods reduce their exposure to water stress and

fail less often compared to varieties with longer maturation periods. We show that

modest decreases in relative soil saturation lead to dramatic increases in the water stress

of simulated maize. When the length of the growing period is shortened for an early

maturing crop to reach the flowering and grain-filling phenological stages faster, there is

a reduced chance of exposure to water deficits. Therefore, we find that early maturing

varieties have a shorter exposure to rainfall variability and therefore are less likely to

fail whereas long-maturing varieties grow for longer periods and are more susceptible to

longer periods with no rainfall. These early maturing varieties escape longer dry periods

and therefore may be a better option for small-scale maize producers under increased

levels of rainfall variability.

Cultivar choice is one of the primary adaptation strategies that farmers can control to

minimize the stress experienced by the crop. We show that early maturing crops are the

best choice given their fast maturity period and lowest probability of crop failure. Late

maturing crops will produce higher yields in the simulations that do not fail, however,

they are exposed to longer periods of no rainfall due to taking more time to grow and

therefore have a higher risk of crop failure. Early maturing varieties are the least likely

to fail just on the basis of requiring less time to grow and thus have a shorter exposure

to the rainfall process. Furthermore, early maturing varieties are often bred or have been

genetically modified to be drought tolerant. Drought tolerance is often developed for a
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specific set of environmental conditions and thus can be hyper-localized.

In a survey of 500 East African farming households, Erenstein et al. (2011) found that

the most desired attribute of maize varieties was yield potential followed by early matu-

rity. These characteristics were perceived to be more important than drought tolerance.

Maize cultivars can exhibit one of two traits: drought avoidance as in the case of early

maturing varieties and drought tolerance in the case of hybrids that are bred to tolerate

reduced available water. Early maturing varieties are considered drought avoidant be-

cause they are thought to complete their most drought-sensitive stage (flowering) before

a drought occurs such as at the ending of a growing season (Barron et al., 2003; Morris,

2001).

We show that by growing a late maturing variety, the crop is still subject to terminal

drought and crop failure due to the timing of rainfall throughout the season. However,

a trade-off exists in selecting a late maturing variety. As shown in the empirical data of

maize cultivars and yield (Figure 3.3), there is an opportunity for higher yields for late

maturing maize varieties. In cases where farmers do not have access to irrigation and

would prefer a crop that has a greater chance of success despite a potential yield penalty,

farmers may prefer early maturing crops (Barron et al., 2003).

There are two possibilities that plant breeders and farmers can elect for: to optimize

for survival by minimizing the variance of stress experienced by the crop or to optimize

for greater biomass in order to get the maximum yield. In light of this, farmers may be

interested in maximizing their yield as well as limiting crop failure by planting a medium

maturing variety. However, in areas with high rainfall variability there might be reason

to plant only early maturing varieties either with the intent of minimizing crop failure

or in order to double crop within the season. In these settings where a farmer’s goal is

to prevent crop failure, early and extra early maturing varieties are more effective for a

planting date of March 1 as described in our model. There may be a role for varieties

75



Consequences of dryland maize planting decisions under increased seasonal rainfall variability
Chapter 3

with other maturity durations when using different planting dates.

3.4.3 Declining yields, increasing crop failure rates and household-

level impacts

The increased variability in rainfall and decreased seasonal totals have serious impli-

cations for agriculture in East Africa and other regions of the African continent where

large portions of the population suffer from food insecurity (Funk and Brown, 2009).

These changes in mean annual rainfall and increased storm size may make it increasingly

difficult for farmers to practice agriculture as they have done so in the past. As shown

in the temporal analysis of rainfall trends, the timing and distribution of rainfall has

changed within one to two generations of farmers.

Climate change and climate variability impacts can shock the economic system by

altering food prices and so affecting food demand, nutrition, and human livelihoods

(Herrero et al., 2010). We have already shown that season-to-season variability in rainfall

is high, and the distribution of rainfall in addition to the total is of paramount importance

to Kenyan agriculture. In Kenya, declines in per capita maize production have been

reported for certain regions (Funk et al., 2018a). Much of this change is due to variable

seasonal rainfall and the incidence of crop failure. Our results are consistent with work

that projects reduced rainfed maize yields in Kenya (Herrero et al., 2010; Thornton et al.,

2010). While yield gains have been projected for certain highland areas in the temperate

areas of Kenya (Thornton et al., 2010), farmers in the semiarid and arid lowlands are

predicted to experience diminished yields, likely forcing them to sow varieties with shorter

maturity periods.

In order to capitalize on any potential yield increases in the highlands and reduce as

much as possible the decreased yields in the majority of Kenya, further investment in
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new varieties, improved inputs, and services will be needed (Herrero et al., 2010; Hansen

et al., 2011). Investing in varieties that conserve root-zone soil moisture or have deeper

roots may be especially important in a warming climate (Rigden et al., 2020). Access

to irrigation and water harvesting more generally will be an important way for farmers

to buffer negative climate impacts. In this region in central Kenya, access to irrigation

resources is not ubiquitous and even those farmers with access to irrigation experience

high spatial and temporal variability in its availability (Gower et al., 2016). McCord et al.

(2018) show that farmers in the Mount Kenya region with greater relative variability in

water flow from irrigation are more likely to uptake adaptation measures such as choosing

new seed varieties. This is a positive indication that perhaps the agriculturalists who are

more impacted by rainfall variability due to reduced irrigation access are likely to employ

adaptation measures or at least experiment with those measures such as changing to an

early or extra-early maturing varieties (McCord et al., 2018).

3.4.4 Study limitations and future research

We made some important assumptions in our model, a common practice in such

studies (e.g. Challinor et al. (2009); Tesfaye et al. (2016)). First, other than the rainfall

climatology and the crop coefficient all other variables were constant. We do not simulate

the effect of inputs such as fertilizer application or irrigation use. The model assumes

that nutrients like nitrogen are available in adequate quantities that do not limit growth

crop and yield. Second, we do not simulate other crops which might be intercropped with

maize (e.g. beans, potatoes), and we do not simulate crop rotation or varying cropping

densities. Additional studies may begin with any of these assumptions to further evaluate

their effects on maize production.

Future studies would benefit from adding empirical agronomic or decision-making
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data as inputs or validation datasets. Our study has shown that available water content

is lowest during the latter part of the season when the crop coefficient is the highest and

the rainfall slackens. A follow-up study could investigate the intra-seasonal nature of

water stress to demonstrate what duration of stress during the season makes the largest

impact in terms of yield. To answer this question, an empirical dataset is needed that

includes both intra-seasonal stress dynamics and end of season yields. Additionally, we

did not constrain the behavior of early, medium, and late maturing varieties other than

changing the length of their growing periods. Early maturing maize is often bred or

genetically modified to be drought tolerant and thus should reduce the probability of

crop failure. These constraints could be added as parameters in the dynamic water stress

calculation or by altering the crop coefficient for hybrid maturities. Field-collected data

or on-farm trials would be needed to constrain these parameters.

3.4.5 Conclusions

This stochastic ecohydrological model represents conditions that will become more

common as climate variability and climate change alters rainfall in tropical and semiarid

systems. By using historical rainfall to generate stochastic conditions for average depth

and probability of rainfall we simulated a dryland environment for small-scale producers.

We considered a common crop choice (maize), soil type, and planting decisions (i.e. tim-

ing of planting) that represents hundreds of millions of small-scale producers in regions

vulnerable to climate change and variability. We investigated the role of rainfall variabil-

ity in explaining current and past agricultural outcomes such as yield and likelihood of

total crop failure. Additionally, we show the importance of cultivar choice in determining

yield potentials and the vulnerability of late maturing varieties to rainfall variability. The

large divergence in farmer outcomes at low seasonal rainfall totals is concerning. The
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within season characteristics of how and when rainfall occurs creates the water stress

environment that leads to crop failure in some cases and relatively high yields in others.

How we characterized rainfall variability and its relationship to crop phenology (crop

coefficient) was a novel contribution to a field where hydrologic processes are often con-

sidered separate from the phenology of the crop. We defined water availability as a

function of stochastic rainfall and soil parameters whereas the crop coefficient governed

water demand. Our model especially considers the rainfall depth and frequency (α and

λ) parameters as forces that drive stochastic rainfall. Thus we can simulate time-varying

soil moisture which changes over the course of the season due to shifts in the water

required by the crop and changing rainfall statistics.

In the face of climate change, where direct changes in water availability, temper-

ature, and increased prevalence of pest and diseases are possible, farmers can adapt

through two key management strategies: choice of cultivar maturities and planting dates

(Van Ittersum et al., 2013). Farmers need to select locally relevant planting dates and

cultivars with appropriate maturities to minimize crop failure. Future study on the role

of planting dates would illuminate the relative advantages of early to late maturing crops

planted during Kenya’s two primary rainy seasons. With appropriate climate data and

locally-relevant agronomic conditions, this type of modeling can be used as a heuristic

to improve our understanding of the impacts of climate variability on farming outcomes

in other contexts.
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Chapter 4

Modeling the spatial location of

cellular towers in Zambia as a Gibbs

point process

Abstract Mobile broadband coverage is not equitably spread across the globe. Im-

proving telecommunications access for those who are underserved can lead to many so-

cial benefits such as improved access to health information, economic opportunities, and

emergency alerts. Coverage in remote locations in the Global South is not fully under-

stood due to lack of data on cell tower locations. Our study aims to better understand

the spatial distribution of telecommunications access in Zambia: a context where the

majority of the population lacks access to electricity and there is a growing divide be-

tween urban and rural residents. We model the location of cell phone towers, a proxy

for broadband coverage, in such a way that allows for the inclusion of environmental co-

variates and specific forms of interaction between cell tower points. To do this, we use a

Gibbs model which decomposes the conditional intensity of the spatial point process into

trend (“first-order”) and interaction (“second-order”) components. The first-order com-
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ponent is made of four covariates (distance to roads, livelihood zones, power plants, and

population density) and the second-order component are various inter-point interaction

functions that describe inhibition and clustering processes. We found that while towers

tend to be clustered in urban areas, distance to highways is the most important covariate

that influences tower placement in rural areas. Our work highlights the disparities in

telecommunications access for rural Zambians who also lack access to electricity. Future

studies can apply our methodology to study cell tower placement and uncover spatial

dynamics of telecommunications access, which has implications for applied fields such as

early warning systems, public health, and international development.

4.1 Introduction

Improving access to mobile phones and mobile internet is a key way to make fast

progress on many sustainable development goals (Rotondi et al., 2020). Specifically,

well-located cell phone towers and strong mobile broadband coverage are imperative

for the diffusion of mobile phone and mobile internet services (Baumüller, 2018; Krell

et al., 2020). However, a widening gap in telecommunications access exists between

rural and urban residents in the Global South. Those unconnected to mobile phone

and internet coverage tend to be poorer, less educated, and remotely located (Bahia

and Suardi, 2019). Nearly 600 million people on the African continent lack access to

electricity (World Bank, 2018b), which is both necessary to charge mobile phones and

for a grid connection to power cell tower infrastructure. In order to quantify disparities

in telecommunications access, spatial point process models can be used to study patterns

in point-based infrastructure such as cell towers. Several socio-environmental factors

may influence the location of cell towers such as road networks, differences in wealth,

livelihood, and electrification, and population density that can explain disparities in
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access. Due to systematic and prevailing inequalities, individuals located in rural areas

and who are disconnected from road networks are often left without access to information

and communications technologies (ICTs) (Nakasone et al., 2014; Baumüller, 2018).

Mapping the location of cell towers and correlating areas that are unserved with

population data is very useful (Song, 2017), however, this is difficult because publicly

available datasets of verified cell tower locations are practically non-existent. While

mobile phone coverage maps can be available, external validation of cell tower locations

are rare and this information is unlikely to be available in the public domain. This

is because telecommunications companies treat information related to infrastructure,

specifically cell tower locations, as sensitive because it improves their market position

(Fida and Marina, 2019). If companies do release information they make it subject to a

non-disclosure agreement and may only make it available to policymakers and regulators

(Fida and Marina, 2019). Thus, researchers and development practitioners must turn to

crowdsourced measurements of cell tower locations.

OpenCellID is a large-scale quasi crowd-sourced dataset of cell towers globally. A

growing body of literature is centered around improving estimates of cell tower locations

obtained by crowdsourced data in which the sample collection process is uncontrolled.

Algorithms have been developed to improve the accuracy of crowdsourced tower locations,

especially with the goal of seeing what the reach of mobile infrastructure is in developing

countries. Fida and Marina (2019) provide a review of the pitfalls of existing algorithms

that are used to localize cell towers from crowdsourced estimates, and overall conclude

that all of the methods are inadequate when verified cell tower locations are not available.

Currently, the only way to access cell tower information is through crowdsourced data

from user devices and then make inferences based on estimates of the actual locations

(Fida and Marina, 2019). Using cell tower data that was contributed by users is helpful

because it is cost-effective; however, attaining accuracy and robustness is challenging
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because the measurements are uncontrolled, i.e. multiple devices report at various times

and from random locations. To make improved estimates of cell tower locations, a ground-

truthed dataset would be needed which is rare.

Spatial analyses that provide estimates of the influence of environmental covariates

on the spatial pattern of cell towers in the Global South are useful despite the lack of

fully verified cell tower locations. Stochastic point process models such as the Markov

(“Gibbs”) point process model where the points (e.g. location of cell towers) are discrete

random variables are instructive for spatial analyses (Baddeley et al., 2015). Gibbs

models essentially provide a regression framework that uses point data as the input and

yields first order effects which estimates the influence of covariates on the trend, and

second order effects: a representation of the interaction between points (Sweeney and

Gómez-Antonio, 2016). The inter-point interaction may be an inhibition process which

prevents two events (i.e. cell towers) from being located within a certain distance to each

other. Alternatively, the inter-point interaction could exhibit clustering in which points

are attracted to each other. A Gibbs model is appropriate for studies of the diffusion

of infrastructure and industries because because they solve problems with identification,

spillovers, and provide estimates of which covariates most effectively describe the point

pattern (Sweeney and Gómez-Antonio, 2016).

The overarching goal of this research is to understand the influence of the trend and

inter-point interaction on the spatial point pattern of cell tower locations in Zambia.

Understanding this is critical to making access to mobile phones and mobile internet

universal, which yields social benefits such as the diffusion of government services and

capital and wealth distribution. We focus our analysis on one cell tower company in

Zambia: Zamtel. Specifically, we ask the following research questions for our study area:

1. How do socio-environmental variables relate to the location of cell towers? Specif-
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ically, is each covariate (population, roads, electricity, and livelihood zones) more

or less likely to be found near a cell tower?

2. After accounting for variation in the cell tower intensity due to the covariates (i.e.

first order effects), what processes govern the inter-point interaction between cell

tower locations? I.e. is there evidence of clustering or inhibition between points?

To answer these questions, we investigate whether the intensity of the point pattern

is dependent on the environmental covariates. Then, we allow for the effects of the

environmental covariates on the intensity before studying the interaction between the

points. The workflow for fitting the models are as follows. First, we formulate a Gibbs

model with four environmental covariates. Next, we fit the models to the point pattern

dataset and specify irregular parameters. Then we interpret the findings and lastly we

identify the weaknesses of the model fits using validation tests and diagnostics.

Our paper is structured as follows: Section 4.2 provides an overview to Zambia as a

case study. Section 4.3 describes our point pattern dataset: both the cell tower points

and the environmental covariates. Section 4.3 also contains our methods namely the

Gibbs models and the approaches used for model specification testing and diagnostics.

We then apply the methods to cell tower locations in Zambia. In section 4.4 we present

our results in terms of the point pattern description, the Gibbs model estimates, and

validation and diagnostics. Lastly, we present our discussion of our main findings, the

study’s limitations, and their implications in section 4.5, and we summarize our main

conclusions in section 4.6.
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4.2 Case study site: Zambia

We focus our study on Zambia, which is a landlocked country in southern Africa

(Figure 4.1) that has been undergoing rapid development since the early 2000s (Bayliss

and Pollen, 2021). Zambia is sparsely populated with 55% of its population residing

in rural areas and the rest residing in urban areas (World Bank, 2018b). Zambia is

composed of savanna drylands which face a strong seasonality in rainfall in addition to

intra- and interseasonal rainfall variability (Vergopolan et al., 2021). The majority of the

land is occupied by small-scale farms that are smaller than 5 ha (Jayne et al., 2016). The

make-up of agricultural production is 35.8% small-scale farms, 53% medium-sized farms

(5-100 ha), and the remaining is large scale farms (Jayne et al., 2016). Zambia consists of

over 100 districts and can be grouped into 21 livelihood zones (FEWS NET, 2014). The

industry that contributes the most to Zambia’s Gross Domestic Product (GDP) is copper

mining; however, the primary livelihood of Zambians is farming. Hydroelectric power

generation dominates Zambia’s energy generation with 85% (2,380 MW) of the 2,800

MW of installed electricity generation capacity coming from hydroelectric dams (USAID,

2020). The remaining make-up of Zambia’s generation capacity comes from coal, heavy

fuel oil, and a small portion of solar power (USAID, 2020). Only 4% of Zambia’s rural

population has access to electricity compared to 67% of the urban population having

access to electricity. An estimated 7.2 million households lack electricity (USAID, 2020)

out of approximately 18 million people in Zambia (World Bank, 2018b).

4.3 Methods and data

A point pattern is an enumeration of events (i.e. points or objects of interest) in a

defined study area. Points can be located in either two- or three-dimensional space. For
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Figure 4.1: Map showing study site: A) Zambia’s 21 livelihood zones as presented
in (FEWS NET, 2014). Livelihood zones 6, 8, 9, 11, 12, and 13 are outlined and
they represent the mining, commercial farming, and more urban areas of Zambia. B)
Location of Zambia on the African continent.
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Table 4.1: Description of environmental covariates
Variable Source Year Published Spatstat Object Type
Roads RCMRDa 2015 Image (Distmap)
Livelihood Zones FEWSNETb 2014 Image (Categorical)
Population Worldpop 2017 Image
Power Plants KTHc 2015 Image (Binary)
aRegional Centre for Mapping of Resources for Development.
bFamine Early Warning Systems Network.
cRoyal Institute of Technology Stockholm.

this study, we consider cell tower locations as the observed point pattern x which is a

realization of a random point process X in a planar 2D space. We adapt the mathematical

notation used by Baddeley et al. (2015) and Sweeney and Arabadjis (2021). A point

pattern is a collection of point coordinate locations, u = (u1, u2), in R2. The number

of points is n(x) and the vector of points is noted by x = {x1, x2, ...xn}. We observe

the point pattern x in the window W . Additionally, we consider subregions, B ⊂ W in

which a count of points exists in a subregion, n(x ∩ B). The intensity, λ, is the density

of points per area, which is defined λ = n(x)/|W |.

Point processes have first- and second-order properties. First-order properties relate

to the density (i.e. intensity) of events across the study area. Second-order properties

are related to the spatial dependence (i.e. interpoint interaction) of the points. We

characterize the trend and interaction of the point process against Complete Spatial

Randomness (CSR). CSR is a homogeneous Poisson process in which there is no spatial

trend and there is no interaction between points. Additionally, the number of points that

fall in a subregion, B, will be Poisson distributed with the mean: µ = λ|B| = En(x∩B).

4.3.1 Trend and interaction

The variation in the density of points within W is the spatial trend. This is the

first-order variation or mean effect. We use kernel smoothing of the point density in
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which a density estimate λ̂(u) is the weighted sum of the nearby per-pixel densities. The

second-order effects are the interpoint interactions. The interaction relates to the

covariance of the point process such that a positive covariance will show a pattern in

which points are attracted to one another, i.e clustered. In the case of clustering, the

number of points next to any one point is relatively high. If points exhibit inhibition

then there is negative covariance. In the case of inhibition, the count of points nearby

one point will be relatively low. The relative high or low count of nearby points is in

relationship to CSR: a baseline process of no interaction (Sweeney and Arabadjis, 2021).

To begin, we define the K-function of point process X as the number of expected

neighbors of a point divided by the intensity:

K(r) =
1

λ
E[t(u, r,X | u ∈ X]

where the count of points in X within r distance of a point u is t(u, r,X). We use a

transformed version of the K-function to measure interaction: L(r) =
√

K(r)
π

or L(r)− r.

This transformation results in plots that are easier to interpret; deviations from CSR

(=0) indicate clustering (>0) or inhibition (<0) (Besag, 1977).

4.3.2 Spatial process models

We define stochastic models for the point process that include environmental covari-

ates, to capture first-order effects, and an interaction term to capture second-order effects.

The second-order effects are specified using specific functional forms for the point pro-

cesses’ covariance that result in a coherent model. While several frameworks for modeling

point processes exist, one of the most widely adopted and well supported by software are

Gibbs process models. Details of probability theory underlying Gibbs models is available

in Moller and Waagepeterson (2003) and applied modelling and software are reviewed by
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Baddeley et al. (2015). We provide a sketch of the framework below.

Gibbs models can be expressed in multiplicative in form, λ(u, x) = β(u)γ(u, x) such

that the conditional intensity of the process (λ(u, x)) at location u is the product of

a trend component at u, β(u), and interaction at location u as a function of nearby

points in x, γ(u, x). In this framework, parameters β and γ appear in the likelihood and

are termed “regular”, and can be estimated using methods such as maximum pseudo-

likelihood or full maximum likelihood using Markov chain Monte Carlo (MCMC). The

interaction component also will include what are termed irregular parameters (such as

radius of interaction), and those are estimated outside the model using profile likelihood.

As noted above, the outcome modeled is the conditional intensity of the process, λ(u, x).

This allows for feasible estimation and avoids complex normalizing constants that appear

in the intensity. The conditional intensity is the intensity at location u given the rest of

the point pattern x: λ(u|x).

We use the package spatstat in R, which provides a robust framework for Gibbs

process models and is often used in scientific applications (Baddeley and Turner, 2005).

The software also encodes a suite of methods to assess model fit and validation of the

trend and interaction. Similar to any regression modeling context, the goal is model

variation in the outcome (the point process in this case) as a function of predictors.

The additional complication in this setting is the trend and interaction components are

estimated simultaneously.

We originally evaluated four functional forms for the interaction component of the

Gibbs point process model: Strauss Hard-Core (SHC), Soft Core (SC), Diggle-Gratton

(DG), and piecewise constant (PC). Our expectation prior to working with the data was

that the process, conditional on adequately modeling the trend, would exhibit repulsive

interaction. This would be expected in a either a competitive environment or from the

perspective of optimal allocation of scarce resources. After working with the data, it
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became clear that the process is clustered, conditional on trend. We then moved on

to evaluate forms of interaction that allow for clustering: Geyer-Saturation (GS) and

piecewise constant (PC). As a baseline, we evaluated against the imhomogeneous Poisson

process which includes trend but no interaction, λ(u, x) = β(u). We fit the models

using the loglinear form logλ(u|x) = ηTZ(u) + ψTT (u, x). We recover the estimated

trend, β̂(u) = exp(η̂TZ(u)), and interaction, γ̂(u, x) = exp(ψ̂TT (u, x)), components.

We include the sub-cases for the inhomogeneous Poisson process, λ(u, x) = β(u), and

homogeneous Poisson process, λ(u, x) = β, in this framework. When we interpret the

model estimates we consider the trend effects with respect to the environmental covariate

which effects the conditional intensity at location u. The interaction component is a

measure of the pairwise proximity between points such that a point with a distance r of

u is a multiplicative factor of γ̂(u, x). A value equal to one is no effect, greater than one

is clustering, and less than one is inhibition. Each of the functional forms of interactions

define different weights to points within r distance of u.

Environmental covariates

Environmental (spatial) covariates can be a spatial function Z(u) that are defined

at all spatial locations, u, of the point pattern in W or they can be another spatial

point pattern. Covariates can be either continuous or discrete. We work specifically with

four covariates—roads, population density, livelihood zones, and power plants—found in

Table 4.1. The steps used to create the covariates follow:

Roads The roads are primary, secondary, and tertiary roads which provide connectivity

between urban areas and rural towns. For roads, we need a value Z(u) at each spatial

location u so we use the distance map function from spatstat to calculate the distance

from u to the nearest road. We then scale the covariate by 1000 so that the units are in

90



Modeling the spatial location of cellular towers in Zambia as a Gibbs point process Chapter 4

kilometers.

Livelihood zones We grouped livelihood zones that were similar into 11 groups from

the original 21 zones. A description of the groups is found in Appendix B. We converted

the livelihood zones shapefile to an object of spatial class tesselation using the spatstat

package. We then count the number of points in each region and estimate the intensity

in each of the livelihood zones and rescale the covariate by 1000 so that the units are in

kilometers to match the point pattern.

Power Plants First we rescale the power plant covariate by 1000 so that the units are

in kilometers. Then we define a discrete binary variable that takes the value of 1 for

locations within a 25 km radius from the power plant and 0 otherwise.

Population Density The population variable is the population density in which the

number of people per pixel represents the number of people in a 100 x 100 m area. We

reduced the resolution of the image to 256 x 256 pixels to improve the computational

efficiency.

4.3.3 Diagnostics

To check whether our models are faithful to our dataset, we evaluate the models

using several diagnostics including the AIC, lurking variable plots and Q-Q plots. The

diagnostics are largely built from the residuals, which we obtain by subtracting the fitted

mean from the observations (i.e. the data itself). Residuals capture important informa-

tion about the discrepancy between the data and the models. We present the residuals

in different ways (outlined in Table 4.2) in order to answer different questions. We can

use a variant of the Akaike Information Criterion (AIC) to compare across the inter-
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Table 4.2: Diagnostic tools for validating a fitted point process model. Modeled after
Table 11.1 in Baddeley et al. (2015).

Target Tool Figure spatstat Method
Fitted intensity Relative intensity 4.2 density.ppp

Smoothed residual plots 4.3 diagnose.ppm

Presence of covariate effect Lurking variable plots 4.4 lurking

Independence Q-Q plot of residuals 4.5 qqplot.ppm

action specifications. The best fitted model will have the lowest AIC. Lurking variable

plots are helpful for detecting misspecifications in the trend component of a fitted model.

Quantile-Quantile Diagrams (Q-Q plots) are graphs that compare the quantiles of two

distributions, which help us check for misspecifications of the interaction component of

a fitted model. Lastly, we use a smoothed version of the residuals which are shown in

Figure 4.3 and are discussed in section 4.4.3. Smoothed residuals primarily reflect mis-

specification in the trend. The Q-Q plots and smoothed residuals are both based on

simulations from the fitted model compared to the data. Two other diagnostics that

are checks on overall fit (trend and interaction) are the inhomogeneous L-function and

simply the distribution of the number of points from each model simulated point pattern.

4.3.4 OpenCellID Data

We use a publicly available source of cell tower locations from OpenCellID. Open-

CellID is a community project that aims to geolocate cell towers around the world. The

publicly accessible database includes information on cell tower locations and heights (Ulm

et al., 2015). The cell tower locations are aggregated based on crowdsourced cellular sig-

nal measurements. The crowdsourced measurements are collected through individual

records via smartphone apps such as Rf Signal Tracker, Tower Collector, and Keypad-

Mapper-3 (OpenCellID, 2018a). These apps collect cell tower measurements while a

user is mapping something else (OpenCellID, 2018b). For example, the app Keypad-
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Mapper-3 records cell tower data while one maps house numbers and Points of Interests

to contribute to OpenStreetMap1. The measurements can also be collected via hardware

such as Raspberry Pi2. A user can access the data via the API and pull raw data which

consists of the cell tower’s latitude and longitude, the number of samples collected, and

the day and time the tower was first detected.

We use the OpenCellID data for the country of Zambia which has Mobile Country

Code (MCC) 645. Zambia had 30,872 measurement samples when the data were down-

loaded on October 3 2017. We cleaned the data by removing duplicate points and points

that fell outside of Zambia’s borders. Zambia has three mobile phone networks which

were indicated by the Mobile Network Code (MNC) in the OpenCellID dataset: MNC

1 is Airtel (operated by Bharti Airtel); MNC 2 is MTN (operated by MTN Group); and

MNC 3 is Zamtel (operated by Zambia Telecommunications Company Ltd.) We use the

points from Zamtel (MNC 3) because it had the least number of cell towers and thus

reduced computing time for fitting the models. Out of the three mobile phone networks

in the country, Zamtel is the only government-owned telecommunication service provider.

4.3.5 Errors associated with crowdsourced cell tower data

There are a few known errors associated with the cell tower data, which was the best

available at the time of analysis. These errors are related to the crowdsourced nature

of the data which relies on individual measurements as well as the fact that multiple

antennas are located on a single tower. Crowdsourced cell phone tower estimates are

collected via the following process. First, a phone receives the radio signal from a GSM

1http://keypad-mapper.org/wiki/Main_Page
2In an email communication with an OpenCellID staff, it was confirmed that the database is com-

pletely contributed by the community. OpenCellID does not collect this information from governments
or MNCs. Rather, volunteers use hardware devices or apps to submit measurement data. Thus, cells
found in rural areas are from a user’s device that physically visited the area where the cell was found
and those measurements are uploaded to the database.
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base transreciever station, which is located at the cell tower, and the GPS position of

the cell phone and a unique ID pertaining to the base station is recorded. Often times

measurements from the same base station are received at different places and therefore an

average GPS position is stored in the OpenCellID database. When many measurements

from different GPS positions are made from a single base station, then the precision of

the averaged location is improved. This process of data collection leads to a few possible

errors. In remote and less urban locations where fewer individuals have smartphones that

record this kind of information, there are fewer measurements of base stations in general

(if they are recorded at all) and also the averaged locational precision is decreased.

Additionally, there can be discrepancies between the actual position of a tower and

that position reported by OpenCellID for two reasons. It is often the case that multiple

antennas, i.e. “cells” are mounted onto a cell tower. This is because the antennas access

different networks such as Long-Term Evolution (LTE) wireless broadband communica-

tion LTE, Universal Mobile Telecommunications System (UMTS), etc. In Germany, for

example, the company Vodafone reports less than 40,000 cell towers, however, Open-

CellID has more than 290,000 Vodafone cell ID records as of August 2014. Thus, each

cell tower has more than seven antennas (i.e. cells) (OpenCellID, 2018b). We discuss

this source of error in greater detail in terms of the results pertaining to the inter-point

interaction in section 4.5.2.

Another reason why there are discrepancies between OpenCellID’s location of towers

and the actual location is that the crowdsourced measurements used to approximate the

cell’s location are not equally distributed around the tower. In other words, the sample

collection process is uncontrolled and random. In cities, mobile phones may pass a cell

tower from every side, i.e. one may be able to pass by a cell tower from all angles whether

that is on a highway, walking on a street, or sitting at one’s home. However, there can

also be the case where a cell tower is on a hill with a road on just one side. Therefore,
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the measurement can only come from one angle which is a problem because cells on a

tower emit signals that are often less than 360 degrees around the tower. In this case

where the measurements are not equally distributed around the cell tower, the averaged

GPS positions from these measurements is not going to be accurate. Overall, while the

OpenCellID data are imperfect, they were the best available at the time of analysis and

permitted a country-wide study of telecommunications access.

4.4 Results

4.4.1 Point pattern description

We use the cell tower locations of cell company Zamtel (MNC 3), which is a planar

point pattern with 4,788 points. The window that contains the point patterns is a

polygon of the country boundary of Zambia with units in kilometers. We show a kernel

smoothed representation of the density of points in Figure 4.2. We see that there is a

spatially varying intensity since there are more points in certain regions of the country

than others and thus there is an inhomogeneous density. We see that cell towers become

less abundant moving from the South to the North. There are two regions of high cell

tower intensity which are the capital, Lusaka, and the Copperbelt region situated between

northern Zambia and southern Democratic Republic of the Congo (DRC). The overall

intensity of the point pattern is 0.00636 points per square kilometer.

4.4.2 Spatial process models: Model estimation

We consider the point process from one company (Zamtel) and we fit models with

three covariates: roads, livelihood zones, and power plants. For the interaction compo-

nent, we consider two forms—Geyer Saturation and Piecewise Constant—and an inho-
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Figure 4.2: Density plots

mogeneous Poisson process. Our previous work shows that the point process is likely not

an inhibition process because the models using Strauss Hard Core, Soft Core, and Diggle

Gratton resulted in a singular matrix.

Table 4.1 shows trend components and the estimated interaction effects from the three

functional forms, which are also depicted graphically in Figure 4.7. The significance of

parameters are in comparison to hypothesis tests against the nulls for the trend (H0 :

η = 0) and interaction (H0 : ψ = 0). In all of the models, the majority of covariates have

a significant trend effect. The only covariate that is not significant is livelihood zones

3 and 7+ (across all models); livelihood zone 2 (PC model, only); and livelihood zone

4+ (GS model, only). The roads have slightly negative trend effects while most of the

livelihood zones and power plants have positive trend effects. Livelihood zone 2, and to a

lesser extent zone 7, are different compared to the other livelihood zones such that they

have a negative trend effect across some or all of the models. For the roads covariate,

moving away from the road decreases the conditional intensity. The largest effect sizes

are livelihood zones 6+ and 8+ with a strongly positive trend component. The most

negative effect size is seen in livelihood zone 2.

We also look at the consistency of the parameters across the different interaction

functions. In terms of the sign of the estimate, we see that for each of the covariates the
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Table 4.4: Gibbs model estimations for Zamtel point process. Standard errors are
reported inside the parentheses. Asterisk denote significance at 1, 5, and 10 percent
level. Radius and saturation for Geyer Saturation are 4 and 8, respectively.

Variable None (Poisson) Geyer Saturation
Intercept -6.27 *** (0.07) -6.52 *** (0.10)
Primary Roads 2.57 *** (0.06) 1.64 *** (0.07)
Secondary Roads 0.92 *** (0.05) 0.78 ** (0.07)
Log Population 0.63 *** (0.01) 0.57 *** (0.01)
Mining and Commercial 1.26 *** (0.05) 1.00 *** (0.05)
Most Food Insecure -0.25 (0.14) 0.20 * (0.10)
Interaction 0.21 *** (0.02)
AIC 17,223 13,783

sign is consistent across the interaction functions except for livelihood zone 7+ in the

GS model. In terms of consistencies in the significance level, the covariates are generally

consistent across the interaction functions except in a few cases. We find that livelihood

zone 10 is not consistent in Piecewise Constant since it is only significant at the 10 percent

level. Additionally, livelihood zones 2 and 4+ have different significance levels across the

interaction functions. We see that the covariates are fairly consistent in terms of the

magnitude of the effect size across the interactions. The livelihood zones with the most

disagreement in magnitude are zones 2 and 4+.

In summary, we find that the roads and power plants are consistent across effect size

sign and magnitude. Certain livelihood zones are less consistent across the interactions,

which is described further in section 4.5. We find that the Geyer-Saturation interac-

tion has the lowest AIC and thus best overall fit. Additionally, all of the models with

interaction have better overall fits than the inhomogeneous Poisson model.

Further details on livelihood zones

We proceed with a description of livelihood zones and explanations for differences

in the point pattern’s conditional intensity between zones. We refer to the grouped
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livelihood zone descriptions and original descriptions (FEWS NET, 2014) shown in Table

B.1. The livelihood zones with the strongest and positive estimates across all of the

models are “mining and commercial” (livelihood zone 6+) and “urban” zones (livelihood

zone 8+). These areas of strong associations with the conditional intensity of cell tower

locations are located in the central part of the country around Lusaka and spread north

toward the Copperbelt region. These zones, particularly the mining and commercial

zones, have low to very low risk of food insecurity. The only zone with moderate food

security risk is zone 8 within 8+ which is the most agriculturally focused zone of the

urban zones and experiences climate shocks approximately every 2-3 years, which affect

agricultural production (FEWS NET, 2014).

The livelihood zones related to mining and commercial activities are 11, 6 and 13. The

Mkushi, Chisamba, and Mpongwe commercial farming block (zone 11) is characterized by

medium- to large-scale commercial farms. The area is a high-potential agriculture region

with 800-1000 mm of rainfall per year and fertile soils (FEWS NET, 2014). The road

infrastructure in this zone is good which facilitates movement of goods within and out

of this zone. This zone is a net exporter of agricultural produce in Zambia. The Solwezi

and Kasempa Mining Labor and Agricultural zone (zone 6) is characterized by copper

mining, which is a recent shift in livelihood in this area (FEWS NET, 2014). The zone’s

proximity to the border of the DRC, decent roads, and communication infrastructure

lead to good market access. Lastly, the Copperbelt Labor and Trade zone (zone 13)

is a highly-urbanized highland area in which mining, timber, trade, and manufacturing

are the main industries. The mineral resources that are mined in this area are copper,

cobalt, amethyst, emerald and malachite with copper mining being the main economic

activity. Agriculture is limited in this region compared to most of the other zones. This

zone has urban centers and infrastructure that leverage it as a center for trade (FEWS

NET, 2014).
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The areas grouped as “urban” areas relate similarly to the cell tower point process

with strong positive and significant effects. The southern plateau cattle, maize, and

tobacco zone (zone 9) has a low risk of food insecurity and receives 800-1000 mm of

rainfall per year. The zone has generally good infrastructure and several big towns

are located within the zone that provide markets (FEWS NET, 2014). The central

copperbelt maize, cassava and sweet potato zone (zone 12) also has a low risk of food

insecurity. Rainfed and manual crop production is the main economy within the zone

and the zone has both a good road and rail network which connects growers to markets

in three main areas: Lusaka, Copperbelt and Solwezi (FEWS NET, 2014). The last zone

in this group, the commercial rail line maize, livestock, and cotton (zone 8), is a little

different in that it has moderate food security risk and is more densely populated at 19

people per square kilometer. Rainfed and irrigated agriculture are the main sources of

livelihood while commercial and mechanized farms are scattered around the zone as well.

The access to markets in this zone is good due to physical infrastructure which facilitates

trade (FEWS NET, 2014). Although there is variability in communications access within

livelihood zones, the cell tower access on average is better these urban zones compared

to other livelihood zones.

The livelihood zones with weak and even negative estimates with cell towers are

spread in a few areas, specifically the southwestern side of Zambia along the border of

Namibia and Angola (livelihood zone 2); the western and northwestern area bordering

Angola and DRC (livelihood zone 3); and two fishing areas: the north eastern and central

areas of livelihood zones 7 and 21. The western and north-western cassava, maize, and

cattle zone (zone 3) is considered one of the most at risk for food insecurity (FEWS

NET, 2014). It is a region with low agricultural production potential due to poor sandy

soils and flooding which experiences a high frequency of droughts. The zone is in a

highland area with a longer growing season of 140-160 days. Individuals in these areas
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have less access to major markets due to poor communication and road infrastructure.

The southwestern cereal, livestock and timber zone (zone 2) is characterized by moderate

food security risk and is located in agro-ecological region 1 in which less than 800 mm

of rainfall occurs and the main growing season is short (between 90 and 120 days). The

road infrastructure in this area is generally good and leads to satisfactory access to major

markets in Livingstone (FEWS NET, 2014).

4.4.3 Diagnostics for the trend and interaction components

The Gibbs point process models have both a coherent inferential framework and are

parametric, and thus the interaction and trend can be evaluated using various specifi-

cation tests and diagnostics (Sweeney and Arabadjis, 2021). We also use the models

to simulate the point pattern process and compare the simulated pattern against the

observed pattern. The smooth residual plot helps us draw attention to regions in Zam-

bia where there is the largest difference between the model and the data. Figure 4.3

shows the kernel-smoothed raw pseudo-residuals and where in Zambia the models are

over- and under-fitting the spatial trend. For both models (Geyer Saturation on the left

and Piecewise on the right) the residuals are close to 0. The range of values is between

-0.003 and 0.004 for both subplots. The figures show that the region nearby Lusaka

has slightly more positive residuals (between 0.001 and 0.004) whereas the rest of the

country is zero or slightly negative towards the Southern Province of Zambia (between

0 and -0.003). The areas in which the residuals are slightly positive indicates that there

are more points observed than were predicted. The areas with more negative residuals

suggest over-prediction. Therefore we find that the model is not fitting well around the

capital, Lusaka, which is discussed further in section 4.5.1.

101



Modeling the spatial location of cellular towers in Zambia as a Gibbs point process Chapter 4

Figure 4.3: Maps of smoothed raw pseudo-residual fields: a) Geyer-Saturation and b)
Piecewise constant.

Lurking variable plots

Lurking variable plots show us where the model over- or under-predicts points with

respect to an explanatory variable. Figure 4.4 shows the roads covariate on the x-axis

and the cumulative raw residuals on the y-axis. The lurking variable plot starts and ends

at the cumulative raw residual of 0 because the residuals in this case are the observed

minus the predicted values. The cumulative residuals and thus the total residual for

the entire plot is equal to 0. The gray bands show the 5% significance bands for the

cumulative residual. The roads lurking variable plot shows us that the error bands follow

the shape of the residuals. Overall, we are under-predicting until ca. 15 km. There is

also a significant spike in under-prediction of points occurring at very short distances.

We discuss this spike in residuals at short distances in the discussion section 4.5. Overall

this plot shows us that roads are an adequate predictor of the point processes’ intensity
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Figure 4.4: Lurking variable plots using the Geyer-Saturation interaction.

despite some under-prediction of points at small spatial scales.

Q-Q plots

We validate the interaction component of the model with the summary interaction

function L(r) and Q-Q plots of the pseudoresiduals. For two of our three models (Geyer-

Saturation and inhomogeneous Poisson) we can fit Q-Q plots shown in Figure 4.5. For

the PC interaction, the model is not valid and therefore we cannot generate a Q-Q

plot. We see a slight improvement in the Geyer-Saturation Q-Q plot in comparison to

the inhomogeneous Poisson plot. The confidence bands are very narrow in both plots

due to the large number of data points. If there was perfect agreement between the

point process data and the simulated point process we would see the points fall along

the diagonal line. With the inhomogeneous Poisson Q-Q plot, we find a very poor

relationship between the observed data and the Poisson process, which is indicated by

the almost vertical nature of the points rather than falling along the diagonal. Thus, the

uniform Poisson model is inappropriate for the cell tower point process data. The Q-Q

plot for the inhomogeneous Poisson model shows us the influence of the trend without
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Figure 4.5: QQ-plots for a) Geyer Saturation interaction and b) inhomogeneous Poisson.)

any consideration of the clustering process or any other inter-point interaction. The Q-Q

plot for Geyer-Saturation indicates that a clustering process is perhaps appropriate for

the point process.

Inhomogeneous L-function

We use the summary interaction function L(r) − r to diagnose the interpoint in-

teraction as shown in Figure 4.6. We use the fitted model with the Geyer-Saturation

interaction to run simulations of the point pattern and we select the minimum and max-

imum L-function values to construct uncertainty envelopes. The L-function is entirely

within the uncertainty envelopes which indicates a good fit. This is because the Geyer-

Saturation captures both the trend and interaction for the point process.
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Figure 4.6: L-function of fitted Geyer-Saturation model

Fitted interaction functions

We plot the fitted interaction function for the Geyer-Saturation and Piecewise con-

stant models in Figure 4.7. These visuals provide us with the fitted interpoint interaction.

The y-axis is the function h(r) which is the pairwise interaction between points for each of

the models. Both of the plots show clustering rather than inhibition since values of h(r)

above 0 indicate clustering and values below 0 indicate inhibition. For GS interaction,

clustering ceases at 4 km at which point there is no effect. The saturation for the GS

interaction is 181 (Table 4.3), which further indicates clustering. For the PC interaction,

there is clustering until approximately 1 km and then the interaction alternates between

clustering and no effect between 1 and 7 km.
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Figure 4.7: Fitted interaction patterns

Does the number of points that we simulate out of the point process roughly

match the original number of points?

We find that the inhomogeneous Poisson, Geyer Saturation, and Piecewise Constant

models under predict the number of points in Table 4.5. The models that are closest to the

actual number of points (4,788) are the inhomogeneous Poisson model when only a single

covariate is included, specifically livelihood zones or power plants. The Geyer Saturation

model does not provide as close to the correct number of points as inhomogeneous Poisson.

When single covariates are used, the GS model produces less than half of the actual

number of points. These results indicate that improvements to model fitting with respect

to GS is possible, and we are working on making improvements to the model.

4.5 Discussion
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Table 4.5: Number of points simulated out of point process with 4,788 points
Covariates Interaction Number of Points Ngrid
Roads, LHZ, PP Inhomogeneous Poisson 3891 1000

Geyer Saturation 2681 1000
Piecewise Constant -

Livelihood zones Inhomogeneous Poisson 4850 1000
Geyer Saturation 2031 1000
Piecewise Constant -

Roads Inhomogeneous Poisson 4053 1000
Geyer Saturation 1972 1000
Piecewise Constant -

Power plants Inhomogeneous Poisson 4793 1000
Geyer Saturation 2038 1000
Piecewise Constant -

4.5.1 How do socio-environmental variables relate to the loca-

tion of cell towers?

Overall, we see strong relationships between roads, power plants, and certain liveli-

hood zones and the intensity of cells. The livelihood zones that most strongly predict cell

tower location are found along the railroad track between Livingstone and the Copperbelt

region. These livelihood zones are characterized by copper mining, commercial farming,

and urban economies. Livelihood zones that have weaker relationships to the conditional

intensity of cell towers include more food insecure regions and those least dominated

by mining and commercial activity. This is, however, a nuanced result because there is

variability in livelihood and access to telecommunications within zones. For example,

in livelihood zone 8+ which extends from Livingstone to Lusaka there are commercial

activities taking place as well as smallholder agriculture. Smallholder agriculture occurs

throughout Zambia, however, communities that are located further away from roads will

inevitably have reduced access to cell towers.

Investigating which covariates are most strongly related to power plants provide in-
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sights into Zambia’s history of economic development and present day economic and

social inequities. Access to electricity is at the root of economic development and social

welfare. The location of cell towers, which depend on a grid connection, provide a case

study example into the inequities in access to communications infrastructure, and more

broadly, electrification in a country. By identifying what forces led to the placement of

cell towers in particular locations we gain insight into a public welfare issue that has

implications for universal access in electrification and mobile phones in Zambia.

Are cell towers being placed for the needs of rural communities?

Roads are the main covariate that explains cell tower location which is evident from

Table 4.3 as well as visually in Fig. 4.2. The point process’ relationship to roads is also

linked to the model’s behavior in urban and rural areas. The model fits more poorly

in the urban centers of Zambia compared to other regions (Fig. 4.3). The reasons why

we believe under-predicting is occurring around Lusaka is due to the high number of

points clustered together in urban areas. This is due to two reasons: (1) The location

of cell towers are actually the placement of antennas on cells and (2) there are more

crowdsourced measurements in cities due to the higher population count. The model fits

improve greatly in rural areas, which is likely due to the cell towers being placed very

close to roads. This is discussed further in the next section.

Linkages between access to communications and power infrastructure in Zam-

bia

We find that the development of communication services and infrastructure and en-

ergy production are inextricably linked. First, the use of ICTs and access to e-services

are constrained by the availability of electricity. In other words, an individual needs elec-

tricity to be able to charge their mobile device and maintain its battery. Additionally,
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the communications network that connect mobile phones and the actual installation of

the cell tower requires electrification. Therefore, regions of Zambia without gridded elec-

tricity access are unlikely to have cell towers. Only 4 percent of rural Zambia has power

and thus most rural residents do not have access to electricity at their homes (Mudenda

et al., 2013).

Our proxy for access to electricity is the location of power plants. We find that power

plants have strong and positive associations with the conditional intensity of cell towers.

The range of the estimate is between 1.6 and 2.6 across the models. Power plants are not

evenly distributed across the country with the majority of power plants being located

in livelihood zones 6+ and 8+. Of the 83 power plants, the majority are hydroelectric

stations and a smaller sample is thermal.

It is no accident that hydroelectric stations, mining resources, and cell towers are co-

located whereas areas without road networks and regions with subsistence farming are

underserved. Zambia’s National Grid infrastructure spans 2,241 km across the country

with the main artery running between Livingstone and the Copperbelt region (Figure 13

in (World Bank, 2017). This pattern mimics the major highway between Livingstone and

Copperbelt. In the south, the main hyropower stations are located at Kariba North and

Kague dams and the grid connects to the north where the main load centers are located.

These large hydro plants have dominated Zambia’s power generation for decades (Bayliss

and Pollen, 2021) and the load centers were selected to be located in the Copperbelt area

due to mining activities.

Zambia’s economy has a heavy reliance on mining and there is very little electrification

in rural areas. There is a large divide in electricity access between urban and rural

households. About 57% of the population lives in rural areas but only about 4% of

these households have access to electricity whereas 67% of urban households do access

electricity (World Bank, 2017; CSO, 2004). Of the poorest 20% of Zambians, less than
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1 percent receive electricity subsidies compared to the richest 20% of the population

who receive about 70% of the subsidies (Kabechani et al., 2017). Furthermore, recent

droughts have led to a crisis in hydropower which are exacerbating some of the issues

with how electricity is provided and consumed in Zambia (Bayliss and Pollen, 2021).

4.5.2 Do cell towers exhibit a cluster or inhibition interaction?

For the interaction component of the spatial point process, we originally hypothesized

that cell towers would exhibit an inhibition interaction. This hypothesis was based on

the notion that cell towers should not be co-located in order to maximize services to

users spread throughout a large area. Rather, we found that clustering occurs at very

small spatial scales. In the lurking variable plot of the roads covariate with the Geyer-

Saturation interaction, Fig. 4.4, we see extremely high cumulative raw residuals at

very small spatial scales. This indicates that we are under-predicting points very close

to roads. Furthermore, in the maps of the smoothed raw residuals we found that the

positive pseudoresidual fields are concentrated around the capital Lusaka and improve

elsewhere in the country. This is because of the extremely high density of points in the

capital. We are working on the next iteration of the model which improves the tendency

for points to be clustered in the capital due to multiple antennas being placed on a single

cell tower.

The tendency for cell towers to be clustered is also be an oddity of the crowdsourced

method of data collection. The layout of how crowdsourced samples are collected differs

in urban, peri-urban and rural areas (Fida and Marina, 2019). For example, pedestrians

on sidewalks and passengers along streets and roads in cities will lead to data being

collected that allows for all angles of a cell tower to be recorded. However, cell towers

are sometimes not accessible from all directions, e.g. when they are placed on a hill, and
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thus the collection points are not as limited. The location of a tower, the cell tower’s

footprint, the population density, and the moving pattern of the individual with the cell

phone will affect how the cell tower’s location is triangulated (Fida and Marina, 2019).

In conclusion, we do not find much evidence for inhibition. We ran models for the Strauss

Hard Core, Soft-Core, and Diggle Gratton interaction functions and could not produce

viable point patterns. In addition, the fitted interaction patterns for Geyer-Saturation

and Piecewise constant, Fig. 4.7, indicate that there is either clustering or no effect

rather than inhibition.

4.6 Concluding remarks

Our goal for this paper was to model the spatial pattern and inter-point interaction of

cell towers in Zambia. Understanding access to communications infrastructure is impor-

tant for a wide variety of applications including but not limited to early warning systems,

food security, poverty mapping, and the diffusion of government and other services. We

applied Gibbs models to the spatial point pattern of Zamtel cell towers. First, we inves-

tigated whether the intensity of cell towers depended on the spatial covariates. Second,

we studied the spatial dependence between points after allowing for covariate effects on

the cell tower intensity. We identified trends in cell tower locations which are primarily

situated in Zambia’s two urban areas: Lusaka and Copperbelt. With the spatial process

models we gained insight into the role of various environmental covariates and found that

distance to roads and location within an urban and/or industrial center is most closely

related to the conditional intensity of cells. The fitted interaction functions indicated that

cells exhibit clustering in which the deployment of a cell tower in one location gives rise

to another one nearby. Upon analyzing the data through simulations and specification

tests, we determined that the Geyer-Saturation interaction is the most likely function for
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representing the point pattern.

The use of mobile phones or internet is predicated on the availability of electricity.

Zambia’s energy sector is highly dependent on hydroelectric power which is susceptible

to droughts. Thus, regular power outages occur that interrupt mobile phone services

and Internet (Mudenda et al., 2013). Our results highlight the vulnerability of Zambia’s

communications and thus power infrastructure such that it is concentrated in just a

few sectors and in a specific region in particular along the corridor between Livingstone

and Copperbelt. With such low rural electrification rates in Zambia, the solution to

improved telecommunications access for all Zambians is not as easy as simply installing

power infrastructure or cell towers. Because individuals in villages are disconnected

from roads, power, and telecommunications, it is not always appropriate to install IT

equipment before providing other vital resources such as a community health clinic, for

example (Mudenda et al., 2013). Thus, identifying priority areas for electrification needs

to be based on community input.

Lastly, more of a focus on social equity and environmental sustainability is needed

on studies of communication access and electrification. We have already highlighted

the divide in telecommunications access, poverty, and electrification between rural and

urban parts of Zambia. Given the landscape of increasing participation from Independent

Power Producers (IPPs) and increased private investment in Zambia’s infrastructure, one

study concluded that the revenues made by investors’ returns could easily pay for rural

electrification (Bayliss and Pollen, 2021). The energy sector reforms that took place in

the 1990s including in Zambia have not proven to have positive social outcomes. Rather,

the private sector, intergovernmental agencies, and international institutions such as the

World Bank need base their policies on local circumstances: what works in one country

should not be taken as the standard or default to work in another. Further advancements

to our understanding of the location of telecommunications access in the Global South
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should center issues of equity, the industrial and colonial history of the place of interest,

and how persistent inequalities result in disparities in telecommunications seen today.
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Conclusion

How the world will continue to feed itself while ensuring equitability and sustainable

use of natural resources is an open question. As the planet warms, weather and climate

variability will increase (Thornton et al., 2011; IPCC, 2014). These impacts are already

affecting agricultural systems globally through changing precipitation patterns, increasing

temperatures, and increasing frequency of extreme events (Mbow et al., 2019). Climate

change is set to continue disrupting systems with climate-related disasters impacting

countries in the Global South disproportionally (Hansen et al., 2019). With current levels

of anthropogenic greenhouse gas emissions, the deleterious impacts of climate change and

climate variability are unlikely to improve in the short-term. Given this, proactive early

warning systems are a critical point of research and point of international collaboration.

Digital tools can support agriculture in a number of ways. From food security, access

to markets, and government and extension services, every facet of the food system can

benefit from technology. Actions such as emergency assistance, early warning, and distri-

bution of critical resources are needed to prevent famine, particularly through assistance

that is scalable and remotely deployable. Mobile phones are one pathway that can be an

important step towards providing assistance in multiple forms. Digital agricultural sys-
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tems span multiple scales from farm-level tools and applications that can deliver services

of direct benefit to farmers to ecosystem- and macro-level tools that create an enabling

environment for broadening participation in digital services (Gates Foundation, 2020).

The gap in coverage and internet access is more important to study than ever as

the world’s reliance on internet, specifically via access through mobile phones, has never

been stronger (Bahia and Suardi, 2019). The final year of research on this dissertation

coincided with an unprecedented global pandemic. The impacts of COVID-19 led to an

uptick in acute hunger in which over 34 million people faced emergency levels of hunger

around the globe (WFP and FAO, 2021). The COVID-19 pandemic demonstrated the

importance of mobile phones and internet information diffusion in particular for the

majority of the world who accesses the internet through a mobile device (Bahia and

Suardi, 2019). An estimated quarter of the population in sub-Saharan Africa live outside

of mobile broadband coverage whereas the global average living outside of coverage is

seven percent (Bahia and Suardi, 2019). Because the primary way that individuals access

digital information is through mobile broadband, studying access has never been more

important.

Finally, small-scale farmers in sub-Saharan Africa are often the first to feel the impacts

of extreme weather. The issues of food security, climate change, health, land degradation

and conflict are all interlinked and technology-based solutions are just one of many paths

forward for reducing vulnerabilities associated with a changing climate. Small-scale pro-

ducers, particularly women and those who are disconnected from road networks, farm

marginal lands, and have weak connections to markets need to be given particular at-

tention. With rapidly improving broadband coverage and mobile-phone usage across ru-

ral populations in sub-Saharan Africa, integrating technology with smallholder farmers’

strategies for maximizing production while minimizing resources and land degradation

should be an opportunity for advancing towards food security on the continent.
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Chapter 3 Appendix

A.1 Uncertainties in maximum yields

We use seed company-provided estimates of hybrid maize yields to set maximum val-

ues of yields by maturity period. These values should be considered as the “potential

yields” for a given variety because they are usually attained from optimal growing con-

ditions and from the possible addition of agricultural inputs and management (fertilizer,

weeding, etc.) that does not necessarily reflect small-scale farming conditions (Blekking

et al., 2021). How to ascertain whether seed company-provided yields can actually be

attained is through cultivar trials, which are done through local research stations that

play an important role in certifying seeds and verifying seed company reported yields.

Blekking et al. (2021) compared yields between maize companies, Zambia’s Seed Con-

trol and Certification Institute (SCCI) and from smallholder farms for five varieties in

Zambia during the 2011/12 growing season. They found that the seed developer stated

potential yields, average yields verified through SCCI cultivar trials, and farmer yields

differed vastly. Farmer yields were just a third or less than the company stated yields.

For the hybrid varieties of interest in our study, the range of maximum yields was
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roughly 1.5 to 5 t/ha as shown in Figure 3.3. However, our model simulations which were

subjected to stochastic rainfall resulted in lower average yields with averages between

1.18 and 1.45 for early to late maturing crops (Table 3.5). Previous work has shown

that regional yields vary and were an average of 0.92 - 1.55 t/ha between 2000 and

2014 in Laikipia county (Davenport et al., 2019). Given this information, our simulated

maize yields fall within regional maize yields. Despite the differences seen between seed

company yields and realized yields (Blekking et al., 2021) our model results align with

some of the regional yields typically seen for our study site. Future work could better

tune the realized yields for a range of maturity periods to better simulate the typical

yields found at small-scale farms.

A.2 Sensitivity analysis

We conducted a sensitivity analysis to investigate whether model parameters related

to static and dynamic water stress and evaporation affect the model results. These four

variables (r, k, qe, and qstress) are interlinked and difficult to measure directly. We find

that yields are particularly sensitive to the value of k in affecting the range of yields,

median yield value, and likelihood of crop failure. The value of r also changes the range

of yields but has a limited affect on the median yield. We settled on r = 0.5 as our value

because Porporato et al. (2001) selected this response between stress and yield to be less

than linear (ie. the square root of the term). The k parameter has the opposite effect

where smaller values of k lead to lower yields whereas higher values lead to higher yields.

The k parameter is the portion of the season that the crop can tolerate stress before it

fails. Both of these values are interlinked with the calculations of dynamic stress and

therefore end of season yields, and are tied to the crop’s physiology. Our results show that

these values impact the model results and therefore more data is needed on how intra-
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Figure A.1: Effect of different values of r, k, qstress and qe on yields.

seasonal water availability affects the duration and severity of stress and therefore crop

outcomes. These values are both difficult to resolve among variety types and are difficult

to disentangle since they are both tied to the crop’s physiology. Thus very little data

exists on the effects of intraseasonal crop stress on yield outcomes. Crop modeling studies

often only work with seasonal rainfall totals or average weather rather than within season

rainfall variability. Increased attention needs to be paid to these parameters which would

be improved through field trials and real-time estimates of crop growth under varying

meteorological conditions.
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A.3 PDF of dynamic stress

Figure A.2: Probability distribution function of dynamic water stress for 10,000 sim-
ulations. Model parameters used are the same as those in Figure 3.6.
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A.4 Rainfall-yield relationships for varieties

There is a wide range of yields and therefore farmer outcomes associated with certain

bands of rainfall as shown in Figure A.3. In the early maturing varieties, we are con-

cerned about the divergence of yield outcomes within the band of 100-200 mm of seasonal

rainfall; 150-300 mm of rainfall for medium maturing, and 200-400 mm of rainfall for late

maturing. For these bands of rainfall, we find that a wide range of outcomes are possible

for farmers such that one farmer (i.e. one model realization) that experiences 175 mm of

seasonal rainfall for an early-maturing variety can realize about 75 percent of the crop’s

maximum yield while another farmer that receives 175 mm of rainfall experiences total

crop failure. We find this relationship across all of the varieties categories in which some

realizations get no yield or very little yields while others get 50-75 percent of their max-

imum yield for the same seasonal rainfall total. The only difference between these two

outcomes (no yield vs. decent yield) is the timing of rainfall because the total rainfall is

the same.
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Figure A.3: Relationships between seasonal rainfall and normalized yields for three
categories of varieties: Early maturing (red), Medium maturing (orange), and Late
maturing (blue).
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Chapter 4 Appendix

B.1 Livelihood zones groups

There are twenty one livelihood zones per FEWS NET (2014). We reduced the

number of livelihood zones to eleven in order to simplify the description of the results.

To do this, we first ran an inhomogeneous Poisson model with roads, power plants, and all

21 livelihood zones. We made an initial grouping of livelihood zones based on covariates

that had similar coefficient values in the model estimates table. Second, we altered the

groupings based on which livelihood zones were similar in their qualitative description as

well as those which were geographically nearby each other. We then used 11 categories

of livelihood zones which are found in Table B.1.
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