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ABSTRACT OF THE DISSERTATION  
 

Elucidating the role of retrosplenial cortex in history-based decision-making  

 

by 

 

Bethanny Patricia Danskin 

 

Doctor of Philosophy in Neurosciences 

University of California San Diego, 2022 

Professor Takaki Komiyama, Chair 

 

 

Using past experience to inform future choice is fundamental to decision-making and 

behavior. Integrating experience by comparing choices and outcomes across time is a critical 

task, and requires a neural mechanism by which information may be assessed and 

accumulated. This is a widespread phenomenon in the brain, involving many cortical and 

subcortical structures. In this dissertation I show that one cortical area, the retrosplenial cortex 

(RSC), is particularly enriched in neurons that encode behaviorally-relevant history 

information, and is necessary for decision-making that relies on reward-history. RSC neurons 

exhibit a diversity of time-constants over which this history information is integrated, and I 
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have found that the timescales encoded in RSC match the temporal characteristics of the 

behavior better than other cortical areas. I developed a novel behavioral model in which 

decision is reached as the weighted sum of multiple exponential integrators using the 

observed diversity of time-constants. Acutely inactivating RSC results in the attenuation of 

this combinatorial behavioral strategy, and a decreased reliance on reward-history. From these 

results, I propose a conceptual model where reward-history information is encoded in neurons 

with a simple update rule, but the time-constants are heterogenous and vary across the 

population. The combination of diverse temporal information produces a behavioral strategy 

which is sensitive to both recent experience and long-term trends, a feature observed as the 

hyperbolic discounting of past experience.  

In Chapter 1 I introduce the concepts of reinforcement learning theory relevant for this 

dissertation, and survey how reward-based value information is encoded in the brain. Chapter 

2 identifies RSC as particularly important for the integration of past reward experience into 

actionable value information. Chapter 3 further examines and tests the role of RSC in 

integrating information across a diversity of timescales, and proposes a model of independent 

temporal integration in the brain that underlies the hyperbolic discounting of past experience. 

Chapter 4 discusses the properties of RSC that support the integration and maintenance of 

diverse information, and contextualizes the results in the broader decision-making context. 
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CHAPTER 1: INTRODUCTION 

 
 When we are presented with two or more options—as we are in many ways, many 

times throughout our day—we need to evaluate those options and decide which aligns closest 

to our interests. In this process we use our past experience to guide future choice. To do this 

we, and all animals, need a mechanism by with to integrate our recent experience in order to 

evaluate what is the better option.  Choosing between options on the basis of the rewarded 

outcomes associated with those options is called value-based decision-making. 

Sometimes these choices have clear and obvious outcomes associated with them, 

which can be intuited with little or no learning required. More often, however, we are 

presented with choices that have ambiguity in their probability of a positive outcome, and 

therefore value is something that must be learned through trial and error. As a concrete 

example, consider choosing between two coffee shops at which to indulge in a morning latte 

habit. There are many factors that might influence that choice: the quality of coffee, the speed 

of service, the distance traveled to and from the coffee shop, and the busyness at certain times 

of day. There are also factors that might change unpredictably across time, such as a change 

in supplier, limited seasonal selection, or the departure of a favorite barista. Each of these 

changes to the overall value associated with either coffee shop occurs with some different 

underlying timescale and frequency, and so when comparing options it is beneficial to 

simultaneously recall and integrate experiences across a range of time. Recent experience is 

especially salient, but long-term expectation setting is also beneficial. 

How and why an animal chooses the action it does is fundamental to understanding 

behavior across a wide variety of disciplines, including neuroscience, psychology, economics, 

and medicine. Correspondingly, the tools to understand, describe, and predict behavior have 
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been drawn from a variety of mathematical models and theories. This dissertation will first 

introduce the concepts of reinforcement learning theory as foundational to the study of how 

and where decision-making is encoded in the brain. Then the author will detail the research 

identifying a candidate area, the retrosplenial cortex, as particularly relevant and necessary to 

decision-making based on the integration of past experience. 

1.1 Reinforcement learning as a framework to understand decision-making 

 Reinforcement learning (RL) theory (Sutton and Barto 1998) provides a theoretical 

framework for learning and decision-making, and has had wide-ranging impact in both 

designing experiments and interpreting results. The advantage of this computational 

grounding is to attach numbers to alternative actions, such that internally derived 

representations of value and integrated experience may be treated quantitatively, and the 

choices can be understood as selecting an action that maximizes this quantity.  

While there are a variety of implementations of RL algorithms for different 

applications, all share a common feature: an internally maintained value function that is 

updated according to experience of choice and outcome pairings. A learner cannot know the 

future, or even necessarily all the present dynamics underlying the probability of a rewarding 

stimulus. Thus, value functions reflect only the learner’s best estimate of future rewards, 

which is necessarily contingent on its past experience. If the experienced outcome perfectly 

matches the learner’s expected value, then there is no prediction error and no learning need 

occur. But in an environment where there is some stochasticity in the relationship between 

action and reward, the prediction may not match the observation. This creates an error, the 

difference between expected and observed, that is called reward prediction error, RPE (Sutton 

and Barto 1998). Given a quantification of expected value and a quantification of the 
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observed reward, the signed difference between these variables may be used to revise the 

expected value. Therefore, RPE is the primary driver of learning and is used to update the 

expected value for the chosen action.  

In addition to describing many behavioral phenomena in psychology, cognitive 

science, and economics, RL models also provide access to the hidden variables of decision 

making (i.e. estimated value and RPE) that are not directly observable, but which nevertheless 

have correlates in the brain. Neuroscience research from humans (Daw et al. 2006; Behrens et 

al. 2007; Meder et al. 2017), non-human primates (Platt and Glimcher 1999; Sugrue 2004; 

Barraclough, Conroy, and Lee 2004; Samejima et al. 2005; Seo and Lee 2007; Lau and 

Glimcher 2008; Seo and Lee 2009; So and Stuphorn 2010; Cai, Kim, and Lee 2011; Massi, 

Donahue, and Lee 2018), and other animal models (Ito and Doya 2009; Kim et al. 2009; Sul 

et al. 2010; 2011; Hattori et al. 2019; Bari et al. 2019; Steinmetz et al. 2019) suggest that 

these computations are widespread, and carried out in multiple interconnected brain areas. 

However, the mechanisms by which the brain integrates past experience to shape future 

decision remains a developing and topical area of research. 

1.2 The rate of learning sets the temporal window of history integration 

 The brain faces a difficult task in learning about the consequences of an action, 

namely how sensitive it should be to any individual outcome. If the chosen option has an 

outcome that is in some way noisy—varying in probability or magnitude—then being too 

sensitive to a single unrewarding experience may cause the animal to reject that option even 

through on average the option is rewarding. The rate of value update needs to be appropriate 

to the environment and the task demands in order to maximize rewards. 
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In the class of RL models called Q-learning (Sutton and Barto 1998), the value (Q) for 

a chosen action is updated according to the reward prediction error (RPE), with some gain 

controlled by a model parameter called the learning rate. A large learning rate indicates the 

learner adapts expectation quickly in response to new information, but necessarily loses 

sensitivity to more distant experience. This may be advantageous in an environment that is 

undergoing change, or in which the animal has a large amount of uncertainty about the 

potential outcomes of their choices (Behrens et al. 2007). Such unexpected uncertainty (Yu 

and Dayan 2005) is associated with volatile environments and large learning rates, that the 

animal may adapt more quickly. 

However, large learning rates can be maladaptive in a stable environment if it is 

characterized by probabilistic or stochastic outcomes. Being overly sensitive to random 

fluctuations in recent outcomes might cost the animal the accumulated insight to the longer 

trends in the reward contingencies. The size of the learning rate is thus a manifestation of a 

bias-variance tradeoff. 

1.3 Variability in temporal learning rates 

 Traditional formulations of Q-learning models include the learning rate as a single, 

fixed parameter. However, from a conceptual perspective, the advantage of having access to 

information across multiple temporal horizons is clear: real world situations change 

dynamically and unpredictably. Integrating across short timescales allows an animal to 

respond quickly when the environment changes, or under conditions of increasing volatility 

and uncertainty (Dayan, Kakade, and Montague 2000; Daw, Niv, and Dayan 2005; Daw et al. 

2006; 2011; Kennerley et al. 2006; Behrens et al. 2007; Meder et al. 2017; Massi, Donahue, 

and Lee 2018). In a stable environment, long timescales of integration increase the accuracy 
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of estimating the underlying reward probabilities, improving overall reward maximization 

(Bernacchia et al. 2011; Iigaya et al. 2019). In a compromise between the two extremes, there 

is evidence that animals use a strategy that relies on a combination of recent and distant 

history that diverges from traditional RL model predictions (Corrado et al. 2005; Lau and 

Glimcher 2005; Sugrue 2004; Iigaya et al. 2019). 

Overweighting distant history relative to recent history has also been described as the 

phenomenon of ‘undermatching’, and has previously been considered a suboptimal form of 

decision-making in laboratory behaviors (Sugrue 2004; Corrado et al. 2005; Lau and 

Glimcher 2005). Recent work has examined undermatching as a distinct and quantifiable 

strategy that provides a bias-variance tradeoff to animals performing behavior tasks in which 

reward probability varies over time (Iigaya et al. 2019), and found that animals use at least 

three underlying time-constants to make a decision in their task. Given the wide variety of 

timescales an animal must navigate in its life, it is intuitive that integration of temporal 

information varies over a wide range. 

One intriguing possibility is that history information integrated across different 

timescales is encoded in a distributed and heterogenous manner, creating a reservoir of 

temporal information available to the animal (Bernacchia et al. 2011). Heterogenous temporal 

encoding provides a mechanism by which an animal may maintain information efficiently 

with a simple update rule mediated networks of neurons (Fusi, Drew, and Abbott 2005; 

Soltani 2006; Tiganj, Hasselmo, and Howard 2015), but also maintain independent 

information about a variety of timescales at once (Bernacchia et al. 2011; Spitmaan et al. 

2020). Previous studies have showed that animals encode history-based value related 

information in a distributed and diverse manner throughout cortical and subcortical structures 
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(Sul et al. 2010; 2011; Hattori et al. 2019; Bari et al. 2019; Steinmetz et al. 2019) and it 

follows that behaviorally-relevant temporal information would be represented in this way as 

well. 

What is optimal for the animal, therefore, is to have a flexible neural encoding system 

that can be both responsive to recent experience but remain sensitive to experience that is 

more distant in time. Such a neural substrate ought to have encoding for temporal information 

across a range of timescales, maintain this information in a form that is easily read-out by 

downstream areas, and be highly interconnected with the decision-making networks in the 

brain. This dissertation proposes that the retroplenial cortex, RSC, is a strong candidate for 

such an area. 

1.4 Locating history-based value coding in the brain 

 In value-based decision-making, an animal makes a choice on the basis of an internal 

representation of value, not an external sensory cue or percept, and therefore the constituent 

elements in reaching the decision are not directly measurable. When studying the neural 

coding of value-based decision-making, mathematical modeling of behavior is used to 

estimate the value functions and the latent variables like value and RPE, as well as controlling 

parameters like learning rate and sensitivity to value (Lee, Seo, and Jung 2012; Rangel, 

Camerer, and Montague 2008). Decomposing a decision into its constituent computed 

variables permits a nuanced screening of decision-related activity in different brain regions 

(Rangel, Camerer, and Montague 2008), and so the selection of both the behavior task and the 

model are critical to contextualizing the neural results. 

A simple but powerful family of models for how to accumulate experience into a 

decision are the Q-learning models, or value-learning models, in which an explicitly defined 
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value is updated in an iterative process (Sutton and Barto 1998; Barraclough, Conroy, and Lee 

2004; Samejima et al. 2005). One formalization of this is the Rescorla-Wagner model 

(Rescorla and Wagner 1972), which has its history in classical and operant conditioning—

specifically, in the association of an action to a reward. 

In this model, a reinforcement learning agent learns the expected value of an action, 

compares the values associated with the actions, then updates the value of the chosen action 

by the difference between the expected value and the outcome (Figure 1.1). This difference, 

RPE, is then used to update the previous expectation, scaled by some learning rate.   

In the Rescorla-Wagner formulation, the expected value for each option at a given 

timepoint is updated at each timestep, generally a trial, which makes this a tractable system 

for laboratory-based experiments that use this structure. One such class of tasks that is often 

used in conjunction with Q-learning models in general, and Rescorla-Wagner models in 

particular, are the multi-armed bandit tasks (Stephens and Krebs 1986; Sutton and Barto 

1998). In this type of task there are a fixed number of choices which have different underlying 

probabilities of reward, and the learner performing the bandit task has no certainty about 

which has a higher payout and relies on trial and error.  

The binarized version of this task, a two-armed bandit, includes two choices with 

different probabilities of reward. When these probabilities change over time, in some cases 

drifting slowly and in other cases inverting in a block structure, this is referred to as a 

dynamic foraging task (Sugrue 2004; Samejima et al. 2005; Sul et al. 2010; 2011; Kawai et al. 

2015; Hamid et al. 2016; Tsutsui et al. 2016). The probabilities may either move together or 

independently, depending on the task, and versions of this task have been used for humans 

(Behrens et al. 2007; Kolling et al. 2012), non-human primates (Sugrue 2004; Samejima et al. 
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2005; Tsutsui et al. 2016; Kawai et al. 2015), and rodents (Sul et al. 2010; 2011; Hamid et al. 

2016; Hattori et al. 2019; Bari et al. 2019), in addition to being a testbed for artificial 

intelligence research (Kaelbling 1993; Averbeck 2015). Modeling foraging task behavior with 

a Rescorla-Wagner model provides trial-by-trial readout of the estimated value the animal is 

using, the difference in value between conditions, as well as information about the decision 

parameters learning rate and sensitivity to value. 
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Figure 1.1: Schematic of Rescorla-Wagner Q-learning model for a two-choice case. 
Value is updated based on experience, the values associated with two options are compared, an action is 

selected, the outcome is observed, and the difference between observed and expected is used to update the 
estimate of value. 
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1.5 Value-related signals are widespread and heterogeneously encoded 

 Given an estimate of the latent variables of decision-making (i.e. value and RPE), 

researchers can then identify correlates of these variables in the brain. There is broad evidence 

that multiple areas of the brain encode various aspects of decision-making, and that some 

areas may encode multiple steps of the process (Lee, Seo, and Jung 2012). Dissecting these 

findings provides a roadmap for where and how decision is made at the level of neural 

populations. 

The estimated value of the chosen option is central to RL theories of behavior, and 

expected to both represent the integration of past choices and predict the upcoming choices an 

animal will make. Activity related to the chosen value has been observed in dorsolateral 

prefrontal cortex in humans and primates (Daw et al. 2006; Barraclough, Conroy, and Lee 

2004; So and Stuphorn 2010), medial frontal cortex in primates and rodents (Seo and Lee 

2009; Sul et al. 2010; 2011), parietal cortex in primates (Platt and Glimcher 1999; Sugrue 

2004; Dorris and Glimcher 2004), supplementary or pre-motor cortex in primates and rodents 

(Sul et al. 2011; Pastor-Bernier and Cisek 2011; Bari et al. 2019), as well as the striatum 

across all model organisms (Samejima et al. 2005; Daw et al. 2006; Lau and Glimcher 2008; 

H. Kim et al. 2009; M. Ito and Doya 2009; Cai, Kim, and Lee 2011). 

A second critical component of RL theory is the update rule, governed in these models 

by RPE. It is expected that brain areas involved with updating estimates of value would 

encode both the chosen value and the RPE, a function of the value. Estimated value would be 

expected to vary gradually over time according to this updating signal from RPE. Unlike 

estimated value, which is a signal that should be relatively persistent, RPE instead ought to be 

transient and might only be experienced immediately following the evaluation of reward. 

Transient signals correlated with RPE were first identified in midbrain dopamine neurons 
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(Schultz 2000), and have since been largely associated with dopamine in wide-ranging 

projections through the striatum (Bayer and Glimcher 2005; H. Kim et al. 2009; Li and Daw 

2011; Hamid et al. 2016; Dabney et al. 2020; H. R. Kim et al. 2020) and cortex (Padoa-

Schioppa and Assad 2006; Matsumoto et al. 2007; Seo and Lee 2007; Sul et al. 2010; Dabney 

et al. 2020). Updating the expected value would likely be mediated by an area in which 

signals related to the chosen value and the reward prediction error converge (H. Kim et al. 

2009; Sul et al. 2010; Tsutsui et al. 2016). 

In addition, functions of value—such as the direct comparison between the value of 

two options, the value difference—strongly identify certain areas as being proximal to the 

decision (Lee, Seo, and Jung 2012). In RL models the probability of choosing between two 

options is determined by their value difference, and so neurons that encode value difference 

may be downstream of value update and maintenance, but upstream of motor output (Sul et al. 

2011; Bari et al. 2019; Hattori et al. 2019). Perturbational experiments that disrupted the 

activity of neurons in the pre-motor cortex (Sul et al. 2011), medial prefrontal cortex (Bari et 

al. 2019), and retrosplenial cortex (Hattori et al. 2019) of rodents all quantifiably impaired the 

use of value information in decision-making.   

Guided by the encoding of latent variables of value, targeted perturbational 

experiments can be used to dissect how history-based value information is compared, 

maintained, and used in the brain. 

1.6 Area-specificity and plasticity of history-dependent value coding during learning 

 Foundational to this dissertation work was Hattori et al. 2019, which surveyed the 

differences in value coding across six cortical areas, described how these differences emerged 



12 
 

with learning, and implicated retrosplenial cortex (RSC) as a critical node in the decision-

making network. What follows is a brief summary of the relevant findings.  

In head-fixed mice performing the dynamic foraging task (Sugrue 2004; Samejima et 

al. 2005; Sul et al. 2010; 2011; Kawai et al. 2015; Hamid et al. 2016; Tsutsui et al. 2016), 

neural activity from six dorsal cortical areas was recorded with two-photon calcium imaging, 

in excitatory cells in layers 2/3 of cortex. The areas of interest were: the pre-motor areas 

anterolateral motor cortex (ALM), and posterior secondary motor cortex (pM2); the 

associational areas posterior parietal cortex (PPC), and retrosplenial cortex (RSC); and the 

sensory areas primary somatosensory cortex (S1), and primary visual cortex (V1).  

Adapting a Rescorla-Wagner model specifically for the task (Rescorla and Wagner 

1972; Barraclough, Conroy, and Lee 2004; Makoto Ito and Doya 2011) yielded a behavioral 

model that well-described the mouse behavior, and provided the estimated value associated 

with two options. This value updated on a trial-by-trial basis in a recursive manner, and was a 

time-varying signal that could in turn be correlated with the neural activity to identify value-

coding neurons. In this binary choice task, there were two sets of time-varying values, value 

for the left side and value for the right side. This was then further codified as the difference in 

value, which is the determinant of which side is estimated to have a higher probability of 

reward, and the value of the chosen side, which indicates whether the mouse is exploiting a 

higher probability choice or exploring a lower probability choice. 

Neurons in all six cortical areas encoded chosen value and value difference, especially 

in the time window immediately before and following choice. RSC and PPC in particular 

strongly encoded the chosen value and value difference immediately following choice. 

Interestingly, in RSC this encoding was particularly persistent and remained high through the 
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inter-trial interval. In addition, the population-level decoding accuracy of chosen value and 

value difference was higher for RSC than for any other area throughout the trial, and this 

population code was consistent throughout the trial. 

This value-coding was heterogenous across neurons even within the same area, with 

some cells encoding value difference but not chosen value, or vice versa, or being positively 

modulated or negatively modulated to these terms. Some cells also encoded other variables 

associated with the task like the sum of value, an indication of motivational state, or reward-

history, in addition to value difference and chosen value. 

Separate from but complimentary to the value coding analysis, population-level 

decoding of the neural activity revealed that the rewarded-choice history of up to ten past 

trials was encoded in ALM, PPC, and RSC, but with particular strength in RSC. Modulation 

by distant history was weakest in the primary sensory areas V1 and S1. When quantified 

longitudinally across training, the population decoding accuracy of rewarded-choice history 

information increased in all areas, but most strongly in RSC. Specifically, the population 

encoding of more distant experience (>3 past trials) was non-existent in the early sessions for 

all areas, but increased for all cortical areas, and significantly more for RSC than for any other 

area.  

These results from both the single-cell and population level suggested RSC adaptively 

encoded the specific history information necessary for the value-based decision strategy. 

While decision variables were widely encoded in cortex, RSC was particularly enriched in 

cells that encoded value strongly and persistently. This poses RSC as a strong candidate area 

involved in   encoding of history-based value information across timescales. 

  



14 
 

References 

Averbeck, Bruno B. 2015. “Theory of Choice in Bandit, Information Sampling and Foraging 
Tasks.” Edited by Paul Schrater. PLOS Computational Biology 11 (3): e1004164. 
https://doi.org/10.1371/journal.pcbi.1004164. 
 
Bari, Bilal A., Cooper D. Grossman, Emily E. Lubin, Adithya E. Rajagopalan, Jianna I. 
Cressy, and Jeremiah Y. Cohen. 2019. “Stable Representations of Decision Variables for 
Flexible Behavior.” Neuron 103 (5): 922-933.e7. 
https://doi.org/10.1016/j.neuron.2019.06.001. 
 
Barraclough, Dominic J, Michelle L Conroy, and Daeyeol Lee. 2004. “Prefrontal Cortex and 
Decision Making in a Mixed-Strategy Game.” Nature Neuroscience 7 (4): 404–10. 
https://doi.org/10.1038/nn1209. 
 
Bayer, Hannah M., and Paul W. Glimcher. 2005. “Midbrain Dopamine Neurons Encode a 
Quantitative Reward Prediction Error Signal.” Neuron 47 (1): 129–41. 
https://doi.org/10.1016/j.neuron.2005.05.020. 
 
Behrens, Timothy E J, Mark W Woolrich, Mark E Walton, and Matthew F S Rushworth. 
2007. “Learning the Value of Information in an Uncertain World.” Nature Neuroscience 10 
(9): 1214–21. https://doi.org/10.1038/nn1954. 
 
Bernacchia, Alberto, Hyojung Seo, Daeyeol Lee, and Xiao-Jing Wang. 2011. “A Reservoir of 
Time Constants for Memory Traces in Cortical Neurons - Supplement.” Nature Neuroscience 
14 (3): 366–72. https://doi.org/10.1038/nn.2752. 
 
Cai, Xinying, Soyoun Kim, and Daeyeol Lee. 2011. “Heterogeneous Coding of Temporally 
Discounted Values in the Dorsal and Ventral Striatum during Intertemporal Choice.” Neuron 
69 (1): 170–82. https://doi.org/10.1016/j.neuron.2010.11.041. 
 
Corrado, Greg S., Leo P. Sugrue, H. Sebastian Seung, and William T. Newsome. 2005. 
“Linear-Nonlinear-Poisson Models of Primate Choice Dynamics.” Journal of the 
Experimental Analysis of Behavior 84 (3): 581–617. https://doi.org/10.1901/jeab.2005.23-05. 
 
Dabney, Will, Zeb Kurth-Nelson, Naoshige Uchida, Clara Kwon Starkweather, Demis 
Hassabis, Rémi Munos, and Matthew Botvinick. 2020. “A Distributional Code for Value in 
Dopamine-Based Reinforcement Learning.” Nature 577 (7792): 671–75. 
https://doi.org/10.1038/s41586-019-1924-6. 
 
Daw, Nathaniel D, Yael Niv, and Peter Dayan. 2005. “Uncertainty-Based Competition 
between Prefrontal and Dorsolateral Striatal Systems for Behavioral Control.” Nature 
Neuroscience 8 (12): 1704–11. https://doi.org/10.1038/nn1560. 
 
Daw, Nathaniel D., John P. O’Doherty, Peter Dayan, Ben Seymour, and Raymond J. Dolan. 
2006. “Cortical Substrates for Exploratory Decisions in Humans.” Nature 441 (7095): 876–
79. https://doi.org/10.1038/nature04766. 



15 
 

 
Daw, Nathaniel D., Samuel J. Gershman, Ben Seymour, Peter Dayan, and Raymond J. Dolan. 
2011. “Model-Based Influences on Humans’ Choices and Striatal Prediction Errors.” Neuron 
69 (6): 1204–15. https://doi.org/10.1016/j.neuron.2011.02.027. 
 
Dayan, Peter, Sham Kakade, and P. Read Montague. 2000. “Learning and Selective 
Attention.” Nature Neuroscience 3 (S11): 1218–23. https://doi.org/10.1038/81504. 
 
Dorris, Michael C., and Paul W. Glimcher. 2004. “Activity in Posterior Parietal Cortex Is 
Correlated with the Relative Subjective Desirability of Action.” Neuron 44 (2): 365–78. 
https://doi.org/10.1016/j.neuron.2004.09.009. 
 
Fusi, Stefano, Patrick J. Drew, and L.F. Abbott. 2005. “Cascade Models of Synaptically 
Stored Memories.” Neuron 45 (4): 599–611. https://doi.org/10.1016/j.neuron.2005.02.001. 
 
Hamid, Arif A, Jeffrey R Pettibone, Omar S Mabrouk, Vaughn L Hetrick, Robert Schmidt, 
Caitlin M Vander Weele, Robert T Kennedy, Brandon J Aragona, and Joshua D Berke. 2016. 
“Mesolimbic Dopamine Signals the Value of Work.” Nature Neuroscience 19 (1): 117–26. 
https://doi.org/10.1038/nn.4173. 
 
Hattori, Ryoma, Bethanny Danskin, Zeljana Babic, Nicole Mlynaryk, and Takaki Komiyama. 
2019. “Area-Specificity and Plasticity of History-Dependent Value Coding During Learning.” 
Cell 177 (7): 1858-1872.e15. https://doi.org/10.1016/j.cell.2019.04.027. 
 
Iigaya, Kiyohito, Yashar Ahmadian, Leo P. Sugrue, Greg S. Corrado, Yonatan Loewenstein, 
William T. Newsome, and Stefano Fusi. 2019. “Deviation from the Matching Law Reflects an 
Optimal Strategy Involving Learning over Multiple Timescales.” Nature Communications 10 
(1): 1466. https://doi.org/10.1038/s41467-019-09388-3. 
 
Ito, M., and K. Doya. 2009. “Validation of Decision-Making Models and Analysis of 
Decision Variables in the Rat Basal Ganglia.” Journal of Neuroscience 29 (31): 9861–74. 
https://doi.org/10.1523/JNEUROSCI.6157-08.2009. 
 
Ito, Makoto, and Kenji Doya. 2011. “Multiple Representations and Algorithms for 
Reinforcement Learning in the Cortico-Basal Ganglia Circuit.” Current Opinion in 
Neurobiology 21 (3): 368–73. https://doi.org/10.1016/j.conb.2011.04.001. 
 
Kaelbling, Leslie Pack. 1993. Learning in Embedded Systems. Cambridge, MA: MIT Press. 
 
Kawai, Takashi, Hiroshi Yamada, Nobuya Sato, Masahiko Takada, and Masayuki 
Matsumoto. 2015. “Roles of the Lateral Habenula and Anterior Cingulate Cortex in Negative 
Outcome Monitoring and Behavioral Adjustment in Nonhuman Primates.” Neuron 88 (4): 
792–804. https://doi.org/10.1016/j.neuron.2015.09.030. 
 



16 
 

Kennerley, Steven W, Mark E Walton, Timothy E J Behrens, Mark J Buckley, and Matthew F 
S Rushworth. 2006. “Optimal Decision Making and the Anterior Cingulate Cortex.” Nature 
Neuroscience 9 (7): 940–47. https://doi.org/10.1038/nn1724. 
 
Kim, H., J. H. Sul, N. Huh, D. Lee, and M. W. Jung. 2009. “Role of Striatum in Updating 
Values of Chosen Actions.” Journal of Neuroscience 29 (47): 14701–12. 
https://doi.org/10.1523/JNEUROSCI.2728-09.2009. 
 
Kim, HyungGoo R., Athar N. Malik, John G. Mikhael, Pol Bech, Iku Tsutsui-Kimura, 
Fangmiao Sun, Yajun Zhang, et al. 2020. “A Unified Framework for Dopamine Signals 
across Timescales.” Cell 183 (6): 1600-1616.e25. https://doi.org/10.1016/j.cell.2020.11.013. 
 
Kolling, Nils, Timothy E. J. Behrens, Rogier B. Mars, and Matthew F. S. Rushworth. 2012. 
“Neural Mechanisms of Foraging.” Science 336 (6077): 95–98. 
https://doi.org/10.1126/science.1216930. 
 
Lau, Brian, and Paul W. Glimcher. 2005. “Dynamic Response-by-response Models of 
Matching Behavior in Rhesus Monkeys.” Journal of the Experimental Analysis of Behavior 
84 (3): 555–79. https://doi.org/10.1901/jeab.2005.110-04. 
 
Lau, Brian, and Paul W. Glimcher. 2008. “Value Representations in the Primate Striatum 
during Matching Behavior.” Neuron 58 (3): 451–63. 
https://doi.org/10.1016/j.neuron.2008.02.021. 
 
Lee, Daeyeol, Hyojung Seo, and Min Whan Jung. 2012. “Neural Basis of Reinforcement 
Learning and Decision Making.” Annual Review of Neuroscience 35 (1): 287–308. 
https://doi.org/10.1146/annurev-neuro-062111-150512. 
 
Li, J., and N. D. Daw. 2011. “Signals in Human Striatum Are Appropriate for Policy Update 
Rather than Value Prediction.” Journal of Neuroscience 31 (14): 5504–11. 
https://doi.org/10.1523/JNEUROSCI.6316-10.2011. 
 
Massi, Bart, Christopher H. Donahue, and Daeyeol Lee. 2018. “Volatility Facilitates Value 
Updating in the Prefrontal Cortex.” Neuron 99 (3): 598-608.e4. 
https://doi.org/10.1016/j.neuron.2018.06.033. 
 
Matsumoto, Madoka, Kenji Matsumoto, Hiroshi Abe, and Keiji Tanaka. 2007. “Medial 
Prefrontal Cell Activity Signaling Prediction Errors of Action Values.” Nature Neuroscience 
10 (5): 647–56. https://doi.org/10.1038/nn1890. 
 
Meder, David, Nils Kolling, Lennart Verhagen, Marco K. Wittmann, Jacqueline Scholl, 
Kristoffer H. Madsen, Oliver J. Hulme, Timothy E.J. Behrens, and Matthew F.S. Rushworth. 
2017. “Simultaneous Representation of a Spectrum of Dynamically Changing Value 
Estimates during Decision Making.” Nature Communications 8 (1): 1942. 
https://doi.org/10.1038/s41467-017-02169-w. 
 



17 
 

Padoa-Schioppa, Camillo, and John A. Assad. 2006. “Neurons in the Orbitofrontal Cortex 
Encode Economic Value.” Nature 441 (7090): 223–26. https://doi.org/10.1038/nature04676. 
 
Pastor-Bernier, A., and P. Cisek. 2011. “Neural Correlates of Biased Competition in Premotor 
Cortex.” Journal of Neuroscience 31 (19): 7083–88. 
https://doi.org/10.1523/JNEUROSCI.5681-10.2011. 
 
Platt, Michael L., and Paul W. Glimcher. 1999. “Neural Correlates of Decision Variables in 
Parietal Cortex.” Nature 400 (6741): 233–38. https://doi.org/10.1038/22268. 
 
Rangel, Antonio, Colin Camerer, and P. Read Montague. 2008. “A Framework for Studying 
the Neurobiology of Value-Based Decision Making.” Nature Reviews Neuroscience 9 (7): 
545–56. https://doi.org/10.1038/nrn2357. 
 
Rescorla, R., and A. Wagner. 1972. “A Theory of Pavlovian Conditioning : Variations in the 
Effectiveness of Reinforcement and Nonreinforcement.” In Classical Conditioning II: 
Current Research and Theory, 64–99. Appleton-Century-Crofts. 
 
Samejima, Kazuyuki, Yasumasa Ueda, Kenji Doya, and Minoru Kimura. 2005. 
“Representation of Action-Specific Reward Values in the Striatum.” Science 310 (5752): 
1337–40. https://doi.org/10.1126/science.1115270. 
 
Schultz, W. 2000. “Reward Processing in Primate Orbitofrontal Cortex and Basal Ganglia.” 
Cerebral Cortex 10 (3): 272–83. https://doi.org/10.1093/cercor/10.3.272. 
 
Seo, H., and D. Lee. 2007. “Temporal Filtering of Reward Signals in the Dorsal Anterior 
Cingulate Cortex during a Mixed-Strategy Game.” Journal of Neuroscience 27 (31): 8366–77. 
https://doi.org/10.1523/JNEUROSCI.2369-07.2007. 
 
Seo, H., and D. 2009. “Behavioral and Neural Changes after Gains and Losses of Conditioned 
Reinforcers.” Journal of Neuroscience 29 (11): 3627–41. 
https://doi.org/10.1523/JNEUROSCI.4726-08.2009. 
 
So, Na-Young, and Veit Stuphorn. 2010. “Supplementary Eye Field Encodes Option and 
Action Value for Saccades With Variable Reward.” Journal of Neurophysiology 104 (5): 
2634–53. https://doi.org/10.1152/jn.00430.2010. 
 
Soltani, A. 2006. “A Biophysically Based Neural Model of Matching Law Behavior: 
Melioration by Stochastic Synapses.” Journal of Neuroscience 26 (14): 3731–44. 
https://doi.org/10.1523/JNEUROSCI.5159-05.2006. 
 
Spitmaan, Mehran, Hyojung Seo, Daeyeol Lee, and Alireza Soltani. 2020. “Multiple 
Timescales of Neural Dynamics and Integration of Task-Relevant Signals across Cortex.” 
Proceedings of the National Academy of Sciences 117 (36): 22522–31. 
https://doi.org/10.1073/pnas.2005993117. 
 



18 
 

Steinmetz, Nicholas A., Peter Zatka-Haas, Matteo Carandini, and Kenneth D. Harris. 2019. 
“Distributed Coding of Choice, Action and Engagement across the Mouse Brain.” Nature 576 
(7786): 266–73. https://doi.org/10.1038/s41586-019-1787-x. 
 
Stephens, D. W., and J. R. Krebs. 1986. Foraging Theory. Princeton, NJ: Princeton 
University Press. 
 
Sugrue, L. P. 2004. “Matching Behavior and the Representation of Value in the Parietal 
Cortex.” Science 304 (5678): 1782–87. https://doi.org/10.1126/science.1094765. 
 
Sul, Jung Hoon, Suhyun Jo, Daeyeol Lee, and Min Whan Jung. 2011. “Role of Rodent 
Secondary Motor Cortex in Value-Based Action Selection.” Nature Neuroscience 14 (9): 
1202–8. https://doi.org/10.1038/nn.2881. 
 
Sul, Jung Hoon, Hoseok Kim, Namjung Huh, Daeyeol Lee, and Min Whan Jung. 2010. 
“Distinct Roles of Rodent Orbitofrontal and Medial Prefrontal Cortex in Decision Making.” 
Neuron 66 (3): 449–60. https://doi.org/10.1016/j.neuron.2010.03.033. 
 
Sutton, Richard S., and Andrew G. Barto. 1998. Reinforcement Learning: An Introduction. 
Cambridge, MA: MIT Press. 
 
Tiganj, Zoran, Michael E. Hasselmo, and Marc W. Howard. 2015. “A Simple Biophysically 
Plausible Model for Long Time Constants in Single Neurons: A SIMPLE BIOPHYSICALLY 
PLAUSIBLE MODEL FOR LONG TIME CONSTANTS.” Hippocampus 25 (1): 27–37. 
https://doi.org/10.1002/hipo.22347. 
 
Tsutsui, Ken-Ichiro, Fabian Grabenhorst, Shunsuke Kobayashi, and Wolfram Schultz. 2016. 
“A Dynamic Code for Economic Object Valuation in Prefrontal Cortex Neurons.” Nature 
Communications 7 (1): 12554. https://doi.org/10.1038/ncomms12554. 
 
Yu, Angela J., and Peter Dayan. 2005. “Uncertainty, Neuromodulation, and Attention.” 
Neuron 46 (4): 681–92. https://doi.org/10.1016/j.neuron.2005.04.026. 
  



19 
 

CHAPTER 2. RETROPLENIAL CORTEX IS REQUIRED FOR REWARD-HISTORY BASED STRATEGY  

 
Following from the result that history-based value was widely encoded in cortex but 

RSC showed unique strength and persistency of value-coding (Hattori et al. 2019), we 

speculated that RSC might have a privileged role in the decision-making circuit, and therefore 

that the behavior would be sensitive to the loss of neural activity in RSC. To test whether 

RSC was necessary for task performance, we performed optogenetic inactivation of RSC via 

light-targeted activation of parvalbumin-positive inhibitory interneurons in PV-Cre::LSL-

ChR2 transgenic mice (Figure 2.1 A). Light illuminated the cortical surface in specific 

patterns directed by a projector-based system (Dhawale et al. 2010; Haddad et al. 2013), 

which allowed specific inactivation of RSC along its full rostro-caudal axis (Figure 2.1 B).  

2.2 Results 

We found that RSC inactivation decreased both the probability of repeating the same 

action after rewarded trials (‘‘win-stay’’) and the probability of changing action after 

unrewarded trials (‘‘lose-switch’’) (Figure 2.1 C), indicating the animal had an impaired 

association between its immediately preceding choices and rewards.  

Logistic regression analysis showed that the inactivation also attenuated the mouse’s 

reliance on rewarded- and unrewarded-choice history (Figure 2.1 D, E), but had no effect on 

perseverative choice (Figure 2.1 F) or choice bias. These results suggested that neural activity 

in RSC was necessary for the reward-history-dependent decision-making strategy.  

Given the observation from the imaging results that history- and value-related signals 

were widespread across cortex, we tested the possibility that other areas might compensate for 

the function of RSC when it is fully removed. We performed chronic, bilateral lesions of RSC 

by injecting N-Methyl-D-aspartate (NMDA) to induce excitotoxicity (Figure 2.1 G). Unlike 
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the acute inactivation with optogenetics, the RSC lesion at expert stage did not affect the 

behavioral performance in subsequent sessions. The win-stay probabilities were unchanged 

following lesion (Figures 2.1 H and 2.2 A), and the change in logistic weights following 

lesion were no different from the saline-injected sham animals (Figures 2.1 I and 2.2 B). 

Neither metric showed any relation to lesion size (Figure 2.2 A, C). Remarkably, 

compensation occurred from even the very first day following lesion (Figure 2.2 D, E), with 

no re-learning required.  

These results indicate that RSC is acutely necessary for the decision-making task, but 

that the interconnected nature of the decision-making system and widespread encoding of 

value means that in the chronic absence of RSC other areas might compensate. Given the 

ethological salience of decision-making, it is not surprising that this is a conserved, widely 

distributed, and robust system. Even still, inactivating RSC during decision-making 

selectively impaired the reward-history-based strategy, suggesting RSC is involved when the 

animal incorporates and uses experience from past trials.  

This study revealed RSC as a critical region for decision making based on history-

dependent value, and indicated it is a rich and heterogenous cortical area for further study.  
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Figure 2.1: Acute inactivation of RSC, but not its chronic lesion, impairs reward history-based strategy 
(A) Schematic of the projector-based optical stimulation system. Patterned light is resized and focused on 
cortex to optogenetically activate parvalbumin-positive inhibitory neurons. 
(B) RSC was bilaterally inactivated in a small subset of trials within a session (5% or 15% of trials). In all 
other trials, the head bar was illuminated with the same light intensity and area. Elliptic illumination patterns 
were used for RSC inactivation trials to cover rostro-caudally elongated RSC. The illumination was applied from 
the onset of ready period until the choice at 30 Hz with a linear attenuation in the intensity after choice. 
(C) Effects of RSC inactivation on the win-stay and lose-switch probabilities (left: n = 5 mice; right: n = 12 
sessions). Red line indicates the mean of each condition. Only successive choice trials were used to derive the 
probabilities. P(Win-stay) was normalized by the overall stay probability (the average of P(Win-stay) and 
P(Lose-stay)). Similarly, P(Lose-switch) was normalized by the overall switch probability (the average of 
P(Win-switch) and P(Lose-switch)). For the n = animals plots (left), all sessions from each mouse were pooled to 
calculate the probabilities. For the n = sessions plots (right), only pairs from the 15% inactivation sessions were 
included. RSC inactivation made the stay and switch probabilities less dependent on the reward outcomes from 
the 1 trials. Paired t test. 
(D) Behavioral dependency on rewarded choice (RewC(t-i)), unrewarded choice (UnrC(t-i)), and outcome-
independent choice (C(t-i)) history in head bar trials and RSC inactivation trials (STAR Methods, Equation 23). 
(E) Effects of RSC inactivation on behavioral dependency on the 3 types of history from 1 trial (left: n = 5 
mice; right: n = 15 sessions). Pairs of head bar trials (black) and RSC inactivation trials (blue) are shown. Red 
lines indicate the means. RSC inactivation reduced behavioral dependency on choice-reward history, especially 
for the rewarded choice history. Wilcoxon signed-rank test was used for non-normally distributed UnrC(t-1) 
weights of n = sessions, and paired t test was used for the other comparisons. 
(F) Effect of RSC inactivation to choice bias (left: n = 5 mice; right: n = 15 sessions). The absolute value of 
bias is shown for pairs of head bar trials (black) and RSC inactivation trials (blue). Red line indicates the mean 
of each condition. Paired t test. The sign of the bias was also generally unaffected by inactivation (not shown). 
(G) (Top) Example coronal section from a mouse with lesioned RSC. The section is stained with NeuN to 
visualize the presence of neurons. RSC largely lacks NeuN-positive neurons. Dashed lines indicate the borders 
of RSC. (Bottom) A corresponding brain atlas is shown. Yellow lines outline RSC. Purple shading indicates 
lesioned area. 
(H) Effects of RSC lesion on win-stay and lose-switch probabilities (sham: n = 5 mice; lesion: n = 6 mice). 
Difference between the mean of 7 sessions before sham or lesion and the mean of 7 sessions after sham or lesion 
is shown. Red lines indicate the means. Two-sided t test. 
(I) Effects of RSC lesion on behavioral dependency on the 3 types of history from 1 trial. Two-sided t test. 
p < 0.05, **p < 0.01, ***p < 0.001. 
 
(Hattori et al., 2019) 
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Figure 2.2: RSC Lesion Does Not Impair Reward History-Based Strategy 
(A) Relationship between RSC lesion size and the effect on win-stay and lose-switch probabilities. 
Difference between the mean of 7 sessions before lesion and the mean of 7 sessions after lesion is shown. 
Pearson’s correlation coefficients and their p values are shown. 
(B) Behavioral dependency on rewarded choice (RewC(t-i)), unrewarded choice (UnrC(t-i)), and outcome-
independent choice (C(t-i)) history before and after sham or lesion surgery. The mean of 7 sessions before sham 
or lesion and the mean of 7 sessions after sham or lesion are shown. The means were averaged across mice (n = 
5 sham mice; n = 6 lesion mice). Error bars are SEM. 
(C) Relationship between RSC lesion size and the effects on behavioral dependency on the 3 types of 
history from 1 trial. Difference between the mean of 7 sessions before lesion and the mean of 7 sessions after 
lesion is shown. Pearson’s correlation coefficients and their p values are shown. 
(D) Effects of RSC lesion on win-stay and lose-switch probabilities on day 1 after lesion. (Top) Difference 
between the mean of 7 sessions before sham or lesion and day 1 after sham or lesion is shown (Two-sided t test). 
Red lines indicate the means. (Bottom) Relationship between RSC lesion size and the effects on win-stay and 
lose-switch probabilities. Difference between the mean of 7 sessions before lesion and day 1 after lesion is 
shown. Pearson’s correlation coefficients and their p values are shown. 
(E) Effects of RSC lesion on behavioral dependency on the 3 types of history from 1 trial. (Top) Difference 
between the mean of 7 sessions before sham or lesion and day 1 after sham or lesion is shown (Two-sided t test). 
Red lines indicate the means. (Bottom) Relationship between RSC lesion size and the effects on behavioral 
dependency on the 3 types of history from 1 trial. Pearson’s correlation coefficients and their p values are shown. 
n.s. p > 0.05. 
 
(Hattori et al., 2019) 
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2.5 Selected methods 

Excerpted methods from Hattori et al., 2019, relevant to Figures 2.1 and 2.2. 

2.5.1 Optogenetic inactivation 

To activate PV-positive inhibitory neurons in RSC of PV-Cre::LSL-ChR2 double 

transgenic mice using optogenetics, we generated elliptical illumination patterns with a DLP 

projector (Optoma X600 XGA). A single-lens reflex (SLR) lens (Nikon, 50 mm, f/1.4D, AF) 

was coupled with 2 achromatic doublets (Thorlabs, AC508-150-A-ML, f = 150 mm; 

Thorlabs, AC508-075-A-ML, f = 75 mm) to shrink and focus illumination patterns on RSC. A 

dichroic mirror (Thorlabs, DMLP490L) and a blue filter (Thorlabs, FESH0450) were placed 

between the 2 achromatic doublets and after the 2nd achromatic doublet, respectively, to pass 

only blue light (400-450 nm). Illumination patterns were generated with Psychtoolbox in 

MATLAB (http://psychtoolbox.org/). In RSC inactivation trials, a 2 mm 3 0.5 mm ellipse was 

focused on RSC in each hemisphere (Center at 0.3 mm lateral and 2 mm posterior to bregma). 

In all other trials, two 1 mm 3 1 mm circles were focused on the head bar (‘head bar trials’). 

The total light intensity was equivalent between RSC inactivation trials and head bar trials. 

We projected the patterns at 30 Hz as a sequence of square pulses from the onset of the ready 

period until the choice, with a linear attenuation in intensity over the last 100 ms. The 

intensity at the focus ranged between 2.5-6 mW/mm2 to moderately activate ChR2-

expressing neurons (Dhawale et al., 2010; Haddad et al., 2013). We set the frequency of RSC 

inactivation trials within a session to either 15% (12 sessions) or 5% (3 sessions) with the 

constraint that each RSC inactivation trial must be followed by at least 3 head bar trials to 

avoid excessive perturbation of reinforcement learning. We inactivated RSC through a glass 

window for 4 mice and through the skull for 1 mouse. The skull for the through-skull 
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inactivation was made semi-transparent by covering the dorsal skull surface with a layer of 

cyanoacrylate glue (Makino et al., 2017). 

2.5.2 Lesion 

Twelve adult mice were trained to perform the task, and after at least 7 days of stable 

performance underwent excitotoxic-lesion or sham or lesion surgery. Stable, expert 

performance for this task was determined to be choice prediction accuracy of > 65% with a 

standard RL model (Equation 3 and Equation 4) in at least 6 sessions during the 7 days; these 

sessions also met the > 0.08 RL index criterion for imaging mice in at least 6 sessions during 

the 7 days. Mice were anesthetized with 1%–2% isoflurane during surgery. Three burr-hole 

craniotomies per hemisphere (6 total) were opened on the dorsal skull over RSC. A tapered 

glass pipette was inserted to perform the cortical microinjection. Injection sites were, in mm 

and relative to Bregma: AP = 1.6, 2.3, 3.0, ML = ± 0.3, ± 0.35, ± 0.4, and DV = 0.4 from the 

dura surface in all sites. Injection was of 50 nL/site of either NMDA in sterile saline (20 

mg/ml or 10 mg/ml; Sigma) or sterile saline, at a rate of 0.05-0.1 ml/min. After injection, the 

pipette was left for 5 min to ensure diffusion of the solution. Buprenorphine (0.1 mg/kg of 

body weight) and Baytril (10 mg/kg of body weight) were subcutaneously injected after 

surgery. Following surgery, the mouse resumed the behavioral task on the next day, and 

thereafter every day. Both the surgeon and the experimenter for the behavior were blind to the 

identity of the substance that was injected, and became unblinded only after the last day of 

data collection. Of the 12 mice, 5 received saline, 7 received NMDA. One of the NMDA mice 

was excluded due to small and off-target lesion, as quantified by histology. Brains of lesion 

and saline mice were collected at 21-25 days post injection. To quantify the lesion size, 50 

mm-thick coronal sections were prepared with a microtome (Thermo Fisher Scientific) and 
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blocked with 10% goat serum, 1% bovine serum albumin, and 0.3% Triton X-100 in PBS. 

Immunostaining was then performed with anti-NeuN primary antibody (1:400; Mouse, 

Millipore) and anti-mouse Alexa Fluor 488 secondary antibody (1:1000; Goat, Thermo Fisher 

Scientific). Both missing areas and areas that lacked NeuN-positive neurons were considered 

lesioned. Images of coronal sections with RSC and the corresponding brain atlas (Paxinos and 

Franklin, 2001) were superimposed to quantify the % of lesion within RSC. 

2.5.3 Effects of optogenetic RSC inactivation on behavioral history dependency 

To quantify the effects of RSC inactivation on the behavioral history dependency, we 

fit the following logistic regression model: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝐿𝐿(𝑙𝑙)� = ��𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡−𝑖𝑖)
𝐻𝐻𝐻𝐻 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙 − 𝑙𝑙)

5

𝑖𝑖=1

+ �𝛽𝛽𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅(𝑡𝑡−𝑖𝑖)
𝐻𝐻𝐻𝐻 ∗ 𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅(𝑙𝑙 − 𝑙𝑙)

5

𝑖𝑖=1

+ �𝛽𝛽𝑅𝑅(𝑡𝑡−𝑖𝑖)
𝐻𝐻𝐻𝐻 ∗ 𝑅𝑅(𝑙𝑙 − 𝑙𝑙)

5

𝑖𝑖=1

+ 𝛽𝛽0𝐻𝐻𝐻𝐻� ∗ 𝐻𝐻𝐻𝐻(𝑙𝑙)

+ ��𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡−𝑖𝑖)
𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙 − 𝑙𝑙)

5

𝑖𝑖=1

+ �𝛽𝛽𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅(𝑡𝑡−𝑖𝑖)
𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅(𝑙𝑙 − 𝑙𝑙)

5

𝑖𝑖=1

+ �𝛽𝛽𝑅𝑅(𝑡𝑡−𝑖𝑖)
𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 𝑅𝑅(𝑙𝑙 − 𝑙𝑙)

5

𝑖𝑖=1

+ 𝛽𝛽0𝑅𝑅𝑅𝑅𝑅𝑅� ∗ 𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙)          [𝐞𝐞𝐞𝐞.𝟐𝟐𝟐𝟐] 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙 − 𝑙𝑙) is the rewarded choice history on trial 𝑙𝑙 − 𝑙𝑙 (1 if rewarded left 

choice, -1 if rewarded right choice, 0 otherwise), 𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅(𝑙𝑙 − 𝑙𝑙) is the unrewarded choice 

history on trial 𝑙𝑙 − 𝑙𝑙 (1 if unrewarded left choice, -1 if unrewarded right choice, 0 otherwise), 

𝑅𝑅(𝑙𝑙 − 𝑙𝑙) is the outcome-independent choice history on trial 𝑙𝑙 − 𝑙𝑙 (1 if left choice, -1 if right 

choice, 0 otherwise). 𝐻𝐻𝐻𝐻(𝑙𝑙) is 1 on head bar trials and 0 on RSC inactivation trials. 𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙) is 

1 on RSC inactivation trials and 0 on head bar trials. 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡−𝑖𝑖) , 𝛽𝛽𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅(𝑡𝑡−𝑖𝑖), and 𝛽𝛽𝑅𝑅(𝑡𝑡−𝑖𝑖) are 
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the regression weights of each history predictor, and 𝛽𝛽0 is the history-independent constant 

bias. The model has separate regression weights for head bar and RSC inactivation trials. The 

model was regularized with L1-penalty where the regularization parameter was selected by 

10-fold cross-validation (minimum cross-validation error). To prevent overpenalization of 

regression weights for less frequent RSC inactivation trials, we matched the number of head 

bar trials to the number of RSC inactivation trials for each fitting by randomly subsampling 

head bar trials. The subsampling and fitting were repeated with the smallest number of 

iterations to include every head bar trial at least once, and the regression weights from the 

iterations were averaged. 

2.5.4 Effects of RSC lesion to behavioral history dependency 

To quantify the effects of RSC lesion to the behavioral history dependency, we fit the 

following logistic regression model: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝐿𝐿(𝑙𝑙)� = �𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡−𝑖𝑖) ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙 − 𝑙𝑙)
5

𝑖𝑖=1

+ �𝛽𝛽𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅(𝑡𝑡−𝑖𝑖) ∗ 𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅(𝑙𝑙 − 𝑙𝑙)
5

𝑖𝑖=1

+ �𝛽𝛽𝑅𝑅(𝑡𝑡−𝑖𝑖) ∗ 𝑅𝑅(𝑙𝑙 − 𝑙𝑙)
5

𝑖𝑖=1

+ 𝛽𝛽0          [𝐞𝐞𝐞𝐞.𝟐𝟐𝟐𝟐] 

The model was regularized with L1-penalty where the regularization parameter was 

selected by 10-fold cross-validation (minimum cross-validation error). The model was fit to 

the choice patterns of each session. 
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CHAPTER 3. DIVERSE BEHAVIORAL TIMESCALES ENCODED IN RETROSPLENIAL CORTEX EXPLAIN 
HYPERBOLIC BEHAVIOR 

 

3.1 Summary 

 Animals rely on their experience to guide their next choice. In foraging-type tasks 

guided by history-dependent value, these experiences are integrated such that the weights of 

past events initially decay quickly over time but show a longer tail than expected by 

exponential decay, which is better described by a hyperbolic function. Hyperbolic integration 

affords sensitivity to both recent environmental dynamics and long-term trends, however the 

mechanism by which the brain implements this hyperbolic integration is unknown. We trained 

mice on a history-dependent, value-based decision task and found that the mice indeed 

showed hyperbolic decay on their weighting of past experience. However, the activity of 

history-encoding cortical neurons showed weighting with exponential decay.  In resolving this 

apparent mismatch, we observed that cortical neurons encode history information 

heterogeneously across a wide variety of time-constants, with the retrosplenial cortex (RSC) 

overrepresenting longer time-constants than other areas. A model that combines these diverse 

timescales can recreate the heavy-tailed, hyperbolic-like behavior. In particular, time-

constants of RSC neurons best matched the behavior, and optogenetic inactivation of RSC 

uniquely reduced the use of history information. These results indicate that behavior-relevant 

history information is maintained in neurons across multiple timescales in parallel, and 

suggest RSC is a critical reservoir of this information guiding decision-making. 

3.2 Introduction  

Integrating information from the past to make a decision in the present is a universal 

and critical component of animal behavior. For instance, in value-based decision making, 
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animals establish a subjective value for each available action, based on the reward outcomes 

of actions taken in the recent past. Reinforcement learning (RL) models provide a simple but 

powerful framework for how to integrate history information to guide future decisions (Sutton 

and Barto 1998).  RL models such as the Rescorla-Wagner model (Rescorla and Wagner 

1972) use the difference between expected rewards and observed rewards, known as reward 

prediction error, to update the subjective estimate of value. In typical formulations, the value 

associated with the action is updated by combining the new information (reward prediction 

error) from the most recent trial with the previous value estimates with a fixed learning rate. 

This update rule weights the influence of recent outcomes more than outcomes in the distant 

past. Specifically, a fixed learning rate results in exponential decay in the influence of past 

outcomes on the present estimate in which the influence decays with a fixed ratio for every 

unit time. Exponential integration of the past is attractive because of its mechanistic 

simplicity: the brain would in theory only need to update its subjective value by combining, 

with a fixed rate, the ongoing value representation with reward prediction error.  

However, behavior studies across humans (Serences 2008), non-human primates 

(Sugrue 2004; Corrado et al. 2005; Lau and Glimcher 2005), and other animal models 

(Aparicio and Baum 2009; Iigaya et al. 2019) engaged in value-based decision making have 

observed that animal behavior deviates from exponential integration. Specifically, the 

integration of past experience generally exhibits a sharp initial drop on recent experience with 

a heavy-tail on more distant experience, which is better fit by a hyperbolic than exponential 

function. The adaptive advantage of such hyperbolic integration seems intuitive, as the 

difference in the environment between 1 minute ago and 2 minutes ago is likely more 

informative about the current environment than the difference between 1 month ago and 1 
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month plus a minute ago. Thus it is beneficial to weight the experience from 1 minute ago 

more than 2 minutes ago but the weighting for a month ago and 1 month plus a minute ago 

should be nearly equivalent, which is achieved by heavy-tailed hyperbolic decay. Scaling the 

decay of information differentially across time imparts sensitivity to both recent changes and 

tendencies that are stable long-term. However, the mechanism by which the brain performs 

hyperbolic-like integration of history is unknown.  

To address this issue, we analyzed history integration of cortical neurons in mice 

engaged in value-based decision making. We find that behavioral integration of history in 

these mice is more hyperbolic than exponential, similar to previous behavioral studies. 

Interestingly, however, history integration of individual cortical neurons is more exponential 

than hyperbolic. We provide a potential explanation for this apparent discrepancy between 

behavior and neurons by demonstrating that the time-constants of exponential history 

integration are heterogeneous across neurons. Weighted averaging of these diverse 

exponential kernels, especially in the retrosplenial cortex (RSC) that overrepresents distant 

history information compared to other areas, can approximate hyperbolic-like behavioral 

integration. Inactivation of RSC, but not of posterior parietal cortex (PPC) or posterior 

premotor cortex (pM2), impairs the use of history information. We propose that RSC neurons 

function as a pool of heterogeneous exponential history integrators, and appropriate weighting 

of these neural populations results in adaptive behavior with hyperbolic history integration. 

3.2 Results 

3.2.1 Mouse choice pattern is better fit by hyperbolic than exponential integration  

To investigate the neural basis of history integration, we first analyzed the behavioral 

choice patterns of head-fixed mice trained on a dynamic foraging task. The data were 
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originally presented in (Hattori et al. 2019). In each trial, the mice were presented with the 

ready cue (light), followed 2-2.5 sec later by the answer cue (tone), after which they chose 

one of two options: lick left or lick right. There was no cue that instructs mice to choose one 

over the other, but the two lickports had different probabilities of delivering a water reward, 

schematized in Figure 3.1 A. These probabilities were stable for periods of time but changed 

every 60-80 trials, without any cue to the mouse. Mice trained in this task dynamically 

adjusted their choice pattern according to their choice-outcome history (example session, Fig. 

3.1 B).  

We quantified their use of the choice and outcome information from past trials with a 

logistic regression model. The model was fit using three types of history information: 

rewarded-choice history (the interaction between reward and choice, 1 for rewarded left 

choice, -1 for rewarded right choice, 0 otherwise), unrewarded-choice history (1 for 

unrewarded left choice, -1 for unrewarded right choice, 0 otherwise), and outcome-

independent choice (1 for left choice, -1 for right choice, 0 otherwise), for recent trials. The 

rewarded-choice history influenced the behavior most strongly and we focused on this history 

for the rest of the study. The regression weights for individual history events (example 

session, Fig. 3.1 C) indicate that mice used the most recent history information more than 

distant history information, with significant weights for trials as far as 10 trials back. 

The influence of past rewarded-choice experience decays smoothly on average (Fig. 

3.1 D). Importantly, the shape of this decay exhibits a sharp initial drop on recent experience 

and a heavy-tail on more distant experience, which is better described by hyperbolic than 

exponential fit (exponential AIC: -32.28, hyperbolic AIC: -55.55; lower AIC indicates better 

fit). That is, distant history is weighted more than expected from a consistent decay across all 
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timesteps. This is notable because a hyperbolic-like decay is a feature of the behavior that 

standard RL models are unable to capture. 

To confirm that behavior described by the RL model exhibits exponential decay, we 

generated an artificial choice pattern in an emulation of our task using a modified form of the 

RL model developed previously for this behavior (Hattori et al. 2019). The parameters of the 

RL model were taken from fitting the mouse behavior for each session. The sets of fitted 

parameters were then used with the generative model to produce simulated behavior, and the 

simulated choice patterns were fit with the same logistic regression model as above. By 

analyzing the history weights from the regression, we find that the simulated behavior is 

better fit by exponential than hyperbolic decay (Figure 3.1 E, exponential AIC: -56.33, 

hyperbolic AIC: -36.97), in contrast to the real behavior in Figure 3.1 D. Exponential 

behavior by the RL model is expected; the RL agent of the simulation uses a recursive style of 

integration that is time-invariant and therefore by definition exponential in nature. This result 

confirms that our analysis can accurately detect this feature. 

The results so far, based on the history weights from regression fits, suggest that the 

mice are using a hyperbolic-like integration rather than exponential integration to make their 

decision on a trial-by-trial basis. We tested this more directly by comparing the fits of two 

models where decay functions were convolved directly with the rewarded-choice pattern, 

rather than fit to the regression weights post hoc (Fig. 3.1 F).  We constructed this model with 

the explicit constraint that past weights decay monotonically with either an exponential or 

hyperbolic decay function. We then assessed whether the model with an exponential or 

hyperbolic constraint better fit the observed behavior. Model fit was evaluated by the session-

by-session difference in cross-validated loglikelihood of hyperbolic and exponential models. 
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In this nomenclature, a likelihood difference larger than zero indicates that a hyperbolic 

constraint better fits the behavior, and less than zero that exponential fits better. We observe 

that real behavior is in fact better fit by the hyperbolic model (Fig. 3.1 G, median=0.34, 

p=1.6e-11, 2-tailed Wilcoxon sign rank). In contrast, the simulated behavior generated with 

the RL was better fit with exponential integration (Fig. 3.1 G, median=-0.24, p=2.3e-8, 2-

tailed Wilcoxon sign rank), as expected.  

These results establish that the mice are using a behavioral strategy that deviates from 

the standard RL model, integrating history information with hyperbolic-like decay function. 
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Figure 3.1: Mice rely on hyperbolic rather than exponential weighting of rewarded-choice history during 
history-dependent value-based decision-making. 

(A) Schematic of behavior task. Mouse is presented with two lickspouts with different probabilities of 
reward on the left or right side. The mouse was cued with an amber LED to withhold licking during the ready 
period, then cued with a tone to choose a side in the answer period. The reward contingency inverted in a block 
structure of variable block lengths, and the pattern was repeated until the end of the session. The first block was 
randomly selected to be right- or left-high for any session. 
(B) Example session, probability of left reward assignment (black line), 10-trial smoothed choice pattern 
(purple line), left and right licks (blue, red), that were rewarded or unrewarded. 
(C) Logistic regression weights on rewarded-choice history for the example session in B. 
(D) Rewarded-choice weights from logistic regression in black, grand mean across 74 sessions and 14 
animals (mean ± SEM). Exponential (green) and hyperbolic (magenta) curves fit to the mean weights; 
exponential AIC: -32.28, hyperbolic AIC: -55.55; lower AIC indicates better fit. 
(E) As in D, but for 74 simulated sessions with unique input parameters (mean + SEM). Exponential AIC: -
56.33, hyperbolic AIC: -36.97; lower AIC indicates better fit. 
(F) Analysis workflow of the exponential and hyperbolic behavioral integration models. 
(G) Comparison of model performance, using 10-fold cross-validated loglikelihood, compared between 
exponential and hyperbolic models across identical train- and test-sets. Red indicates median above zero, black 
median below 0. (Mice: p=3.24e-11, simulated: p=2.28e-8, 2-tailed Wilcoxon signed-rank, FDR corrected for 
multiple comparisons).  
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3.2.2 Cortical neurons encode rewarded-choice history with exponential-like integration 

To explore the neural basis of hyperbolic history integration, we analyzed neural 

activity recorded from task-performing mice. These data, originally described in (Hattori et al. 

2019), were acquired with in vivo two-photon calcium imaging in CaMKIIa-tTA::tetO-

GCaMP6s double transgenic mice expressing GCaMP6s in cortical excitatory neurons (Fig. 

3.2 A). Fluorescence traces from each neuron were deconvolved (Friedrich, Zhou, and 

Paninski 2017; Pachitariu, Stringer, and Harris 2018) to give an approximation of underlying 

spiking activity. We focused our analysis on 5 cortical areas; retrosplenial cortex (RSC), 

posterior parietal cortex (PPC), posterior premotor cortex (pM2), anterior lateral motor cortex 

(ALM), and primary somatosensory cortex (S1). 

The activity of a subset of cortical neurons was modulated by rewarded-choice history. 

As seen in three example cells imaged in the same session in RSC, shown in Fig. 3.2 B, these 

cells exhibited different levels of activity depending on whether the left or right choice was 

rewarded in recent trials. The clearest separation in activity was when the most recent trial 

was rewarded on either the left side (darkest blue) or the right side (darkest red). Some of 

these cells showed stronger activity following left rewarded choice (e.g. cell 2), while others 

following right rewarded choice (e.g. cells 1 and 3). We focused the following analysis on the 

activity during the pre-choice, ready period (2 sec after the ready cue onset). We quantified 

the fraction of neurons modulated by rewarded-choice on at least the most recent trial (trial-1, 

Fig. 3.2 C), using linear regression (methods eq. 10). The fraction of significantly modulated 

neurons varied across sessions and across cortical areas, but was always well above chance, as 

calculated by shuffling the neural activity across trials. 

To investigate how these history-modulated neurons perform history integration, we 

applied the analogous model as for the behavior. Specifically, to each cell we fit a pair of 
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models in which past choice history was constrained to display either an exponential or 

hyperbolic decay and quantified the model’s prediction of cell activity with cross-validated 

loglikelihood. In contrast to the mouse behavior, we found that the cell activity was generally 

better fit by the exponential integration model (Fig. 3.2 D, see also Fig. 3.1 G). The cells were 

more exponential than hyperbolic across all cortical areas we investigated (RSC: median=-

3.19, p<<1e-10; PPC: median=-2.65, p<<1e-10; pM2: median=-2.40, p<<1e-10; ALM: 

median=-2.26, p<<1e-10; S1: median=-1.78, p<<1e-10). 
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Figure 3.2: Cortical neurons encode history information with exponential decay. 
(A) Schematic of two-photon imaging from five cortical areas, showing one example field of view from 
RSC. One cortical area in one hemisphere was imaged per session. 
(B) Trial-averaged activity of three example RSC neurons. Black line is the average across all trials. Blue 
lines are the mean of the subset of trials where the past trial (-5:-1 trials, indicated by darkening shade) was left 
choice and rewarded. Red lines are the same, but for right choice and rewarded. Grey dashed lines indicate the 
first 2 seconds of the ‘ready’ period of the trial. 
(C) Fraction of cells significantly modulated by rewarded-choice on the most recent trial (t-1). (mean ± 
SEM). Grey shading indicates fraction of significant cells in trial-shuffled data.  (n sessions: RSC=15; PPC=16; 
pM2=17; ALM=12; S1=14). 
(D) Comparison of model performance, using 10-fold cross-validated loglikelihood, between exponential 
and hyperbolic models across identical train- and test-sets. Left: loglikelihood from the regression model fit to 
the cell activity; right: loglikelihood of the generalized linear model fit to the behavior. Behavior replicated from 
1G for comparison. Note that loglikelihood for cell model and behavior model cannot be directly compared. (2-
tailed Wilcoxon signed-rank, ****, p< 0.0001, FDR corrected for multiple comparisons). 
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3.2.3 Cortical neurons encode temporal information with a wide variety of time-
constants 

 How can the brain generate behavior with hyperbolic integration when cortical 

neurons demonstrate exponential decay of past information? We consider the possibility that a 

hyperbolic discounting function with a sharp initial decay and a heavy tail can be 

approximated by a combination of exponentials with short and long time-constants. 

Therefore, if cortical neurons perform exponential integration with the decay time-constants 

that are heterogeneous across neurons, their combination could lead to a hyperbolic-like 

function to guide behavior. This mechanism for the generation of hyperbolic behavior from 

exponential neurons requires that there be a sufficiently diverse pool of neural decay rates to 

provide a basis for hyperbolic behavior. To test this idea, we examined the exponential decay 

time-constants of history modulated cells. Indeed, we observed that even within one field-of-

view for one cortical area, there are a wide variety of decay rates across cells (example cells 

from an RSC session, Fig. 3.3 A). Take, for example, cell 1, which shows the sharpest 

convergence between the cell activity traces (Fig. 3.2 B, top), corresponding to a short 

integration time (Fig. 3.3 A, top). In contrast, example cell 3 still showed clear separation of 

activity traces dependent on a rewarded-choice as many as five trials back (Fig. 3.2 B, 

bottom), leading to the more slowly-decaying exponential fit in Figure 3.3 A, bottom. To 

investigate the distribution of decay time-constants across neuronal populations, we focused 

our analysis on cells that were significantly modulated by rewarded-choice history in both 

first and second halves of the session. These stable, exponentially-modulated cells represent a 

smaller fraction than the cells which are modulated at least by the most previous rewarded 

choice for some part of the session, but these fractions were well above chance from the 

shuffled distribution in all 5 areas (Fig. 3.3 B). RSC and PPC exhibited the highest fraction of 
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modulated cells, while pM2, ALM, and S2 all showed less prevalent encoding of rewarded-

choice history information (compared to RSC, PPC: p=0.80, pM2: p=2.16e-4; ALM: p=1.24-

4; S1: p=3.61e-4).  

We observed that these exponential cells show a wide variety in their decay time-

constants (Fig. 3.3 C). Interestingly, the distributions of time-constants differed across areas. 

RSC was particularly enriched in neurons that encode history information with longer time-

constants: there was a right-shift in the distribution of tau in RSC compared to the other 

cortical areas (median, RSC: 2.34; PPC: 1.74; pM2: 1.76; ALM: 1.31; S1: 1.68. Compared to 

RSC, PPC: p=3.2e-04; pM2: p<1e-5; ALM: p=1.6e-04, S1: p=8.0e-05; bootstrapped test of 

medians, p-values Bonferroni corrected). 

To confirm that these distributions are not simply due to estimation noise, we 

partitioned each session into two blocks of trials and evaluated the exponential time-constants 

separately in each block for each neuron. As shown in the example RSC session in Fig. 3.3 D, 

the time-constants estimated in two halves of the session for the same neuron were highly 

consistent (Spearman’s r=0.58, p=1.54e-8). Across cortical areas, we routinely found that 

cell-specific tau was consistent, with correlations substantially higher than trial-shuffled data 

(Fig. 3.3 E; real data: mean r=0.47, geometric-mean p=2.05e-5; shuffled data: mean r=-0.01, 

geometric-mean p=0.31). This consistency indicates that each neuron integrates history with a 

stable time-constant that is specific to the cell and consistent throughout a session, and that 

this time-constant can be reliably estimated.  

Having established that multiple temporal scales are encoded simultaneously across 

neural populations in cortex, next we considered how the observed distributions of time-

constants, which differed across areas, could relate to the behavioral strategy. Specifically, we 
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asked whether a weighted sum of these diverse exponential functions could approximate the 

hyperbolic-like integration observed in behavior. To answer this, we designed a linear 

regression model in which behavioral choice patterns of mice were fit by the weighted sum of 

multiple exponential integrators with different time-constants. The time-constants were 

randomly sampled from those observed in cortical neurons, and the weights associated with 

each of the time-constants fit to the behavior (schematized in Fig. 3.3 F). We quantified the fit 

of this model with weighted sum of exponentials, which we call ‘quasi-hyperbolic’, as the 

difference in the cross-validated loglikelihood from the performance of the model with a 

single exponential function with the best-fit time-constant (analysis outlined in Fig. 3.3 G). 

We varied the number of time-constants for the quasi-hyperbolic model, and for each number 

of time-constants the random sampling of time-constants was repeated 1000 times and the 

results were averaged for each session. As we increased the number of sampled time-

constants, the performance of the quasi-hyperbolic model improved, surpassing that of the 

best-fit single exponential model and converging to the performance of the hyperbolic model 

(Fig. 3.3 H, grey line being the average improvement of the hyperbolic model from Fig. 3.1 

G). The performance of the quasi-hyperbolic drawn from the RSC neurons improved most 

quickly with an increasing number of sampled time-constants, indicating that RSC temporal 

encoding best matches the temporal characteristics of the behavior. Put another way, a 

downstream read-out of information from RSC can reproduce the observed timescale of the 

behavior more parsimoniously than any other area. This suggests that RSC holds a unique 

position among these cortical areas as having a representation of temporal history information 

that best matches the temporal component of the behavior. 
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Figure 3.3: Cell time-constants are heterogeneous, and the time-constants in RSC cells best match the 
behavior. 

(A) Mean activity difference (left-right) taken from the ‘ready’ period of Fig. 3.2 B. Black dots are the 
difference between left-rewarded activity and right-rewarded activity (mean ± SEM). Exponential filter (green 
line) estimated by the model for each cell. Cell 1: tau=0.81; cell 2: tau=1.45; cell 3: tau=4.35. 
(B) Fraction of cells significantly modulated by rewarded-choice history with an exponential decay in both 
halves of the session (mean ± SEM). Open bars are the fraction of cells modulated by only the most recent trial 
(t-1) reproduced from Figure 3.2 C. Grey shading indicates fraction of cells significantly modulated in trial-
shuffled data.  Cell fractions compared to RSC by two-tailed paired t-test (PPC: p=0.57, pM2: p=9.21e-4; ALM: 
p=5.83e-4; S1: p=3.78e-4, with FDR corrected for multiple comparisons). (n sessions: same as Figure 3.2). 
(C) Distribution of exponential time-constant τ across the significantly-modulated cells in five cortical 
areas. Top: histograms on log axis. Bottom: boxplots on linear axis. All sessions for given area are pooled. 
Medians are RSC: 2.62; PPC: 1.54; pM2: 1.62; ALM: 1.16; S1: 1.36. (Bootstrapped test of medians compared to 
RSC,  ****, p< 0.0001; p-values FDR corrected for multiple comparisons). 
(D) τ estimated separately in two halves of the session. Spearman’s r=0.58, p=1.54e-8. 
(E) Distribution of the Spearman’s correlation across all session-splits. All areas combined. Real data: mean 
r=0.47 (red line), geometric-mean p=2.05e-5; shuffled data: mean r=-0.01 (dashed red line), geometric-mean 
p=0.31. 
(F) The quasi-hyperbolic model is the weighted sum of multiple exponential processes, which yields a 
heavy-tailed function approximating a hyperbolic. 
(G) Model performance is compared as the difference in cross-validated loglikelihood between the quasi-
hyperbolic model and the exponential model, compared to the improvement of the hyperbolic model over the 
exponential model. 
(H) Performance of the quasi-hyperbolic behavioral model, compared to exponential behavioral model. 
Mean ± SEM across 1000 random draws. Grey line is mean ± SEM of hyperbolic model, reproduced from 
Figure 3.1 G. 
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3.2.4 Inactivating RSC, but not PPC or pM2, reduces the mouse’s use of rewarded-
choice history in hyperbolic-like integration 

 In the above results, we laid out evidence that history integration occurs at multiple 

timescales simultaneously across different neurons in cortex, and RSC is enriched in the 

timescales that best match the behavior. From this, we hypothesize that RSC is uniquely 

required for the history integration to guide the behavior.   

To test this, we selectively and reversibly inactivated cortical areas via optogenetic 

activation of Parvalbumin-positive (PV) inhibitory neurons in PV-Cre::LSL-ChR2 double 

transgenic animals that expressed Channelrhodopsin in PV neurons. We focused on RSC, 

PPC, and pM2, the three areas with strongest history encoding. We used a projector system 

(Hattori et al. 2019; Dhawale et al. 2010; Haddad et al. 2013) to apply blue light over each 

cortical area. This flexible light-delivery system, combined with a large cranial window 

preparation (Hattori and Komiyama 2022c), allowed us to investigate the role of multiple 

cortical areas separately within the same animal (schematic in Fig. 3.4 A). Inactivation was 

performed only for one area per session. In each session, inactivation occurred on a subset of 

trials (15% randomly selected, with the constraint to not be within 3 trials of each other), 

starting from the beginning of the ready cue until the choice was made. On all other trials 

light was directed over the headbar, away from the brain, in the same task period to control 

for light distraction. We also performed separate control sessions in which the light was 

applied over the headbar in all trials and designated ~15% of these trials as pseudo-

inactivation trials. The total area of light coverage and intensity per cortical area was 

consistent for each cortical area, and for the control condition. 3 of the x RSC inactivation 

animals have been previously described (Hattori et al. 2019). Inactivation on one trial could 
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have carry-over effects on subsequent trials.  As such, we compared the inactivation trials 

with pseudo-inactivation trials in the control sessions of the same animal. 

To quantify the effects of inactivation, we fit a modified version of the logistic 

regression analysis (methods eq. 3-4) in which the inactivation trials had a separate set of 

weights from the pseudo-inactivation trials from control sessions (analysis outline in Fig 3.4 

B.). We found that inactivating RSC during the pre-choice, ready period reduced the 

dependence on rewarded-choice history. This effect was not seen with inactivation of PPC or 

pM2(Fig. 3.4 C, effect of inactivation condition: RSC: p=3.15e-4; PPC: p=0.90; pM2: p=0.37, 

two-way repeated-measures ANOVA). Thus, of these three areas with strong representation 

of history information, we found that only RSC is uniquely necessary for the behavioral use 

of rewarded-choice history. 

Lastly, we investigated whether inactivation affected the hyperbolic nature of 

behavioral history integration. The behavioral decay models, hyperbolic and exponential, 

were estimated separately for the inactivation trials or pseudo-inactivation trials, and model 

performance calculated as the difference in cross-validated loglikelihood between hyperbolic 

and exponential models. We found that RSC inactivation caused the behavioral strategy to 

become less hyperbolic than in control trials. This effect was not seen with inactivation of 

PPC or pM2 (Fig. 3.4 D, RSC: p=6.06e-3; PPC: p=0.52; pM2: p=0.91). These results indicate 

that RSC is necessary for implementing the hyperbolic-like integration we observe in the 

choice patterns. 
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Figure 3.4: Inactivation of RSC reduces reliance on rewarded-choice history and impairs hyperbolic 
weighting of past trials. 

(A) Schematic of the inactivation. Patterns of light were delivered with a projector-based system onto the 
cortical surface of mice performing the task. Right: the position of stimulus for RSC, PPC, or pM2 during 15% 
of trials, one area per session, and to the headbar in the other 85% of trials. Control sessions included light over 
the headbar in all trials. Illumination at 30 Hz occurring during the ready and answer periods of trials. 
(B) Analysis workflow for inactivation behavior data. The inactivation trials for inactivation sessions and 
15% of trials in control sessions are considered in the analysis. 
(C) Logistic regression weights in control (Ctrl, black line) and inactivation (Inac, blue line) trials. (mean ± 
SEM) (RSC: n=10 mice, 29 control sessions, 26 opto sessions; PPC: n=10 mice, 31 control sessions, 26 
inactivation sessions; pM2: n=9 mice, 28 inactivation sessions, 22 inactivation sessions). (Two-way repeated-
measures ANOVA, effect of inactivation condition. RSC: p=3.15e-4; PPC: p=0.90; pM2: p=0.37). 
(D) Comparison of model performance, using 10-fold cross-validated loglikelihood, compared between 
exponential and hyperbolic models across identical train- and test-sets. (2-tailed Wilcoxon signed-rank. RSC: 
p=6.06e-3; PPC: p=0.52; pM2: p=0.91). 
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Figure 3.5: RSC encodes a reservoir of temporal information used for decision-making. 
RSC neurons encode rewarded-choice history experience with a diversity of time-constants, 
including cells with short integration and long integration. The combination of many 
exponential integrators yields the heavy-tailed integration observed in the behavior. 
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3.3 Discussion 

 Here we showed that the behavior of mice engaged in value-based decision-making is 

driven by trial history integrated according to a hyperbolic-like decay, similar to what has 

been shown in analogous behavioral tasks in multiple species (Serences 2008; Sugrue 2004; 

Corrado et al. 2005; Lau and Glimcher 2005; Aparicio and Baum 2009; Iigaya et al. 2019). In 

an apparent contradiction, we found that cortical neurons encode history in a manner more 

consistent with an exponential decay than hyperbolic. However, cortical neurons do not 

represent history homogeneously. Rather, history is encoded simultaneously across many 

neurons with heterogenous time-constants of integration. This activity pattern is consistent 

with a series of exponential processes acting in parallel over widely distributed temporal 

horizons, which can sum together to yield the heavy-tailed, hyperbolic-like integration 

observed in the behavioral strategy. RSC encodes this information over a longer temporal 

horizon than the other cortical areas, and inactivation of RSC uniquely attenuates the use of 

history information and impairs the hyperbolic-like integration. From these results, we posit 

that history information is integrated in a distributed and diverse manner, with experience 

across different timescales encoded differently across neurons. We propose a model where 

history information is encoded in individual neurons by simple exponential integration with 

heterogeneous time-constants. Behavior arises from the combination of multiple 

exponentially-integrative processes, in particular those with longer time-constants, which 

yields a decision strategy that has the heavy-tailed feature of a hyperbolic (Fig. 3.5).  

This model provides a potential mechanism by which the brain uses a conceptually 

simple mechanism of exponential value updates to achieve a hyperbolic-like behavior. Such a 

heavy-tailed integration has also been described as the phenomenon of ‘undermatching’, and 

has previously been considered a suboptimal form of decision-making in laboratory behaviors 
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(Corrado et al. 2005; Lau and Glimcher 2005; Iigaya et al. 2019). However, a natural 

environment has dynamics at multiple timescales. For example, the decision of when and 

where to go foraging for food may depend on factors such as the weather, hunger state, and 

seasonal changes in available items, just to name a few. These factors vary across orders of 

magnitude in the speed of changes, rendering an exponential integration with a constant decay 

rate per unit time to be suboptimal. Hyperbolic-like decay is conserved across species, and 

may be an evolutionary response to an environment that has multiple timescales of changes. 

Although here we focused on retrospective processes in which history information decays 

over time, prospective discounting of potential future rewards is also known to follow a 

hyperbolic function. For example, in delay discounting experiments in which the animal is 

presented with choices that return rewards at different temporal delays and magnitudes, 

animals show a stereotypic reversal in time-preference at long-lags indicative of hyperbolic 

discounting (Frederick and Loewenstein 2002; Haith, Reppert, and Shadmehr 2012). Thus, 

hyperbolic functions seem common in weighting influences of events over time. However, 

truly hyperbolic computation is difficult to achieve with a recursive operation modeled in 

standard RL, and other computations that approximate hyperbolic discounting have been 

proposed (Alexander and Brown 2010; Fedus et al. 2019; Kurth-Nelson and Redish 2009; 

Wilson, Nassar, and Gold 2013). In contrast, exponential computation can be achieved with a 

simple recursive operation. In an extension of this logic, our model proposes that multiple 

exponential computations with heterogeneous time-constants performed in parallel can 

generate hyperbolic-like behavior.  

Previous studies have also described heterogeneity across individual neurons in their 

encoding of behavior-related temporal information within and across brain areas (Brody 2003; 
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Goldman 2017; Harvey, Coen, and Tank 2012; Bernacchia et al. 2011; Spitmaan et al. 2020; 

Scott et al. 2017; Runyan et al. 2017). We extend these observations and uncover that RSC is 

especially enriched in long time-constants, and that the timescales in RSC best match the 

animal’s behavioral strategy. RSC inactivation leads to an impairment in the animal’s ability 

to use history information to make its decision. Furthermore, our recent studies uncovered that 

RSC uniquely maintains history information as persistent population activity (Hattori et al. 

2019; Hattori and Komiyama 2022a). These identify RSC as a critical cortical area that 

encodes and maintains behaviorally-relevant temporal information. 

How do individual neurons perform diverse temporal integration? Even within the 

same area, cells are often heterogeneous in their intrinsic temporal characteristics (Murray et 

al. 2014; Cavanagh et al. 2016; Chaudhuri et al. 2015). However, such intrinsic time-

constants of cells are short and not necessarily associated with their encoding of longer, 

reward-history relevant timescales (Spitmaan et al. 2020). Accordingly, the increasingly long 

temporal horizons represented in higher cortical areas likely also involve network interactions 

and reverberation (Tiganj, Hasselmo, and Howard 2015; Chaudhuri et al. 2015; Hunt and 

Hayden 2017; Spitmaan et al. 2020). Notably, RSC has been found to have a neural 

population dominated by highly excitable cells, yielding a network capable of producing 

sustained and specific responses to outside input (Brennan et al. 2020). Indeed, during value-

based decision making, the activity of RSC neurons is particularly persistent, indicating the 

capacity for sustained encoding of behavior-relevant information (Hattori et al. 2019; Hattori 

and Komiyama 2022a).  

When the environment shifts dynamically between periods of stability and volatility, 

animals need to adapt their behavioral integration timescales (Dayan, Kakade, and Montague 
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2000; Daw et al. 2006; Daw, Niv, and Dayan 2005; Daw et al. 2011; Kennerley et al. 2006; 

Behrens et al. 2007; Meder et al. 2017; Massi, Donahue, and Lee 2018; Bernacchia et al. 

2011; Iigaya et al. 2019). In theory, RSC neurons could serve as a stable reservoir of 

heterogeneous history information, and behavioral adaptation could be achieved by flexibly 

adjusting the readout weights for different neurons by the downstream circuit. Such a shift 

might be mediated by neuromodulators whose activity is correlated with behavioral 

adaptation, such as dopamine (Doya 2002; Ito and Doya 2009; Kim et al. 2020), 

noradrenaline (Doya 2002; Yu and Dayan 2005), or serotonin (Doya 2002; K. W. Miyazaki et 

al. 2014; Cohen, Amoroso, and Uchida 2015; Matias et al. 2017; K. Miyazaki et al. 2020; 

Grossman, Bari, and Cohen 2022). Alternatively, individual RSC neurons may alter their 

time-constants of integration according to changes in environmental demands. The dynamics 

of RSC encoding and downstream readout during behavioral adaptations would be an 

interesting topic of future studies.  

Our results resonate with distributional reinforcement learning (Dabney et al. 2020; 

Lowet et al. 2020), which models decision as being made as the combination of parallel 

estimates of value that vary in their degrees of optimism and learning rates. The advantage of 

such a system is to simultaneously provide information to the animal about the range of 

expected outcomes, forming a distribution of prospective reward expectation. Supporting this 

notion, midbrain dopaminergic neurons represent reward prediction error with diverse 

reversal points between positive and negative prediction errors (Dabney et al. 2020). As 

temporal integration may be sped or slowed with larger or smaller learning rates on reward-

prediction errors, our model of hyperbolic behavior achieved from diverse speeds of neuronal 
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integration could be consistent with the theoretical model of distributional reinforcement 

learning, as either a consequence or cause of the value distribution.  

Hyperbolic temporal integration confers a specific behavioral advantage, which is to 

balance sensitivity to both short-term changes and long-term trends. The distribution of 

temporal information observed in RSC is capable of producing the hyperbolic-like behavior, 

and our results suggest a specific cortical substrate and mechanism by which hyperbolic 

integration might arise.    

3.4 Methods 

3.4.1 Experimental Model and Subject details 

 All procedures were in accordance with protocols approved by the University of 

California San Diego Institutional Animal Care and Use Committee and the guidelines of the 

National Institutes of Health. The behavior and neural activity data from two-photon imaging 

were first reported in (Hattori et al. 2019), as was the RSC inactivation data for three of the 

twelve optogenetic inactivation animals. Both male and female mice were included in the 

imaging and inactivation datasets because we did not observe sex-related differences in their 

behavior or neural activity. Mice were originally purchased from the Jackson Laboratory. 

(CaMKIIa-tTA: B6;CBA-Tg(Camk2a-tTA)1Mmay/J [JAX 003010]; tetO-GCaMP6s: 

B6;DBA-Tg(tetO-GCaMP6s)2Niell/J [JAX 024742]; PV-Cre: B6;129P2-Pvalbtm1(cre)Arbr/J 

[JAX 008069]; Ai32: B6.Cg-Gt(ROSA) 26Sortm32(CAG-COP4* H134R/EYFP)Hze/J [JAX 

024109]). All surgery, behavior training, and experiments were conducted in adult mice (6 

weeks or older), on a reversed light cycle (12h-12h). Mice were water-restricted to ~1 ml/day 

while undergoing behavior training and experiments. 
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3.4.2 Surgery for imaging and optogenetics 

Animals were prepared for imaging and optogenetic experiments with a large cranial 

window placed over dorsal cortex, as previously reported in (Hattori et al. 2019; Hattori and 

Komiyama 2022c). In brief, mice were anesthetized with 1-2% isoflurane during surgery, the 

dorsal surface of the skull was exposed and cleared of soft tissue with a razor blade, and 

marked with the coordinates of interest. After soaking the skull in saline, the bone became 

transparent enough to visualize the vasculature patterns on the surface of the brain. We took a 

photo with both the marked coordinates and vasculature visible, and used this as a reference 

to later identify the cortical area for two-photon imaging and inactivation. A large, hexagonal 

craniotomy was opened to expose all cortical areas of interest, and a glass window placed 

over the surface of the brain. The window was secured to the skull first with a thin application 

of 3M Vetbond (WPI), then with cyanoacrylate glue and dental acrylic cement (Lang Dental). 

Last, a custom-machined headbar was attached to the skull, posterior to the window using 

cyanoacrylate glue and dental cement. Mice were injected subcutaneously with 

dexamethasone (2 mg/kg) prior to surgery, and Buprenorphine (0.1 mg/kg) and Baytril (10 

mg/kg) after surgery.  

The cortical areas of interest for this study were anterior lateral motor (ALM, 1.7 mm 

lateral and 2.25 mm anterior to bregma), posterior premotor (pM2, 0.4 mm lateral and 0.5 mm 

anterior to bregma), posterior parietal (PPC, 1.7 mm lateral and 2 mm posterior to bregma), 

retrosplenial (RSC, 0.4 mm lateral and 2 mm posterior to bregma), and primary 

somatosensory (S1, 1.8 mm lateral and 0.75 mm posterior to bregma) cortex. 
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3.4.3 Behavior task 

The dynamic foraging task and training paradigm were consistent with previous 

reports from the lab (Hattori et al. 2019; Hattori and Komiyama 2022a). In summary, mice 

were pretrained through a series of behaviors to introduce the task structure and to train 

licking to both left and right water delivery ports. In the foraging task, head-restrained mice 

were presented with two lickports monitored with IR beam detectors. Mice were required to 

withhold licking during a light-cued ready-period (2-2.5 sec) at the start of each trial, after 

which the mouse was cued with an auditory tone (10 kHz) to report a choice during the 

answer period (2 sec), after which they received a feedback tone (left: 5 kHz, right: 15 kHz), 

and probabilistic water reward. The water volume of reward was constant, at ~2.5 µl per 

reward. Following reward delivery, a variable-length inter-trial-interval followed (5-7 s), 

before the ready-period marked the beginning of the next trial. Trials in which the mice licked 

during the cued ready-period (‘alarm trials’) or trials in which the mouse did not make a 

choice during the answer period (‘miss trials’) were not rewarded, and excluded from 

analysis. 

Reward was assigned to each lickport on every trial according to the reward 

probability for that lickport in that block. Once a reward was baited to a lickport it remained 

available there until chosen. The reward assignment probabilities for the two lickports were 

either [60%, 10%] or [52.5%, 17.5%]. This probability inverted randomly every 60-80 trials 

with a deterministic order of [60%, 10%], [10%, 60%], [52.5%, 17.5%], [17.5%, 52.5%], 

[60%, 10%], … with the first block being left-high or right-high at random.  
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3.4.5 Behavior inclusion criteria 

 For both the imaging and inactivation experiments, mice were trained over a period of 

weeks for 1-2 hours per session per day, to reach ‘expert’ level performance. Each session 

was evaluated for performance, and only consistent expert-level performance was included in 

analysis. Expert-level performance was assessed in part by the RL index (Hattori et al. 2019), 

which was a quantification of how closely the full RL model [eq. 5-7] captured the behavior. 

This was defined as the difference in model fit as follows: 

𝑅𝑅𝑅𝑅 𝑙𝑙𝑈𝑈𝑖𝑖𝑅𝑅𝑖𝑖 = �𝑅𝑅𝑙𝑙𝐿𝐿𝑅𝑅𝑙𝑙𝑙𝑙ℎ𝑙𝑙𝑙𝑙𝑖𝑖 𝑙𝑙𝑜𝑜 𝑙𝑙ℎ𝑅𝑅 𝑅𝑅𝑅𝑅 𝑚𝑚𝑙𝑙𝑖𝑖𝑅𝑅𝑙𝑙𝑛𝑛 − �𝑅𝑅𝑙𝑙𝐿𝐿𝑅𝑅𝑙𝑙𝑙𝑙ℎ𝑙𝑙𝑙𝑙𝑖𝑖 𝑅𝑅𝑖𝑖𝑒𝑒𝑙𝑙𝑒𝑒𝑙𝑙𝑈𝑈𝑅𝑅𝑖𝑖 𝑏𝑏𝑦𝑦 𝑏𝑏𝑙𝑙𝑒𝑒𝑏𝑏 𝑙𝑙𝑈𝑈𝑙𝑙𝑦𝑦 𝑚𝑚𝑙𝑙𝑖𝑖𝑅𝑅𝑙𝑙𝑛𝑛         [𝐞𝐞𝐞𝐞.𝟏𝟏] 

where the bias only model uses the bias term 𝛽𝛽0 of the full RL model [eq. 7], and 𝑈𝑈 is the 

number of choice trials in a session. Inclusion criteria consisted of an RL index of at least 0.08 

for the session, and experience performing the task for at least 15 sessions. Expert mice 

usually performed > 600 trials in a session.  

3.4.6 Two-photon calcium imaging and processing 

As previously reported in (Hattori 2019), imaging experiments were conducted with a 

two-photon microscope (B-SCOPE, Thorlabs; 16x objective, 0.8 NA, Nikon) with excitation 

at 925 nm (Ti-Sapphire laser, Newport), continuously imaged at 29 Hz. Neurons were 

recorded from layer 2/3 in a single cortical area and hemisphere per session. We collected 

only one population from each hemisphere for each cortical area of a single mouse. The 

images were processed with a custom-built pipeline (Hattori and Komiyama 2022a) to correct 

motion artifacts (Mitani and Komiyama 2018) and image distortions (Hattori and Komiyama 

2022b). We then used Suite2p (Pachitariu et al. 2016) to select cells and extract the GCaMP 

signal, identifying cells first with a user-trained classifier followed by manual inspection. This 

calcium signal was then deconvolved to obtain estimated spiking activity using a non-
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negative deconvolution algorithm (Friedrich, Zhou, and Paninski 2017; Pachitariu, Stringer, 

and Harris 2018). This estimated activity for each neuron was z-score normalized across the 

time series for the entire session prior to all further analysis. The mean z score activity from 

the first 2 s of the ready-period, when the mouse is withholding licking, was used for the cell 

activity analysis.  

3.4.7 Optogenetic inactivation 

Cortical inactivation experiments were performed in PV-Cre::LSL-ChR2 double 

transgenic mice via activation of channelrhodopsin in the Parvalbumin-positive inhibitory 

neurons. Methods are consistent with (Hattori et al. 2019), and this paper includes RSC 

inactivation from three of the animals from the previous publication. Blue light was directed 

over the cortical surface through a large cranial window (described above for imaging) with a 

projector-based light delivery system. Elliptical illumination patterns were produced with 

Psychtoolbox in MATLAB, and projected (DLP projector, Optoma X600 XGA) through a 

single-lens reflex (SLR) lens (Nikon, 50 mm, f/1.4D, AF) coupled with 2 achromatic doublets 

(Thorlabs, AC508-150-A-ML, f = 150 mm; Thorlabs, AC508-075-A-ML, f = 75 mm) to 

focus illumination patterns over the brain and headbar. A dichroic mirror (Thorlabs, 

DMLP490L) and a blue filter (Thorlabs, FESH0450) were placed in the light path to pass 

only blue light (400-450 nm). 

Cortical inactivation occurred on 15% of trials, constrained to not be within three trials 

of the previous inactivation. Light turned on at the beginning of the ready period, and turned 

off with the mouse’s choice or the end of the answer period, whichever came first. During 

inactivation trials, light was directed over the cortical area of interest (one area per session), or 

over the headbar in control sessions. During control trials, light was directed over the headbar. 



61 
 

Light was pulsed at 30 Hz, at an intensity between 2.5-6 mW/mm2, with a linear ramp down 

of intensity at offset over 100 ms.  

Three inactivation patterns were used: one for RSC, a 2.0 mm x 0.5 mm ellipse, 

centered at 0.3 mm lateral and 2.0 mm posterior to bregma; one for PPC, a 1.0 mm circle, 

centered at 1.5 mm lateral and 2.0 mm posterior to bregma; one for pM2, a 1.0 mm circle, 

centered 0.3 mm lateral and 0.5 mm anterior to bregma. Each pattern was bilaterally 

symmetric. The control light pattern was directed over the headbar as two 1.0 mm circles 

centered 1.0 mm apart. The stimulation pattern for each of the cortical and control conditions 

was light area- and intensity-matched. 

3.4.8 Logistic regression behavioral model 

To quantify the strategy of the mouse, we used a logistic regression model to predict 

the choices the mouse makes based on the recent experience the mouse has received. The 

choice on a given trial t is predicted by the weighted sum of the rewarded-choice (interaction 

of reward and choice, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅), unrewarded-choice (interaction of no reward and choice, 

𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅), and reward-independent choice (𝑅𝑅) in the past 10 trials, along with a constant bias 

term. The model is: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝐿𝐿(𝑙𝑙)� = �𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡−𝑖𝑖) ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙 − 𝑙𝑙)
10

𝑖𝑖=1

+ �𝛽𝛽𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅(𝑡𝑡−𝑖𝑖) ∗ 𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅(𝑙𝑙 − 𝑙𝑙)
10

𝑖𝑖=1

+ �𝛽𝛽𝑅𝑅(𝑡𝑡−𝑖𝑖) ∗ 𝑅𝑅(𝑙𝑙 − 𝑙𝑙)
10

𝑖𝑖=1

+ 𝛽𝛽0  [𝐞𝐞𝐞𝐞.𝟐𝟐] 

where 𝑃𝑃𝐿𝐿(𝑙𝑙) is the probability of choosing left on trial 𝑙𝑙, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙 − 𝑙𝑙) is the rewarded 

choice on past trial 𝑙𝑙 − 𝑙𝑙  (1 if rewarded on the left, -1 if rewarded on the right, 0 otherwise), 

𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅(𝑙𝑙 − 𝑙𝑙) is the unrewarded choice on past trial 𝑙𝑙 − 𝑙𝑙  (1 if unrewarded on the left, -1 if 

unrewarded on the right, 0 otherwise), 𝑅𝑅(𝑙𝑙 − 𝑙𝑙) is the reward-independent choice history on 
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trial 𝑙𝑙 − 𝑙𝑙  (1 if left choice, -1 if right choice, 0 otherwise). 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡−𝑖𝑖) , 𝛽𝛽𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅(𝑡𝑡−𝑖𝑖), and 𝛽𝛽𝑅𝑅(𝑡𝑡−𝑖𝑖) 

are the regression weights for each of the corresponding predictors, and 𝛽𝛽0 is the constant bias 

term. Model fitting was performed in python, with the package Scikit-learn and the function 

LogisticRegression, solved by gradient descent with the BFGS algorithm.  

3.4.9 Logistic regression for optogenetic analysis 

Given that inactivation trials occurred on only 15% of trials in a session, we had a 

small number of trials for each session relative to the number of regression parameters in the 

above model. To increase model stability for these experiments, we reduced the number of 

history trials considered from 10 trials to 5 trials. Furthermore, instead of performing a 

regression for each session, we concatenated all inactivation and control sessions from each 

animal and used a version of mixed-effects model to account for variability across sessions. 

Only the inactivation trials and their corresponding history predictors were used, and coded as 

‘inac’ for inactivation sessions, and ‘ctrl’ from the headbar control sessions. We further 

subsampled trials to have a matched number of trials in each condition, inac and ctrl, and 

iterated this subsample such that all trials were included at least once. The reported weights 

are the mean weights across all iterations.  

The resulting model had the following fixed effects: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝐿𝐿(𝑙𝑙)� = ��𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡−𝑖𝑖)
𝑅𝑅𝑡𝑡𝑈𝑈𝐶𝐶 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙 − 𝑙𝑙)

5

𝑖𝑖=1

+ �𝛽𝛽𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅(𝑡𝑡−𝑖𝑖)
𝑅𝑅𝑡𝑡𝑈𝑈𝐶𝐶 ∗ 𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅(𝑙𝑙 − 𝑙𝑙)

5

𝑖𝑖=1

+ �𝛽𝛽𝑅𝑅(𝑡𝑡−𝑖𝑖)
𝑅𝑅𝑡𝑡𝑈𝑈𝐶𝐶 ∗ 𝑅𝑅(𝑙𝑙 − 𝑙𝑙)

5

𝑖𝑖=1

+ 𝛽𝛽0𝑅𝑅𝑡𝑡𝑈𝑈𝐶𝐶� ∗ 𝑅𝑅𝑙𝑙𝑈𝑈𝑙𝑙(𝑙𝑙) 

+��𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡−𝑖𝑖)
𝐼𝐼𝑈𝑈𝐼𝐼𝐼𝐼 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙 − 𝑙𝑙)

5

𝑖𝑖=1

+ �𝛽𝛽𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅(𝑡𝑡−𝑖𝑖)
𝐼𝐼𝑈𝑈𝐼𝐼𝐼𝐼 ∗ 𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅(𝑙𝑙 − 𝑙𝑙)

5

𝑖𝑖=1

+ �𝛽𝛽𝑅𝑅(𝑡𝑡−𝑖𝑖)
𝐼𝐼𝑈𝑈𝐼𝐼𝐼𝐼 ∗ 𝑅𝑅(𝑙𝑙 − 𝑙𝑙)

5

𝑖𝑖=1

+ 𝛽𝛽0𝐼𝐼𝑈𝑈𝐼𝐼𝐼𝐼�

∗ 𝐼𝐼𝑈𝑈𝑒𝑒𝐼𝐼(𝑙𝑙)                   [𝐞𝐞𝐞𝐞.𝟐𝟐] 

where the control, 𝑅𝑅𝑙𝑙𝑈𝑈𝑙𝑙, and inactivation, 𝐼𝐼𝑈𝑈𝑒𝑒𝐼𝐼, conditions had separate 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡−𝑖𝑖) , 

𝛽𝛽𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅(𝑡𝑡−𝑖𝑖), and 𝛽𝛽𝑅𝑅(𝑡𝑡−𝑖𝑖), and 𝛽𝛽0 regression weights associated with them. 
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To estimate the random effects for individual sessions, the trials were assessed with 

random slope and intercept following the form: 

      𝑦𝑦 ~ 𝑜𝑜(𝑙𝑙, 𝐼𝐼𝑈𝑈𝑒𝑒𝐼𝐼) + (0 + 𝐼𝐼𝑈𝑈𝑒𝑒𝐼𝐼|𝑏𝑏𝑅𝑅𝑏𝑏𝑏𝑏𝑙𝑙𝑙𝑙𝑈𝑈)

+ (1|𝑏𝑏𝑅𝑅𝑏𝑏𝑏𝑏𝑙𝑙𝑙𝑙𝑈𝑈)                                                                                              [𝐞𝐞𝐞𝐞.𝟐𝟐] 

Where 𝑜𝑜(𝑙𝑙, 𝐼𝐼𝑈𝑈𝑒𝑒𝐼𝐼) here refers to [eq. 3], 𝐼𝐼𝑈𝑈𝑒𝑒𝐼𝐼 is 1 on inactivation trials and 0 on 

control trials, with a random slope for the inactivation effect on each 𝑏𝑏𝑅𝑅𝑏𝑏𝑏𝑏𝑙𝑙𝑙𝑙𝑈𝑈, and a random 

intercept for each 𝑏𝑏𝑅𝑅𝑏𝑏𝑏𝑏𝑙𝑙𝑙𝑙𝑈𝑈.  

3.4.10 Reinforcement learning model and simulated behavior 

The reinforcement learning model used to generate simulated behavior is one taken 

from (Hattori et al. 2019). This model was modified from the Rescorla-Wagner model to 

describe mouse behavior in our task, with separately updated action values for the chosen 

option, 𝑄𝑄𝐼𝐼ℎ, and unchosen option, 𝑄𝑄𝑢𝑢𝑈𝑈𝐼𝐼ℎ: 

𝑄𝑄𝐼𝐼ℎ(𝑙𝑙 + 1)

= �
𝑄𝑄𝐼𝐼ℎ(𝑙𝑙) + 𝛼𝛼𝑈𝑈𝑅𝑅𝑅𝑅 ∗ �𝑅𝑅(𝑙𝑙) − 𝑄𝑄𝐼𝐼ℎ(𝑙𝑙)� 𝑙𝑙𝑜𝑜 𝑈𝑈𝑅𝑅𝑅𝑅𝑒𝑒𝑈𝑈𝑖𝑖𝑅𝑅𝑖𝑖 (𝑅𝑅(𝑙𝑙) = 1)     
𝑄𝑄𝐼𝐼ℎ(𝑙𝑙) + 𝛼𝛼𝑢𝑢𝑈𝑈𝑈𝑈 ∗ �𝑅𝑅(𝑙𝑙) − 𝑄𝑄𝐼𝐼ℎ(𝑙𝑙)� 𝑙𝑙𝑜𝑜 𝑢𝑢𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑒𝑒𝑈𝑈𝑖𝑖𝑅𝑅𝑖𝑖 (𝑅𝑅(𝑙𝑙) = 0)

                                                       [𝐞𝐞𝐞𝐞.𝟓𝟓] 

 

𝑄𝑄𝑢𝑢𝑈𝑈𝐼𝐼ℎ(𝑙𝑙 + 1) = (1 − 𝛿𝛿)

∗ 𝑄𝑄𝑢𝑢𝑈𝑈𝐼𝐼ℎ(𝑙𝑙)                                                                                                                                      [𝐞𝐞𝐞𝐞.𝟔𝟔] 

where 𝛼𝛼𝑈𝑈𝑅𝑅𝑅𝑅 and 𝛼𝛼𝑢𝑢𝑈𝑈𝑈𝑈 are the independent learning rates for rewarded and unrewarded 

trials, respectively, and 𝛿𝛿 is the forgetting rate for the unchosen option. Reward on trial 𝑙𝑙 is 

𝑅𝑅(𝑙𝑙) (1 for rewarded, 0 for unrewarded), and the difference between 𝑅𝑅(𝑙𝑙) and 𝑄𝑄𝐼𝐼ℎ 

corresponds to reward prediction error (RPE). The learning and forgetting rates were 

constrained to be between 0 and 1. Given the action value for left and right options, which 

updated independently, the probability of choosing the left side is: 
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𝑃𝑃𝐿𝐿(𝑙𝑙)

=
1

1 + 𝑅𝑅−𝛽𝛽∆𝑄𝑄(𝛽𝛽0+𝑄𝑄𝐿𝐿(𝑡𝑡)−𝑄𝑄𝑅𝑅(𝑡𝑡))                                                                                                                                         [𝐞𝐞𝐞𝐞.𝟕𝟕] 

where 𝑄𝑄𝐿𝐿 is value for the left side, 𝑄𝑄𝑅𝑅 is value for the right side, 𝛽𝛽0 is the constant bias 

term, and 𝛽𝛽∆𝑄𝑄 is the sensitivity to the value difference ∆𝑄𝑄. This model was fit to the choice 

patterns of 74 sessions of expert mouse behavior in python using SciPy minimize function, 

with search algorithm L-BFGS-B, to perform maximum likelihood estimation.  

In an emulation of the task environment, with the same reward contingencies and 

block structure as the real task, the RL model algorithm was used to generate choices based 

on the trial-by-trial updating value from [eq. 5-6] and the soft max function [eq. 7]. This 

generative model took as inputs the fit parameters from each session of expert mouse 

behavior. The simulated RL agent ran 10,000 trials for each of the 74 parameter sets, 

producing sequences of choices and outcomes. These choice and outcome patterns were then 

fit with the logistic regression or behavioral models in the identical analysis process as real 

behavior.  

3.4.11 Exponential and Hyperbolic behavioral models 

To evaluate how well the mouse behavior is described by exponential or hyperbolic 

integration, we quantified the behavior using two explicitly-defined decay models that 

assumed either exponential or hyperbolic decay. Past trials were temporally discounted with 

an exponential or hyperbolic decay, with time-constants fit for each session.  

The exponential model was defined as: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝐿𝐿(𝑙𝑙)� = 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙 − 𝑙𝑙)
𝑁𝑁

𝑖𝑖=1

∗ 𝑅𝑅
𝑡𝑡−𝑖𝑖

𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

+ 𝛽𝛽0                                                                                                [𝐞𝐞𝐞𝐞.𝟖𝟖] 
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where 𝑃𝑃𝐿𝐿(𝑙𝑙) is the probability of choosing left on trial 𝑙𝑙, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙 − 𝑙𝑙) is the rewarded 

choice on past trial 𝑙𝑙 − 𝑙𝑙  (1 if rewarded on the left, -1 if rewarded on the right, 0 otherwise). 

Up to 15 past trials were considered for this model (𝑁𝑁=15), unless otherwise noted. 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is 

the linear regression weight on the kernel, 𝛽𝛽0 is the constant bias term, and 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is the time-

constant of the exponential. 

Similarly, the hyperbolic model was defined as. 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝐿𝐿(𝑙𝑙)� = 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙 − 𝑙𝑙)
𝑁𝑁

𝑖𝑖=1

∗
1

1 + 𝑙𝑙 − 1
𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

+ 𝛽𝛽0                                                                                         [𝐞𝐞𝐞𝐞.𝟗𝟗] 

The only difference from the exponential model is the form of the decay function, with 

the time-constant 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 of the hyperbolic. For both models, 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 was constrained to be 

greater than 0. These models were fit to the choice patterns of 74 sessions of expert mouse 

behavior in python using SciPy minimize function, with search algorithm L-BFGS-B, to 

perform maximum likelihood estimation 

To compare the performance of each model, each session was divided into ten equal 

sets of trials, nine of which were used to estimate the exponential and hyperbolic models. At 

each iteration the log of the likelihood for the held-out trials was compared as 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐿𝐿ℎ𝑦𝑦𝑦𝑦 −

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐿𝐿𝑅𝑅𝑒𝑒𝑦𝑦. This was iterated across each held-out test set, and the difference in loglikelihood 

taken as the mean across all iterations, yielding cross-validated (CV) loglikelihood.  

3.4.12 Exponential and Hyperbolic behavioral models for optogenetic analysis 

The exponential and hyperbolic behavioral models under optogenetic inactivation 

were fit with the logistic regression analysis, by selecting only the inactivation or pseudo-

inactivation trials from the inactivation or control sessions, and concatenating the trials from 



66 
 

all sessions for a given mouse, while using a mixed-effects model to account for across-

session variabilities. The concatenated trials were fit with [eq. 8] and [eq. 9] separately for the 

control condition or the inactivation condition, with a random intercept for each session as in 

[eq. 4]. Given that inactivation trials occurred on only 15% of trials, the number of trials held-

out to calculate the CV-loglikelihood could be very small, sometimes <10 trials. To increase 

the consistency of the loglikelihood across animals, we normalized loglikelihood by dividing 

by the number of trials in the test-set to yield CV-loglikelihood per trial.  

3.4.13 Exponential and Hyperbolic cell models 

To identify the neurons modulated by rewarded-choice history, we averaged the neural 

activity during the first 2 s of the ready-period, during which the mouse was withholding 

licking. Then we estimated the influence of the most recent rewarded-choice trial as: 

𝐴𝐴(𝑙𝑙) = 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙 − 1) + 𝛽𝛽𝑅𝑅𝑅𝑅(𝑙𝑙)

+ 𝛽𝛽0                                                                                                               [𝐞𝐞𝐞𝐞.𝟏𝟏𝟏𝟏] 

Where 𝐴𝐴(𝑙𝑙) is the neural activity at trial 𝑙𝑙, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙 − 1) is the rewarded choice on 

immediately preceding trial (1 if rewarded on the left, -1 if rewarded on the right, 0 

otherwise), and 𝑅𝑅(𝑙𝑙) is the choice that the animal will make on the current trial (1 if left, -1 if 

right) to regress out anticipatory movement-related activity. 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is the linear regression 

weight on the rewarded-choice history, 𝛽𝛽𝑅𝑅 is the weight for the upcoming choice, and 𝛽𝛽0 is 

baseline offset. Neurons with a p-value < 0.05 for 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 were considered modulated by past 

rewarded-choice.  

Among these modulated neurons, we then calculated whether they were more 

exponential or hyperbolic in their history integration, in an analogous method to the above 

behavior models [eq. 8 & 9]. Specifically, neural activity was fit by the exponential model: 
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𝐴𝐴(𝑙𝑙) = 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙 − 𝑙𝑙)
𝑁𝑁

𝑖𝑖=1

∗ 𝑅𝑅
𝑡𝑡−𝑖𝑖

𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝛽𝛽𝑅𝑅𝑅𝑅(𝑙𝑙)

+ 𝛽𝛽0                                                                                         [𝐞𝐞𝐞𝐞.𝟏𝟏𝟏𝟏] 

and the hyperbolic model: 

𝐴𝐴(𝑙𝑙) = 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙 − 𝑙𝑙)
𝑁𝑁

𝑖𝑖=1

∗
1

1 + 𝑙𝑙 − 1
𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

+ 𝛽𝛽𝑅𝑅𝑅𝑅(𝑙𝑙)

+ 𝛽𝛽0                                                                                  [𝐞𝐞𝐞𝐞.𝟏𝟏𝟐𝟐] 

Performance of the two models was compared for each neuron as the loglikelihood of 

the 10-fold cross-validated test set, and the difference taken as 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐿𝐿ℎ𝑦𝑦𝑦𝑦 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐿𝐿𝑅𝑅𝑒𝑒𝑦𝑦 for 

each iteration.  

For those cells that were consistently modulated by past-choice [eq. 10] we further 

estimated the exponential time-constant across all trials in the session, and from two non-

overlapping halves of the session. Cells were considered exponentially-modulated if the p–

value for 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 was <0.05 in both the first half and second half of the session, though no 

constraint was imposed that either 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 or 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 be consistent between halves. The full 

session 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 was used for all analysis except for Figure 3.3 D-E, where the two 

independently estimated 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 were compared as a metric of the stability of neural encoding 

and model estimation.  

3.4.14 Quasi-hyperbolic behavioral model 

The quasi-hyperbolic model is defined as a set of weighted exponential functions 

summing together to yield a probability of choosing left or right. From the observed 

distributions of 𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 of exponential neurons in each cortical area, we randomly drew 

between 1 and 15 values of 𝜏𝜏 and fit the weighting on each exponential kernel necessary to 

best describe the behavior, following the equation: 
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝐿𝐿(𝑙𝑙)� = �𝛽𝛽𝑚𝑚

𝑀𝑀

𝑚𝑚=𝑖𝑖

∗�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙 − 𝑙𝑙)
𝑁𝑁

𝑖𝑖=1

∗ 𝑅𝑅
𝑡𝑡−𝑖𝑖
𝜏𝜏𝑚𝑚

+ 𝛽𝛽0                                                                                                [𝐞𝐞𝐞𝐞.𝟏𝟏𝟐𝟐] 

where 𝑃𝑃𝐿𝐿(𝑙𝑙) is the probability of choosing left on trial 𝑙𝑙, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙 − 𝑙𝑙) is the rewarded 

choice on past trial 𝑙𝑙 − 𝑙𝑙  (1 if rewarded on the left, -1 if rewarded on the right, 0 otherwise), 

𝛽𝛽𝑚𝑚 is the linear coefficient corresponding to the exponential kernel with time-constant 𝜏𝜏𝑚𝑚, 

and 𝛽𝛽0 is the constant bias. The number of past trials considered was 𝑁𝑁 = 15. Each set of 𝜏𝜏 

was fit to each of the 74 behavior sessions to yield the 10-fold cross-validated loglikelihood, 

similarly to the exponential and hyperbolic behavior models [eq. 8 & 9]. 

3.4.15 Statistical tests 

Paired comparisons made with two-tailed paired t-test if data passed normality by 

Lilliefors test, otherwise with Wilcoxon signed-rank, as noted. Unpaired comparisons with 

two-tailed independent t-test if data passed normality by Lilliefors test, otherwise with 

Wilcoxon rank sum, as noted. Reported p-values were false discovery rate (FDR) corrected 

with Benjamini-Hochberg method as appropriate for multiple comparisons. All loglikelihood 

measurements were assessed with 10-fold cross validation. In some analyses where the 

number of trials in the test set was very small, and therefore the likelihood could be noisy 

across folds, the loglikelihood was normalized by dividing it by the number of trials in the test 

set, producing loglikelihood per trial. The non-parametric test of distribution medians was 

bootstrapped 100,000 times, with an equal number of samples drawn from each cortical area, 

with replacement. Mixed effects modeling included random slope and intercept for session 

identity or mouse identity, and was estimated with the R library in Python via the lme4 

package. Two-way repeated measures ANOVA was performed in Python with the package 
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pingouin. All other statistical tests were performed in Python with either SciPy or 

Statsmodels. 
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CHAPTER 4. THE ROLE OF RETROSPLENIAL CORTEX IN DECISION-MAKING 

 
 Experimental work in the behaving mouse indicates that RSC encodes history-

dependent value with a diversity of timescales, and that RSC is acutely necessary in using this 

information for decision-making. The temporal information encoded in RSC develops as a 

function of task learning (Hattori et al. 2019), is persistently available to the animal (Hattori et 

al. 2019; Hattori and Komiyama 2022), and the distribution of timescales can explain the 

hyperbolic behavioral strategy of the animal. This accumulated evidence demonstrates that 

RSC provides a flexible and adaptable neural substrate for history-based decision-making.   

4.1 Expansion of the reinforcement learning framework. 

 As discussed in Chapters 1 and 2, reinforcement learning theory provides a 

computational grounding from which to describe behavior in a quantitative way. However, to 

quote George Box, all models are wrong but some models are useful. The RL models describe 

fundamental and proven aspects of reward-choice association, but may miss certain aspects of 

nuanced decision-making. Specifically, Chapter 3 of this dissertation examines one such 

critical ‘miss’ of standard RL models: hyperbolic decay of past experience as well as 

prospective hyperbolic discounting. The dissertation author’s proposed model of distributed 

temporal integrators, each of which might individually act as RL agents following Q-learning 

rules, forms a bridge between theories of reinforcement learning and observed behavioral 

phenomena. Supporting this notion is the representation of diverse timescales of history 

integration in the cortex, and in particular in RSC. This encoding produces a ‘reservoir’ of 

temporal information persistently available to the animal. 

Notably, multiple groups working across different animal models, theoretical models, 

and brain areas have converged to this idea of distributed integration of reward-history related 



77 
 

information (Bernacchia et al. 2011; Spitmaan et al. 2020; Dabney et al. 2020). Of particular 

relevance are models of distributional reinforcement learning (Dabney et al. 2020; Lowet et 

al. 2020), which describe decision as made by an agent with a distributed representation of 

predictions about the future reward space. One hypothesis of the model is that neurons 

encoding different estimates of value exist in separate, independently updating subnetworks 

of neurons. While previous research has identified such neurons in subcortical structures, 

namely the ventral tegmental area (Dabney et al. 2020), this author proposes that the neurons 

in RSC cortex may act as the cortical partners in these networks. Cortical-subcortical 

reverberations might then take advantage of the recurrent connectivity in RSC to maintain 

behaviorally-relevant information over seconds to minutes during decision-making. 

4.2 Properties of retrosplenial cortex. 

 Retrosplenial cortex has a number of properties which make it ideally suited to be a 

reward-history associational area, principally that it combines information from multiple 

modalities and interfaces with the hippocampal working-memory system. RSC is known to 

integrate spatial and contextual information, and is densely connected with visual cortex, 

posterior parietal cortex, prefrontal cortex, and entorhinal cortex (van Groen and Michael 

Wyss 1990; van Groen and Wyss 1992; Vann, Aggleton, and Maguire 2009).  

In addition to dense projection patterns, RSC is also notable for its population of 

highly excitable, low-rheobase cells and strong local inhibition (Brennan et al. 2020). The 

combination of strong feedforward excitation and inhibition yields a neural network capable 

of producing sustained and specific responses to outside input (Brennan et al. 2020). The 

pattern of population-space activity of RSC neurons has been found to be particularly 
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persistent, indicating the capacity for sustained encoding of behavior-relevant information 

(Hattori and Komiyama 2022). 

RSC neurons exhibit great heterogeneity in their encoding of task-variables, crossing 

modalities and often multiplexing different types of information in the same neurons (Hattori 

et al. 2019; Sun et al. 2021). Perturbation experiments including acute inactivation (Hattori et 

al. 2019), chemogenetic inhibition (Sun et al. 2021), and lesion (Vann, Aggleton, and Maguire 

2009) indicate that RSC is necessary for both initial learning and ongoing choice-outcome 

associations, but not necessarily for retrieval of previously learned associations. This is 

consistent with the dichotomy observed in this dissertation between acute inactivation of 

RSC, which produced deficits in ongoing incorporation of information, and lesion of RSC, 

which produced no such deficits. In the chronic absence of RSC the animal adapted to use 

information that is redundantly encoded in the brain, but natively RSC appears to be in the 

default path for labile value update. 

4.3 A dynamic reservoir of temporal information. 

 Having a distributed representation of information across a range of temporal horizons 

provides a mechanism by which an animal may maintain information efficiently, but alter 

readout rapidly. Such rapid adaptation is beneficial when environments are dynamic, shifting 

between periods stability to volatility (Dayan, Kakade, and Montague 2000; Daw et al. 2006; 

Daw, Niv, and Dayan 2005; Daw et al. 2011; Kennerley et al. 2006; T. E. J. Behrens et al. 

2007; Meder et al. 2017; Massi, Donahue, and Lee 2018; Bernacchia et al. 2011; Iigaya et al. 

2019). An alternate explanation for the hyperbolic-like integration, one that is not mutually 

exclusive to the model detailed in chapter 3, is that animals shift between multiple discrete 
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strategies throughout one analytic period (i.e. one session), and that these strategies may 

integrate information with different timescales.  

There is evidence that animals change temporal integration strategies rapidly, both in 

cases where this is adaptive for the animal (T. E. J. Behrens et al. 2007; Nassar et al. 2010; 

Wilson, Nassar, and Gold 2013; Lee, Shimojo, and O’Doherty 2014; Massi, Donahue, and 

Lee 2018; D. Kim et al. 2019; Akam et al. 2021), and cases where this is an incidental 

behavior that is nevertheless quantifiable (Balcarras et al. 2016; Beron et al. 2021; Ashwood 

et al. 2022). Shifting between temporal integration strategies on a trial-to-trial basis can 

produce the appearance of heavy-tailed history weighting (Iigaya et al. 2019), whether the 

strategy employed on any given trial is to use history weighted with exponential or hyperbolic 

decay. Further modeling analysis with greater temporal specificity may be necessary to 

evaluate whether the choice on a single trial is exponentially or hyperbolically weighted, but 

the strategy across trials clearly incorporates history information across multiple temporal 

windows. 

Rewarded-choice history information is simultaneously encoded with a diversity of 

timescales across cells. What remains an ongoing area of investigation is how that 

combination of different timescales might change to enhance shorter or longer integration as 

the animal shifts its behavioral strategy. Here the author poses two distinct hypotheses for 

how a change in the behavior could be derived from the distributed temporal information 

available in RSC. First, that individual neurons alter their time-constants of integration across 

time, according to environment demands, perhaps as a consequence of population-level shifts 

mediated by neuromodulation by dopamine (Doya 2002; Ito and Doya 2009; H. R. Kim et al. 

2020), noradrenaline (Doya 2002; Yu and Dayan 2005), or serotonin (Doya 2002; Cohen, 
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Amoroso, and Uchida 2015; Matias et al. 2017; Grossman, Bari, and Cohen 2022). Second, 

that an individual neuron has a consistent time-constant, but the gain of different neurons 

across the population is differentially modulated such that the observed distribution of 

temporal integrators changes. This population-space shift would be readout by downstream 

circuits, and produce behavior with shorter or longer integration. Alternately, this selective 

processing of temporal information may occur solely in a downstream area, and RSC provides 

a stable reservoir of information even during changing behavior. Future work that examines a 

longitudinal recording of cells across sessions, or across a more volatile environment, may be 

able to disambiguate these possibilities. 

4.4 Conclusion 

Retrosplenial cortex is a highly interconnected cortical area that plays a critical role in 

decision-making and associational learning. In particular, the encoding of diverse temporal 

information in RSC and the persistency of value-coding suggest RSC acts as a reservoir of 

behaviorally-relevant information. Damage to RSC has deleterious effects on cognition and 

decision-making (Maguire 2001; J. H. Kim et al. 2007), and loss of RSC neuron mass is 

associated with early-stage symptoms in Alzheimer’s dementia (Minoshima et al. 1997; 

Nestor et al. 2003; Pengas et al. 2010; Tan et al. 2013). These clinical observations are 

consistent with the role of RSC as a central hub in decision-making, and as a neural substrate 

primed to integrate different modes of information across both short and long periods of time. 
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