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Abstract

BRAF and NRAS are common targets for somatic mutations in benign and malignant neoplasms 

that arise from melanocytes situated in epithelial structures and lead to constitutive activation of 

the MAP-kinase pathway1, 2. However, BRAF and NRAS mutations are absent in a number of 

other melanocytic neoplasms in which the equivalent oncogenic events are currently unknown3. 

We report frequent somatic mutations in the heterotrimeric G protein alpha subunit, GNAQ, in 

blue nevi (83%) and ocular melanoma of the uvea (46%). The mutations occur exclusively in 

codon 209 in the ras-like domain and result in constitutive activation, turning GNAQ into a 

dominant acting oncogene. Our results demonstrate an alternative route to MAP-kinase activation 

in melanocytic neoplasia providing new opportunities for therapeutic intervention.

Most melanocytic neoplasms, benign melanocytic nevi as well as melanomas, originate from 

melanocytes situated within epithelial structures throughout the body, mostly the sun-

exposed skin of individuals with light complexion. The majority of nevi and melanomas 

show oncogenic mutations in signaling components of the MAP kinase pathway, in 

particular BRAF and NRAS1,2. However, a subset of melanocytic neoplasms does not show 

mutations in BRAF and NRAS3. One category, uveal melanoma, arises from melanocytes 

within the choroidal plexus of the eye and is biologically distinct from cutaneous melanoma 

by characteristic cytogenetic alterations4 and a very strong propensity to metastasize to the 
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liver5. The other category are intradermal melanocytic proliferations, which can be 

congenital or acquired, and present in diverse ways ranging from discrete bluish moles (blue 

nevi) to large blue-gray patches affecting the conjunctiva and periorbital skin (nevus of Ota), 

shoulders (nevus of Ito), and the lower back (Mongolian spot)6. A potential connection 

between intradermal melanocytic neoplasms and uveal melanoma is suggested by the fact 

that nevus of Ota is a risk factor for uveal melanoma and by an overlap in some of the 

histomorphologic features of the two conditions7.

Using a forward genetic screen in mice we previously identified hypermorphic mutations in 

GNAQ or GNA11as a cause of diffuse skin hyperpigmentation that was due to an increase of 

intradermal, but not epidermal, melanocytes8. GNAQ and GNA11 encode members of the q 

class of G-protein alpha subunits involved in mediating signals between G-protein coupled 

receptors (GPCRs) and downstream effectors. To investigate whether similar pathways were 

involved in humans, we sequenced the entire coding regions of GNAQ and GNA11 in a 

broad spectrum of benign and malignant melanocytic neoplasms. We found mutations in 

GNAQ in 83% of blue nevi (n=29), 50% of “malignant blue nevi” (n=2), and 46% of uveal 

melanomas (n=48) (Table 1, Supplementary Information, Figure 1a). Nevus of Ota is a 

condition in which a subtle proliferation of intradermal melanocytes results in 

hyperpigmentation of the conjunctiva and periorbital skin. To increase the detection limit for 

mutations in a background of normal cells, we used a mutation-specific assay and found a 

mutation in one of 14 cases (6%) (Supplementary Information, Figure 1b). No somatic point 

mutations were found in GNA11.

All mutations in GNAQ were somatically acquired as assessed by sequencing DNA from 

adjacent tissue, and occurred exclusively at codon 209 (Supplementary Information, Table 

1). The glutamine at codon 209 lies within the ras-like domain of GNAQ (corresponding to 

residue 61 of RAS and is essential for GTP hydrolysis 9. In RAS family members, mutations 

at this site, and at codon 12, cause loss of GTPase activity with constitutive activation9-11. 

There is no equivalent of codon 12 in GNAQ. In contrast to the findings in humans, the 

mutations found in the dark skinned mice occurred at I63, V179, and F335 in the mouse 

proteins and do not cause constitutive activation8.

To date no mutations of GNAQ have been described in human neoplasia, but GNAQQ209L 

has been demonstrated to transform 3T3 cells11. In addition, mutations of the corresponding 

codon in G alpha S (GNAS) are found in human pituitary and thyroid tumors10, 12. To 

assess the effect of GNAQQ209L on human melanocytes, we established epitope-tagged 

lentiviral expression constructs to transfect normal and genetically modified human 

melanocytes, the latter of which have an extended life span, but still require additional 

factors (cAMP, TPA) for growth (hTERT/CDK4R24C/p53DD melanocytes13). Stable 

transfection of GNAQQ209L into primary human melanocytes was insufficient to induce 

anchorage independent growth (data not shown). In contrast, transfection of GNAQQ209L 

into hTERT/CDK4R24C/p53DD melanocytes resulted in anchorage independent growth with 

efficiencies comparable or slightly greater than transfection with NRASQ61R (Figure 1a, 

Supplementary Information, Table 2). Furthermore, GNAQQ209L but not GNAQwt induced 

abnormally enlarged nuclei with markedly irregular contours (Figure 1b, Supplementary 

Information, Table 3). To validate GNAQQ209L as an oncogene in vivo, we performed 
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tumorigenicity studies in nude mice (Figure 1c). GNAQQ209L, but not GNAQwt or vector 

control transfected melanocytes gave rise to heavily pigmented tumors at the injection site. 

The tumor morphology resembled closely the spectrum of atypical blue nevus that in 

humans has been termed animal type melanoma or pigmented epithelioid melanocytoma6.

Signaling pathways downstream of GNAQ include activation of protein kinase C family 

members via the release of diacylglycerol (DAG) by phospholipase Cβ. Consistently, 

GNAQQ209L-transformed melanocytes grew in soft agar in the absence of TPA, a synthetic 

DAG analog (Figure 1a, Supplementary Information, Table 2). PKC activation by way of 

GNAQ activation can activate the MAP-kinase pathway in other cell types14. Uveal 

melanomas display MAP-kinase activation15, but none of the uveal melanomas we 

examined in our study showed mutations in BRAF or NRAS (Supplementary Information, 

Table 4), consistent with other studies3. We therefore tested whether GNAQQ209L would 

contribute to MAP-kinase pathway activation in human melanocytes and uveal melanoma 

cells. As shown in Figure 2, GNAQQ209L transfection into hTERT/CDK4R24C/p53DD 

melanocytes caused increased levels of phospho-ERK compared to control cells transfected 

with wildtype GNAQ (GNAQWT) or an empty vector (Vector). Similar results were obtained 

with GNAQQ209L transfection into primary human melanocytes and 293T cells (see 

Supplementary Information, Figure 2). Conversely, siRNA-mediated knock-down of GNAQ 

in the uveal melanoma cell line, OMM1.3, which harbors the GNAQ-Q209L mutation, 

resulted in a decrease of phospho-ERK levels (Figure 3a). In addition, GNAQ knock-down 

in OMM1.3 cells causes a substantial decrease in cell number (Figure 3b), loss of anchorage 

independent growth (Figure 3c) and a marked increase in sub-G0/G1 population (Figure 3d) 

as compared to control cells. Similar results were obtained when another uveal melanoma 

cell line Mel202 was treated with siRNA against GNAQQ209L (Supplementary Information, 

Figure 3). Mel202 and OMM1.3 stem from different patients, as confirmed by DNA 

fingerprinting (data not shown.)

In summary, our data identify GNAQ as a novel oncogene in human neoplasia. GNAQ 

operates downstream of several GPCRs that are important in melanocyte homeostasis and 

neoplasia. GNAQ is involved in endothelin signaling, which is essential for melanocyte 

survival early during development16. Gq signaling may also contribute to the association 

observed for melanoma invasion and metastasis with Wnt family members17, since Frizzled 

receptors can couple to Gq18. Furthermore, Gq signaling is likely to underlie the ability of 

the metabotropic glutamate receptor gene, GRM1, to cause dermal melanocytic neoplasia 

and ocular melanoma in transgenic mice19.

The location of neoplastic melanocytes induced by somatic GNAQ mutation in humans is 

very similar to the location of melanocytes affected by germline GNAQ (and GNA11) 

mutations in mice8. In both cases, the melanocytic proliferations spare epithelial structures. 

However, our previous work in mice suggests that these mutations do not interfere with 

homing of melanocytes to epithelial structures, but instead lead to an increase of the total 

melanoblast pool8. In humans, it is not known whether the adult dermis contains any 

residual sparse populations of melanocytes in which GNAQ mutations could occur and 

induce intradermal melanocytic tumors6, 20. Acquired blue nevi are typically small and well 

circumscribed, raising the possibility that they arise from an intradermal population of 

Van Raamsdonk et al. Page 3

Nature. Author manuscript; available in PMC 2009 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



melanocytes that remains to be characterized. By contrast, nevus of Ota involves different 

structures such as periorbital skin, conjunctiva, neurovascular bundles, ganglia, and uvea, 

suggesting these GNAQ mutations may arise early in a migrating melanoblast. This later 

neoplasm shows strong similarities to the murine studies and indicates a specific window for 

Gq signaling in terms of cell type and developmental time that is conserved across species.

Our findings identify GNAQ as a genetic link between nevus of Ota and uveal melanoma 

and help explain why nevi of Ota are a risk factor for uveal melanoma7. The risk is small, as 

only about 1 in 400 nevi of Ota progress to uveal melanoma and future studies will have to 

elucidate the role of GNAQ mutations in this risk. In our experiments, GNAQ behaves 

similar to the oncogenes, BRAF and NRAS, in that its mutation is insufficient for full 

progression to melanoma. This is illustrated best by blue nevi, which are generally stable 

lesions that rarely become malignant (“malignant blue nevus”)6. Thus MAPK activation 

appears to be an early event in neoplasms with GNAQ mutations, as it is in neoplasms with 

BRAF and NRAS mutations2. Further studies are necessary to determine whether the 

difference in tissue involvement between melanocytic neoplasms with BRAF mutations and 

those with GNAQ mutations is a functional consequence of the mutations themselves, or 

indicates differences in the target cell populations in which these mutations occur.

Uveal melanoma is a highly aggressive cancer without any effective treatment options once 

it metastasizes. Although it only accounts for approximately 5% of all melanomas, it 

represents the most common intraocular malignancy in the United States and has a five-year 

disease specific survival rate of approximately 70%21. Our study identifies signaling 

components downstream of GNAQ as potential targets in this dreadful disease.

Methods Summary

Detailed descriptions of reagents and experiments can be found in the full Methods. GNAQ 

and GNA11 were sequenced in DNA extracted from archival, paraffin-embedded biopsies 

under the approval of the institutional review boards at UCSF, Stanford and UBC. Primary, 

hTERT/CDK4R24C/p53DD, and melan-a melanocytes were stably infected with FG12 

lentiviral expression vectors expressing flag-tagged wildtype GNAQ or GNAQQ209L, empty 

vector or NRASQ61R. Infection efficiencies were estimated by the proportion of cells 

expressing GFP. To assess anchorage independent growth, melanocytes were plated on soft 

agar, cultured for 28 days and stained with 0.005% crystal violet. For tumorigenicity 

experiments, 1 million lentiviral transfected melan-a cells were injected into each nude 

mouse, housed at UBC according to CCAC guidelines. For immunofluorescence, lentiviral 

transfected cells were cultured on coverslips for 5 days and incubated with antibodies 

against pERK (E-4, Santa Cruz Biotechnology), cyclin D1 (M-20, Santa Cruz 

Biotechnology) and GNAQ (C-19, Santa Cruz biotechnology). OMM1.3 and Mel202 cells 

were transfected with two different pools of siRNA against GNAQ: pool 1: 5′-

CAAUAAGGCUCAUGCACAAUU-3′, 5′-CGACGAGAAUAUCAAUUAUUU-3′, 5′-

GCAAGAGUACGUUUAUCAAUU-3′, 5′-UAGUAGCGCUUAGUGAAUAUU-3′; pool 2: 

5′-AUGCACAAUUAGUUCGAGAUU-3′, 5′-UAUGAUAGACGACGAGAAUUU-3′, 5′-

CAGACAAUGAGAACCGAAUUU-3′, 5′- CGCCACAGACACCGAGAAUUU-3′). For 

western blot analysis, 5-20 μg of protein was extracted from lentiviral or siRNA transfected 
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cells. Primary antibodies were: pERK, cyclin D1, GNAQ, Cyclophilin B (Abcam), anti-

FLAG M2 (Sigma), Anti-ERK ½ pAb (Promega), and β-actin (Sigma). Secondary 

antibodies were labeled with horseradish peroxidase. Relative cell numbers were quantified 

by the CyQUANT® Cell Proliferation Assay Kit (Invitrogen). Cell cycle measurements 

were performed on a FACSCalibur after staining with propidium iodide. Student’s t-test and 

Fisher’s Exact test were used for statistical comparison.

Full methods

DNA

DNA was obtained from archival paraffin-embedded biopsies under the approval of the 

institutional review boards at UCSF, Stanford and the University of British Columbia. For 

each sample, 20 um sections were microdissected, washed in xylene and ethanol and 

digested with proteinase K. DNA was then extracted with phenol-choloroform-isoamyl-

alcohol.

Sequencing

Biopsy DNA was amplified using PCR. For GNAQ exon 5, the primers used were 5′-

cccacaccctactttctatcatttac-3′ and 5′-ttttccctaagtttgtaagtagtgc-3′. PCR products were used as 

templates for sequencing reactions using Big Dye (ABI). Samples identified with mutations 

in both sequencing directions were replicated at least twice. Mutations 1-3 were verified 

with RFLP. Mutations 1 and 2 create an Eco0109I restriction site, while mutation 3 

produces an AflII restriction site.

Sensitive assay for Q209 mutations in mixed cell populations

The peptide nucleic acid, Actctctgacctttggc-CONH2, was resuspended in 50% DMF and 

used at a final concentration of 4 uM against 2 ng template DNA in a 25 ul reaction. The 

reaction conditions were 0.25 mM dNTPs, 6X BSA, 2 U Hotstar Taq, 1× Hotstar Taq buffer, 

and 0.5 uM each primer, 5′-ttttccctaagtttgtaagtagtgc-3; and 5′-atccattttcttctctctgacc-3′. PCR 

consisted of 40 cycles of 95 degrees (1 min), 73 degrees (1 min), 57 degrees (45 sec), and 72 

degrees (1 min).

Plasmids

A GNAQQ209L cDNA plasmid was obtained from UMR cDNA Resource Center. The wild-

type counterpart was generated by site-specific mutagenesis. The coding regions of both 

constructs were epitope-tagged with an N-terminal Flag-tag and cloned into the lentiviral 

expression vector FG12. All constructs were sequenced for confirmation.

Cell culture

hTERT/CDK4R24C/p53DD melanocytes were cultured in glutamine containing Ham’s F12 

supplemented with 7% FBS, 50 ng/ml TPA, 0.1 mM IBMX, 10 μM Na3VO4, 1 mM 

dbcAMP. Primary normal melanocytes were cultured in MCDB153 supplemented 20% 

FBS, 2% chelated FBS, 5 μg/ml L-glutamin, 15 μg/ml cholera toxin, 0.5 ng/ml bFGF, 100 

nM ET3 and 1.68 mM SCF. Cell lines OMM1.3, Mel202 and 293T were cultured in RPMI 
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supplemented with 10% fetal bovine serum. Melan-a cells were cultured in glutamine-

containing RPMI media supplemented with 10% FCS and 200 nM TPA.

Lentiviral infection

Viral supernatant were generated using 293T cells transfected with 10 μg plasmid and 

appropriate lentiviral packaging plasmids. Media was changed 16 hr after transfection and 

the virus was harvested 40 to 56 hr later. hTERT/CDK4R24C/p53DD, melan-a and normal 

melanocytes were infected and infection efficiencies were estimated by the presence of GFP 

expressing cells.

Transient transfection

293T cells were seeded in 6-well plates at 1×106 cells per well with RPMI/10% FCS. 

Transfections were carried out using Lipofectamine 2000 (Invitrogen) and 2 μg plasmid 

pcDNA™6.2/V5-DEST® Gateway vector (Invitrogen) alone or containing the complete 

coding region for either GNAQQ209L or GNAQWT, respectively. Cells were lysed 48 hour 

post-transfection and assayed for protein content.

Tumorigenicity study

Melan-a cells were lentiviral transfected with GNAQWT, GNAQQ209L and empty vector 

control. Seven days post infection, cells were resuspended in DMEM at 5 million cells per 

milliliter. Four month old, albino female nude mice (NU/J) were injected with 0.2 ml 

subcutaneously. Mice were palpated weekly.

Cell proliferation assay

Relative cell numbers were quantified by the CyQUANT® Cell (Invitrogen) Proliferation 

Assay Kit according to the manufacturer’s protocol using 96-well plates. 7.5×103 cells were 

transfected and the fluorescent intensity was read after 72 hr.

Immunofluorescence

Human primary and hTERT/CDK4R24C/p53DD melanocytes were cultured on cover slips in 

6 well plates and infected with lentiviral vectors containing either GNAQQ209L GNAQWT, or 

an empty vector as control. Five days after infection, cells were fixed with 4% formaldehyde 

in PBS, permeabilized with 0.2 % Triton X100 and incubated with 3% BSA. Antibodies 

against pERK (E-4, Santa Cruz Biotechnology), cyclin D1 (M-20, Santa Cruz 

Biotechnology) and GNAQ (C-19, Santa Cruz biotechnology) were detected using 

secondary antibodies labeled with Alexa Fluor 594 and 532 (Molecular Probes). Images 

were taken at fixed exposures with an Axio Image M1 microscope (Zeiss, Germany). The 

fluorescence intensities were quantified using ImageJ software and the mean pixel 

intensities were used for statistical analysis using Microsoft Excel and Data Desk.

Soft agar assay

10×103 human primary melanocytes, hTERT/CDK4R24C/p53DD melanocytes stably 

expressing GNAQQ209L, GNAQWT, NRASQ61R or vector control and siRNA treated OMM1.3 

and Mel202 cells were suspended in full media containing 0.35% agar and plated on a lower 
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layer of 0.5% agar in 6 well plates. After 28 days, cells were stained with 0.005% crystal 

violet. Colony number and size were quantified using ImageJ software.

Cell cycle analysis

72 hr post transfection with siRNA against GNAQ, OMM1.3 and Mel202 cells were 

trypsinized, washed with cold PBS and fixed with 70% ethanol. Fixed cells were stained 

with propidium iodide. Cell cycle measurements were performed on a FACSCalibur (BD 

Biosciences), with minimum of 20,000 events, and profiles were analyzed using FlowJo and 

ModFit.

siRNA transfection

OMM1.3 and Mel202 were plated in RPMI/10% FCS in 6 well or 96 well plates at 1.5×105 

or 5×103 cells per well, respectively. Two different pools; each comprised of four siRNA 

duplexes (pool 1: 5′-CAAUAAGGCUCAUGCACAAUU-3′, 5′-

CGACGAGAAUAUCAAUUAUUU-3′, 5′-GCAAGAGUACGUUUAUCAAUU-3′, 5′-

UAGUAGCGCUUAGUGAAUAUU-3′; pool 2: 5′-AUGCACAAUUAGUUCGAGAUU-3′, 

5′-UAUGAUAGACGACGAGAAUUU-3′, 5′-CAGACAAUGAGAACCGAAUUU-3′, 5′-

CGCCACAGACACCGAGAAUUU-3′) against GNAQ and ON-TARGETplus controls (all 

Dharmacon) were transfected in lipofectamine RNAiMax (1μl/pmol siRNA) at 100 nM. 

siRNA complexes were formed in Optimem. Cells were lysed for analysis 72-96 hours post-

transfection. For soft agar assay, 48 post transfection cells were used.

Western blot analysis

Cells were washed twice with ice-cold PBS and lysed in 50 mM Tris—HCl pH 7.8, 1% 

NP-40, 10% glycerol, 150 mM NaCl, 1 % Sodium deoxycholate, 1% sodium dodecyl 

sulfate, supplemented with protease inhibitor, phosphatase inhibitor and EDTA (Pierce 

Biotechnologies). The protein content of the lysates was determined by the BCA Protein 

Assay Reagent (Pierce Biotechnologies). 5-20 μg of protein were separated by SDS—PAGE 

and transferred to Immobilon-P membrane (Millipore). Primary antibodies were: pERK 

(E-4, Santa Cruz Biotechnology), cyclin D1 (M-20, Santa Cruz Biotechnology) and GNAQ 

(C-19, Santa Cruz biotechnology), Cyclophilin B (Abcam), anti-FLAG M2 (Sigma), Anti-

ERK ½ pAb (Promega), and β-actin (Sigma). Secondary antibodies were labeled with 

horseradish peroxidase.

Statistical analysis

Immunofluorescence data and CyQUANT measurements were analyzed using Student’s t-

test. Fisher’s Exact test was used to compare the proportion of atypical cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. GNAQQ209L transforms melanocytes
a, GNAQQ209L induces anchorage independent growth in soft agar of hTERT/

CDK4R24C/p53DD melanocytes in a TPA-independent manner with comparable efficiency 

as NRASQ61R. b, Cells expressing Flag-tagged GNAQQ209L showed enlarged nuclei with 

irregular contours after 5 days. c, Melan-a cells23 stably transduced with GNAQQ209L, but 

not with wild-type GNAQ (n=3) or vector control (n=4), induce highly pigmented tumors of 

spindled and epithelioid melanocytes after 10 weeks in four out of five animals.
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Figure 2. GNAQQ209L induces MAP kinase activation
a, Increased expression of pERK in hTERT/CDK4R24C/p53DD melanocytes transfected with 

GNAQQ209L compared to similar melanocytes transfected with GNAQWT or empty vector. b, 

Cumulative distribution of mean pixel fluorescence intensity per cell obtained from 

immunofluorescent detection of pERK (p-values: GNAQQ209L vs. vector). c, Western blot 

showing increased pERK levels in hTERT/CDK4R24C/p53DD melanocytes expressing Flag-

tagged GNAQQ209L compared to cells transduced with Flag-tagged GNAQWT or vector 

control. NRASQ61R transduced melanocytes are shown as a positive control. * The band 

migrating just below the Flag band is non-specific reactive band in the lysate.
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Figure 3. Knockdown of GNAQ in OMM1.3 cells results in MAP-kinase inhibition, reduced 
growth and apoptosis
a, Western blot after treatment with 2 pools of siRNAs against GNAQ shows decreased 

pERK levels compared to control treated cells: cyclophilin B and non-target siRNA. b, After 

72 hours, GNAQ knockdown results in marked reduction of cell numbers, similar to the 

effect of MEK inhibitor U0126. Bars show means and standard error of five replicate assays. 

* p<0.05, t-test compared to mock or vehicle control, respectively. c, GNAQ knockdown 

reduces the number of colonies (upper left corner) formed in soft agar. d, Cell cycle profiles 

showing an increase of the sub-G0/G1 population after GNAQ knockdown.
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Table 1

Frequency of GNAQ mutations in melanocytic neoplasms The number and type of samples analyzed is shown.

Diagnosis %
Mutant

N

Cutaneous and mucosal
melanomas

Melanoma on skin without chronic sun-induced damage (non-
CSD)22

0% 15

Melanoma on skin with chronic sun-induced damage (CSD)22 4% 27

Acral melanoma 0% 15

Mucosal melanoma 0% 14

“Malignant blue nevus” 50% 2

Melanoma arising in congenital nevus 0% 3

Spitzoid melanoma 0% 2

Total 78

Nevi Blue nevus 83% 29

Nevus of Ota 6% 17

Congenital nevus 0% 7

Deep penetrating nevus 0% 16

Proliferating nodule in giant congenital nevus 0% 7

Spitz nevus 0% 8

Total 84

Ocular melanomas Uveal melanoma 46% 48

Uveal melanoma cell line 27% 15

Conjunctival melanoma 0% 11

Total 74

Grand Total 236
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