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Article
A probabilistic Boolean model on hair follicle cell
fate regulation by TGF-b
Katherine Dinh1 and Qixuan Wang2,3,*
1Department of Biology, University of California, Riverside, California; 2Department of Mathematics, University of California, Riverside,
California; and 3Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California
ABSTRACT Hair follicles (HFs) are mini skin organs that undergo cyclic growth. Various signals regulate HF cell fate decisions
jointly. Recent experimental results suggest that transforming growth factor beta (TGF-b) exhibits a dual role in HF cell fate regu-
lation that can be either anti- or pro-apoptosis. To understand the underlying mechanisms of HF cell fate control, we develop a
novel probabilistic Boolean network (pBN) model on the HF epithelial cell gene regulation dynamics. First, the model is derived
from literature, then refined using single-cell RNA sequencing data. Using the model, we both explore the mechanisms under-
lying HF cell fate decisions and make predictions that could potentially guide future experiments: 1) we propose that a threshold-
like switch in the TGF-b strength may necessitate the dual roles of TGF-b in either activating apoptosis or cell proliferation, in
cooperation with bone morphogenetic protein (BMP) and tumor necrosis factor (TNF) and at different stages of a follicle growth
cycle; 2) our model shows concordance with the high-activator-low-inhibitor theory of anagen initiation; 3) we predict that TNF
may be more effective in catagen initiation than TGF-b, and they may cooperate in a two-step fashion; 4) finally, predictions of
gene knockout and overexpression reveal the roles in HF cell fate regulations of each gene. Attractor and motif analysis from the
associated Boolean networks reveal the relations between the topological structure of the gene regulation network and the cell
fate regulation mechanism. A discrete spatial model equipped with the pBN illustrates how TGF-b and TNF cooperate in initiating
and driving the apoptosis wave during catagen.
SIGNIFICANCE Hair follicles (HFs) have become an emerging model system in the research of stem cell and wound-
induced regeneration. We developed a literature-derived, single-cell-data-refined model on HF gene regulation dynamics
and used it to investigate questions in HF cell fate regulations. We propose a new approach of synthesizing modeling and
biological data that can be extended and applied to other systems in cell and developmental biology. Our model
investigates the signaling regulation mechanisms underlying HF cell fate decisions, which provides new insights in the
research of HF biology and cell fate regulation.
INTRODUCTION

Hair follicles (HFs) are stem cell-rich mini-organs in skin
that can undergo oscillation-like cycles or regeneration
throughout their lifetimes. Morphologically, the HF growth
cycle includes three consecutive phases: anagen, the
growing phase; catagen, the degenerating phase; telogen,
the resting phase. Upon the telogen-to-anagen transition,
HF stem cells are activated, which leads to the downward
expansion of the HF until it reaches its maximum length.
The HF will stay at this maximum length during the anagen
while keeping active cell proliferation, maintaining the HF
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functions and producing the hair shaft. The most dynamic
part of an anagen HF is at the bottom, usually referred to
as the hair bulb. The center of the hair bulb consists of a
group of specialized fibroblasts: the dermal papillae (DP),
serving as the signaling headquarter (Fig. 1 A). The DP is
enveloped by a group of epithelial transient amplifying
cells, the matrix (Mx) cells, which are fast dividing during
the anagen phase. As Mx cells are pushed upward by cell
proliferation, they differentiate into different components.
Three major concentric layers are formed: medulla
(MED), cortex/cuticle (CX), and inner root sheath (IRS),
from inside to outside. Enclosing the IRS is the outer root
sheath (ORS), which is directly derived from the HF stem
cells located at the top of the HF, and the DP is connected
to the connective tissue sheath that surrounds and protects
the HF epithelium. Anagen may span days in mice, as
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FIGURE 1 HF and its epithelial GRN. (A) An illustration of the bottom part of an HF. (B) The HF epithelial GRN summarized from literature and refined

from scRNA-seq data, with scores from the PB method. To see this figure in color, go online.

Boolean modeling of follicle cell fate
opposed to humans, in which it may span a period of months
or even years. At the end of anagen, an apoptosis wave is
initiated from the bottom of the HF and propagates upward,
leading to an upward involution of the HF epithelium. This
transient degenerating phase is catagen. When the apoptosis
wave stops, leaving the HF in its minimal form, the HF re-
turns to the quiescent telogen phase. HF stem cells survive
the coordinated apoptosis and await to be activated again
upon the initiation of the next anagen.

In recent years, HFs have emerged as a leading model sys-
tem for studying general mechanisms of stem cell regulation,
tissue patterning, wound-induced regeneration, and tissue
aging. Experimental results have uncovered how various
signalingpathwayscooperatively regulate cell division, differ-
entiation, and apoptotic cell death in different compartments
of the HF, which is crucial in regulating the HF cyclic growth
and maintaining the HF functions (1,2). In particular, recent
experimental studies have implied the seemingly dual
roles—anti-apoptotic versus pro-apoptotic—of transforming
growth factor beta (TGF-b) in regulating HF epithelial cell
fate: upon the telogen-to-anagen transition, TGF-b2 counter-
balances the refractory effects of bone morphogenetic protein
(BMP) and activates anagen by activating the SMAD2/3
pathway (3,4); on the other hand, at the late stage of anagen,
TGF-b2 activates the MAPK pathway and participates in
inducing HF epithelial cell apoptosis, which terminates ana-
gen and induces catagen (5–8).However, the regulatorymech-
anisms underlying the dual roles of TGF-b, as well as how
TGF-b cooperates with other signals, are still unclear.

Although traditional reductionist approaches are power-
ful, they are limited by technological barriers and high
experiment costs. As a result, combining modeling with
empirical approaches to study tissue development and
regeneration is useful and has been gaining interest. While
many models have been developed and analyzed for HF
morphogenesis during embryonic development (9–21),
modeling research of cyclic growth dynamics of adult HFs
only caught people’s attention in recent years (22–26).
These HF cyclic growth models provide great insights on
the interactions between signaling dynamics and HF devel-
opment and growth control, yet the signaling events are
either modeled using stochastic rules or an activator-inhibi-
tor modeling framework, which cannot reflect the intra-
cellular signaling transduction dynamics that underlies the
HF cell fate decision mechanism. On the other hand, there
has been an increase in modeling research on the signaling
dynamics of apoptosis and TGF-b pathway. Many have cho-
sen to adopt the Boolean network model, which is a popular
modeling approach for studying signaling dynamics (27–
34). However, to date, modeling studies particularly on
the signaling regulation mechanisms in HF cells have
been limited. Without a clear picture of the HF signaling
transduction that is verified by experimental results, we
cannot directly borrow the models originally developed
from other systems and use them in HF modeling studies.
In addition, many previous Boolean modeling studies
focused more on the regulation mechanisms of TGF-b or
apoptosis alone and rarely on the interactions of the TGF-
b pathway with other signal pathways, despite that, at
different stages of the HF growth cycle, various signals
including TGF-b interact with each other to cooperatively
regulate HF cell fate commitment.

In recent years, the fast-developed RNA sequencing tech-
niques provide a much clearer picture of the skin and HF
signaling events at the molecular level, and several datasets
of skin and HF RNA sequencing data have become available
(35,36). In parallel to the fast development of the RNA
sequencing techniques, especially the single-cell RNA
sequencing (scRNA-seq) technique, various computational
biology methods that analyze these high-dimensional data
have also emerged, which has strengthened the tie between
biological data and mathematical models. Taking advantage
of the scRNA-seq data and newly developed data-inference
methods, in this paper, we first develop a Boolean network
model from literature, then refine the model into a prob-
abilistic Boolean network (pBN) model using recently avail-
able scRNA-seq data. Using this pBN model, we investigate
the roles of TGF-b in regulating HF cell fate decisions in
participation with BMP, tumor necrosis factor (TNF), and
at different stages of the HF growth cycle. First, we propose
a threshold-like switch in the TGF-b strength and demon-
strate that this may necessitate the dual roles of TGF-b of
Biophysical Journal 121, 2638–2652, July 5, 2022 2639
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anti- versus pro-apoptosis, as is suggested by experimental
results. Next, we test our model to the high-activator-low-in-
hibitor theory of anagen initiation (23,25,26,37–41), with
TGF-b serving as the activator and BMP the inhibitor. Our
model results show concordance with the high-activator-
low-inhibitor theory. Then, we use our model to test the
roles of TGF-b and TNF in catagen initiation. This leads
to our prediction that while both TGF-b and TNF can
initiate HF epithelial cell apoptosis, TNF is more efficient
than TGF-b. Additionally, we predict that shutting down
pro-proliferation and pro-differentiation signals may further
enhance apoptosis initiation. A discrete type of spatial
model equipped with the pBN is also developed to test the
two-step catagen initiation hypothesis and study the dy-
namics of apoptosis wave propagation during catagen.
Finally, using our pBN model, we study the effects of
gene knockout (KO)/overexpression (OE) on HF cell fate
regulations, which might provide helpful predictions to
guide future experiments. In addition, we apply the attractor
analysis and stable motif analysis to the Boolean networks
associated with the pBN model to help us understand how
the topological structure of the network determines the
nonlinear dynamics of the HF cell gene regulation.
METHODS

The development of the HF pBN model mainly consists of two steps: 1)

construct an initial Boolean network model for the HF gene regulation

network (GRN) from literature, and 2) refine the Boolean network from

published scRNA-seq data (36) and make it a pBN. We explain the details

of the two steps next.
Constructing an initial HF GRN and the
corresponding Boolean network from the
literature

We first develop a GRN for HF matrix (Mx) cells, the group of transient

amplifying epithelial cells at the bottom of an HF that envelop the DP

(Fig. 1 A). During anagen, Mx cells undergo fast division in response to

various signals produced from DP, and on average it takes �12 h for an

Mx cell to divide in mice, and �24 h in humans (1,42). Mx also gives rise

to several types of terminally differentiated cells in response to several sig-

nals, but primarily by the BMP pathway (43). Sparse apoptosis is observed

in Mx throughout anagen: roughly �2.4% of Mx cells in mice and �4.3%

in humans (1,42,44). However, during late anagen, sparseMx apoptosis pro-

gresses into an upward-moving wave (45–55). Therefore, the HF Mx GRN,

or equivalently the associatedBoolean network, should have threemajor out-

comes: cell division, differentiation, and apoptosis. For the signaling inputs

of the GRN/Boolean network, at this point we include three signals: TGF-b,

BMP, andTNF. TGF-b can either activate the cell division or apoptosis, BMP

competeswithTGF-b to initiateMxcell differentiation, andTNF is known to

play an important role in initiating cell apoptosis (56,57). The signaling

transduction network is then built from the literature, including the KEGG

PATHWAY Database:https://www.kegg.jp, shown in Fig. S1.

The initial GRN consists of two parts: a cell division/differentiation mod-

ule and an apoptosis module (Fig. S1). In the cell division/differentiation

module, TGF-b activates phospho-SMAD2/3, which then binds with

SMAD4, activating further downstream signaling transduction that finally

leads to cell cycling. BMP activates the cell differentiation signaling
2640 Biophysical Journal 121, 2638–2652, July 5, 2022
through the activation of phospho-SMAD1/5/8 signaling and its binding

with SMAD4. For the cross-inhibition between TGF-b and BMP pathways,

it is suggested that, in HF stem cells, p-SMAD2/3-SMAD4 target gene

TMEFF1 negatively regulates BMP signaling (4). On the other hand, the

BMP target genes inhibiting the TGF-b signaling in HF epithelial cells

are not clear, yet cancer progression research suggests that CTGF and

SMAD6 might be potential candidates: while SMAD6 may form the

SMAD6/Smurf1 complex that inhibits the TGF-b signal, BMP may also

inhibit CTGF, which is a potential activator of TGF-b signaling (58–60).

However, we do point out that there are other research results showing

that CTGF may antagonize BMP signaling, while SMAD6 can inhibit

both TGF-b and BMP signaling (61–66). We will first include both

CTGF and SMAD6 in the initial GRN, and later we will confirm their pres-

ence and roles from scRNA-seq data. Finally, SMAD7 may inhibit both

TGF-b and BMP signaling (58,67–72), which is also included in the cell

division/differentiation module. The apoptosis module is mostly developed

based on both the KEGG PATHWAY Database and published GRN and

Boolean modeling on apoptosis signaling (27,31–34,73,74). Nuclear factor

kB (NF-kB) may be anti-apoptotic by activating BCL-XL/2 that inhibits

mitochondria outer membrane permeabilization (MOMP), or by activating

c-FLIP, which inhibits Caspase-8/10. In our Boolean network, to differen-

tiate the signaling in the extrinsic versus intrinsic mitochondria pathway, we

mathematically use two different nodes by placing or withholding an ‘‘m’’

in front of the gene’s name. For example, we have ‘‘BAX’’ for the extrinsic

pathway and ‘‘mBAX’’ for the intrinsic mitochondria pathway. The intrinsic

mitochondria pathway may lead to MOMP, which activates Caspase-9 and

then Caspase-3/7. The two modules in the GRN are suggested to be linked

through two pathways: ERK1/2 may inhibit SMAD4, and NF-kB may acti-

vate SMAD7, and both result in inhibitions of both BMP (SMAD1/5/8 and

TGF-b) SMAD2/3 signaling and thus turn down cell division and differen-

tiation. The activation of SMAD7 by NF-kB may in return inhibit the NF-

kB activator IKK in the apoptosis module, thus acting as a self-inhibition on

NF-kB.

With the initial GRN developed, we then develop its associated Boolean

network model. Boolean network is a logical model that has been popularly

adopted in systems biology, including the modeling study of signaling dy-

namics. In a Boolean network model, each node can take two possible

values referring to the state of the node: 1 (ON) and 0 (OFF). The state

of a node is updated by an associated Boolean function determined by

the current states of its regulator nodes via the logic operators AND, OR,

and NOT. We refer to (75) for a methodological introduction of the Boolean

network modeling. To develop the Boolean functions associated with the

initial HF GRN (Fig. S1), we assume that, when multiple regulators are

involved, inhibitors always have a strong effect, thus inhibitors should al-

ways be included as AND NOT. On the other hand, we assume that activa-

tors are mostly supplement to each other, therefore we use OR unless an

AND relation is clearly implied from biology. For example, in the model,

MEK1/2 has two activators, RAF and TRADD, so we assume the following

Boolean function:

MEK1 = 2 ¼ RAF OR TRADD

while p-SMAD2/3-SMAD4 has two activators, p-SMAD2/3 and SMAD4,

and clearly the Boolean function should be

p-SMAD2=3-SMAD4 ¼ p-SMAD2=3 AND SMAD44:

Refine the Boolean network from scRNA-seq data
into a pBN

We use the scRNA-seq data of HF Mx cells from (36) to refine our Boolean

network model. First, we check if the signals in the initial GRN indeed ex-

press in the HF Mx cells. We find that PUMA, NOXA, and CTGF are not

https://www.kegg.jp
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expressed; therefore, we remove these nodes and the edges linked to them

from the model. We also find that SMAD8 and CASP10 are not expressed,

yet in the model SMAD8 is grouped with SMAD1 and SMAD5, and

CASP10 is grouped with CASP8, so the missing SMAD8 and CASP10 ex-

pressions do not affect our model.

Next, we use the pseudotime Boolean (PB) network inference method

(76) to refine our Boolean model from the HF Mx scRNA-seq data. PB re-

quires an initial Boolean network to start with, and it allows for the usage of

the pseudotime order and binary expressions of cells to identify the most

suitable Boolean functions, and the Boolean functions are scored based

on how frequently they agreed with the pairs of input-output cells along

the pseudotime trajectory. As shown in (36), Mx and its terminally differ-

entiated progenies have four major subpopulations: germinative layer

(GL), medulla (MED), cortex/cuticle (CX), and IRS. Diffusion map anal-

ysis clearly shows the three branches corresponding to MED, CX, and

IRS that are derived from GL (Fig. S2, reproduced from data in (36);

Fig. 5 A from (36); diffusion map and pseudotime analysis results are

from (36)). We group the subclusters of the GL together with MED, CX,

and IRS, depending on their adjacency to the three branches. Therefore,

we obtain three trajectories where each of them starts from the GL and

ends terminally differentiated, and we refer to the three trajectories as

GL-MED, GL-CX, and GL-IRS, respectively (Fig. S2). We apply PB to

each of the three trajectories with a few adjustments explained in Section

S1. The scores along each trajectory as well as the average scores from

the three trajectories are given in Table S1. Figs. S3–S5 show the expression

heatmaps of the genes from our model along the three trajectories, repro-

duced from data in (36).

The ERK1/2 inhibition of SMAD4 receives straight 0 scores along all

three trajectories, so we remove this edge from our Boolean network.

This leaves the NF-kB/SMAD7/IKK pathway the only connection be-

tween the two modules in the GRN. In addition, after we remove the ERK1/

2-SMAD4 edge, SMAD4 becomes another input node, and ERK1/2 be-

comes an end node that does not further affect the gene regulation dy-

namics; therefore, we remove the ERK1/2 node and the edges connecting

to it as well. In our simulations, we will always keep SMAD4 ON except

in the KO simulations. Finally, for each gene, we take the average score

from the three trajectories, and, if multiple genes correspond to the same

mathematical node, we take the highest average score among them

(Table S1; Fig. 1 B). We use these scores to further develop our model

into a pBN model (77), where each Boolean function is associated with a

probability given by the PB score. While a high PB score indicates confi-

dence of the associated Boolean function, a low score implies the possibility

of other regulations present in the system but absent from the current GRN.

In this case, instead of searching for other potential regulators that would

pose a great challenge due to various technical limitations, interpreting

the score as a probability allows us to partially recover these uncertainty ef-

fects. Computationally, we use the general asynchronous method, where, at

every computational step, 1) a node is randomly chosen to be updated, and

2) we randomly generate a random number r � Uð0; 1Þ, compare it with the

probability p of the Boolean function that updates this node, update this

node if r < p, otherwise we skip it and choose the next random node to

be updated. The computational scheme of updating the pBN model is

shown in Fig. S6. We also model the signal inputs (BMP/SMAD1/5/8,

TGF-b/SMAD2/3, RAS DAXX, and TNF/TRADD) in a similar prob-

abilistic way to represent the strength of the signal inputs: in each compu-

tational step, we turn the signal input ON/OFF depending on its probability.

In summary, the scRNA-seq data together with the PB inference method are

used in three levels in the model refinement: 1) removing genes that are not

expressed in HF Mx cells, 2) removing edges in the Boolean network that

receive 0 scores, 3) using the PB scores for each Boolean function as the

probability. The pBN modeling framework together with the general asyn-

chronous method allows us to incorporate randomness into our model and

recover the uncertainty effects.

A single run of the pBN model does not necessarily reach a steady state.

In fact, even the associated deterministic Boolean network model shows
oscillating dynamics in many cases, and cells can ‘‘commit’’ multiple fates

at the same time (see Section S2); that is, more than one terminal node

being ON at the same time (Fig. S7, slices with more than one fate). This

implies that there might be other signals cross-inhibiting the pathways,

yet they are not captured in the current GRN. To compensate for these

missing factors in the systems, our model does not directly use the end

gene nodes (p-SMAD1/5/8-SMAD4, p-SMAD2/3-SMAD4, CASP3/7) to

indicate the cell fates. Instead, we mathematically add three modeling no-

des (division, differentiation, and apoptosis) as terminal nodes representing

each cell fate, and impose cross-inhibitions between them (dashed lined

edges in Fig. 1 B) to enforce the exclusive commitment of cell fates.

With these cross-inhibitions among cell fates, cells can only turn ON one

of the three cell states; yet we find another undetermined state

(division ¼ differentiation ¼ apoptosis ¼ OFF) (Fig. S9) in some simula-

tions. Simulations and attractor analysis (see below for method details)

show that, when all input signals are OFF, clearly this undetermined state

is the only fixed point of the system; on the other hand, in the cases

when the apoptosis module is triggered, this undetermined state results

from the complex attractors in the system (Fig. S9). Mathematically, this

undetermined state results from the AND NOT relations in the Boolean

functions of the terminal fate nodes. At this point, we consider the undeter-

mined state a modeled state due to possibly missing biological information

in the current model, and it does not necessarily reflect a real biological

state.

Now the development of our pBN is completed, altogether it has 38 no-

des and 52 edges, and the Boolean functions are listed in Section S1. To

model the average dynamics of the HF GRN from the pBN model, we

take the average simulation results out of 10,000 simulations. Fig. 2 and

Fig. S17 show an example result of the averaged dynamic simulations,

and Fig. S18 shows the result from a typical single run of the pBN. We

also refer to Section S3 for further computational assessment of the pBN

and more discussions on the model setup.
Attractor and stable motif analysis of the
associated Boolean network

While the HF GRN dynamics is largely affected by the probabilities of the

Boolean functions, the nonlinearity of the system dynamics also greatly de-

pends on the graph topology of the Boolean network. Therefore, in addition

to simulations of the pBN, we also apply the attractor and stable motif anal-

ysis (27,73,75,78–80) on the associated Boolean networks, which provide

insights on the topological nature of the GRN dynamics. Details of the anal-

ysis methods and results are provided in Section S2 and Figs. S7–S12.
RESULTS

A proposed HF cell fate regulation mechanism:
TGF-b may regulate HF epithelial cell fates in a
threshold-like switch fashion, jointly with BMP
and TNF

The dual regulation effects of TGF-b have been observed in
different systems. TGF-b2 can induce both the anti-apoptotic
(SMAD2/3) or the pro-apoptotic (MAPK) pathway in airway
epithelial cells, and studies have suggested this to be a
threshold-dependent switch. When triggered by allergens,
several airway cell types produce excessive TGF-b leading
to increases in airway epithelial cells apoptosis (81–87). In
immune systems, TGF-b triggers the differentiation of
CD4þ cells to either induced Treg (iTreg) cells or T-helper
q7 (Th17) cells, while iTreg cells produce signals to inhibit
Biophysical Journal 121, 2638–2652, July 5, 2022 2641



FIGURE 2 An example dynamic simulation from the pBN model, aver-

aged from 10,000 simulations. Black ¼ 1, White ¼ 0. Initial conditions:

pðTGF-bÞ ¼ pðBMPÞ ¼ 0:5; pðTNFÞ ¼ 0; pðSMAD4Þ ¼ 1.
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the differentiation to Th17 cells. Such a paradoxical regulato-
ry role of TGF-b helps maintain the homeostasis of the sys-
tem on the cell population level (88). In the HF system,
experimental results of cultured HF stem cells suggest that
TGF-b increases both the number and size of HF stem cell
colonies below a certain concentration threshold (Fig. 4
from (4)). However, after passing the threshold, increasing
TGF-b2 concentration will reduce the number and size of
HF stem cell colonies. This seems to imply a threshold-like
switch, with TGF-b2 activating the MAPK pathway when
passing the threshold, similarly to that in the airway epithelial
cells. Experimental results (Fig. 4 from (4)) also show that
increasing the concentration of BMP4 decreases the number
and size of HF stem cell colonies, while increasing both
BMP4 and TGF-b2 does not change much of the number
and size of HF stem cell colonies.

Simulation results from our pBN model with no TNF
input (pðTNFÞ ¼ 0) are shown in Fig. 3 A–C, A0–C0. While
BMP monotonically increases the chance of differentiation
(Fig. 3 B, B0) and monotonically decreases the chance of di-
vision (Fig. 3 A, A0, arrow 2), TGF-b monotonically in-
creases both the chances of cell division (Fig. 3 A, A0,
arrow 1) and apoptosis (Fig. 3 C, C0), with the maximum
2642 Biophysical Journal 121, 2638–2652, July 5, 2022
chance of division �0.4. While BMP can initiate cell differ-
entiation effectively, it is not hard to see that TGF-b is not
very effective in initiating either division or apoptosis. We
also observe that, when increasing both TGF-b and BMP
along any contour line, the chance of cell division does
not change (Fig. 3 A, A0, arrow 3). Next, when a strong
TNF input (pðTNFÞ ¼ 1) is applied to the system, TNF
significantly increases the chance of apoptosis despite the
strengths of BMP and TGF-b (Fig. S19). With strong TNF
(pðTNFÞ ¼ 1), we find that TGF-b and BMP still monoton-
ically increase the chances of division and differentiation,
respectively. However, the maximum chances of division
and differentiation have been greatly suppressed (<0.2)
due to the elevated apoptosis.

The known dual roles of TGF-b in regulating HF epithe-
lial cell fate—initiating HF stem cell cells division at the
telogen-to-anagen transition, or initiating HFMx cells apop-
tosis at the anagen-to-catagen transition—requires a more
robust mechanism to differentially activate the SMAD2/3
or the MAPK pathways. The above-listed experimental ev-
idence of a threshold-like switch in the TGF-b signaling
transduction in both HF and airway epithelial cells suggests
a potential regulatory mechanism. To install the threshold-
based switch into the pBN model, we introduce another
input node ‘‘strong TGF-b’’ (Str-TGF-b) into our pBN
model. While both TGF-b and Str-TGF-b can initiate
SMAD2/3, only Str-TGF-b initiates RAS and DAXX in
the apoptosis module. See Section S1 for more details on
the model setup.

With separate TGF-b and Str-TGF-b input nodes in the
pBN model, simulation results show that, in the absence
of TNF input, TGF-b first increases the chance of cell divi-
sion, yet, after passing the threshold, it increases the chance
of apoptosis while decreasing that of cell division (Fig. 3 D,
D0, arrow 1; Fig. 3 F, F0), with a maximum chance of
apoptosis �0.3 when the strongest Str-TGF-b input signal
is applied. BMP still monotonically increases the chance
of differentiation (Fig. 3 E, E0) and monotonically decreases
the chance of division (Fig. 3 D, D0, arrow 2). In addition,
when increasing both TGF-b and BMP along any contour
line, the chance of division does not change (Fig. 3 D, D0 ar-
row 3). All three findings (arrows 1, 2, 3 in Fig. 3 D0) corre-
spond to the experimental results of HF stem cell colony
formation from (4). With the threshold switch of TGF-b,
or, equivalently, separate TGF-b and Str-TGF-b input nodes
in the pBN model, the introduction of a strong TNF input
into the system causes the chance of apoptosis to be greatly
elevated, accompanied with the suppression of both cell di-
vision and differentiation (Fig. S20).

Finally, using the attractor analysis on the corresponding
Boolean networks, we investigate what leads to the multiple
choice of cell fates in the long-term dynamic behavior of the
system (Figs S9–S12). It turns out that whenever the
apoptosis module is activated—either by TGF-b, Str-TGF-
b, TNF, or their combinations—the system has a unique



FIGURE 3 BMP and TGF-b regulation of cell fate. The y axis of the surface plots (A–F) and the colors in the heatmaps show the probability of that cell fate. (A,

A0, B, B0,C, andC0) Cell fate (cell division, differentiation, or apoptosis) regulation by BMP and TGF-b in the pBNmodel with the uni-TGF-b node. DD0EE 0FF0)
Cell fate regulation by BMP and TGF-b in the pBNmodel with separate TGF-b and Str-TGF-b nodes, the system dynamics shows a threshold switch. Simulations

are taken with 0.1 increment on both TGF-b and BMP strength. Each group has 10,000 simulations and the results are taken at t¼ 1000. The x and y axis of each

panel shows the strength of TGF-b or BMP, and the z axis of panels A– F shows the propability of the dedicated cell fate. To see this figure in color, go online.

Boolean modeling of follicle cell fate
complex attractor resulting in multiple choices of cell fates.
On the other hand, if only the cell division/differentiation
module is activated, the system has only fixed points.
Only in the case of TGF-b ¼ BMP ¼ ON and TNF ¼ Str-
TGF-b ¼ OFF, the system has two fixed points, with one
leading to cell division and the other differentiation. In all
Biophysical Journal 121, 2638–2652, July 5, 2022 2643
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other cases with only the cell division/differentiation mod-
ule activated, there is a unique fixed point in the system
leading to a definite cell fate commitment: cell division or
differentiation. Stable motif analysis shows that the only sta-
ble motifs are those corresponding to the fixed-point attrac-
tors, and there are no non-trivial stable motifs, defined as a
motif that either includes only the input nodes and their
state, or the whole fixed-point attractor state if one exists.
We refer to Section S2 and Figs. S9–S12 for more details
in the attractor and stable motif analysis.
Testing the model by an established theory:
Anagen initiation requires both an increase in
TGF-b and a decrease in BMP

Telogen, the resting phase of an HF, can be further divided
into two sub-phases: the refractory and competent telogen
(23,25,26,37–41). The refractory telogen is characterized
by a high inhibitor/low activator profile, and it is followed
FIGURE 4 Simulation results of the signaling regulations of anagen and catagen

b¼OFF), increasing TGF-b alone cannot initiate anagen. (B) During late telogen, in

anagen (BMP¼ TGF-b¼ON, Str-TGF-b¼ TNF¼OFF), increasing Str-TGF-b a

catagen by increasing the chance of apoptosis. The y axis shows the probability of
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by the competent telogen with a low inhibitor/low activator
profile. The lowered inhibitor (represented by BMP) facili-
tates the anagen initiation when activator (including WNT
and TGF-b) is elevated; on the other hand, with a high inhib-
itor level during the refractory telogen, even a high activator
level cannot initiate anagen. We test these anagen initiation
mechanisms using our pBN model with the threshold switch
of TGF-b, that is, separate TGF-b and Str-TGF-b input
nodes. When BMP is always high, the cell has little chance
of division, and increasing TGF-b up to its threshold
will not initiate division (division¼ apoptosish0, differen-
tiationh1; Fig. 4A). This means that, with high BMP during
the refractory telogen, increasing TGF-b cannot initiate ana-
gen. On the other hand, starting with a high BMP/low TGF-b
profile, increasing TGF-b while decreasing BMP could in-
crease the chance of division while decreasing the chance
of differentiation (Fig. 4 B), indicating the anagen initiation.
In addition, no change in apoptosis is observed in this case
(apoptosis h0).
initiations. (A) During late telogen (BMP¼ ON, TNF¼ TGF-b¼ Str-TGF-

creasing TGF-bwhile decreasingBmpmay initiate anagen. (C–E) During late

lone (C), increasing TNF alone (D), or increasing both of them (E) may initiate

the dedicated signal or the cell fate. To see this figure in color, go online.
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Predications on catagen initiation: Strong TGF-b
can initiate apoptosis, but not as efficiently as
TNF

For catagen initiation, experimental studies show that both
TGF-b and TNF may take part in the initiation and propaga-
tion of the apoptosis wave (5–8,47,54). We use our pBN
model to examine the effects of TGF-b and TNF on
apoptosis initiation. Starting with high BMP and high
TGF-b but below the MAPK pathway initiation threshold,
further increasing TGF-b alone increases the chance of
apoptosis to�0.2 (Fig. 4 C), while increasing TNF alone ex-
hibits a more efficient apoptosis initiation with the chance of
apoptosis >0.6 (Fig. 4 D). Increasing both TNF and TGF-b
beyond the threshold (Fig. 4 E) shows a similar dynamic
pattern with increasing TNF alone (Fig. 4 D), implying
that TNF dominates over TGF-b in the apoptosis initiation
of a single cell. Our simulation results validate that, while
both TGF-b and TNF alone can initiate apoptosis, TNF ap-
pears to be more efficient than TGF-b.

In addition to apoptosis initiation mechanisms, studies
also suggest that, upon the anagen-to-catagen transition, sig-
nals involved in epithelial cell proliferation and differe-
ntiation are shut down (1,54). Since TGF-b acts in a
threshold-like switch fashion, we cannot completely sepa-
rate the pro-proliferation and pro-apoptosis effects of
TGF-b in our model. We test four cases: 1) decreasing
BMP level (BMP�) while increasing Str-TGF-b level
(Str-TGF-bþ), 2) BMP�/TNFþ, 3) TGF-b�/TNFþ, 4)
TGF-b�, BMP�/TNFþ (Fig. S21). In cases 1) and 2),
chances of apoptosis are almost the same as those without
decreasing BMP (Figs. 4 C and D, S21 A and B), and it
seems that the decrease of differentiation only compensates
cell division and has no great effect on apoptosis. Similarly,
in case 3), TGF-b�/TNF þ while keeping BMP the same
level, it does not change the chance of apoptosis, yet the
decrease of cell division compensates the increase of differ-
entiation (Fig. S21 C). On the other hand, in case 4), with
both BMP and TGF-b decreased, an increase in TNF results
in a further slight increase in apoptosis to �0.8, in compar-
ison with increasing TNF without decreasing BMP and
TGF-b (Figs. 4 D and S21 D). Our simulation results imply
that shutting down both the pro-proliferating and pro-differ-
entiation signals during the apoptosis may enhance the
apoptosis initiation, while shutting down either the pro-
proliferating or pro-differentiation signal has little effect
on apoptosis, and instead seems to compensate each other.
Testing a two-step catagen initiation hypothesis:
TGF-binitiates the initial wave of apoptosis,
followed by the upward propagation driven by
TNF

Although experimental results demonstrate that various sig-
nals including TGF-b and TNF contribute in the initiation
and propagation of the HF catagen apoptosis wave, interest-
ingly, it is reported that TGF-b could induce catagen-like
morphological changeswhile TNFmay causemorphological
changes of whole HFs that are not commonly seen in catagen
HFs (5). In addition, TNFa-null HFs are still able to enter
catagen, although the catagen entry is delayed in comparison
with wild-type (WT) mice (89), suggesting that at least TNF
is not the unique apoptosis-initiating signal in HF. Taking
these experimental findings into account, and that TGF-b
and TNF may have different sender/receiver cells in the
HF, there is one catagen initiation hypothesis: upon the ana-
gen-to-catagen transition, DP cells produce TGF-b—and
possibly also other signals, including FGF5 (1,2,45) —to
initiate Mx cells apoptosis, while cells undergoing apoptosis
exchange TNF that contributes to the further wave-like
apoptosis propagation (56,57). To test this hypothesis, we
design a 4� 20 cell array, where each cell carries a pBN
model. BMP and TGF-b are imposed as exterior opposing
signal gradients that simulate their distributions in HF Mx,
and cells undergoing apoptosis produce TNF signals that
are received by itself and its neighboring cells. Upon the
end of anagen when BMP and TGF-b are both high, but
with TGF-b below the threshold, we continue to increase
TGF-b from the bottom of the domain to activate the
MAPK pathway. Simulations from this pBN-equipped
spatial model show that the elevation of TGF-b at the bottom
of theMx initiates an apoptosis wave (Fig. 5A), and that TNF
together with strong TGF-b further drives the upward propa-
gating apoptosis that degenerates the HFMx (Fig. 5 B andC;
Video S1). Details of the spatial model can be found in Sec-
tion S4.We also point out that, in reality, apoptosis causes the
upward degeneration of the Mx that carries the DP, which
may further contribute to the apoptosis propagation as the
Str-TGF-b resource is moving up.
Predictions of gene KO and OE on HF cell fate
regulations

We perform KO and OE simulations with different combi-
nations of signal inputs, so to study the effect of each
gene (node) on HF cell fate regulations, and the results
are shown in Figs. 6 and S22–S43. Details of the simulation
setup are provided in Section S5.

In Fig. 6, each pixel shows the change in the noted cell fate
(shownby the title) under thegiven signal inputs (shownby the
left labels), due to theOEorKOof this gene (shownby thebot-
tom labels), comparedwith theWTunder the same input state.
The level of cell fate change is shown by the warm/cold color
indicating an increase/decrease. Fig. 6 allows us to visually
identify the roles of each signal in HF cell fate regulation.
In each panel, if the OE/KO mostly increases or decreases
this cell fate, we highlight this gene in red/blue, respectively.
If the OE/KO of a gene does not result in a clear cell fate
change under most input states, we leave the gene name
black. First, cell division clearly requires signals in the
Biophysical Journal 121, 2638–2652, July 5, 2022 2645



FIGURE 5 The spatial simulation of apoptosis initiation andprogression during catagen.During anagen,BMPandTGF-b cast opposing gradients on theMx.

Upon the anagen-to-catagen transition, TGF-b increases from the bottomofMx, activating the Str-TGF-b input node that leads to the initiation of apoptosis (A).

Apoptosis cells produceTNF,which can be received by its neighboring cells, resulting upward propagatingwaves of TNF and apoptosis (B andC). The strength

of the signal or the probability of the apoptosis fate is shown by the color, with color bar given at the left of panel A. To see this figure in color, go online.
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TGF-b-SMAD2/3-division pathway, including SMAD2/3,
p-SMAD2/3, p-SMAD2/3-SMAD4 and TMEFF1. Moreover,
we find that several signals in the apoptosis module also
contribute to division, including c-FLIP and BCL-XL/2 in
both extrinsic and intrinsic mitochondria pathway (nodes
BCL-XL/2 and mBCL-XL/2). Similarly, signals in the
BMP-SMAD1/5/8-differentiation pathway clearly contribute
to differentiation, including SMAD1/5/8, p-SMAD1/5/8,
p-SMAD1/5/8-SMAD4, and SMAD6, and c-FLIP and
BCL-XL/2 from the apoptosis module also contribute to
differentiation. We also notice that OE of p-SMAD2/3 and
p-SMAD2/3-SMAD4 in the TGF-b-SMAD2/3-division
pathway may decrease the chances of both differentiation
and apoptosis, while the KO of these signals appears to
increase the chance of differentiation more than that of
apoptosis. A similar effect is observed in p-SMAD1/5/8 and
p-SMAD1/5/8-SMAD4 from theBMP-SMAD1/5/8-differen-
tiation pathway, thatOEof these signals decreases the chances
of both division and apoptosis, while the KO of these signals
increases the chance of division more than apoptosis.

As for apoptosis, we identify several signals/nodes in the
apoptosis module that contribute to apoptosis, including
TRADD, TRAF/RIP, FADD, CASP8/10, CASP3/7, BID,
JNK, DAXX, p53, BAX/BAK, CASP9, and MOMP.
As a connector between the division/differentiation and
apoptosis modules, SMAD7 also contributes to apoptosis
while inhibiting division and differentiation. Effects of
several signals in the TGF-b-SMAD2/3-division and BMP-
SMAD1/5/8-differentiation pathways have been discussed
above. Other signals in the apoptosis module can be divided
into three groups based on their effects on cell fate
regulation. The first group includes c-FLIP and BCL-XL/2,
which promote both division and differentiation, and inhibit
apoptosis, as discussed above. The second group includes
MEK1/2, RAS, and RAF. KO of these signals slightly
2646 Biophysical Journal 121, 2638–2652, July 5, 2022
increases the chance of apoptosis, although OE of the
signals shows no clear effect in changing the chance of
apoptosis. This demonstrates that these signals act slightly
in an apoptosis-inhibiting fashion. Note that these signals
also inhibit both division and differentiation, and we find
that, surprisingly, they act in a way that inhibits all cell
fates; in other words, KO of these signals may increase all
three cell fates. Considering the modeled undetermined fate
in our model, it might be possible that some circuits
involving these signals are currently absent, which should
be able to provide the cell the missing information in cell
fate decision. We suggest future experiments to investigate
in this direction. Finally, there is a third group in the
apoptosis module, including IKK and NF-kB. While OE of
IKK and NF-kB dominantly inhibit apoptosis as well as
division and differentiation, KO of them slightly increases
apoptosis under some input states, while slightly decreasing
apoptosis under some other input states. We consider that
IKK and NF-kB have a hybrid role in regulating apoptosis,
and we highlight them in purple in the KO plot of apoptosis
(Fig. 6 C0).

In the following, we briefly compare our simulation find-
ings with known experimental results from the literature.
SMAD6, TMEFF1

The BMP-SMAD1/5/8-differentiation and TGF-b-SMAD2/
3-division pathways inhibit each other through SMAD6
and TMEFF1. The inhibition of TMEFF1 from TGF-
b-SMAD2/3 to BMP-SMAD1/5/8 pathway in HF stem cell
cells is reported in (4). On the other hand, the regulating role
of SMAD6 inHF is unclear, and wewould point out that there
is evidence of SMAD6 inhibiting on the BMP-SMAD1/5/8
pathway in other systems (61–66). However, our simulations
predict that, without such an inhibitory node fromBMP to the



FIGURE 6 Effects of overexpression (OE) and knockout (KO) of each gene on cell fate regulations. Each pixel shows the difference of the noted cell fate

between the OE or KO simulations of the noted gene and the WT simulations, under the noted input state. Each group of simulations consists of 10,000 runs

and the results are taken at the end of t¼ 1000. The change in the cell fate is shown by the color, with warm color (difference> 0) indicating an increase in the

cell fate, and cold color (difference < 0) a decrease. (A and A0) Change in cell division due to the OE and KO of a gene. (B and B0) Change in differentiation.
(C and C0) Change in apoptosis. To see this figure in color, go online.
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TGF-b pathway, cells will dominantly commit cell cycling
instead of differentiation. This indicates that even the regula-
tory role of SMAD6 still needs to be confirmed, and there
should be a BMP to TGF-b inhibitory node that serves the
regulation in the same way.
The two apoptosis pathways

Str-TGF-b may regulate cell apoptosis through two path-
ways: Str-TGF-b-RAS-MEK1/2, or Str-TGF-b-DAXX-
JNK. As discussed above, KO any of RAS, RAF, or
MEK1/2 slightly increases all chances of division, differen-
tiation, and apoptosis. Such a dual role results mainly from
the dual role of NF-kB, which can be anti-apoptotic through
activating BCL-XL/2 as well as the activation of self-inhibi-
tion possibly through c-FLIP (90,91), and meanwhile it also
activates SMAD7, which inhibits both the BMP-SMAD1/5/
8-differentiation and TGF-b-SMAD2/3-division pathways.
Next, for the Str-TGF-b-DAXX-JNK pathway, we point
out that, although the (Str-)TGF-b-JNK pathway is more es-
tablished in literature, the role of DAXX is still under
debate, and there is evidence on both the activating and in-
hibiting roles of DAXX on cellular apoptosis, through the
interaction with the JNK pathway (92,93).
SMAD7, BCL-XL/2

SMA7 is activated by NF-kB and can shut down both
the BMP-SMAD1/5/8 and TGF-b-SMAD2/3 pathways. In
addition, it may also have an inhibitory effect on IKK,
Biophysical Journal 121, 2638–2652, July 5, 2022 2647
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which further inhibits NF-kB (Fig. 1 B). Simulation results
show that the inhibitory regulations of SMAD7 on the
BMP-SMAD1/5/8 and TGF-b-SMAD2/3 pathways are
more prominent in comparison with its inhibitory role in
the apoptosis pathway. It is reported that OE of SMAD7
may result in delayed and aberrant HF formation, implying
its inhibitory effect on cell division (94,95), supporting its
dominant pro-apoptosis effect shown by our simulations.
BCL-XL/2 are known as apoptosis inhibitors, and our simu-
lations validate their apoptosis-inhibiting effect. Experi-
mental evidence demonstrates that BCL-2ab null mice
showed a retarted anagen development, and hair shafts
were produced 1.2–1.4 times more slowly compared with
WT mice (48,96,97). However, we point that other experi-
ments on BCL-2OE show a seemingly dual role on apoptosis
regulation: while BCL-2 OE is reported to reduce ultraviolet
B-induced apoptosis in mutant mice, BCL-XL/2 OE may
accelerate catagen development, possibly through the inter-
action with the FGF5 pathway (48).
DISCUSSION

In recent years, HFs have become a popular model system in
the study of morphogenesis, growth, and stem cell biology.
While there have been many modeling works on the
morphogenesis and growth control of HFs, modeling studies
on the HF gene regulation mechanisms and the cell fate con-
trol have been limited. In this work, we developed a Boolean
model from the literature, then used scRNA-seq data to
refine it to a probabilistic Boolean model for HF epithelial
cells. We used the pBN to investigate the cell fate regulatory
mechanisms in HF epithelial cells, focusing on the dual
roles of TGF-b and its interaction with other signals. We
propose a threshold-based switch on TGF-b regulation on
HF cell fate, and simulation results show qualitative match
with experimental results (4). Further attractor and stable
motif analysis on the associated Boolean model show that
the division and differentiation cell fates result from fixed-
point steady states, while apoptosis leads to complex attrac-
tors. Then, we use the model to investigate the signaling
mechanisms behind two critical ‘‘checkpoints’’ in the HF
growth cycle: the telogen-to-anagen transition and the ana-
gen-to-catagen transition. At the telogen-to-anagen transi-
tion, it is known that a typical high inhibitor/low activator
profile during the refractory telogen cannot enable the telo-
gen-to-anagen transition. Instead, the HF needs to possess
the low inhibitor/low activator profile during competent tel-
ogen. Our simulations show concordance with this telogen-
to-anagen transition mechanism, and reveal its dependence
on the cross-inhibition between the BMP-SMAD1/5/8-
differentiation and TGF-b-SMAD2/3-division pathways
through the two critical regulatory nodes TMEFF1 and
SMAD6. At the anagen-to-catagen transition, our simula-
tions on a single cell show that both TGF-b and TNF can
initiate apoptosis, with TNF being more efficient. Two other
2648 Biophysical Journal 121, 2638–2652, July 5, 2022
hypotheses related to the anagen-to-catagen transition are
also investigated: first, shut-down of both division and dif-
ferentiation signals may further enhance apoptosis; next,
the apoptosis wave may be first initiated by TGF-b, then
propagate through TNF produced by cells undergoing
apoptosis as well as TGF-b. Finally, we perform KO/OE
simulations of the genes, and compare the results
with some experimental results from the literature. In partic-
ular, we find that signals in the apoptosis module may
enhance apoptosis (TRADD, TRAF/RIP, FADD, CASP8/
10, CASP3/7, BID, JNK, DAXX, p53, BAX/BAK, CASP9
and MOMP, and SMAD7), or inhibit apoptosis (c-FLIP
and BCL-XL/2), or have hybrid effects on cell fate regula-
tion (MEK1/2, RAS, RAF, IKK, and NF-kB).

While our pBN model offers a useful approach in the
study of HF biology and provides interesting insights to
the HF epithelial cell fate regulation dynamics, there are a
few directions that can be further improved in the future.
Currently the GRN in our model only involves three signals,
TGF-b, BMP, and TNF, and together they form a minimal
set that allows cell to undergo division, differentiation,
and apoptosis. In fact, cell fate regulatory mechanisms in
the HF are highly complicated and involve many other sig-
nals, and together they drive the cell fate decisions at
different stages of an HF growth cycle. To name a few, it
is well-known that WNT is important in initiating and main-
taining the anagen, sonic hedgehog (SHH) induces HF for-
mation during morphogenesis and it also guarantees the
formation of HF ORS during anagens, and FGF5 is a signa-
ture signal in catagen initiation. An important and urgent
next step is to extend the current three-signal GRN to
include at least these well-established HF cell fate regulato-
ry signals. This may help us better understand the nature of
the HF GRN nonlinear dynamics. Moreover, as a mini-or-
gan, an HF consists of different compartments, and cells
of different types actively ‘‘talk’’ to each other through
different signals, so to orchestrate the HF growth and main-
tain its functions. Recently, new methods have been devel-
oped to infer the cell’s communication events (98). A
combined model of both inter-cellular signaling communi-
cations and intra-cellular gene regulations might help peo-
ple better understand how the HF cell fate decisions are
coordinated at both the cellular and the whole-organ level.

In this work, we use the scRNA-seq data (36) from HF
Mx epithelial cells to refine the Boolean network. While
apoptosis is first induced in Mx cells upon the anagen-to-
catagen transition, during late telogen, TGF-b acts on HF
stem cells to initiate anagen. Therefore, to better understand
the signaling events behind HF cell fate decisions and the
HF cyclic growth dynamics, we need to investigate the HF
stem cells and their direct progeny ORS cells, as well as
data from telogen HFs (36,99). On the model refinement
side, in recent years, various GRN inference methods based
on single-cell data have been developed, including several
ones that focus particularly on the inference of Boolean
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network models (76,100–103). In a future extension of this
work, using multiple inference methods and comparing their
results may improve the accuracy of the refined model. We
also point out that many of these Boolean model inference
methods were originally developed for qPCR data rather
than scRNA-seq data, which presents a challenge to the
inference accuracy due to the high level of noise typically pre-
sented in the scRNA-seq data. Applying imputation methods
to the scRNA-seq data before applying the inference method
might partially rescue it. In addition, we note that the PB
scores and the probabilities in the pBN do not reflect true bio-
logical meaning (see discussion in Section S3). While our
data-refined pBN modeling approach provides insights to
the underlying mechanisms of cell fate decisions and useful
predictions, further functional experiments are needed tovali-
date the GRN. Finally, the Booleanmodel assumes each gene
(node) to have twodiscrete states,ONorOFF,which oversim-
plifies the gene regulation dynamics. Thus, in the future, we
should develop continuous models based on the GRN struc-
ture developed in this paper. The ordinary differential equa-
tion (ODE) type of GRN models might be a good option in
this direction, with recently available ODE-based single-
cell data-inference methods (104–106).
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.
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28. Steinway, S. N., J. G. Zañudo,., R. Albert. 2014. Network modeling
of TGFb signaling in hepatocellular carcinoma epithelial-to-mesen-
chymal transition reveals joint sonic hedgehog and Wnt pathway acti-
vation. Cancer Res. 74:5963–5977. https://doi.org/10.1158/0008-
5472.can-14-0225.

29. Andrieux, G., M. Le Borgne, and N. Th�eret. 2014. An integrative
modeling framework reveals plasticity of TGF-b signaling. BMC
Syst. Biol. 8:30. https://doi.org/10.1186/1752-0509-8-30.

30. Sizek, H., A. Hamel, ., E. Ravasz Regan. 2019. Boolean model of
growth signaling, cell cycle and apoptosis predicts the molecular
mechanism of aberrant cell cycle progression driven by hyperactive
PI3K. PLoS Comput. Biol. 15:e1006402. https://doi.org/10.1371/jour-
nal.pcbi.1006402.

31. Calzone, L., L. Tournier,., A. Zinovyev. 2010. Mathematical model-
ling of cell-fate decision in response to death receptor engagement.
PLoS Comput. Biol. 6:e1000702. https://doi.org/10.1371/journal.
pcbi.1000702.

32. Schlatter, R., K. Schmich, ., O. Sawodny. 2009. ON/OFF and
beyond-a Boolean model of apoptosis. PLoS Comput. Biol.
5:e1000595. https://doi.org/10.1371/journal.pcbi.1000595.

33. Mai, Z., and H. Liu. 2009. Boolean network-based analysis of the
apoptosis network: irreversible apoptosis and stable surviving.
J. Theor. Biol. 259:760–769. https://doi.org/10.1016/j.jtbi.2009.
04.024.

34. Kazemzadeh, L., M. Cvijovic, and D. Petranovic. 2012. Boolean
model of yeast apoptosis as a tool to study yeast and human apoptotic
regulations. Front. Physiol. 3:446. https://doi.org/10.3389/fphys.
2012.00446.

35. Rezza, A., Z. Wang, ., M. Rendl. 2016. Signaling networks among
stem cell precursors, transit-amplifying progenitors, and their niche in
developing hair follicles. Cell Rep. 14:3001–3018. https://doi.org/10.
1016/j.celrep.2016.02.078.

36. Joost, S., K. Annusver, ., M. Kasper. 2020. The molecular anatomy
of mouse skin during hair growth and rest. Cell Stem Cell. 26:441–
457.e7.

37. Plikus, M. V., and C.-M. Chuong. 2008. Complex hair cycle domain
patterns and regenerative hair waves in living rodents. J. Invest. Der-
matol. 128:1071–1080. https://doi.org/10.1038/sj.jid.5701180.

38. Plikus, M. V., J. A. Mayer, ., C. M. Chuong. 2008. Cyclic dermal
BMP signalling regulates stem cell activation during hair regenera-
tion. Nature. 451:340–344. https://doi.org/10.1038/nature06457.

39. Plikus, M. V., R. B. Widelitz, ., C.-M. Chuong. 2009. Analyses of
regenerative wave patterns in adult hair follicle populations reveal
macro-environmental regulation of stem cell activity. Int. J. Dev.
Biol. 53:857–868. https://doi.org/10.1387/ijdb.072564mp.
2650 Biophysical Journal 121, 2638–2652, July 5, 2022
40. Plikus, M. V. 2012. New activators and inhibitors in the hair cycle
clock: targeting stem cells’ state of competence. J. Invest. Dermatol.
132:1321–1324. https://doi.org/10.1038/jid.2012.38.

41. Plikus, M. V., and C.-M. Chuong. 2014. Macroenvironmental regula-
tion of hair cycling and collective regenerative behavior. Cold Spring
Harb. Perspect. Med. 4:a015198. https://doi.org/10.1101/cshperspect.
a015198.

42. Malkinson, F. D., and J. T. Keane. 1978. Hair matrix cell kinetics: a
selective review. Int. J. Dermatol. 17:536–551. https://doi.org/10.
1111/j.1365-4362.1978.tb05997.x.

43. Kulessa, H., G. Turk, and B. L. M. Hogan. 2000. Inhibition of Bmp
signaling affects growth and differentiation in the anagen hair follicle.
EMBO J. 19:6664–6674. https://doi.org/10.1093/emboj/19.24.6664.

44. Van Scott, E. J., T. M. Ekel, and R. Auerbach. 1963. Determinants of
rate and kinetics of cell division in scalp hair. J. Invest. Dermatol.
41:269–273. https://doi.org/10.1038/jid.1963.110.

45. Paus, R., and K. Foitzik. 2004. In search of the ‘‘hair cycle clock’’: a
guided tour. Differentiation. 72:489–511. https://doi.org/10.1111/j.
1432-0436.2004.07209004.x.

46. Hsu, Y.-C., H. A. Pasolli, and E. Fuchs. 2011. Dynamics between stem
cells, niche, and progeny in the hair follicle. Cell. 144:92–105. https://
doi.org/10.1016/j.cell.2010.11.049.

47. Lindner, G., V. A. Botchkarev, ., R. Paus. 1997. Analysis of
apoptosis during hair follicle regression (catagen). Am. J. Pathol.
151:1601–1617.
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