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ABSTRACT OF THE DISSERTATION

Topics in Nonparametric Machine Learning: Subgroup Analysis and Deep Neural
Networks Regression

by

Mingming Liu

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, December 2021

Dr. Shujie Ma, Chairperson

In recent years, modern technology has facilitated the collection of large-scale data from

medical records, health insurance databases, and other platforms. Due to the complex

structure, the analysis of such data is very challenging. The dissertation focuses on the

nonparametric machine learning techniques in subgroup analysis and deep neural networks

regression.

The first part of the dissertation studies the heterogeneity in the disease pro-

gression, which is essential to the development of precision medicine that aims to tailor

treatments to subgroups of patients with similar characteristics. Without a priori knowl-

edge of grouping information, our goal is to identify subgroups of individuals who share a

common disorder progress over time, i.e. longitudinal trajectory. We develop a subject-

specific nonparametric regression model, where the heterogeneous trajectories are modeled

through the subject-specific unknown functions and can be approximated by B-splines. We

then apply the fusion penalized method that can automatically divide the individuals into

different subgroups based on the B-spline coefficients as well as estimating the coefficients si-
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multaneously. We also illustrate the performance of this method through simulation studies

and a biomedical data application.

The second part of the dissertation considers a sparse deep ReLU network (SDRN)

estimator obtained from empirical risk minimization with a Lipschitz loss function in the

presence of a large number of features. Instead of utilizing full grids, the unknown target

function is approximated by a deep ReLU network with sparse grids. Our framework can be

applied to a variety of regression and classification problems. The unknown target function

to estimate is assumed to be in a Sobolev space with mixed derivatives. Functions in

this space only need to satisfy a smoothness condition rather than having a compositional

structure. We develop non-asymptotic excess risk bounds for our SDRN estimator. We

further derive that the SDRN estimator can achieve the same minimax rate of estimation

(up to logarithmic factors) as one-dimensional nonparametric regression when the dimension

of the features is fixed, and the estimator has a suboptimal rate when the dimension grows

with the sample size. We show that the depth and the total number of nodes and weights of

the ReLU network need to grow as the sample size increases to ensure a good performance,

and also investigate how fast they should increase with the sample size. These results

provide an important theoretical guidance and basis for empirical studies by deep neural

networks.
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Chapter 1

Introduction

In recent years, advances in modern technologies have facilitated the collection

of complex and large-scale data. To study the relationships among variables, regression

analysis has been widely used. For instance, parametric regression models such as linear

regression models are very convenient to study the relationships between the response vari-

able and predictors. They are easy to understand and interpret. However, they may not be

flexible enough to capture the hidden patterns in large-scale data. The linearity assump-

tion (model assumption) can be easily violated due to the complex structure of the data in

practice. The mis-specified models will lead to large bias in the estimators and false con-

clusions. In this dissertation, we focus on the nonparametric machine learning techniques

used in subgroup analysis and deep neural networks regression, which can provide flexibility

in modeling complex data without making restrictive structural assumptions and also have

been shown to be very effective and powerful for estimating the unknown functions.

Chapter 2 reviews the basis functions of B-splines and sparse grids, which can be
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used to approximate the nonparametric functions. In addition, to solve the high-dimensional

problem, it introduces some penalized (regularized) regression models, such as Lasso, Ridge,

MCP (minimax concave penalty) and SCAD (smoothly clipped absolute deviation penalty).

Moreover, this chapter presents the alternating direction method of multipliers (ADMM)

algorithm and Adam (adaptive moment estimation) algorithm that are well suited to the

optimization problems.

Chapter 3 concentrates on the one-dimensional nonparametric regression in sub-

group analysis. Subgroup analysis plays an important role in precision medicine. Uncovering

the heterogeneity in the disease progression is a key factor to disease understanding and

treatment development, so that interventions can be tailored to target the subgroups that

will benefit most from the treatment, which is an important goal of precision medicine.

However, in practice, one top methodological challenge hindering the heterogeneity investi-

gation is that the true subgroup membership of each individual is often unknown. In this

chapter, we aim to identify latent subgroups of individuals who share a common disorder

progress over time, to predict latent subgroup memberships, and to estimate and infer the

heterogeneous trajectories among the subgroups. To achieve these goals, we apply a concave

fusion learning method proposed in [60, 61] to conduct subgroup analysis for longitudinal

trajectories of the Alzheimer’s disease data. The heterogeneous trajectories are represented

by subject-specific unknown functions which are approximated by B-splines. The concave

fusion method can simultaneously estimate the spline coefficients and merge them together

for the subjects belonging to the same subgroup to automatically identify subgroups and

recover the heterogeneous trajectories. The resulting estimator of the disease trajectory of
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each subgroup is supported by an asymptotic distribution. It provides a sound theoretical

basis for further conducting statistical inference in subgroup analysis. We also demon-

strate the performance of this method through extensive simulation studies and a real data

application.

Different from Chapter 3, which uses B-splines to approximate the unknown func-

tions of one variable, Chapter 4 focuses on the nonparametric problems in high dimensions.

If we have more variables, i.e. high dimensions, the approximation procedure will be more

complicated. For instance, to predict an organism’s phenotype (such as human disease,

crop yield and drought resistance), which results from its genotype and environment, the

researchers need to consider more factors such as genes, sunlight and nutrients. However,

adding more factors will make the sample size you need grow exponentially and quickly

become unmanageable. As a result, it will become more difficult to approximate the un-

known predictive function and the computational cost is also very expensive. To address

this problem, Chapter 4 considers a sparse deep ReLU network (SDRN) estimator obtained

from empirical risk minimization with a Lipschitz loss function in the presence of a large

number of features. More specifically, the estimator of the target function is built upon a

network architecture of sparsely-connected deep neural networks with the rectified linear

unit (ReLU) activation function. We consider the Sobolev spaces with square-integrable

mixed second derivatives, which are commonly used for the sparse grids methods when

dealing with the high-dimensional problems. Rather than requiring a compositional struc-

ture assumption, functions in this space only need to satisfy a smoothness condition, which is

more flexible. In addition, regularization is used for preventing possible over fitting. Many

3



regression and classification problems can be solved by our framework. We also develop

statistical properties of the proposed methodology. We derive non-asymptotic excess risk

bounds for our SDRN estimator. We further show that our SDRN estimator can achieve the

same optimal minimax estimation rate as one-dimensional nonparametric regression when

the dimension of the features is fixed. Meanwhile, the SDRN estimator has a suboptimal

rate when the dimension grows with the sample size. Moreover, to ensure a good perfor-

mance, we show that the depth and the total number of nodes and weights of the ReLU

network need to grow as the sample size increases. Simulation studies are conducted to

evaluate the performance of the proposed method. We also illustrate the method through

four real data applications.

The conclusions are given in Chapter 5. And the related technical proofs are

included in the Appendix.
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Chapter 2

Basis Functions and

High-dimensional Regression

2.1 Basis Functions

Nonparametric regression is widely used when there is not a predetermined form

to describe the relationship between the response variable and explanatory variables. To

approximate the nonparametric components, we can use the basis functions, which consist

of a particular basis for a function space. Functions in the function space can be uniquely

represented by a linear combination of these basis functions. In this section, we introduce

the basis functions of B-splines and sparse grids.

2.1.1 B-splines

In mathematics, a B-spline (basis spline) is a spline function that has minimal

support with respect to a given degree, smoothness, and domain partition. Any spline

5



function of a given degree can be represented by a linear combination of B-splines of that

degree. A spline function is a piecewise polynomial function. B-spline curves are determined

by the order q and the number of interior knots N . A spline of order q is a piecewise

polynomial function of degree q − 1. We start with the definition of knots. Let

a0 = t0 ≤ t1 ≤ · · · ≤ tN ≤ tN+1 = b0

be a knot sequence, where t0 and tN+1 are the two end points, and {tj}Nj=1 is the interior

knots sequence. The B-spline basis functions [20] are defined recursively as

Bi,1(x) =


1, if ti ≤ x ≤ ti+1

0, otherwise

Bi,k+1(x) =ωi,k(x)Bi,k(x) + [1− ωi+1,k(x)]Bi+1,k(x),

where

ωi,k(x) =


x−ti

ti+k−ti
, if ti+k ̸= ti

0. otherwise

Note that Bi,1(x) are the B-splines of order 1, which satisfy
∑

iBi,1(x) = 1, and Bi,k+1(x)

are the higher order B-splines.

Let G = G(q−2) be the space spanned by the B-splines with order q. For any

function f in this space, it can be expressed uniquely by the linear combination of B-spline

basis functions, i.e.

f(x) =

N+q∑
i=1

Bi,q(x)βi,

where N + q is the number of basis functions and βi’s are B-spline coefficients. When f(·)

is a function of multiple variables, it can be estimated through the tensor product of B-

spline basis functions for each variable (full grids method). However, in high-dimensional

6



problems, it is very complex to implement that. Therefore, in the following, we present the

sparse grids basis.

2.1.2 Sparse Grids

We first introduce a hierarchical basis of piecewise linear functions. To approxi-

mate functions of one variable x on [0, 1], a simple choice of a basis function is the standard

hat function ϕ(x):

ϕ(x) =


1− |x|, if x ∈ [−1, 1]

0, otherwise.

To generate a one-dimensional hierarchical basis, we consider a family of grids Ωℓ of level ℓ

characterized by a grid size hℓ = 2−ℓ and 2ℓ + 1 points xℓ,s = shℓ for 0 ≤ s ≤ 2ℓ. On each

Ωℓ, the piecewise linear basis functions ϕℓ,s are given as

ϕℓ,s(x) = ϕ(
x− xℓ,s

hℓ
), 0 ≤ s ≤ 2ℓ,

on the support [xℓ,s − hℓ, xℓ,s + hℓ] ∩ [0, 1]. The hierarchical increment spaces Wℓ on each

Ωℓ are given by

Wℓ = span{ϕℓ,s : s ∈ Iℓ},

where Iℓ = {s ∈ N : 0 ≤ s ≤ 2ℓ; s are odd numbers for ℓ ≥ 1} and N = {0, 1, 2, . . . , }.

We can see that for each ℓ ≥ 1, the supports of all basis functions ϕℓ,s spanning Wℓ are

mutually disjoint. Then the hierarchical space of functions up to level L is

VL =
⊕

0≤ℓ≤L

Wℓ = span{ϕℓ,s : s ∈ Iℓ, 0 ≤ ℓ ≤ L}.

To approximate functions of d-dimensional variables x = (x1, . . . , xd)
⊤ on X =

[0, 1]d, we employ a tensor product construction of the basis functions. We consider a

7



family of grids Ωℓ of level ℓ = (ℓ1, ..., ℓd)
⊤ with interior points xℓ,s = s · hℓ, where hℓ =

(hℓ1 , ..., hℓd)
⊤ with hℓj = 2−ℓj and s = (s1, ..., sd)

⊤ for 0 ≤ sj ≤ 2ℓj and j = 1, ..., d. On

each Ωℓ, the basis functions ϕℓ,s are given as

ϕℓ,s(x) =

d∏
j=1

ϕℓj ,sj (xj), 0d ≤ s ≤ 2ℓ,

The hierarchical increment spaces Wℓ are given by

Wℓ = span{ϕℓ,s(x) : s ∈ Iℓ},

where Iℓ = Iℓ1 × · · · × Iℓd , and Iℓj = {sj ∈ N : 0 ≤ sj ≤ 2ℓj , sj are odd numbers for ℓj ≥ 1}.

Then the hierarchical space of functions up to level L = (L1, ..., Ld)
⊤ is

VL =
⊕

0≤ℓ≤L

Wℓ = span{ϕℓ,s : s ∈ Iℓ,0d ≤ ℓ ≤ L}.

For any function f in the space VL, it can be represented by the hierarchical basis:

f(x) =
∑

0d≤ℓ≤∞

∑
s∈Iℓ

γ0
ℓ,s
ϕℓ,s(x) =

∑
0d≤ℓ≤∞

gℓ(x), (2.1)

where γ0
ℓ,s

are the hierarchical coefficients and gℓ(x) =
∑

s∈Iℓ γ
0
ℓ,s
ϕℓ,s(x) ∈Wℓ.

In practice, one can use a truncated version to approximate the function f(·) given

in (2.1), so that

f(x) ≈
∑

0≤|ℓ|∞≤m

∑
s∈Iℓ

γ0
ℓ,s
ϕℓ,s(x) =

∑
0≤|ℓ|∞≤m

gℓ(x),

which is constructed based on the space with full grids: V
(∞)
m =

⊕
0≤|ℓ|∞≤m

Wℓ =span{ϕℓ,s :

s ∈ Iℓ, 0 ≤ |ℓ|∞ ≤ m}. The dimension of the space V
(∞)
m is |V (∞)

m | = (2m + 1)d, which

increases with d in an exponential order.
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For dimension reduction, we consider the hierarchical space with sparse grids:

V (1)
m =

⊕
|ℓ|1≤m

Wℓ = span{ϕℓ,s : s ∈ Iℓ, |ℓ|1 ≤ m}.

The function f(·) given in (2.1) can be approximated by

fm(x) =
∑

|ℓ|1≤m

∑
s∈Iℓ

γ0
ℓ,s
ϕℓ,s(x) =

∑
|ℓ|1≤m

gℓ(x).

Clearly, when d = 1, the dimension of the hierarchical space with sparse grids is the same

as that of the space with full grids. The dimensionality issue does not exist. Table 2.1

provides the number of basis functions for the hierarchical space with sparse grids V
(1)
m and

the space with full grids V
(∞)
m when the dimension of the covariates d increases from 2 to

8 and the m value increases from 0 to 4. We see that the number of basis functions for

the space with sparse grids is dramatically reduced compared to the space with full grids,

when the dimension d or m value become larger, so that the dimensionality problem can be

lessened.

9



Sparse grids Full grids

m = 0 m = 1 m = 2 m = 3 m = 4 m = 0 m = 1 m = 2 m = 3 m = 4

d = 2 4 8 17 37 81 4 9 25 81 289

d = 3 8 20 50 123 297 8 27 125 729 4913

d = 4 16 48 136 368 961 16 81 625 6561 83521

d = 5 32 112 352 1032 2882 32 243 3125 59049 1419857

d = 6 64 256 880 2768 8204 64 729 15625 531441 24137569

d = 7 128 576 2144 7184 22472 128 2187 78125 4782969 410338673

d = 8 256 1280 5120 18176 59744 256 6561 390625 43046721 6975757441

Table 2.1: The number of basis functions for the space with sparse grids and the space with
full grids.
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2.2 High-dimensional Regression

We assume that the relationship between the response variable and covariates can

be described as

yi = xT
i β + εi, i = 1, . . . , n, (2.2)

where yi is the response variable, xi is a p-vector of covariates, β = (β1, . . . , βp)
T is the

vector of the unknown regression coefficients, and εi are i.i.d random errors with mean 0

and constant variance. The first entry in each xi is 1 so that the intercept is included in

β. Let Y = (y1, . . . , yn)
T ,X = (x1, . . . ,xn)

T and ε = (ε1, . . . , εn)
T . Model (2.2) can be

rewritten as

Y = Xβ + ε, i = 1, . . . , n. (2.3)

Define L(β) =
∑n

i=1(yi − xT
i β)

2 = (Y − Xβ)T (Y − Xβ). When p < n, the

ordinary least square estimator can be obtained through

β̂ = argmin
β

L(β). (2.4)

(2.4) has a closed-form solution with β̂ = (XTX)−1XTY , in which it is assumed that

(XTX)−1 is well defined. However, in high-dimensional problems, the number of covariates

can be larger than the number of observations in practice, i.e. p > n. In this situation,

model (2.2) can not be identified since XTX is not invertible due to the multicollinearity.

Even in low-dimensional problems (p < n), the predictors variables (covariates) can also be

highly correlated. To tackle this problem, we consider the penalized regression methods,

in which all the predictor variables are kept in the model but regularize the regression

coefficients β by shrinking them toward 0.
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2.2.1 Penalized Regression

The commonly used penalized regression methods include ridge regression and

lasso regression, in which the ridge penalty (L2 penalty) or lasso penalty (L1 penalty) is

added in the minimization criterion. The penalty term will control the size of β. Addi-

tionally, we introduce MCP and SCAD penalties. In penalized regression, to obtain the

coefficients, we minimize

L1(β) = L(β) +

p∑
j=1

p(βj , λ),

where p(· , λ) is a penalty function and λ ≥ 0 is a penalization tuning parameter controlling

the strength of the penalty term.

Ridge

In ridge regression [35], we minimize

L1(β) = L(β) + λ

p∑
j=1

β2
j .

We then get the ridge estimator β̂ridge = (XTX+λIp)
−1XTY , where Ip is a p×p identity

matrix. In this case, XTX + λIp is always invertible for λ > 0. Clearly, when λ = 0,

the ridge estimator is the same as the ordinary least square estimator. As λ increases, the

bias in the estimator increases but the variance decreases. Therefore, the ridge regression

works well to avoid over fitting issue. When λ is very large, the ridge regression shrinks the

estimator β̂ridge toward 0, but not to be exactly 0. As a result, ridge regression are usually

used to deal with multicollinearity issue instead of performing variable selection.
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Lasso

[86] first introduced the lasso penalty p(t, λ) = λ |t|. In lasso regression, we mini-

mize

L1(β) = L(β) + λ

p∑
j=1

|βi| .

It can be seen that lasso regression uses a L1 penalty, while ridge regression considers a

L2 penalty. Although the problems seems similar, their solutions behave very differently.

Compared to ridge penalty, lasso penalty can shrink some coefficients to be 0 exactly when

λ increases, which leads to a sparse estimator. Based on this, lasso regression can remove

the insignificant predictors from the model. In other words, lasso regression additionally

performs variable selection. However, as lasso penalty applies the same penalization to each

coefficient, it tends to over-shrink the large coefficients, and thus results in biased estimates.

In the following, we introduce two concave penalties, MCP (minimax concave penalty [98])

and SCAD (smoothly clipped absolute deviation penalty [27]), which not only induce the

nearly unbiased estimates, but also enjoy the sparsity property.

MCP and SCAD

For MCP, it has the form

pτ (t, λ) = λ

∫ |t|

0
(1− x/(τλ))+dx, τ > 1,

and the SCAD penalty has the form

pτ (t, λ) = λ

∫ |t|

0
min {1, (τ − x/λ)+/(τ − 1)} , τ > 2,

where τ is a parameter that controls the concavity of the penalty function, and (x)+ = x,

if x > 0; (x)+ = 0, otherwise. In particular, when τ → ∞, both penalties converge to
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the lasso penalty (L1 penalty). Similar to lasso penalty, these two concave penalties enjoy

the sparsity as well. That is, as λ increases, they can shrink some coefficients to 0 exactly.

In practice, we only want to shrink small coefficients, and do not want to shrink the large

coefficients. This can be achieved by employing MCP and SCAD penalties. Therefore, both

of them produce nearly unbiased estimates. To estimate the coefficients here, we minimize

L1(β) = L(β) +

p∑
j=1

pτ (βj , λ),

where pτ (· , λ) represents the MCP or SCAD penalty.

2.2.2 ADMM Algorithm

Recently, statistics and machine learning with large-scale data is a very popular

topic of widespread interest, such as in medicine, artificial intelligence, computational biol-

ogy, etc. Many such problems can be posed in the framework of convex optimization. The

alternating direction method of multipliers (ADMM), as a simple but powerful algorithm,

has been widely used for solving the structured convex optimization problems. From the

discussion of a number of examples, [9] showed that ADMM is well suited for the large-scale

distributed problems arising in applied statistics and machine learning.

Following [9], the ADMM algorithm solves problems in the form

minimize f(x) + g(z)

subject to Ax+Bz = c

(2.5)

where f and g are convex functions, x ∈ Rn, z ∈ Rm,A ∈ Rp×n,B ∈ Rp×m and c ∈ Rp.

The augmented Lagrangian for this problem is

Lρ(x, z,µ) = f(x) + g(z) + µT (Ax+Bz − c) + (ρ/2) ∥Ax+Bz − c∥22 ,
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where ∥·∥2 is the L2 norm with ∥a∥2 = (
∑
|ai|2)1/2, µ is the dual variable or Lagrange

multiplier and ρ > 0 is a penalty parameter. Then ADMM consists of the iterations

xk+1 = argmin
x

Lρ(x, z
k,µk) (2.6)

zk+1 = argmin
z

Lρ(x
k+1, z,µk) (2.7)

µk+1 = µk + ρ(Axk+1 +Bzk+1 − c) (2.8)

It can be seen that ADMM updates x and z in an alternating or sequential way, which

accounts for the term alternating direction. At step k + 1, we have the primal residual

rk+1 = Axk+1 + Bzk+1 − c and dual residual sk+1 = ρATB(zk+1 − zk). As ADMM

proceeds, the primal residual and dual residual converge to zero.

2.2.3 Adam Algorithm

Adam (adaptive moment estimation) algorithm [44] is another popular optimiza-

tion algorithm, which is of great importance in deep learning. Even though ADMM presents

promising performance in many conventional machine learning applications and can be ap-

plied to deep learning, there still exist some challenges. For instance, it converges slowly to

high accuracy. Moreover, it is very time-consuming to implement when there are a large

number of features and a big sample size, which also needs a big memory. In contrast, Adam

algorithm considers first-order gradient-based optimization with little memory requirement.

It is straightforward to implement and also computationally efficient.

Referring to [44], let f(θ) be a stochastic scalar function that is differentiable with

respect to the parameters θ. To minimize the objective function, the Adam algorithm

proposed in [44] is given as follows.
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Algorithm 1 Adam algorithm

Require: θ0: Initial parameter vector

m0 ←− 0
(
Initialize 1st moment vector

)
v0 ←− 0

(
Initialize 2nd moment vector

)
t←− 0 (Initialize timestep)

while θt not converged do

t←− t+ 1

gt ←− ∇θft(θt−1) (Get gradient w.r.t. stochastic objective at timestep t)

mt ←− β1mt−1 + (1− β1)gt (Update biased first moment estimate)

vt ←− β2vt−1 + (1− β2)g
2
t (Update biased second raw moment estimate)

m̂t ←− mt/(1− βt
1) (Compute bias-corrected first moment estimate)

v̂t ←− vt/(1− βt
2) (Compute bias-corrected second raw moment estimate)

θt ←− θt−1 − αm̂t/(
√
v̂t + ϵ) (Update parameters)

end while

return θt

Note that, gt = ∇θft(θ) represents the gradient, i.e. the vector of partial deriva-

tives of ft with respect to θ evaluated at t, and g2t indicates the elementwise square gt
⊙

gt.

α is the step size, and β1, β2 ∈ [0, 1] are the exponential decay rates for the moment esti-

mates. The good default choices are α = 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 10−8.
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Chapter 3

A Fusion Learning Method to

Subgroup Analysis of Alzheimer’s

Disease

3.1 Introduction

Alzheimer’s disease (AD) is the leading cause of dementia for adults. It is a progressive

disease that worsens over time. Patients with AD show symptoms of memory loss, mental

decline, delusion and so forth as the disease progresses. The progression of AD varies from

person to person, and patients with AD have experienced it in different ways. The lack of a

good understanding of the heterogeneity in the disease progression through the population

is a key reason for failures of disease-modifying treatments for AD. As a result, very little

progress has been made for the AD treatment development since 2003 [96]. To overcome
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this difficulty, one has to first understand the heterogeneity in the disease trajectories, so

that interventions can be tailored to target the subgroups that will benefit most from the

treatment, which is an important goal of precision medicine. The progression of AD is often

measured by cognitive scores at multiple time points, resulting in a collection of longitudinal

data. One major methodological challenge hindering the heterogeneity investigation is that

the true subgroup membership of each individual is often unknown.

The growth mixture modeling (GMM) method [28, 82, 42, 65] has been popularly

used for the identification and prediction of latent subpopulations for longitudinal data.

This method requires to specify the underlying distribution of the data, which is often

hard to obtain for longitudinal data, because of their complex structure. The k-means

algorithm [34] is another popular clustering method. It divides the data into subgroups

based on the distances between measurement vectors of subjects. It is difficult to apply

this method to cluster functional curves, especially arising from longitudinal data with

missing measurements. Moreover, both GMM and k-means methods need to pre-specify

the number of subgroups, which is often unknown in practice, and thus introduces additional

complications in the estimation procedure.

To overcome these challenges, we apply the concave fusion learning method pro-

posed in [60, 61] to conduct subgroup analysis for longitudinal trajectories of the AD data.

This semi-supervised machine learning method applies concave penalty functions to pairwise

differences of clinical outcomes or unknown treatment coefficients in a regression model. It

can automatically identify memberships from latent subgroups and estimate the number of

subgroups simultaneously without specifying the underlying distribution. Although the fu-
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sion learning method was originally considered in [60, 61] for the cross-sectional data setting

with independent observations, it also has a great potential for subgroup analysis of other

data settings such as longitudinal data and survival data. In this article, we extend this

method to the longitudinal AD data, and investigate its numerical performance through ex-

tensive simulation studies with both balanced and unbalanced correlated repeated measures

designs. Moreover, we propose two different data-driven methods based on the modified

Bayes Information Criterion BIC and the Calinski-Harabasz (CH) index, respectively, for

selecting the optimal tuning parameter involved in the concave fusion penalization method,

while the CH method was not considered in [60, 61]. We also thoroughly investigate the

performance of these two data-driven methods through numerical studies.

To cluster the AD patients based on their cognitive scores observed over time, we

consider a subject-specific nonparametric regression model, in which the heterogeneity can

be driven by observed or unobserved latent covariates. More specifically, we model each

patient’s cognitive scores through an unknown functional curve of time. We approximate

each curve by B-splines [20, 51, 93, 58], and then apply pairwise fusion penalties to the

spline coefficients, so that patients with similar disease trajectories can be automatically

clustered into the same homogeneous subgroup. As a result, patients in the same identified

subgroup share the same disease progressive curve. We use an alternating direction method

of multipliers (ADMM) algorithm [9] that has a good convergence property to solve the

optimization problem. Different from the GMM method, our method does not require to

pre-specify the number of subgroup, nor does it need to provide the underlying distribution

of the data. Instead, our estimation procedure only involves a working correlation matrix

19



[49, 90, 57, 62] for the repeated measures of each subject. We show that the resulting

estimator of the functional curve for each subgroup is robust to the specification of the

correlation matrix, i.e., it is still a consistent estimator even if the working correlation

matrix is mis-specified. Moreover, we establish point-wise asymptotic normality of the

functional curve estimator for each subgroup, so that statistical inference can be further

conducted based on our clustering and estimation results.

The rest is organized as follows. Section 3.2 describes the proposed model. Section

3.3 introduces the model estimation procedure using concave fusion penalization method. In

Section 3.4, we establish the theoretical properties of the proposed estimators. Simulation

studies are presented in Section 3.5. Section 3.6 illustrates the application of the proposed

method to Alzheimer’s disease data. Discussions are provided in Section 3.7. The related

technical proofs are included in the Appendix A.

3.2 Model

In a longitudinal study, subjects are usually measured repeatedly over a time period. Sup-

pose the data consist of (Yi(tij), tij) , i = 1, . . . , n, j = 1, . . . ,mi, where {tij , j = 1, . . . ,mi}

are the distinct time points that the measurements of the ith subject are taken, and Yi(tij)

is the observed response for the ith subject at time tij . Our goal of this article is to un-

derstand how the change of trajectories may differ across individual subjects. To study the

longitudinal trajectories of the ith subject, we consider the subject-specific nonparametric

regression model:

Yi(tij) = βi(tij) + εi(tij), (3.1)
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where βi(t)’s are the unknown smooth functions of t, and the errors εi(t)’s satisfy E(εi(t)) =

0 and Cov(εi(t), εi′(t
′)) = δ(t, t′)I{i = i′} with I{·} being an indicator function. For

simplicity, we denote Yij = Yi(tij) and εij = εi(tij). Model (3.1) can be rewritten as

Yij = βi(tij) + εij . (3.2)

In this model, the trajectory of the ith subject over time is represented by the

subject-specific unknown function βi(t). Due to the heterogeneity of the trajectories, we

assume βi(t)’s arise from K different groups with K ≥ 1. To be specific, we have βi(t) =

αk(t) for all i ∈ Gk, where G = (G1, ...,GK) is a mutually exclusive partition of {1, ..., n} and

αk(t) is the common function for all the βi(t)’s from group Gk. In practice, the number of

subgroups K can be much smaller than the sample size n, and it is often unknown.

3.3 Estimation

In order to identify the subgroups of the heterogeneous trajectories, we first approximate

the nonparametric functions βi(·)’s in (3.2) using B-splines. Referring to [59], let a0 = ζ0 <

ζ1 < · · · < ζJ < ζJ+1 = b0 be a partition of [a0, b0] into J +1 subintervals Il = [ζl, ζl+1), l =

0, · · · , J − 1 and IJ = [ζJ , b0], where {ζl}Jl=1 is a sequence of interior knots. Denote the

rth order normalized B-spline basis as {B1(t), . . . , BS(t)}T (see [20]), in which S = J + r

is the number of basis functions. Then, βi(tij) in (3.2) can be approximated by a linear

combination of the B-spline functions,

βi(tij) ≈
S∑

d=1

γidBd(tij) = B(tij)
Tγi, i = 1, . . . , n, j = 1, . . . ,mi, (3.3)
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where B(tij) = (B1(tij), . . . , BS(tij))
T and γi = (γi1, . . . , γiS)

T . In this case, the trajectory

heterogeneity represented by βi(t) is reflected on the B-spline coefficient γi. Therefore, our

goal can be transformed into identifying the subgroups based on the γi’s.

Let Yi = (Yi1, . . . , Yimi)
T , εi = (εi1, . . . , εimi)

T and Xi = (Bi1, . . . ,Bimi)
T , where

Bij = B(tij). Given (3.3), for each i, model (3.2) can be written in matrix notation as

Yi ≈Xiγi + εi, i = 1, · · · , n. (3.4)

As in [49, 90, 62], we let Σi and Vi be the true and assumed working covariance of Yi, where

Σi = Var(Yi) and Vi = A
1/2
i RiA

1/2
i , Ai represents a mi ×mi diagonal matrix containing

the marginal variances of Yij , and Ri is an invertible working correlation matrix. The true

covariance Σi is often unknown in practice, so we use a working covariance Vi to replace Σi

in the estimation procedure. The structure of the working correlation Ri is pre-specified.

Throughout, we assume that Vi depends on a nuisance finite dimensional parameter vector

η.

Following [61], we utilize a fusion learning approach with concave penalty to esti-

mate model (3.4). For any vector a, define its L2 norm as ∥a∥2 = (
∑

a2i )
1/2. The objective

function is constructed as

Qn (γ;λ) =
1

2

n∑
i=1

(Yi −Xiγi)
TV −1

i (Yi −Xiγi) +
∑

1≤i<j≤n

p
(
∥γi − γj∥2 , λ

)
, (3.5)

where γ =
(
γT
1 , . . . ,γ

T
n

)T
and p (·, λ) is a concave penalty function with a tuning parameter

λ ≥ 0. For a given λ > 0, define

γ̂(λ) = argmin
γ

Qn(γ;λ). (3.6)
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When λ is large enough, the penalty shrinks some pairs of ∥γi − γj∥2 to zero. For two

subjects with ∥γ̂i(λ)− γ̂j(λ)∥2 = 0, they are clustered into the same group. Based on this

fact, we can partition the heterogeneous trajectories into subgroups. For convenience, we

write γ̂(λ̂) ≡ γ̂. Let
{
θ̂1, . . . , θ̂K̂

}
be the unique values of γ̂, where K̂ is the number of

these distinct values. In the kth subgroup, we denote the set of the corresponding indices

by Ĝk =
{
i : γ̂i = θ̂k, 1 ≤ i ≤ n

}
with 1 ≤ k ≤ K̂. To select the optimal tuning parameter

λ, a data-driven procedure such as BIC or the Calinski-Harabasz index is considered. It

is noteworthy that our method can also be applied to the case that the true number of

subgroups K is known. In this scenario, we will choose a λ value that corresponds to the

estimated number of subgroups K̂ which is equal to or the closest one to the true number

of subgroups K. If two K̂ values are equally distant from K, we use the larger one to

determine the λ value.

An appropriate selection of the penalty is very critical to the model estimation.

Instead of choosing lasso penalty pτ (t, λ) = λ |t| [86], which results in biased estimates due

to the over-shrinkage of large coefficients, we use the minimax concave penalty (MCP) [98]

by inducing nearly unbiased estimators with the form

pτ (t, λ) = λ

∫ |t|

0
(1− x/(τλ))+dx, τ > 1,

where τ is a parameter controlling the concavity of the penalty function, and (a)+ = a,

if a > 0 and (a)+ = 0, otherwise. Moreover, it is more aggressive in enforcing a sparser

solution. Consequently, MCP is a more desirable choice.

Another problem is how to choose the working covariance matrix Vi. Here we

consider an unequally spaced AR(1) structure for the working covariance matrix Vi, such
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that Vi(t, s) = σ2ρκ|t−s|, where κ = 1
|t(1)−t(2)|

with t(1), t(2) being the first two time points.

Note that our estimator of the functional curve for each subgroup is consistent even if the

working covariance matrix is mis-specified, i.e., Vi ̸= Σi. First, we estimate σ2 by taking

the mean of the estimated variance σ̂2
i , i = 1, . . . , n, where σ̂2

i is calculated within subject

by using ordinary least squares (OLS) residuals. Due to the fact that these residuals may

be small and thus underestimate the true errors, we modify these residuals by replacing

ε̂ij with ε̂∗ij = ε̂ij/(1− hij), where hij is the jth diagonal element of the projection matrix

Hi for subject i. This modification is suggested by [63]. Given (3.4), we have Hi =

Xi(X
T
i Xi)

−1XT
i . Next, we estimate correlation ρ by taking the average of the estimated

correlation between the two adjacent time points, in which we only consider the adjacent

time points having the scaled distance equalling 1, i.e. κ |t− s| = 1. Accordingly, Vi can

be obtained.

Computation Using ADMM Algorithm

It is worth noting that the penalty function in (3.5) is not separable in γi’s. To

obtain the solution of (3.6), following [61], we derive an ADMM algorithm to minimize the

objective function (3.5). By introducing a new set of parameters δij = γi−γj , the problem

can be reformulated as the following constrained optimization:

min
1

2

n∑
i=1

(Yi −Xiγi)
TV −1

i (Yi −Xiγi) +
∑

1≤i<j≤n

pτ
(
∥δij∥2 , λ

)
,

subject to γi − γj − δij = 0. (3.7)

Denote by ⟨a, b⟩ = aTb the inner product of two vectors. The above constrained op-

timization can be transformed into its augmented Lagrangian optimization problem, i.e,
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minimize:

L (γ, δ,υ) =
1

2

n∑
i=1

(Yi −Xiγi)
TV −1

i (Yi −Xiγi) +
∑

1≤i<j≤n

pτ
(
∥δij∥2 , λ

)
+
∑
i<j

⟨υij ,γi − γj − δij⟩+
ϑ

2

∑
i<j

∥γi − γj − δij∥22 , (3.8)

where δ =
{
δTij , i < j

}T
, the dual variables υ =

{
υT
ij , i < j

}T
are the Lagrange multipliers

and ϑ is the penalty parameter. Then we can compute the estimates of (γ, δ,υ) through

iterations using the ADMM algorithm.

Given the value of δm,υm at step m, we update the estimates at step m + 1 as

follows:

γm+1 = argmin
γ

L (γ, δm,υm) , (3.9)

δm+1 = argmin
δ

L
(
γm+1, δ,υm

)
, (3.10)

υm+1
ij = υm

ij + ϑ
(
γm+1
i − γm+1

j − δm+1
ij

)
. (3.11)

Notice that the problem in (3.9) is equivalent to minimizing the function

f (γ) =
1

2

n∑
i=1

(Yi −Xiγi)
TV −1

i (Yi −Xiγi) +
ϑ

2

∑
i<j

∥∥γi − γj − δmij + ϑ−1υm
ij

∥∥2
2
+ C0

=
1

2
(Y −Xγ)T V −1 (Y −Xγ) +

ϑ

2

∥∥Aγ − δm + ϑ−1υm
∥∥2
2
+ C0,

where Y =
(
Y T
1 , ...,Y T

n

)T
, X = diag (X1, ...,Xn), V = diag (V1, ...,Vn), A = D ⊗ IS

(Kronecker product) and C0 is a constant independent of γ. Here D = {(ei − ej) , i < j}T ,

in which ei is a n× 1 vector with the i th element being 1 and the remaining ones being 0,

and IS is a S × S identity matrix. Thus, we can update γm+1 by

γm+1 =
(
XTV −1X + ϑATA

)−1 [
XTV −1Y + ϑAT

(
δm − ϑ−1υm

)]
. (3.12)
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In (3.10), given γm+1 and υm, the minimization problem is the same as minimizing

ϑ

2

∥∥ζmij − δij
∥∥2
2
+ pτ

(
∥δij∥2 , λ

)
with respect to δij , where ζmij = γm+1

i − γm+1
j + ϑ−1υm

ij . Consequently, for MCP penalty

with τ > 1/ϑ, we have:

δm+1
ij =


ST(ζm

ij ,λ/ϑ)

1−1/(τϑ) if ∥ζmij ∥2 ≤ τλ,

ζmij if ∥ζmij ∥2 > τλ,

(3.13)

where ST(z, t) = (1− t/ ∥z∥2)+z is the groupwise soft thresholding operator.

Given the discussion above, we summarize the detailed ADMM algorithm as follows:

Algorithm 2 ADMM algorithm

1: Initialize δ0, υ0.

2: for m = 0, 1, 2, · · · do

3: Update γm+1 using (3.12)

4: Update δm+1 using (3.13)

5: Update υm+1 using (3.11)

6: if the convergence criterion is met, then

7: Stop and denote the last iteration by γ̂(λ),

8: else

9: m = m+ 1.

10: end if

11: end for

Ensure: Output

We stop the ADMM algorithm when the primal residual rm+1 = Aγm+1 − δm+1

is close to zero such that
∥∥rm+1

∥∥
2
< ε for some small value ε > 0.
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Figure 3.1: Solution path for (γ̂31(λ), . . . , γ̂3n(λ)) against λ with n = 100, T = 20 for
balanced data of Middle case from Three Subgroup Example in Section 3.5.

Remark 3.1 To start ADMM algorithm, an appropriate initial value is very important.

First, given model (3.4), we use the ordinary least squares estimate of each subject as the

initial estimate γ0, i.e. γ0
i = (XT

i Xi)
−1XT

i Yi, i = 1, · · · , n, which is a consistent estimate.

Then, let initial estimates δ0ij = γ0
i − γ0

j in δ0 and υ0 = 0.

Remark 3.2 To compute the solution path of γ against λ, we consider a grid of λ values

with λmin = λ0 < λ1 < · · · < λK = λmax, where 0 ≤ λmin < λmax <∞. Given a λ value in

[λmin, λmax], we can compute γ̂(λ) given in (3.6) by using ADMM algorithm. Referring to

[61], a warm start and continuation strategy is used for updating the solutions. Specifically,

we compute γ̂(λ0) by using γ0 as the initial value, then γ̂(λk) by using γ̂(λk−1) as the initial

value (k = 1, · · · ,K).

Figure 3.1 illustrates the solution path for the estimates of B-spline coefficients

(γ̂31(λ), . . . , γ̂3n(λ)) against λ. It is computed on a grid of λ values in interval [λmin, λmax].

From Figure 3.1, we observe that when λ is very small, too many subgroups are identified.
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With λ value increasing, the estimated number of subgroups decreases, then becomes to

1 for a large λ value. If the actual number of subgroups is given (K = 3), based on the

solution path, we can select a λ between 0.6 and 0.8 as the tuning parameter, where K̂

equals the true number of subgroups; otherwise, BIC or the Calinski-Harabasz index is

used to decide the optimal tuning parameter λ.

3.4 Theoretical Properties

In this section, we establish the theoretical properties of the proposed estimators. We first

introduce some notations. Let β(t) = (β1(t), . . . , βn(t))
T with βi(t) being the function of

the ith subject, and α(t) = (α1(t), . . . , αK(t))T with αk(t) being the common function

for the kth subgroup. For any square integrable function g(t) on the compact support T,

denote its L2 norm by ∥g∥2 =
{∫

T g(t)
2dt
}1/2

and squared L2 norm by ∥g∥22 =
∫
T g(t)

2dt.

Then, for a vector valued function g(t) = (g1(t), . . . , gL(t))
T , its squared L2 norm is defined

as ∥g∥22 =
∑L

l=1 ∥gl∥22. Let b = mink ̸=k′ ∥αk − αk′∥2 be the minimum distance between

smoothing functions αk and αk′ from any two clusters.

We also give the definitions for notations O(·) and Op(·) as follows. If {xn}∞1 is

any real sequence, {bn}∞1 is a sequence of positive real numbers, and there exists a constant

C∗ <∞ such that |xn|/bn ≤ C∗ for all n, we say that xn is at most of the order of magnitude

of bn, and write xn = O(bn). If, for any ε > 0, there exists Cε <∞ such that the stochastic

sequence {Xn}∞1 satisfies supn P (|Xn| > Cε) < ε, we write Xn = Op(1). If {Yn}∞1 is another

sequence, either stochastic or nonstochastic, and Xn/Yn = Op(1), we say that Xn = Op(Yn),

or in words, Xn is at most of order Yn in probability.
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Asymptotic properties

Definition. A random sequence {ξk, k ≥ 1} is said to be α-mixing if the α-mixing

coefficient

α(s)
def
= sup

k≥1
sup{|P (A ∩B)− P (A)P (B)| : A ∈ F∞

s+k, B ∈ Fk
1 }

converges to 0 as s→∞, where Fb
a is the σ algebra generated by ξa, ξa+1, . . . , ξb.

Among various mixing conditions used in the literature, the α-mixing is reasonably

weak and is known to be fulfilled by many stochastic processes including many time series

models. For instance, [31] derived the conditions under which a linear process is α-mixing.

The linear autoregressive and the bilinear time series models are strongly mixing with

mixing coefficients decaying exponentially under very mild assumptions, see the page 99 of

[21] for more details. We refer to [45, 11] and references therein for more discussions on the

α-mixing condition.

We denote by C(r) =
{
ϕ|ϕ(r) ∈ C(T)

}
the space of the rth order smooth functions

on the compact support T such that their rth order derivatives belong to C(T), which is

the class of all continuous functions on T.

Regularity Conditions:

(C1) The observation time points tij , i = 1, . . . , n, j = 1, . . . ,mi, are chosen independently

from a distribution F (·) with the density f(·). Moreover, the density function f(t) is

uniformly bounded away from 0 and infinity on its compact support T. Without loss

of generality, we assume T = [a0, b0].

(C2) There exists a positive constant M such that E(ε(t)4) ≤M for all t ∈ T. In addition,
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the random sequence {εij} for each i satisfies α-mixing condition with the α-mixing

coefficient satisfying α(s) ≤ C∗s−α for α > 2+κ0
1−κ0

, where 0 < κ0 < 1, and C∗ is a

positive constant with 0 < C∗ <∞.

(C3) The functions βi(·) ∈ C(r), for i = 1, . . . , n.

(C4) The spline knot sequences {ζl}J+1
l=0 have bounded mesh ratio. That is, for some positive

constant C01,

max0≤l≤J |ζl+1 − ζl|
min0≤l≤J |ζl+1 − ζl|

≤ C01.

(C5) There exist positive constants 0 < C1 < C2 < ∞ such that the eigenvalues of

Σ=diag(Σ1, . . . ,Σn) and V =diag(V1, . . . ,Vn) lie between C1 and C2.

Condition (C1) is identical to condition (C1) in [40] and assumption (A1) in [70].

This condition ensures that the observation time points are randomly scattered and it can

be modified or weakened according to Remarks 3.1 and 3.2 in [40]. Condition (C2) is

a standard requirement for moments and the mixing coefficient for an α-mixing process

as assumed in [45] and [11]. This condition allows the errors to be weakly dependent.

Many linear and nonlinear time series models like the linear autoregressive and the bilinear

time series models are strongly mixing with the mixing coefficients decaying exponentially,

see [21] (page 99) for more details. Conditions (C3)-(C4) are frequently assumed in the

spline approximation literature; see for example [100, 89, 58]. The smoothness condition on

βi(·) given by Condition (C3) determines the rate of the approximation error of the spline

estimator β̂i(·). Condition (C4) ensures that the knot sequence has a bounded mesh ratio;

that is, the knots are quasi-uniform. Condition (C5) is commonly used in the literature

related to longitudinal data, such as in [41, 62] and the references therein.
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Let the nonparametric function subspace Mβ
G corresponding to the group parti-

tion be Mβ
G =

{
β(·) : βi(·) = αk(·), βi(·) ∈ C(r), for i ∈ Gk, 1 ≤ k ≤ K

}
, while the subspace

Mγ
G of B-spline coefficients corresponding to the group partition is denoted by Mγ

G ={
γ : γi = θk, γi ∈ RS , for i ∈ Gk, 1 ≤ k ≤ K

}
, where θk is the common B-spline coeffi-

cients in the kth subgroup. By using the proposed method, we have γ̂ = (γ̂T
1 , . . . , γ̂

T
n )

T ,

where γ̂i is the estimated B-spline coefficient for subject i with γ̂i = θ̂k for all i ∈ Ĝk. Then,

the estimated function for each i is

β̂i(t) = B(t)T γ̂i, (3.14)

for any t ∈ T. Let α̂or(t) = (α̂or
1 (t), . . . , α̂or

K (t)), where α̂or
k (t) is the estimated common

function for group Gk by assuming that the true memberships are known.

Theorem 3.1 Suppose conditions (C1)-(C5) hold, and for any fixed K, if J = O(N ς
0)

with 0 < ς < 1, the oracle estimator α̂or satisfies ∥α̂or − α∥22 = Op(J/N0 + J−2r), where

N0 = min1≤k≤K Nk and Nk =
∑

i∈Gk
mi.

It is worth noting that the convergence rate given in Theorem 3.1 consists of

two parts, which are the approximation error of order J−2r and the estimation error of

order J/N0. We can see that the increase of J leads to smaller approximation error but

larger estimation error, whereas the decrease of J leads to larger approximation error but

smaller estimation error, i.e., there is a trade-off between the bias and variance. By letting

J/N0 = J−2r, we can obtain the optimal order of J which is N
1/(2r+1)
0 . Plugging it into

the convergence rate, it follows that ∥α̂or − α∥22 = Op(J/N0 + J−2r) = Op

(
N

−2r/(2r+1)
0

)
,

which reaches the minimax convergence rate for spline regression.
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The following Theorem 3.2 gives the convergence rate of the estimated function

β̂i(t) in (3.14) for each i.

Theorem 3.2 Suppose conditions (C1)-(C5) hold, if there exists a constant C > 0 such that

Cb ≥ τλ and J = O(mς
(n)) with 0 < ς < 1, then, for each i, ∥β̂i−βi∥22 = Op(J/m(n)+J−2r),

where m(n) = min1≤i≤nmi.

Theorem 3.3 Assume Ĝ and G0 respectively be the estimated and true subgroup member-

ship. Under the same conditions in Theorem 3.2, we have P
(
Ĝ = G0

)
→ 1 as m(n) →∞.

Theorem 3.3 gives the model selection consistency result for the penalized method.

Thus, given the estimated subgroup membership, we may write α̂(t) = (α̂1(t), . . . , α̂K(t))T

for any given t ∈ T, and the following theorem holds.

Theorem 3.4 Under the same conditions in Theorem 3.3. If J/m
1/(2r+1)
(n) →∞, we have

Var (α̂(t))−1/2 (α̂(t)−α(t))
d→N(0, IK),

where IK is a K-dimensional identity matrix and Var (α̂(t)) is given in (A.15) of Appendix

A. In particular,

Var (α̂k(t))
−1/2 (α̂k(t)− αk(t))

d→N(0, 1)

for k = 1, . . . ,K, where Var (α̂k(t)) = eTkVar (α̂(t)) ek, and ek is the K-dimensional vector

with the kth element taken to be 1 and 0 elsewhere.

We can use the asymptotic distribution established in Theorem 3.4 to construct

pointwise confidence intervals of the functional curve for each subgroup.
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3.5 Simulation Studies

In this section, we investigate the performance of our proposed approach by con-

ducting simulation studies. Balanced and unbalanced data are both considered.

Two different criteria are used to select the optimal tuning parameter. One is

the modified Bayes Information Criterion (BIC) [88] for high-dimensional data settings by

minimizing

BIC(λ) = log

[
n∑

i=1

(Yi −Xiγ̂i(λ))
TR−1

i (Yi −Xiγ̂i(λ))/N

]
+ Cn

logN

N
(K̂(λ)S), (3.15)

where Cn is a positive number which can depend on n and N =
∑n

i=1mi. Following [60],

we let Cn = c log(log(nS)), where c is a positive constant, and we choose c = 0.6. The

other criterion is the Calinski-Harabasz index [12] by maximizing

CH(λ) =
BK̂(λ)/(K̂(λ)− 1)

WK̂(λ)/(n− K̂(λ))
, (3.16)

where BK̂(λ) and WK̂(λ) are the between and within group sum of square errors of the

estimated subgroups given a λ value. We apply this index to the initial value γ0
i ’s, which

are the ordinary least squares estimates of (3.4) given in Remark 3.1. Note that CH(λ) is

not defined for K̂(λ) = 1. Based on these criteria, we can select the optimal λ and obtain

the corresponding group membership. Here we use fixed values for ϑ and τ in ADMM

algorithm: ϑ = 1 and τ = 3.

To evaluate the accuracy of the clustering results, we provide three measures: Rand

Index (RI) [72], Normalized Mutual Information (NMI) [87] and accuracy percentage (%).

The accuracy percentage (%) is defined as the proportion of subjects that are correctly

identified. These three values are between 0 and 1, with higher values indicating better
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performance.

3.5.1 Two Subgroups Example

We simulate data from the heterogeneous model with two subgroups

Yij = βi(tij) + εij , i = 1, . . . , n, j = 1, . . . ,mi,

where βi(t) = α1(t) if i ∈ G1 and βi(t) = α2(t) if i ∈ G2.

We first consider balanced data. In this situation, we have mi = T for all i’s. The

time points tij ’s are chosen equally spaced on [0, 1.2]. The error term εi = (εi1, . . . , εiT )
T

is generated from N(0,ΣE), in which ΣE has AR(1) covariance structure with ρ = 0.3

and σ = 0.5. Four setups of (n, T ) are considered: {n = 100, T = 20}, {n = 100, T = 50},

{n = 150, T = 20} and {n = 150, T = 50}. Moreover, to choose {α1(t), α2(t)}, we also con-

sider three different cases by increasing the distance between the two functions from close

to middle, then to far, which are shown below:

Close


α1(t) = −0.5t2 + 1.25t,

α2(t) = −t2 + 2.5t,

Middle


α1(t) = −0.5t2 + 1.25t,

α2(t) = −1.3t2 + 3.25t,

Far


α1(t) = −0.5t2 + 1.25t,

α2(t) = −2.5t2 + 6.25t.

Figure 3.2 shows the true functions (black line) and simulated trajectories (blue

line and red line) of the three distance cases, respectively, based on one sample with n =

100, T = 20 for balanced data. We can see that there are a lot of overlaps in Close and

Middle cases, especially in Close case, it looks more like one group.
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Figure 3.2: The black lines represent the true functions, while the red and blue lines repre-
sent the simulated trajectories of the corresponding subgroups under one replication when
n = 100, T = 20 for balanced data in Two Subgroups Example. The distance between the
true functions increases from close, to middle, to far.

The unbalanced data is based on the balanced data setting. However, we randomly

allow 50% of the subjects to miss either 30% or 40% or 50% of time points. Next, we conduct

simulations to illustrate the performance of our proposed method. 100 replications are taken

here. Quadratic splines with one interior knot are used to approximate the nonparametric

components. The quadratic splines are B-splines with order r = 3. As the order of the

B-splines increases, the estimated curve becomes smoother. The quadratic splines can yield

smooth enough curves while preventing over-smoothing. Based on the convergence rate

given in Theorem 4.2 on page 8, the optimal order of the number of interior knots J is

m
1

2r+1

(n) by letting J/m(n) = J−2r. We choose J =

⌊
m

1
2r+1

(n)

⌋
=

⌊
m

1
7

(n)

⌋
, where ⌊a⌋ denotes

the largest integer no bigger than a. Then J =

⌊
m

1
7

(n)

⌋
= 1 when m(n) = 10, 20, 25, 50 in

our simulation settings.

Table 3.1 not only reports the summary measurements of the estimated number

of subgroups K̂ (sample mean, median, per, where per is the percentage of K̂ equaling

to the true number of subgroups), but also the summary measurements of the clustering
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accuracy (average values of RI, NMI, %) by using different model selection criteria (BIC,

CH) under different setups of {n, T} when the distance between functions increases (Close,

Middle, Far). Balanced and unbalanced data are both included. Note that when calculating

RI, NMI and %, we only include the replications with K̂ equaling to the true number of

subgroup (K̂ = 2).

From Table 3.1, we can see that both BIC and CH criteria perform well and give

the similar results for most of the cases. When T increases, the summary measurements

of K̂ (mean, median, per) and accuracy measurements (RI, NMI, %) both increase. In

details, the mean of K̂ gets close to 2 and median K̂ becomes to 2, where 2 is the true

number of subgroups, while the accuracy measurements (RI, NMI, %) are close to 1 or even

become to 1 for both balanced and unbalanced data, which indicates good clustering results.

What’s more, with the distance between the true functions getting larger, it is much easier

to correctly identify the subgroups. Accordingly, we observe that the mean and median of

K̂ become to 2, while the RI, NMI and % become to 1 when the distance is sufficiently large

(Far case). On the contrary, in Close case, since the trajectories of the two subgroups in

Figure 3.2 show a lot of overlaps, it is more difficult to identify the subgroups, which results

in the low percentage (per) of correctly selecting the number of subgroups when T = 20.

Under this case, if we can cluster the subjects into two subgroups, BIC criterion presents

higher accuracy performance in group membership. However, if T increases to 50, all the

measurements become much better and it is more likely to correctly identify the subgroups.

Compared with unbalanced data, balanced data shows slightly better results.
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Balanced Unbalanced

Functions setting criterion mean median per RI NMI % mean median per RI NMI %

Close

n=100, T=20
BIC 1.34 1.00 0.20 0.9089 0.7459 0.9515 1.43 1.00 0.08 0.9015 0.7289 0.9475

CH 1.55 1.00 0.35 0.8729 0.6818 0.9223 1.73 1.50 0.28 0.7652 0.4861 0.8304

n=100, T=50
BIC 1.98 2.00 0.98 0.9953 0.9836 0.9977 1.97 2.00 0.97 0.9855 0.9510 0.9927

CH 1.98 2.00 0.98 0.9953 0.9834 0.9977 1.97 2.00 0.97 0.9855 0.9510 0.9927

n=150, T=20
BIC 1.45 1.00 0.23 0.9271 0.7820 0.9620 1.50 1.00 0.08 0.8868 0.6855 0.9400

CH 1.57 1.00 0.31 0.8746 0.6876 0.9178 1.72 1.00 0.24 0.6563 0.2940 0.7131

n=150, T=50
BIC 2.00 2.00 1.00 0.9923 0.9719 0.9961 2.00 2.00 1.00 0.9855 0.9484 0.9927

CH 2.00 2.00 1.00 0.9922 0.9717 0.9961 1.98 2.00 0.98 0.9852 0.9472 0.9925

Middle

n=100, T=20
BIC 2.00 2.00 1.00 0.9960 0.9859 0.9980 2.00 2.00 1.00 0.9903 0.9664 0.9951

CH 2.00 2.00 1.00 0.9952 0.9830 0.9976 2.00 2.00 1.00 0.9901 0.9655 0.9950

n=100, T=50
BIC 2.00 2.00 1.00 0.9998 0.9993 0.9999 2.00 2.00 1.00 0.9996 0.9985 0.9998

CH 2.00 2.00 1.00 0.9998 0.9993 0.9999 2.00 2.00 1.00 0.9996 0.9985 0.9998

n=150, T=20
BIC 2.00 2.00 1.00 0.9967 0.9870 0.9983 2.00 2.00 1.00 0.9874 0.9535 0.9937

CH 2.00 2.00 1.00 0.9967 0.9870 0.9983 2.00 2.00 1.00 0.9865 0.9503 0.9932

n=150, T=50
BIC 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 0.9999 0.9995 0.9999

CH 2.00 2.00 1.00 0.9999 0.9995 0.9999 2.00 2.00 1.00 0.9997 0.9990 0.9999

Far

n=100, T=20
BIC 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 1.0000 1.0000 1.0000

CH 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 1.0000 1.0000 1.0000

n=100, T=50
BIC 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 1.0000 1.0000 1.0000

CH 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 1.0000 1.0000 1.0000

n=150, T=20
BIC 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 1.0000 1.0000 1.0000

CH 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 1.0000 1.0000 1.0000

n=150, T=50
BIC 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 1.0000 1.0000 1.0000

CH 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 1.0000 1.0000 1.0000

Table 3.1: The sample mean and median of K̂, the percentage (per) of K̂ equaling to the
true number of subgroups, the Rand Index (RI), Normalized mutual information (NMI),
and accuracy percentage (%) equaling the proportion of subjects that are identified correctly
under BIC and CH criteria based on 100 realizations in Two Subgroups Example. Balanced
and unbalanced data are both included under different {n, T} setups and function distances.

Furthermore, to study the estimation accuracy, we calculate the square root of

the mean squared error (RMSE) of the estimated function in each subgroup only when K̂
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equals the true number of subgroups K. In the kth subgroup, we use the formula below to

find the corresponding RMSE of the estimated function α̂k(t) (RMSEk):

RMSEk =

√√√√ 1

H

H∑
h=1

[α̂k(th)− αk(th)]2 =

√√√√ 1

H

H∑
h=1

[B(k)(th)T γ̂(k) − αk(th)]2, k = 1, . . . ,K,

where B(k)(t) is the B-spline basis vector of the kth subgroup, γ̂(k) is the corresponding

estimated B-spline coefficient after refitting model (3.4) and {t1, · · · , tH} is a grid of equally

spaced points spanning the original time range [0, 1.2] with H = 50.

For oracle (Oracle) method, we use the true group membership to calculate RMSE.

As shown in Table 3.2, the RMSE values under different model selection criteria (BIC, CH)

and {n, T} setups are comparable to those of the oracle ones for almost all cases.

Lastly, the estimated nonparametric curves α̂k(t) (blue, red lines) and true curves

αk(t) (black line) of the two subgroups for balanced data among the 100 replications are

plotted in Figure 3.3. Notice that we only plot the replications when the estimated number

of subgroups equals the true number of subgroups. On each row, from left to right, it

represents the Close, Middle, and Far cases with same setting of {n, T} respectively. Then

either n or T is increased compared to the first row. Given each column, it is obvious that

the bands consisting by red or blue lines becomes narrower as T or n increases. Besides, no

matter for which setups of {n, T}, the estimated curves are very close to the true ones for

all distance cases.
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Close Middle Far

Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced

n=100, T=20 α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t)

Oracle 0.0363 0.0369 0.0385 0.0400 0.0363 0.0369 0.0385 0.0400 0.0363 0.0369 0.0385 0.0400

BIC 0.0512 0.0467 0.0570 0.0461 0.0365 0.0377 0.0394 0.0408 0.0363 0.0369 0.0385 0.0400

CH 0.0626 0.0610 0.1075 0.1128 0.0364 0.0375 0.0395 0.0407 0.0363 0.0369 0.0385 0.0400

n=100, T=50 α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t)

Oracle 0.0247 0.0235 0.0261 0.0243 0.0247 0.0235 0.0261 0.0243 0.0247 0.0235 0.0261 0.0243

BIC 0.0253 0.0236 0.0276 0.0252 0.0248 0.0234 0.0262 0.0243 0.0247 0.0235 0.0261 0.0243

CH 0.0253 0.0237 0.0276 0.0253 0.0248 0.0234 0.0262 0.0243 0.0247 0.0235 0.0261 0.0243

n=150, T=20 α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t)

Oracle 0.0314 0.0281 0.0337 0.0302 0.0314 0.0281 0.0337 0.0302 0.0314 0.0281 0.0337 0.0302

BIC 0.0387 0.0403 0.0432 0.0435 0.0317 0.0282 0.0344 0.0302 0.0314 0.0281 0.0337 0.0302

CH 0.0602 0.0606 0.1762 0.1698 0.0317 0.0281 0.0347 0.0303 0.0314 0.0281 0.0337 0.0302

n=150, T=50 α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t)

Oracle 0.0199 0.0212 0.0214 0.0221 0.0199 0.0212 0.0214 0.0221 0.0199 0.0212 0.0214 0.0221

BIC 0.0204 0.0217 0.0221 0.0228 0.0199 0.0212 0.0214 0.0221 0.0199 0.0212 0.0214 0.0221

CH 0.0204 0.0217 0.0220 0.0227 0.0199 0.0213 0.0214 0.0221 0.0199 0.0212 0.0214 0.0221

Table 3.2: The mean of square root of the MSE (RMSE) for the estimated functions
α̂1(t), α̂2(t) under BIC, CH and Oracle methods in Two Subgroups Example.

To further illustrate the performance of our proposed method in unbalanced data,

we generate data with mi ∼ Uniform {5, 6, ..., 20} , i = 1, ..., n, n = 100, 1000, and keep

other simulation settings the same as before. We report the numerical results for Middle

and Far cases in Table 3.3 and 3.4, as the curves from different subgroups in the Close case

are too close to be separated based on the previous simulation results; see Table 3.1. Table

3.3 shows that the median value of K̂ equals to the true number of subgroups, which is 2.

As the mean functions of the subgroups become more separated (from Middle to Far case),
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the mean value of K̂ gets closer to 2, and the average values of RI, NMI and the accuracy

percentage (%) approach to 1. Moreover, Table 3.4 shows that the RMSE values of the

estimated functions by our method are comparable to those of the oracle ones obtained

by assuming that the true memberships are known. These results demonstrate that our

proposed method performs well for clustering heterogeneous trajectories from unbalanced

data.

Functions setting criterion mean median per RI NMI %

Middle

n=100
BIC 2.11 2.00 0.91 0.9526 0.8526 0.9756

CH 2.07 2.00 0.94 0.9542 0.8563 0.9765

n=1000
BIC 2.02 2.00 0.98 0.9483 0.8293 0.9734

CH 2.01 2.00 0.99 0.9491 0.8318 0.9738

Far

n=100
BIC 2.00 2.00 1.00 0.9962 0.9865 0.9981

CH 2.00 2.00 1.00 0.9960 0.9857 0.9980

n=1000
BIC 2.00 2.00 1.00 0.9963 0.9830 0.9982

CH 2.00 2.00 1.00 0.9962 0.9828 0.9981

Table 3.3: The sample mean and median of K̂, the percentage (per) of K̂ equaling to the
true number of subgroups, the Rand Index (RI), Normalized mutual information (NMI),
and accuracy percentage (%) equaling the proportion of subjects that are identified correctly
under BIC and CH criteria based on 100 realizations with mi ∼ Uniform {5, 6, . . . , 20} in
Two Subgroups Example.

3.5.2 Three Subgroups Example

We simulate data from the heterogeneous model with three subgroups

Yij = βi(tij) + εij , i = 1, . . . , n, j = 1, . . . ,mi,
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Figure 3.3: The black lines represent the true functions, while the red and blue lines are
the corresponding fitted curves for the estimated subgroups by using BIC criterion when
K̂ = 2 among the 100 replications for balanced data in Two Subgroups Example. On each
row, from left to right, it corresponds to close, middle, and far cases with the same setting
of {n, T}.
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Middle Far

n=100 n=1000 n=100 n=1000

α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t)

Oracle 0.0427 0.0399 0.0127 0.0131 0.0427 0.0399 0.0127 0.0131

BIC 0.0449 0.0434 0.0165 0.0154 0.0424 0.0401 0.0131 0.0131

CH 0.0446 0.0443 0.0163 0.0155 0.0424 0.0401 0.0131 0.0132

Table 3.4: The mean of square root of the MSE (RMSE) for the estimated functions
α̂1(t), α̂2(t) under BIC, CH and Oracle methods with mi ∼ Uniform {5, 6, . . . , 20} in Two
Subgroups Example.

where βi(t) = α1(t) if i ∈ G1, βi(t) = α2(t) if i ∈ G2 and βi(t) = α3(t) if i ∈ G3. We generate

data in the same way as that in Two Subgroups Example. The three functions for Close,

Middle and Far cases are chosen as:

Close



α1(t) = −0.6t2 + 1.5t,

α2(t) = −1.3t2 + 3.25t+ 0.2,

α3(t) = −2.2t2 + 5.5t+ 0.1,

Middle



α1(t) = −0.4t2 + t,

α2(t) = −1.3t2 + 3.25t+ 0.2,

α3(t) = −2.4t2 + 6t+ 0.1,

Far



α1(t) = −0.3t2 + 0.75t,

α2(t) = −4t2 + 10t+ 0.2,

α3(t) = −8.5t2 + 21.25t+ 0.3.
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Figure 3.4: The black lines represent the true functions, while the grey, red and blue lines
represent the simulated trajectories of the corresponding subgroups under one replication
when n = 100, T = 20 for balanced data. The distance between the true functions increases
from close, to middle, to far.

Figure 3.4 displays the true functions and corresponding trajectories of the three

subgroups under one sample with n = 100, T = 20 for balanced data. From left to right, the

distance between true functions gets larger. We next conduct simulations to do subgroup

analysis by using our method. Table 3.5, based on 100 realizations, presents the mean,

median, per of K̂ and the average values of RI, NMI, % for all setups under BIC and CH

criteria, respectively. In this table, we observe that the performance for balanced data is

better than the corresponding unbalanced data. BIC and CH criteria are consistent due

to similar results. When T or the distance between true functions increases, the values of

RI, NMI, and % become larger. Moreover, to demonstrate the estimation accuracy, Table

3.6 lists the average values of RMSE for the estimated functions α̂k(t) (k = 1, 2, 3) when K̂

equals 3, while Figure 3.5 shows the estimated nonparametric curves (grey, red, blue lines)

and true curves (black lines). From Table 3.6, it can be seen that the RMSE of α̂k(t)’s are

close to those of the oracle estimators. In Figure 3.5, we also observe that the estimated

curves are very close to the true curves. And the bands formed by the corresponding
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estimated curves become narrower as n or T increases.

Balanced Unbalanced

Functions setting criterion mean median per RI NMI % mean median per RI NMI %

Close

n=100, T=20
BIC 3.00 3.00 1.00 0.9962 0.9882 0.9971 3.00 3.00 1.00 0.9870 0.9603 0.9899

CH 2.79 3.00 0.79 0.9965 0.9891 0.9973 2.52 3.00 0.52 0.9887 0.9665 0.9915

n=100, T=50
BIC 2.98 3.00 0.98 1.0000 1.0000 1.0000 2.98 3.00 0.98 0.9998 0.9993 0.9998

CH 2.98 3.00 0.98 1.0000 1.0000 1.0000 2.98 3.00 0.98 0.9996 0.9988 0.9997

n=150, T=20
BIC 3.00 3.00 1.00 0.9982 0.9939 0.9987 3.00 3.00 1.00 0.9910 0.9709 0.9931

CH 2.91 3.00 0.91 0.9982 0.9940 0.9987 2.69 3.00 0.69 0.9903 0.9691 0.9928

n=150, T=50
BIC 3.00 3.00 1.00 1.0000 1.0000 1.0000 3.00 3.00 1.00 0.9999 0.9997 0.9999

CH 3.00 3.00 1.00 1.0000 1.0000 1.0000 3.00 3.00 1.00 0.9999 0.9997 0.9999

Middle

n=100, T=20
BIC 3.00 3.00 1.00 0.9996 0.9988 0.9997 3.00 3.00 1.00 0.9965 0.9889 0.9973

CH 3.00 3.00 1.00 0.9995 0.9983 0.9996 2.98 3.00 0.98 0.9962 0.9880 0.9970

n=100, T=50
BIC 3.00 3.00 1.00 1.0000 1.0000 1.0000 3.00 3.00 1.00 1.0000 1.0000 1.0000

CH 3.00 3.00 1.00 1.0000 1.0000 1.0000 3.00 3.00 1.00 1.0000 1.0000 1.0000

n=150, T=20
BIC 3.00 3.00 1.00 0.9998 0.9994 0.9999 3.00 3.00 1.00 0.9978 0.9925 0.9983

CH 3.00 3.00 1.00 0.9999 0.9997 0.9999 3.00 3.00 1.00 0.9978 0.9929 0.9984

n=150, T=50
BIC 3.00 3.00 1.00 1.0000 1.0000 1.0000 3.00 3.00 1.00 1.0000 1.0000 1.0000

CH 3.00 3.00 1.00 1.0000 1.0000 1.0000 3.00 3.00 1.00 1.0000 1.0000 1.0000

Far

n=100, T=20
BIC 3.00 3.00 1.00 1.0000 1.0000 1.0000 3.00 3.00 1.00 1.0000 1.0000 1.0000

CH 3.00 3.00 1.00 1.0000 1.0000 1.0000 3.00 3.00 1.00 1.0000 1.0000 1.0000

n=100, T=50
BIC 3.00 3.00 1.00 1.0000 1.0000 1.0000 3.00 3.00 1.00 1.0000 1.0000 1.0000

CH 3.00 3.00 1.00 1.0000 1.0000 1.0000 3.00 3.00 1.00 1.0000 1.0000 1.0000

n=150, T=20
BIC 3.00 3.00 1.00 1.0000 1.0000 1.0000 3.00 3.00 1.00 1.0000 1.0000 1.0000

CH 3.00 3.00 1.00 1.0000 1.0000 1.0000 3.00 3.00 1.00 1.0000 1.0000 1.0000

n=150, T=50
BIC 3.00 3.00 1.00 1.0000 1.0000 1.0000 3.00 3.00 1.00 1.0000 1.0000 1.0000

CH 3.00 3.00 1.00 1.0000 1.0000 1.0000 3.00 3.00 1.00 1.0000 1.0000 1.0000

Table 3.5: The sample mean and median of K̂, the percentage (per) of K̂ equaling to the
true number of subgroups, the Rand Index (RI), Normalized mutual information (NMI),
and accuracy percentage (%) equaling the proportion of subjects that are identified cor-
rectly under BIC and CH criteria based on 100 realizations in Three Subgroups Example.
Balanced and unbalanced data are both considered under different {n, T} setups and func-
tion distances.
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Figure 3.5: The black lines represent the true functions, while the grey, red and blue lines
are the corresponding fitted curves for the estimated subgroups by using BIC criterion when
K̂ = 3 among the 100 replications for balanced data in Three Subgroups Example. On each
row, from left to right, it corresponds to close, middle, and far cases with the same setting
of {n, T}.
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3.6 Real Data Application

In this section, we apply our method to Alzheimer’s disease (AD) data, which

can be obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership,

led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI is to test

whether serial magnetic resonance imaging (MRI), positron emission tomography (PET),

other biological markers, and clinical and neuropsychological assessment can be combined to

measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease

(AD). For up-to-date information, see www.adni-info.org.

We consider two steps in our analytic procedure. The first step is to use the

proposed method to identify the latent subgroups and recover the memberships in each

subgroup using the observed data. The second step is to use the information from the

identified subgroups and the baseline covariates to classify future patients into the identified

subgroups.

In the first step, to conduct latent subgroup analysis, we use the longitudinal data

of ADASCOG13 (Alzheimer’s Disease Assessment Scale-Cognitive Subscale) for each patient

from ADNI1, ADNIGO and ADNI2 at different time points (0, 6, 12, 18, 24, 36, 48, 60, 72,

84, 96, 108, 120 months). The data are unbalanced due to the fact that patients may have

missing measurements at some time points. Thus, the number of observed measurements

for all patients ranges from 1 to 13. ADASCOG13 is widely used as a test of cognitive

functions, consisting of thirteen tests, with the values ranging from 0 to 85 to assess the

severity of the dementia. Higher values indicate more severe of the dementia due to more
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cognitive errors. To apply our subgroup analysis method, we delete patients with less than

4 measurements. As a result, there are 1253 patients used in our analysis.

We take ADASCOG13 as the response to fit the heterogeneous model (3.2). The

values of ADASCOG13 are standardized to apply the fusion penalized method. Following

the guidance from our simulation studies, we use quadratic splines with one interior knot

to approximate the nonparametric functions. As a result, we identify two subgroups, one

subgroup with 892 patients and the other one with 361 patients. Figure 3.6 displays the

trajectories of individual patients within each subgroup and the estimated mean curve for

each subgroup. Clearly, the subgroup depicted in red can be viewed as a non-progression

group as the values of the estimated mean curve for this subgroup remain constant over

time. In contrast, the subgroup shown in blue can be viewed as a progression group, as

we can observe a clear increasing trend of the estimated mean curve for this subgroup over

time. Note that the increasing value of ADASCOG13 indicates cognitive decline. Therefore,

the progression group is potentially of interest to be recruited in clinical trials when testing

whether a drug can slow down the cognitive decline. By our proposed fusion learning

method, we can successfully identify two subgroups with their memberships recovered.

In the second step, we are interested in classifying future patients into the two

identified subgroups using information from baseline covariates. We collect information of

several baseline covariates, including ADASCOG13, mmseTOT (Mini-Mental State Exam-

ination total score), FAQTOTAL (functional activities questionnaires total score), cdrSB

(clinical dementia rating sum of boxes), ApoE4 (Apolipoprotein E4) status and Education.

Among them, ADASCOG13, mmseTOT, FAQTOTAL and cdrSB are the baseline mea-
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Figure 3.6: The trajectories of individual patients within each identified subgroup (blue,
red solid lines) and the estimated mean curve (dashed lines) for each subgroup based on
ADASCOG13. The blue group is the progression group, with higher values of ADASCOG13,
indicating faster cognition decline.

surements of cognition or functional activities. We exclude the 8 patients whose covariates

are not observed at the baseline in the classification step. Thus, there are 889 patients in

the non-progression group and 356 patients in the progression group. To understand which

covariates that contribute to the group difference, we conduct a two-sample test to compare

the means between the two subgroups for each covariate. The P-values are reported in Table

3.7, and they are very small for all covariates. Compared with the non-progression group,

patients in the progression group clearly have more severe dementia symptoms given that

they have higher ADASCOG13, FAQTOTAL and cdrSB and lower mmseTOT at baseline,

as well as more AopE4 carriers. Moreover, they also have less education. These findings

corroborate the results given in the literature. In general, the cognition tends to decline

more quickly if the disease of a patient is more severe at baseline. ApoE4 is known as one
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Non-progression group Progression group

Baseline Covariates Mean (SD) Mean (SD) P-value

ADASCOG13 11.61 (5.15) 24.91 (6.42) < 0.001

mmseTOT 28.46 (1.62) 25.31 (2.41) < 0.001

FAQTOTAL 1.46 (3.05) 7.67 (6.71) < 0.001

cdrSB 0.81 (0.96) 2.70 (1.66) < 0.001

ApoE4 carrier (%) 35% (0.02) 69% (0.02) < 0.001

Education 16.21 (2.71) 15.36 (3.05) < 0.001

Table 3.7: Mean and standard deviation (SD) for each baseline covariate; P-value shows
the significant difference existing in the two subgroups. ApoE4 is tested by two proportion
z-test, while other covariates are tested by two sample t-test.

important risk factor for AD onset, and ApoE4 carriers tend to show earlier cognitive de-

cline onset than the non-carriers [75]. Additionally, some studies have shown that patients

with lower education are more likely to develop AD [43]. Based on the results in Table 3.7,

we include all baseline covariates in the classification step.

Next, we use the two identified subgroups obtained from our fusion learning

method, and the six baseline covariates given in Table 3.7 to perform classification. Binary

variables created from the memberships of the progression group and the non-progression

group are used as the responses, and the six baseline covariates are used as the predictors

in the classification task. We randomly split the dataset into 80% training data and 20%

test data. The training data is used to fit a predictive model, while the test data is used

to examine the prediction performance. We apply four popular supervised methods (pre-

dictive models) for classification, including the logistic regression, random forest, boosting

(gradient boosting machines) and support vector machine (SVM) with linear kernel. The

four methods are implemented using the R packages “stats”, “randomForest”, “gbm” and
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“e1071”, respectively. For the methods involving hyper parameters, we apply 5-fold cross

validation (CV) based on a grid search to select the optimal hyper parameters that maxi-

mize the accuracy. Table 3.8 reports the accuracy, specificity, precision, recall, F1 score and

AUC (area under the ROC curve) obtained from the test data for the four predictive mod-

els. They are commonly used metrics to evaluate the classification performance. Accuracy

is the percentage of correct predictions. Specificity is the proportion of true negatives out

of the total actual negatives, and it measures how well a method can identify the true neg-

atives. Precision is the ratio of true positives to all positives, while recall refers to the ratio

of true positives to the size of the actual positive class. Precision measures the ability of a

classification (predictive) model to identify the true positives, and recall assesses its ability

to find all the positive cases. F1 score is the weighted average between precision and recall.

AUC measures the ability of a classifier to distinguish between classes. From Table 3.8, we

observe that the values of accuracy, specificity and AUC are all above 0.9 for the four clas-

sification methods (predictive models). The values of recall and F1 score for the boosting

method also exceed 0.9. In general, boosting outperforms the other three methods based on

all metrics, and therefore it is recommended for the classification task. In conclusion, our

two-step procedure is useful for identifying latent subgroups and then further classifying

future patients into the identified subgroups based on their baseline characteristics.

3.7 Discussion

In this chapter, we consider the subgroup analysis for longitudinal trajectories of

the AD data based on a heterogeneous nonparametric regression model. We use B-splines to
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Predictive Models accuracy specificity precision recall F1 score AUC

logistic 0.924 0.944 0.859 0.871 0.865 0.908

random forest 0.920 0.939 0.847 0.871 0.859 0.905

boosting 0.944 0.955 0.889 0.914 0.901 0.935

SVM 0.932 0.950 0.873 0.886 0.879 0.918

Table 3.8: Accuracy, specificity, precision, recall, F1 score and AUC obtained from the test
data. The progression group is defined as the positive class.

approximate the nonparametric functional curves, and cluster the subjects into subgroups

by applying concave pairwise fusion penalties on the spline coefficients. Our method can

automatically identify the latent memberships, and recover the disease trajectory curves

of subgroups simultaneously without a prior knowledge of the number of the subgroups.

Different from the GMM method that requires to specify an underlying distribution of the

data, our method only needs a working correlation matrix of the repeated measures within

each subject. Moreover, the resulting estimators of the functional curves are robust to

the specification of the working correlation matrix. Simulation studies indicate promising

performance of our proposed method. It has been demonstrated as an effective tool for

subgroup analysis of the AD data considered in this chapter. As a future work, we plan to

extend the proposed method to the joint modeling of survival and longitudinal data, which

commonly occur in clinical studies. However, further investigations are needed to develop

the computational algorithm and theoretical properties.
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Chapter 4

Sparse Deep Neural Networks

Regression

4.1 Introduction

Advances in modern technologies have facilitated the collection of large-scale data

that are growing in both sample size and the number of variables. Although the conven-

tional parametric models such as generalized linear models are convenient for studying the

relationships between variables, they may not be flexible enough to capture the complex

patterns in large-scale data. With a large sample size, the bias due to model misspecification

becomes more prominent compared to sampling variability, and may lead to false conclu-

sions. The problem of model mis-specification can be solved by nonparametric regression

methods that are capable of approximating the unknown target function well without a

restrictive structural assumption. Theoretically, we hope that both the bias and the vari-
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ance of the functional estimator decrease as the sample size increases. Moreover, the bias

is reduced by increasing the variance and vice versa, so that a tradeoff between bias and

variance can be achieved for an accurate prediction.

In the classical multivariate regression context with a smoothness condition im-

posed on the target function, the conventional nonparametric smoothing methods such as

local kernels and splines [85, 16, 24, 74, 91, 56] suffer from the so-called “curse of dimen-

sionality” [6], i.e., the convergence rate of the resulting functional estimator deteriorates

sharply as the dimension of the predictors increases. As such it is desirable to develop

analytic tools that can alleviate the curse of dimensionality while preserving sufficient flex-

ibility, to accommodate the large volume as well as the high dimensionality of the modern

data.

In recent years, deep neural networks with multiple hidden layers have been demon-

strated to be powerful and effective for approximating multivariate functions, and have been

successfully applied to many fields, including computer vision, language processing, speech

recognition and biomedical studies [47, 76, 26]. Curiosity has been aroused among re-

searchers about why deep neural networks are so effective in prediction and classification,

and thus investigation of their theoretical properties has received increasing attention. One

immediate and important research problem would be to figure out under what circum-

stances and how the deep neural networks can circumvent the curse of dimensionality when

estimating a multivariate function. It is worth noting that the alleviation of the dimen-

sionality effect happens at the cost of sacrificing flexibility and generality. To this end,

approximation theory using deep neural networks has been established for different classes
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of functions [50, 71, 68], which are more restrictive than the traditional smoothness spaces

such as Hölder and Sobolev spaces. An alternative way to handle the dimensionality prob-

lem is to assume that the target function is defined on a low-dimensional manifold, so that

dimensionality reduction can be achieved [14, 77, 81].

Although deep learning has already been widely applied in analysis of modern data

because of its impressive empirical performance, the investigation of statistical properties

of the estimators from deep learning is still in an early stage, and needs a great deal of

efforts. In regression analysis, some inspirational works have shown that the least squares

estimator based on deep neural networks can achieve an optimal rate of convergence [83],

when the regression function has a compositional structure [5, 78], or the covariates lie

on a low-dimensional manifold [17, 14, 77, 69]. The structures considered in [71], [5] and

[78] cover several nonparametric and semiparametric models, such as the additive models

[29, 84, 37, 36, 53, 99, 97], single-index models and their variants [92, 48, 55].

In this chapter, we consider the Sobolev spaces of functions with square-integrable

mixed second derivatives (also called Korobov spaces), which are commonly assumed for

the sparse grid approaches addressing the high dimensional problems [32, 68]. Functions in

the Korobov spaces only need to satisfy a smoothness condition rather than having a com-

positional structure, and thus can be more flexible and general for exploring the hidden pat-

terns between the response and the predictors. Moreover, instead of using the least-squares

method considered in most works [5, 69, 78], we estimate the target function through em-

pirical risk minimization (ERM) with a Lipschitz loss function satisfying mild conditions.

Regularization is also employed for preventing possible over fitting. The family of loss func-
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tions that we consider is a general class, and it includes the quadratic, Huber, quantile and

logistic loss functions as special cases, so that many regression and classification problems

can be solved by our framework. Classification is a crucial task of supervised learning, and

robust regression is an important tool for analyzing data with heavy tails. Our estimator of

the target function is built upon a network architecture of sparsely-connected deep neural

networks with the rectified linear unit (ReLU) activation function. ReLU has been shown to

have computational advantage over the sigmoid functions used mainly in shallow networks

[19]. Although shallow networks enjoy the Universal Approximation property [19] and can

achieve fast convergence rates for functions with structural assumptions [4], their compu-

tational complexity can be exponential and they may need to be converted to incremental

convex programming [8]. To alleviate the computational burden, we can consider deeper

networks that often require fewer parameters [7, 23, 67, 66].

We develop statistical properties of our proposed methodology. The statistical

theory is essential for a better understanding of the analytic procedure. We derive non-

asymptotic excess risk bounds for our sparse deep ReLU network (SDRN) estimator ob-

tained from empirical risk minimization with the Lipschitz loss function. Specifically, we

provide an explicit bound, as a function of the dimension of the feature space, network

complexity and sample size, for both of the approximation error and the estimation error

of our SDRN estimator, while [68] uses an accuracy value ϵ > 0 for the approximation

error without data fitting. Moreover, we derive a non-asymptotic bound for the network

complexity, from which we can see more clearly how the network increases with the dimen-

sion, and how large the dimension is allowed to be. This bound has not been provided in
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[68]. These newly established bounds provide an important theoretical guidance on how

the network complexity should be related to the sample size, so that a tradeoff between the

two errors can be achieved to secure an optimal fitting from the dataset.

It is of interest to find out that in our framework, the dimension of the feature

space is allowed to increase with the sample size n with a rate slightly slower than log(n),

while most existing theories on neural network estimators focus on the scenario with a fixed

dimension. We further show that that our SDRN estimator can achieve the same optimal

minimax estimation rate (up to logarithmic factors) as one-dimensional nonparametric re-

gression when the dimension is fixed; the effect of the dimension is passed on to a logarithmic

factor, so the curse of dimensionality is alleviated. The SDRN estimator has a suboptimal

(slightly slower than the optimal rate) when the dimension increases with the sample size.

To ensure a good performance, the depth and the total number of nodes and weights of the

network, which are used to measure the network complexity [2], need to grow as the sample

size n increases. We establish that when the depth increases with n at a logarithmic rate,

the number of nodes and weights only need to grow with n at a polynomial rate. These

results provide a theoretical basis for empirical studies by deep neural networks, and are

also demonstrated from our numerical analysis.

This chapter is organized as follows. Section 4.2 provides the basic setup. Sec-

tion 4.3 discusses approximation of the target function by the ReLU networks. Section 4.4

introduces the sparse deep ReLU network estimator obtained from empirical risk minimiza-

tion and establishes the theoretical properties. Section 4.5 further discusses the conditions

imposed on the loss function. Section 4.6 reports results from simulation studies, and Sec-
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tion 4.7 illustrates the proposed method through real data applications. Some concluding

remarks are given in Section 4.8. All the technical proofs are provided in the Appendix B.

4.2 Basic Setup

Notations: Let ad = (a, ..., a)⊤ be a d-dimensional vector of a’s. let |A| be

the cardinality of a set A. Denote |a|p = (
∑m

i=1 |ai|p)1/p as the Lp-norm of a vector

a= (a1, . . . , am)⊤, and |a|∞ = maxi=1,...,m |ai|. For two vectors a = (a1, . . . , am)⊤ and

b = (b1, . . . , bm)⊤, denote a ·b =
∑m

i=1 aibi. Moreover, for any arithmetic operations involv-

ing vectors, they are performed element-by-element. For any two values a and b, denote

a ∨ b = max(a, b). For two sequences of positive numbers an and bn, an ≪ bn means that

b−1
n an = o(1), an ≲ bn means that there exists a constant C ∈ (0,∞) and n0 ≥ 1 such that

an ≤ Cbn for n ≥ n0, and an ≍ bn means that there exist constants C,C ′ ∈ (0,∞) and

n0 ≥ 1 such that an ≤ Cbn and bn ≤ C ′an for n ≥ n0.

We consider a general setting of many supervised learning problems. Let Y ∈

Y ⊂R be a real-valued response variable and X= (X1, . . . , Xd)
⊤ be d-dimensional indepen-

dent variables with values in a compact support X ⊂Rd. Without loss of generality, we let

X = [0, 1]d. Let (X⊤
i , Yi)

⊤, i = 1, ..., n be i.i.d. samples (a training set of n examples)

drawn from the distribution of (X⊤, Y )⊤. We consider the mapping f : X → R. Our goal

is to estimate the unknown target function f (x) using sparse deep neural networks from

the training set.

Let µ : X × Y → [0, 1] be a Borel probability measure of (X⊤, Y )⊤. For every

x ∈ X , let µ(y|x) be the conditional (w.r.t. x) probability measure of Y . Let µX be the
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marginal probability measure of X. For any 1 ≤ p ≤ ∞, let Lp (X ) = {f : X → R, f

is lebesgue measurable on X and ||f ||Lp < ∞}, where ||f ||Lp = (
∫
x∈X |f (x) |pdx)1/p for

1 ≤ p < ∞, and ||f ||L∞ = ||f ||∞ = supx∈X |f (x) |. For 1 ≤ p < ∞, denote ||f ||p =

(
∫
x∈X |f (x) |pdµX(x))1/p and ||f ||p,n = (n−1

∑n
i=1 |f (Xi) |p)1/p. Let ρ : X × Y → R be a

loss function. The true target function f0 is defined as

f0 = arg min
f∈Lp(X )

E(f), where E(f) =
∫
X×Y

ρ(f(x), y)dµ(x, y). (4.1)

Next we introduce the Korobov spaces, in which the functions need to satisfy a certain

smoothness condition. The partial derivatives of f with multi-index k = (k1, ..., kd)
⊤ ∈ Nd

is given as Dkf = ∂|k|1f

∂x
k1
1 ···∂xkd

d

, where N = {0, 1, 2, ..., } and |k|1 =
∑d

j=1 kj .

Definition. For 2 ≤ p ≤ ∞, the Sobolev spaces of mixed second derivatives (also

called Korobov spaces) W 2,p(X ) are define by

W 2,p(X ) = {f ∈ Lp (X ) : Dkf ∈ Lp (X ) , |k|∞ ≤ 2}, where |k|∞ = max
j=1,...,d

kj .

Assumption 4.1 We assume that f0 ∈W 2,p(X ), for a given 2 ≤ p ≤ ∞.

Remark 4.1 Assumption 4.1 imposes a smoothness condition on the target function [10,

32, 68]. The Korobov spaces W 2,p(X ) are subsets of the regular Sobolev spaces defined as

S2,p(X ) = {f ∈ Lp (X ) : Dkf ∈ Lp (X ) , |k|1 ≤ 2} assumed in the traditional nonparametric

regression setting [91]. For instance, when d = 2, |k|∞ = max(k1, k2) ≤ 2 implies |k|1 =

k1 + k2 ≤ 4. If f ∈W 2,p(X ), it needs to satisfy

∂f

∂xj
,
∂2f

∂x2j
,

∂2f

∂x1∂x2
,

∂3f

∂x21∂x2
,

∂3f

∂x1∂x22
,

∂4f

∂x21∂x
2
2

∈ Lp (X ) .

If f ∈ S2,p(X ), it needs to satisfy ∂f
∂xj

, ∂
2f

∂x2
j
, ∂2f
∂x1∂x2

∈ Lp (X ). The nonparametric regression

methods built upon the regular Sobolev spaces often suffer from the “curse of dimensionality”.
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The Korobov spaces are commonly assumed for the sparse grid approaches addressing the

high dimensional problems, and many popular structured nonparametric models satisfy this

condition; see [32]. Note that when d = 1 (one-dimensional nonparametric regression), the

Korobove and the Sobolev spaces are the same, i.e., if f ∈W 2,p(X ) or f ∈ S2,p(X ), it needs

to satisfy ∂f
∂x1

, ∂
2f

∂x2
1
∈ Lp (X ).

Assumption 4.2 For any y ∈ Y, the loss function ρ (·, y) is convex and it satisfies the

Lipschitz property such that there exists a constant 0 < Cρ < ∞, for almost every (x, y) ∈

X × Y, |ρ (f1(x), y) − ρ (f2(x), y) | ≤ Cρ|f1(x) − f2(x)|, for any f1, f2 ∈ F , where F is a

neural network space given in Section 4.4.

Remark 4.2 The above Lipschitz assumption is satisfied by many commonly used loss func-

tions. Several examples are provided below.

Example 1 Quadratic loss used in mean regression is given as ρ (f(x), y) = (y−f(x))2.

Assuming that f : X → R is M -bounded such that supf∈F |f (x)− y| ≤M holds for almost

every (x, y) ∈ X×Y, where M is a positive constant, the quadratic loss satisfies Assumption

4.2 with Cρ = 2M .

Example 2 Huber loss is popularly used for robust regression, and it is defined as

ρ (f(x), y) =


2−1(y − f(x))2 if |f(x)− y| ≤ δ

δ|y − f(x)| − δ2/2 if |f(x)− y| > δ

. (4.2)

It satisfies Assumption 4.2 with Cρ = δ.

Example 3 Quantile loss is another popular loss function for robust regression, and it
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is defined as

ρ (f(x), y) = (y − f(x))(τ − I{y − f(x) ≤ 0}) (4.3)

for τ ∈ (0, 1). It satisfies Assumption 4.2 with Cρ = 1.

Example 4 Logistic loss is used in logistic regression for binary responses as well as for

classification. The loss function is ρ (f(x), y) = log(1 + ef(x)) − yf(x) for y ∈ {0, 1}. It

satisfies Assumption 4.2 with Cρ = 2.

4.3 Approximation of The Target Function by ReLU Net-

works

We consider feedforward neural networks which consist of a collection of input

variables, one output unit and a number of computational units (nodes) in different hidden

layers. In our setting, the d-dimensional covariates X are the input variables, and the

approximated function is the output unit. Each computational unit is obtained from the

units in the previous layer by using the form:

z = σ

(∑N

j=1
wj z̃j + b

)
,

where {z̃j , 1 ≤ j ≤ N} are the computational units in the previous layer, and {wj , 1 ≤ j ≤

N} are the weights. Following [2], we measure the network complexity by using the depth

of the network defined as the number of layers, the total number of units (nodes), and the

total number of weights, which is the sum of the number of connections and the number of

units. Moreover, σ : R→ R is an activation function which is chosen by practitioners. We

use the rectified linear unit (ReLU) function given as σ (x) = max(0, x).
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For any function f ∈ W 2,p(X ), it has a unique expression in a hierarchical basis

([10]) such that f(x) =
∑

0d≤ℓ≤∞
∑

s∈Iℓ γ
0
ℓ,s
ϕℓ,s(x), where ϕℓ,s(x) =

d∏
j=1

ϕℓj ,sj (xj) are

the tensor product piecewise linear basis functions defined on the grids Ωℓ of level ℓ =

(ℓ1, ..., ℓd)
⊤ and Iℓ are the index sets of level ℓ. We refer to Section 2.1.2 for a detailed

discussion on the hierarchical basis functions. The hierarchical coefficients γ0
ℓ,s
∈ R are

given as (Lemma 3.2 of [10]):

γ0
ℓ,s

=

∫
X

d∏
j=1

(
−2−(ℓj+1)ϕℓj ,sj (xj)

)
D2f(x)dx (4.4)

where 2 = 21d, and satisfy (Lemma 3.3 of [10])

|γ0
ℓ,s
| ≤ 6−d/22−(3/2)|ℓ|1(

∫ xℓ,s+hℓ

xℓ,s−hℓ

|D2f(x)|2dx)1/2 ≤ 6−d/22−(3/2)|ℓ|1 ||D2f ||L2 . (4.5)

Moreover, the above result leads to (Lemma 3.4 of [10])

||gℓ||L2 ≤ 3−d2−2|ℓ|1(

∫
X
|D2f(x)|2dx)1/2 = 3−d2−2|ℓ|1 ||D2f ||L2 . (4.6)

Assumption 4.3 Assume that for all x ∈ X , 0 ≤ µ′
X(x) ≤ cµ for some constant cµ ∈

(0,∞).

Assumption 4.3 and (4.6) imply that

||gℓ||2 ≤ cµ||gℓ||L2 ≤ cµ3
−d2−2|ℓ|1 ||D2f ||L2 . (4.7)

For any f ∈W 2,p(X ), Section 2.1.2 shows that it can be well approximated by the

hierarchical basis functions with sparse grids such that

f(x) ≈ fm(x) =
∑

|ℓ|1≤m

∑
s∈Iℓ

γ0
ℓ,s
ϕℓ,s(x).

62



Then the hierarchical space with sparse grids is given as

V (1)
m = span{ϕℓ,s : s ∈ Iℓ, |ℓ|1 ≤ m}.

The hierarchical space with sparse grids achieves great dimension reduction compared to

the space with full grids as shown in Table (2.1). In the following proposition, we provide

an upper and a lower bounds for the dimension (cardinality) of the space V
(1)
m .

Proposition 4.1 The dimension of the space V
(1)
m satisfies

2d−1(2m + 1) ≤ |V (1)
m | ≤ 2

√
2

π

√
d− 1

(m+ d)
2m
(
4e

m+ d

d− 1

)d−1

.

Remark 4.3 [10] gives an asymptotic order for the cardinality of V
(1)
m which is |V (1)

m | =

O(c(d)2mmd−1), where c(d) is a constant depending on d, and the form of c(d) has not been

provided. [68] numerically demonstrated how quickly c(d) can increase with d. In Proposion

4.1, we give an explicit form for the upper bound of |V (1)
m | that has not been derived in

the literature. From this explict form, we can more clearly see how the dimension of V
(1)
m

increases with d. This established bound is important for studying the tradeoff between the

bias and variance of the estimator obtained from ERM.

The following proposition provides the approximation error of the approximator

fm (·) obtained from the sparse grids to the true unknown function f ∈W 2,p(X ).

Proposition 4.2 For any f ∈ W 2,p(X ), 2 ≤ p ≤ ∞, under Assumption 4.3, one has that

for d = 2, ||fm − f ||2 ≤ 18−1cµ2
−2m(m+ 3)||D2f ||L2; for d ≥ 3,

||fm − f ||2 ≤ c̃2−2m
√
d− 2

(
e

3

m+ d

d− 2

)d−1

||D2f ||L2 , (4.8)

where c̃ = 2−1cµ(3
√
2πe)−1.
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Proposition 4.2 shows that the approximator error decreases as the m value in-

creases.

Moreover, it is interesting to see that there is a mathematical connection between

those hierarchical basis functions and the ReLU networks [50, 94, 68]. In the following, we

will present several results given in [94], and discuss how to approximate the basis functions

ϕℓ,s(x) using the ReLU networks. Consider the “tooth” function g : [0, 1] → [0, 1] given

as g(x) = 2x for x < 1/2 and g(x) = 2(1 − x) for x ≥ 1/2, and the iterated functions

gr(x) = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
r

(x). Let

fR(x) = x−
∑R

r=1

gr(x)

22r
.

It is clear that fR(0) = 0. It is shown in [94] that for the function f(x) = x2 with x ∈ [0, 1],

it can be approximated by fR(x) such that

||f − fR||∞ ≤ 2−2R−2.

Moreover, the tooth function g can be implemented by a ReLU network: g (x) = 2σ(x) −

4σ(x − 1/2) + 2σ(x − 1) which has 1 hidden layer and 3 computational units. Therefore,

fR(x) can be constructed by a ReLU network with the depth R + 2 , the computational

units 3R + 1, and the number of weights 12R − 5 + 3R + 1 = 15R − 4. The plot in Figure

4.1 shows the construction of the function fR(·) by a ReLU network (denoted as Sub1).

Next, we approximate the function xy = 2−1((x+ y)2 − x2 − y2) for x ∈ [0, 1] and

y ∈ [0, 1] by a ReLU network as follows. By the above results, we have |fR(x+y
2 )−(x+y

2 )2| ≤

2−2R−2, |2−2fR(x)− 2−2x2| ≤ 2−22−2R−2 and |2−2fR(y)− 2−2y2| ≤ 2−22−2R−2. Let

f̃R(x, y) = 2

{
fR(

x+ y

2
)− fR(x)

22
− fR(y)

22

}
,
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Figure 4.1: The construction of the function fR(·) by a ReLU network, denoted as sub
network 1 (Sub1).

and f̃R(x, y) can be implemented by a ReLU network having the depth, the computational

units and the number of weights being c1R + c2, where the constants c1 and c2 can be

different for these three measures. Moreover, f̃R(x, y) = 0 if xy = 0. For all x ∈ [0, 1] and

y ∈ [0, 1],

∣∣∣f̃R(x, y)− xy
∣∣∣ = 2

∣∣∣∣{fR(x+ y

2
)− fR(x)

22
− fR(y)

22

}
−
{
(
x+ y

2
)2 − x2

22
− y2

22

}∣∣∣∣
≤ 2

(
2−2R−2 + 2−22−2R−2 + 2−22−2R−2

)
= 3 · 2−2R−2. (4.9)

Figure 4.2 depicts the construction of f̃R(x, y) from the Sub1’s, and we denote it as sub

network 2 (Sub2).

If there are two covariates X = (X1, X2)
⊤, then ϕℓ,s(x) = ϕℓ1,s1(x1)ϕℓ2,s2(x2) can

be approximated by f̃R(ϕℓ1,s1(x1), ϕℓ2,s2(x2)). Next we approximate ϕℓ,s(x) by a ReLU

network from a binary tree structure for the general setting with d-dimensional covariates

X = (X1, . . . , Xd)
⊤. For notational simplicity, we denote 𭟋j1,...,jq = ϕℓj1 ,sj1

(xj1) × · · · ×

ϕℓjq ,sjq
(xjq) and �̃�j1,...,jqj′1,...,j

′
p
= f̃R(𭟋j1,...,jq ,𭟋j′1,...,j

′
p
). Then for any 1 ≤ j1 ̸= j2 ≤ d,
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Sub1

Sub1

Sub1

Figure 4.2: The construction of f̃R(x, y) from the Sub1’s, we denote it as subnetwork 2
(Sub2).

𭟋j1𭟋j2 = ϕℓj1 ,sj1
(xj1)ϕℓj2 ,sj2

(xj2) can be approximated by �̃�j1j2 = f̃R(𭟋j1 ,𭟋j2), and (4.9)

leads to |�̃�j1j2 − 𭟋j1𭟋j2 | ≤ 3 · 2−2R−2. Next, we approximate �̃�j1j2�̃�j3j4 with �̃�j1j2j3j4 =

f̃R(�̃�j1j2 , �̃�j3j4), and

|�̃�j1j2j3j4 − �̃�j1,j2�̃�j3,j4 | ≤ 3 · 2−2R−2.

These results lead to

|�̃�j1j2�̃�j3j4 −𭟋j1𭟋j2𭟋j3𭟋j4 | = |�̃�j1j2�̃�j3j4 −𭟋j1𭟋j2�̃�j3j4 +𭟋j1𭟋j2�̃�j3j4 −𭟋j1𭟋j2𭟋j3𭟋j4 |

≤ |�̃�j1j2 −𭟋j1𭟋j2 ||�̃�j3j4 |+ |𭟋j1𭟋j2 ||�̃�j3j4 −𭟋j3𭟋j4 |

≤ 2 · 3 · 2−2R−2.

Thus

|�̃�j1j2j3j4 −𭟋j1𭟋j2𭟋j3𭟋j4 | ≤ |�̃�j1j2j3j4 − �̃�j1j2�̃�j3j4 |+ |�̃�j1j2�̃�j3j4 −𭟋j1𭟋j2𭟋j3𭟋j4 |

≤ (1 + 2) · 3 · 2−2R−2.

By following the same argument, we have

|�̃�j1j2j3j4j5j6j7j8 −𭟋j1𭟋j2𭟋j3𭟋j4𭟋j5𭟋j6𭟋j7𭟋j8 |

≤ |�̃�j1···j8 − �̃�j1j2j3j4�̃�j5j6j7j8 |+ |�̃�j1j2j3j4 −𭟋j1𭟋j2𭟋j3𭟋j4 ||�̃�j5j6j7j8 |
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+|𭟋j1𭟋j2𭟋j3𭟋j4 ||�̃�j5j6j7j8 −𭟋j5𭟋j6𭟋j7𭟋j8 |

≤ (1 + 2(1 + 2)) · 3 · 2−2R−2 = (1 + 2 + 22) · 3 · 2−2R−2.

Define

ϕ̃ℓ,s(x) = �̃�1···d.

We continue the above process and it can be shown from mathematical induction [68] that

for all x ∈ X ,

|ϕ̃ℓ,s(x)− ϕℓ,s(x)| = |�̃�1···d −𭟋1 × · · · ×𭟋d|

≤ (1 + 2 + 22 + · · ·+ 2⌊log2 d⌋−1) · 3 · 2−2R−2 ≤ 3 · 2−2R−2(d− 1), (4.10)

where ⌊a⌋ is the largest integer no greater than a. Moreover, ϕ̃ℓ,s(x) = 0 if ϕℓ,s(x) = 0.

The ReLU network used to approximate ϕℓ,s(x) has depth O(R) × log2 d = O(R log2 d),

the computational units O(R)× (d+ 2−1d+ · · ·+ 2−⌊log2 d⌋+1d) = O(Rd), and the number

of weights O(Rd). Figure 4.3 shows the construction of each approximated basis function

approximator ϕ̃ℓ,s(x) from the Sub2’s, and we denote it as sub network 3 (Sub3).

Then the ReLU network approximator of the unknown function f(x) is

f̃R(x) =
∑

|ℓ|1≤m

∑
s∈Iℓ

γ0
ℓ,s
ϕ̃ℓ,s(x) =

∑
|ℓ|1≤m

g̃ℓ(x). (4.11)

The following proposition provides the approximation error of the approximator

f̃R (·) obtained from the ReLU network to the true unknown function f (·).

Proposition 4.3 For any f ∈ W 2,p(X ), 2 ≤ p ≤ ∞, under Assumption 4.3, one has for

d = 2,

||f̃R − f ||2 ≤

{√
3

8
2−2R(d− 1)(

√
2

3
)d−1 + 9−1cµ2

−2m(m+ 3)

}
||D2f ||L2 ;
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Sub2

Figure 4.3: The construction of ϕ̃ℓ,s(x) from the Sub2’s, we denote it as subnetwork 3
(Sub3).
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for d ≥ 3,

||f̃R − f ||2 ≤

{√
3

8
2−2R(d− 1)(

√
2

3
)d−1 + c̃2−2m

√
d− 2

(
e

3

m+ d

d− 2

)d−1
}
||D2f ||L2 ,

where c̃ = 2−1cµ(3
√
2πe)−1. The ReLU network that is used to construct the approx-

imator f̃R has depth O(R log2 d), the number of computational units O(Rd) × |V (1)
m | =

O
(
2md3/2R (m+ d)−1

(
4em+d

d−1

)d−1
)
, and the number of weights O(Rd)× |V (1)

m |

= O
(
2md3/2R (m+ d)−1

(
4em+d

d−1

)d−1
)
.

Remark 4.4 From Figure 4.3 and the mathematical expression (4.11), we see that the

approximator f̃R(·) of the unknown function f(·) is constructed from a sparse deep ReLU

network, as the nodes on each layer are not fully connected with the nodes from the previous

layer, and the depth of the network has the order of R log2 d which increases with R.

Remark 4.5 [68] showed that the approximation error of the deep ReLU network can

achieve accuracy ϵ > 0. We further derive an explicit form of the bound to see how it

depends on the dimension and the network complexity. In Theorem 4.3, we will show that

m and R need to grow with the sample size n slowly at a logarithmic rate to achieve tradeoff

between bias and variance, so the depth of the ReLU network grow with n at a logarithmic

rate, and the number of computational units increase with n at a polynomial rate.

4.4 Sparse Deep ReLU Network Estimator

In this section, we will introduce the sparse deep ReLU network (SDRN) estimator

of the unknown function f0 obtained from (4.1). As discussed in Section 4.3, for f0 ∈

W 2,p(X ), there exists a sparse deep ReLU approximator f̃R(x) =
∑

|ℓ|1≤m

∑
s∈Iℓ γ

0
ℓ,s
ϕ̃ℓ,s(x),
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where the expression of γ0
ℓ,s

is given in (4.4), which has the approximation error given in

Theorem 4.3 with f (·) replaced by the true target function f0 (·) in (4.1).

Define the ReLU network class as

F(ϕ̃,m,B) = {fRL : X → R, fRL(x) =
∑

|ℓ|1≤m

∑
s∈Iℓ

γ
ℓ,s
ϕ̃ℓ,s(x), ηℓ,s

∈ R, ||fRL||∞ ≤ B},

(4.12)

with B ≥ max(||f0||∞, ||f̃R||∞). Then f̃R ∈ F(ϕ̃,m,B). Denote γ = {γ
ℓ,s

: s ∈ Iℓ, |ℓ|1 ≤

m}⊤ and ϕ̃(x) = {ϕ̃ℓ,s(x) : s ∈ Iℓ, |ℓ|1 ≤ m}⊤, fRL(x) can be written as fRL(x) = ϕ̃(x)⊤γ.

We obtain the unpenalized SDRN estimator f̂U
RL of f0 from minimizing the following em-

pirical risk:

f̂U
RL = arg min

fRL∈F(ϕ̃,m,B)
En(fRL), where En(fRL) = n−1

n∑
i=1

ρ(fRL(Xi), Yi). (4.13)

Similarly, we can also obtain the penalized SDRN estimator f̂P
RL of f0 from minimizing

f̂P
RL = arg min

fRL∈F(ϕ̃,m,B)
{En(fRL) + 2−1λ||fRL||2Ψ},

where λ > 0 is a tuning parameter for the L2 penalty, and ||fRL||2Ψ = γ⊤
[∫
{ϕ̃(x)ϕ̃(x)⊤}dx

]
Ψγ.

The L2 penalty is often used to prevent overfitting. Here, we let Ψ =
[∫
{ϕ̃(x)ϕ̃(x)⊤}dx

]−1
,

so that ||fRL||2Ψ = γ⊤γ.

We use f̂RL as a generic notation for a SDRN estimator; it can be either the

unpenalized or the penalized estimator. For a given estimator f̂RL, we define the overall

error as E(f̂RL)− E(f0), which is used to measure how close the estimator f̂RL to the true

target function f0. Let

f0
RL = arg min

fRL∈F(ϕ̃,m,B)
E(fRL), where E(fRL) =

∫
X×Y

ρ(fRL(x), y)dµ(x, y). (4.14)
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Then the overall error of the estimator f̂RL can be splitted into the approximation error

E(f0
RL)− E(f0) and the sampling error E(f̂RL)− E(f0

RL) such that

E(f̂RL)− E(f0)︸ ︷︷ ︸
overall error

= E(f0
RL)− E(f0)︸ ︷︷ ︸

approximation error

+ E(f̂RL)− E(f0
RL)︸ ︷︷ ︸

estimation error

.

We will establish the upper bounds for the approximation error and the estimation error,

respectively, as follows.

We introduce the following Bernstein condition that is required for obtaining the

probability bound for the estimation error of our SDRN estimator.

Assumption 4.4 There exists a constant 0 < aρ <∞ such that

aρ||f − f0
RL||22 ≤ E(f)− E(f0

RL) (4.15)

for any f ∈ F(ϕ̃,m,B).

Remark 4.6 The Bernstein condition given in (4.15) for Lipschitz loss functions is used in

the literature in order to establish probability bounds of estimators obtained from empirical

risk minimization [1]. A more general form is aρ||f−f0
RL||2κ2 ≤ E(f)−E(f0

RL) for some κ ≥

1. The parameter κ can affect the estimator’s rate of convergence. For proof convenience,

we let κ = 1 which is satisfied by many commonly used loss functions. We will give a detailed

discussion on this Bernstein condition, and will present different examples in Section 4.5

of the Appendix.

Remark 4.7 From the Lipschitz condition given in Assumption 4.2, we have that there

exists a constant 0 < Mρ <∞ such that |ρ (f(x), y) | ≤Mρ, for almost every (x, y) ∈ X ×Y

and any f ∈ F(ϕ̃,m,B).
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Another condition is given below and it is used for controlling the approximation

error from the ReLU networks.

Assumption 4.5 There exists a constant 0 < bρ <∞ such that

E(f)− E(f0) ≤ bρ||f − f0||22 (4.16)

for any f ∈ F(ϕ̃,m,B).

Remark 4.8 Assumption 4.5 is introduced for controlling the approximation error E(f0
RL)−

E(f0), but it is not required for establishing the upper bound of the sampling error E(f̂RL)−

E(f0
RL). The approximation error E(f0

RL)− E(f0) can be well controlled based on the result

from Proposition 4.3 together with Assumption 4.5. Without this assumption, the approxi-

mation error will have a slower rate. Assumption 4.5 is satisfied by the quadratic, logistic,

quantile and Huber loss functions under mild conditions. More discussions on this assump-

tion will be provided in Section 4.5 of the Appendix.

Under Condition (4.16) given in Assumption 4.5, by the definition of f0
RN given in

(4.14) and Proposition 4.3, the approximation error

E(f0
RN )− E(f0) ≤ E(f̃R)− E(f0) ≤ bρ||f̃R − f0||22.

Since f0 satisfies Assumption 4.1, then ||D2f0||L2 ≤ Cf for some constant Cf ∈ (0,∞).

Next proposition presents an upper bound for the approximation error when the unknown

function f0 is approximated by the SDRN obtained from the ERM in (4.14).

Proposition 4.4 Under Assumptions 4.1, 4.3 and 4.5, and m−1 = o(1) and m ≲ R, one

has

E(f0
RN )− E(f0) ≤ ζR,m,d,
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where

ζR,m,d = 4bρC
2
f c̃

22−4md

(
e

3

m+ d

d− 2

)2(d−1)

, for d ≥ 3

ζR,m,d = 81−1bρC
2
f c

2
µ2

−4m(m+ 3)2, for d = 2. (4.17)

Note that without Assumption 4.5, we obtain a looser bound for E(f0
RL)−E(f0) =

O(ζ1/2R,m,d) based on the result E(f̃R)−E(f0) ≤ Cρ||f̃R− f0||2 which is directly implied from

Assumption 4.2.

Next we establish the bound for the sampling error E(f̂RL)−E(f0
RL). LetN (δ,F , ||·

||∞) be the covering number, that is, the minimal number of || · ||∞- balls with radius δ that

covers F and whose centers reside in F . Let λ
min,ϕ̃

= λmin

{∫
ϕ̃(x)ϕ̃(x)⊤dµX(x)

}
. In the

theorem below, we provide an upper bound for the estimation error E(f̂RL)− E(f0
RL).

Theorem 4.1 Under Assumptions 4.1-4.4, we have that for any ϵ > 0, i)

P
(
E(f̂U

RL)− E(f0
RL) > ϵ

)
≤ N (

√
2C−1

ρ ϵ/8,F(ϕ̃,m,B), || · ||∞) exp (−nϵ/C∗) ,

and ii) with λλ−1

min,ϕ̃
≤ 5−1a

1/2
ρ min(a

1/2
ρ , B

√
ϵ/2),

P
{
E(f̂P

RL)− E(f0
RL) > 2ϵ

}
≤ N (

√
2C−1

ρ ϵ/8,F(ϕ̃,m,B), || · ||∞) exp (−nϵ/C∗) ,

where C∗ = 64(C2
ρa

−1
ρ +4Mρ/3), in which Cρ, aρ and Mρ are constants given in Assumptions

4.2 and 4.4 and Remark 4.7.

Remark 4.9 Let c′ = 1 if f̂RL = f̂U
RL and c′ = 2 if f̂RL = f̂P

RL. The two probability bounds

established in Theorem 4.1 can be summarized as

P
{
E(f̂RL)− E(f0

RL) > c′ϵ
}
≤ N (

√
2C−1

ρ ϵ/8,F(ϕ̃,m,B), || · ||∞) exp (−nϵ/C∗) ,

where f̂RL can be both the unpenalized and penalized estimators.
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Theorem 4.2 Under the same assumptions as given in Theorem 4.1,

P

(
E(f̂RL)− E(f0

RL) > c′
C∗|V (1)

m |
n

max(1, log
C∗∗n

|V (1)
m |ς

)

)
≤ ς,

where c′ = 1 if f̂RL = f̂U
RL and c′ = 2 if f̂RL = f̂P

RL, C
∗ is given in Theorem 4.1, C∗∗ =

12CρB/C∗ and ς = (C
∗∗C∗

ϵ )|V
(1)
m | exp (−nϵ/C∗), for any ϵ ∈ (0, CρB/2).

Based on the upper bound for the estimation error given in Theorem 4.2, and the

bound for the approximation error given in (4.17), we can further obtain the risk rate of

the SDRN estimator f̂RL presented in the following theorems.

Theorem 4.3 Under Assumptions 4.1-4.5, 2m ≍ n1/5 and m ≲ R, if (i) d ≍ (log2 n)
κ

for some constant κ ∈ (0, 1), then E(f0
RN )− E(f0) = o(n−4/5+ϖ(log2 n)

3κ−2) and E(f̂RN )−

E(f0
RN ) = Op(n

−4/5+ϖ/2(log2 n)
3κ/2), for an arbitrarily small ϖ > 0. Thus

E(f̂RN )− E(f0) = op(n
−4/5+ϖ(log2 n)

3κ−2).

The above rate is satisfied by both f̂U
RN and f̂P

RN with λ = O(λ
min,ϕ̃

n−2/5+ϖ/4(log2 n)
3κ/4).

If R ≍ log2 n, the ReLU network that is used to construct the estimator f̂RN has

depth O[log2 n{log2(log2 n)}], the number of computational units O{(log2 n)
5κ/2−1 n1/5+ϖ/2},

and the number of weights O{(log2 n)
5κ/2−1 n1/5+ϖ/2}.

If (ii) d ≍ 1, then E(f0
RN ) − E(f0) = O(n−4/5(d−1 log2 n)

2d−2) and E(f̂RN ) −

E(f0
RN ) = Op(n

−4/5(d−1 log2 n)
d). Thus

E(f̂RN )− E(f0) = Op(n
−4/5(d−1 log2 n)

2d−2).

The above rate is satisfied by both f̂U
RN and f̂P

RN with λ = O(λ
min,ϕ̃

n−2/5(d−1 log2 n)
d/2).
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If R ≍ log2 n, the ReLU network that is used to construct the estimator f̂RN has

depth O(log2 n), the number of computational units O{(log2 n)
d−1 n1/5}, and the number of

weights O{(log2 n)
d−1 n1/5}.

Remark 4.10 Note that Assumption 4.5 is not required for obtaining the convergence rate

of the sampling error E(f̂RN )− E(f0
RN ), it is only needed for the rate of the approximation

error E(f0
RN )− E(f0). Without this assumption, the rate of E(f0

RN )− E(f0) is slower.

Remark 4.11 The risk rates in Theorem 4.3 are summarized as E(f̂RN )− E(f0)

= op(n
−4/5+ϖ(log2 n)

3κ−2) if d ≍ (log2 n)
κ and E(f̂RN )−E(f0) = Op(n

−4/5(d−1 log2 n)
2d−2)

if d ≍ 1.

Remark 4.12 We focus on deriving the optimal risk rate for the SDRN estimator of the

unknown function f0 when it belongs to the Korobov space of mixed derivatives of order

β = 2. Then the derived rate can be written as n−2β/(2β+1)(d−1 log2 n)
2d−2 when d is fixed.

It is possible to derive a similar estimator for a smoother regression function that has mixed

derivatives of order β > 2 when Jacobi-weighted Korobov spaces [79] are considered. This

can be an interesting topic for future work.

Remark 4.13 It is worth noting that for the classical nonparametric regression estimators

such as spline estimators [83], the optimal minimax risk rate is n−4/(4+d), if the regression

function belongs to the Sobolev spaces S2,p(X ). This rate suffers from the curse of dimen-

sionality as d increases. For one-dimensional nonparametric regression with d = 1, the

optimal rate becomes n−4/5.

[5] showed that their least squares neural network estimator can achieve the rate

n−2β/(2β+d∗) (up to a log factor), if the regression function satisfies a β-smooth generalized

75



hierarchical interaction model of order d∗. When β = 2, the rate is n−4/(4+d∗). The rates

mentioned above require d to be fixed. [5] consider a smooth activation function, while [78]

established a similar optimal rate for ReLU activation function.

Theorem 4.3 shows that when f0 belongs to the Korobov spaces W 2,p(X ), our SDRN

estimator has the risk rate n−4/5(d−1 log2 n)
2d−2 and it achieves the optimal minimax rate

(up to a log factor) as one-dimensional nonparametric regression, if the dimension d is

fixed. The effect of d is passed on to a logarithm order, so the curse of dimensionality can

be alleviated. When d increases with n with an order (log2 n)
κ, the risk rate is slightly slower

than n−4/5.

ADAM Algorithm

To estimate the coefficients in the penalized SDRN estimator of the target function,

we use the Adam algorithm [44]. Let Φ = {ϕ̃(X1), ..., ϕ̃(Xn)}⊤. Then the estimate of

the coefficient vector γ in the penalized SDRN estimate of the target function solves the

following optimization:

g(γ) = min
γ

n∑
i=1

ρ(ϕ̃(Xi)
⊤γ, Yi) + 2−1λ∗γ⊤γ,

where λ∗ = nλ. We adopt the Adam algorithm studied in [44] for obtaining the estimate

of γ. This algorithm considers first-order gradient-based optimization, and it is straightfor-

ward to implement and has little memory requirements. It is well suited for optimization

with large number of parameters and sample size. The algorithm is given as follows.

Require: γ0: Initial parameter vector

m0 ←− 0
(
Initialize 1st moment vector

)
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v0 ←− 0
(
Initialize 2nd moment vector

)
t←− 0 (Initialize timestep)

while

t←− t+ 1

ht ←− ∇γgt(γt−1) (Get gradient w.r.t. stochastic objective at timestep t)

mt ←− β1mt−1 + (1− β1)ht (Update biased first moment estimate)

vt ←− β2vt−1 + (1− β2)h
2
t (Update biased second raw moment estimate)

m̂t ←− mt/(1− βt
1) (Compute bias-corrected first moment estimate)

v̂t ←− vt/(1− βt
2) (Compute bias-corrected second raw moment estimate)

γt ←− γt−1 − αm̂t/(
√
v̂t + ϵ) (Update parameters)

end while until convergence

return γt

We set the step size α = 0.1, β1 = 0.9, β2 = 0.999 and ϵ = 10−8 as suggested in

the literature.

4.5 Discussions on Assumptions 4.4 and 4.5

We first state a general condition given in Assumption 4.6 presented below. We

will show that if a loss function satisfies this condition, then it will satisfy Assumption 4.4

(Bernstein condition) and Assumption 4.5.

Assumption 4.6 For all y ∈ Y, the loss function ρ (·, y) is strictly convex and it has

a bounded second derivative such that ρ′′ (·, y) ∈ [2aρ, 2bρ] almost everywhere, for some

constants 0 < aρ ≤ bρ <∞.
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Assumption 4.6 is satisfied by a variety of classical loss functions such as quadratic

loss and logistic loss. For example, for the quadratic loss ρ (f(x), y) = (y − f(x))2, clearly

ρ′′ (·, y) = 2, so aρ = bρ = 1.

Let f0 solve
∫
Y ρ′(f0(x), y)dµ(y|x) = 0 and f0 ∈ W 2,p(X ). Then f0 is the target

function that minimizes the expected risk given in (4.1). Lemma 4.1 given below will show

that Assumptions 4.4 and 4.5 are implied from Assumption 4.6.

Lemma 4.1 Under Assumption 4.6, for any f ∈ F(ϕ̃,m,B), one has aρ||f − f0
RL||22 ≤

E(f)− E(f0
RL) and E(f)− E(f0) ≤ bρ||f − f0||22.

It is easy to see that the quantile and Huber loss functions do not satisfy Assump-

tion 4.6. In the lemmas below we will show that under mild conditions, Assumptions 4.4

and 4.5 are satisfied by the quantile and Huber loss functions.

Lemma 4.2 Assume that for all x ∈ X , it is possible to define a conditional density func-

tion of Y |X = x such that 1/C1 ≤ µ′(u|x) ≤ 1/C2 for some C1 ≥ C2 > 0 for all u ∈ {u ∈ R:

|u − f0
RL(x)| ≤ 2B or |u − f0(x)| ≤ 2B}. Then for any f ∈ F(ϕ̃,m,B), the quantile loss

given in (4.3) satisfies aρ||f − f0
RL||22 ≤ E(f)−E(f0

RL) and E(f)−E(f0) ≤ bρ||f − f0||22 with

aρ = (2C1)
−1 and bρ = (2C2)

−1.

Lemma 4.3 Assume that for all x ∈ X , 1/c1 ≤ µ(u + δ|x) − µ(u − δ|x) ≤ 1/c2 for some

c1 ≥ c2 > 0 for all u ∈ {u ∈ R: |u − f0
RL(x)| ≤ 2B or |u − f0(x)| ≤ 2B}, where µ(u|x)

is the conditonal cumulative function of Y given Y |X = x. Then for any f ∈ F(ϕ̃,m,B),

the Huber loss given in (4.2) satisfies aρ||f − f0
RL||22 ≤ E(f) − E(f0

RL) and E(f) − E(f0) ≤

bρ||f − f0||22 with aρ = (2c1)
−1 and bρ = (2c2)

−1.

The proofs of Lemmas 4.1-4.3 are provided in Section B.7 of the Appendix.
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4.6 Simulation Studies

In this section, we conduct simulation studies to assess the finite-sample perfor-

mance of the proposed methods.

Date generating process

For illustration of the methods, we generate data from the following nonlinear

models:

Model 1 : E(Yi|Xi) = X2
i1 +X2

i2 + 1.5 sin(
√
1.5π(Xi1 +Xi2)) +

Xi3

X2
i1 +X2

i2 + 1
+ 1; Xi ∼ U

(
[0, 1]5

)
;

Model 2 : E(Yi|Xi) = Xi1Xi2 +
esin(2π(Xi3+Xi4))

1 + ecos(2πXi5)
+ tan(

Xi1

X2
i2 +X4

i4 + 2
); Xi ∼ U

(
[0, 1]7

)
;

Model 3 : E(Yi|Xi) = 1.5Xi5cos(Xi1Xi2 +Xi3 +Xi4) +X2
i3Xi7

√
Xi6Xi8 +Xi9 + 0.1 +

2Xi7

2 +X2
i5 +X4

i10

+ 1;

Xi ∼ U
(
[0, 1]10

)
;

Model 4 : E(Yi|Xi) = P(Yi = 1|Xi) =
eµi

1 + eµi
;

µi = Xi5cos(Xi1Xi2 +Xi3 +Xi4) +X2
i3Xi7

√
Xi6Xi8 +Xi9 + 0.1 +

Xi7

2 +X2
i5 +X4

i10

− 3Xi5 + 1;

Xi ∼ U
(
[0, 1]10

)
;

For Models 1-3, we generate the responses from Yi = E(Yi | Xi) + ϵi, and ϵi are in-

dependently generated from the standard normal distribution and Laplace distribution,

respectively, for 1 ≤ i ≤ n. For each setting, we run nrep = 100 replications. For the SDRN

estimator, we use m = max(⌊0.2 log2 n⌋+c, 0) and R = 3max(⌊0.2 log2 n⌋ ,m), which satisfy

the conditions in Theorem 4.3, for different choices of c. Let the tuning parameter for the

ridge penalty be λ = κn−1.

For Models 1-3, we evaluate the estimated function based on the same set of the

covariate values x∗i (1 ≤ i ≤ n), which are independently generated from U ([0, 1]p). Let
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f̂(x∗i ) be the estimate of the target function f(x∗i ). We report

average bias2 =
1

n

∑n

i=1
{ 1

nrep

∑nrep

j=1
f̂(x∗i )− f(x∗i )}2,

average variance =
1

n

∑n

i=1
{ 1

nrep

∑nrep

j=1
f̂(x∗i )

2 − (
1

nrep

∑nrep

j=1
f̂(x∗i ))

2},

average mse =
1

n

∑n

i=1

1

nrep

∑nrep

j=1
{f̂(x∗i )− f(x∗i )}2.

Tables 4.1 and 4.2 report the average mean squared error (MSE), average bias2

and average variance the SDRN estimators obtained from the quadratic and quantile (τ =

0.5, 0.25) loss functions for Model 1 when n = 2000, 5000. We let κ equal 0.1, 0.5, 1, 2, 4

and c equal -2, -1, 0, 1, 2, respectively. From Table 4.1 with n = 2000, we observe that when

the value of κ is fixed, the increase of the c value results in an overall trend of decreasing

bias2 and increasing variance. When c is too small (for example, c = −2), the estimator

can have a large bias due to possible underfitting. For a larger value of c, it correspondingly

needs a larger value of κ for the ridge penalty to prevent overfitting. A good choice of

(κ, c) leads to an optimal fitting with the smallest MSE. The smallest MSE value for each

case is highlighted in bold and red, corresponding to the optimal fitting. We see that the

estimate with the smallest MSE for each case achieves a good balance between the bias2 and

variance. Moreover, when the error is generated from the Laplace distribution, the estimate

from the quantile (τ = 0.5) loss, which is a robust estimate, has smaller MSE compared

to that obtained from the quadratic loss. Table 4.2 shows the results for n = 5000. We

observe similar patterns as Table 4.1. Clearly, when n increases, the MSE values become

smaller. This corroborates our convergence results in Theorem 4.3. Tables 4.3 and 4.4 show

the average MSE, average bias2 and average variance for Model 2 when n = 2000, 5000.

The results in Model 2 show similar pattens as those observed from Table 4.1 for Model 1.
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quadratic quantile (τ = 0.5) quantile (τ = 0.25)

κ c = −2 c = −1 c = 0 c = 1 c = 2 c = −2 c = −1 c = 0 c = 1 c = 2 c = −2 c = −1 c = 0 c = 1 c = 2

Normal

error

0.1 bias2 0.4970 0.0879 0.0206 0.0096 0.0146 0.5036 0.0932 0.0258 0.0120 0.0143 0.5723 0.0949 0.0265 0.0190 0.0681

var 0.0235 0.0504 0.1331 0.3420 0.7154 0.0301 0.0530 0.1300 0.3031 0.6141 0.0367 0.0604 0.1415 0.3069 0.5728

mse 0.5205 0.1383 0.1538 0.3516 0.7300 0.5336 0.1463 0.1558 0.3151 0.6283 0.6090 0.1553 0.1680 0.3259 0.6408

0.5 bias2 0.5019 0.1046 0.0341 0.0178 0.0194 0.5303 0.1563 0.0582 0.0299 0.0253 0.6317 0.1714 0.0607 0.0291 0.0321

var 0.0181 0.0328 0.0746 0.1594 0.2975 0.0179 0.0304 0.0633 0.1285 0.2450 0.0192 0.0331 0.0667 0.1297 0.2334

mse 0.5199 0.1375 0.1087 0.1772 0.3169 0.5483 0.1867 0.1215 0.1584 0.2703 0.6509 0.2046 0.1274 0.1588 0.2655

1 bias2 0.5100 0.1347 0.0498 0.0273 0.0262 0.5718 0.2449 0.0998 0.0520 0.0405 0.6922 0.2805 0.1078 0.0522 0.0402

var 0.0146 0.0257 0.0544 0.1101 0.1997 0.0126 0.0229 0.0439 0.0848 0.1540 0.0126 0.0238 0.0452 0.0850 0.1506

mse 0.5246 0.1604 0.1042 0.1374 0.2259 0.5843 0.2678 0.1436 0.1369 0.1945 0.7048 0.3044 0.1530 0.1372 0.1907

2 bias2 0.5301 0.1980 0.0811 0.0448 0.0387 0.6567 0.3917 0.1792 0.0949 0.0695 0.7878 0.4587 0.2013 0.1007 0.0685

var 0.0110 0.0195 0.0384 0.0741 0.1314 0.0080 0.0166 0.0296 0.0545 0.0964 0.0075 0.0160 0.0298 0.0541 0.0934

mse 0.5411 0.2175 0.1195 0.1189 0.1701 0.6647 0.4083 0.2088 0.1495 0.1658 0.7954 0.4747 0.2311 0.1547 0.1620

4 bias2 0.5766 0.3063 0.1395 0.0769 0.0610 0.8157 0.5864 0.3171 0.1776 0.1245 0.9401 0.6628 0.3666 0.1969 0.1290

var 0.0076 0.0144 0.0264 0.0487 0.0845 0.0046 0.0111 0.0194 0.0343 0.0590 0.0040 0.0098 0.0186 0.0333 0.0577

mse 0.5843 0.3207 0.1659 0.1256 0.1456 0.8203 0.5975 0.3365 0.2119 0.1834 0.9441 0.6727 0.3851 0.2303 0.1867

Laplace

error

0.1 bias2 0.4989 0.0894 0.0225 0.0131 0.0220 0.5079 0.0940 0.0273 0.0136 0.0176 0.5950 0.1035 0.0308 0.0136 0.0369

var 0.0370 0.0948 0.2634 0.6866 1.4377 0.0327 0.0560 0.1388 0.3628 0.8235 0.0443 0.0851 0.2007 0.4450 0.8621

mse 0.5359 0.1842 0.2859 0.6998 1.4597 0.5406 0.1501 0.1661 0.3764 0.8411 0.6393 0.1886 0.2315 0.4586 0.8990

0.5 bias2 0.5037 0.1068 0.0362 0.0195 0.0230 0.5370 0.1600 0.0613 0.0328 0.0287 0.6609 0.2065 0.0767 0.0361 0.0290

var 0.0285 0.0611 0.1446 0.3141 0.5887 0.0192 0.0329 0.0646 0.1356 0.2757 0.0226 0.0470 0.0926 0.1785 0.3214

mse 0.5322 0.1679 0.1807 0.3337 0.6118 0.5562 0.1929 0.1259 0.1684 0.3044 0.6834 0.2535 0.1693 0.2147 0.3504

1 bias2 0.5117 0.1373 0.0521 0.0290 0.0291 0.5809 0.2552 0.1050 0.0559 0.0444 0.7295 0.3370 0.1361 0.0668 0.0462

var 0.0231 0.0471 0.1040 0.2144 0.3914 0.0133 0.0255 0.0448 0.0866 0.1641 0.0146 0.0323 0.0622 0.1160 0.2030

mse 0.5348 0.1844 0.1561 0.2434 0.4205 0.5942 0.2806 0.1498 0.1425 0.2085 0.7440 0.3693 0.1982 0.1828 0.2492

2 bias2 0.5316 0.2012 0.0839 0.0468 0.0410 0.6705 0.4119 0.1883 0.1006 0.0745 0.8384 0.5216 0.2493 0.1281 0.0850

var 0.0174 0.0349 0.0720 0.1422 0.2546 0.0085 0.0185 0.0309 0.0551 0.0987 0.0087 0.0206 0.0396 0.0731 0.1258

mse 0.5490 0.2361 0.1558 0.1890 0.2956 0.6790 0.4305 0.2191 0.1557 0.1733 0.8471 0.5423 0.2888 0.2012 0.2108

4 bias2 0.5777 0.3097 0.1428 0.0794 0.0632 0.8425 0.6109 0.3352 0.1875 0.1325 1.0066 0.7201 0.4291 0.2448 0.1616

var 0.0121 0.0249 0.0483 0.0917 0.1615 0.0048 0.0121 0.0208 0.0352 0.0594 0.0046 0.0123 0.0238 0.0438 0.0775

mse 0.5898 0.3347 0.1911 0.1711 0.2246 0.8473 0.6230 0.3560 0.2227 0.1919 1.0111 0.7324 0.4528 0.2886 0.2391

Table 4.1: The average MSE, bias2 and variance of the SDRN estimators obtained from the
quadratic and quantile (τ = 0.5, 0.25) loss functions based on the 100 simulation replica-
tions when n = 2000 for Model 1.
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quadratic quantile (τ = 0.5) quantile (τ = 0.25)

κ c = −2 c = −1 c = 0 c = 1 c = 2 c = −2 c = −1 c = 0 c = 1 c = 2 c = −2 c = −1 c = 0 c = 1 c = 2

Normal

error

0.1 bias2 0.4761 0.0921 0.0163 0.0049 0.0070 0.4789 0.0930 0.0185 0.0063 0.0073 0.5261 0.0944 0.0191 0.0075 0.0250

var 0.0099 0.0222 0.0608 0.1666 0.4315 0.0138 0.0273 0.0690 0.1735 0.4026 0.0171 0.0307 0.0774 0.1854 0.4014

mse 0.4860 0.1143 0.0770 0.1715 0.4384 0.4927 0.1203 0.0875 0.1798 0.4099 0.5432 0.1251 0.0965 0.1929 0.4263

0.5 bias2 0.4765 0.0957 0.0222 0.0087 0.0087 0.4830 0.1105 0.0324 0.0146 0.0120 0.5446 0.1151 0.0338 0.0143 0.0140

var 0.0086 0.0170 0.0407 0.0944 0.2018 0.0102 0.0179 0.0398 0.0861 0.1780 0.0112 0.0195 0.0431 0.0899 0.1794

mse 0.4851 0.1127 0.0630 0.1031 0.2105 0.4933 0.1284 0.0723 0.1007 0.1900 0.5558 0.1346 0.0770 0.1042 0.1934

1 bias2 0.4775 0.1041 0.0290 0.0129 0.0118 0.4920 0.1422 0.0486 0.0241 0.0188 0.5677 0.1531 0.0514 0.0234 0.0179

var 0.0076 0.0141 0.0318 0.0693 0.1400 0.0081 0.0139 0.0290 0.0599 0.1166 0.0083 0.0148 0.0309 0.0618 0.1178

mse 0.4851 0.1182 0.0608 0.0822 0.1517 0.5001 0.1561 0.0776 0.0839 0.1354 0.5760 0.1680 0.0823 0.0852 0.1358

2 bias2 0.4807 0.1259 0.0414 0.0207 0.0175 0.5161 0.2106 0.0807 0.0417 0.0311 0.6098 0.2347 0.0871 0.0418 0.0298

var 0.0063 0.0112 0.0238 0.0490 0.0947 0.0060 0.0104 0.0204 0.0402 0.0748 0.0057 0.0108 0.0211 0.0409 0.0757

mse 0.4870 0.1371 0.0652 0.0697 0.1122 0.5221 0.2210 0.1011 0.0820 0.1059 0.6155 0.2455 0.1082 0.0828 0.1055

4 bias2 0.4907 0.1744 0.0656 0.0346 0.0275 0.5721 0.3294 0.1421 0.0744 0.0537 0.6815 0.3751 0.1575 0.0781 0.0531

var 0.0049 0.0086 0.0171 0.0336 0.0624 0.0041 0.0076 0.0138 0.0262 0.0472 0.0035 0.0076 0.0139 0.0261 0.0469

mse 0.4956 0.1830 0.0827 0.0682 0.0899 0.5761 0.3370 0.1559 0.1006 0.1010 0.6851 0.3827 0.1714 0.1042 0.1000

Laplace

error

0.1 bias2 0.4759 0.0920 0.0168 0.0062 0.0112 0.4811 0.0928 0.0184 0.0066 0.0089 0.5514 0.0976 0.0213 0.0077 0.0118

var 0.0162 0.0418 0.1194 0.3319 0.8607 0.0166 0.0274 0.0680 0.1889 0.4871 0.0237 0.0445 0.1130 0.2686 0.5857

mse 0.4920 0.1338 0.1362 0.3381 0.8719 0.4976 0.1202 0.0864 0.1955 0.4960 0.5751 0.1421 0.1343 0.2763 0.5976

0.5 bias2 0.4763 0.0953 0.0223 0.0093 0.0103 0.4863 0.1086 0.0316 0.0145 0.0127 0.5737 0.1257 0.0392 0.0166 0.0128

var 0.0143 0.0318 0.0797 0.1868 0.4003 0.0121 0.0181 0.0386 0.0864 0.1917 0.0153 0.0283 0.0615 0.1269 0.2455

mse 0.4906 0.1272 0.1020 0.1961 0.4106 0.4985 0.1267 0.0702 0.1009 0.2043 0.5889 0.1541 0.1006 0.1435 0.2583

1 bias2 0.4774 0.1035 0.0288 0.0133 0.0127 0.4967 0.1402 0.0472 0.0236 0.0191 0.6008 0.1764 0.0613 0.0283 0.0199

var 0.0127 0.0264 0.0621 0.1368 0.2767 0.0096 0.0145 0.0284 0.0588 0.1235 0.0111 0.0216 0.0435 0.0862 0.1603

mse 0.4901 0.1299 0.0909 0.1501 0.2894 0.5063 0.1547 0.0756 0.0824 0.1426 0.6120 0.1980 0.1049 0.1145 0.1802

2 bias2 0.4808 0.1251 0.0411 0.0208 0.0179 0.5235 0.2118 0.0792 0.0409 0.0313 0.6499 0.2778 0.1067 0.0514 0.0349

var 0.0106 0.0209 0.0461 0.0963 0.1863 0.0070 0.0114 0.0203 0.0390 0.0742 0.0074 0.0155 0.0296 0.0565 0.1019

mse 0.4914 0.1459 0.0872 0.1171 0.2042 0.5305 0.2232 0.0995 0.0799 0.1055 0.6572 0.2933 0.1363 0.1079 0.1368

4 bias2 0.4911 0.1734 0.0651 0.0344 0.0275 0.5847 0.3397 0.1421 0.0734 0.0536 0.7315 0.4324 0.1941 0.0968 0.0644

var 0.0083 0.0159 0.0328 0.0654 0.1222 0.0046 0.0088 0.0144 0.0256 0.0461 0.0045 0.0104 0.0194 0.0357 0.0638

mse 0.4994 0.1893 0.0979 0.0999 0.1496 0.5893 0.3484 0.1565 0.0990 0.0996 0.7360 0.4428 0.2135 0.1324 0.1282

Table 4.2: The average MSE, bias2 and variance of the SDRN estimators obtained from the
quadratic and quantile (τ = 0.5, 0.25) loss functions based on the 100 simulation replica-
tions when n = 5000 for Model 1.
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quadratic quantile (τ = 0.5) quantile (τ = 0.25)

κ c = −2 c = −1 c = 0 c = 1 c = 2 c = −2 c = −1 c = 0 c = 1 c = 2 c = −2 c = −1 c = 0 c = 1 c = 2

Normal

error

0.1 bias2 0.2400 0.1005 0.0936 0.0462 0.0392 0.2423 0.1098 0.0971 0.0512 0.0392 0.2500 0.1163 0.1058 0.1105 0.1629

var 0.0414 0.1149 0.2878 0.5325 0.6728 0.0357 0.0949 0.2274 0.4545 0.6739 0.0358 0.0943 0.2189 0.4127 0.6366

mse 0.2814 0.2154 0.3814 0.5787 0.7119 0.2780 0.2047 0.3246 0.5058 0.7131 0.2858 0.2106 0.3247 0.5232 0.7995

0.5 bias2 0.2417 0.1222 0.1033 0.0644 0.0476 0.2568 0.1532 0.1189 0.0791 0.0538 0.2625 0.1649 0.1216 0.0870 0.0918

var 0.0184 0.0479 0.1096 0.2110 0.3344 0.0120 0.0349 0.0794 0.1617 0.3090 0.0111 0.0334 0.0757 0.1534 0.3129

mse 0.2601 0.1701 0.2129 0.2754 0.3820 0.2688 0.1881 0.1983 0.2408 0.3628 0.2737 0.1983 0.1973 0.2404 0.4048

1 bias2 0.2470 0.1426 0.1138 0.0772 0.0563 0.2877 0.1822 0.1407 0.0990 0.0690 0.2814 0.1934 0.1438 0.1003 0.0802

var 0.0113 0.0310 0.0697 0.1363 0.2282 0.0063 0.0210 0.0482 0.0985 0.1842 0.0056 0.0196 0.0453 0.0925 0.2465

mse 0.2583 0.1735 0.1834 0.2135 0.2845 0.2940 0.2031 0.1888 0.1975 0.2532 0.2871 0.2130 0.1892 0.1928 0.3267

2 bias2 0.2639 0.1687 0.1315 0.0941 0.0695 0.3649 0.2154 0.1720 0.1271 0.0922 0.3156 0.2226 0.1731 0.1260 0.0926

var 0.0063 0.0192 0.0432 0.0855 0.1487 0.0030 0.0118 0.0282 0.0580 0.1100 0.0025 0.0108 0.0260 0.0562 0.1547

mse 0.2702 0.1879 0.1747 0.1796 0.2182 0.3679 0.2272 0.2002 0.1850 0.2023 0.3181 0.2334 0.1991 0.1822 0.2473

4 bias2 0.3108 0.1982 0.1582 0.1177 0.0884 0.5242 0.2598 0.2112 0.1657 0.1246 0.3629 0.2551 0.2051 0.1583 0.1209

var 0.0032 0.0113 0.0260 0.0518 0.0926 0.0013 0.0062 0.0157 0.0329 0.0696 0.0009 0.0054 0.0141 0.0339 0.1028

mse 0.3140 0.2095 0.1842 0.1696 0.1810 0.5255 0.2660 0.2269 0.1986 0.1942 0.3639 0.2606 0.2193 0.1922 0.2237

Laplace

error

0.1 bias2 0.2410 0.1021 0.0946 0.0521 0.0448 0.2431 0.1104 0.0966 0.0535 0.0449 0.2559 0.1258 0.1019 0.0822 0.1605

var 0.0774 0.2202 0.5546 1.0523 1.3398 0.0382 0.1015 0.2661 0.5975 1.0618 0.0466 0.1294 0.3051 0.6110 0.9585

mse 0.3184 0.3224 0.6492 1.1044 1.3846 0.2813 0.2118 0.3627 0.6510 1.1067 0.3025 0.2552 0.4070 0.6932 1.1189

0.5 bias2 0.2416 0.1231 0.1033 0.0661 0.0501 0.2595 0.1557 0.1196 0.0803 0.0580 0.2693 0.1785 0.1307 0.0869 0.0661

var 0.0350 0.0917 0.2105 0.4144 0.6626 0.0124 0.0362 0.0847 0.1821 0.3908 0.0139 0.0440 0.1018 0.2093 0.4346

mse 0.2766 0.2148 0.3139 0.4805 0.7127 0.2719 0.1919 0.2043 0.2624 0.4488 0.2832 0.2224 0.2325 0.2962 0.5006

1 bias2 0.2461 0.1431 0.1137 0.0779 0.0578 0.2915 0.1855 0.1424 0.1002 0.0719 0.2912 0.2061 0.1562 0.1075 0.0775

var 0.0217 0.0592 0.1336 0.2664 0.4505 0.0065 0.0218 0.0506 0.1063 0.2153 0.0069 0.0253 0.0601 0.1257 0.3346

mse 0.2678 0.2023 0.2473 0.3443 0.5083 0.2980 0.2073 0.1930 0.2066 0.2872 0.2982 0.2314 0.2162 0.2332 0.4121

2 bias2 0.2619 0.1688 0.1315 0.0943 0.0702 0.3702 0.2192 0.1750 0.1291 0.0938 0.3284 0.2345 0.1863 0.1380 0.0985

var 0.0122 0.0366 0.0825 0.1660 0.2923 0.0031 0.0123 0.0295 0.0612 0.1209 0.0031 0.0135 0.0338 0.0749 0.1876

mse 0.2742 0.2054 0.2139 0.2603 0.3625 0.3733 0.2316 0.2046 0.1903 0.2147 0.3314 0.2481 0.2202 0.2130 0.2861

4 bias2 0.3076 0.1976 0.1580 0.1177 0.0886 0.5337 0.2647 0.2149 0.1693 0.1273 0.3748 0.2680 0.2178 0.1752 0.1332

var 0.0063 0.0216 0.0494 0.0998 0.1808 0.0013 0.0064 0.0165 0.0344 0.0712 0.0012 0.0067 0.0180 0.0436 0.0918

mse 0.3139 0.2191 0.2074 0.2175 0.2694 0.5351 0.2711 0.2315 0.2036 0.1985 0.3759 0.2747 0.2358 0.2188 0.2250

Table 4.3: The average MSE, bias2 and variance of the SDRN estimators obtained from the
quadratic and quantile (τ = 0.5, 0.25) loss functions based on the 100 simulation replica-
tions when n = 2000 for Model 2.
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quadratic quantile (τ = 0.5) quantile (τ = 0.25)

κ c = −2 c = −1 c = 0 c = 1 c = 2 c = −2 c = −1 c = 0 c = 1 c = 2 c = −2 c = −1 c = 0 c = 1 c = 2

Normal

error

0.1 bias2 0.2328 0.0938 0.0851 0.0282 0.0210 0.2343 0.0970 0.0863 0.0316 0.0211 0.2432 0.1011 0.0900 0.0628 0.1419

var 0.0226 0.0677 0.1927 0.4270 0.7133 0.0235 0.0636 0.1660 0.3637 0.6593 0.0244 0.0652 0.1670 0.3485 0.5866

mse 0.2554 0.1614 0.2777 0.4552 0.7343 0.2578 0.1605 0.2524 0.3952 0.6804 0.2676 0.1663 0.2570 0.4114 0.7285

0.5 bias2 0.2335 0.1020 0.0886 0.0389 0.0240 0.2389 0.1198 0.0961 0.0517 0.0289 0.2476 0.1293 0.0989 0.0591 0.0645

var 0.0130 0.0330 0.0816 0.1686 0.3035 0.0104 0.0273 0.0638 0.1341 0.2846 0.0104 0.0272 0.0631 0.1323 0.3053

mse 0.2465 0.1350 0.1702 0.2075 0.3275 0.2493 0.1471 0.1599 0.1858 0.3135 0.2579 0.1565 0.1620 0.1914 0.3698

1 bias2 0.2350 0.1130 0.0933 0.0489 0.0292 0.2476 0.1412 0.1070 0.0664 0.0396 0.2547 0.1528 0.1108 0.0700 0.0478

var 0.0090 0.0226 0.0537 0.1102 0.2014 0.0063 0.0177 0.0403 0.0840 0.1811 0.0061 0.0173 0.0394 0.0824 0.2271

mse 0.2440 0.1357 0.1470 0.1591 0.2305 0.2538 0.1589 0.1473 0.1504 0.2207 0.2608 0.1701 0.1503 0.1524 0.2749

2 bias2 0.2395 0.1310 0.1018 0.0620 0.0380 0.2709 0.1686 0.1259 0.0849 0.0546 0.2705 0.1806 0.1310 0.0872 0.0577

var 0.0057 0.0149 0.0343 0.0703 0.1300 0.0034 0.0109 0.0248 0.0510 0.0982 0.0031 0.0104 0.0239 0.0506 0.1100

mse 0.2451 0.1459 0.1362 0.1323 0.1679 0.2743 0.1795 0.1507 0.1360 0.1528 0.2736 0.1910 0.1549 0.1378 0.1677

4 bias2 0.2524 0.1554 0.1168 0.0782 0.0512 0.3296 0.2001 0.1547 0.1102 0.0763 0.3004 0.2095 0.1589 0.1117 0.0770

var 0.0032 0.0094 0.0214 0.0437 0.0813 0.0017 0.0063 0.0148 0.0302 0.0575 0.0014 0.0058 0.0139 0.0301 0.0719

mse 0.2556 0.1648 0.1382 0.1219 0.1325 0.3313 0.2064 0.1695 0.1404 0.1337 0.3018 0.2153 0.1728 0.1418 0.1489

Laplace

error

0.1 bias2 0.2329 0.0937 0.0862 0.0326 0.0281 0.2356 0.0963 0.0860 0.0334 0.0248 0.2495 0.1072 0.0920 0.0467 0.0884

var 0.0407 0.1280 0.3696 0.8463 1.4189 0.0244 0.0647 0.1831 0.4419 0.9316 0.0301 0.0883 0.2283 0.4951 0.8929

mse 0.2736 0.2218 0.4558 0.8790 1.4470 0.2600 0.1610 0.2691 0.4753 0.9564 0.2796 0.1955 0.3203 0.5417 0.9813

0.5 bias2 0.2336 0.1019 0.0890 0.0405 0.0270 0.2413 0.1195 0.0956 0.0522 0.0308 0.2545 0.1409 0.1057 0.0613 0.0432

var 0.0233 0.0620 0.1562 0.3317 0.5988 0.0105 0.0266 0.0650 0.1426 0.3189 0.0121 0.0350 0.0824 0.1769 0.3833

mse 0.2569 0.1638 0.2452 0.3722 0.6257 0.2519 0.1461 0.1605 0.1948 0.3498 0.2666 0.1759 0.1881 0.2382 0.4264

1 bias2 0.2352 0.1129 0.0935 0.0499 0.0311 0.2513 0.1417 0.1064 0.0664 0.0408 0.2633 0.1663 0.1203 0.0765 0.0488

var 0.0162 0.0422 0.1024 0.2157 0.3966 0.0063 0.0171 0.0402 0.0858 0.2053 0.0070 0.0218 0.0509 0.1080 0.2877

mse 0.2514 0.1551 0.1959 0.2656 0.4277 0.2576 0.1588 0.1466 0.1522 0.2461 0.2703 0.1881 0.1711 0.1845 0.3365

2 bias2 0.2398 0.1310 0.1019 0.0626 0.0392 0.2766 0.1704 0.1257 0.0846 0.0552 0.2823 0.1945 0.1434 0.0972 0.0636

var 0.0103 0.0277 0.0651 0.1367 0.2551 0.0034 0.0106 0.0243 0.0509 0.1027 0.0036 0.0128 0.0304 0.0642 0.1811

mse 0.2501 0.1586 0.1669 0.1993 0.2943 0.2800 0.1810 0.1500 0.1354 0.1579 0.2859 0.2073 0.1738 0.1613 0.2447

4 bias2 0.2530 0.1556 0.1168 0.0786 0.0519 0.3377 0.2036 0.1554 0.1098 0.0763 0.3157 0.2235 0.1731 0.1251 0.0866

var 0.0059 0.0173 0.0401 0.0841 0.1588 0.0017 0.0062 0.0144 0.0297 0.0586 0.0017 0.0070 0.0174 0.0386 0.0943

mse 0.2589 0.1729 0.1569 0.1626 0.2108 0.3394 0.2099 0.1698 0.1395 0.1349 0.3174 0.2306 0.1905 0.1637 0.1809

Table 4.4: The average MSE, bias2 and variance of the SDRN estimators obtained from the
quadratic and quantile (τ = 0.5, 0.25) loss functions based on the 100 simulation replica-
tions when n = 5000 for Model 2.
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Quadratic (Normal) Quantile (Laplace)

SDRN FNN Kernel GAM GBM RF SDRN FNN Kernel GAM GBM RF

bias2 0.0188 0.0164 0.0359 0.0438 0.0308 0.0339 0.0225 0.0164 0.0434 0.0440 0.0362 0.0375

var 0.0275 0.0335 0.0413 0.0139 0.0260 0.0188 0.0289 0.0366 0.0437 0.0112 0.0262 0.0229

mse 0.0462 0.0499 0.0773 0.0578 0.0568 0.0527 0.0514 0.0530 0.0871 0.0552 0.0623 0.0604

Table 4.5: The average MSE, bias2 and variance of the six methods obtained from the
quadratic loss for normal error and quantile (τ = 0.5) loss for Laplace error based on the
100 simulation replications when n = 2000 for Model 3.

Next, we use Model 3 to compare the performance of our proposed SDRN estima-

tor with that of four other popular nonparametric methods, including the fully-connected

feedforward neural networks (FNN), the local linear kernel regression (Kernel), the gen-

eralized additive models (GAM), the gradient boosted machines (GBM) and the random

forests (RF). For FNN, ReLU is used as the activation function. For GAM, we use a cu-

bic regression spline basis. For all methods, we report the results from the optimal fitting

with the optimal tuning parameters that minimize the MSE value based on a grid search.

Table 4.5 reports the average MSE, bias2 and variance for the six methods based on the

100 replicates when n = 2000. The quadratic loss and the quantile (τ = 0.5) loss are used,

respectively, for the normal and Laplace errors for all methods. We observe that our SDRN

has the smallest average MSEs under both settings. Among all methods, the GAM method

has the largest bias due to model misspecification, and the Kernel has the largest variance

due to the dimensionality problem.

For Model 4, we use the metrics, accuracy, sensitivity, specificity, precision, recall

and F1 score, to evaluate the classification performance of different methods. The estimates

of parameters are obtained from the training dataset, and the evaluation is performed on the
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n=2000 SDRN FNN GAM GBM RF

Accuracy 0.9328 0.9301 0.9254 0.9287 0.9214

Sensitivity/Recall 0.9309 0.9333 0.9202 0.9260 0.9232

Specificity 0.9347 0.9268 0.9308 0.9314 0.9197

Precision 0.9374 0.9294 0.9312 0.9335 0.9234

F1 0.9327 0.9303 0.9253 0.9287 0.9217

n=5000 SDRN FNN GAM GBM RF

Accuracy 0.9568 0.9472 0.9508 0.9442 0.9379

Sensitivity/Recall 0.9578 0.9573 0.9492 0.9400 0.9327

Specificity 0.9558 0.9366 0.9526 0.9488 0.9434

Precision 0.9593 0.9425 0.9554 0.9519 0.9470

F1 0.9580 0.9492 0.9521 0.9455 0.9392

Table 4.6: The average of accuracy, sensitivity, precision, recall and F1 score of the five
methods based on the 100 simulation replications for Model 4.

test dataset. The training and test datasets are generated independently from Model 4 with

the same sample size. For all methods, we report the results from the optimal fitting with

the optimal tuning parameters that minimize the prediction error based on a grid search.

Table 4.6 shows the average value of accuracy, sensitivity, specificity, precision, recall and

F1 score based on 100 replications for the SDRN, FNN, GAM, GBM and RF methods using

logistic loss. We observe that SDRN outperforms other methods in terms of accuracy and

F1 score. The F1 score conveys the balance between the precision and the recall. When the

sample size n is increased from 2000 to 5000, the performance of all methods is improved.
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4.7 Real Data Application

In this section, we illustrate our proposed method by using two datasets with

continuous response variables (Boston housing data and Abalone data) and two datasets

with binary responses (Haberman’s survival data and BUPA data). Each dataset is ran-

domly split into 75% training data and 25% test data. The training data is used to fit the

model, whereas the test data is used to examine the prediction accuracy. Then, we compare

our SDRN with five methods, including LM/GLM (linear model/generalized linear model),

FNN, GBM, RF and GAM. For all methods, the tuning parameters are selected by 5-fold

cross validations based on a grid search.

4.7.1 Boston Housing Data

The Boston housing data set [33] is available in the R package (mlbench). It

contains 506 census tracts of Boston from the 1970 census. Each census tract represents

one observation. Thus, there are 506 observations and 14 attributes in the dataset, where

MEDV (the median value of owner-occupied homes) is the response variable. Following

[25], seven explanatory variables are considered: CRIM (per capita crime rate by town),

RM (average number of rooms per dwelling), tax (full-value property-tax rate per USD

10,000), NOX (nitric oxides concentration in parts per 10 million), PTRATIO (pupil-teacher

ratio by town), AGE (proportion of owner-occupied units built prior to 1940) and LSTAT

(percentage of lower status of the population). Since the value of the MEDV variable is

censored at 50.0 (corresponding to a median price of $50,000), we remove the 16 censored

observations and use the remaining 490 observations for analysis.
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Figure 4.4: Scatter plot of MEDV versus each covariate, where the red line represents the
fitted mean curve by using cubic B-splines.

For preliminary analysis of nonlinear patterns, Figure 4.4 shows the scatter plots

of the response MEDV against each covariate with the red lines representing the fitted mean

curves by using cubic B-splines. We observe that the MEDV value has a clear nonlinear

changing pattern with these covariates. The MEDV value has an overall increasing pattern

with RM, whereas it decreases as CRIM, NOX, PTRATIO, TAX and LSTAT increase. The

MEDV value starts decreasing slowly as AGE increases. However, when the AGE passes

60, it starts dropping dramatically.

Next, we use our SDRN method with quadratic loss to fit a mean regression

of this data, and compare it with LM, FNN, GBM, RF and GAM methods. Table 4.7

shows the mean squared prediction error (MSPE) from the six methods. We observe that

SDRN outperforms other methods with the smallest MSPE. The LM method has the largest

MSPE, as it cannot capture the nonlinear relationships between MEDV and the covariates.

GAM has the second largest MSPE due to its restrictive additive structure without allowing
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interaction effects. The coefficient of determination R2 for SDRN is 0.953, while it is 0.743

for LM.

SDRN LM FNN GBM RF GAM

MSPE 7.316 15.815 7.655 7.351 7.617 9.297

Table 4.7: The mean squared prediction error (MSPE) from six different methods using
quadratic loss for the Boston housing data.
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Figure 4.5: The estimated mean (solid lines) and median (dashed lines) curves of MEDV
against each covariate, while other covariates are fixed at their mean values for Boston
housing data.

To explore the nonlinear patterns between MEDV and each covariate, in Figure 4.5

we plot the estimated conditional mean function of MEDV versus each covariate (solid lines),

and the estimated conditional median function of MEDV versus each covariate (dashed

lines), obtained from our SDRD method with the quadratic loss and the quantile (τ = 0.5)

loss, respectively, while other covariates are fixed at their mean values. We see that the
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fitted MEDV has a clear decreasing trend with CRIM, AGE and TAX, while it increases

with RM. The estimated MEDV value drops steadily as CRIM is climbing while the values

of other covariates are controlled, indicating that crime rates can significant impact the

house prices. The relationship between MEDV and AGE is more nonlinear, although it has

an overall declining pattern. The estimated MEDV maintains a relatively stable value when

AGE is between 0-30, and then it begins to drop progressively after the AGE passes 30.

When AGE is 50-70, it becomes stable again, and then declines after AGE passes 70. The

estimated MEDV value increases a bit as NOX level increases. However, it drops sharply

after the NOX value is greater than 0.6. The increasing pattern in the beginning can be

explained by the fact that a higher NOX implies that a region can be more industrialized and

thus has a higher home price. When the NOX value passes a certain value, the air pollution

is more severe and becomes a major concern, the home prices will go down quickly. For

CRIM, RM, AGE, NOX and TAX, the conditional mean and median curves are similar to

each other. For PTRATIO, the median curve has a more stable value, whereas the mean

curve has an increasing pattern. There is a visible difference between the two curves when

the PTRATIO value is small. After PTRATIO is larger than 17, the two curves become

similar to each other. The difference at the small value of PTRATIO can be caused by a few

outliers, as the mean curve fitting can be more sensitive to outliers. For LSTAT, after its

value is greater than 5, we can see a steady decreasing trend of MEDV as LSTAT increases.

And the decreasing pattern is more dramatic as the LSTAT value becomes larger.
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4.7.2 Abalone Data

The abalone dataset is available at the UCI Machine Learning Repository [22],

which contains 4177 observations and 9 attributes. The attributes are: Sex (male, fe-

male and infant), Length (longest shell measurement), Diameter (perpendicular to length),

Height (with meat in shell), Whole weight (whole abalone), Shucked weight (weight of meat),

Viscera weight (gut weight after bleeding), Shell weight (after being dried) and Rings (+1.5

gives the age in years). The goal is to predict the age of abalone based on these physical

measurements. Since the age depends on the Rings, we take the Rings as the response

variable. Since Length and Diameter are highly correlated with the correlation coefficient

0.9868 and infant has no gender, we delete Length and Sex and use the remaining six covari-

ates, Diameter, Height, Whole weight, Shucked weight, Viscera weight and Shell weight, in

our analysis. In the dataset, there are two observations with zero value for Height, and two

other observations are outliers, so we delete these four observations and use the remaining

4173 observations in our analysis.

For exploratory analysis, Figure 4.6 depicts the scatter plots of the response vari-

able Rings versus Diameter, Height, Whole weight and Shell weight, and the fitted mean

curves using cubic B-splines. Clearly, the response has an increasing pattern with these co-

variates. It has a stronger nonlinear relationship with Whole weight and Shell weight. Table

4.8 presents the MSPE values in the test data for six different methods using the quadratic

loss. We observe that SDRN has a slightly smaller MSPE value than other methods. The

coefficient of determination R2 obtained from SDRN is 0.587. It is larger than the R2 from

LM, which is 0.533, due to a clear nonlinear pattern between the response and some of the
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covariates. Additionally, Figure 4.7 depicts the fitted mean curves (solid lines) and me-

dian curves (dashed lines) of the response Rings versus each of the four covariates obtained

from our SDRN method with the quadratic loss and quantile (τ = 0.5) loss, respectively,

while other covariates are fixed at their mean values. We see an overall increasing trend

of the fitted lines for the four covariates. For Diameter, Whole.weight and Shell.weight,

the fitted value of Rings increases steadily as the covariate value increases. However, after

the covariate value is beyond a certain point, the estimated value of Rings becomes stable.

For Height, the estimated value of Rings increases with Height in the beginning stage, it

becomes stable when Height is from 0.7-0.13, and then it increases again. Moreover, the

estimated conditional mean function is similar to the estimated conditional median function

in general for this dataset.
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Figure 4.6: Scatter plots of the response Rings versus four covariates and the fitted mean
curve using cubic B-splines.

SDRN LM FNN GBM RF GAM

MSPE 4.414 4.957 4.482 4.636 4.564 4.560

Table 4.8: The mean squared prediction error (MSPE) from the six different methods for
the abalone data.
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Figure 4.7: The estimated mean (solid lines) and median (dashed lines) curves of Rings
against each covariate, while other covariates are fixed at their mean values for Boston
housing data for Abalone data.

4.7.3 Haberman’s Survival Data

The Haberman’s Survival data is available at the UCI Machine Learning Reposi-

tory [22]. The dataset contains cases from a study conducted at the University of Chicago’s

Billings Hospital on the survival of patients who had undergone surgery for breast cancer.

It has 306 observations and 4 attributes, which are age of patient at time of operation, pa-

tient’s year of operation (minus 1900), the number of positive axillary nodes detected and

survival status (survived 5 years or longer or died within 5 years). Based on the survival
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status column, we define Yi = 1 if the ith patient survived 5 years or longer, otherwise

Yi = 0. Then we apply different machine learning methods to this dataset for classification.

Table 4.9 presents the accuracy, precision, recall, F1 and AUC (area under the

ROC curve) obtained from the test data for the survival group. We observe that SDRN

outperforms other methods with the highest accuracy, precision, F1 score and AUC. Figure

4.8 shows the estimated log-odds functions versus Age and the number of positive axillary

nodes, respectively, while other covariates are fixed at their mean values. With age increas-

ing, the estimated log-odds value decreases, indicating decreasing survival probabilities. For

the number of positive axillary nodes, the estimated log-odds function drops quickly to a

small value when the number of positive axillary nodes increases from 0 to 12, and then

it becomes stable and remains at a low point. This result indicates that when the number

of positive axillary nodes is within a threshold value, it has a strong adverse effect on the

survival probability. However, when it passes the threshold value, the survival probability

remains at a very small value. In summary, we can clearly observe a nonlinear pattern of

the estimated function in both plots. [46] also mentioned that the GLM could have a poor

performance for this dataset because of the nonlinearity. Moreover, we use McFadden’s

pseudo R2 = 1 − logL̂(Mfull)

logL̂(Mnull)
to further evaluate the model fitting, where L̂(Mfull) is the

estimated likelihood with all predictors and L̂(Mnull) is the estimated likelihood without

any predictors. The higher value of the pseudo R2 indicates better model fitting. The

pseudo R2 from SDRN is 0.2012, and it is larger than the pseudo R2 = 0.1056 from GLM.
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SDRN GLM FNN GBM RF GAM

Accuracy 0.714 0.701 0.701 0.688 0.688 0.688

Precision 0.754 0.735 0.750 0.738 0.746 0.738

Recall 0.891 0.909 0.872 0.873 0.845 0.873

F1 0.817 0.813 0.807 0.800 0.797 0.800

AUC 0.677 0.633 0.635 0.641 0.641 0.667

Table 4.9: Accuracy, Precision, Recall, F1 and AUC for the survival group obtained by
different methods with logistic loss for Haberman’s Survival Data.
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Figure 4.8: The estimated log-odds functions versus Age and the number of positive axillary
nodes, respectively, while other covariates are fixed at their mean values.

4.7.4 BUPA Data

The BUPA Liver Disorders dataset is available at the UCI Machine Learning

Repository [22]. It has 345 rows and 7 columns, with each row constituting the record of

a single male individual. The first 5 variables are blood tests that are considered to be

sensitive to liver disorders due to excessive alcohol consumption; they are mean corpuscular
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volume (mcv), alkaline phosphotase (alkphos), alanine aminotransferase (sgpt), aspartate

aminotransferase (sgot) and gamma-glutamyl transpeptidase (gammagt). We use them as

covariates. The 6th variable is the number of half-point equivalents of alcoholic beverages

drunk per day. Following [64], we dichotomize it to a binary response by letting Yi = 1 if

the number of drinks is greater than 3, otherwise Yi = 0. The 7th column in the dataset

was created by BUOA researchers for traing and test data selection.

We first calculate the McFadden-pseudo R2 for GLM and SDRN with logistic loss,

respectively. The pseudo R2 for GLM is 0.2355, while it is 0.2584 for SDRN, indicating that

the SDRN method yields a better prediction. In addition, Table 4.10 shows the accuracy,

precision, recall, F1 and AUC for the group with the number of drinks greater than 3

obtained from the six methods with logistic loss. We see that SDRN has the largest accuracy,

recall, F1 and AUC. The accuracy from GLM and GAM is smaller than other methods

due to possible model misspecification of these two methods. To explore the nonlinear

patterns, Figure 4.9 depicts the estimated log-odds functions versus the mcv, alkphos, sgot

and gammagt predictors, respectively, while other covariates are fixed at their mean values.

We can see that the estimated log-odds has a clear increaing pattern with mcv and sgot,

indicating that the mcv and sgot levels can be strong indicators for alcohol consumption. For

gammagt, the estimated log-odds increases quickly as the the level of gammagt is elevated.

Its value remains to be positive as gammagt passes a certain value. The estimated log-odds

has a quadratic nonlinear relationship with alkphos. Abnormal (either low or high) levels of

alkphos is connected to a few health problems. Low levels of alkphos indicate a deficiency in

zinc and magnesium, or a rare genetic disease called hypophosphatasia, which effects bones
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Table 4.10: Accuracy, Precision Recall, F1 and AUC for the group with the number of
drinks greater than 3 of the BUPA data for different methods with logistic loss.

SDRN GLM FNN GBM RF GAM

Accuracy 0.620 0.595 0.615 0.615 0.610 0.605

Precision 0.650 0.634 0.667 0.672 0.653 0.627

Recall 0.520 0.450 0.460 0.450 0.470 0.520

F1 0.578 0.526 0.544 0.539 0.547 0.568

AUC 0.637 0.618 0.629 0.613 0.608 0.624

and teeth. High levels of alkphos can be an indicator of liver disease or bone disorder.

4.8 Discussion

In this chapter, we propose a sparse deep ReLU network estimator (SDRN) ob-

tained from empirical risk minimization with a Lipschitz loss function satisfying mild con-

ditions. Our framework can be applied to a variety of regression and classification problems

in machine learning. In general, deep neural networks are effective tools for lessening the

curse of dimensionality under the condition that the target functions have certain special

properties. We assume that the unknown target function belongs to Korobov spaces, which

are subsets of the Sobolev spaces commonly used in the nonparametric regression litera-

ture. Functions in the Korobov spaces need to have partial mixed derivatives rather than a

compositional structure, and thus can be more flexible for investigating nonlinear patterns

between the response and the predictors.
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Figure 4.9: The estimated log-odds functions versus mcv, alkphos, sgot and gammagt ,
respectively, while other covariates are fixed at their mean values, for the BUPA data.
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We derive non-asymptotic excess risk bounds for SDRN estimator. Our framework

allows the dimension of the feature space to increase with the sample size with a rate slightly

slower than log(n). We further show that our SDRN estimator can achieve the same optimal

minimax rate (up to logarithmic factors) as one-dimensional nonparametric regression when

the dimension is fixed, and the dimensionality effect is passed on to a logarithmic factor, so

the curse of dimensionality is alleviated. The SDRN estimator has a suboptimal rate when

the dimension increases with the sample size. Moreover, the depth and the total number

of nodes and weights of the network need to increase with the sample size with certain

rates established in the paper. These statistical properties provide an important theoretical

basis and guidance for the analytic procedures in data analysis. Practically, we illustrate

the proposed method through simulation studies and several real data applications. The

numerical studies support our theoretical results.

Our proposed method provides a reliable solution for mitigating the curse of di-

mensionality for modern data analysis. Meanwhile it has opened up several interesting

new avenues for further work. One extension is to derive a similar estimator for smoother

regression functions with mixed derivatives of order greater than two; Jacobi-weighted Ko-

robov spaces [79] may be considered for this scenario. Our method can be extended to

other settings such as semiparametric models, longitudinal data and L1 penalized regres-

sion. Moreover, it can be a promising tool for estimation of the propensity score function or

the outcome regression function used in treatment effect studies. These interesting topics

deserve thorough investigations for future research.
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Chapter 5

Conclusions

In this dissertation, we mainly illustrate the nonparametric machine learning tech-

niques used in subgroup analysis (Chapter 3) and deep neural network regression (Chapter

4), in which they focus on the one-dimensional and high-dimensional problems, respectively.

In Chapter 3, to cluster the heterogeneous longitudinal trajectories of AD data,

we propose a subject-specific nonparametric regression model, in which the heterogeneity

can be driven by unobserved latent factors. We first use B-splines to estimate the nonpara-

metric functions, and then apply the concave penalty to pairwise the B-spline coefficients so

that we can merge the individuals with similar progression curves into the same subgroup.

Our proposed method can automatically identify the latent memberships and estimate the

parameters in the model simultaneously without knowing the grouping information. For

implementation, we develop an ADMM algorithm. Through simulation studies, we demon-

strate the promising performance of our proposed method. Meanwhile, the real data (AD

data) application also indicates the meaningful subgroups in clinical trials. We hope this
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chapter could provide researchers a new idea for subgroup analysis when involving nonpara-

metric components.

In Chapter 4, we study the nonparametric functions in high-dimensional data set-

ting. We propose a sparse deep ReLU network estimator (SDRN) obtained from empirical

risk minimization with a Lipschitz loss function satisfying mild conditions. The estima-

tor of the target function is built upon a network architecture of sparsely-connected deep

neural networks with the rectified linear unit (ReLU) activation function. We assume that

the unknown target function belongs to Korobov spaces, which are subsets of the Sobolev

spaces commonly used in the nonparametric regression literature. Rather than having a

compositional structure, functions belongs to this space only need to satisfy a smoothness

condition. Thus, it is more flexible for capturing the nonlinear patterns between the re-

sponse and predictors. Our framework is applicable to both regression and classification

problems. We also develop statistical properties of the proposed methodology, which pro-

vide an important guidance for the data analytic procedures. Practically, we illustrate the

proposed method through simulation studies and several real data applications. The nu-

merical studies support our theoretical results. In general, our proposed method provides

a reliable solution for mitigating the curse of dimensionality for modern large-scale data

analysis.
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[12] Tadeusz Caliński and Jerzy Harabasz. A dendrite method for cluster analysis. Com-
munications in Statistics-Theory and Methods, 3(1):1–27, 1974.

104



[13] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of Artificial Intelligence
Research, 16:321–357, 2002.

[14] M. Chen, H. Jiang, W. Liao, and T. Zhao. Nonparametric regres-
sion on low-dimensional manifolds using deep relu networks. preprint,
https://arxiv.org/abs/1908.01842, 2019.

[15] Y. Chen and R. Samworth. Generalized additive and index models with shape con-
straints. Journal of the Royal Statistical Society: Series B, 78:729–754, 2016.

[16] M. Y. Cheng, J. Fan, and J. S. Marron. Minimax efficiency of local polynomial fit
estimators at boundaries. Mimeo Series 2098, University of North Carolina-Chapel
Hill, 1994.

[17] M. Y. Cheng and H. T. Wu. Local linear regression on manifolds and its geometric
interpretation. Journal of the American Statistical Association, 108:1421–1434, 2013.

[18] F. Cucker and D. Zhou. Learning theory. Cambridge Monographs on Applied and
Computational Mathematics, 2007.

[19] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals and Systems, 2:303–314, 1989.

[20] Carl De Boor. A practical guide to splines. Revised Edition. Springer, New York.,
2001.

[21] Paul Doukhan. Mixing: properties and examples, volume 85. Springer Science &
Business Media, 2012.

[22] D. Dua and C. Graff. Uci machine learning repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of Information and Computer Science,
2019.

[23] R. Eldan and O. Shamir. The power of depth for feedfoward neural networks. JMLR:
Workshop and Conference Proceedings, pages 1–34, 2016.

[24] J. Fan and I. Gijbels. Local polynomials modelling and its applications. Chapman and
Hall, London, 1996.

[25] J. Fan and T. Huang. Profile likelihood inferences on semiparametric varying-
coefficient partially linear models. Bernoulli, 11:1031–1057, 2005.

[26] J. Fan, C. Ma, and Y. Zhong. A selective overview of deep learning. Statistical Science,
36:264–290, 2021.

[27] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and
its oracle properties. Journal of the American statistical Association, 96(456):1348–
1360, 2001.

105



[28] Chris Fraley and Adrian E Raftery. Model-based clustering, discriminant analysis, and
density estimation. Journal of the American Statistical Association, 97(458):611–631,
2002.

[29] J. H. Friedman and W. Stuetzle. Projection pursuit regression. Journal of the Amer-
ican Statistical Association, 76:817–823, 1981.

[30] Christophe Genolini and Bruno Falissard. Kml: A package to cluster longitudinal
data. Computer Methods and Programs in Biomedicine, 104(3):e112–e121, 2011.

[31] VV Gorodetskii. On the strong mixing property for linear sequences. Theory of
Probability & Its Applications, 22(2):411–413, 1978.

[32] M. Griebel. Sparse grids and related approximation schemes for higher dimensional
problems. Foundations of Computational Mathematics, Cambridge University Press,
pages 106–161, 2006.

[33] D. Harrison Jr and D. L. Rubinfeld. Hedonic housing prices and the demand for clean
air. Journal of Environmental Economics and Management, 5:81–102, 1978.

[34] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering
algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108, 1979.

[35] Arthur E Hoerl and Robert W Kennard. Ridge regression: applications to nonorthog-
onal problems. Technometrics, 12(1):69–82, 1970.

[36] J. Horowitz and E. Mammen. Rate-optimal estimation for a general class of non-
parametric regression models with unknown link functions. The Annals of Statistics,
35:2589–2619, 2007.

[37] J. Huang. Projection estimation in multiple regression with application to functional
anova models. The Annals of Statistics, 26:242–272, 2003.

[38] Jianhua Z Huang. Local asymptotics for polynomial spline regression. The Annals of
Statistics, 31(5):1600–1635, 2003.

[39] Jianhua Z Huang and Haipeng Shen. Functional coefficient regression models for non-
linear time series: a polynomial spline approach. Scandinavian Journal of Statistics,
31(4):515–534, 2004.

[40] Jianhua Z Huang, Colin O Wu, and Lan Zhou. Polynomial spline estimation and
inference for varying coefficient models with longitudinal data. Statistica Sinica, pages
763–788, 2004.

[41] Jianhua Z Huang, Liangyue Zhang, and Lan Zhou. Efficient estimation in marginal
partially linear models for longitudinal/clustered data using splines. Scandinavian
Journal of Statistics, 34(3):451–477, 2007.

106



[42] T. Jung and K. A. S. Wickrama. An introduction to latent class growth analysis and
growth mixture modeling. Social and Personality Psychology Compass, 2(1):302–317,
2008.

[43] Robert Katzman. Education and the prevalence of dementia and alzheimer’s disease.
Neurology, 43(1):13–20, 1993.

[44] D. P. Kingma and J. L. Ba. Adam: a method for stochastic optimization. International
Conference on Learning Representations, 2015.

[45] Yuichi Kitamura. Empirical likelihood methods with weakly dependent processes.
The Annals of Statistics, 25(5):2084–2102, 1997.

[46] J. M. Landwehr, D. Pregibon, and A. C. Shoemaker. Graphical methods for assessing
logistic regression models. Journal of the American Statistical Association, 79:61–71,
1984.

[47] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–444, 2015.

[48] H. Liang, X. Liu, R. Li, and C. L. Tsai. Estimation and testing for partially linear
single-index models. The Annals of Statistics, 38:3811–3836, 2010.

[49] K. Y. Liang and S. Zeger. Longitudinal data analysis using generalized linear models.
Biometrika, 73(1):13–22, 1986.

[50] S. Liang and R. Srikant. Why deep neural networks for function approximation?
preprint, https://arxiv.org/abs/1610.04161, 2016.

[51] Rong Liu and L. Yang. Spline-backfitted kernel smoothing of additive coefficient
model. Econometric Theory, 26(1):29–59, 2010.

[52] GG Lorentz and RA DeVore. Constructive Approximation, Polynomials and Splines
Approximation. Springer-Verlag, New York, Berlin, Heidelberg, 1993.

[53] S. Ma. Two-step spline estimating equations for generalized additive partially linear
models with large cluster sizes. The Annals of Statistics, 20:2943–2972, 2012.

[54] S. Ma. A plug-in number of knots selector for polynomial spline regression. Journal
of Nonparametric Statistics, 26:489–507, 2014.

[55] S. Ma and X. He. Inference for single-index quantile regression models with profile
optimization. The Annals of Statistics, 44:1234–1268, 2015.

[56] S. Ma, J. Racine, and L. Yang. Spline regression in the presence of categorical pre-
dictors. Journal of Applied Econometrics, 30:705–717, 2015.

[57] Shujie Ma. Two-step spline estimating equations for generalized additive partially
linear models with large cluster sizes. The Annals of Statistics, 40(6):2943–2972,
2012.

107



[58] Shujie Ma. A plug-in the number of knots selector for polynomial spline regression.
Journal of Nonparametric Statistics, 26(3):489–507, 2014.

[59] Shujie Ma and Xuming He. Inference for single-index quantile regression models with
profile optimization. The Annals of Statistics, 44(3):1234–1268, 2016.

[60] Shujie Ma and Jian Huang. A concave pairwise fusion approach to subgroup analysis.
Journal of the American Statistical Association, 112(517):410–423, 2017.

[61] Shujie Ma, Jian Huang, Zhiwei Zhang, and Mingming Liu. Exploration of heteroge-
neous treatment effects via concave fusion. The international journal of biostatistics,
16(1), 2019.

[62] Shujie Ma, Qiongxia Song, and Li Wang. Simultaneous variable selection and estima-
tion in semiparametric modeling of longitudinal/clustered data. Bernoulli, 19(1):252–
274, 2013.

[63] James G MacKinnon and Halbert White. Some heteroskedasticity-consistent covari-
ance matrix estimators with improved finite sample properties. Journal of Economet-
rics, 29(3):305–325, 1985.

[64] J. McDermott and R. S. Forsyth. Diagnosing a disorder in a classification benchmark.
Pattern Recognition Letters, 73:41–43, 2016.

[65] Paul D McNicholas. Model-based classification using latent gaussian mixture models.
Journal of Statistical Planning and Inference, 140(5):1175–1181, 2010.

[66] H. Mhaskar, Q. Liao, and T. Poggio. When and why are deep networks better than
shallow ones? Proceedings of the Thirty-First AAAI Conference on Artificial Intelli-
gence, pages 2343–2349, 2017.

[67] H. Mhaskar and T. Poggio. Deep vs. shallow networks: An approximation theory
perspective. Analysis and Applications, 14:829–848, 2016.

[68] H. Montanelli and Q. Du. New error bounds for deep relu networks using sparse grids.
SIAM Journal on Mathematics of Data Science, accepted, 2019.

[69] R. Nakada and M. Imaizumi. Adaptive approximation and generalization of deep
neural network with intrinsic dimensionality. Journal of Machine Learning Research,
21:1–38, 2020.

[70] Hoh Suk Noh and Byeong U Park. Sparse varying coefficient models for longitudinal
data. Statistica Sinica, pages 1183–1202, 2010.

[71] T. Poggio, H. N. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao. Why and when can
deep-but not shallow-networks avoid the curse of dimensionality: A review. Interna-
tional Journal of Automation and Computing, 14:503–519, 2017.

[72] William M Rand. Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical Association, 66(336):846–850, 1971.

108



[73] George G Roussas and D Ioannides. Moment inequalities for mixing sequences of
random variables. Stochastic Analysis and Applications, 5(1):60–120, 1987.

[74] D. Ruppert. Empirical-bias bandwidths for local polynomial nonparametric regression
and density estimation. Journal of the American Statistical Association, 92:1049–
1062, 1997.

[75] Mirna Safieh, Amos D Korczyn, and Daniel M Michaelson. Apoe4: an emerging
therapeutic target for alzheimer’s disease. BMC medicine, 17(1):1–17, 2019.

[76] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, 2015.

[77] J. Schmidt-Hieber. Deep relu network approximation of functions on a manifold.
preprint, https://arxiv.org/abs/1908.00695, 2019.

[78] J. Schmidt-Hieber. Nonparametric regression using deep neural networks with relu
activation function. The Annals of Statistics, 48:1875–1897, 2020.

[79] J. Shen and L. L. Wang. Sparse spectral approximations of high-dimensional problems
based on hyperbolic cross. SIAM Journal on Numerical Analysis, 48:1087–1109, 2010.

[80] Juan Shen and Xuming He. Inference for subgroup analysis with a structured logistic-
normal mixture model. Journal of the American Statistical Association, 110(509):303–
312, 2015.

[81] Z. Shen, H. Yang, and S. Zhang. Deep network approximation characterized by
number of neurons. Communications in Computational Physics, 28:1768–1811, 2020.

[82] J. J. Song, H. J. Lee, J. S. Morris, and S. Kang. Clustering of time-course gene
expression data using functional data analysis. Computational biology and chemistry,
31(4):265–274, 2007.

[83] C. J. Stone. Optimal global rates of convergence for nonparametric regression. The
Annals of Statistics, 10:1040–1053, 1982.

[84] C. J. Stone. Additive regression and other nonparametric models. The Annals of
Statistics, 13:689–705, 1985.

[85] C. J. Stone. The use of polynomial splines and their tensor products in multivariate
function estimation. The Annals of Statistics, 22:118–184, 1994.

[86] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[87] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures
for clusterings comparison: Variants, properties, normalization and correction for
chance. The Journal of Machine Learning Research, 11:2837–2854, 2010.

109



[88] Hansheng Wang, Runze Li, and Chih-Ling Tsai. Tuning parameter selectors for the
smoothly clipped absolute deviation method. Biometrika, 94(3):553–568, 2007.

[89] Li Wang, Xiang Liu, Hua Liang, and Raymond J Carroll. Estimation and variable
selection for generalized additive partial linear models. Annals of statistics, 39(4):1827,
2011.

[90] N. Wang, R. J. Carroll, and X. Lin. Efficient semiparametric marginal estimation
for longitudinal/clustered data. Journal of the American Statistical Association,
100(469):147–157, 2005.

[91] L. Wasserman. All of Nonparametric Statistics. Springer Texts in Statistics, 2006.

[92] Y. Xia. Asymptotic distributions for two estimators of the single-index model. Econo-
metric Theory, 22:1112–1137, 2006.

[93] Lan Xue and hua Liang. Polynomial spline estimation for a generalized additive
coefficient model. Scandinavian Journal of Statistics, 19(1):252–274, 2013.

[94] D. Yarotsky. Error bounds for approximations with deep relu networks. Neural
Networks, 70:103–114, 2017.

[95] G. Ye, Y. Chen, and X. Xie. Efficient variable selection in support vector machines
via the alternating direction method of multipliers. Proceedings of Machine Learning
Research, 15:832–840, 2011.

[96] Konstantina G Yiannopoulou, Aikaterini I Anastasiou, Venetia Zachariou, and Sygk-
liti H Pelidou. Reasons for failed trials of disease-modifying treatments for alzheimer
disease and their contribution in recent research. Biomedicines, 7(4):97, 2019.

[97] M. Yuan and D. Zhou. Minimax optimal rates of estimation in high dimensional
additive models. The Annals of Statistics, 44:2564–2593, 2016.

[98] Cun H Zhang. Nearly unbiased variable selection under minimax concave penalty.
The Annals of Statistics, 38(2):894–942, 2010.

[99] X. Zhang, B. U. Park, and J. L. Wang. Time-varying additive models for longitudinal
data. Journal of the American Statistical Association, 108:983–998, 2013.

[100] Zhongyi Zhu, Wing K Fung, and Xuming He. On the asymptotics of marginal regres-
sion splines with longitudinal data. Biometrika, 95(4):907–917, 2008.

110



Appendix A

Supplementary Materials for

Chapter 3

A.1 Computational Complexity of ADMM Algorithm

The computational complexity can be expressed in terms of floating point oper-

ations per second (flops) required to find the solution [9]. Our ADMM algorithm involves

updating the estimates of δ, υ and γ given in (3.10), (3.11) and (3.12) through iterations.

It costs O((n − 1)nS) = O(n2S) flops for computing the updates of δ and υ, given that

δ and υ are 0.5n(n − 1)S × 1 vectors, where S is the number of B-spline basis functions.

Following [9] (see pages 27-29), the computational cost for updating γ given in (3.12) is

dominated by V −1 and (XTV −1X + ϑATA)−1, which require O(
∑n

i=1m
3
i ) and O(n3S3)

flops, respectively. Therefore, it takes O(
∑n

i=1m
3
i + n3S3) flops to update γ in the first

iteration. Since the values (XTV −1X+ϑATA)−1 and XTV −1Y remain the same through
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iterations, and we only need to compute them once, in the subsequent iterations, the com-

putational cost for updating γ is reduced to O(nS × 0.5n(n − 1)S) = O(n3S2), which is

cost of computing AT
(
δ − ϑ−1υ

)
given in (3.12). In sum, the overall cost of updating

(γ, δ,υ) is O(n2S +
∑n

i=1m
3
i + n3S3) = O(

∑n
i=1m

3
i + n3S3) in the first iteration, and it is

O(n2S + n3S2) = O(n3S2) in the subsequent iterations.

A.2 Consistency and Convergence

Let C denotes a generic constant that might assume different values at different

places. Without loss of generality, we consider the following B-spline basis functions that

span G, that is, Bl = S1/2B∗
l , l = 1, . . . , S, where {B∗

l }Sl=1 are the B-splines defined in

Chapter 5 of [52]. It follows from Theorem 4.2 of [52] that

M1∥γ∥22 ≤
∫ { S∑

l=1

Bl(t)γl

}2

dt ≤M2∥γ∥22 (A.1)

for some constants 0 < M1 < M2 <∞, where γ = (γ1, . . . , γS)
T .

Lemma A.1 For each i, there exist some constants 0 < M1 < M2 < ∞ such that, except

on an event whose probability tends to zero, all the eigenvalues of XT
i Xi/mi fall between

M1 and M2.

Lemma A.2 Assume the random variables ξ and η be F k
1 -measurable and F∞

k+s-measurable,

respectively. If E(|ξ|p) < ∞, E(|η|q) < ∞ for some p, q > 1 and 1/p + 1/q < 1. Then,

under α-mixing,

|E(ξη)− E(ξ)E(η)| ≤ 10α(s)
1− 1

p
− 1

q ∥ξ∥p∥η∥q,

where ∥ξ∥p = E1/p(|ξ|p) denotes the Lp-norm of ξ.
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The proof of Lemma A.1 and Lemma A.2 can be respectively referred to Lemma

2 of [39] and Theorem 7.3 of [73].

Define β∗
i (t) = B(t)Tγ∗ ∈ G such that ∥β∗

i − βi∥2 = infg∈G ∥g − βi∥2 ≜ ϖi, it

follows from the result on page 149 of [20] that ϖi = J−r if βi(·) ∈ C(r).

A.2.1 Consistency of Initial Estimator

Proposition A.3 Under conditions (C1)-(C4), the initial estimators β̂
(0)
i (t), i = 1, . . . , n,

satisfy ∥β̂(0)
i − βi∥22 = Op(J/mi + J−2r).

Proof. Recall that

γ̂
(0)
i = argmin

γi

(Yi −Xiγi)
T (Yi −Xiγi) = (XT

i Xi)
−1XT

i Yi,

and β̂
(0)
i (t) = B(t)T γ̂

(0)
i . Now, define γ̃

(0)
i = (XT

i Xi)
−1XT

i Ỹi, β̃
(0)
i (t) = B(t)T γ̃

(0)
i , where

Ỹi = (βi(ti1), . . . , βi(timi))
T . Obviously,

γ̂
(0)
i − γ̃

(0)
i = (XT

i Xi)
−1XT

i (Yi − Ỹi) = (XT
i Xi)

−1XT
i εi,

where εi = (εi1, . . . , εimi)
T . It follows from Lemma A.1 that there exists a constant C > 0,

such that

E
(
εTi Xi(X

T
i Xi)

−1(XT
i Xi)

−1XT
i εi
)
≤ C

1

m2
i

E
(
εTi XiX

T
i εi
)
.

Taking p = q = 4 in Lemma A.2 and by the properties of B-splines, we can obtain

E
(
εTi XiX

T
i εi
)

= E


S∑
l=1

 mi∑
j=1

Bl(tij)εij

2 = E


mi∑

j,j′=1

S∑
l=1

εijεij′Bl(tij)Bl(tij′)


≤ S

mi∑
j,j′=1

|E(εijεij′)| ≤ 10S
∑

1≤j,j′≤mi

α(|j − j′|)1/2[E(|εij |4)]1/4[E(|εij′ |4)]1/4

= Op(Jmi),
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where the last equality holds because
∑∞

s=1 α(s)
1/2[E(|εij |4)]1/4[E(|εij′ |4)]1/4 is bounded

from condition (C2). Thus, ∥γ̂(0)
i − γ̃

(0)
i ∥22 = Op(J/mi). This together with expression

(A.1) leads to

∥β̂(0)
i − β̃

(0)
i ∥

2
2 = O

(
∥γ̂(0)

i − γ̃
(0)
i ∥

2
2

)
= Op(J/mi). (A.2)

On the other hand, by Lemma A.1, we have

∥γ̃(0)
i − γ∗

i ∥22 = Op

(
1

mi
(γ̃

(0)
i − γ∗

i )
TXT

i Xi(γ̃
(0)
i − γ∗

i )

)
.

Noting that Xiγ̃
(0)
i = Xi(X

T
i Xi)

−1XT
i Ỹi is an orthogonal projection of Ỹi. Hence,

1

mi
(γ̃

(0)
i − γ∗

i )
TXT

i Xi(γ̃
(0)
i − γ∗

i ) ≤
1

mi
(Ỹi −Xiγ

∗
i )

T (Ỹi −Xiγ
∗
i )

=
1

mi

mi∑
j=1

(βi(tij)− β∗
i (tij))

2

= O(ϖ2
i ),

It follows from expression (A.1) that

∥β̃(0)
i − β∗

i ∥22 = O
(
∥γ̃(0)

i − γ∗
i ∥22
)
= Op(ϖ

2
i ). (A.3)

Therefore, by the definition of ϖi, equations (A.2)-(A.3) and the triangle inequality, we

have

∥β̂(0)
i − βi∥22

≤ ∥β̂(0)
i − β̃

(0)
i ∥

2
2 + ∥β̃

(0)
i − β∗

i ∥22 + ∥β∗
i − βi∥22

= Op(J/mi) +Op(ϖ
2
i ) +Op(ϖ

2
i ) = Op(J/mi + J−2r).

This completes the proof.
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A.2.2 Convergence of ADMM

Proposition A.4 Let rm+1 = Aγm+1 − δm+1 and sm+1 = ϑAT (δm+1 − δm) respectively

be the primal residual and dual residual in the ADMM. Then, limm→∞ ∥rm+1∥22 = 0 and

limm→∞ ∥sm+1∥22 = 0 hold for MCP penalty.

Proof. Taking a careful examination of our constructed objective function L(γ, δ,ν) with

that of [61], the conclusion limm→∞ ∥rm+1∥22 = 0 can be directly derived by a similar proof

of proposition 1 in [61]. Recall that γm+1 minimize L(γ, δm,νm) by definition, thus

0 =
∂L(γ, δm,νm)

∂γ

∣∣∣
γ=γm+1

= XTV −1(Xγm+1 − Y ) +AT {νm + ϑ(Aγm+1 − δm)}

= XTV −1(Xγm+1 − Y ) +AT {[νm+1 − ϑ(Aγm+1 − δm+1)] + ϑ(Aγm+1 − δm)}

= XTV −1(Xγm+1 − Y ) +ATνm+1 + ϑAT (δm+1 − δm),

which implies

sm+1 = ϑAT (δm+1 − δm) = −{XTV −1(Xγm+1 − Y ) +ATνm+1}.

In view of limm→∞ ∥rm∥22 = limm→∞ ∥Aγm − δm∥22 = 0, we have

0 = lim
m→∞

∂L(γ, δm,νm)

∂γ

∣∣∣
γ=γm+1

= lim
m→∞

{XTV −1(Xγm+1−Y )+ATνm+1} = lim
m→∞

−sm+1.

Therefore, we obtain limm→∞ ∥sm+1∥22 = 0, this completes the proof.

A.3 Proof of Theorems

To prove the main theoretical results in this article, we first present the following

lemma which will be frequently used in the sequel. Let β̄i(t) = BT (t)γ̄i, where

γ̄i = argmin
γi

(Yi −Xiγi)
TV −1

i (Yi −Xiγi) = (XT
i V

−1
i Xi)

−1XT
i V

−1
i Yi. (A.4)

115



Lemma A.5 Under conditions (C1)-(C5), we have ∥β̄i − βi∥22 = Op(J/mi + J−2r), i =

1, . . . , n.

Proof. For i = 1, . . . , n, let β̃i(t) = B(t)T γ̃i and γ̃i = (XT
i V

−1
i Xi)

−1XT
i V

−1
i Ỹi,

where Ỹi is defined as above. Obviously, β̄i(t) − β̃i(t) = B(t)T (XT
i V

−1
i Xi)

−1XT
i V

−1
i εi.

By Lemma A.1 and the bounded assumption on the eigenvalues of V , it is easy to verify

that there exist two constants 0 < C1 ≤ C2 <∞, such that

C1
1

m2
i

E(εTi V
−1
i XiX

T
i V

−1
i εi) ≤ E

(
∥β̄i(t)− β̃i(t)∥22

)
≤ C2

1

m2
i

E(εTi V
−1
i XiX

T
i V

−1
i εi).

According to the operation properties of the trace and expectation, we have

E(εTi Σ
−1
i XiX

T
i Σ

−1
i εi) = trace

{
E(εTi Σ

−1
i XiX

T
i Σ

−1
i εi)

}
= E

(
trace{XT

i Σ
−1
i εiε

T
i Σ

−1
i Xi}

)
= E

(
trace{XT

i V
−1
i ΣiV

−1
i Xi}

)
= trace

{
E(XT

i V
−1
i ΣiV

−1
i Xi)

}
= Op(miJ),

where the last equality holds due to condition (C5) and Lemma A.1. Hence, we obtain

∥β̄i − β̃i∥22 = Op(J/mi). (A.5)

Furthermore, as V
−1/2
i Xi(X

T
i V

−1
i Xi)

−1XT
i V

−1
i Ỹi is an orthogonal projection of V

−1/2
i Ỹi,

we have

1

mi
(γ̃i − γ∗

i )
TXT

i V
−1
i Xi(γ̃i − γ̃∗

i )

=
1

mi

{
(XT

i V
−1
i Xi)

−1XT
i V

−1
i Ỹi − γ̃∗

i

}T
XT

i V
−1/2
i V

−1/2
i Xi

{
(XT

i V
−1
i Xi)

−1XT
i V

−1
i Ỹi − γ̃∗

i

}
=

1

mi
∥V −1/2

i Xi(X
T
i V

−1
i Xi)

−1XT
i V

−1
i Ỹi − V

−1/2
i Xiγ

∗
i ∥22

≤ 1

mi
∥V −1/2

i Ỹi − V
−1/2
i Xiγ

∗
i ∥22 =

1

mi
(Ỹi −Xiγ

∗
i )

TV −1
i (Ỹi −Xiγ

∗
i )

= Op

(
1

mi
∥Ỹi −Xiγ

∗
i ∥22
)

= Op

(
∥βi − β∗

i ∥22
)
= Op(ϖ

2
i ),
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where the antepenult equality holds by the bounded assumption on the eigenvalues of V .

Combining the expression (A.1), condition (C5) as well as Lemma A.1 leads to

∥β̃i − β∗
i ∥22 = O

(
∥γ̃i − γ∗

i ∥22
)
= Op

(
1

mi
(γ̃i − γ∗

i )
TXT

i Σ
−1
i Xi(γ̃i − γ̃∗

i )

)
= Op(ϖ

2
i ). (A.6)

Consequently, it follows from equations (A.5), (A.6) and the definition of ϖi that

∥β̄i − βi∥22 ≤ ∥β̄i − β̃i∥22 + ∥β̃i − β∗
i ∥22 + ∥β∗

i − βi∥22 = Op(J/mi +ϖ2
i ) = Op(J/mi + J−2r).

This finishes the proof.

Proof of Theorem 3.1. Notice that, it is equivalent to individually obtaining θ̂k = argminθk(Y(k)−

X(k)θk)
TV −1

(k) (Y(k) −X(k)θk) =
(
XT

(k)V
−1
(k) X(k)

)−1
XT

(k)V
−1
(k) Y(k) for k = 1, . . . ,K, where

Y(k) =
{
Y T
i : i ∈ Gk

}T
,X(k) =

{
XT

i : i ∈ Gk
}T

and V(k) = diag {Vi : i ∈ Gk}. Then

α̂k(t) = B(t)T θ̂k for any t ∈ T. According to Lemma A.5, we have

∥α̂k − αk∥22 = Op(J/Nk + J−2r) ≤ Op(J/N0 + J−2r),

where αk(t) is the true function in the kth group. As a result,

∥α̂or −α∥22 =
K∑
k=1

∥α̂or
k − αk∥22 = Op(J/N0 + J−2r)

for any fixed K. This completes the proof.

Proof of Theorem 3.2. Let β̂or
i (t) and γ̂or

i be the estimated function and estimated B-

spline coefficient for subject i given the true membership, respectively. We first prove

∥β̂i − β̂or
i ∥22 = Op(J/m(n) + J−2r) for each i, where . Let δn = J/m(n) + J−2r, if one can
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show that for any ω > 0, there exists a large enough constant M > 0 satisfying

P

{
inf

∥Xi(γi−γ̂or
i )∥22=Mδn

Ln(γ) > Ln(γ̂
or)

}
≥ 1− ω, (A.7)

which means a local minimizer of Ln(γ) existed in the region B0 = {γ : ∥Xi(γi − γ̂or
i )∥22 ≤

Mδn}. Then, ∥β̂i − β̂or
i ∥22 = Op(J/m(n) + J−2r) can be proved.

Let Ln1 = 1
2(Y −Xγ)TV −1(Y −Xγ), thus γ̄ = (γ̄T

1 , . . . , γ̄
T
n )

T minimize Ln1,

where γ̄i, i = 1, . . . , n are defined in (A.4). It follows from Lemma A.5 that ∥∥β̄i − βi∥22 =

Op(J/m(n) + J−2r) for each i. Combining this result with Theorem 3.1 leads to

∥β̄i − β̂or
i ∥22 ≤ ∥β̄i − βi∥22 + ∥β̂or

i − βi∥22 = Op(J/m(n) + J−2r),

which is equivalent to

∥Xi(γ̄i − γ̂or
i )∥22 ≤ C0δn (A.8)

for some constant C0 from expression (A.1). Moreover, for any k ̸= k′,

∥α̂k − α̂k′∥2 = ∥α̂k − αk + αk − α̂k′ + αk′ − αk′∥2

≥ ∥αk − αk′∥2 − ∥α̂k − αk∥2 − ∥α̂k′ − αk′∥2

≥ b− ∥α̂k − αk∥2 − ∥α̂k′ − αk′∥2.

Thus, we have ∥α̂k − α̂k′∥2 ≥ b for sufficiently large N0 from Theorem 3.1. Accordingly,

∥θ̂k− θ̂k′∥2 ≥ Cb for some constant C > 0. Similarly, for any i ∈ Gk, j ∈ Gk′ , k ̸= k′, we can

derive that ∥γi − γj∥2 ≥ Cb for any γ lies in the constraint B0 and sufficiently large mn.
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In addition, as Pτ (·, λ) ≥ 0 and Pτ (0, λ) = 0, then

Ln(γ)− Ln(γ̂
or)

≥ Ln1(γ)− Ln1(γ̂
or) +

∑
i ∈ Gk, j ∈ Gk′

k ̸= k′

{Pτ (∥γi − γj∥2, λ)} −
∑
k ̸=k′

Pτ (∥θ̂k − θ̂k′∥2, λ).

As ∥θ̂k − θ̂k′∥2 ≥ Cb and ∥γi − γj∥2 ≥ Cb for any i ∈ Gk, j ∈ Gk′ , k ̸= k′ from previous

arguments, it follows from the condition Cb ≥ τλ that

∑
i ∈ Gk, j ∈ Gk′

k ̸= k′

{Pτ (∥γi − γj∥2, λ)} = 0

and ∑
k ̸=k′

Pτ (∥θ̂k − θ̂k′∥2, λ) = 0

Thus,

Ln(γ)− Ln(γ̂
or) ≥ Ln1(γ)− Ln1(γ̂

or).

Further by the definition of γ̄ and (A.8), we have Ln1(γ) ≥ Ln1(γ̂
or) for any γ

satisfying ∥Xi(γi − γ̂or
i )∥22 = Mδn with sufficiently large M . Therefore, (A.7) is proved,

which means

∥β̂i − β̂or
i ∥22 = Op(J/m(n) + J−2r).

Combing this result with Theorem 3.1 yields

∥β̂i − βi∥22 ≤ ∥β̂i − β̂or
i ∥22 + ∥β̂or

i − βi∥22 = Op(J/m(n) + J−2r).
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This completes the proof of Theorem 3.2.

Proof of Theorem 3.3. (i) For i, j ∈ Gk, we have βi = βj . Then

∥β̂i − β̂j∥22 ≤ ∥β̂i − βi∥22 + ∥βi − βj∥22 + ∥β̂j − βj∥22

≤ 2max
i
∥β̂i − βi∥22 + 0 = Op(J/m(n) + J−2r)→ 0

as m(n) → ∞, where the last equality holds from Theorem 3.2. This means β̂i and β̂j will

fall into the same group with probability approaching to 1.

(ii) For any i ∈ Gk, j ∈ Gk′ , k ̸= k′, it follows from Theorem 3.2 that

∥β̂i − β̂j∥22 = ∥β̂i − βi + βi − βj + βj − β̂j∥22

≥ min

i ∈ Gk, j ∈ Gk′

k ̸= k′

∥βi − βj∥22 − 2 max
1≤i≤n

∥β̂i − βi∥22

= b2 −Op(J/m(n) + J−2r)→ b2 > 0,

which implies that β̂i and β̂j will fall into the different groups with probability approaching

to 1. Therefore, the proof is completed by the combinations of conclusions (i) and (ii).

In what follows, let an ≍ bn mean that an/bn and bn/an are bounded for given

sequences of positive numbers an and bn. For a square integrable function g on T, we define

the norms ∥g∥2 = E(g(t)2) and ∥g∥∞ = supt∈T |g(t)|.
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Proof of Theorem 3.4. We can conclude from the results of Theorems 3.1-3.3 that the

proposed penalized estimators performs asymptotically equivalent to the oracle ones as

mn approaching to infinite. Thus, we only need to prove the asymptotic normalities of

the oracle estimators α̂or(t) = (α̂1(t), . . . , α̂K(t))T = B(t)θ̂, where B(t) = IK ⊗ B(t)T

(Kronecker product) and θ̂ = (θ̂T
1 , . . . , θ̂

T
K)T . To this end, we first show that

Var (α̂k(t))
−1/2 {α̂k(t)− E(α̂k(t))}

d→N(0, 1), k = 1, . . . ,K. (A.9)

Recall that for k = 1, . . . ,K, we have

θ̂k = argmin
θk

(Y(k) −X(k)θk)
TV −1

(k) (Y(k) −X(k)θk) =
(
XT

(k)V
−1
(k) X(k)

)−1
XT

(k)V
−1
(k) Y(k),

where Y(k) =
{
Y T
i : i ∈ Gk

}T
,X(k) =

{
XT

i : i ∈ Gk
}T

and V(k) = diag {Vi : i ∈ Gk}. We

only consider an fixed k here since other cases can be proved in the same way. For

any t ∈ T, α̂k(t) = B(t)T θ̂k = B(t)T
(
XT

(k)V
−1
(k) X(k)

)−1
XT

(k)V
−1
(k) Y(k), and E (α̂k(t)) =

B(t)T
(
XT

(k)V
−1
(k) X(k)

)−1
XT

(k)V
−1
(k) αk(t). Thus,

α̂k(t)− E(α̂k(t)) = B(t)T
(
XT

(k)V
−1
(k) X(k)

)−1
XT

(k)V
−1
(k) ε(k)

= B(t)T
(
XT

(k)V
−1
(k) X(k)

)−1
XT

(k)V
−1
(k) Σ

1/2
(k)Σ

−1/2
(k) ε(k)

≜ B(t)T
(
XT

(k)V
−1
(k) X(k)

)−1
ZT

(k)e(k),

where Z(k) = Σ
1/2
(k)V

−1
(k) X(k) and e(k) = Σ

−1/2
(k) ε(k). Obviously, we have E(e(k)) = 0 and

Var(e(k)) = I, which means that the elements {e(k)ι}Nk
ι=1 can be seen as independent random

variables with zero mean and unit variance.

Denote Zι
(k) as a S-dimensional column vector comprised by the ιth row of Z(k),

it follows that

α̂k(t)− E (α̂k(t)) =

Nk∑
ι=1

B(t)T
(
XT

(k)V
−1
(k) X(k)

)−1
Zι

(k)e(k)ι =

Nk∑
ι=1

ϕ(k)ιe(k)ι
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and

Var(α̂k(t)) =

Nk∑
ι=1

ϕ2
(k)ι,

where ϕ(k)ι = B(t)T
(
XT

(k)V
−1
(k) X(k)

)−1
Zι

(k). Therefore, if the Lindeberg condition holds,

that is, maxι ϕ
2
(k)ι/

∑Nk
ι=1 ϕ

2
(k)ι → 0, we can obtain that

∑Nk
ι=1 ϕ(k)ιe(k)ι√∑Nk

ι=1 ϕ
2
(k)ι

d→ N(0, 1), (A.10)

which indicates the result (A.9).

In fact, by the definition of Z(k), condition (C5) and Lemma A.1, we have

ϕ2
(k)ι =

(
B(t)T

(
XT

(k)V
−1
(k) X(k)

)−1
Zι

(k)

)2

≍ 1

N2
k

(
B(t)TZι

(k)

)2
≤ C

N2
k

S∑
l=1

B2
l (t)

S∑
l=1

B2
l (t(k)ι), (A.11)

where the last step holds by the Cauchy-Schwarz inequality and condition (C5). Moreover,

based on the same rationale as above, it follows that

Nk∑
ι=1

ϕ2
(k)ι = B(t)T

(
XT

(k)V
−1
(k) X(k)

)−1
Nk∑
ι=1

Zι
(k)Z

ιT

(k)

(
XT

(k)V
−1
(k) X(k)

)−1
B(t)

= B(t)T
(
XT

(k)V
−1
(k) X(k)

)−1 (
XT

(k)V
−1
(k) Σ(k)V

−1
(k) X(k)

)(
XT

(k)V
−1
(k) X(k)

)−1
B(t)

≍ B(t)T
(
XT

(k)V
−1
(k) X(k)

)−1
B(t) ≍ 1

Nk

S∑
l=1

B2
l (t). (A.12)

Combining the expressions (A.11) and (A.12) leads to

ϕ2
(k)ι∑Nk

ι=1 ϕ
2
(k)ι

≤ C

Nk

S∑
l=1

B2
l (t(k)ι) ≤

C

Nk
sup
t∈T

S∑
l=1

B2
l (t).

Observing that

sup
t∈T

√√√√ S∑
l=1

B2
l (t) = sup

t∈T
sup
bl

∑S
l=1 |Bl(t)bl|√∑S

l=1 b
2
l

≤ sup
bl

supt∈T
∑S

l=1 |Bl(t)bl|√∑S
l=1 b

2
l

= sup
g∈G

∥g∥∞
∥g∥2

,
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where the last step due to expression (A.1). Based on the definitions of norms and condition

(C1) that the density function f(t) is uniformly bounded away from 0 and infinity on T, it

is easy to verify ∥g∥2 ≍ ∥g∥. Let An = supg∈G ∥g∥∞/∥g∥, hence

max
ι

ϕ2
(k)ι∑Nk

ι=1 ϕ
2
(k)ι

≤ C

Nk
sup
g∈G

∥g∥2∞
∥g∥22

≤ C

Nk
sup
g∈G

∥g∥2∞
∥g∥2

(1 + op(1)) =
CA2

n

Nk
(1 + op(1)).

Based on conditions (C1) and (C4), we have A2
n ≍ S. Therefore,

max
ι

ϕ2
(k)ι∑Nk

ι=1 ϕ
2
(k)ι

≤ CA2
n

Nk
(1 + op(1)) ≍

S

Nk
(1 + op(1))→ 0,

which implies the validation of Lindeberg condition. Consequently, (A.10) is proved, and

then (A.9) holds.

On the other hand, according to conditions (C3) and (C4), it is easy to verity that

all the conditions assumed in Theorem 5.1 of [38] hold. This implies, by virtue of condition

(C5), that

|E (α̂k(t))− αk(t)| = Op(J
−r).

Moreover, it follows from (A.12), condition (C5), Lemma A.1 and the properties of B-spline

that

Var(α̂k(t)) = B(t)T
(
XT

(k)V
−1
(k) X(k)

)−1 (
XT

(k)V
−1
(k) Σ(k)V

−1
(k) X(k)

)(
XT

(k)V
−1
(k) X(k)

)−1
B(t)

≍ S/Nk,

where Σ(k) = diag {Σi : i ∈ Gk}. Taking into account of J/m
1/(2r+1)
(n) →∞, we have

sup
t∈T

∣∣∣∣∣E (α̂k(t))− α̂k(t)√
Var(α̂k(t))

∣∣∣∣∣ = op(1). (A.13)

Combining the results of (A.9) and (A.13) leads to

Var (α̂k(t))
−1/2 (α̂k(t)− αk(t))

d→N(0, 1). (A.14)
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We further let X0 = diag
(
X(1), ...,X(K)

)
,V0 = diag

(
V(1), ...,V(K)

)
and Σ0 =

diag
(
Σ(1), ...,Σ(K)

)
, where Y(k) =

{
Y T
i : i ∈ Gk

}T
, V(k) = diag {Vi : i ∈ Gk}, X(k) ={

XT
i : i ∈ Gk

}T
and Σ(k) = diag {Σi : i ∈ Gk}. Finally, by the expression of α̂or(t) and

the independence assumption of different subgroup, we can obtain

Var (α̂or(t))−1/2 (α̂or(t)−α(t))
d→N(0, IK),

where

Var (α̂or(t)) = B(t)
(
XT

0 V
−1
0 X0

)−1 (
XT

0 V
−1
0 Σ0V

−1
0 X0

) (
XT

0 V
−1
0 X0

)−1 B(t)T (A.15)

with B(t) = IK⊗B(t)T (Kronecker product). Therefore, we complete the proof of Theorem

3.4 based on (A.14) and the conclusions of Theorems 3.1-3.3.
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Appendix B

Supplementary Materials for

Chapter 4

B.1 Proof of Proposition 4.1

In this section, we provide the proof of Proposition 4.1. The dimension of Wℓ

satisfies

|Wℓ| ≤
∏d

j=1
2ℓj∨2−1 = 2

∑d
j=1 ℓj∨2−d.

Thus,

|V (1)
m | ≤

∑
|ℓ|1≤m

2
∑d

j=1 ℓj∨2−d ≤
∑

|ℓ|1≤m
2|ℓ|1+d =

m∑
k=0

2k+d

(
d− 1 + k

d− 1

)

= 2d
m∑
k=0

2k
(
d− 1 + k

d− 1

)
= 2d

{
(−1)d + 2m+1

d−1∑
k=0

(
m+ d

k

)
(−2)d−1−k

}
,
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where the last equality follows from (3.62) of [10]. We assume that d is even. The result

for odd d can be proved similarly. Then

d−1∑
k=0

(
m+ d

k

)
(−2)d−1−k =

d/2−1∑
v=0

22v
{(

m+ d

d− (1 + 2v)

)
− 2

(
m+ d

d− (2 + 2v)

)}
.

Moreover,

(
m+ d

d− (1 + 2v)

)
− 2

(
m+ d

d− (2 + 2v)

)
=

(m+ d)!

(d− (1 + 2v))!(m+ 1 + 2v)!
− 2

(m+ d)!

(d− (2 + 2v))!(m+ 2v + 2)!

=
(m+ d)!

(d− (2 + 2v))!(m+ 1 + 2v)!

{
1

d− (1 + 2v)
− 2

m+ 2v + 2

}
=

(m+ d)!(m+ 6v − 2d+ 4)

(d− (1 + 2v))!(m+ 2v + 2)!

=
(m+ d)(m+ d− 1)× · · · × (m+ 2v + 3)(m+ 6v − 2d+ 4)

(d− (1 + 2v))!

≤ (m+ d)(d−(2+2v))

(d− (1 + 2v))!
.

Thus,

d−1∑
k=0

(
m+ d

k

)
(−2)d−1−k ≤

d/2−1∑
v=0

22v
(m+ d)(d−(2+2v))

(d− (1 + 2v))!
≤ 2d−2 (m+ d)(d−2)

(d− 1)!
.

By stirling’s formula,

(d− 1)! ≥
√
2π(d− 1)d−1/2e−(d−1).

Therefore,
d−1∑
k=0

(
m+ d

k

)
(−2)d−1−k ≤ 2d−2 (m+ d)(d−2)

√
2π(d− 1)d−1/2e−(d−1)

,

and hence

|V (1)
m | ≤ 2d+12m+12d−2 (m+ d)(d−2)e(d−1)

√
2π(d− 1)d−1/2

= 2

√
2

π

√
d− 1

(m+ d)
2m
(
4e

m+ d

d− 1

)d−1

.
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Moreover, let ℓ−1 = (ℓ2, . . . , ℓd)
⊤. Then, |V (1)

0 | =
∑

|ℓ|1=0

∏d
j=1 2 = 2d, and for m ≥ 1,

|V (1)
m | ≥

∑
|ℓ|1=0

∏d

j=1
2 +

∑
1≤ℓ1≤m,|ℓ−1|1=0

(
∏d

j=2
2)2ℓ1−1 = 2d + 2d−1

∑
1≤ℓ1≤m

2ℓ1−1

= 2d + 2d−1(2m − 1) = 2d−1(2m − 1 + 2) ≥ 2d−1(2m + 1).

Therefore, |V (1)
m | ≥ 2d−1(2m + 1) for any m ≥ 0.

B.2 Proof of Proposition 4.2

This section provides the proof of Proposition 4.2. Based on (2.1) and (2.1.2), one

has

||fm − f ||2 = ||
∑

1d≤ℓ≤∞
gℓ(x)−

∑
|ℓ|1≤m

gℓ(x)||2 = ||
∑

|ℓ|1>m

gℓ(x)||2.

By (4.7) and Assumption 3, one has

||
∑

|ℓ|1>m

gℓ(x)||2 ≤
∑

|ℓ|1>m

||gℓ||2 ≤
∑

|ℓ|1>m

cµ3
−d2−2|ℓ|1 ||D2f ||L2

= cµ3
−d||D2f ||L2

∑
|ℓ|1>m

2−2|ℓ|1 .

Then, one has that for arbitrary s ∈ N,

∑
|ℓ|1>m

2−s|ℓ|1 =

∞∑
k′=m+1

2−sk′
(
k′ + d− 1

d− 1

)
=

∞∑
k=0

2−s(k+m+1)

(
k +m+ 1 + d− 1

d− 1

)

= 2−s(m+1)
∞∑
k=0

2−sk

(
k +m+ 1 + d− 1

d− 1

)
≤ 2−s(m+1)2A(d,m),

where A(d,m) =
∑d−1

k=0

(
m+d
k

)
, where the last inequality follows from Lemma 3.7 of [10].

||fm − f ||2 ≤
∑

|ℓ|1>m

||gℓ||2 ≤ cµ3
−d||D2f ||L22−2(m+1)2A(d,m)

= 2−1cµ2
−2m3−dA(d,m)||D2f ||L2 .
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Moreover, for d ≥ 3, A(d,m) ≤ (d− 1) (m+d)d−1

(d−1)! = (m+d)d−1

(d−2)! , and by stirling’s formula,

(d− 2)! ≥
√
2π(d− 2)d−3/2e−(d−2).

Then

A(d,m) ≤ (m+ d)d−1

√
2π(d− 2)d−3/2e−(d−2)

=

√
d− 2√
2π

(
m+ d

d− 2

)d−1

e(d−2).

Therefore,

||fm − f ||2 ≤ 2−1cµ2
−2m3−d

√
d− 2√
2π

(
m+ d

d− 2

)d−1

e(d−2)||D2f ||L2

= c̃2−2m
√
d− 2

(
e

3

m+ d

d− 2

)d−1

||D2f ||L2 ,

where c̃ = 2−1cµ(3
√
2πe)−1. For d = 2, A(d,m) = m+3. Thus, ||fm−f ||2 ≤ 2−13−2cµ2

−2m(m+

3)||D2f ||L2 .

B.3 Proof of Proposition 4.3

In this section, we provide the proof of Proposition 4.3. It is clear that ||f̃R−f ||2 =

||f̃R − fm + fm − f ||2 ≤ ||f̃R − fm||2 + ||fm − f ||2. The rate of ||fm − f ||2 is provided in

Proposition 4.2. Next we derive the rate of ||f̃R − fm||2 as follows. By (2.1.2) and (4.11),

we have

||f̃R − fm||2 ≤ sup
x∈X

∑
|ℓ|1≤m

∑
s∈Iℓ

|γℓ,s||ϕ̃ℓ,s(x)− ϕℓ,s(x)|.

Since a given x belongs to at most one of the disjoint supports for ϕℓ,s(x), this result

together with (4.10) lead to

||f̃R − fm||2 ≤ 3 · 2−2R−2(d− 1)
∑

|ℓ|1≤m

|γℓ,sℓ |,
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for some sℓ. Moreover, by (4.5), we have

∑
|ℓ|1≤m

|γ
ℓ,sℓ
| ≤

∑
|ℓ|1≤m

6−d/22−(3/2)|ℓ|1 ||D2f ||L2

= 6−d/2||D2f ||L2

∑
|ℓ|1≤m

2−(3/2)|ℓ|1 = 6−d/2||D2f ||L2

∑m

k=0
2−(3/2)k

(
k + d− 1

d− 1

)
.

Since
∑∞

k=0

(
1√
8

)k (
1− 1√

8

)d (
k+d−1
d−1

)
= 1, it implies that

∑m

k=0
2−(3/2)k

(
k + d− 1

d− 1

)
≤
∑∞

k=0
2−(3/2)k

(
k + d− 1

d− 1

)
=

(
1− 1√

8

)−d

,

and thus

∑
|ℓ|1≤m

|γℓ,sℓ | ≤
{√

6(1− 1√
8
)

}−d

||D2f ||L2 ≤ (
√
3/2)−d||D2f ||L2 . (B.1)

Therefore,

||f̃R − fm||2 ≤ 3 · 2−2R−2(d− 1)(
√

3/2)−d||D2f ||L2

= (3/4)2−2R(d− 1)(
√

3/2)−d||D2f ||L2 .

The above result and (4.8) lead to

||f̃R − f ||2 ≤ ||f̃R − fm||2 + ||fm − f ||2

≤

{
(3/4)2−2R(d− 1)(

√
3/2)−d + c̃2−2m

√
d− 2

(
e

3

m+ d

d− 2

)d−1
}
||D2f ||L2

≤

{√
3

8
2−2R(d− 1)(

√
2

3
)d−1 + c̃2−2m

√
d− 2

(
e

3

m+ d

d− 2

)d−1
}
||D2f ||L2 ,

for d ≥ 3. The result for d = 2 follows from the same procedure. Moreover, the ReLU

network used to construct the approximator f̃R has depth O(R log2 d), the computational

units O(Rd) × |V (1)
m |, and the number of weights O(Rd) × |V (1)

m |. By the upper bound

for |V (1)
m | established in (4.1), we have that the number of the computational units is
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O(Rd)×O
( √

d
(m+d)2

m
(
4em+d

d−1

)d−1
)

= O
(
2md3/2R (m+ d)−1

(
4em+d

d−1

)d−1
)
, and the num-

ber of weights is O
(
2md3/2R (m+ d)−1

(
4em+d

d−1

)d−1
)
.

B.4 Proofs of Proposition 4.4

Under Condition (4.16) given in Assumption 4.5, by the definition of f0
RN given in

(4.14) and Proposition 4.3, the approximation error

E(f0
RN )− E(f0) ≤ E(f̃R)− E(f0) ≤ bρ||f̃R − f0||22

≤ bρ

{√
3

8
2−2R(d− 1)(

√
2

3
)d−1 + c̃2−2m

√
d− 1

(
e

3

m+ d

d− 2

)d−1
}2

||D2f0||2L2 ,

for d ≥ 3, and

E(f0
RN )− E(f0) ≤ bρ

{√
3

8
2−2R(d− 1)(

√
2

3
)d−1 + 18−1cµ2

−2m(m+ 3)

}2

||D2f0||2L2 ,

for d = 2. Assuming that m−1 = o(1) and m ≲ R as n → ∞, since e
3
m+d
d−2 >

√
2
3 , we have

that for sufficiently large n,
√

3
82

−2R(d− 1)(
√

2
3)

d−1 < c̃2−2m
√
d− 1

(
e
3
m+d
d−2

)d−1
for d ≥ 3,

and
√

3
82

−2R(d− 1)(
√

2
3)

d−1 < 18−1cµ2
−2m(m+ 3) for d = 2. Thus,

E(f0
RN )− E(f0) ≤ ζR,m,d,

where

ζR,m,d = 4bρC
2
f c̃

22−4md

(
e

3

m+ d

d− 2

)2(d−1)

, for d ≥ 3

ζR,m,d = 81−1bρC
2
f c

2
µ2

−4m(m+ 3)2, for d = 2.
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B.5 Proofs of Theorems 4.1 and 4.2

We first introduce a Bernstein inequality which will be used to establish the bounds

in Theorems 4.1 and 4.2.

Lemma B.1 Let G be a set of scalar-valued functions on X×Y such that for each ξ (X, Y ) ∈

G, E{ξ (X, Y )} ≥ 0, E{ξ (X, Y )2} ≤ c1E{ξ (X, Y )} and |ξ (X, Y )− E{ξ (X, Y )}| ≤ c2 al-

most everywhere for some constants c1, c2 ∈ (0,∞). Then for every ϵ > 0 and 0 < α ≤ 1,

we have

P

{
sup
ξ∈G

E{ξ (X, Y )} − n−1
∑n

i=1 ξ (Xi, Yi)√
E{ξ (X, Y )}+ ϵ

> 4α
√
ϵ

}

≤ N (αϵ,G, || · ||∞) exp

(
− α2nϵ

2c1 + 2c2/3

)
.

Proof. Let {ξj}Jj=1 ∈ G with J = N (αϵ,G, || · ||∞) being such that G is cov-

ered by || · ||∞- balls centered on ξj with radius αϵ. Denote µ(ξ) = E{ξ (X, Y )} and

σ2(ξ) =var{ξ (X, Y )}. For each j, the one-side Bernstein inequality in Corollary 3.6 of [18]

implies that

P

{
µ(ξj)− n−1

∑n
i=1 ξj (Xi, Yi)√

µ(ξj) + ϵ
> α
√
ϵ

}

≤ exp

(
− α2n(µ(ξj) + ϵ)ϵ

2{σ2(ξj) + c2α
√

µ(ξj) + ϵ
√
ϵ/3}

)
. (B.2)

Since σ2(ξj) ≤ E{ξj (X, Y )2} ≤ c1µ(ξj), then

σ2(ξj) + c2α
√

µ(ξj) + ϵ
√
ϵ/3

≤ c1µ(ξj) + c2(µ(ξj) + ϵ)/3

≤ c1 (µ(ξj) + ϵ) + c2(µ(ξj) + ϵ)/3

= (c1 + c2/3)(µ(ξj) + ϵ).
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The above result together with (B.2) implies that

P

{
µ(ξj)− n−1

∑n
i=1 ξj (Xi, Yi)√

µ(ξj) + ϵ
> α
√
ϵ

}

≤ exp

(
− α2n(µ(ξj) + ϵ)ϵ

2(c1 + c2/3)(µ(ξj) + ϵ)

)
= exp

(
− α2nϵ

2(c1 + c2/3)

)
. (B.3)

For each ξ ∈ G, there exists some j such that ||ξ − ξj ||∞ ≤ αϵ. Then |µ(ξ) − µ(ξj)| and

|n−1
∑n

i=1 ξ (Xi, Yi)− n−1
∑n

i=1 ξj (Xi, Yi) | are both bounded by αϵ. Hence,

|µ(ξ)− µ(ξj)|√
µ(ξ) + ϵ

≤ α
√
ϵ,
|n−1

∑n
i=1 ξ (Xi, Yi)− n−1

∑n
i=1 ξj (Xi, Yi) |√

µ(ξ) + ϵ
≤ α
√
ϵ.

This implies that

µ(ξj) + ϵ = µ(ξj)− µ(ξ) + µ(ξ) + ϵ

≤ α
√
ϵ
√
µ(ξ) + ϵ+ {µ(ξ) + ϵ}

≤
√
ϵ
√

µ(ξ) + ϵ+ {µ(ξ) + ϵ}

≤ 2{µ(ξ) + ϵ},

so that
√

µ(ξj) + ϵ ≤ 2
√
{µ(ξ) + ϵ}. Therefore, {µ(ξ)− n−1

∑n
i=1 ξ (Xi, Yi)}/

√
µ(ξ) + ϵ ≥

4α
√
ϵ implies that {µ(ξj) − n−1

∑n
i=1 ξj (Xi, Yi)}/

√
µ(ξ) + ϵ ≥ 2α

√
ϵ and thus {µ(ξj) −

n−1
∑n

i=1 ξj (Xi, Yi)}/
√

µ(ξj) + ϵ ≥ α
√
ϵ. This result together with (B.3) implies

P

{
sup
ξ∈G

µ(ξ)− n−1
∑n

i=1 ξ (Xi, Yi)√
µ(ξ) + ϵ

> 4α
√
ϵ

}

≤
∑J

j=1
P

{
µ(ξj)− n−1

∑n
i=1 ξj (Xi, Yi)√

µ(ξj) + ϵ
> α
√
ϵ

}
≤ J exp

(
− α2nϵ

2c1 + 2c2/3

)
.

Based on the Bernstein inequality given in Lemma B.1, we next provide a prob-

ability bound that will be used for establishing an upper bound for the sampling error

E(f̂RL)− E(f0
RL).
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Lemma B.2 Under Assumptions 4.1-4.4, we have that for any ϵ > 0 and 0 < α ≤ 1,

P

 sup
f∈F(ϕ̃,m,B)

E(f)− E(f0
RL)− (En(f)− En(f0

RL))√
E(f)− E(f0

RL) + ϵ
> 4α

√
ϵ


≤ N (αC−1

ρ ϵ,F(ϕ̃,m,B), || · ||∞) exp

(
− α2nϵ

2C2
ρa

−1
ρ + 8Mρ/3

)
,

where Cρ, aρ and Mρ are constants given in Assumptions 4.2 and 4.4 and Remark 4.7.

Proof. Let G = {ξ (x, y) = ρ (f(x), y) − ρ
(
f0
RL(x), y

)
; f ∈ F(ϕ̃,m,B), (x, y) ∈

X × Y}. For any f ∈ F(ϕ̃,m,B),

E{ξ (X, Y )} = E{ρ (f(X), Y )} − E{ρ
(
f0
RL(X), Y

)
} ≥ 0,

based on the definition of f0
RL given in (4.14). By Remark 4.7, we have |ξ (x, y) | ≤ 2Mρ,

for almost every (x, y) ∈ X × Y, so that

|ξ (X, Y )− E{ξ (X, Y )}| ≤ 4Mρ,

almost surely. Moreover, Assumption 4.2 further implies that |ξ (x, y) | ≤ Cρ|f(x)−f0
RL(x)|

for almost every (x, y) ∈ X × Y. Then

E{ξ (X, Y )2} ≤ C2
ρ

∫
X
|f(x)− f0

RL(x)|2dµX(x) = C2
ρ ||f − f0

RL||22. (B.4)

Moreover, under Condition (4.15) in Assumption 4.4,

||f − f0
RL||22 ≤ a−1

ρ {E(f)− E(f0
RL)}.

Thus

E{ξ (X, Y )2} ≤ a−1
ρ C2

ρ{E(f)− E(f0
RL)} = a−1

ρ C2
ρE{ξ (X, Y )}. (B.5)
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By the Bernstein inequality given in Lemma B.1, for every ϵ > 0 and 0 < α ≤ 1, we have

P

 sup
f∈F(ϕ̃,m,B)

E(f)− E(f0
RL)− (En(f)− En(f0

RL))√
E(f)− E(f0

RL) + ϵ
> 4α

√
ϵ


≤ N (αϵ,G, || · ||∞) exp

(
− α2nϵ

2C2
ρa

−1
ρ + 8Mρ/3

)
.

Since |ρ (f(x), y)− ρ
(
f0
RL(x), y

)
| ≤ Cρ|f(x)− f0

RL(x)| for almost every (x, y) ∈ X × Y, it

follows that

N (αϵ,G, || · ||∞) ≤ N (αC−1
ρ ϵ,F(ϕ̃,m,B), || · ||∞).

Proof of Theorem 4.1. Let f = f̂RL, ∆ = E(f̂RL) − E(f0
RL) and α =

√
2/8.

From the result in Lemma B.2, we have

P

{
∆− (En(f̂RL)− En(f0

RL))√
∆+ ϵ

>
√
ϵ/2

}
≤ Q, (B.6)

where

Q = N (
√
2C−1

ρ ϵ/8,F(ϕ̃,m,B), || · ||∞) exp (−nϵ/C∗) ,

in which C∗ = 64(C2
ρa

−1
ρ + 4Mρ/3).

a) When f̂RL = f̂U
RL, we have En(f̂U

RL)− En(f0
RL) ≤ 0. Then,

P (∆ >
√
ϵ/2
√
∆+ ϵ) ≤ Q.

Moreover,

∆ >
√
ϵ/2
√
∆+ ϵ

⇐⇒ ∆2 > (ϵ/2)(∆ + ϵ)

⇐⇒ (∆− ϵ/4)2 > (9/16)ϵ2

⇐⇒ ∆ > ϵ or ∆ < −(1/2)ϵ.
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Since ∆ ≥ 0, then P (∆ >
√
ϵ/2
√
∆+ ϵ) ≤ Q is equivalent to P (∆ > ϵ) ≤ Q.

b) When f̂RL = f̂P
RL, let f̂

P
RL(x) = ϕ̃(x)⊤γ̂RL and f0

RL(x) = ϕ̃(x)⊤γ0
RL. Moreover,

let ∆n = (En(f̂P
RL) + 2−1λγ̂⊤

RLγ̂RL − En(f̃R)− 2−1λγ0⊤
RLγ

0
RL). We have ∆n ≤ 0. Then

∆− (En(f̂P
RL)− En(f0

RL))√
∆+ ϵ

=
∆+ (2−1λγ̂⊤

RLγ̂RL − 2−1λγ0⊤
RLγ

0
RL)−∆n√

∆+ ϵ

≥ ∆√
∆+ ϵ

+
(2−1λγ̂⊤

RLγ̂RL − 2−1λγ0⊤
RLγ

0
RL)√

∆+ ϵ
. (B.7)

Since |γ̂RL − γ0
RL|22 ≤ λ−1

min,ϕ̃
||f̂P

RL − f0
RL||22, where λ

min,ϕ̃
= λmin

{∫
ϕ̃(x)ϕ̃(x)⊤dµX(x)

}
,

then under Condition (4.15) in Assumption 4.4,, we have

|γ̂RL − γ0
RL|22 ≤ λ−1

min,ϕ̃
||f̂P

RL − f0
RL||22 ≤ λ−1

min,ϕ̃
a−1
ρ {E(f̂P

RL)− E(f0
RL)} = λ−1

min,ϕ̃
a−1
ρ ∆. (B.8)

Since |γ0
RL|22 ≤ λ−1

min,ϕ̃
||f0

RL||22 ≤ λ−1

min,ϕ̃
B2, then by (B.8),

2−1λ|γ̂⊤
RLγ̂RL − γ0⊤

RLγ
0
RL|

≤ 2−1λ|γ̂RL − γ0
RL|22 + λ|γ0

RL|2|γ̂RL − γ0
RL|2

≤ 2−1λλ−1

min,ϕ̃
a−1
ρ ∆+ λλ

−1/2

min,ϕ̃
B(λ−1

min,ϕ̃
a−1
ρ ∆)1/2

= 2−1λλ−1

min,ϕ̃
a−1
ρ ∆+ λλ−1

min,ϕ̃
Ba−1/2

ρ

√
∆.

Assume that λλ−1

min,ϕ̃
a−1
ρ ≤ 5−1 and λλ−1

min,ϕ̃
Ba

−1/2
ρ ≤ 5−1

√
ϵ/2.

Then λλ−1

min,ϕ̃
≤ 5−1a

1/2
ρ min(a

1/2
ρ , B

√
ϵ/2), and

2−1λ|γ̂⊤
RLγ̂RL − γ0⊤

RLγ
0
RL| ≤

1

10
∆ +

1

5

√
ϵ/2
√
∆.

This result together with (B.7) imply that

∆− (En(f̂P
RL)− En(f0

RL))√
∆+ ϵ

≥ 0.9∆√
∆+ ϵ

−
0.2
√

ϵ/2
√
∆√

∆+ ϵ
≥ 0.9∆√

∆+ ϵ
− 0.2

√
ϵ/2.
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The above result and (B.6) lead to

P

{
0.9∆√
∆+ ϵ

>
√
ϵ/2 + 0.2

√
ϵ/2

}
≤ Q.

Moreover,

0.9∆√
∆+ ϵ

> 1.2
√

ϵ/2⇐⇒ ∆√
∆+ ϵ

>
4

3

√
ϵ/2⇐⇒ ∆ >

4

3

√
ϵ/2
√
∆+ ϵ

⇐⇒ ∆2 >
8

9
ϵ(∆ + ϵ)⇐⇒ (∆− 4

9
ϵ)2 > (136/81)ϵ2 ⇐⇒ ∆ >

4 + 2
√
34

9
ϵ,

where the last step follows from ∆ > 0. Therefore, we have P
{
∆ > 4+2

√
34

9 ϵ
}
≤ Q. Since

4+2
√
34

9 < 2, then P {∆ > 2ϵ} ≤ Q.

Proof of Theorem 4.2. The dimension of the space F(ϕ̃,m,B) is |V (1)
m |. By

Theorem 5.3 of [18], we have

N (
√
2C−1

ρ ϵ/8,F(ϕ̃,m,B), || · ||∞) ≤ (
16CρB√

2ϵ
+ 1)|V

(1)
m | ≤ (

12CρB

ϵ
)|V

(1)
m |,

when ϵ < CρB/2. Let

ς = (
12CρB

ϵ
)|V

(1)
m | exp (−nϵ/C∗) . (B.9)

By the above results and Lemma 4.1, we have

P
(
E(f̂RN )− E(f0

RN ) > c′ϵ
)
≤ ς, (B.10)

where c′ = 1 when f̂RN = f̂U
RN , and c′ = 2 when f̂RN = f̂P

RN . Moreover, (B.9) leads to

exp (nϵ/C∗) ϵ|V
(1)
m | = (12CρBς−1/|V (1)

m |)|V
(1)
m | which is equivalent to

exp(κϵ)ϵ = ν ⇐⇒ exp(κϵ)(κϵ) = κν,

where κ = n/(C∗|V (1)
m |) and ν = 12CρBς−1/|V (1)

m |. Applying the monotone increasing

Lambert W-function: W : [0,∞)→ [0,∞) defined by W (t exp(t)) = t on both sides of the
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above equation, we have

W (κν) = κϵ,

which is equivalent to ϵ = W (κν) /κ ≤ max(1, log(κν))/κ, since W (s) ≤ log(s) for all

s ≥ e. Then,

ϵ ≤ max(1, log(κν))/κ =
C∗|V (1)

m |
n

max(1, log
12CρBn

C∗|V (1)
m |ς1/|V

(1)
m |

)

≤ C∗|V (1)
m |

n
max(1, log

12CρBn

C∗|V (1)
m |ς

).

Therefore, we have

P

(
E(f̂RN )− E(f0

RN ) > c′
C∗|V (1)

m |
n

max(1, log
C∗∗n

|V (1)
m |ς

)

)
≤ ς,

for C∗∗ = 12CρBC∗−1 based on (B.9).

B.6 Proofs of Theorem 4.3

Proof of Theorem 4.3. Let 2m ≍ n1/5 and m ≲ R. When i) d ≍ (log2 n)
κ for

some constant κ ∈ (0, 1), then for any constant c ∈ (0,∞),
(
cm+d
d−2

)2d
≪ nϖ for an arbitrary

small ϖ > 0. Therefore, the bias term satisfies

E(f0
RN )− E(f0) ≤ ζR,m,d ≲ n−4/5d

(
e

3

m+ d

d− 2

)−2(e

3

m+ d

d− 2

)2d

≪ n−4/5(log2 n)
κ(log2 n)

2(κ−1)nϖ = n−4/5+ϖ(log2 n)
3κ−2,

where ζR,m,d is given in (4.17). Then the bias term satisfies

E(f0
RN )− E(f0) = o(n−4/5+ϖ(log2 n)

3κ−2). (B.11)
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Moreover, Proposition 4.1 leads to

|V (1)
m | ≲ n1/5d1/2 (m+ d)−1

(
4e

m+ d

d− 1

)−1(
4e

m+ d

d− 1

)d

≪ n1/5(log2 n)
κ/2−1(log2 n)

κ−1nϖ/2 = n1/5+ϖ/2(log2 n)
3κ/2−2,

and n1/5 ≲ |V (1)
m |. Let ϵ = n−4/5+ϖ/2(log2 n)

3κ/2. Then ς given in (B.9) satisfies

ς ≪ {n4/5−ϖ/2(log2 n)
−3κ/2}n1/5+ϖ/2(log2 n)

3κ/2−2
exp{−n1/5+ϖ/2(log2 n)

3κ/2}

≤ exp{n1/5+ϖ/2(log2 n)
3κ/2−2 log2 n} exp{−n1/5+ϖ/2(log2 n)

3κ/2}

= exp{n1/5+ϖ/2(log2 n)
3κ/2−1(1− log2 n)} ≤ exp{−1

2
n1/5+ϖ/2(log2 n)

3κ/2},

when n > 4. Thus, ς → 0 as n→∞. Therefore, the above results and (B.10) lead to

E(f̂RN )− E(f0
RN ) = Op(n

−4/5+ϖ/2(log2 n)
3κ/2). (B.12)

The rate given in (B.12) is satisfied by both f̂U
RN and f̂P

RN , For f̂P
RN , the tuning parameter

needs to satisfy λλ−1

min,ϕ̃
= O(

√
ϵ) = O(n−2/5+ϖ/4(log2 n)

3κ/4).

From the results in (B.11) and (B.12), we have

E(f̂RN )− E(f0) = E(f̂RN )− E(f0
RN ) + E(f0

RN )− E(f0)

= Op(n
−4/5+ϖ/2(log2 n)

3κ/2) + o(n−4/5+ϖ(log2 n)
3κ−2) = op(n

−4/5+ϖ(log2 n)
3κ−2).

If R ≍ log2 n, the ReLU network that is used to construct the estimator f̂RN has depth

O(R log2 d) = O[log2 n{log2(log2 n)}], the number of computational units O(Rd)×|V (1)
m | =

O{(log2 n)
1+κ n1/5+ϖ/2(log2 n)

3κ/2−2} = O{(log2 n)
5κ/2−1 n1/5+ϖ/2}, and the number of

weights O(Rd)× |V (1)
m | = O{(log2 n)

5κ/2−1 n1/5+ϖ/2}.

When ii) d ≍ 1, the bias term satisfies

E(f0
RN )− E(f0) ≤ ζR,m,d ≲ n−4/5d

(
e

3

m+ d

d− 2

)2d−2

≲ n−4/5(d−1 log2 n)
2d−2,
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for d ≥ 3, and

E(f0
RN )− E(f0) ≤ ζR,m,d ≲ n−4/5(log2 n)

2 = 2n−4/5(d−1 log2 n)
2d−2,

for d = 2, where ζR,m,d is given in (4.17). Then,

E(f0
RN )− E(f0) = O(n−4/5(d−1 log2 n)

2d−2). (B.13)

Moreover, Proposition 4.1 leads to

|V (1)
m | ≲ n1/5d1/2 (m+ d)−1

(
4e

m+ d

d− 1

)d−1

= O(n1/5(log2 n)
d−2),

and n1/5 ≲ |V (1)
m |. Let ϵ = n−4/5(d−1 log2 n)

d. Then ς given in (B.9) satisfies

ς ≲ {n4/5(d−1 log2 n)
−d}n1/5(log2 n)

d−2
exp{−n1/5(d−1 log2 n)

d}

≲ exp{n1/5(log2 n)
d−2(log2 n)} exp{−n1/5(log2 n)

d}

= exp{n1/5(log2 n)
d−1(1− log2 n)} ≲ exp{−1

2
n1/5(log2 n)

d}.

Thus, ς → 0 as n→∞. Therefore, the above results and (B.10) lead to

E(f̂RN )− E(f0
RN ) = Op(n

−4/5(d−1 log2 n)
d). (B.14)

The rate given in (B.14) is satisfied by both f̂U
RN and f̂P

RN , For f̂P
RN , the tuning parameter

needs to satisfy λλ−1

min,ϕ̃
= O(

√
ϵ) = O(n−2/5(d−1 log2 n)

d/2).

From the results in (B.13) and (B.14), we have

E(f̂RN )− E(f0) = E(f̂RN )− E(f0
RN ) + E(f0

RN )− E(f0) = Op(n
−4/5(d−1 log2 n)

2d−2).

If R ≍ log2 n, the ReLU network that is used to construct the estimator f̂RN has depth

O(R log2 d) = O(log2 n), the number of computational units

O(Rd)× |V (1)
m | = O{(log2 n)n1/5(log2 n)

d−2} = O{(log2 n)
d−1 n1/5},

and the number of weights O(Rd)× |V (1)
m | = O{(log2 n)

d−1 n1/5}.
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B.7 Proofs of Lemmas 4.1-4.3

A lemma is presented below and it is used to prove the lemmas given in Section

4.5.

Lemma B.3 For any f ∈ F(ϕ̃,m,B), one has

lim
δ→0+

E(f0
RL + δ(f − f0

RL))− E(f0
RL)

δ
≥ 0.

Proof. Let δ ∈ (0, 1). Based on the definition of F(ϕ̃,m,B) given in (4.12), we

can see that f0 + δ(f − f0) ∈ F(ϕ̃,m,B). Moreover E(f0
RL + δ(f − f0

RL))− E(f0
RL) ≥ 0 by

the definition of f0
RL given in (4.14).

Proof of Lemma 4.1. Denote t0 = f0
RL(x) and t = f(x). By Taylor’s expansion

and Assumption 4.6, we have

ρ (t, y)− ρ (t0, y) = ρ′ (t0, y) (t− t0) +

∫ 1

0
2−1ρ′′ (t0 + (t− t0)ω, y) (t− t0)

2dω.

Moreover, by the dominated convergence theorem and Lemma B.3,

∫
X×Y

ρ′
(
f0
RL(x), y

)
(f(x)− f0

RL(x))dµ(x, y)

=

∫
X×Y

lim
δ→0+

ρ
(
f0
RL + δ(f − f0

RL), y
)
− ρ

(
f0
RL, y

)
δ

dµ(x, y)

= lim
δ→0+

∫
X×Y

ρ
(
f0
RL + δ(f − f0

RL), y
)
− ρ

(
f0
RL, y

)
δ

dµ(x, y)

= lim
δ→0+

E(f0
RL + δ(f − f0

RL))− E(f0
RL)

δ
≥ 0.

Therefore,

E(f)− E(f0
RL) =

∫
X×Y
{ρ (f(x), y)− ρ

(
f0
RL(x), y

)
}dµ(x, y)

≥
∫
X×Y

aρ(f(x)− f0
RL(x))

2dµ(x, y) = aρ||f − f0
RL||22.
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Since
∫
Y ρ′(f0(x), y)dµ(y|x) = 0, then

∫
X×Y ρ′ (f0(x), y) (f(x)− f0(x))dµ(x, y) = 0. Thus,

E(f)− E(f0) =

∫
X×Y

(ρ (f(x), y)− ρ (f0(x), y))dµ(x, y)

≤
∫
X×Y

bρ(f(x)− f0(x))
2dµ(x, y) = bρ||f − f0||22.

Proof of Lemma 4.2. In the following, we will show the results in Lemma

4.2 when the loss function ρ (f(x), y) is the quantile loss given in (4.3). We follow a proof

procedure from [1]. We have

E(f)− E(f0
RL) =

∫
X×Y

(ρ (f(x), y)− ρ
(
f0
RL(x), y

)
)dµ(x, y)

=

∫
X

∫
Y
(ρ (f(x), y)− ρ

(
f0
RL(x), y

)
)dµ(y|x)dµX(x)

Then for all x ∈ X ,

∫
Y
ρ (f(x), y) dµ(y|x)

=

∫
Y
I{y > f(x)}(y − f(x))dµ(y|x) + (τ − 1)

∫
Y
(y − f(x))dµ(y|x)

= g(x, f(x)) + (τ − 1)

∫
Y
ydµ(y|x),

where g(x, u) =
∫
Y I{y > u}(1−µ(y|x))dy+(1−τ)u, and E(f)−E(f0

RL) =
∫
X g(x, f(x))dµX(x)−∫

X g(x, f0
RL(x))dµX(x). Denote t0 = f0

RL(x) and t = f(x). By Taylor’s expansion, we have

g(x, t)− g(x, t0) = g′(x, t0)(t− t0) +

∫ 1

0
2−1g′′ (x, t0 + (t− t0)ω) (t− t0)

2dω.

Since
g(x,f0

RL+δ(f−f0
RL))−g(x,f0

RL(x))

δ ≤ (2 − τ)|f(x) − f0
RL(x)|, by the dominated
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convergence theorem and Lemma B.3,

∫
X
g′(x, f0

RL(x))(f(x)− f0
RL(x))dµX(x)

=

∫
X

lim
δ→0+

g
(
x, f0

RL + δ(f − f0
RL)
)
− g(x, f0

RL(x))

δ
dµX(x)

= lim
δ→0+

∫
X×Y

g
(
x, f0

RL + δ(f − f0
RL)
)
− g(x, f0

RL(x))

δ
dµX(x)

= lim
δ→0+

E(f0
RL + δ(f − f0

RL))− E(f0
RL)

δ
≥ 0.

The above results together with ∂2g(x, u)/∂u2 = µ′(u|x) imply that

E(f)− E(f0
RL) =

∫
X
{g(x, f(x))− g(x, f0

RL(x))}dµX(x)

≥ 2−1

∫
X
(f(x)− f0

RL(x))
2

∫ 1

0
g′′
(
x, f0

RL(x) + (f(x)− f0
RL(x))ω

)
dωdµX(x)

= 2−1

∫
X
(f(x)− f0

RL(x))
2

∫ 1

0
µ′(f0

RL(x) + (f(x)− f0
RL(x))ω|x)dωdµX(x)

≥ 1

2C1

∫
X
(f(x)− f0

RL(x))
2dµX(x) =

1

2C1
||f − f0

RL||22

Note that ∂g(x, u)/∂u |u=f0 = 0 and ∂2g(x, u)/∂u2 = µ′(u|x). Thus by Taylor’s

expansion,

E(f)− E(f0) =

∫
X
{g(x, f(x))− g(x, f0(x))}dµX(x)

= 2−1

∫
X
(f(x)− f0(x))

2

∫ 1

0
g′′ (x, f0(x) + (f(x)− f0(x))ω) dωdµX(x)

= 2−1

∫
X
(f(x)− f0(x))

2

∫ 1

0
µ′(f0(x) + (f(x)− f0(x))ω|x)dωdµX(x)

≤ 1

2C2

∫
X
(f(x)− f0(x))

2dµX(x) =
1

2C2
||f − f0||22.

Proof of Lemma 4.3. The proof of Lemma 4.3 follows the same procedure as

the proof of Lemma 4.2, and thus it is omitted.
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