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Abstract

Healthy kidneys filter ~160 g/day of glucose (~30% of daily energy intake) under euglycaemic 

conditions. To prevent valuable energy from being lost in the urine, the proximal tubule avidly 

reabsorbs filtered glucose up to a limit of ~450 g/day. When blood glucose levels increase to the 

point that the filtered load exceeds this limit, the surplus is excreted in the urine. Thus, the kidney 

provides a safety valve that can prevent extreme hyperglycaemia as long as glomerular filtration is 

maintained. Most of the capacity for renal glucose reabsorption is provided by sodium glucose 

cotransporter (SGLT) 2 in the early proximal tubule. In the absence of SGLT2, the renal 

reabsorptive capacity for glucose declines to ~80 g/day (the residual capacity of SGLT1), i.e. the 

safety valve opens at a lower threshold, which makes it relevant to glucose homeostasis from day-

to-day. Several SGLT2 inhibitors are now approved glucose lowering agents for individuals with 

type 2 diabetes and preserved kidney function. By inducing glucosuria, these drugs improve 

glycaemic control in all stages of type 2 diabetes, while their risk of causing hypoglycaemia is low 

because they naturally stop working when the filtered glucose load falls below ~80 g/day and they 

don’t otherwise interfere with metabolic counterregulation. Through glucosuria, SGLT2 inhibitors 

reduce body weight and body fat, and shift substrate utilisation from carbohydrates to lipids and, 

possibly, ketone bodies. Because SGLT2 reabsorbs sodium along with glucose, SGLT2 blockers 

are natriuretic and antihypertensive. Also, because they work in the proximal tubule, SGLT2 

inhibitors increase delivery of fluid and electrolytes to the macula densa, thereby activating 

tubuloglomerular feedback and increasing tubular back pressure. This mitigates glomerular 

hyperfiltration, reduces the kidney’s demand for oxygen and lessens albuminuria. For reasons that 
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are less well understood, SGLT2 inhibitors are also uricosuric. These pleiotropic effects of SGLT2 

inhibitors are likely to have contributed to the results of the EMPA-REG OUTCOME trial in 

which the SGLT2 inhibitor, empagliflozin, slowed the progression of chronic kidney disease and 

reduced major adverse cardiovascular events in high-risk individuals with type 2 diabetes. This 

review discusses the role of SGLT2 in the physiology and pathophysiology of renal glucose 

reabsorption and outlines the unexpected logic of inhibiting SGLT2 in the diabetic kidney.

Keywords

Body weight; Cardiovascular outcome; Chronic kidney disease; Diabetic nephropathy; EMPA-
REG OUTCOME trial; Glomerular hyperfiltration; Gluconeogenesis; Hypertension; Renal 
glucose reabsorption; Review; Sodium glucose cotransport

Introduction

Diabetes mellitus is a worldwide public health and economic problem [1]. Good control of 

blood glucose levels is critical in diabetic patients to delay the progression of the underlying 

metabolic dysfunction [2] and to reduce the risk of diabetic complications, including 

nephropathy and cardiovascular disease [3]. Some blood glucose lowering therapies target 

molecular pathways in the liver, adipose tissue, skeletal muscle and pancreas, and, thus, 

manipulate central metabolic mechanisms. Hence, these compounds may be prone to dose-

limiting side effects, such as hypoglycaemia and weight gain, impairing their ability to 

reduce cardiovascular complications [2, 4].

In contrast, sodium glucose cotransporter (SGLT) 2 inhibitors target renal glucose 

reabsorption via an insulin-independent mechanism, resulting in the loss of glucose (and, 

hence, glucose-associated energy) via overspill into the urine, whilst leaving central 

metabolic regulation and responsiveness intact. Therefore, by targeting this process, SGLT2 

inhibitors may offer unique benefits as blood glucose lowering agents. This is supported by 

recent evidence that the use of SGLT2 inhibitors as an adjunct to standard care in type 2 

diabetic patients with high cardiovascular risk can have protective effects with regard to 

clinically relevant renal and cardiovascular outcomes [5, 6].

This review discusses the role of SGLT2 in the physiology and pathophysiology of renal 

glucose reabsorption, as well as the use of SGLT2 inhibitors as new blood glucose lowering 

drugs. In particular, we aim to outline the unexpected logic of inhibiting renal glucose 

transport in the diabetic setting. This includes the counterproductive enhancement of renal 

glucose reabsorption via SGLT2, as well as the basic mechanisms that link the primary 

inhibitory effect of these drugs on SGLT2 to the secondary beneficial consequences on 

metabolism, the kidneys and the cardiovascular system.

SGLT2 mediates the majority of renal glucose reabsorption

The renal glomeruli of healthy normoglycaemic individuals filter about 140–160 g of 

glucose each day. If not reclaimed by the renal tubules, this would result in a urinary loss of 

energy substrate equal to ~30% of the daily energy expenditure. Instead, more than 99% of 
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filtered glucose is reabsorbed in the proximal tubule and returned to the body or used by 

other renal epithelia (Fig. 1a). By reabsorbing large amounts of filtered glucose, the kidneys 

contribute to blood glucose homeostasis.

Studies in the early 1980s indicated the presence of two different glucose transporters along 

the apical surface of the proximal tubule [7, 8], leading Wright and colleagues to 

subsequently clone the responsible Na+/glucose cotransporters, SGLT1 and SGLT2 (for 

review see [9]). These studies indicated that the majority of tubular glucose uptake occured 

in the early proximal tubule via SGLT2, leaving SGLT1 to ‘clean up’ most of the remaining 

luminal glucose in the late proximal tubule (Fig. 1a,b).

In accordance with the above, individuals with mutations in the gene for SGLT2, SLC5A2, 

diagnosed as having familial renal glucosuria, have persistent renal glucosuria, often in the 

range of 60–120 g/day [10]. More recently, the renal location of SGLT1 and SGLT2 has 

been confirmed using validated antibodies in human and rodent kidneys [11–13]. Moreover, 

studies in Sglt2 (also known as Scl5a2) and Sglt1 (also known as Scl5a1) knockout mice 

demonstrated that SGLT2 is responsible for all glucose reabsorption in the early proximal 

tubule [12] and, overall, accounts for ~97% of renal glucose reabsorption under 

normoglycaemic conditions, whereas SGLT1 mediates the remaining 2–3% (Fig. 1a) [12, 

14, 15].

Renal glucose reabsorption is increased in diabetes

Hyperglycaemia enhances the amount of glucose filtered by the kidneys and increases the 

capacity for tubular glucose reabsorption by approximately 20%, to around 500–600 g/day 

in patients with type 2 [16] and type 1 diabetes [17]. Under conditions of normal GFR and 

blood glucose levels of up to approximately 10–12 mmol/l, the kidneys reabsorb all the 

filtered glucose; only further increases in tubular glucose load (at blood glucose ≥ 12 

mmol/l) results in a linear increase in glucosuria [16, 17]. This increase in renal glucose 

reabsorption makes sense from an energy substrate conserving basis, but is 

counterproductive in diabetes since it contributes to sustained hyperglycaemia (Fig. 1c).

Upregulated SGLT2 enhances glucose reabsorption in diabetes

An increase in glucose transport capacity in animal models of diabetes results from 

upregulation of SGLT2; using knockout mice as critical negative antibody controls, renal 

protein levels of SGLT2 are increased by 40–80% in db/db mouse models of type 2 diabetes 

and Akita mouse models of type 1 diabetes [18, 19]. Pharmacologic inhibition of SGLT2 in 

normoglycaemic mice also increased renal membrane SGLT2 protein levels [19]. However, 

these findings are yet to be repeated in primary human tissue samples using validated 

antibodies.

SGLT2 upregulation may simply reflect overall growth (hypertrophy) of the proximal tubule 

in diabetes (Fig. 1c), or it may occur in response to feedback from a glucose sensor 

downstream of the early proximal tubule [20, 21]. In any case, the glucosuric and blood 

glucose lowering effects of SGLT2 inhibition become more potent in the diabetes setting, 

where SGLT2 is upregulated [19] (as discussed further in the next section).
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SGLT1 levels vary among genetic mouse models of diabetes: they are increased in ob/ob 
mouse models of type 2 diabetes [22] but reduced in Akita mouse models of type 1 diabetes 

[18]. Reduced renal SGLT1 levels were also observed in response to genetic or 

pharmacological SGLT2 inhibition in non-diabetic mice [12, 19]. We speculate that this 

reduction in renal membrane SGLT1 protein content under conditions of increased glucose 

delivery may serve to limit glucose reabsorption in the vulnerable late proximal tubule, 

where excessive glucose uptake may be toxic [19].

SGLT2 inhibitors reduce blood glucose levels in diabetes but keep 

metabolic counterregulation intact

Although human SGLT2 mutations are uncommon and understudied genetic disorders, they 

have not been consistently associated with renal complications (e.g. impaired kidney 

function or urinary tract infections) [9, 10], hence adding to the rationale for developing 

SGLT2 inhibitors to act as blood glucose lowering drugs.

Specific SGLT2 inhibition

Phlorizin, a flavonoid contained in the bark of various fruit trees, was found to cause 

glucosuria over 100 years ago [23]. Phlorizin competitively inhibits SGLT2 and SGLT1 and 

does so with a tenfold higher affinity for the former [9, 24]. However, SGLT1 is the primary 

pathway for glucose reabsorption in the intestine and is widely expressed throughout the 

body [25]. Thus oral administration of phlorizin is encumbered by extrarenal side effects, 

such as diarrhoea. In contrast, SGLT2 appears only to be expressed in the proximal tubule of 

the kidneys [11, 26] (the proposed expression and function in alpha cells of the pancreas 

[27] still requires confirmation). Hence, the development of SGLT2-specific phlorizin 

derivatives (with good oral bioavailability and suitability for once-daily dosing) provided an 

important breakthrough for the practical use of renal glucose transport targeting therapies for 

blood glucose management [28]. Three members of this group of drugs, dapagliflozin 

(Forxiga [known as Farxiga in the USA]), canagliflozin (Invokana) and empagliflozin 

(Jardiance), have been approved in the USA and Europe for the treatment of patients with 

type 2 diabetes.

Enhanced urinary glucose loss

Potent SGLT2 inhibitors induce a similar sustained urinary glucose loss of 40–80 g/day 

under conditions of normal blood glucose (Fig. 1a) [28–30]. According to a meta-analysis of 

patients with type 2 diabetes, SGLT2 inhibitors decreased HbA1C levels by 0.5–0.7% after 

12 weeks of treatment and this effect persisted for up to 52 weeks of treatment [31]. The 

higher the blood glucose level and GFR, the more glucose is filtered and reabsorbed and, as 

a consequence, can be excreted during SGLT2 blockade. Thus, SGLT2 blockers naturally 

have a greater efficacy when it is desirable for them to be more efficacious [12, 32, 33].

Preserved efficacy in progressive insulin resistance

Lowering blood glucose levels and body weight (by any means) ameliorates the function of 

beta cells and the insulin sensitivity status of patients with type 2 diabetes, thereby further 
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improving blood glucose control. As indicated by preclinical [34–36] and clinical studies 

[32, 37], this also applies to SGLT2 inhibition. The mechanism of action of SGLT2 

inhibitors is independent of insulin secretion or action. As a consequence, their efficacy does 

not decline with progressive beta cell dysfunction and/or insulin resistance, and SGLT2 

inhibitors act synergistically with other blood glucose lowering agents [28].

Low hypoglycaemia risk

Since the glucosuric effect of SGLT2 inhibitors is tied to the filtered load of glucose, they 

become ineffective at further lowering blood glucose once the filtered load reaches ≤ 80 

g/day (a load which can be handled by SGLT1). The residual capacity of SGLT1 relates to 

the question: how do normal, euglycaemic humans/animals reabsorb ~97% of filtered 

glucose via SGLT2, yet maintain a fractional glucose reabsorption of around 50% when 

SGLT2 is inhibited pharmacologically [38–40] or deleted by genetic mutation [10, 12]? 

Studies in mice using pharmacologic and/or genetic inhibition of SGLT1 and SGLT2 

demonstrate that an increase in SGLT1-mediated transport fully accounts for residual 

glucose reabsorption during SGLT2 inhibition [14]. These findings are consistent with a 

high maximal glucose transport rate of human SGLT1 [24]. In other words, SGLT2 

inhibition enhances the glucose load to the late proximal tubule where it unmasks a 

significant transport capacity of SGLT1 for glucose, that limits glucosuria and 

hypoglycaemia risk (Fig. 1a, c).

Additionally, as expected for blood glucose lowering agents that leave the metabolic 

counterregulation intact, SGLT2 inhibitors increase plasma glucagon concentrations and 

endogenous hepatic glucose production (gluconeogenesis) in patients with type 2 diabetes 

[32, 37]. In addition, SGLT2 inhibition enhances lipolysis and shifts substrate utilisation 

from carbohydrates to lipids [32], contributing to a reduction in fat mass and body weight 

[41]. This physiological response to excessive renal glucose excretion prevents episodes of 

hypoglycaemia and secures glucose availability for glucose-dependent organs, such as the 

brain, whilst maintaining body energy supplies. As a consequence, hypoglycaemia was only 

noted when SGLT2 inhibitors have been used in combination with other drugs, but not as a 

monotherapy [31].

Beneficial impact of SGLT2 inhibitors on renal and cardiovascular 

outcomes in patients with type 2 diabetes and high cardiovascular risk

The EMPA-REG OUTCOME trial assessed the long-term effects of empagliflozin on renal 

and cardiovascular outcomes in patients with type 2 diabetes, a high cardiovascular risk and 

an estimated GFR (eGFR) of ≥ 30 ml min−1 (1.73 m2) −1 of body surface area [5, 6]. In this 

study, alongside empagliflozin, around 80% of patients were treated with an angiotensin 

converting enzyme (ACE) inhibitor or angiotensin II type 1 receptor (AT1) antagonist as part 

of their standard care. The study found that, in addition to standard care, empagliflozin 

reduced the rate of incident or worsening nephropathy (defined as progression to 

macroalbuminuria, doubling of serum creatinine level, initiation of renal replacement 

therapy or death from renal disease), with a relative risk reduction of 39%. Moreover, 

empagliflozin reduced the rate of doubling serum creatinine and the initiation of renal 
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replacement therapy, with relative risk reductions of 44% and 55%, respectively [6]. 

Empagliflozin treatment also reduced the risk of death from cardiovascular disease, 

hospitalisation for heart failure and death from any cause, with relative risk reductions of 

38%, 35%, and 32%, respectively, but did not alter the risk of nonfatal myocardial infarction 

or nonfatal stroke [5]. Thus, in patients with type 2 diabetes and high cardiovascular risk, the 

addition of empagliflozin to standard care delayed the progression of kidney disease and 

lowered rates of clinically relevant renal and cardiovascular events.

In terms of side effects, the adverse-event profile of empagliflozin in patients with normal 

and impaired kidney function at baseline was similar to that reported in the total trial 

population. The main side effect of SGLT2 inhibitors was an increased risk of genitourinary 

infections [42]. Therefore, these drugs appear to be cardioprotective and preventative of 

renal disease in patients with type 2 diabetes and high cardiovascular risk, whilst having 

only minor side effects.

How does SGLT2 inhibition protect the renal and cardiovascular systems?

One possible explanation for the cardioprotective and renal protective effect of SGLT2 

inhibition is the associated pleiotropic effects; i.e. the induction of multiple processes that 

have a synergistic beneficial influence on the renal and cardiovascular systems. For example, 

in the EMPA-REG OUTCOME trial, empagliflozin was associated with small improvements 

in blood glucose control and small reductions in body weight, waist circumference, uric acid 

levels, and systolic and diastolic blood pressure, with no increase in heart rate [5, 6]. Hence, 

important renal and cardiovascular risk factors, including hyperglycaemia, hypertension, 

obesity and hyperuricaemia, are improved via SGLT2 inhibition.

Lowering of hyperglycaemia

The small effect of SGLT2 inhibition on blood glucose control alone seems unlikely to 

induce the rapidly observed beneficial effects, which occur within a few months. In support 

of this theory, other blood glucose lowering agents do not show this cardiovascular benefit in 

such a short amount of time, or even at all. However, these agents may have simultaneous 

countervailing effects that offset the benefits of reduced blood glucose levels, such as 

increased obesity or hypoglycaemia.

By reducing hyperglycaemia, SGLT2 inhibitors have the potential to reduce glucotoxicity in 

the kidney and in extrarenal organs [43, 44]. For example, studies in rodent models of 

diabetes have shown that SGLT2 inhibition can reduce renal growth, inflammation and 

injury, secondary to a potent blood glucose lowering effect [18, 19, 22, 45–48] (Fig. 2).

Reduction in blood pressure

Lowering blood pressure is an effective strategy for delaying the progression to more 

advanced stages of nephropathy in patients with type 1 and type 2 diabetes [49, 50]. 

Consistent with preclinical data and the EMPA-REG OUTCOME trial, a meta-analysis of 

type 2 diabetes patients treated with SGLT2 inhibitors showed a consistent decrease in 

systolic blood pressure of 3–6 mmHg [31]. Importantly, these reductions in blood pressure 
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are comparable with those induced by established blood pressure lowering agents and 

expected to have similar vascular protective effects, particularly in high-risk patients [53].

This effect of SGLT2 inhibitors on blood pressure is partly due to their direct natriuretic 

effect and was not fully explained by reductions in body weight (see subsequent section) 

[43, 51, 52]. SGLT2 inhibition induces a modest glucose-based osmotic diuresis (100–470 

ml/day) and a small natriuretic effect. This natriuretic effect is sustained until the resulting 

decline in extracellular volume invokes compensatory mechanisms that equilibrate urinary 

fluid and sodium intake with dietary sodium intake.

The reduction in blood pressure and associated modest reductions in plasma volume [54] 

upon SGLT2 blockade may quickly reduce cardiac pre- and afterload, potentially 

contributing to the rapid beneficial cardiac effects observed with SGLT2 inhibitor use, 

particularly in heart failure patients [5] (Fig. 2).

Weight loss

In patients with type 2 diabetes, including those in the EMPA-REG OUTCOME trial, the 

glucosuric effect of SGLT2 inhibition was consistently associated with a 2–3 kg lower body 

weight. While fluid loss may contribute to initial weight loss, the majority of steady-state 

weight loss with SGLT2 inhibitor treatment appears to result from fat loss [55, 56]. In obese 

rodents, the reduction in body weight in response to SGLT2 inhibition was associated with 

increased lipolysis and fatty acid oxidation and, consequently, lower body fat [57, 58]. This 

is consistent with the shift in substrate utilisation from carbohydrates to lipids [32], as 

previously mentioned (Fig. 2). Reduced visceral and subcutaneous fat has also been reported 

in type 2 diabetes patients treated with SGLT2 inhibitors [41, 55].

Inhibition of hyperuricaemia

SGLT2 blockade may also induce beneficial renal and cardiovascular effects by lowering 

plasma uric acid levels [59]. While the mechanism of uric acid transport and the relevance of 

this effect remains to be determined, studies in healthy individuals and patients with type 2 

diabetes indicate that increases in tubular glucose delivery may explain the uricosuric effect 

of SGLT2 inhibitors [60, 61] (Fig. 2). Based on in vitro transport studies in Xenopus 
oocytes, it has been hypothesised that glucose in the lumen of the proximal tubule may 

facilitate intracellular urate exchange via the urate transporter, GLUT9 isoform 2 (encoded 

by the SLC2A9b isoform), thereby enhancing urinary urate excretion [61]. Evidently, further 

research is required to elucidate the precise mechanisms and consequence of this SGLT2-

induced effect.

SGLT2 inhibition reduces diabetic glomerular hyperfiltration

Diabetes is a major cause of chronic kidney disease (CKD), and hyperglycaemia and CKD 

are major risk factors for cardiovascular and overall mortality. Thus, the improvement of 

renal outcomes in response to SGLT2 inhibition [6] may contribute to their observed 

cardiovascular benefits [5]. In a subset of patients, glomerular hyperfiltration occurs at the 

onset of type 1 or type 2 diabetes and can increase the risk for subsequent development of 

diabetic nephropathy [62]. Since <1% of filtered sodium is excreted in urine to maintain 
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sodium balance on a normal diet, GFR is the primary determinant of renal sodium 

reabsorption and transport work, and thus of renal oxygen consumption. As a consequence, 

reducing glomerular hyperfiltration is expected to reduce the transport work and oxygen 

consumption of the kidney in diabetic individuals, particularly in the proximal convoluted 

tubule [63].

Hyperfiltration in diabetes

Several studies have been published in support of the ‘tubular hypothesis’, according to 

which nuances of glomerular filtration in diabetes, such as hyperfiltration, are explained by 

prior changes in tubular reabsorption (for review see [64]). Moderate hyperglycaemia 

induces a ‘primary’ increase in proximal tubular reabsorption by providing substrate for 

SGLTs or by causing the tubule to undergo hypertrophy (Figs 1c and 3d). This primary 

increase in proximal reabsorption reduces NaCl and fluid delivery to the downstream macula 

densa, causing GFR to increase via normal physiologic actions of tubuloglomerular 

feedback. The tubuloglomerular feedback mechanism works on the single nephron level and 

adjusts the tone of the afferent arteriole, and thereby GFR, to stabilise the NaCl and fluid 

load to the macula densa. This contributes to the autoregulation of GFR and facilitates the 

fine regulation of NaCl and fluid balance in the distal nephron, downstream of the macula 

densa, by neurohumoral control (including sympathetic tone and aldosterone and 

vasopressin regulation). A primary increase in proximal reabsorption also reduces distal 

tubular flow rate, which can increase GFR by lowering tubular back pressure, i.e. the 

hydrostatic pressure in the Bowman’s space (Fig. 3f).

SGLT2 inhibitors suppress hyperfiltration

SGLT2 inhibition attenuates primary proximal tubule hyperreabsorption in diabetes and 

thereby lowers glomerular hyperfiltration (Fig. 3f). This has been demonstrated in 

micropuncture studies in rats using local application of phlorizin into the Bowman’s space 

of individual nephrons (Fig. 3a) [65] and by acute or chronic systemic application of 

selective SGLT2 inhibitors [66]. Hyperfiltration has been suppressed on the whole-kidney 

level in mouse models of diabetes by pharmacologic or genetic inhibition of SGLT2 [18, 

19]. In each case diabetic hyperfiltration suppression was independent of effects on blood 

glucose [18, 65, 66], but was associated with an increase in NaCl concentration at the 

macula densa [65, 66] and in hydrostatic pressure in the Bowman’s space [65] (Figs 2 and 

3).

Recent studies have also confirmed a GFR lowering effect of SGLT2 inhibitors in humans; 

in an 8-week study, the SGLT2 inhibitor empagliflozin decreased GFR by 19% in type 1 

diabetic patients with baseline hyperfiltration. This effect was also independent of lowering 

blood glucose levels [33]. The SGLT2 inhibitor canagliflozin also initially lowered eGFR in 

patients with type 2 diabetes (basal eGFR ≥ 55 ml min−1 [1.73 m2] −1). Following this initial 

dip, eGFR increased over the following weeks in the canagliflozin-treated group such that it 

was better preserved after 2 years of follow-up and associated with reduced urinary 

albumin:creatinine ratio, as compared with a control group that had been treated with 

glimepiride to achieve similar blood glucose control [67].
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SGLT2 inhibitors in diabetic patients with CKD

The nephrons that survive in advanced stages of CKD are assumed to hyperfilter as a way of 

compensation for the loss of nephrons. If so, then the remaining nephrons maintain a high 

tubular glucose load. As a consequence, the acute GFR lowering effect of SGLT2 inhibition 

should be preserved in CKD, even if the effect on overall glucose homeostasis were 

attenuated. In accordance, the SGLT2 inhibitor canagliflozin modestly reduced eGFR, 

together with proteinuria, within 3 weeks in patients with type 2 diabetes and basal eGFR 

values between 30–50 ml min−1 [1.73 m2] −1 (stage 3 CKD) [68]. Empagliflozin also 

induced a small decline in eGFR in patients with type 2 diabetes and stage 2 CKD and stage 

3 CKD. This effect was maintained at 52 weeks of treatment and was fully reversible after a 

3-week washout period. The decline in eGFR was associated with reduced urine 

albumin:creatinine ratio [69]. Reductions in single nephron glomerular hyperfiltration by 

SGLT2 inhibition in CKD and, thereby, the oxygen-consuming transport workload, may 

help to preserve the integrity of remaining nephrons and overall kidney function in the long 

term (Fig. 2). This has also been proposed for angiotensin II blockade [70]; the EMPA-REG 

OUTCOME trial provides evidence that the combination of SGLT2 inhibitor plus 

angiotensin II blockade provides an additive nephroprotective effect in type 2 diabetic 

patients with high cardiovascular risk, including those with initial GFRs of at least 30 ml 

min−1 [1.73 m2] −1 of body surface area [6]. Currently SGLT2 inhibitors are approved for 

use in patients with type 2 diabetes, with dapagliflozin being approved for those with a GFR 

>60 ml/min, and canagliflozin and empagliflozin for GFRs >45 ml/min.

Perspectives

The pleiotropic impact of SGLT2 inhibition creates a favourable environment for beneficial 

and synergistic effects on the renal and cardiovascular systems (Fig. 2). However, we have to 

be open-minded with regard to additional beneficial mechanisms.

The kidney is a complex organ with many interacting parts. We believe that we understand 

how SGLT2 blockade invokes tubuloglomerular feedback and tubular back pressure to 

suppress hyperfiltration (Fig. 2). We imagine that SGLT2 blockade also reduces glomerular 

capillary pressure through the tubuloglomerular feedback mechanism; however, we haven’t 

yet measured glomerular capillary pressure under these conditions. Moreover, alterations in 

physical and metabolic stresses in other parts of the kidney upon manipulation of glucose 

transport in the early proximal tubule remain to be defined.

Renal hypoxia

SGLT2 inhibition shifts transport to segments further downstream of the early proximal 

tubule. It is possible for this to exacerbate renal medullary hypoxia, although such an effect 

would be counteracted by reductions in blood glucose and GFR [63, 71]. A recent study on 

renal ischaemia reperfusion injury indicated that the commencement of SGLT2 inhibitor 

(dapagliflozin) application 1 day before surgery attenuated serum creatinine increases, 

tubular injury and markers of apoptosis after 24 h, and that this was associated with 

increased renal levels of the transcription factor, hypoxia-inducible factor (HIF)1-α [72]. 

Notably, this study was performed in non-diabetic mice, indicating the potential for 
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renoprotective effects of SGLT2 inhibition independent of blood glucose control. Renal 

hypoxia is known to predominantly induce HIF1-α and upregulate the tissue protective 

target gene HMOX1 (encoding haem oxygenase 1) in tubular cells [73]. Notably, Hmox1 
mRNA expression was also increased in the kidneys of non-diabetic mice lacking SGLT2 

[18]. Thus, while the effect on HIF1-α would be consistent with enhancements in medullary 

tubular hypoxia in response to SGLT2 inhibition, it remains to be determined whether the 

increase of HIF1-α actually contributes to the nephroprotective effects of SGLT2 inhibition 

(Fig. 2).

Moreover, the proximal tubule is thought to make little use of reabsorbed glucose under 

normal conditions but acute kidney injury may induce a relevant glycolytic shift in the outer 

medullary proximal tubules [74, 75], an effect that may involve tubular upregulation of 

HIF1-α [76]. Whether the increased delivery of glucose to this region of the kidney via 

SGLT2 inhibition is detrimental or beneficial in conditions of acute kidney injury remains to 

be determined. In comparison, the hypoxia-induced formation of erythropoietin in 

peritubular interstitial fibroblast-like cells of the corticomedullary border is associated with 

increased levels of HIF2-α in these cells [73, 77, 78]. The effect of SGLT2 blockade on 

HIF-2 remains to be determined and may provide knowledge that is relevant for the 

cardiovascular system.

SGLT2 inhibition and natriuresis

In the brush border of the early proximal tubule, SGLT2 is co-expressed with the Na+/H+-

exchanger 3 (NHE3), which reabsorbs about 30% of filtered sodium. Recent studies provide 

evidence that SGLT2 may be functionally linked to NHE3 [79–81] such that SGLT2 

inhibition may also inhibit NHE3 in the proximal tubule (Fig. 2). Whereas such an 

interaction could be relevant for the natriuretic effect of SGLT2 inhibition and its effect on 

blood pressure and GFR, more studies are required to further establish this interaction and 

the relevance of these outcomes.

SGLT2 inhibition and gluconeogenesis

The kidneys produce between 15–55 g of glucose per day, with this process being 

upregulated in diabetes [82]. Studies in Akita mouse models of type 1 diabetes confirmed 

that renal mRNA expression of phosphoenolpyruvate carboxykinase, the main regulator of 

gluconeogensis, was upregulated; however this effect was attenuated by SGLT2 inhibition 

[19] (Fig. 1c). Further studies are needed to determine whether this interaction may be 

explanatory of the blood glucose lowering effect of SGLT2 inhibitors that is independent of 

a glucosuric effect (allowing this effect to be maintained in CKD). It is also important to 

determine whether similar findings would be observed in humans.

SGLT2 inhibition and ketoacidosis

In May 2015 the Food and Drug Administration (FDA) released a warning that SGLT2 

inhibitors might increase the risk of ketoacidosis [83], with cases reported in patients with 

type 1 diabetes and some (although fewer) in type 2 diabetes. Potential mechanisms include 

a reduction in insulin and higher glucagon levels in response to SGLT2 inhibition, which can 

lead to increased lipolysis and ketogenesis. The EMPA-REG OUTCOME trial found no 
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difference in rates of ketoacidosis in type 2 diabetic patients treated with the SGLT2 

inhibitor empagliflozin vs placebo over the course of 3 years [5]. Nevertheless, dedicated 

studies are required to further define the clinical relevance and potential mechanisms of 

SGLT2-associated ketoacidosis. Notably, the development of mild ketosis has been 

hypothesised to contribute to the beneficial effects of SGLT2 inhibition on cardiac and renal 

outcomes because of the use of ketone bodies as energy substrates, as well as their potential 

interactions with G-protein coupled receptors and other signalling pathways [84–86] (Fig. 

2).

Ongoing trials

In addition to the EMPA-REG OUTCOME trial there are several studies currently under 

way, investigating the effects of SGLT2 inhibition on kidney and cardiovascular outcomes. 

These include the Dapagliflozin Effect on CardiovascuLAR Events (DECLARE; 

ClinicalTrial.gov registration no.NCT01730534) study, the CANagliflozin cardioVascular 

Assessment Study (CANVAS; ClinicalTrial.gov registration no. NCT01032629) and the 

Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical 

Evaluation (CREDENCE; ClinicalTrial.gov registration no. NCT02065791) (for review see 

[87]). Their results are expected to further refine our understanding of the therapeutic 

potential and safety of SGLT2 inhibition.

Summary

SGLT2 inhibitors are important blood glucose lowering agents for use in diabetes treatment. 

They primarily function by altering glucose reabsorption via SGLT2 in the proximal tubule. 

However, they also improve body weight and composition, uric acid levels and blood 

pressure in patients. Furthermore, they lower glomerular hyperfiltration which reduces the 

kidney’s demand for oxygen and lessens albuminuria. Since they do not alter metabolic 

regulation of glucose and are not effective when filtered glucose levels are below 80 g/day, 

these drugs are not associated with hypoglycaemia. Their use has been approved in diabetic 

patients with normal and preserved renal function. The pleiotropic and synergistic effects of 

SGLT2 inhibitors are likely to contribute to the cardio- and renoprotective effects recently 

reported with their use, including in patients with modestly impaired renal function. Further 

research is required to fully establish their therapeutic value in individuals with diabetes and 

to explore their potential in non-diabetic renal and cardiovascular disease.
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Fig. 1. 
SGLT2-mediated glucose reabsorption in the kidney: consequences of diabetes and links to 

Na+ reabsorption. (a) SGLT2 and SGLT1 exist in the luminal membrane of the early and late 

proximal tubule, respectively. SGLT2 reabsorbs ~97% of filtered glucose in 

normoglycaemia, whilst SGLT1 reabsorbs ~3%. Consequently, between 0–0.2% of glucose 

is excreted in the urine in normoglycaemia. Contrastingly, SGLT2 inhibition shifts glucose 

reabsorption downstream, unmasking a significant capacity for SGLT1 to reabsorb ~50% of 

filtered glucose. Thus, following SGLT2 inhibition, up to ~50% of filtered glucose is 

excreted in normoglycaemia. (b) In health, sodium and glucose reabsorption via luminal 

SGLT2 and SGLT1 is followed by basolateral glucose reabsorption via the facilitative 

glucose transporters, GLUT2 and GLUT1, respectively, and sodium reabsorption via the Na
+/K+ pump. (c) Diabetes induces tubular hypertrophy, which is associated with increased 

SGLT2. Consequently, this may lead to hyperglycaemia and primary tubular Na+ 

hyperreabsorption. SGLT2 inhibition counteracts these effects and promotes partial 

compensation by downstream SGLT1. Preclinical studies propose that SGLT2 inhibition 

may also attenuate the diabetes-induced increase in renal gluconeogenesis. This figure was 

modified with permission from the Annual Review of Medicine, Volume 66 © 2015 by 

Annual Reviews, www.annualreviews.org [26]. Blue arrows, symbols and text relate to 

SGLT2; green arrows, symbols and text relate to SGLT1; the grey arrow in (a) indicates 

urinary excretion; black arrows refer to transport mechanisms; in (c), red arrows, symbols 

and text relate to variables/processes affected by diabetes
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Fig. 2. 
The pleiotropic effects of SGLT2 inhibition: the potential for kidney and cardiovascular 

protection in diabetes. SGLT2 inhibition may provide its cardioprotective and renal 

protective effects via several pleiotropic mechanisms: (1) SGLT2 inhibition attenuates 

primary proximal tubular hyperreabsorption in the kidney in diabetes, increasing/restoring 

the tubuloglomerular feedback signal at the macula densa ([Na+/Cl−/K+]MD) and hydrostatic 

pressure in Bowman’s space (PBow). This reduces glomerular hyperfiltration, beneficially 

affecting albumin filtration and tubular transport work and, thus, renal oxygen consumption; 

(2) by lowering blood glucose levels, SGLT2 inhibitors can reduce kidney growth, 

albuminuria and inflammation; (3) SGLT2 inhibitors have a modest osmotic diuretic, 

natriuretic and uricosuric effect, which can reduce extracellular volume (ECV), blood 

pressure, serum uric acid levels and body weight. These changes may have beneficial effects 

on both the renal and cardiovascular systems; (4) SGLT2 may be functionally linked to 

NHE3, such that SGLT2 inhibition may also inhibit NHE3 in the proximal tubule, with 

implications on the natriuretic, GFR and blood pressure effect; (5) SGLT2 inhibition reduces 

insulin levels and the need for therapeutic and/or endogenous insulin, and increases 

glucagon levels. As a consequence, lipolysis and hepatic gluconeogenesis are elevated. 

These metabolic adaptations reduce fat tissue/body weight and hypoglycaemia risk, and 

result in mild ketosis, potentially having beneficial effects on both the renal and 

cardiovascular systems; (6) SGLT2 inhibition may also enhance renal HIF content, which 

may have renal protective effects. White text boxes indicate affected variables; grey text 

boxes indicate processes that link SGLT2 inhibition to the reduction in GFR. Green arrows 

demonstrate consequences; red arrows indicate changes in associated variables (increase/

decrease)
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Fig. 3. 
SGLT2 inhibition lowers diabetic glomerular hyperfiltration. (a) In vivo micropuncture 

studies were performed in non-diabetic and streptozotocin-induced diabetic rats, both with 

superficial glomeruli [65]. Measurements were performed under control conditions or 

following application of phlorizin directly into the early proximal tubule, i.e. systemic blood 

glucose levels were not changed. Small amounts of blue dye were injected into the 

Bowman’s space to determine the configuration of the nephron, including the early proximal 

tubular loop and the early distal tubule located near the macula densa. The distal tubule is 

stained with blue dye in picture. The macula densa is just upstream of the early distal tubule 

but does not project to the kidney surface. Tubular fluid was collected from the early distal 

tubule, i.e. just downstream of the macula densa, to determine; (1) the strength of the 

tubuloglomerular feedback signal at the macula densa ([Na+/Cl−/K+]MD); and (2) single 

nephron glomerular filtration rate (SNGFR) by inulin clearance. Additionally, the Bowman’s 

space was punctured to determine the hydrostatic pressure (PBow). BS, Bowman’s space; 

EPT, early proximal tubule; EDT, early distal tubule; SG, superficial glomerulus. Scale bar, 

100 μm. ‘V-shaped’ lines indicate the micropuncture capillaries and their position; arrows 

indicate the withdrawal or application of fluid or pressure measurement. (b–e) Basal 

measurements (B) revealed that glomerular hyperfiltration in diabetes was associated with 

reductions in (b) [Na+] and [Cl−] at the macula densa ([Na+/Cl−]MD), (c) [K+] at the macula 

densa ([K+]MD) and (d) in PBow, and (e) an increase in SNGFR (nanoliter per minute [nl/

min]). Phlorizin (P) did not greatly affect any of these measures in non-diabetic rats, but 

normalised [Na+/Cl−/K+]MD, PBow and SNGFR in diabetes [65]. In (b–e), white circles, 

non-diabetic; black circles, diabetic. (f) Diabetes induces a primary hyperreabsorption in the 

proximal tubule, which causes glomerular hyperfiltration via tubuloglomerular feedback 

(reduction in [Na+/Cl−/K+]MD levels) and reductions in tubular back pressure (PBow). 

SGLT2 contributes to hyperreabsorption (this process is further enhanced by tubular growth 

in diabetes) and, consequently, SGLT2 inhibition mitigates hyperreabsorption in diabetes, 

inhibiting glomerular hyperfiltration. In (f), yellow boxes indicate the main consequences of 
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diabetes; grey boxes indicate mechanisms that link hyperreabsorption to hyperfiltration; 

black arrows indicate changes in variable (increase/decrease); red arrows indicate the 

enhanced reabsorption
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