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Abstract

On the Fundamentals of Power Allocation Strategies for Non-Orthogonal

Multiple Access Downlink Systems

by

José Armando Oviedo

The fundamentals of non-orthogonal multiple access (NOMA) power allocation

strategies for downlink wireless transmissions are investigated, based on improving

the performance over downlink transmissions using orthogonal multiple access

(OMA). First, the scenario where the base-station possesses the perfect channel

state information (CSI) is considered. For this scenario, the power allocation

region is defined for a two-user downlink NOMA system. The expressions for

the ergodic capacities and outage probabilities are derived for the case when the

two users are pair randomly, each user with independently identically distributed

(i.i.d.) fading channel gains. These results are then extended to the case where a

cell-center user and cell-edge user are paired together, and a closed-form expression

for the gap in ergodic capacity between NOMA and OMA is derived when SNR

is large. This scenario is then extended to the general multi-user case, and it is

proved that there always exists a power allocation strategy which allows all users

to achieve a higher capacity when compared to OMA. In the second scenario,

the effects of users with cached files on power allocation are investigated. When

a user with weak channel condition has cached a file which a user with strong

channel condition is requesting, these two users downlink transmissions are paired.

An approximation of the optimum power allocation is derived, and the union-

outage probability of this system is shown to improve over conventional NOMA

and OMA. In the final scenario, the complete description of power allocation

x



strategies is derived for more realistic wireless systems, where it is not assumed

that the base-station possesses perfect CSI. Based on the target rates of each user,

the fundamental properties of the power allocation strategy are derived, and the

approach for selecting a strategy which improves the outage probability of each

user is outlined. The existence of the power allocation strategies and their optimal

energy efficiency is proved to be functions of the target rates and the OMA system

parameters which they are compared to.
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Chapter 1

Introduction

Non-orthogonal multiple access (NOMA) is a multiple access technique that

has been considered for future wireless networks for improving several system per-

formance metrics when compared to orthogonal multiple access (OMA). These

performance metrics include the overall number of users served simultaneously in

a cell, the spectral efficiency, sum-rate capacity, the outage probability, and en-

ergy efficieny, among others [1–4]. By transmitting users’ downlink signals using

superposition coding (SC) over the same time-frequency resources, and successive

interference cancellation (SIC) at the users’ receivers, the capacity of the channel

can be achieved [6]. Superposition coding is when different signals are transmit-

ted simultaneously over the same time-frequency resources, with each signal being

allocated a portion of the total transmit power, allowing the base-station to multi-

plex the users over the power-domain (PD). At each user’s receiver, the signals are

received and are completely overlapping over the shared time-frequency resources,

thus SIC is used to detect and decode the signals in order of the largest transmit

power to the lowest [6]. Thus, the relationship between the power allocated to

the different signals transmitted using SC will affect the ability of a SIC enabled

receiver to successfully decode the received signals and obtain its own information.
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Figure 1.1: TDMA (left) and FDMA (right) orthogonal resource allocation for
a BS serving five users over a shared time-frequency resource.

1.1 Introduction to Multiple Access Techniques

OMA is defined as a multiple access approach that schedules multiple users

in non-overlapping time slots, i.e. time-division multiple access (TDMA), or fre-

quency bands, i.e. frequency-division multiple access (FDMA), during a trans-

mission time period. Let the signals scheduled for K users be transmitted by

a base-station over a transmission time period T and bandwidth B. Therefore

each user’s signal transmission is assigned either an orthogonal fraction of the

transmission time period T , or an orthogonal fraction of the bandwidth B. One

difference between TDMA and FDMA is that with TDMA, each transmission can

be allocated all of the transmit power for that time duration, while with FDMA

the transmit power must be shared between all of the orthogonal frequency bands,

and hence FDMA has the additional complexity of a power allocation problem [7].

Both TDMA and FDMA concepts are illustrated in figure 1.1

NOMA on the other hand schedules the transmission of the K users’ signals

simultaneously over the entire transmission period T and bandwidth B. Since the

total transmit power must be shared between the K users, a fraction ak ∈ (0, 1)

of the transmit power is allocated to user k, and
∑K

k=1 ak ≤ 1. Therefore, when

2



Figure 1.2: Five signals, each shown occupying the entire time-frequency re-
source (left), superposed over the time-frequency resource (right).

the base-station uses SC at the transmitter to transmit K users’ signals over

the shared time-frequency resource, and and users equipped with SIC enabled

receivers are used to obtain their respective desired signals. This concept of su-

perposing multiple signals over a shared time-frequency resource is illustrated in

figure 1.2, where 5 users each have their information mapped over the entire time-

frequency resource, causing every signal to be overlaid on the same frequencies at

the same time.

1.2 NOMA System Model Overview

A BS which transmits K downlink signals to K users using NOMA, will allo-

cate the transmit power a fraction of the transmit power ak to each signal, and

then will take the sum of these signals before transmitting the superposition of

the signals to all K users. As an example given in figure 1.3 for K = 2 and 4-point

quadrature amplitude modulated (4-QAM) complex symbols, the superposition

of the two signals form a composite constellation on the complex plane. This

is illustrated in figure 1.3 for the case. For each constellation point of user m’s

3



Figure 1.3: Example of a superposition of constellation points from two users’
signals.

signal, there are 4 constellation points for user n’s signal, forming the 16 superpo-

sition constellation points represented by the smaller circles. Note how the smaller

constellation points seem like small interference points of the larger constellation

points. This disparity in amplitudes of the SC signal is a key factor in being able

to perform SIC at the receiver.

In figure 1.4, a block diagram representation of a DL NOMA system is shown.

On the left, the BS’s SC procedure is illustrated, where the K signals share the

total transmit power and added together. The signal travels through each users

wireless channel, with random complex valued gain Gk. Each receiver is enabled

with SIC capability in order for each user to have the capability to extract its own

signal.

Figure 1.5 illustrates the procedure used by an SIC enabled receiver, where

the signals received with the highest transmit power are detected and decoded

first. The SC signal is sent through a detector, which determines the symbols

received, and the symbols are then used to obtain the information message of

the respective signal. If the desired information message wn is not obtained by

4



Figure 1.4: A downlink NOMA system where the BS transmits the signals using
SC, and each user’s receiver is enabled with SIC.

user n, the decoded message is sent the SIC operation block, which will subtract

the signal associated with wn from the SC signal. These steps are repeated until

wn is obtained at user n. The details of the SIC operation, which include re-

encoding of the decoded information message, channel gain and power scaling,

and subtraction from the superposed signal, are shown in figure 1.6. A signal

which is not desired but is decoded is subtracted from the composite signal, and

a new composite signal which contains the superposition of the remaining signals

is the output of the SIC operation. An example of the symbol constellation point

detection of user n is illustrated in figure 1.7. As can be seen from figure, user

n must perform SIC in order to remove the interference cause by the signal of

user m. First user n detects the constellation point in the upper-left quadrant as

the symbol which represents the signal for user m. Then after performing SIC to

remove this interference arrives at a new constellation, from which user n then

detects its own symbol as the constellation point in the upper-right quadrant.

The details this section are shown in a generalized context. In the subsequent

chapters, the specific channel models used in the studies are given in details, along

with the assumptions related to the results. However, certain aspects mentioned

5



Figure 1.5: Block diagram of receiver with SIC capability.

Figure 1.6: Codeword re-encoding, amplification, and subtraction steps of SIC.

Figure 1.7
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in this section are considered out of the scope of this study, which include signal

encoding, mapping, detection, decoding, modulation, and thus these are consid-

ered to be performed ideally in this study.

1.3 Some initial motivating works

Non-orthogonal access approaches using SC for future wireless cellular net-

works were mentioned in [5] as a way to increase single user rates when com-

pared to CDMA. Schaepperle and Ruegg [9] evaluated the performance of non-

orthogonal signaling using SC and SIC in single antenna OFDMA systems using

very little modifications to the existing standards, as well as how user pairing im-

pacts the throughput of the system when the channel gains become increasingly

disparate. This was then applied [10] to OFDMA wireless systems to evaluate

the performance of cell edge user rates, proposing an algorithm that attempts

to increase the average throughput and maintain fairness. These works do not

assume to have the exact channel state information at the transmitter.

The concept of NOMA is evaluated through simulation for full channel state

information at the transmitter (CSIT) in the uplink [11] and downlink [12], where

the throughput of the system is shown to be on average always better than OMA

when considering a fully defined cellular system evaluation, with both users occu-

pying all of the bandwidth and time, and was compared to FDMA with each user

being assigned an orthogonal channel. In [13], the downlink system performance

throughput gains are evaluated by incorporating a complete simulation of an LTE

cellular system (3GPP).

7



1.4 Overview of contained contributions

In this work, it is fundamentally established that the power allocated to the

different users’ signals depends on a few system parameters. In chapter 2, a NOMA

approach called Fair-NOMA is introduced, where the fundamental relationship

between the group of K NOMA users’ channel gains and the power allocation

strategy is described for a downlink NOMA system in which each user has greater

channel capacity than the OMA case. The power allocation region, sum-rate

capacity improvement of NOMA over OMA, and outage probability are described

in closed-form for the case when the transmit signal-to-noise ratio is very large.

Then the power allocation strategies are described in detail for the general K-user

downlink NOMA system to improve each user’s channel capacity over OMA.

In chapter 3, the focus shifts to an scheme called cache-aided NOMA (CA-

NOMA) which applies NOMA to downlink systems where users at the edge of the

network can possess cached files which are requested by other users in the same

cell. In this case, the base-station can pair the two users together and transmit

their signals using NOMA, such that one user who is requesting a file is paired with

another user who possesses a cache of the same file. When both users are assigned

a common quality-of-service (QoS) rate R0, the base-station will transmit the two

users’ signals using SC, with power allocation designed so that the signal of the

user who possesses the cached file is first in the SIC decoding order. It is shown

that the cached file combined with NOMA enables both users to perform SIC,

thereby enhancing the power allocation region and allowing for more opportunity

to improve the union-outage of the system.

In chapter 4, the fundamental relationship between information target rates

and power allocation strategies for K-user NOMA systems is investigated. When

users have individual QoS target rates associated with their downlink transmis-

8



sions, the base-station can design the entire power allocation strategy by using the

set of target rates. This becomes especially practical since when compared to the

majority of work on downlink NOMA power allocation strategies, which rely on

the exact channel gain values of all users, this fundamental relationship between

target rates and power allocation strategy improves the outage probability of all

users compared to OMA, regardless of the channel gain values. Furthermore, the

power allocation strategy is easily computed without the use of a complex algo-

rithm, and is proved to always exist. The outage probability events are used to

derive this relationship, with outage probabilities being the metric associated with

target rates in wireless system deployments. This means that a parameter that is

always known to the base-station and its associated performance metric form the

fundamental relationship that enable designing power allocation strategies that

outperform OMA.

In each of these chapters, a comparison between theoretical results and sim-

ulation results are provided in order to further demonstrate the validity of the

theoretical results. These comparisons are for specific examples of system param-

eters, and they help highlight the performance improvement of NOMA over OMA

for the different performance metrics considered. In the scope of this work, it

is assumed that certain receiver functions, such as signal detection and channel

estimation at the receiver are ideal.

9



Chapter 2

A Fair Power Allocation

Approach to Multi-user Downlink

NOMA Systems

A NOMA approach that always outperforms OMA called Fair-NOMA is in-

troduced. In Fair-NOMA, each mobile user is allocated its share of the transmit

power such that its capacity is always greater than or equal to the capacity that

can be achieved using OMA. In other words, the ”fairness” is defined by not com-

promising the performance of any single user with respect to the baseline OMA

performance. For any channel gains of the two users, the set of possible power

allocation coefficients are derived. For the infimum and supremum of this set, the

individual capacity gains and the sum-rate capacity gain are derived. It is shown

that the ergodic sum-rate capacity gain approaches 1 bps/Hz when the transmit

power increases for the case when pairing two random users with i.i.d. channel

gains. The outage probability of this approach is derived and shown to be better

than OMA.

10



The Fair-NOMA approach is applied to the case of pairing a near base-station

user and a cell-edge user and the ergodic capacity gap is derived as a function

of total number of users in the cell at high SNR. This is then compared to the

conventional case of fixed-power NOMA with user-pairing. Finally, Fair-NOMA

is extended to K users and it is proven that the capacity can always be improved

for each user, while using less than the total transmit power required to achieve

OMA capacities per user.

The results in this chapter have been published in [22]

2.1 Previous Work for Motivating Fair-NOMA

The concept of NOMA was shown to achieve the capacity of the channel for

a two-user downlink wireless system by Cover and Thomas [6]. The existence of

a set of power allocation coefficients that allow all of the participating users to

achieve capacity at least as good as OMA was suggested in [7] for the case when

the BS possesses full CSI.

Fairness in NOMA systems is addressed in some works. The uplink case in

OFDMA systems is addressed in [15] by using an algorithm that attempts to

maximize the sum throughput, with respect to OFDMA and power constraints.

The fairness is not directly addressed in the problem formulation, but is evaluated

using Jain’s fairness index. In [16], a proportional fair scheduler and user pair

power allocation scheme is used to achieve fairness in time and rate. In [17],

fairness is achieved in the max-min sense, where users are paired such that their

channel conditions are not too disparate, while the power allocation maximizes

the rates for the paired users.

Ding et. al. [18] provide an analysis for fixed-power NOMA (F-NOMA) and

cognative radio NOMA (CR-NOMA). In F-NOMA, with a cell that has N total

11



users, it is shown that the probability that NOMA outperforms OMA asymptot-

ically approaches 1. In CR-NOMA, a primary user is allowed all of the time and

bandwidth, unless an opportunistic secondary user exists with a stronger channel

condition relative to the primary user, such that transmitting both of their signals

will not reduce the primary user’s SINR below some given threshold. It is shown

that the diversity order of the n-th user is equal to the order of the weaker m-th

user, leading to the conclusion that this approach benefits from pairing the two

users with the strongest channels.

The main contribution of this chapter is to demonstrate that NOMA capac-

ity can fundamentally outperform OMA capacity for each user, regardless of the

channel gain values of the users, and to derive exactly the exact power allocation

strategy to achieve this, based on their channel gains. Furthermore, the improve-

ments provided by Fair-NOMA over OMA for various performance metrics and

scenarios are derived, giving a firm analytical answer as to how much performance

improves when Fair-NOMA is used.

In this chapter, it is assumed that the OMA system model used to compare to

NOMA is the TDMA model which allocates equal transmit durations to each user

during the transmission time period T . This equates to half of the transmission

time period for each user in the case of two-user NOMA, while in the general K-

user NOMA case each user is allocated 1/K of the total transmission time period.

Note that these are equivalent to the FDMA cases where each user is assigned

equal parts of the bandwidth and total transmit power.

2.2 System Model and Capacity

A BS serving two mobile users during a transmission time period possesses

the full knowledge of the CSI, i.e. knows the exact value of the channel gain

12



|Gn| between the BS transmit antennas and the users’ receive antennas. In the

discussion that follows, it is assumed that both the BS and users each possess one

antenna, i.e. it is a single-input-single-output (SISO) system. This assumption

does not affect the outcome of the power allocation strategy itself, but does affect

the analyses’ results.

The BS transmits to user n a signal xn over the wireless channel with Rayleigh

fading channel gain Gn ∈ C with SNR gain p.d.f. f|G|2(w) = 1
β
e−

w
β , and receiver

noise is complex-normal distributed zn ∼ CN (0, 1).

In the two-user OMA case, each user’s signals are allocated half of transmission

time period T and transmit SNR ξ. The received signal for each user is yn =

Gn

√
ξxn + zn, n = 1, 2. If E[|xn|2] = 1, the information capacity of each user is

Coma
n = 1

2
log2 (1 + ξ|Gn|2) . The sum-rate capacity for OMA is therefore SO =

CO
1 + CO

2 .

For the case of two-user NOMA, it is assumed that user 2’s channel SNR gain

is greater than user 1’s channel SNR gain, i.e. |G2|2 > |G1|2). Therefore, the BS

will allocate the transmit power such that user-2 can perform SIC at the receiver

by treating its own signal as noise and decoding user 1’s signal first. Meanwhile,

user 1 will only attempt to decode its own signal and treat user 2’s signal as

noise. Let the power allocation coefficient for user 2 be a ∈ (0, 1), such that user

1 is allocated 1 − a of the total transmit power. The transmitted SC signal is√
(1− a)x1 +

√
ax2, then the received SC signals are

rn = Gn(
√

(1− a)ξx1 +
√
aξx2) + zn, n = 1, 2. (2.1)

User 1 will only attempt to decode its own signal, so the signal used to detect and

decode user 1’s signal y1 = r1, and thus the channel information capacity of user

13



1 is given by

Cnoma
1 (a) = log2

(
1 +

(1− a)ξ|G1|2

aξ|G1|2 + 1

)
. (2.2)

Meanwhile, user 2 must first detect and decode user 1’s signal, then use it to

perform SIC in order to detect and decode its own signal. The signal user 2 uses

to perform SIC is y2→1 = r2. The channel capacity for user 2 to decode user 1’s

signal is

Cnoma
2→1 (a) = log2

(
1 +

(1− a)ξ|G2|2

aξ|G2|2 + 1

)
. (2.3)

Since |G2|2 > |G1|2 ⇒ Cnoma
2 (a) > Cnoma

1 (a), the SIC procedure will always be

successful in the event that user 1 also succeeds in decoding its own signal. The

signal obtained after the SIC procedure is y2 = r2−G2

√
(1− a)ξx1 = G2

√
aξx2 +

zn, and thus the channel capacity to decode its own signal is given by

Cnoma
2 (a) = log2

(
1 + aξ|G2|2

)
. (2.4)

The sum-rate capacity for NOMA is therefore SN(a) = Cnoma
1 (a)+Cnoma

2 (a). These

capacity expressions are used in each case of OMA and NOMA to find the values

of a that make NOMA ”fair.”

2.3 Analysis of Two-User Fair-NOMA

In order for user 1 NOMA capacity to be greater than or equal to OMA

capacity, it must be true that Cnoma
1 (a) ≥ Coma

1 . Solving this inequality for a

gives a ≤
√

1+ξ|G1|2−1
ξ|G1|2 . Similarly, for user 2 when Cnoma

2 (a) ≥ Coma
2 results in

a ≥
√

1+ξ|G2|2−1
ξ|G2|2 . Both the upper and lower bounds on the transmit power fraction
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a to achieve better sum and individual capacities have the form a(u) = (
√

1 + ξu−

1)/(ξu).

Define

ainf =

√
1 + ξ|G2|2 − 1

ξ|G2|2
and asup =

√
1 + ξ|G1|2 − 1

ξ|G1|2
. (2.5)

Then by proposition 1 in [19], it is clear that if |G2|2 > |G1|2 ⇒ asup > ainf. The

Fair-NOMA power allocation region is therefore defined as AFN = [ainf, asup], and

selecting any a ∈ AFN gives Cnoma
1 (a) ≥ Coma

1 , Cnoma
2 (a) ≥ Coma

2 , and Snoma(a) >

Soma. Since the sum-rate capacity Snoma(a) is a monotonically increasing function

of a, then asup = arg max
a∈AFN

(Cnoma
2 (a)) also maximizes Snoma(a). The sum-rate

capacity of NOMA is strictly larger than the sum-rate capacity of OMA because

at the least one of the users’ capacities always increases.

Theorem 2.3.1. For a two-user NOMA system that allocates power fraction 1−

a to user 1 and a to user 2, such that a ∈ AFN, the sum-rate Snoma(a) is a

monotonically increasing function of both |G1|2 and |G2|2.

Proof. See appendix 2.7.1.

This result implies that as the channel gain for the weaker user increases, the

total capacity increases while the power allocation to the stronger user decreases.

This means that, as the channel gain |G1|2 increases towards the value of |G2|2,

then the capacity gain by user 1 is greater than the capacity loss by user 2. In

the extreme case where |G1|2 → |G2|2, then asup → ainf, and both Cnoma
1 (a) and

Cnoma
2 (a) → Coma

2 . In other words, the Fair-NOMA capacity is upper bounded

by the capacity obtained by allocating all of the transmit power to the stronger

user. This is somewhat related to the multiuser diversity concept result in [20] for

OMA systems, which suggests allocating all the transmit power to the stronger
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users will increase the overall capacity of the network.

In contrast, with the increase in |G2|2, Cnoma
2 (asup) increases and hence the

capacity gains from Fair-NOMA increase. Therefore with Fair-NOMA, as is the

same with the previously obtained result for fixed-power allocation NOMA, when

|G2|2 − |G1|2 increases, Snoma(a)− Soma also increases [6,18]. This will be further

exemplified in Section 2.4, Theorem 2.4.1.

2.3.1 Expected Value of Fair-NOMA Capacity

The expected value of the Fair-NOMA capacities of the two users depend on

the power allocation coefficient a. In order to determine the bounds of this region,

the expected value of capacity of each user is derived for the cases of ainf and asup

and compared with that of OMA.

Since the channels of the two users are i.i.d. random variables, let the two users

selected have channel SNR gains of |Gi|2 and |Gj|2, where f|G|2(t) = 1
β
e−

t
β , t < 0.

Since we call the user with weaker (stronger) channel gain user 1 (user 2), then

|G1| = min{|Gi|2, |Gj|2} and |G2|2 = max{|Gi|2, |Gj|2}. Therefore, the joint pdf

of |G1|2 and |G2|2 is

f|G1|2,|G2|2(t1, t2) =
2

β2
e−

t1+t2
β , 0 < t1 < t2. (2.6)

It is shown [19] that the ergodic capacities and the sum-rate of users in OMA are

E[Coma
1 ] =

e
2
βξ

ln(4)
E1

(
2

βξ

)
, (2.7)

E[Coma
2 ] =

e
1
βξ

ln(2)
E1

(
1

βξ

)
− e

2
βξ

ln(4)
E1

(
2

βξ

)
, (2.8)

E[Soma] =
e

1
βξ

ln(2)
E1

(
1

βξ

)
(2.9)
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where E1(x) =
∫∞
x
u−1e−udu is the well-known exponential integral. Note that

E[Coma
1 ] = E[Cnoma

1 (asup)] and E[Coma
2 ] = E[Cnoma

2 (ainf)].

It is also shown [19] that

E [Cnoma
1 (ainf)] =

3e
2
βξ

ln(4)
E1

(
2

βξ

)
−
∫ ∞
0

2

β ln(2)
· exp

(
−x
β

(√
1 + ξx− 2√
1 + ξx− 1

))
×
(
E1

(
x

β(
√

1 + ξx− 1)

)
− E1

(
x
√

1 + ξx

β(
√

1 + ξx− 1)

))
dx,

(2.10)

and

E[Cnoma
2 (asup)] =

e
2
βξ

ln(4)
E1

(
2

βξ

)
+

∫ ∞
0

2

β ln(2)

× exp

(
−x
β

(√
1 + ξx− 2√
1 + ξx− 1

))
E1

(
x
√

1 + ξx

β(
√

1 + ξx− 1)

)
dx.

(2.11)

At high SNR (ξ � 1), the approximate capacities are

Coma
n ≈ 1

2
log2(ξ|Gn|2), n = 1, 2 (2.12)

Cnoma
1 (ainf) ≈

1

2
log2(ξ|G2|2), (2.13)

Cnoma
2 (asup) ≈ log2

(√
ξ

|G1|2
|G2|2

)
. (2.14)

This implies that when ξ � 1, Cnoma
1 (asup) ≈ Coma

2 . The high SNR approximations

lead to following result for the difference in the expected capacity gains, i.e.,

∆S(a) = Snoma(a)− Soma.

Theorem 2.3.2. For a two-user downlink SISO NOMA system with |Gn|2 ∼

Exponential( 1
β
), n = 1, 2, and at high SNR regime, the sum-rate capacity gap has

expected value E[∆S(a)] ≈ 1 bps/Hz, ∀a ∈ AFN.
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Figure 2.1: Users in are in coverage if they can support a minimum rate R0,
which related to the geographical are of a cell.

Proof. See appendix 2.7.2.

This interesting result means that when the transmit power approaches infin-

ity, the average increase in sum capacity is the same for both ainf and asup and is

equal to 1 bps/Hz. Equivalently, it means that ∀a ∈ AFN, both users experience

an expected increase in capacity over OMA of c and 1− c where c ∈ [0, 1].

2.3.2 Outage Probability of Fair-NOMA

Suppose that the minimum rate that is allowed by the system to transmit a

signal is R0. The probability that a user cannot achieve this rate with any coding

scheme is given by Pr{C < R0}. A user with channel SNR gain which cannot

support the minimum rate R0 is considered to be out of coverage, as illustrated

by figure 2.1. As with the average capacity analysis, the outage performance of

NOMA is analyzed by looking at ainf and asup, and then draw logical conclusions

from that.
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The outage probability of user 1 using OMA is given by

poutoma,1 = Pr
{

log2(1 + ξ|G1|2)1/2 < R0

}
(2.15)

=

∫ 4R0−1
ξ

0

∫ ∞
t1

2

β2
e−

t1+t2
β dt2dt1 (2.16)

= 1− exp
(
−2(4R0−1)

βξ

)
.

For user 2 using OMA, the outage probability is given by

poutoma,2 =Pr
{

log2(1 + ξ|G2|2)1/2 < R0

}
(2.17)

=

∫ 4R0−1
ξ

0

∫ 4R0−1
ξ

t1

2

β2
e−

t1+t2
β dt2dt1, (2.18)

=1 + exp
(
−2(4R0−1)

βξ

)
− 2 exp

(
−4R0−1

βξ

)
.

Denote the NOMA outage probability for user n as poutnoma,n(a) such that

poutnoma,n(a) = Pr{Cnoma
n (a) < R0} for n = 1, 2. It should be obvious that

poutnoma,1(asup) = poutoma,1 and poutnoma,2(ainf) = poutoma,2. The outage probabilities

poutnoma,1(ainf) and poutnoma,2(asup) are provided in the following theorem.

Theorem 2.3.3. Outage Probabilities poutnoma,1(ainf) and poutnoma,2(asup):

(a) The outage probability for user 1 when a = ainf is given by

poutnoma,1(ainf) = 1 + e−
α2
β − 2

β

∫ ∞
α2

e−
t(α1+1)

β dt, (2.19)

where α1 and α2 are defined as

α1 = 2R0−1
ξt+2R0 (1−

√
1+ξt)

,

α2 = 4R0−2
2ξ

+
√

4R0−1
ξ2

+ (4R0−2)2
4ξ2

.
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(b) The outage probability for user 2 when a = asup is given by

poutnoma,2(asup) =1 + e−
2(4R0−1)

βξ − 2e−
2(2R0−1)

βξ + (2R0 − 1)

× e
(2R0−3)2

4βξ ·
√

π
βξ

[
erfc

(
2R0+1
2
√
βξ

)
− erfc

(
3(2R0 )−1
2
√
βξ

)]
. (2.20)

Proof. See appendices 2.7.3 and 2.7.4.

There is no closed form solution for the integral in poutnoma,1(ainf), however it can

be easily computed by a computer.

2.3.3 Comparison of Theoretical and Simulations Results

Fair-NOMA theoretical results are compared with simulation when β = 1. In

figure 2.2, the capacity of NOMA is compared with that of OMA for both users, in-

cluding the high SNR approximations. As can be seen, the theoretical derivations

match the simulation results. The performances of Cnoma
1 (ainf) and Cnoma

2 (asup) are

plotted. The simulation of E[Cnoma
1 (ainf)] matches the theoretical result in equa-

tion (2.10), and the simulation of E[Cnoma
2 (asup)] matches the theoretical result in

equation (2.11). The high SNR approximations show to be very close for values

of ξ > 25 dB. Since Coma
2 = Cnoma

2 (ainf) and Coma
1 = Cnoma

1 (asup), it is apparent

from the plots that the gain in performance is always approximately 1 bps/Hz for

one of the users and also the sum capacity when using Fair-NOMA [19].

Figure 2.3 plots the outage probabilites of OMA and NOMA for different

values of a and for R0 = 2 bps/Hz. The probability of user 1 experiencing an

outage is clearly greater than for user 2. However, the reduction of the outage

probability for user 1 using a = ainf becomes significant as ξ increases, to the

effect of nearly 1 order of magnitude drop-off when ξ is really large. The outage

probability reduction for user 2 is not as significant as the improvement made by
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Figure 2.2: Comparing the capacity of NOMA and OMA

user 1. However, when a = asup, the same outage probability can be obtained

using NOMA with ξ approximately 2 dB less than is required when using OMA.

Thus, even when the power allocation coefficient a is restricted to being in AFN,

the probability of users to be able to achieve their minimum service requirement

rates R0 is improved, and especially improved for the weaker channel gain. Even

when the power allocation coefficient a = (ainf + asup)/2, the outage probabilities

of both users improves significantly when using NOMA.

2.4 Fair-NOMA in Opportunistic User-Pairing

It has been suggested in [18] that the best NOMA performance is obtained

when user channel conditions are most disparate, i.e. pairing the user with the

weakest channel condition and the user with the strongest channel condition to-

gether. However, it is not known what the expected capacity gap is in this case,

particularly for the case when both users are allocated power such that they both

always outperform their OMA performance. Thus, the concept of Fair-NOMA is

21



0 5 10 15 20 25 30 35 40

 = Transmit SNR [dB]

10 -4

10 -3

10 -2

10 -1

10 0

o
u
ta

g
e
 p

ro
b
a
b
il
it
y

Outage probability for Fair-NOMA and OMA

p
1

O
 simulation

p
1

O
 theory

p
1

N
(a

inf
) simulation

p
1

N
(a

inf
) theory

p
1

N
(a)

p
2

O
 simulation

p
2

O
 theory

p
2

N
(a

sup
)

p
2

N
(a

sup
) theory

p
2

N
(a)

Figure 2.3: Outage probabilities of NOMA and OMA as functions of ξ.

applied to this user-pairing approach and the sum-rate capacity gap is analyized.

Suppose there exists a set of K mobile users in a cell, and two of these users

can be scheduled during the same transmission period. It is of particular interest

to select the users that have the largest difference in channel SNR gain. If the

channel SNR gains of the K users are i.i.d. Exponential( 1
β
), and the two selected

users have the minimum and maximum channel SNR gains, how much of an

improvement in the sum-rate capacity will be observed by using NOMA versus

OMA? This scenario is depicted in figure 2.4.

2.4.1 Analysis of Fair-NOMA with Opportunistic User-

Pairing

Let |G0|2 = min(|G1|2, . . . , |GK |2) and |GM |2 = max(|G1|2, . . . , |GK |2). In

order to compute the expected sum-rate capacity, the joint CDF F|G0|2,|GM |2(t0, tM)
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Figure 2.4: A cell-center user and a cell-edge user are paired for downlink
NOMA transmissions.

and PDF of f|G0|2,|GM |2(t0, tM) are needed. It is easily shown that

Pr{|GM |2 < tM} = Pr{|G0|2 < t0, |GM |2 < tM}+ Pr{|G0|2 > t0, |GM |2 < tM},

⇒ F|G0|2,|GM |2(t0, tM) = Pr{|G0|2 < t0, |GM |2 < tM}

= Pr{|GM |2 < tM} − Pr{|G0|2 > t0, |GM |2 < tM}. (2.21)

For Rayleigh fading channels, the first term on the right in equation (2.21) is the

CDF of the maximum of K i.i.d. exponential random variables, which is given by

Pr{|GM |2 < tM} = (1− e−
tM
β )K . (2.22)

The second term can be easily computed.

Pr{|G0|2 > t0, |GM |2 < tM} =

∫ tM

t0

· · ·
∫ tM

t0

K∏
k=1

e−
tk
β

β
dtk

=(e−
t0
β − e−

tM
β )K
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Therefore, the joint CDF is given by

F|G0|2,|GM |2(t0, tM) =(1− e−
tM
β )K − (e−

t0
β − e−

tM
β )K , (2.23)

and the joint PDF is

f|G0|2,|GM |2(t0, tM) =
K(K − 1)

β2
e−

t0+tM
β (e−

t0
β − e−

tM
β )K−2, (2.24)

for 0 < t0 < tM . The following theorem provides the sum-rate capacity increase

of NOMA when ξ|G0|2 � 1.

Theorem 2.4.1. Let {|G1|2, . . . , |GK |2} be the i.i.d. exponentially distributed

SISO channel SNR gains of K users, such that the two users selected for trans-

mission together have the minimum and maximum channel SNR gains. When

ξ |G0|2 � 1, the sum-rate capacity increase from OMA to NOMA for a = asup is

E[∆S(asup)] ≈
1

2
log2(K) +

1

2

K∑
m=2

(
K

m

)
(−1)m log2(m). (2.25)

Proof. See appendix 2.7.5.

Remark 1. This result is similar to the result obtained for the 2-by-2 MIMO case

in Lemma 2, equation 33 in [23], except a fixed-power allocation approach was

used there, whereas the result above uses a Fair-NOMA power allocation approach.

Although the expected capacity gap E[∆S(a)] increases when selecting a = asup,

caution should be used when utilizing the fixed-power approach to not set a too

close to the value of ainf. An approximation of the capacity gap using E[∆S(ainf)]
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for large ξ and K is given as

E[∆S(ainf)] ≈
e
K
βξ

ln(4)
E1

(
K

βξ

)
− log2

(
1 +

√
1 + ξ(ψ(K + 1) + γ)− 1)

K(ψ(K + 1) + γ)

)
,

where ψ(w) = Γ′(w)/Γ(w) is the digamma function, Γ(w) =
∫∞
0
uw−1e−udu is the

gamma function, and γ = −
∫∞
0
e−u ln(u)du is the Euler-Mascheroni constant. It

can be seen in figure 2.7 that as the number of users increases, the expected capacity

gap actually decreases. Therefore, even for fixed-power allocation approaches to

NOMA, a should be selected to be greater than ainf for the case of pairing minimum

and maximum channel gain users.

This result shows that the sum-rate capacity difference increases as a function

of K. However, this increase is slow. Nonetheless, there is a fundamental limit to

the amount the capacity can increase when using Fair-NOMA, while maintaining

the capacity of the weaker user equal to the capacity using OMA.

It is important to note that as the number of mobile users becomes very large,

while pairing the strongest and weakest users together will give us the greatest

increase in sum-rate capacity, it does not maximize sum-rate capacity itself. This

can be seen from theorem 2.3.1, which states that the sum-rate capacity actually

increases as the channel gain of the weaker user monotonically increases. A prac-

tical way of viewing this issue is that, as the number of users K increases, the

weakest user has channel gain that in probability is too weak to achieve the qual-

ity of service threshold rate R0. Should no outage rate be specified, the weaker

user achieves such a low capacity, that the stronger user contributes most of the

capacity, while using only half the transmit power, according to proposition 1

from [19]. Hence, a little more than half of the transmit power is nearly wasted.
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2.4.2 Comparing Simulation Results with Analysis

For the simulation results, the performance of Fair-NOMA combined with

opportunistic user-pairing is compared to the performance of OMA and fixed-

power NOMA. The simulations are run for different values of ξ and K. For

fixed-power NOMA, the power allocation coefficient is a constant value of a = 1
5
,

such that the weaker user is allocated 4
5

of the transmit power.

Figure 2.5 shows the average capacities of both the weakest and strongest

users versus K and for each case of a = ainf and asup. The capacity of the stronger

user is shown to exhibit the effects of multiuser diversity, since not only does its

channel gain grow as K increases, but also the power allocated also increases when

a = asup, thus providing the increase in capacity predicted in equation (2.25). In

the case of a = ainf the capacity is initially shown to increase as K increases, due

to ainf decreasing with |GM |2 according to proposition 1 from [19]. However, as

K continues to increase, the weakest users capacity eventually begins to decrease

due to its channel gain being the minimum of a large number of users, and thus

this term begins to dominate the capacity behavior.

The sum-rate capacity for Fair-NOMA with a = asup, fixed-power NOMA

with a = 1
5
, and OMA are shown in Fig. 2.6. As expected, the sum-rate capac-

ity for each user at lower values of ξ performs best when applying Fair-NOMA

when compared to fixed-power NOMA. This is because Fair-NOMA always guar-

antees a capacity increase, i.e. with probability 1, while fixed-power NOMA only

achieves higher capacity with probability as given in [18]. However, as ξ increases,

both capacities of Fair-NOMA and fixed-power NOMA approach the same value

asymptotically. This agrees with the result obtained that at high SNR, the ca-

pacity gain should reach a limit when ξ → ∞, no matter how much extra power

is allocated to the stronger user.
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Figure 2.5: Ergodic capacity with opportunistic user-pairing, ξ = 50 dB
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Equation (2.25) shows that the capacity gain made by pairing the nearest and

furthest cell-edge users is slow in K, and is due to the combined gain in capacity

achieved by the strongest user and loss in capacity by the weakest user. This

makes sense from multiple points of view. The expected value of power allocation

coefficient asup → 1
2

when K is large, due to the selection of the user with the

weakest channel gain. In other words, the weakest user needs less power in NOMA

to achieve the same capacity as with OMA as K increases. Hence, more power

goes to the stronger user. Figure 2.7 plots the simulation of E[∆S(asup)] for

ξ = 50 dB, and the approximation given by (2.25). Notice that the simulation

and approximation seem to slightly diverge as the number of users increases. This

is because the approximation in (2.25) needs a sufficiently large value of ξ as the

number of users increases for the simulation and approximation to become tighter.

However, ξ = 50 dB was used because it is a large but still realistic value of ξ.

Since the number of users K cannot become arbitrarily large, the approximation

remains tight for realistic values of ξ and K.

28



2.5 Multi-user NOMA Systems

So far, the treatment of Fair-NOMA has focused on the two-user case. How-

ever, downlink NOMA can be extended to more than two users paired on a com-

mon resource. If a BS serves K users in a cell, there can be more opportunity to

experience the benefits of NOMA when compared to the two-user case. However,

it must be determined whether or not there exists a fair power allocation approach

for the general K-user case.

Consider an OMA system, where K users have their information transmitted

over K orthogonal time slots (or frequency bands) during a total time of T (and

bandwidth B). For each user k, the capacity of user k is given by

Coma
k =

1

K
log2(1 + ξ|Gk|2),∀k = 1, . . . , K. (2.26)

When applying NOMA to this system, the information of each user occupies

the entire time T (bandwidth B) simultaneously. Hence, a superposition coding

strategy must be used, in which all K users must share the total transmit power

ξ. User k must perform SIC of each message that is intended for the other users l

that have weaker channel conditions than user k. The channel gains are ordered

as |G1|2 < · · · < |GK |2. Lets define the power allocation coefficients {b1, . . . , bK},

where bk is the power allocation coefficient for user k and

K∑
k=1

bk ≤ 1. (2.27)

Therefore, the capacity of user k for 1 ≤ k ≤ K is given by

Cnoma
k (b1, . . . , bK) = log2

(
1 +

bkξ|Gk|2

1 + ξ|Gk|2
∑K

l=k+1 bl

)
. (2.28)
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In order for Cnoma
k (b1, . . . , bK) > Coma

k , the inequality must be solved for bk assum-

ing that equation (2.27) is true. Since user K does not receive any interference

power after decoding all of the other users’ messages, solving for bK is straight

forward.

Coma
K ≤ Cnoma

K (b1, . . . , bK)⇒ bK ≥
(1 + ξ|GK |2)

1
K − 1

ξ|GK |2
. (2.29)

For users k = 1, . . . , K − 1, the power allocation for each user is conditioned on

Coma
k ≤ Cnoma

k (b1, . . . , bK) which results in

bk ≥
[(1 + ξ|Gk|2)

1
K − 1]

(
1 + ξ|Gk|2

∑K
l=k+1 bl

)
ξ|Gk|2

. (2.30)

As expected, the power allocation of the users with weaker channel gains depends

on the power allocation of the users with stronger channel gains. The power allo-

cation strategy (b1, . . . , bK) assigns to each signal the minimum power allocation

required in order for each user k = 1, . . . , K to achieve exactly the same capacity

using NOMA as with OMA.

Notice that in the above derivation, the total power allocation was not nec-

essarily used. Consider the case where
∑K

k=1 ak = 1 and the case where user 1

capacity in OMA and NOMA are equal. Therefore, Coma
1 = Cnoma

1 ⇒

⇒ log2(1 + ξ|G1|2)
1
K = log2

(
1 +

a1ξ|G1|2

1 + ξ|G1|2
∑K

l=2 al

)

⇒ (1 + ξ|G1|2)
1
K =

1 + ξ|G1|2

1 + ξ|G1|2(1− a1)
. (2.31)
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Solving for a1 gives

a1 =
1 + ξ|G1|2 − (1 + ξ|G1|2)

K−1
K

ξ|G1|2
. (2.32)

Note that both sides of equation (2.31) are greater than 1 which means 0 < a1 <

1,∀ξ > 0. Define A1 = 1− a1 as the sum of the interference coefficients to user 1.

Therefore,

A1 =
(1 + ξ|G1|2)

K−1
K − 1

ξ|G1|2
, (2.33)

and 0 < A1 < 1. In general, the power allocation coefficient required for the

NOMA capacity of user k to equal the OMA capacity of user k can be derived by

solving the equation

Coma
k = Cnoma

k (a1, . . . , aK)

⇒(1 + ξ|Gk|2)
1
K =

1 + Ak−1ξ|Gk|2

1 + (Ak−1 − ak)ξ|Gk|2
, (2.34)

∀k ∈ {2, . . . , K}, ξ > 0, where Ak−1 = 1 −
∑k−1

l=1 al. The following theorem for

the set of power allocation coefficients {a1, . . . , aK} arises from solving equation

(2.34).

Theorem 2.5.1. If the set of power allocation coefficients {a1, . . . , aK} are derived

from equations (2.31) and (2.34), then

ak ∈ (0, 1), and
K∑
k=1

ak ≤ 1, (2.35)

meaning that there always exists a power allocation strategy for NOMA such that

the capacities of each user can be at least as great as the capacity of OMA, when

the channel gains are known at the base-station.
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Proof. See appendix 2.7.6.

This is an important theorem, because it sets the precedent for the existence

of a set of NOMA power allocation coefficients that (i) achieves at least OMA

capacity for every user in the current transmission time period, and (ii) allows for

at least one user to have a capacity greater than OMA capacity.

The power allocation coefficient ak considers interference received from users

with higher channel gains to be at a maximum. However, the coefficients bk con-

sider the minimum power allocation. Note that in power allocation for multiuser

Fair-NOMA using ak coefficients, the allocation process begins with user having

weakest channel (first user) and allocate enough power to have a capacity of at

least equal to OMA capacity for the first user. Then, the process continues with

the next user until all the power is allocated amongst all users, i.e., the last user

with strongest channel receives the remaining power allocation that results in

higher capacity than OMA for that user. When bk coefficients are used for power

allocations, the power allocation process begins with the user with strongest chan-

nel, Kth user and assign enough power to achieve the same capacity as OMA for

that user. The process then continues with the next user until the process reaches

the first user. Therefore, it is clear that

bk < ak (2.36)

and Cnoma
k (b1, . . . , bK) < Cnoma

k (a1, . . . , aK),∀k. (2.37)

Hence, theorem 2.5.1 highlights that there always exists a power allocation scheme

in the general multiuser NOMA case that always achieves higher capacity than

OMA, while keeping the total transmit power to ξ. This minimum power allo-

cation requirement is demonstrated in figure 2.8. The most interesting aspect of
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Figure 2.8: Minimum total power allocation in NOMA required to achieve
capacity equal to OMA per user, K = 5

this result is that the same capacity of OMA can be achieved using Fair-NOMA

with potentially much less total transmit power by using bk coefficients. This can

be useful if the purpose of NOMA is to minimize the total transmit power in the

network.

2.6 Conclusions of Fair-NOMA

Fair-NOMA approach is introduced which allows two paired users to achieve

capacity greater than or equal to the capacity with OMA. Given the power alloca-

tion set AFN for this scheme, the ergodic capacity for the infimum and supremum

of this set is derived for each user, and the expected asymptotic capacity gain is

found to be 1 bps/Hz. The outage probability was also derived and it is shown

that when a = ainf, the outage performance of the weaker user significantly im-

proves over OMA, where as the outage performance of the stronger user improves

by at most roughly 2dB.
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Fair-NOMA is applied to opportunistic user-pairing and the exact capacity

gain is computed. The performance of Fair-NOMA is compared with a fixed-

power NOMA approach to show that even when the power allocation coefficient

a = asup becomes less than the fixed-power allocation coefficient, the capacity

gain is the same at high SNR, while Fair-NOMA clearly outperforms the fixed-

power approach at low SNR. Finally, for a K-user downlink NOMA system, it is

demonstrated that there always exists a power allocation strategy where each user

can perform at least as well as in OMA, when the BS knows the exact channel

gains.

The concept of Fair-NOMA can be extended to MIMO systems. In [23], a

similar result is found for the approximate expected capacity gap of a 2-user 2-by-

2 MIMO NOMA system. In order to eliminate the existing possibility that NOMA

does not outperform OMA in capacity for any user, the Fair-NOMA approach can

be applied to users that are utilizing the same degree of freedom from the BS.

By ordering the composite channel gains, which include the transmit and receive

beamforming applied to the channel, K users on the same transmit beam can

have their signals superpositioned, and then SIC can be done at their receivers

to obtain their own signal with minimum interference. Receive beamforming is

used to eliminate the interference from the transmit beams’ signals that are along

the remaining spatial degress of freedom. The power allocation region can then

be derived in the same manner as in Section 2.5, and NOMA can then be used

to either increase the capacity gap as is done in [23], or to minimize the transmit

power required to achieve the same capacity as in OMA, similar to what was done

in Section 2.5.

Lastly, it is important to note that although this approach can be used for

any downlink NOMA system (not only for SISO, but also MIMO), this approach
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has the limitation that it requires the BS to possess knowledge of the channel

gain values, which is unrealistic in a real cellular system deployments. Therefore,

the approach to designing power allocation stategies for downlink NOMA systems

with a BS not possessing the channel gain value is provided in chapter 4.

2.7 Proofs of Fair-NOMA Results

2.7.1 Proof of Theorem 2.3.1

Proof. For the case when a = ainf, the proof is trivial. Proving for the case when

a = asup then suffices to show it is true for all a ∈ AFN, because the CN
1 (a)

performance is lower-bounded by the case when a = asup, while for CN
2 (a) the

performance will only improve for a > ainf. In order for S to be monotonically

increasing function of |Gi|2, it must be shown that dS/d|Gi|2 > 0, ∀|Gi|2. In the

case of |G2|2, CN
1 (asup) does not factor in, so dS

d|G2|2 =
dCN

2 (asup)

d|G2|2 = asupξ

asupξ|G2|2 > 0,

∀|G2|2. The case of |G1|2 goes as follows.

dS

d|G1|2
=

1

ln 2

 ξ

2(1 + ξ|G1|2)
+

ξ|G2|2

2|G1|2
√

1+ξ|G1|2
+ |G2|2
|G1|4 (1−

√
1 + ξ|G1|2)

1 + |G2|2
|G1|2 (

√
1 + ξ|G1|2 − 1)



=

 ξ(|G1|4 + |G1|2|G2|2[(1 + ξ|G1|2)
1
2 − 1] + 2|G2|2(1 + ξ|G1|2)

+ξ|G1|2|G2|2(1 + ξ|G1|2)
1
2 − 2|G2|2(1 + ξ|G1|2)

3
2


2|G1|2 ln(2)(1 + ξ|G1|2)(|G1|2 + |G2|2(

√
1 + ξ|G1|2 − 1))

The numerator above can be simplified as

ξ|G1|4 + |G2|2
[
2ξ|G1|2

√
1 + ξ|G1|2 + ξ|G1|2 + 2− 2(1 + ξ|G1|2)

3
2

]
.
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The value inside the square brackets above can be simplified to

2 + ξ|G1|2 − 2
√

1 + ξ|G1|2.

Since 2 + ξ|G1|2 − 2
√

1 + ξ|G1|2 ≥ 0 because ξ2|G1|4 ≥ 0, then

⇒ξ|G1|4 + |G2|2(2 + ξ|G1|2 − 2
√

1 + ξ|G1|2) > 0

⇒ dS

d|G1|2
> 0.

Since |G1|2 < |G2|2, dS
d|G1|2 > 0, and dS

d|G2|2 > 0, then S is a monotonically increasing

function with respect to |G1|2 and |G2|2.

2.7.2 Proof of Theorem 2.3.2

Proof. For ξ � 1,

∆C1(ainf) ≈ ∆C2(asup) ≈ 1

2
log2(|G2|2)−

1

2
log2(|G1|2).

The expected value of ∆C1(ainf) and ∆C2(asup) is then

E
[

1

2
log2(

|G2|2

|G1|2
)

]
≈
∫ ∞
0

∫ t2

0

1

β2
e−

t1+t2
β log2(t2)dt1dt2 −

∫ ∞
0

∫ ∞
t1

1

β2
e−

t1+t2
β log2(t1)dt2dt1

=

∫ ∞
0

1

β
e−

t2
β log2(t2)dt2 −

∫ ∞
0

1

β
e−

2t2
β log2(t2)dt2 −

∫ ∞
0

1

β
e−

2t1
β log2(t1)dt1

(a)
=

∫ ∞
0

1

β
e−

t2
β log2(t2)dt2 − 2

∫ ∞
0

1

β
e−

2t2
β log2(t2)dt2

(b)
=

∫ ∞
0

1

β
e−

t2
β log2(t2)dt2 −

∫ ∞
0

1

β
e−

t
β log2(t)dx+

∫ ∞
0

1

β
e−

t
β log2(2)dx

(c)
=1,
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where (a) is true because the second two integrals are actually the same integral

adding together, (b) is true by making the substitution t = 2t2 for the second

integral in the previous line, and (c) is true because the first two integrals are the

same integral subtracting each other. Since SN(a) is a monotonically increasing

function of a, and SN(ainf)−SO = ∆C1(ainf) and SN(asup)−SO = ∆C2(asup), then

when ξ � 1, ∆S = SN(a)− SO ≈ 1,∀a ∈ AFN.

2.7.3 Proof of proposition 2.3.3(a)

Proof. The outage probability poutN,1(ainf) is given by

poutN,1(ainf) =Pr

{
log2

(
1 + ξ|G1|2

1 + ainfξ|G1|2

)
< R0

}
(2.38)

=Pr

{
|G1|2 <

|G2|2(2R0 − 1)

ξ|G2|2 + 2R0(1−
√

1 + ξ|G2|2)

}
(2.39)

Since |G1|2 < |G2|2, then there are two cases as

|G2|2 ≶
|G2|2(2R0 − 1)

ξ|G2|2 + 2R0(1−
√

1 + ξ|G2|2)
= α1. (2.40)

Solving above for |G2|2 gives

=⇒|G2|2 ≶
4R0 − 2

2ξ
+

√
4R0 − 1

ξ2
+

(4R0 − 2)2

4ξ2
= α2. (2.41)

This allows the event in equation (2.39) to be written as the two mutually exclusive

events given in

{
|G1|2 < α1

}
=
{
|G1|2 < |G2|2, |G2|2 < α2

}⋃{
|G1|2 < α1, |G2|2 > α2

}
. (2.42)
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The probability in equation (2.39) can then be written as Pr{|G1|2 < α1} =

Pr{|G1|2 < |G2|2, |G2|2 < α2}+ Pr{|G1|2 < α1, |G2|2 > α2}. The first probability

is equal to

Pr{|G1|2 < |G2|2, |G2|2 < α2} =

∫ α2

0

∫ t2

0

2

β
e−

t1+t2
β dt1dt2

= 1 + e−
2α2
β − 2e−

α2
β . (2.43)

The second probability is found to be

Pr{|G1|2 < α1, |G2|2 > α2} =

∫ ∞
α2

∫ α1

0

2

β
e−

t1+t2
β dt1dt2

= 2e−
α2
β − 2

β

∫ ∞
α2

e−
t2+α1
β dt2, (2.44)

where the integral in equation (2.44) has no known closed-form solution. Com-

bining equations (2.43) and (2.44), gives

poutN,1(ainf) = 1 + e−
2α2
β − 2

β

∫ ∞
α2

e−
t2+α1
β dt2 (2.45)

2.7.4 Proof of proposition 2.3.3(b)

Proof. The outage probability poutN,2(asup) is given by

poutN,2(asup) =Pr

{
log2

(
1 +
|G2|2

|G1|2
(
√

1 + ξ|G1|2 − 1)

)
< R0

}
(2.46)

=Pr

{
|G1|2 >

ξ|G2|4

(2R0 − 1)2
− 2|G2|2

2R0 − 1

}
. (2.47)
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Since 0 < |G1|2 < |G2|2 is always true, then the domain of |G2|2 that makes the

statement ξ|G2|4
(2R0−1)2 −

2|G2|2
2R0−1 > 0 true or false must be found, and thus gives us two

intervals for |G2|2, which can be derived from the following relationship

ξ|G2|4

(2R0 − 1)2
− 2|G2|2

2R0 − 1
≶ 0 (2.48)

=⇒|G2|2 ≶
2(2R0 − 1)

ξ
. (2.49)

For the case of |G2|2 < 2(2R0−1)
ξ

, which gives ξ|G2|4
(2R0−1)2 −

2|G2|2
2R0−1 < 0, the event is

explicitly written as

Aout
1 =

{
0 < |G1|2 < |G2|2, 0 < |G2|2 <

2(2R0 − 1)

ξ

}
. (2.50)

For the case of |G2|2 > 2(2R0−1)
ξ

, the interval for |G1|2 is ξ|G2|4
(2R0−1)2 −

2|G2|2
2R0−1 < |G1|2 <

|G2|2, so it must also be true that |G2|2 > ξ|G2|4
(2R0−1)2 −

2|G2|2
2R0−1 . This gives |G2|2 <

(2R0−1)2+2(2R0−1)
ξ

= 4R0−1
ξ

, and therefore the interval for this event is explicitly

written as

Aout
2 =

{
ξ|G2|4 − 2|G2|2(2R0 − 1)

(2R0 − 1)2
< |G1|2 < |G2|2,

2(2R0 − 1)

ξ
< |G2|2 <

4R0 − 1

ξ

}

Now the probability above can be derived by computing the probabilities of the

two disjoint regions as

Pr

{
|G1|2 >

ξ|G2|4

(2R0 − 1)2
− 2|G2|2

2R0 − 1

}
= Pr{Aout

1 }+ Pr{Aout
2 }. (2.51)

The first probability is computed by

Pr{Aout
1 } =

∫ 2(2R0−1)
ξ

0

∫ t2

0

2

β2
e−

t1+t2
β dt1dt2
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= 1 + e−
4(2R0−1)

βξ − 2e−
2(2R0−1)

βξ . (2.52)

Let K1 = 2(2R0−1)
ξ

and K2 = 4R0−1
ξ

. Then the second probability is given by

Pr{Aout
2 } =

∫ K2

K1

∫ t2

ξt22−2t2(2
R0−1)

(2R0−1)2

2

β2
e−

t1+t2
β dt1dt2 (2.53)

=

∫ K2

K1

2

β

(
e
−
(
t2
β
+
ξt22−2t2(2

R0−1)

β(2R0−1)2

)
− e−

2t2
β

)
dt2 (2.54)

The second term in the integral in equation (2.54) can be easily computed to be

∫ K2

K1

2

β
e−

2t2
β dt2 = −e−

2(4R0−1)
βξ + e−

4(2R0−1)
βξ . (2.55)

The first integral in equation (2.54) is computed by completing the square in the

exponent as

∫ K2

K1

2

β
e
−
(
t2
β
+
ξt22−2t2(2

R0−1)

β(2R0−1)2

)
dt2 =

∫ K2

K1

2

β
e
− ξ

β(2R0−1)2

(
t22+

t2(2
R0−1)(2R0−3)

ξ

)
dt2. (2.56)

Let φ = (2R0−1)(2R0−3)
ξ

Since

t22 + t2φ =

(
t2 +

φ

2

)2

−
(
φ

2

)2

, (2.57)

then equation (2.56) equals

=
2

β
e

(2R0−3)2

4βξ

∫ K2

K1

e
− ξ

β(2R0−1)2

(
t2+

(2R0−1)(2R0−3)
2ξ

)2

dt2. (2.58)
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By using the substitution

u(t2) =
1

2R0 − 1

√
ξ

β

(
t2 +

(2R0 − 1)(2R0 − 3)

2ξ

)
, (2.59)

the integral in equation (2.58) equals

=
2

β
e

(2R0−3)2

4βξ

∫ u(K2)

u(K1)

e−u
2 · (2R0 − 1)

√
β

ξ
du. (2.60)

= (2R0 − 1)e
(2R0−3)2

4βξ

√
π

βξ
· [erfc (u(K1))− erfc (u(K2))], (2.61)

where u(t) is obtained by equation (2.59), and thus u(K1) = 2R0+1
2
√
βξ

, u(K2) =

3(2R0 )−1
2
√
βξ

, and erfc(z) = 2√
π

∫∞
z
e−u

2
du is the complementary error function. Thus,

combining equations (2.52, 2.55, 2.61) results in equation (2.20).

2.7.5 Proof of Theorem 2.4.1

Proof. When ξ|G0|2 � 1, ∆S(asup) ≈ 1
2
(log2(|GM |2)− log2(|G0|2)). Therefore by

equation (2.62),

E [∆S(asup)]

≈
∫ ∞
0

∫ tM

0

1

2
log2(tM)

K(K − 1)

β2
e−

t0+tM
β (e−

t0
β − e−

tM
β )K−2dt0dtM

−
∫ ∞
0

∫ ∞
t0

1

2
log2(t0)

K(K − 1)

β2
e−

t0+tM
β (e−

t0
β − e−

tM
β )K−2dtMdt0 (2.62)

=

∫ ∞
0

log2(tM)
K

2β
e−

tM
β (1− e−

tM
β )K−1dtM −

∫ ∞
0

log2(t0)
K

2β
e−

Kt0
β dt0

=

∫ ∞
0

log2(tM)
K

2β
e−

tM
β

K−1∑
n=0

(
K−1
n

)
(−1)ne−

ntM
β dtM −

∫ ∞
0

log2(t0)
K

2β
e−

Kt0
β dt0

=
K−1∑
n=0

∫ ∞
0

log2

(
t

n+ 1

)
K

2(n+ 1)β

(
K−1
n

)
(−1)ne−

t
β dt−

∫ ∞
0

log2

(
t

K

)
1

2β
e−

t
β dt

41



=

∫ ∞
0

log2

(
K

t
·
K−1∏
n=0

(
t

n+ 1

)( K
n+1)(−1)n

)
1

2β
e−

t
β dt

=
1

2
log2(K) +

1

2

K∑
m=1

(
K
m

)
(−1)m log2(m).

2.7.6 Proof of proposition 2.5.1

Proof. It is already established that a1, A1 ∈ (0, 1). The power allocation coeffi-

cient for user 2 is found by the equation

(1 + ξ|G2|2)
1
K =

1 + A1ξ|G2|2

1 + (A1 − a2)ξ|G2|2

=⇒ a2 =
(1 + A1ξ|G2|2)[(1 + ξ|G2|2)

1
K − 1]

ξ|G2|2(1 + ξ|G2|2)
1
K

. (2.63)

If the following is true

1 <
1 + A1ξ|G2|2

1 + (A1 − a2)ξ|G2|2
< 1 + A1ξ|G2|2, (2.64)

then clearly a2 ∈ (0, A1). However, for equation (2.63) and inequality (2.64) to be

true, it must be true that

1 < (1 + ξ|G2|2)
1
K < 1 + A1ξ|G2|2. (2.65)

It is trivial to show that 1 < (1 + ξ|G2|2)
1
K ,∀ξ, |G2|2 > 0. To show that (1 +

ξ|G2|2)
1
K < 1 + A1ξ|G2|2,∀ξ > 0, the inequality is rearranged so that

γ2 < A1, (2.66)

42



where

γk =
(1 + ξ|Gk|2)

1
K − 1

ξ|Gk|2
. (2.67)

The inequality γ2 < A1 is clearly true because γ2 < γ1, and γ1 < A1 because

(1 + ξ|G1|2)
m
K < (1 + ξ|G1|2)

K−1
K ,∀m < K − 1. Therefore, equation (2.63) and

inequality (2.64) are true. In a similar manner, in order for the power allocation

coefficient ak for user k to be less than total interference Ak−1 received by user

k − 1, the following must be true:

ak =
(1 + Ak−1ξ|Gk|2)[(1 + ξ|Gk|2)

1
K − 1]

ξ|Gk|2(1 + ξ|Gk|2)
1
K

, (2.68)

1 <
1 + Ak−1ξ|Gk|2

1 + (Ak−1 − ak)ξ|Gk|2
< 1 + Ak−1ξ|Gk|2, (2.69)

1 < (1 + ξ|Gk|2)
1
K < 1 + Ak−1ξ|Gk|2. (2.70)

Equation (2.68) is true by solving eq. (2.34), while (2.69) states that ak ∈ (0, Ak−1)

and (2.70) requires that user k’s OMA capacity is feasible within ak ∈ (0, Ak−1),

given the channel condition of user k. Therefore, (2.70) leads to

γk < Ak−1 = Ak−2 − ak−1 =
Ak−2 − γk−1

(1 + ξ|Gk−1|2)
1
K

=⇒ Ak−2 >
(1 + ξ|Gk|2)

1
K − 1

ξ|Gk|2
(1 + ξ|Gk−1|2)

1
K +

(1 + ξ|Gk−1|2)
1
K − 1

ξ|Gk−1|2
(2.71)

Since the function

f(t) =
(1 + t)

m
K − 1

t
,∀m < K,m and K ∈ N (2.72)
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is a monotonically decreasing function of t, then

(1 + ξ|Gk|2)
1
K − 1

ξ|Gk|2
(1 + ξ|Gk−1|2)

1
K +

(1 + ξ|Gk−1|2)
1
K − 1

ξ|Gk−1|2
(2.73)

<
(1 + ξ|Gk−1|2)

1
K − 1

ξ|Gk−1|2
(1 + ξ|Gk−1|2)

1
K +

(1 + ξ|Gk−1|2)
1
K − 1

ξ|Gk−1|2
(2.74)

=
(1 + ξ|Gk−1|2)

2
K − 1

ξ|Gk−1|2
(2.75)

< Ak−2 = Ak−3 − ak−2

=
Ak−3 − γk−2

(1 + ξ|Gk−2|2)
1
K

(2.76)

=⇒ Ak−3 >
(1 + ξ|Gk−1|2)

2
K − 1

ξ|Gk−1|2
(1 + ξ|Gk−2|2)

1
K +

(1 + ξ|Gk−2|2)
1
K − 1

ξ|Gk−2|2
. (2.77)

The inequality in (2.77) has the same form as the inequality in (2.71), so the

same steps taken in inequalities (2.73) and (2.75) can be used repeatedly, until

the following is obtained

(1 + ξ|G1|2)
k−1
K − 1

ξ|G1|2
≤ A1, (2.78)

which is true ∀k ≤ K. Hence, this series of inequalities shows that the transmit

power allocation coefficient ak required for user k to achieve OMA capacity is

always less than the total interference coefficient received by user k − 1, which

equals the total fraction of power available for users k, . . . , K.
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Chapter 3

Downlink Cache-Aided NOMA

Systems

Caching and non-orthogonal multiple access (NOMA) are two candidate tech-

nologies to help the next generation of wireless cellular systems [2] to meet future

high throughput demands. Power-domain NOMA relies on superposition coding

(SC) at the transmitter, and successive interference cancellation (SIC) at the re-

ceiver [7] in order to achieve capacity in multi-user wireless systems. Given the

advanced storage and processing capabilities of current and future user terminals,

edge caching can be leveraged in the downlink by users with weaker channels in

a NOMA system. This approach is called cache-aided NOMA [27].

3.1 Introduction to Cache-Aided NOMA

In a cache-aided NOMA system, a user with stronger channel can use SIC to

remove the interference caused by the signal intended for the user with weaker

channel, while the user with weaker channel can use cache-aided interference can-

cellation (CA-IC) if it caches the information being requested by the stronger user.
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Figure 3.1: A cell-edge user possesses a cache of the information being requested
by a cell-center user, thus the BS pairs them for a DL NOMA transmission.

The rate for the stronger user does not have to be within the capacity region of the

weaker user’s wireless channel in order to perform CA-IC, unlike the case of the

stronger user for performing SIC on the weaker user’s signal. Thus this scenario

creates interference free channel at each user terminal for decoding its respective

signal. An scenario is illustrated in figure 3.1.

The results in this chapter have been motivated by the results in [27], but have

been generalized as a result of further studies.

3.1.1 Previous work on caching and NOMA

Caching at the edge of networks, including small Base Stations (BSs) and

device-to-device communications for future 5G wireless networks is described in

[24], where it was shown that caching is an energy efficient solution to help the

network improve coverage probabilities while maximizing spectral efficiency. In

[25], it is demonstrated that using decentralized coded caches at user terminals

increases the throughput capacity of the network, while alleviating the burden of

network traffic caching at BSs and helper nodes.

Recently, two techniques that combine caching and NOMA have been intro-

duced. The work in [27] focused on introducing the possibility of leveraging
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caching to facilitate the function of a downlink NOMA system for users with

i.i.d. channel gains. The difference between this work and [27] is that this work

considers the users to possess different distributions based on their path losses

(β), which benefits CA-NOMA but also creates new problems. The work in [26]

focuses on utilizing NOMA to facilitate the caching of content on servers. These

two works demonstrate that caching and NOMA are two technologies that should

be utilized in conjunction. This work aims to demonstrate that a power alloca-

tion region always exists that allows CA-NOMA to outperform regular NOMA

and OMA, and finds the union-outage probability minimizing power allocation

coefficient.

3.2 CA-NOMA System Model and Capacity

Consider a two-user orthogonal multiple access (OMA) single-input-single-

output (SISO) system. Let the total transmit time period be T , where users

are allocated equal non-overlapping time slots of length T/2, and allocated the

total transmit SNR ξ for that slot1. For each user k = 1, 2, if the BS is transmit-

ting signal xk (E[|xk|2] = 1), the channel SNR gain between the BS and user k is

Gk (|Gk|2 ∼ Exponential( 1
βk

)), where βk is the long-term average of the channel

SNR gain |Gk|2 given by how far user k is from the BS. Each receiver has noise

zk ∼ CN (0, 1), so the received signal at user k is given by yk =
√
ξGkxk + zk.

Since the time duration is 1
2
, then the capacity of user k in bps/Hz is given by

Coma
k = 1

2
log2(1 + ξ|Gk|2).

Without loss of generality, user 1 is labeled as the user farther from the BS, and

user 2 the close one to the BS, leading to the long-term statistic of the channel SNR

1The same OMA formulation can be made in the case of frequency division instead of time
division.
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Figure 3.2: Block diagram of DL CA-NOMA system.

gains to have the relationship β1 < β2. In a two-user NOMA system, where the BS

is transmitting the two signals using SC, the signal xi is carrying the information

for user i. The power allocation coefficients for users 1 and 2 are 1 − a and a,

respectively. The SC signal transmitted by the BS is then
√

(1− a)ξx1 +
√
aξx2,

thus the raw received signal at user i is

ri = Gi(
√

(1− a)ξx1 +
√
aξx2) + zi, i = 1, 2. (3.1)

As shown in figure 3.2, user 2 receives r2 and detects user 1’s signal, decodes

it, reconstructs x1, and performs SIC in order to obtain y2. However, in the event

that user 1 possesses a cache of the data requested by user 2, it can perform CA-IC

on r1, thus obtaining y2. The signals and associated capacities are thus given by

y1 =
√

(1− a)ξG1x1 + z1, y2 =
√
aξG2x2 + z2, (3.2)
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and

C1 = log2(1 + (1− a)ξ|G1|2), C2 = log2(1 + aξ|G2|2). (3.3)

However, the capacity for user 2 to decode and subtract user 1’s signal using SIC

is

C2→1 = log2

(
1 +

(1− a)ξ|G2|2

aξ|G2|2 + 1

)
(3.4)

When using regular NOMA, it is always true that if |G1|2 < |G2|2 → C1(a) <

C2→1(a). However, since CA-NOMA allows user 1 to subtract user 2’s interference,

this relationship of capacities no longer holds for CA-NOMA. Thus the effects of

CA-NOMA on outage performances is investigated.

3.3 CA-NOMA for Achieving a Minimum QoS

Rate

Suppose that users 1 and 2 have target rates R1 and R2, respectively, where

R1 < R2. The following definition gives the outage events for users 1 and 2.

Definition 1. For the following sets

B1 = {C1 < R1} =
{
|G1|2 < 2R1−1

(1−a)ξ

}
,

B21 = {C2→1 < R1} =
{
|G2|2 < 2R1−1

ξ(1−a2R1 )

}
, B22 = {C2 < R2} =

{
|G2|2 < 2R2−1

aξ

}
,

the outage event for user 1 is B1 and the outage event for user 2 is B2 = B21∪B22.

For user 2, it is clear that if B21 occurs, then the set B22 becomes unrealizable.

If any of these outage events occurs, then the system will fail to perform a suc-
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cessful NOMA transmission. The union outage probability, which is a function of

a, is then given by

pU-out(a) = 1− Pr{B1 ∩ B2}. (3.5)

For comparison, the OMA outage events are given by

Boma
k = {Coma

k < R} =
{
|Gk|2 < 4Rk−1

ξ

}
(3.6)

The simplest approach to power allocation in NOMA systems is fixed-power

allocation. The optimum power allocation coefficient aopt is then chosen to mini-

mize pU-out(a). However, defining the constraints for finding aopt is more complex

compared to [27], because having R1 6= R2 in general can give rise to the possibil-

ity for both users to simultaneously have better individual outage performances,

while that was not possible in [27].

3.3.1 Fixed power allocation conditions for successful CA-

NOMA

Suppose a fixed-power NOMA system is employed. The following proposition

outlines the fundamental power allocation requirements needed for CA-NOMA,

and provides the foundation for computing pU-out(a).

Proposition 1. Let the events B1, B21, B22, and B2 be defined as definition 1.

Also, let R1 < R2, and the set A = {a : B21 ⊂ B22}.

1. If B21 ⊆ B22, then B2 = B22 and

A =

(
0,

2R2 − 1

2R1+R2 − 1

)
, (3.7)
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where B21 ⊆ B22 occurs when a = sup{A}.

2. If a is selected such that B1 ⊆ Boma
1 and B2 = B22, then

a ≤ min

{
2R2 − 1

2R1+R2 − 1
,

2R1

2R1 + 1

}
, (3.8)

and the minimum is always given by 2R2−1
2R1+R2−1 if R1 ≥ log2 ϕ, where ϕ = 1+

√
5

2

is the golden ratio.

3. If B2 ⊆ Boma
2 , then a ≥ 1

2R2+1
, and the set

ACAN =

(
1

2R2 + 1
,

2R2 − 1

2R1+R2 − 1

)
(3.9)

is always a non-empty subset of A.

4. For ∀a ∈ A, 2R1−1
(1−a)ξ <

2R2−1
aξ

.

Proof. See appendix.

Since SIC requires event B21 to be true in order to make event B22 possible,

it is preferred that B21 ⊆ B22, which is the condition stated item (1) in the above

proposition. Item (2) shows the condition for user 1 to have better outage perfor-

mance when compared to OMA, and that as long as R1 ≥ log2 ϕ ≈ 0.694bps/Hz,

user 1’s outage performance is always better than OMA ∀a ∈ A. Furthermore,

it is easy to verify that for regular NOMA (without caching), a should still lie

within A, and user 1’s outage performance is always superior for CA-NOMA over

regular NOMA. Finally, item (3) is for the case when the engineer desires to have

both users 1 and 2 simultaneously outperform OMA, and item (4) will help set

up the calculation for pU-out(a) in (3.5).
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3.3.2 Outage Probability of CA-NOMA

Suppose the cell-edge user possesses the cache of the information that the

cell-center user is requesting. Also, assume that the cell-center user has a greater

instantaneous channel SNR gain and its information is transmitted a higher target

rate. The joint p.d.f. of |G1|2 and |G2|2, given that |G1|2 < |G2|2, can be easily

shown to be

f|G1|2,|G2|2(w1, w2) =
β1 + β2
β1β2

2

e
−w1
β1 e
−w2
β2 , (3.10)

Since pU-out(a) = 1− Pr{B1 ∩ B2}, and

Pr{B1 ∩ B2} = Pr{B1} − Pr{B1 ∩ B2}, (3.11)

where

Pr{B1} = e
− 2R1−1

(1−a)ξ ·
β1+β2
β1β2 , (3.12)

and

Pr{B1 ∩ B2} =− β1 + β2
β2

e
− 2R1−1

(1−a)ξβ1 e
− 2R2−1

aξβ2 +
β1
β2
e
− 2R2−1

aξ
·β1+β2
β1β2 + e

− 2R1−1
(1−a)ξ ·

β1+β2
β1β2 ,

(3.13)

then

pU-out(a) = 1 +
β1
β2
e
− 2R2−1

aξ
·β1+β2
β1β2 − β1 + β2

β2
e
− 2R1−1

(1−a)ξβ1 e
− 2R2−1

aξβ2 . (3.14)

The following lemma provides a tight approximation for the optimum power

allocation coefficient that minimizes equation (3.14), for reasonably high SNR

values.

Lemma 1. Let aopt = arg mina∈A pU-out(a). For large ξ, aopt is tightly approxi-
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mated by

aopt ≈ min{1
2

(√
2η −

√
2η − 4(K2

2
+ K1

2
√
2η+η

)
)
− L3

4
, sup(A)}, (3.15)

where K1 = L1 − 1
2
L2L3 + 1

8
L3
3, K2 = L2 − 3

8
L2
3, and

L1 = −2R2 − 1

β2ξ

(
3(2R2 − 1)

2R1 − 1
+ 1

)
,

L2 =
3(2R2 − 1)

β2ξ

(
2R2 − 1

2R1 − 1
+ 1

)
L3 =

2R1 − 1

β1ξ
− 2R2 − 1

β2ξ

(
2R2 − 1

2R1 − 1
+ 1

)
− 1, (3.16)

and η is defined in the appendix.

Proof. See appendix.

3.4 Comparison of theoretical and simulation

results

In figure 3.3, the propositions made in proposition 1 are demonstrated com-

pletely. The plot of pU-out(a) clearly shows that a should always be selected to

be in A. Once a is outside this region, pU-out(a) quickly approaches 1. Figure

3.4 demonstrates the significant performance gap in pU-out(a) for CA-NOMA over

both regular NOMA and OMA for the case of users with very disparate path

losses.
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3.5 Conclusion and Future Work

The fundamental requirements on power allocation for CA-NOMA are out-

lined, and their effects on the set of power allocation coefficients that allow this

system to function are derived. It is proven and verified through analysis and

simulations that the set of power allocation coefficients and the optimum value

always exist and always improve the system performance. This work focuses on

the downlink case. A similar investigation of leveraging caching in uplink NOMA

systems is needed.

3.6 Proofs

The proofs of the items in the proposition are provided below.

3.6.1 Proof of proposition 1

1. If B21 ⊆ B22, then

2R1 − 1

ξ(1− a2R1)
≥ 2R2 − 1

aξ
. (3.17)

Solving the above inequality for a provides the result.

2. B1 ⊆ Boma
1 implies 2R1−1

(1−a)ξ ≤
4R1−1
ξ

. Solving for a gives

a ≤ 2R1

2R1 + 1
,

which increases as R1 increases. Since B2 = B22 implies that a ≤ 2R2−1
2R1+R2−1 ,
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the minimum of these two constraints is determined by

2R1

2R1 + 1
≶

2R2 − 1

2R1+R2 − 1
(3.18)

⇒22R1 − 2R1 + 2−R2 − 1 ≶ 0 (3.19)

⇒R1 ≶ log2

(
1 +
√

5− 4× 2−R2

2

)
(3.20)

Letting R2 →∞ gives the desired result.

3. B2 ⊆ Boma
2 implies

2R2 − 1

aξ
≤ 4R2 − 1

ξ
⇒ a ≥ 1

2R2 + 1
. (3.21)

The set AFN is always non-empty if

1

2R2 + 1
<

2R2 − 1

2R1+R2 − 1
,

which is always true as long as R1 < R2.

4. If

2R1 − 1

(1− a)ξ
<

2R2 − 1

aξ
⇒ a <

2R2 − 1

2R1 + 2R2 − 2
. (3.22)

However, since a ∈ A ⇒ a < 2R2−1
2R1+R2−1 , then

2R2 − 1

2R1+R2 − 1
<

2R2 − 1

2R1 + 2R2 − 2
(3.23)

⇒0 < 2R1+R2 − 2R1 − 2R2 + 1 = (2R1 − 1)(2R2 − 1), (3.24)

which is true ∀R1, R2 > 0.
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3.6.2 Proof of lemma 1

The minimum is found by taking the derivative with respect to a, which is

dpU-out(a)

da
=

(β1 + β2)(2
R2 − 1)

a2ξβ2
2

e
− 2R1−1

aξ
·β1+β2
β1β2

+
β1 + β2
β2

(
2R1 − 1

(1− a)2ξβ1
− 2R2 − 1

a2ξβ2

)
e
− 2R1−1

(1−a)ξβ1
− 2R2−1

aξβ2 .

Using the power series of the exponential, e−t =
∑∞

k=0
(−t)k
k!

= 1 − t + O(t2), the

above can be approximated for high SNR using the first two terms of the power

series. Setting this approximation equal to zero and some algebraic manipulations

gives the following

0 = a4 + L3a
3 + L2a

2 + L1a+ L0, L0 =
(2R2 − 1)2

ξβ2(2R1 − 1)
(3.25)

where L1, L2, and L3 are defined in the lemma statement. This equation is the

standard quartic equation, which is solved [29] by substituting a = b − L3

4
and

solving for b. This results in

0 = b4 +K2b
2 +K1b+K0, (3.26)

where K0 = L0− 1
4
L1L3+ 1

16
L2L

2
3− 3

256
L4
3, and K1 and K2 are defined in the lemma

statement. By adding K2
2/4 to both sides of the equation and manipulating, the

following is obtained

(b2 +
K2

2
)2 =

K2
2

4
−K1b−K0. (3.27)

Adding the quantity η2 +K2η + 2b2η to both sides and simplifying results in

(b2 +
K2

2
+ η)2 = 2b2η −K1b+

K2
2

4
−K0 + η2 +K2η. (3.28)
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The right side above is a perfect square if

0 = η3 +K2η
2 + (

1

4
K2

2 −K0)η −
1

8
K2

1 , (3.29)

which is the general cubic equation, which is solved in [28] and demonstrated

in [27]. Call q0 = 1
108
K3

2 + 1
3
K0K2 − 1

8
K2

1 and q1 = − 1
12
K2

2 −K0, then

η = −K2

3
+

3

√
q0 +

(
q20 +

4

27
q31

) 1
2

− 3

√
−q0 +

(
q20 +

4

27
q31

) 1
2

. (3.30)

Using this value for η simplifies (3.28) into

b2 − b
√

2η + η +
K − 2

2
+

K1

2
√

2η
= 0 (3.31)

Solving this quadratic and substituting back into a = b − L3

4
, while also keeping

in mind that a must be in A yields the result in equation (3.15).
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Chapter 4

Fundamentals of Power

Allocation Strategies for

Downlink Multi-user NOMA

with Target Rates

For downlink multi-user non-orthogonal multiple access (NOMA) systems with

successive interference cancellation (SIC) receivers, and a base-station not pos-

sessing the instantaneous channel gains, the fundamental relationship between

the target rates and power allocation is investigated. It is proven that the to-

tal interference from signals not removed by SIC has a fundamental upper limit

which is a function of the target rates, and the outage probability equals one when

exceeding this limit. The concept of well-behaved power allocation strategies is

defined, and its properties are proven to be derived solely based on the target

rates. The existence of power allocation strategies that enable NOMA to outper-

form OMA in per-user outage probability is proven, and are always well-behaved
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for the case when the outage probability performance of NOMA and OMA are

equal for all users. The proposed SIC decoding order is then shown to be the

most energy efficient. The derivation of well-behaved power allocation strategies

that have improved outage probability performance over OMA for each user is

outlined. Simulations validate the theoretical results, demonstrating that NOMA

systems can always outperform OMA systems in outage probability performance,

without relying on the exact channel gains.

The results in this chapter have been published in [43].

4.1 Introduction

Due to the rapidly increasing demand for higher data-rates, more connected

users and devices, and diversity of deployments, power-domain non-orthogonal

multiple access (NOMA) is being sought to help improve the capacity and user

multiplexing of downlink (DL) and uplink cellular systems [1]. The 3rd Generation

Partnership Project has already conducted the study items for both downlink

NOMA for LTE-Advance [3], and for uplink NOMA in New Radio (NR) [4].

With the attention that NOMA receives from the academic, private, and standard

sectors, it is only a matter of time before NOMA is implemented in future wireless

system deployments.

Consider BS serving multiple users in a cell as depicted in figure 4.1. The BS’s

scheduler will determine whether the users can support the target rates required

of their requested information, given a certain time-frequency resource allocation.

Assuming that the BS determines that a set of users’ channel can support their

respective target rates, it will then schedule a NOMA downlink transmission to

these users.

Although it is proven in [22] that there always exists a power allocation ap-
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Figure 4.1: A BS serving multiple users in a cell in the downlink.

Figure 4.2: An example of three users sending their CSI reports to the BS, and
the time-gap between reports and the downlink transmission.

proach for NOMA that can outperform OMA for the general multi-user NOMA

case in terms of information capacity, this power allocation strategy relies on the

BS having perfect instantaneous channel state information (CSI) at the trans-

mitter, i.e. the exact channel gain value, which is not a realistic assumption in

wireless system deployments. This is due to the limitations of the CSI formats

that are fed back by the users to the BS, and time gaps between channel estima-

tion by the BS and the associated downlink transmissions as shown in figure 4.2.

In 4G and 5G system deployments [30], the BS determines whether a target rate

can be supported based on realistic CSI formats (rank indicator, precoding matrix

indicator, channel quality indicator, etc.), and selects the remaining transmission

parameters which will accommodate the downlink transmission at the indicated

target rate. Therefore, it is important that a DL NOMA system be able to deter-

mine the power allocation for all NOMA users based on the available information

in real system deployments, and not the exact channel gain values.
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In this chapter, it is assumed that the BS has determined that the target rates

can be supported by the channels for all users, but that it does not possess the

full CSI in the form of the channel gains, and must determine the NOMA power

allocation strategy based on the available information. For the baseline OMA

system which NOMA will be compared to, a general TDMA approach is used

with each user being allocated a fraction of the total transmit time duration, and

the BS uses full transmit power for each transmission. For the NOMA system,

the transmit power allocation strategy and associated SIC decoding order are

completely determined by the users’ target data rates and the associated OMA

transmit time durations. It is proven that a power allocation strategy must be

such that the received interference coefficient for each signal must be below a fun-

damental threshold in order to not experience unavoidable outages. The concept

of well-behaved power allocation strategies is defined, and shown that these strate-

gies satisfy the interference requirement. It is then proven that there always exists

a power allocation strategy such that all users will have NOMA outage probability

performance equal to that of OMA, that the proposed SIC decoding order is the

most energy efficient, and that such a strategy is always well-behaved. Finally,

the approach to derive a well-behaved power allocation strategy is outlined, such

that a user can achieve better outage probability performance with NOMA over

OMA.

4.2 Previous Work and Current Contribution

The outage probability of NOMA was investigated in [8], where multiple users

transmit simultaneously to multiple receivers using a uniform power allocation

approach, and it was shown the outage probability is improved when NOMA is

combined with H-ARQ vs OMA with H-ARQ. The authors in [14] showed that
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the power allocation and interference coefficients of each user are fundamentally

dependent on the particular user’s required rate, and thus the wrong selection of

coefficients can lead to an outage with probability equal to 1. The usage of NOMA

in a cognitive-radio inspired approach was mentioned in [18], where a user with

weak channel condition is seen as the primary user and is provided as much power

as needed in order to achieve its minimum rate, and the user with stronger channel

is treated as the secondary user and receives any remaining power not allocated

to the weaker user, and the outage probability of both is shown to clearly depend

on pairing users with stronger channels.

A couple of works have focused on utilizing the rate achieved using OMA

as the minimum rate required for NOMA, and the associated power allocation

solution which achieves this condition. The region of power allocation coefficients

that allow NOMA to outperform OMA in the downlink is first defined for the

two-user case in [19]. The authors in [21] then use a power allocation approach in

this region to analyze the outage performance and diversity orders of two paired

users, according to their relative channel gains, and extend the work to the uplink

case. In [22], the power allocation coefficients for a multi-user NOMA system

which always outperforms OMA are proven to always have a sum less than or

equal to 1, and hence a valid power allocation strategy for NOMA always exists

that outperforms OMA in terms of capacity, while using less power than OMA.

The work in [31] extends the concept of power allocation fairness with regards

to NOMA compared to OMA, showing there always exists a power allocation for

NOMA that allows the rate to outperform the rates of the generalized FDMA

case with optimizing resource allocation. In [32], the authors prove that for any

power and resource allocation in FDMA, there always exists a power allocation

strategy that will provide a superior sum-rate and ergodic rate for NOMA over
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OMA, while developing a user admission scheme to maintain a balance between

the number of total admitted users and sum-rate performance.

More recent works have focused on optimizing the power allocation strategy.

The authors in [33] propose a joint optimization of user pairing and power allo-

cation by optimizing a cost function dependent on the instantaneous achievable

rates and a metric based on proportional fairness. The scheduling and power

allocation algorithm that solves the optimization problem is compared to the

fractional transmit power control algorithm and shown to improve performance

for the user with stronger channel, while performance is not always improved for

the user with weaker channel. The work in [34] uses a new algorithm to solve

the cognitive radio NOMA power allocation problem which can outperform the

fractional transmit power algorithm for admitting secondary users into the net-

work. In [35], the authors seek to optimize the sum-rate of a multi-user downlink

NOMA system by using a constraint based on the total power allocated to the

signals at each SIC stage, and its relation to the minimum required rate for each

signal to be decoded. The authors in [36] studied several algorithms that solve

the NOMA power allocation problem, and point out that not many existing works

had considered the strict constraint for the power allocations to follow the order

of SIC decoding in their algorithms. They proposed to incorporate the match-

ing algorithm and optimum power allocation, and found that the constraint has a

significant impact on the power allocation solution, which also yields superior per-

formance over existing schemes. In [37], a new solution is proposed for a system

that clusters users in order to solve the joint beamforming and power allocation

problem by breaking the problem up into two separate sub-problems, where the

goal is to maximize the sum-rate of each cluster. In [38], the authors propose a

joint resource (bandwidth) and power allocation approach that optimizes a cost
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function that is an affine function of the power allocations and bandwidths. It

is demonstrated that this algorithm can outperform the approach of simply opti-

mizing the power allocations with fixed bandwidths, as well as the baseline OMA

approach. The work in [39] proposes a joint beamforming and power allocation

solution to a coordinated multi-point MIMO-NOMA system, where the intra-cell

interference between clusters is cancelled through transmit beamforming, and the

power allocation is designed to maximize one user’s rate, while maintaining the

rate of the second user. In [40], the authors derive a weighted sum-rate maxi-

mization algorithm to find the power allocation per subcarrier for a pair of users,

and show that the performance of their approach improves as the diversity order

of the system increases. In [41], the authors study the power allocation approach

for multi-tiered cellular networks with cell-center users and a cell-edge user who

is eligible for coordinated multi-point transmission. A joint power optimization

algorithm is formulated, including target rates for each user, and due to the pro-

hibitive complexity, a distributed power optimization problem is formulated and

shown to exhibit near optimum performance. The constraint on the power allo-

cation coefficients relies on a linear function derived from the SINR for each SIC

stage.

In the previous works, the power allocation constraints either do not consider

the necessary requirements for successful SIC performance, or use constraints that

do not give the fundamental relationship between power allocation and outage,

such that an outage event is certainly avoided. In other words, the target rates

and power allocation required to ensure whether successful SIC performance is

even feasible at each stage of SIC decoding for each user is not directly considered,

and this can cause unnecessary unavoidable outages to occur for multiple users.

In fact, this phenomenon was described and demonstrated in [27] for two-user
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cache-aided NOMA systems, and in [42] for multi-user downlink NOMA systems

with a QoS constraint.

The main contribution of this chapter is to provide a comprehensive theoretical

treatment of power allocation strategies, and how they are related to the SIC

decoding order selected, the associated target rates of the users, and any associated

OMA parameters that affect the design of the NOMA power allocation coefficients,

while not relying on the channel gain value. In particular, this chapter provides

the following:

• The fundamental maximum interference that a particular signal can tolerate

from other NOMA users before its outage probability is equal to 1, regardless

of how strong the channel SNR gains are;

• The definition of a well-behaved power allocation strategy, which causes the

outage thresholds to be lesser for the signals of users that are earlier in

the SIC decoding order. This condition is then shown to always lead to an

acceptable value of NOMA interference;

• The baseline power allocation strategy which achieves outage performance

equal to that of OMA for all users is derived in closed-form, and is used to

prove that the proposed decoding order is energy efficiency optimal;

• The baseline power allocation strategy is used to derive the conditions for

acquiring a power allocation strategy where all users have superior NOMA

outage performance over OMA, the exact approach for increasing the power

allocation beyond the baseline strategy is outlined in detail, and a quick

example of a power allocation strategy that satisfies all of these conditions

is presented along with its performance.

The necessity of such results in further studies of NOMA is clear, in the sense
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that when performing numerical studies of different algorithms applied to solve

the power allocation problem for complex cellular deployments, the search space

for the multi-user power allocation strategies can be greatly reduced to the subset

of strategies that are well-behaved and improve the outage performance of NOMA

over OMA.

4.3 System Model

Consider a wireless downlink system serving K users. The BS will transmit K

multiplexed signals to the K users. Let the signal for user n be xn, n = 1, . . . , K,

such that xn is complex normally distributed with E[|xn|] = 1, and is transmitted

with transmit SNR ξ through a wireless slow fading channel with SNR gain |Gn|2.

The channel gain Gn can be one of many fading channels, such as a Rayleigh

fading channel |Gn|2 ∼ Exponential(βn), where the value βn can depend on the

distance from the BS, or a MIMO fading channel Hn with precoding vector p at

the transmitter and detection vectors vn at the receivers, such that the overall

channel SNR gain is |Gn|2 = |vnHnp|2. The channel gain is not assumed to be

known at the BS.

In the case of OMA, the general TDMA model is used and this resource al-

location is depicted in figure 4.3. For a normalized total transmit time duration,

the fractional time duration allocated to user n is τn, such that
∑K

n=1 τn = 1. The

received signal at user n is given by yn =
√
ξGnxn+zn, where zn ∼ CN (0, 1) is the

receiver thermal noise. Since user n is allocated τn fraction of the total time re-

source, the capacity of user n using OMA is given by Coma
n = τn log2 (1 + ξ|Gn|2).

For the NOMA system, user n has power allocation coefficient an, such that
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Figure 4.3: The time resource is allocated to each users’ transmission by the
BS.

∑K
n=1 an = 1. The received signal at user n is

rn = Gn

K∑
l=1

xl
√
alξ + zn. (4.1)

Using SIC, the receiver at user n, n > 1, will decode the messages of users m < n

in ascending order, starting with m = 1 (the SIC decoding order details are

discussed in section 4.4). Therefore, user n will perform SIC on the signals of user

m = 1, . . . , n− 1, which have the form

yn→m = Gn

 xm
√
amξ︸ ︷︷ ︸

user-m signal for SIC

+
K∑

l=m+1

xl
√
alξ

+ zn, (4.2)

until it can obtain the intended signal for user n given by

yn = Gn

 xn
√
anξ︸ ︷︷ ︸

user-n signal

+
K∑

l=n+1

xl
√
alξ

+ zn, (4.3)

where
∑K

l=n+1 xl
√
alξ are the signals that need not be decoded using SIC by user

n in order to decode its own signal, and thus are treated as interference.

For the power allocation coefficients a1, . . . , aK , the capacity of the channel for
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user n < K is

Cn(a1, . . . , aK) = log2

(
1 +

anξ|Gn|2

1 + ξ|Gn|2
∑K

l=n+1 al

)
, (4.4)

and user K has capacity

CK(a1, . . . , aK) = log2

(
1 + aKξ|GK |2

)
. (4.5)

Meanwhile, for each user n to achieve its capacity, it must have the capacity

to decode the messages sent to all users m < n, and then subtract their signals

from the composite signal received. The capacity of the channel which user n will

use to decode user m’s message is given by

Cn→m(a1, . . . , aK) = log2

(
1 +

amξ|Gn|2

1 + ξ|Gn|2
∑K

l=m+1 al

)
. (4.6)

4.4 Basics of NOMA power allocation for sys-

tems with target rates

Let each user n have its information transmitted at a target rate Rn. First,

define the event when user n experiences an outage in an OMA system as

Boma
n = {Coma

n < Rn} =

{
|Gn|2 <

2Rn/τn − 1

ξ

}
. (4.7)

Since the goal of NOMA is to outperform OMA with respect to certain metrics

(outage probability in this study), the OMA parameter τn and associated outage

events affect the selection of the NOMA power allocation strategy. Considering

that the OMA outage event can be normalized by dividing by τn, yielding the
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Figure 4.4: The OMA outage threshold grows exponentially with Rn
τn

, hence
NOMA SIC decoding order should follow the ordering of this ratio.

normalized rate Rn
τn

, this normalized rate can be used as the quantity for deter-

mining the SIC decoding order. This quantity can also be seen from equation

(4.7) as the determining factor for the value of the OMA outage threshold, due to

the fact that the outage is an exponential function of this ratio as shown in figure

4.4. So selecting the decoding order based on increasing OMA outage thresholds

seems intuitive, since the NOMA outage thresholds will be directly compared to

the OMA outage thresholds when finding the power allocation strategy.

Let the ordering of the user indices follow the ordering of the relationship Rn
τn

,

such that indices (1, . . . , K) correspond to R1

τ1
< · · · < RK

τK
. A user n = 1, . . . , K,

will experience an outage during the decoding process of its information if any of

the following occurs:

Cn(a1, . . . , aK) < Rn OR Cn→m(a1, . . . , aK) < Rm, (4.8)

for any m < n. Define the following events based on the specific signal which user

n needs to detect and decode, where n = 2, . . . , K, and m < n,

Bn = {Cn(a1, . . . , aK) < Rn} (4.9)

Bn→m = {Cn→m(a1, . . . , aK) < Rm}.
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The NOMA outage event Bout
n at user n can then be described as

Bout
n = Bn ∪

(
n−1⋃
m=1

Bn→m

)
. (4.10)

Note that Bout
1 = B1 because user 1 does not perform SIC in order to decode its

own signal.

4.4.1 Certain outage in NOMA transmissions

From the definition of the NOMA outages, the following theorem is obtained.

Theorem 4.4.1. For a K-user DL NOMA system with user target

rates R1, . . . , RK and power allocation coefficients a1, . . . , aK, define An =∑K
l=n+1 al,∀n = 1, . . . , K − 1, which is the interference coefficient in the received

signal that users n, . . . ,K will use to detect and decode user n’s information. If

∃n such that An > 2−
∑n
l=1Rl, then for user n and ∀l > n,

Pr{Bn} = Pr{Bl→n} = 1, (4.11)

and thus SIC will fail for all users l = n, . . . ,K.

Proof. See appendix 4.8.1.

Theorem 4.4.1 demonstrates that there is a fundamental relationship between

the set of target rates Rn and associated power allocation coefficients an, n =

1, . . . , K. It also demonstrates that as these target rates increase, the values of

an decrease rapidly, indicating that as the target rates increase for users earlier in

the SIC decoding order, the amount of available power to the users later in the

decoding order decreases.

71



Figure 4.5: Left: The capacity to decode signal m will always fall below the
target rate when Am exceeds the threshold.
Right: The capacity to decode signal m can be met by channels with large enough
received SNR gains when Am is below the threshold.

Note that this does not indicate that the rate for user n is guaranteed if

An < 2−
∑n
l=1Rl , since the total power allocation available to users n, . . . ,K may

be less than 2−
∑n
l=1Rl to begin with. In fact, a bound that is more case specific

to the actually selected power allocation coefficients, as outlined in [14], is

An−1 > An2Rn , n = 2, . . . , K − 1. (4.12)

However, although it is a more strict bound, it is dependent on the specific case

of power allocation coefficients, whereas the bound provided in theorem 4.4.1 is

a fundamental upper limit on the received interference coefficient that cannot be

exceeded by any power allocation scheme. So a set of power allocation coefficients

that satisfy equation (4.12) also satisfy theorem 4.4.1. An illustration of the

channel capacity limit of an interference channel is provided in figure 4.5. The

channel capacity of an interference channel will always have an upper limit, and

hence the larger the interference, the lower this limit becomes.

With the assumption that the power allocation coefficients are selected such

that An =
∑K

l=n+1 al < 2−
∑n
l=1Rl , it should also be noted that in order for the SIC
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process to reach a decoding stage n, it does so with a certain probability at each

user k ≥ n. In other words, if users k = n, . . . ,K are going to avoid an outage,

they must sequentially decode messages m = 1, . . . , n successfully in the process.

Given the sequential nature of the decoding process, it is therefore desirable that

the initial decoding stages have lower outage probabilities.

4.4.2 Well-behaved power allocation strategies

In light of theorem 4.4.1, the outage events Bn, n = 1, ..., K−1, and Bn→m, n =

2, ..., K, can be rewritten as

Bn =

{
|Gn|2 <

2Rn − 1

ξ(an − (2Rn − 1)
∑K

l=n+1 al)

}
(4.13)

Bn→m =

{
|Gn|2 <

2Rm − 1

ξ(am − (2Rm − 1)
∑K

l=m+1 al)

}
,

for m = 1, . . . , n − 1, and BK =
{
|GK |2 < 2RK−1

aKξ

}
. This means that the overall

outage event Bout
n can be expressed as

Bout
n =

{
|Gn|2 <

2Rn − 1

ξ(an − (2Rn − 1)
∑K

l=n+1 al)

}
(4.14)

∪

(
n−1⋃
m=1

{
|Gn|2 <

2Rm − 1

ξ(am − (2Rm − 1)
∑K

l=m+1 al)

})
.

It is not desirable that a user n’s outage probability be primarily dictated by

the success or failure of the earlier decoding stages. Since each event in equation

(4.14) is determined by a finite length interval in the form of (0, α) ⊂ R+, it is

clear that ∃k, 1 ≤ k ≤ n, such that ∀m = 1, . . . , n,

2Rk − 1

ξ(ak − (2Rk − 1)
∑K

l=k+1 al)
≥ 2Rm − 1

ξ(am − (2Rm − 1)
∑K

l=m+1 al)
, (4.15)
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⇒ Bout
n = Bk. This leads to the following proposition.

Proposition 2. For a K user DL NOMA system with target rates R1, . . . , RK, if

the associated power allocation coefficients a1, . . . , aK are selected such that Bout
n =

Bn,∀n = 1, . . . , K, then

an ≥ an+1
2Rn+1(2Rn − 1)

2Rn+1 − 1
, n = 1, . . . , K − 1, (4.16)

and An =
∑K

l=n+1 al < 2−
∑n
l=1Rl, satisfying the requirement from theorem 4.4.1.

Proof. See appendix 4.8.2.

The above proposition provides the relationship between the power allocation

strategies and the desired outage events. In other words, the outage probability to

decode user n’s information should not be determined by an outage event during

a SIC stage, but by the outage event of its own signal. Also, note that this

condition also favors the decoding probability of all users whose signals are earlier

in the SIC decoding order, as it places a lesser upper bound on the amount of

NOMA interference received. From here on, any power allocation strategy which

satisfies proposition 2, and by extension theorem 4.4.1, will be defined as being a

well-behaved strategy.

The concept of well-behaved is not simply a preference, but an essential com-

ponent for selection of an efficient NOMA power allocation strategy which aims

to improve the outage performance over OMA for any user n without having their

performance sabotaged by an earlier SIC decoding stage m. For example, sup-

pose ∃m and n, m < n, for a non-well-behaved power allocation strategy such that

Bn ⊂ Bm→n, then Bout
n = Bm→n. Furthermore, let the power allocation strategy

be such that Bm = Boma
m . This means that the outage probability of user n is

no longer a function an because Bout
n =

{
|Gn|2 < 2Rm−1

ξ(am−(2Rm−1)
∑K
l=m+1 al)

}
remains
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constant. Hence, power allocation to user n can essentially be increased without

any benefit to performance, which is something that should be avoided.

4.4.3 NOMA power allocation strategies that achieve out-

age performance equal to OMA

Another requirement for a NOMA power allocation strategy is that the out-

age probability performance is equal to or better than the outage probability

performance of OMA. First, the following power allocation strategies are formally

defined in the following.

Definition 2. For a user n:

(i) The power allocation coefficient aoma
n is defined as the exact power allocation

required such that user n achieves the same outage probability performance

as it would achieve using OMA. In other words, Bn = Boma
n ;

(ii) The power allocation coefficient ãoma
n is defined as the minimum power al-

location such that Bn = Boma
n , which can only be applied when all users

l = n+ 1, . . . , K also have power allocation ãoma
l ;

(iii) The interference coefficient Aoma
n =

∑K
l=n+1 ã

oma
l .

Any power allocation strategy that improves the outage probability perfor-

mance over OMA can be written as (aoma
1 + ε1, . . . , a

oma
K + εK). If εn = 0, ∀n =

1, . . . , K, then all users will achieve the same outage probability performance as

OMA, and aoma
n = ãoma

n ,∀n = 1, . . . , K. The following theorem shows that there

always exists a power allocation strategy such that the NOMA outage probabilities

for all users are equal to or less than the respective OMA outage probabilities.
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Theorem 4.4.2. For a K-user DL NOMA system with target rates R1, . . . , RK,

there always exists a power allocation strategy (a1, . . . , aK) with associated SIC

decoding order (1, . . . , K) such that Bn ⊆ Boma
n ,∀n = 1, . . . , K. Furthermore,

∃ at least one user n such that Bn ⊂ Boma
n , meaning that the NOMA outage

probability performance can always be at least as good or better than the OMA

outage probability performance for every user.

Proof. See appendix 4.8.3.

According to equation (4.41), (ãoma
1 , . . . , ãoma

K ) is given by ãoma
K = 2RK−1

2RK/τK−1 and

ãoma
n =

2Rn − 1

2Rn/τn − 1
+

2Rn − 1

2Rn

K∑
l=n+1

2Rl − 1

2Rl/τl − 1

l−1∏
k=n

2Rk ,

n = 1, . . . , K − 1. Based on the previous theorem, it is clear that
∑K

n=1 ã
oma
n < 1,

and that the improvement of the outage probability performance of NOMA over

OMA is based on the design of the additional power allocation εn to each coefficient

aoma
n , and the strategy (ãoma

1 , . . . , ãoma
K ) is the starting point. A consequence of

theorem 4.4.2 is that it can be used to highlight the fact that the decoding order

based on increasing values of Rn
τn

is an essential component of the power allocation

strategy.

Corollary 1. Let the user indices 1, . . . , K be assigned such that they follow the

relationship R1

τ1
< · · · < RK

τK
. Also, define a SIC decoding order (σ(1), . . . , σ(K)),

such that (σ(1), . . . , σ(K)) is a permutation of the sequence (1, . . . , K). For all SIC

decoding orders (σ(1), . . . , σ(K)) which have associated power allocation strategies

(ãoma
σ(1), . . . , ã

oma
σ(K)) such that NOMA achieves equal outage performance to OMA,
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the SIC decoding order

(1, . . . , K) = arg min
(σ(1),...,σ(K))

K∑
n=1

ãoma
σ(n). (4.17)

In other words, the most energy efficient power allocation strategy is the one with

SIC decoding order

(σ(1), . . . , σ(K)) = (1, . . . , K). (4.18)

.

Proof. See appendix 4.8.4.

This corollary states that the most energy efficient power allocation strategy

which enables NOMA outage performance equal to that of OMA is based on the

SIC decoding order which follows the increasing order of Rn
τn

. The most important

aspect of this result is that this SIC decoding order provides the most power

allocation headroom in order to improve the outage performance of NOMA over

OMA. In the case that user m has power allocation greater than ãoma
m , then clearly

all users n = 1, . . . ,m − 1 will have to allocate additional power in order for

Bn = Boma
n . Furthermore, any power allocation strategy should be demonstrated

to be well-behaved. The fundamental properties of well-behaved NOMA power

allocation strategies which demonstrate better outage probability performance

over OMA are discussed in the next section.
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4.5 Well-behaved power allocation strategies

that improve NOMA outage probability

performance over OMA

In order to determine how to construct a well-behaved power allocation strat-

egy which improves NOMA outage probability performance over OMA, the power

allocation strategy that satisfies theorem 4.4.2 must be generalized. Since a power

allocation coefficient for user n’s signal can be described by an = aoma
n + εn,∀n,

aoma
n = 2Rn−1

2KRn−1 + (2Rn − 1)An (where An ≥ Aoma
n ), and aoma

K = ãoma
K , then

aK = ãoma
K + εK (4.19)

aK−1 = aoma
K−1 + εK−1 = ãoma

K−1 + εK−1 + (2RK−1 − 1)εK

an = ãoma
n + εn + (2Rn − 1)

(
εn+1 +

K∑
l=n+2

εl

l−1∏
k=n+1

2Rk

)
,

for n = 1, . . . , K − 2. Note that by definition 2, an = aoma
n iff εn = 0, and

aoma
n = ãoma

n iff εl = 0,∀l = n + 1, . . . , K. Furthermore, the portion of the

interference coefficient caused by the terms εl, l = n+ 1, . . . , K (the expression in

the parenthesis above) can be expressed as

cn = εn+1 +
K∑

l=n+2

εl

l−1∏
k=n+1

2Rk . (4.20)

So the general interference coefficient for user n can be written as An = Aoma
n +cn.

The total available power allocation coefficient for user n is a function of

εm,m = 1, . . . , n − 1. This is because in a DL NOMA system, the goal is to

improve the overall outage performance, and the outage performance of the users

later in the SIC decoding order is more difficult to improve, as shown by the
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coefficient cn. Thus, improving the performance of users with signals earlier in

the SIC decoding order does not come at an additional cost for users later in the

decoding order. The total available power allocation coefficient for user n is then

found by noting that

Aoma
tot + ε1 +

n−1∑
m=1

εm

m−1∏
k=1

2Rk ≤ 1. (4.21)

The sum of the additional power allocation for users m = 1, . . . , n− 1, is given by

dn = ε1 +
n−1∑
l=2

εl

l−1∏
k=1

2Rk . (4.22)

So the additional power allocation coefficient εn for user n is a function of dn.

Using the generalized expression of the power allocation strategy that satisfies

theorem 4.4.2, the properties of εn can be found such that the power allocation

strategy is well-behaved.

Theorem 4.5.1. For users 1, . . . , K with target rates R1, . . . , RK, which are

scheduled to receive signals with power allocation strategy (aoma
1 +ε1, . . . , a

oma
K +εK),

the power allocation strategy is well-behaved if each user n has one or the other of

the following conditions:

(a) an−1 = aoma
n−1 and an = aoma

n , meaning εn−1 and εn = 0, for any n = 2, . . . , K;

(b) or

0 < εn < min


εn−1

2Rn − 1

2Rn−1 − 1
+

2Rn − 1

2Rn−1/τn−1 − 1
− 2Rn − 1

2Rn/τn − 1
,

(1− Aoma
tot )

n−1∏
l=1

2−Rl −
n−1∑
m=1

εm

n−1∏
l=m

2−Rl

 . (4.23)

Proof. See appendix 4.8.5.
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Now that the fundamental properties of well-behaved additional power al-

location strategies beyond ãoma
n have been described in detail, the method for

selecting/designing a power allocation strategy can be discussed. Specifically, the

selection/design of the power allocation strategy is completely focused on the se-

lection of εn, n = 1, . . . , K. In other words, if an algorithm is designed to minimize

the overall outage probability performance with respect to the power allocation

strategy, and subject to the constraints that the performance of each user out-

age is better than the OMA performance, then the variables to be solved for are

(ε1, . . . , εK), and the constraints are given by theorem 4.5.1. These constraints

are linear with coefficients based on the target rates R1, . . . , RK and OMA time

durations (τ1, . . . , τK).

However, a simpler but not optimal approach can be used to determine a power

allocation strategy such that it satisfies theorem 4.5.1 by using the definition of

being well-behaved, hence enhancing the outage probability performance of each

user with respect to OMA. This is accomplished by noting that if

εn−1 > εn2Rn
2Rn−1 − 1

2Rn − 1
, n = 2, . . . , K (4.24)

then the power allocation strategy is well-behaved. This can be accomplished

using the total addition power allocated to all users m = 1, . . . , n − 1 caused by

adding εn to user n’s power allocation. When user n has εn added to its power

allocation coefficient, the BS must also add to the power allocation coefficient of

users m = 1, . . . , n − 1 in order to maintain their outage performance, according

to equations (4.53) and (4.54). This amount can be easily seen to be

εtotn = εn

n−1∏
l=1

2Rl . (4.25)
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Therefore, by setting

εtotn−1 = εtotn 2Rn
2Rn−1 − 1

2Rn − 1
, n = 2, . . . , K (4.26)

it can easily be shown that equation (4.24) is satisfied. Let S =
∑K

n=1Rn. Solving

the K − 1 equations in equation (4.26) for εK , and using the fact that the sum of

the additional power allocation coefficients is bounded by 1− Aoma
tot , yields

K∑
n=1

εtotn = 1− Aoma
tot (4.27)

⇒εK = (1− Aoma
tot )

2RK − 1

2S − 1

K−1∏
l=1

2−Rl

ε1 = (1− Aoma
tot )

2R1 − 1

2S − 1

K∏
l=2

2Rl ,

εn = (1− Aoma
tot )

2Rn − 1

2S − 1

n−1∏
l=1

2−Rl
K∏

l=n+1

2Rl ,

for n = 2, . . . , K − 1.

This simple strategy will use all of the power allocation available, while im-

proving the outage probability performance of all K users when employing NOMA

over OMA. Note that this strategy also heavily distributes the remaining available

power allocation coefficient 1−Aoma
tot in favor of the users whose signals are earlier

in the SIC decoding order. This is in line with what is expected with DL NOMA

systems with SIC enabled receivers, where users whose signals are decoded first

will have their interference removed, and thus the additional power allocation

coefficient εn will also improve the SIC performance of users l = n + 1, . . . , K.

While users whose signals are later in the SIC decoding order cause interference

which in turn causes all users m = 1, . . . , n to have their power allocation coeffi-

cient bumped up in order to maintain the same performance, and thus creating
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the case where less additional power allocation is actually available and gains are

marginal.

4.6 Comparison of theoretical and simulation

results

For the simulation results, two different fading channel scenarios are used to

demonstrate the validity of the theoretical results. The first fading channel model

is the K SISO Rayleigh fading channel, with channel gains hn1 , . . . , hnK , such that

|hni | ∼ Exponential(1), i = 1, . . . , K. The channel SNR gains |G1|2, . . . , |GK |2 =

sort(|hn1|2, . . . , |hnK |2), where the sort function sorts the channel SNR gains in

ascending order. Therefore, |G1|2 < . . . < |GK |2. This is conceptually the same

model used in [14, 18, 22], where the ordering of i.i.d. Rayleigh fading channel

gains are used to represent the position of a user within a cell, and thus outage

probabilities and diversity orders are derived from the distribution of this ordering.

For the simulations using this channel model, the ordering of the channel gains

and that of the SIC decoding order follow the same trend, so the user with weakest

channel has its signal decoded first by all users, then the second weakest user, and

so on. This channel model from here on is referred to as channel model 1.

The second channel model used is the MIMO Rayleigh fading channel model

with i.i.d. fading channel gains between the different transmit-receive antenna

pairs. A common precoding vector p, ‖p‖ = 1, is used to transmit to K users using

M antennas, where p is not a function of the channel gains1. The signal passes

through user n’s N × M channel matrix Hn where the channel from transmit

antenna i to receive antenna j is hj,i ∼ CN (0, βn), and each user n with N receive

1In cellular deployments, the precoder is typically selected from a set of predetermined vec-
tors, based on CSI feedback
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antennas uses the optimum detection vector vn = pHHH
n/‖Hnp‖. This gives a

channel SNR gain of |Gn|2 = ‖Hnp‖2. The channel SNR gain has distribution

Erlang(βn, N), with expected value E [|Gn|2] = Nβn. For the simulations that

use this channel model, M = 2, N = 3, p is selected randomly isotropically,

and the βn are not selected with any relationship to the target rates in order to

demonstrate that the channel gain ordering has no bearing on the validity of the

results. Therefore, (β1 = 0.5, β2 = 1.4, β3 = 0.8, β4 = 1.7, β5 = 1.1). This channel

model from here on is referred to as channel model 2.

For all simulation plots, there are K = 5 users, the target rates are (R1 = 0.5,

R2 = 1.2, R3 = 0.9, R4 = 1.3, R5 = 1.1) bps/Hz, and the OMA time durations are

(τ1 = 0.15, τ2 = 0.30, τ3 = 0.20, τ4 = 0.20, τ5 = 0.15). As mentioned previously,

the decoding order must be such that rn = Rn
τn

is increasing, so since (r1 = 10
3
, r2 =

4, r3 = 4.5, r4 = 6.5, r5 = 22
3

), the indices for the rates and time durations above

are as such.

Figure 4.6 and figure 4.7 demonstrate the phenomenon described in theorem

4.4.1. For a power allocation strategy such that the interference coefficient An

received when attempting to decode signal xn exceeds the value given in theorem

4.4.1, then the outage probability is equal to 1, regardless of the channel strength

and SNR. As can be seen in figure 4.6, for each signal to be decoded, the outage

probabilities are lesser for users with stronger channels. In figure 4.7, the same

phenomenon is observed even though the users have more receive antennas to

increase their received SNR. In this case user 4 has the strongest channel statisti-

cally, so user 4 always has the least outage probabilities when the interference is

below the certain outage threshold.

Figures 4.8 and 4.9 demonstrate the outage probability performance for

NOMA compared to OMA, when NOMA uses both the power allocation strategy
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(ãoma
1 , . . . , ãoma

5 ) in order to demonstrate the validity of the power allocation re-

sult of theorem 4.4.2 (blue curves), and (aoma
1 + ε1, . . . , a

oma
5 + ε5) with εn selected

according to the power allocation strategy described in equation (4.27) to ensure

the power allocation coefficients are well-behaved (red curves). Clearly when the

power allocation strategy for NOMA is (ãoma
1 , . . . , ãoma

5 ), the outage probability is

exactly equal to that of OMA. However, as proven in theorem 4.4.2 the sum of

the power allocation is less than 1. In fact, for this particular case it is ≈ 0.5036,

which means that roughly only half of the maximum transmit SNR is needed to

have the outage performance of NOMA equal that of OMA. In figure 4.8, there is

a large difference in performance between NOMA (red curves) and OMA outage

probabilities for users K = 1, 2, 3, while for users K = 4, 5 the gap is not so big.

The same phenomenon is observed in figure 4.9, even though the ordering of the

users’ channel gains is not considered in the SIC decoding order. It makes sense

that the gap in outage probability performance decreases for users whose signals

are decoded towards the end of the SIC procedure. For example, if the BS tries

to improve user 5’s outage probability performance using NOMA over OMA by

allocating ε5 additional power allocation coefficient to its signal, while keeping

the outage performance of the other users the same as OMA, the BS also has to

increase the power allocation coefficient of user 4 by c4 = ε5(2
R4−1), and for user

n by cn = ε5(2
Rn − 1)

∏4
k=n+1 2Rk , n = 1, 2, 3, just so that they can have the same

performance as OMA. So the amount of additional power allocation that the BS

has available for a signal that is decoded later in the SIC procedure becomes less.

In figures 4.10 and 4.11, the well-behaved property of the strategy derived is

demonstrated by plotting the outage probabilities for each signal to be decoded

by each user in the SIC procedure. For example, user 5 must decode signals

1, 2, 3, and 4 before it can decode its own signal, and the outage probability
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performances are better for the signals earlier in the SIC procedure. A similar

phenomenon is observed for user 4 with signals 1, 2, and 3, and so for the other

users. This is consistent with what was stated regarding the overall outage event

for a user, as it should not be bounded by the outage event of an earlier signal

in the SIC procedure. In other words, the probability of outage should always be

better for the decoding of the signals that are earlier in the SIC procedure. For

figure 4.10, the outage probability for decoding a specific signal, say signal 1, is

better for the users with stronger channels, as can be seen by the blue diamond

curve belonging to user 5 being the best for decoding signal 1, and the black

diamond curve belonging to user 1 being the worst, which is still better than user

1’s outage probability curve for OMA as shown in 4.8. The same phenomenon is

observed in figure 4.11, except that here the user with statistically the strongest

channel gain is user 4, and accordingly the red diamond curve belonging to user

4 outperforms all of the other diamond curves. In this plot, even though user 5

is only the third strongest channel out of all, it has the signal that is decoded

last among all other signals, and thus decodes all four other signals first, yet its

outage probabilities for the first four decodings still demonstrate a well-behaved

power allocation, while the outage curve with the blue star is still better than its

OMA outage curve given (both seen in figure 4.9).

4.7 Conclusion and Future Work

In this chapter, it was demonstrated that for downlink NOMA systems with a

BS which does not have knowledge of the exact channel gains, the power allocation

strategy must be carefully designed in order to avoid certain outages for multiple

users. Furthermore, it was demonstrated that a well-behaved power allocation

strategy which has the same exact outage performance as OMA always exists, such
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that it depends only on the target rates and their relative OMA time durations,

and it is derived in closed form. The proposed SIC decoding order based on

increasing values of Rn
τn

was shown to be the most energy efficient. Lastly, the

approach for designing a power allocation strategy which can always outperform

OMA in terms of outage probability was outlined, and the associated properties

of such a strategy were derived. The validity of these theoretical results are then

substantiated with the simulation results, which show the outage performances

for various power allocation strategies to exhibit these fundamental characteristics

outlined in the chapter.

One thing that is not addressed in this chapter is the fact that the channel SNR

gains can be used in the design of the power allocation coefficients. Comparing

these results to the multi-user approaches similar to that in [22] can provide

a very quick and simple assessment as to whether the channel SNR gains are

strong enough to support the target rates. Further studies about how this type

of phenomenon is exhibited and described theoretically in more complex cellular

deployments is also critical, such as in multi-point and heterogeneous cellular

networks. Lastly, a full treatment of the uplink scenario with regards to the

power allocation strategy design is needed, as uplink NOMA is sought to be a

vital deployment scenario for 5G cellular systems.

4.8 Proofs

The proofs for this chapter are as follows.

89



4.8.1 Proof of Theorem 4.4.1

Proof. For any specific user n, suppose that An−1 < 2−
∑n−1
l=1 Rl and An > 2−

∑n
l=1Rl .

Since An−1 = an + An, it follows that

an + An < 2−
∑n−1
l=1 Rl (4.28)

=⇒ an < 2−
∑n
l=1Rl − An < 2−

∑n−1
l=1 Rl − 2−

∑n
l=1Rl .

The events Bn and Bk→n can be written in the form

log2

(
1 +

anξ|Gk|2

Anξ|Gk|2 + 1

)
< Rn, k = n, . . . ,K

=⇒ ξ|Gk|2(an − (2Rn − 1)An) < 2Rn − 1. (4.29)

Since an < 2−
∑n−1
l=1 Rl − 2−

∑n
l=1Rl and An > 2−

∑n
l=1Rl ,

an − (2Rn − 1)An < 2−
∑n;.1
l=1 Rl − 2−

∑n
l=1Rl − (2Rn − 1)An

< 2−
∑n−1
l=1 Rl − 2−

∑n
l=1Rl − (2Rn − 1)2−

∑n
l=1Rl

= 0. (4.30)

Therefore solving equation (4.29) for |Gk|2 leads to

ξ|Gk|2(an − (2Rn − 1)An) < 2Rn − 1 (4.31)

=⇒ |Gk|2 >
2Rn − 1

ξ(an − (2Rn − 1)An)
.

Therefore, since 2Rn−1
ξ(an−(2Rn−1)An) < 0 < |Gk|2, this condition makes Pr{Bn} =

Pr{Bk→n} = 1.

Now suppose that An > 2−
∑K
l=n+1Rl ,∀n = 1, . . . , K − 1, then it must be true

that A1 > 2−R1 . This will avoid the previous impossible event. However, if this is
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true, then events B1 and Bk→1, k = 2, . . . , K, gives rise to the inequality

ξ|Gk|2(a1 − (2R1 − 1)A1) < 2R1 − 1, k = 1, . . . , K, (4.32)

where the value inside the parentheses must be greater than zero in order to avoid

the certain outage situation from equation (4.32). Therefore,

0 < a1 − (2R1 − 1)A1 < a1 − (2R1 − 1)2−R1

⇒a1 > 1− 2−R1 . (4.33)

It must be true that a1 + A1 ≤ 1 by definition of power allocation coefficients,

however

a1 + A1 > (1− 2−R1) + 2−R1 = 1. (4.34)

Therefore if An > 2−
∑n
l=1Rl , ∀n = 1, . . . , K − 1, then having Pr{Bn} < 1 and

Pr{Bk→n} < 1 requires
∑K

n=1 an = a1 + A1 > 1, which is not possible.

Hence, for any user n with An > 2−
∑n
l=1Rl , Pr{Bn} = Pr{Bk→n} = 1, k =

n+ 1, . . . , K.

4.8.2 Proof of Proposition 2

Proof. If Bout
n = Bn,∀n = 2, . . . , K, then it is true that

2Rm − 1

am − (2Rm − 1)
∑K

l=m+1 al
≤ 2Rn − 1

an − (2Rn − 1)
∑K

l=n+1 al
, (4.35)
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∀m = 1, . . . , n− 1. If this is true, then it is true that

2R1 − 1

a1 − (2R1 − 1)
∑K

l=2 al
≤ · · · ≤ 2RK−1 − 1

aK−1 − (2RK−1 − 1)
∑K

l=K al
≤ 2RK − 1

aK
.

From the above, it is easy to show that

an−1 ≥ an
2Rn(2Rn−1 − 1)

2Rn − 1
, n = 2, . . . , K. (4.36)

To show that the condition above implies that a1, . . . , aK satisfy theorem 4.4.1,

it is sufficient to show that any power allocation coefficients satisfying equation

(4.36) satisfy the inequality

an − (2Rn − 1)An > 0, (4.37)

based on equation (4.30), according to the theorem. So if equation (4.36) holds

∀n = 2, . . . , K, then for any n < K and l > n, it is easily shown that

al < an
2Rl − 1

(2Rn − 1)
∏l

m=n+1 2Rm

=⇒
K∑

l=n+1

al <
an

2Rn − 1

K∑
l=n+1

2Rl − 1∏l
m=n+1 2Rm

=
an

2Rn − 1

(
1 +

K∑
l=n+2

l−1∏
m=n+1

1

2Rm
−

K∑
l=n+1

l∏
m=n+1

1

2Rm

)

=
an

2Rn − 1

(
1−

K∏
m=n+1

2−Rm

)
. (4.38)

So

an − (2Rn − 1)
K∑

l=n+1

al > an − (2Rn − 1)
an

2Rn − 1

(
1−

K∏
m=n+1

2−Rm

)
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= an

K∏
m=n+1

2−Rm > 0,∀n = 1, . . . , K − 1. (4.39)

Hence, these power allocation coefficients satisfy the requirement in theorem 4.4.1.

4.8.3 Proof of Theorem 4.4.2

Proof. If Bn ⊆ Boma
n ,∀n = 1, . . . , K, it must at least be true that ∃(a1, . . . , aK)

s.t. Bn = Boma
n ,∀n = 1, . . . , K, and then demonstrate that

∑K
n=1 an < 1. To show

that ∃(a1, . . . , aK) s.t. Bn = Boma
n ,∀n = 1, . . . , K, begin with n = K and equate

2RK − 1

aKξ
=

2RK/τK − 1

ξ
=⇒ aK =

2RK − 1

2RK/τK − 1
. (4.40)

Then for n = 1, . . . , K − 1, equate

2Rn − 1

ξ(an − (2Rn − 1)
∑K

l=n+1 al)
=

2Rn/τn − 1

ξ

=⇒ an − (2Rn − 1)
K∑

l=n+1

al =
2Rn − 1

2Rn/τn − 1
(4.41)

This creates a recursive relationship which can be solved to find

an =
2Rn − 1

2Rn/τn − 1
+

2Rn − 1

2Rn

K∑
l=n+1

2Rl − 1

2Rl/τl − 1

l−1∏
k=n

2Rk , (4.42)

n = 1, . . . , K − 1. From here on, the power allocation strategy that satisfies

equations (4.40, 4.42) will be called (ãoma
1 , . . . , ãoma

K ). In order for this to be a

valid power allocation strategy, the sum of the coefficients must be proven to

always be less than or equal to 1. Let the interference coefficient for user n using

this power allocation strategy be called Aoma
n , which can be found easily by noting
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from equation (4.41) that

ãoma
n − (2Rn − 1)Aoma

n =
2Rn − 1

2Rn/τn − 1
(4.43)

=⇒ Aoma
n =

1

2Rn − 1

(
ãoma
n − 2Rn − 1

2Rn/τn − 1

)
=

2Rn+1 − 1

2Rn+1/τn+1 − 1
+

K∑
l=n+2

2Rl − 1

2Rl/τl − 1

l−1∏
k=n+1

2Rk . (4.44)

Define τn = bn
K

and rn = Rn
bn

, so that r1 < · · · < rK . Since the function h(t) =

(2bt − 1)/(2Kt − 1) is a monotonically decreasing function in t so long as b < K,

then

Aoma
n =

2Rn+1 − 1

2Rn+1/τn+1 − 1
+

K∑
l=n+2

2Rl − 1

2Rl/τl − 1

l−1∏
k=n+1

2Rk

=
2bn+1rn+1 − 1

2Krn+1 − 1
+

K∑
l=n+2

2blrl−1
2Krl−1

l−1∏
k=n+1

2bkrk

<
2bn+1rn+1 − 1

2Krn+1 − 1
+

K−2∑
l=n+2

2blrl − 1

2Krl − 1

l−1∏
k=n+1

2bkrk +
2bK−1rK−1 − 1

2KrK−1 − 1

K−2∏
k=n+1

2bkrk

+
(2bKrK−1 − 1)2bK−1rK−1

2KrK−1 − 1

K−2∏
k=n+1

2bkrk

=
2bn+1rn+1 − 1

2Krn+1 − 1
+

K−2∑
l=n+2

2blrl − 1

2Krl − 1

l−1∏
k=n+1

2bkrk +
2(bK−1+bK)rK−1 − 1

2KrK−1 − 1

K−2∏
k=n+1

2bkrk

<

...

<
2(bn+1+···+bK)rn+1 − 1

2Krn+1 − 1
.
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So given that ãoma
n = 2bnrn−1

2Krn−1 + (2bnrn − 1)Aoma
n , then

Aoma
tot =

K∑
n=1

ãoma
l = ãoma

1 + Aoma
1

=
2b1r1 − 1

2Kr1 − 1
+ (2b1r1 − 1)Aoma

1 + Aoma
1

=
2b1r1 − 1

2Kr1 − 1
+ 2b1r1Aoma

1

<
2b1r1 − 1

2Kr1 − 1
+ 2b1r1

2(b2+···+bK)r2 − 1

2Kr2 − 1

<
2b1r1 − 1

2Kr1 − 1
+ 2b1r1

2(b2+···+bK)r1 − 1

2Kr1 − 1

=
2(b1+···+bK)r1 − 1

2Kr1 − 1

= 1.

So clearly the sum is less than 1. To complete the proof, only one strategy that

satisfies the conditions stated in the theorem is needed, so let user 1 have the

power allocation coefficient a1 = aoma
1 + ε1, such that

ε1 = 1− Aoma
tot > 0, (4.45)

which leads to B1 ⊂ Boma
1 .

4.8.4 Proof of Corollary 1

Proof. For any SIC decoding order (σ(1), . . . , σ(K)), which is a permutation

of (1, . . . , K), the power allocation strategy (ãoma
σ(1), . . . , ã

oma
σ(K)) such that Bout

σ(n) =

Boma
σ(n),∀n = 1, . . . , K, is given by ãoma

σ(K) = 2
Rσ(K)−1

2
Rσ(K)/τσ(K)−1

and

ãoma
σ(n) =

2Rσ(n) − 1

2Rσ(n)/τσ(n) − 1
+

2Rσ(n) − 1

2Rσ(n)

K∑
l=n+1

2Rσ(l) − 1

2Rσ(l)/τσ(l) − 1

l−1∏
k=n

2Rσ(k) , (4.46)
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n = 1, . . . , K − 1, and the sum2 of this power allocation strategy is

K∑
n=1

ãoma
σ(n) =

2Rσ(1) − 1

2Rσ(1)/τσ(1) − 1
+

K∑
l=2

2Rσ(l) − 1

2Rσ(l)/τσ(l) − 1

l−1∏
k=1

2Rσ(k) . (4.47)

Suppose a SIC decoding order has consecutive SIC decoding stages m and m+ 1

such that σ(m) > σ(m+ 1), i.e. the index of the user whose signal is decoded at

SIC stage m is greater than the index of the user whose signal is decoded at SIC

stage m+1, which means that
Rσ(m)

τσ(m)
>

Rσ(m+1)

τσ(m+1)
. If the SIC stages m and m+1 are

reversed, such that the signal of user m + 1 is now decoded before the signal of

user m, while all other stages remain in the same order, then call (ã
′oma
σ(1) , . . . , ã

′oma
σ(K))

the new power allocation strategy which has NOMA outage performance equal to

OMA. It can easily be shown that ã
′oma
σ(n) = ãoma

σ(n),∀n 6= m,m + 1, and that ã
′oma
σ(m)

and ã
′oma
σ(m+1) are given by

ã
′oma
σ(m+1) =

2Rσ(m+1) − 1

2Rσ(m+1)/τσ(m+1) − 1

+ (2Rσ(m+1) − 1)

[
2Rσ(m) − 1

2Rσ(m)/τσ(m) − 1
+

K∑
l=m+2

2Rσ(l) − 1

2Rσ(l)/τσ(l) − 1

l−1∏
k=m
k 6=m+1

2Rσ(k)
]

ã
′oma
σ(m) =

2Rσ(m) − 1

2Rσ(m)/τσ(m) − 1

+ (2Rσ(m) − 1)

[
2Rσ(m+2) − 1

2Rσ(m+2)/τσ(m+2) − 1
+

K∑
l=m+3

2Rσ(l) − 1

2Rσ(l)/τσ(l) − 1

l−1∏
k=m+2

2Rσ(k)
]
.

Taking the difference of the sums of the two power allocation strategies gives

K∑
n=1

(ãoma
σ(n) − ã

′oma
σ(n) ) (4.48)

=

[
(2Rσ(m) − 1)(2Rσ(m+1) − 1)

2Rσ(m+1)/τσ(m+1) − 1
− (2Rσ(m) − 1)(2Rσ(m+1) − 1)

2Rσ(m)/τσ(m) − 1

]m−1∏
k=1

2Rσ(k) > 0,

2Note that this sum is only guaranteed to be less than 1 for the decoding order (1, ...,K).
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which is true because
Rσ(m)

τσ(m)
>

Rσ(m+1)

τσ(m+1)
, and thus power allocation strategy

{ã′oma
σ(n) }Kn=1 is more energy efficient than {ãoma

σ(n)}Kn=1. Successively repeat this pro-

cess of reversing the positions of all consecutive SIC decoding stages m and m+ 1

which have σ(m) > σ(m+1), while keeping the SIC decoding order of every other

stage constant, in order to successively obtain a more energy efficient power allo-

cation strategy. This process is repeated until the SIC decoding order obtained is

given by (1, . . . , K).

4.8.5 Proof of Theorem 4.5.1

Proof. (a) Since aoma
n = 2Rn−1

2Rn/τn−1 +(2Rn−1)(Aoma
n +cn), and εn−1 and εn = 0, then

proposition 2 is used to show that the following is always true for n = 2, . . . , K,

aoma
n−1 > aoma

n 2Rn
2Rn−1 − 1

2Rn − 1
(4.49)

=⇒ 2Rn−1 − 1

2Rn−1/τn−1 − 1
+ (2Rn−1 − 1)(Aoma

n−1 + 2Rncn) (4.50)

>

(
2Rn − 1

2Rn/τn − 1
+ (2Rn − 1)(Aoma

n + cn)

)
2Rn

2Rn−1 − 1

2Rn − 1

=⇒ 1

2Rn−1/τn−1 − 1
+ (ãoma

n + Aoma
n ) >

2Rn

2Rn/τn − 1
+ 2RnAoma

n (4.51)

=⇒ 1

2Rn−1/τn−1 − 1
>

1

2Rn/τn − 1
, (4.52)

which is true because Rn−1

τn−1
< Rn

τn
.

(b) For this case, the minimum allowable power allocation coefficient for users

m = 1, . . . , n−1 is aoma
m . If εn > 0, user n power allocation coefficient an = aoma

n +εn

leads to Bn ⊂ Boma
n . The power allocation coefficient for user n− 1 is then given

by

an−1 =
2Rn−1 − 1

2Rn−1/τn−1 − 1
+ (2Rn−1 − 1)(Aoma

n−1 + εn) + εn−1
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= ãoma
n−1 + (2Rn−1 − 1)εn + εn−1. (4.53)

Then, the power allocation coefficient for users m = 1, . . . , n − 2 is found recur-

sively starting from n− 2 to be

am = ãoma
m + εm + (2Rm − 1)

(
εm+1 +

n∑
l=m+2

εl

l−1∏
k=m+1

2Rk

)
. (4.54)

By noting that the sum of the power allocation coefficients3 is less than or equal

to 1,

1 ≥
K∑
m=1

am

=
K∑
m=1

ãoma
m + dn + εn

n−1∏
l=1

2Rl (4.55)

= Aoma
tot + dn + εn

n−1∏
l=1

2Rl

=⇒ εn ≤ (1− Aoma
tot )

n−1∏
l=1

2−Rl −
n−1∑
m=1

εm

n−1∏
l=m

2−Rl (4.56)

It must also be true that

an−1 ≥ an2Rn
2Rn−1 − 1

2Rn − 1

=⇒ 2Rn−1 − 1

2Rn−1/τn−1 − 1
+ εn−1 + (2Rn−1 − 1)(Aoma

n−1 + cn2Rn + εn)

≥
[

2Rn − 1

2Rn/τn − 1
+ εn + (2Rn − 1)(Aoma

n + cn)

]
2Rn 2Rn−1−1

2Rn−1

=⇒εn ≤ εn−1
2Rn − 1

2Rn−1 − 1
+

2Rn − 1

2Rn−1/τn−1 − 1
− 2Rn − 1

2Rn/τn − 1
. (4.57)

The inequalities (4.56) and (4.57) hence yield the result in inequality (4.23).

3Note that cn ≥ 0, with potential equality if no additional power allocation is available
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4.9 Three-user Example of Theoretical Results

The following section gives a three-user example of the results provided in this

chapter. This includes simple proofs for this special case that are easier to follow.

Suppose that three users have been determined to be suitable by the base-

station to receive downlink transmissions of signals with specific target rates,

which will occur within a transmission time period of T seconds. The suitability

determined by the base-station is based on received CSI (e.g. RI, PMI, CQI,

etc.) feedback from the users, as well as its own channel estimates based on prior

uplink transmissions from these same users in the same bandwidth. Let the users

be named user-1, user-2, and user-3. The target rate for user-1 is R1, user-2 is

R2, and user-3 is R3, all in terms of bits per second per Hz (bps/Hz).

Suppose that the base-station determines that the downlink transmissions to

these users can be scheduled according to an orthogonal multiple access approach,

TDMA, where the base-station allocates fractions of the transmission time τ1 to

user-1, τ2 to user-2, and τ3 to user-3 respectively, and the signals are transmitted

with full transmit SNR ξ for their respective time duration. The selection of

τ1, τ2, τ3 can be any set positive values such that τ1+τ2+τ3 = 1, even the optimum

values for this system. Assume the relationship R1

τ1
< R2

τ2
< R3

τ3
determined the

user indices.

The base-station can instead schedule a NOMA downlink transmission for

the signals of these same users instead, where the power allocation strategy is

(a1, a2, a3). The base-station selects an appropriate power allocation strategy

(a1, a2, a3) for the SIC decoding order (1, 2, 3) such that:

• the total inferference coefficients of when decoding signals 1 and 2 must not

exceed the thresholds A1 = 2−R1 and A2 = 2−(R1+R2), respectively;
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• the power allocation strategy is well-behaved, which means that Bout
n =

Bn, n = 1, 2, 3, and a clear example is given that a power allocation strategy

that is not well-behaved is wasting transmit power without the additional

gain in outage probability performance;

• the outage probability of this NOMA system will outperform the OMA

system given above, and do so in the most energy efficient manner.

The following will demonstrate the above points regarding the NOMA power

allocation strategy by first deriving the power allocation coefficients.

4.9.1 Total Interference of signals

If the power allocation strategy is such that when decoding the first signal, the

total interference coefficient received A1 = a2 + a3 > 2−R1 , then the outage event

of decoding this signal at the receiver of user-n = 1, 2, 3, is such that log2(1 +

a1ξ|Gn|2
1+A1ξ|Gn|2 ) < R1. So solving for the channel SNR gain |Gn|2 gives

a1|Gn|2 < (2R1 − 1)(1 + A1ξ|Gn|2)

=⇒ξ|Gn|2[a1 − A1(2
R1 − 1)] < 2R1 − 1

=⇒ξ|Gn|2[1− A12
R1 ] < 2R1 − 1

Since A1 > 2−R1 ⇒ A12
R1 > 1, so 1−A12

R1 < 1. Therefore, the following is true

=⇒ 2R1 − 1

ξ[1− A12R1 ]
< 0 < |Gn|2.

which means that there is an outage event ∀|Gn|2 > 0 (indeed, all channel SNR

gains are positive real numbers). Therefore, the interference coefficient A1 =

a2 + a3 < R1 must hold true in order to not create a certain outage. In the same
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manner, if interference coefficient A2 = a3 > 2−(R1+R2), since the outage event at

the receiver of user-n = 2, 3 is given by log2(1 + a2ξ|Gn|2
1+A2ξ|Gn|2 ) < R2, then

=⇒ξ|Gn|2[a2 − A2(2
R2 − 1)] < 2R2 − 1

=⇒ξ|Gn|2[A1 − A22
R2 ] < 2R2 − 1.

If A1 = a2 + a3 < 2−R1 then A1 − A22
R2 < 0

=⇒ 2R2 − 1

ξ[A1 − A22R2 ]
< 0 < |Gn|2,

Otherwise if A1 > 2−R1 then stage 1 of the SIC decoding procedure will fail at all

users.

4.9.2 Well-behaved Property

The power allocation strategy should be such that the coefficients have the

property a1 ≥ a2
2R2 (2R1−1)

2R2−1 and a2 ≥ a3
2R3 (2R2−1)

2R3−1 so that the Bout
2 = B2∪B2→1 = B2

and Bout
3 = B3 ∪ B3→1 ∪ B3→2 = B3. This can be demonstrated in the proof of

proposition 1 to ensure that the interference coefficients do not exceed the upper-

bounds described in theorem 1.

Also, this is important because of the following example. Let a3 = ãoma
3 ,

a2 = ãoma
2 + ε2 and a1 = ãoma

1 + (2R1 − 1)ε2, such that a1 + a2 + a3 = 1 and

ε2 >
2R2−1

2R1/τ1−1 −
2R2−1

2R2/τ2−1 . This leads to a1 < a2
2R2 (2R1−1)

2R2−1 and a2 ≥ a3
2R3 (2R2−1)

2R3−1 ,

so then Bout
1 = Boma

1 and Bout
3 = Boma

3 . However, Bout
2 = B2→1, because as is

shown in the proof of theorem 3, and since B2 =
{
|G2|2 < 2R2−1

ξ[a2−a3(2R2−1)]

}
,B2→1 =
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{
|G2|2 < 2R1−1

ξ[a1−(a2+a3)(2R1−1)]

}
and

2R2 − 1

ξ[a2 − a3(2R2 − 1)]
<

2R1 − 1

ξ[a1 − (a2 + a3)(2R1 − 1)]

=⇒ B2 ⊂ B2→1

=⇒ Bout
2 = B2 ∪ B2→1 = B2→1.

In plain terms, this means that the power allocation for user-2 can be reduced

to the level such that ε2 = 2R2−1
2R1/τ1−1 −

2R2−1
2R2/τ2−1 , which leads to B2 = B2→1, meaning

that the power allocation for user-2 can be reduced, while maintaining the same

power allocation for users-1 and user-3, and still achieve the exact outage proba-

bility performance for all 3 users. In other words, a power allocation strategy that

is not well-behaved is wasting power on one of the signals when compared to an-

other existing power allocation strategy that achieves the same outage probability

performance for all users.

4.9.3 Power Allocation so that NOMA has Equal Outage

Performance to OMA for all Users

For the three users, the power allocation strategy that will outage probability

performance equal to OMA (and to have sum less than 1 in the proof of theorem

2, and to be well-behaved and not violate the interference property in theorem 3)

is given by

ã1 =
2R1 − 1

2R1/τ1 − 1
+ (2R1 − 1)

(
2R2 − 1

2R2/τ2 − 1
+ 2R2

2R3 − 1

2R3/τ3 − 1

)
ã2 =

2R2 − 1

2R2/τ2 − 1
+ (2R2 − 1)

2R3 − 1

2R3/τ3 − 1

ã3 =
2R3 − 1

2R3/τ3 − 1
.
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The summation of this power allocation strategy can be shown to be less than 1

as follows. The indices are assigned based on the relationship of R1

τ1
< R2

τ2
< R3

τ3
.

Define τ1 = b1
K
, τ2 = b2

K
, τ3 = b3

K
, then R1

τ1
= KR1

b1
, R2

τ2
= KR2

b2
, R3

τ3
= KR3

b3
. Defining

r1 = R1

b1
, r2 = R2

b2
, r3 = R3

b3
, clearly r1 < r2 < r3. Therefore, since f(t) = 2bt−1

2Kt−1 , b <

K, is monotonically decreasing in t, then

a1 + a2 + a3 =
2R1 − 1

2R1/τ1 − 1
+ 2R1

2R2 − 1

2R2/τ2 − 1
+ 2R1+R2

2R3 − 1

2R3/τ3 − 1

=
2b1r1 − 1

2Kr1 − 1
+ 2b1r1

2b2r2 − 1

2Kr2 − 1
+ 2b1r1+b2r2

2b3r3 − 1

2Kr3 − 1

<
2b1r1 − 1

2Kr1 − 1
+ 2b1r1

2b2r2 − 1

2Kr2 − 1
+ 2b1r1+b2r2

2b3r2 − 1

2Kr2 − 1

=
2b1r1 − 1

2Kr1 − 1
+ 2b1r1

2(b2+b3)r2 − 1

2Kr2 − 1

<
2b1r1 − 1

2Kr1 − 1
+ 2b1r1

2(b2+b3)r1 − 1

2Kr1 − 1

=
2(b1+b2+b3)r1 − 1

2Kr1 − 1

= 1.

4.9.4 Energy Efficiency of Proposed SIC Decoding Order

Corollary 1 states that if a different SIC decoding order (σ(1), σ(2), σ(3)) is

used, where (σ(1), σ(2), σ(3)) is any permutation of the sequence (1, 2, 3), then a

more energy efficient SIC decoding order can be found if σ(1) > σ(2) or σ(2) <

σ(3), by switching the SIC decoding order. Then, the power allocation strategy

that enables NOMA to achieve equal outage performance to OMA for each user

is given by

ãσ(1) =
2Rσ(1) − 1

2Rσ(1)/τσ(1) − 1
+ (2Rσ(1) − 1)

(
2Rσ(2) − 1

2Rσ(2)/τσ(2) − 1
+ 2Rσ(2)

2Rσ(3) − 1

2Rσ(3)/τσ(3) − 1

)
ãσ(2) =

2Rσ(2) − 1

2Rσ(2)/τσ(2) − 1
+ (2Rσ(2) − 1)

2Rσ(3) − 1

2Rσ(3)/τσ(3) − 1
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ãσ(3) =
2Rσ(3) − 1

2Rσ(3)/τσ(3) − 1
.

The following permutations (σ(1), σ(2), σ(3)) of (1, 2, 3) exist and can be the SIC

decoding order for the system: (2, 1, 3), (2, 3, 1), (1, 3, 2), (3, 1, 2), (3, 2, 1), and the

identity permutation (1, 2, 3). By the proof of corollary 1, the SIC decoding

orders can be listed in order of least energy efficient to most energy efficient:

{(3, 2, 1), (3, 1, 2), (1, 3, 2), (1, 2, 3)} or {(3, 2, 1), (2, 3, 1), (2, 1, 3), (1, 2, 3)} For ex-

ample, the proof of corollary 1 can be used to show that the SIC decoding order

(3, 1, 2) is more energy efficient (i.e. uses less transmit power) than (3, 2, 1) in

order to enable NOMA to achieve equal outage probability performance to OMA.

Call S(3,2,1) and S(3,1,2) the sums of the power allocation strategies given above for

the SIC decoding orders (3, 2, 1) and (3, 1, 2), respectively. Then according to the

proof of corollary 1 it is shown that S(3,2,1) − S(3,1,2) > 0 as follows

S(3,2,1) =
2R3 − 1

2R3/τ3 − 1
+ 2R3

2R2 − 1

2R2/τ2 − 1
+ 2R2+R3

2R1 − 1

2R1/τ1 − 1
,

S(3,1,2) =
2R3 − 1

2R3/τ3 − 1
+ 2R3

2R1 − 1

2R1/τ1 − 1
+ 2R1+R3

2R2 − 1

2R2/τ2 − 1

So =⇒ S(3,2,1) − S(3,1,2) = 2R3(2R1 − 1)(2R2 − 1)
(

1
2R1/τ1−1 −

1
2R2/τ2−1

)
> 0, which

is true because R1

τ1
< R2

τ2
. Using the same steps, it is easy to show that S(3,1,2) −

S(1,3,2) > 0 and S(1,3,2) − S(1,2,3) > 0. Therefore, it is clear that the SIC decoding

order (1, 2, 3) is more energy efficient than any of the possible SIC decoding orders

in terms of the power allocation required for NOMA to achieve the same outage

probility performance as OMA. Again, it should be noted that the sum of the

power allocation strategies (ãσ(1), ãσ(2), ãσ(3)) is not guaranteed to be less than 1

for all other SIC decoding orders other than (1, 2, 3), as was proven in theorem

2. Nonetheless, even if there are other SIC decoding orders with power allocation
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strategies (ãσ(1), ãσ(2), ãσ(3)) such that the sum is less than 1, the power headroom

available in order to increase the power allocation beyond (ãσ(1), ãσ(2), ãσ(3)) is

still less for all SIC decoding orders than that available for (1, 2, 3), and thus the

improvement of outage probability performance of NOMA over OMA is less than

for the case of all other SIC decoding orders.

4.9.5 Power Allocation Strategy for NOMA to outperform

Outage Probability of OMA

The last matter in this example is to demonstrate how to construct well-

behaved power allocation strategy which allows NOMA to outperform the outage

probability performance of OMA for all users, based on all the above results.

After theorem 3, a simple approach is used based on the property of well-behaved

power allocation (although not necessarily optimal). For the three-user case, this

power allocation approach is given by calling Aoma
tot = ãoma

1 + ãoma
2 + ãoma

3 , and then

according to equation (4.27)

ε1 = (1− Aoma
tot )

2R1 − 1

2R1+R2+R3 − 1
2R2+R3 ,

ε2 = (1− Aoma
tot )

2R2 − 1

2R1+R2+R3 − 1
2−R1+R3

ε3 = (1− Aoma
tot )

2R3 − 1

2R1+R2+R3 − 1
2−R1−R2 .

As shown in this chapter and verified in the simulation results, this additional

power allocation combined with the general description of the power allocation

coefficients in equation (4.19) provide a simple framework for vastly improving the

outage performance of downlink NOMA over OMA, without complex suboptimal

searches or relying on the base-station having exact knowledge of all of the channel

gains.
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Chapter 5

Conclusion

In this dissertation, the fundamental approaches and properties of power al-

location strategies are investigated for multi-user downlink wireless NOMA sys-

tems. For different cases of base-station channel state information and mobile

user cached information, the impact on the approach for determining the feasi-

ble power allocation strategies were described, and the impact on performance

measures were also analyzed.

In chapter 2, the concept of Fair-NOMA was introduced in order to ensure that

all NOMA users’ downlink transmissions can achieve at least the same capacity as

they would in a downlink OMA transmission. The two-user case was used exten-

sively in order to highlight the potential gains that can be achieved using NOMA.

Fair-NOMA was used to demonstrate that performance gains can be achieved

without focusing on user-pairing, and then was applied to the user-pairing case

of the cell-center user and the cell-edge user. After focusing on the two-user case,

the focus shifted to the K-user downlink scenario, and the fundamental existence

of a Fair-NOMA power allocation strategy was proved to always exist. For the

multi-user case, it was also demonstrated that the total power allocation required

to achieve the same capacity as OMA for all users decreases as a function of the
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transmit SNR.

In chapter 3, the application of two candidate technologies for future wireless

systems was considered by combining downlink NOMA transmissions with mobile

user caching. The combined scheme called CA-NOMA was outlined, describing

the basic form in which caching can assist the receive procedure in the downlink.

When applied to a two-user downlink NOMA transmission, the impact on the

power allocation set was investigated for the case where the two users have dif-

ferent QoS target rates. This led to the derivation of the desired operating set

for the power allocation strategy. For the case of Rayleigh fading channels, the

union-outage probability was derived and found in closed-form. The approximate

optimum power allocation strategy to minimize the union-outage probability was

then derived, and shown to be very tight to the true optimum power allocation

strategy for reasonably high transmit SNR values.

In chapter 4, NOMA was investigated for the case where the BS does not

possess the channel gain information perfectly. In line with more realistic cellular

system deployments, it was assumed that the CSI is an approximation of the

channel gain, and that the CSI ages between the CSI acquisition at the BS and the

downlink transmission occassion. Therefore, this motivated a NOMA approach

that does not rely on the channel gains, and thus it was determined that the

main power allocation design parameter is the set of target rates of the users’

downlink transmissions. Using the target rates, the fundamental relationship

between the target rates and the maximum level of interference tolerable for a

signal was described, with respect to the SIC decoding order. The concept of well-

behaved power allocation strategies was then introduced and motivated, and it was

proved that any well-behaved power allocation strategy always exists, and that

they always align with the tolerable interference of the SIC stages. The strategy
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that allows NOMA to achieve the same outage probability performance as OMA

was then outlined and proved to always exists for any set of target rates. This

strategy was then used to prove that the SIC decoding order proposed, which was

derived from the target rates and OMA time resource allocation, is the most energy

efficient SIC decoding order out of all possible decoding orders. The procedure

and restrictions for ensuring that a power allocation strategy which allows NOMA

to achieve a better outage probability performance than OMA for all users was

then described, and a simple approach to finding a power allocation strategy was

provided that aligns with these findings. Finally, a three-user downlink NOMA

example was provided in order to demonstrate the points in this chapter.
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