
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
AN ULTRAFAST FOURIER TRANSFORM PARALLEL PROCESSOR

Permalink
https://escholarship.org/uc/item/7k6746xv

Author
Greenberg, W.L.

Publication Date
2013-06-27

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7k6746xv
https://escholarship.org
http://www.cdlib.org/

LBL-I0897

AN ULTRAFAST FOURIER TRANSFORM PARALLEL PROCESSOR

William L. Greenberg
(Ph.D. thesis)

April 1980

r Refe ce

Not to be taken from this room

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

LEGAL NOTiCE

This book was prepared as an account of work
sponsored by an agency of the United States
Government. Neither the United States Govern­
ment nor any agency thereof, nor any of their
employees, makes any warranty, express or im­
plied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process
disclosed, or represents that its use would not
infringe privately owned rights. Reference herein
to any specific commercial product, process, or
service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favor­
ing by the United States Government or any agency
thereof. The views and opinions of authors ex­
pressed herein do not necessarily state or reflect
those of the United States Government or any
agency thereof.

Lawrence Berkeley Laboratory is an equal opportunity employer.

LBL~10897

AN ULTRAFAST FOURIER TRANSFORM PARALLEL PROCESSOR

William L. Greenberg

Ph.D. Thesis

April 1980

Department of Electrical Engineering & Computer Science

and

Biology and Medicine Division
Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94720

This work was supported by the U.S. Department of Energy under
Contract W-7405-ENG-48 and the National Institutes of Health.

CBB804-4796

iii

ABSTRACT

AN ULTRAFAST FOURIER TRfu~SFORM PARALLEL PROCESSOR

William L. Greenberg
Ph.D.

Department of Electrical Engineering & Computer Science
. and

Donner Laboratory (Biomedical Division of Lawerence Berkeley Laboratory)
University of California, Berkeley. CA 94720

Sponsors: Department of Energy and the National Institutes of Health

A new, flexible, parallel-processing architecture is developed

for a high-speed, high-precision Fourier transform processor. The

processor is intended for use in 2-D signal processing including" spa­

tial filtering, matched filtering and image reconstruction from pro­

jections.

The flexible architecture is developed from the fully parallel

architecture proposed by Pease. It is shown that the "perfect shuf­

fl~' data routing used by Pease may be used in a serial processor by

use of a perfect shuffle generating function which generates the out-

address of each datum from its input address. Further develop­

ment of this idea shows that the simplified architecture allowed by

use or ~he perrect snuttle lends itself well to pipelining to effect

horizontal parallel processing and increase execution speed.

Finally, it is demonstrated that several (up to NIl', where N is the

transform size and r is the radix of the transform) pipelined arith­

metic units may be put in parallel operation to further increase the

speed of transform computation. Important design parameters such as

the radix of the transform, number of arithmetic units, number

representation and word size are examined with respect to their

effect on accuracy, dynamic range. transform computation speed and

memory fragmentation$

The Ultrafast Fourier Transform Parallel Processor (UFTPP)

architecture is compared and contrasted with the classical architec­

tures (serial, cascade, parallel and array) and is shown to have con­

siderable advantages in most cases.

iv

To demonstrate the feasibility of implementation of a processor

designed using this architecture, a one-arithmetic unit version'has

been constructed which can compute up to a 4096 complex point

transform with maximum throughput of 500.000 samples per second. A

software system was also implemented that uses the UFTPP to perform

2-D spatial filtering. execute matched filtering between a scene and

a template and reconstruct images from their projections using the

Backprojection of Filtered Projections (BFP) reconstruction algo­

rithm. Two new techniques for determining filters to be used with

the BFP algorithm are cited. The first new filter, proposed by

Gullberg, incorporates attenuation correction of emission data from

Computer Assisted Tomography (CAT) studies into the reconstruction

operation. The second, proposed by Tsui, uses a stochastic filter to

allow considerable dose reduction in CAT. Both require computation of

a number of Fourier transforms and. are excellent applications

for a high speed processor such as the UFTPP.

In summary. the outstanding characteristics of the UFTPP are:

(1) . A pipelined "butterfly" computation module

(2) Flexible parallel processing architecture easily expandable to

achieve extremely high speeds.

(3) Use of recently available LSI multiplier chips

(4) Use of the ilperfect shuffle" data routing algorithm

(5) Extremely simple control logic

(6) Low cost

Approved:

1.0

1.1

1.2

2.0

2.1

2.2

2.3

3.0

3.1

3.2

3.3

3.4

3.5

TABLE OF CONTENTS

Introduction

Previous Work

New Work

FFT Derivation and Modification •

Cooley-Tukey FFT Derivation .

FFT Modification for Parallel Processing

The Perfect Shuffle Generating Function .

Architecture

Arithmetic Unit Implementation for Different Radices

Perfect Shuffle Data Handling • . . . • •

Pipeline Architecture for UFTPP (Horizontal Parallel

Processing) . • • •

Multiple Arithmetic Units (Vertical Parallel Processing)

Comparison of the UFTPP Architecture with Other

v

1

1

3

8

8

· 10

· 15

20

· 20

23

24

26

Number Representation & Arithmetic

Fixed Point vs. Floating Point Representation

Processor Implementation

Overall System Description

The Arithmetic Unit .

The Memory System . .

The Multiplexer System

The Pipeline

Overall Timing and Control

The Perfect Shuffle Address Generator .

4.0

4.1

5.0

5.1

5.2

5.3

5.4

5.5

5.6

5.6.1

Architectures 29

32

32

41

41

• 43

49

52

. 55

56

57

5.6.2 Control/Status Register and the N - Register.

5.6.3 The Iteration Counter

5.6.4 The Finite State Generator

5.6.5 Memory Counter.

5.6.6 Clock Generation and Distribution

5.7 Computer I/O Interfaces

5.8 Computer Operation and I/O

5.9 Implementation Cost;s

6.0 Applications
6.1 Implementation .
6.2 Image Processing Applications

6.2.1 High & Lowpass Filtering

6.2.2 Matched Filtering

6.3 Image Reconstruction from Projections

7.0 Conclusion

REFERENCES

vi

57

58

58

59

59

61

63

64

65

65

65

65

67

70

78

81

vii,

ACKNOWLEDGEMENT

I would like to thank Professor Thomas F. Budinger for his

invaluable advice, encouragement and support in what sometimes seemed

like a never ending endeavor. His confidence in me provided the

momentum to carry me over the "inertia" barriors and pushed me to

strive for excellence. For this I am truly grateful.

I would also like to thank Professor Martin Graham for lending

his hardware expertise to the solution of some of my worst problems

and Profesor Walter Freeman for his valuable comments at the thesis

stage.

Certainly the least formal, but possibly some of the most valu­

able comments on the project were received in conversations with Drs.

Ron Huesman and Steve Derenzo and Mr. John Cahoon.

Probably the most time consuming portion of this project was the

actual wiring of the circuit boards. I would like to express my deep

appreciation to my "technical suppore' group": Mimi Winer, Peggy

Eisenbach, Valerie Budinger, Jamie Halpern and Kelly Finnerty (all of

whom donated their time). I would also like to thank Mimi and Peggy

for their help in preparation of the thesis.

In addtion to her technical assistance, I would like to thank

Mimi for her incredible patience and support in our relationship

which sufferred the brunt of my frustration on many occasions.

Finally I would like to express my deep gratitude to the entire

Research Medicine group at Donner Laboratory for providing me with

the excellent experience in scientific research that I have gained

during the past 4 3/4 years. Further, in all sincerety, the comara­

derie among the members of the group has made the job truly enjoy­

able. The friendships I have developed will be sorely missed.

This work was supported by the U.S. Department of Energy under

Contract W-7405-ENG-48 and the National Institutes of Health,

viii

GLOSSARY OF TERMS

Array architecture ~~ a Fourier transform processor architecture with

latency of log N cycles, a
r

cycle. Data routing may be by

the perfect shuffle algorithm.the Cooley-Tukey algorithm or by

The transforms are fixed length.

N/r log N arithmetic units. After a
r

new"transform is completed every

"Butterfly" operation -- the basic computation performed in Fourier

transformation consisting of a complex multiplication followed

by a complex addition and a complex subtraction. The name is

derived from the patterns present in the signal flow diagrams of

the Fourier transform.

Cascade architecture -- a Fourier transform processor architecture

containing m=log N arithmetic units arranged sequentially. The
r

output from an arithmetic unit becomes the input to the next.

A given unit processes points separated by r-
i

where i is the

position of the arithmetic in the cascade. After a latency of

N cycles, frequency coefficients begin to emerge from the output

one per cycle. From this point' on computation may be continuous.

A new time or space sample may be input each cycle and a new

frequency coefficient read from the output each cycle. The

size of transforms computed is fixed.

Parallel architecture -- a Fourier transform architecture with N/r

arithmetic units. Transforms are computed every log N cycles.
r

Data routing is via the perfect shuffle algorithm. Size of

the transform is fixed.

Perfect shuffle ~- an algorithm used for pairing the correct data

values at each iteration in Fourier transform computation which

maintains a uniform manipulation of data throughout all itera­

tions as opposed to the Cooley-Tukey data routing which changes

ix

at each iteration. It is called the perfect shuffle since it is

similar to shuffling a deck of playing cards.

Serial architecture ~~ an FT processor architecture containing one

arithmetic unit. It processes the data exactly as the Cooley~

Tukey algorithm. A transform is computed in N/r log N cycles.
r

It can be set up to process variable length transforms.

"Twiddle factor" in the butterfly operation one of the complex

inputs is a value composed of a cosine term in the real part and

a sine term in the imaginary part. This complex value, known as

the "twiddle factor" multiplied times one of the input data values.

UFTPP architecture -- a flexible Fourier transform processor architec­

ture with a variable number of arithmetic units which computes a

transform in

N
r

cycles.

P is the number of arithmetic units. May be programmed to compute

different length transforms. The maximum number of arithmetic

elements is N/r.

CHAPTER 1

INTRODUCTION

Fourier analysis has long been recognized as a major technique

of signal processing for accomplishing such tasks as filtering,

cross~correlation, auto-correlation, power spectrum deternmination,

and other computations involving frequency domain manipulations.

Prior to the advent of digital computing machines, most Fourier

analysis was done by analog methods. When calculating machines and

computers began to become available, discrete methods for calculation

of spectra became important. The discrete Fourier transform has long

been known to mathematicians and engineers as an algorithm which com­

putes the discrete spectrum of a sampled time or space varying signal
2

at a speed proportional to N (where N is the number of complex

points in a transform). In 1965, Cooley and Tukey published their

now famous paper [18] which gave an algorithm for computation of

discrete spectra in a time proportional to N log2N. This algorithm,

now known as the Fast Fourier Transform (FFT), had been in use in

various forms as early as 1904, but was not widely known until the

Cooley~Tukey rediscovery in 1965.

The N log2N speed of the Cooley-Tukey algorithm showed a huge

increase in efficiency over the N
2

algorithms; but even digital com­

puters could not perform this number of operations fast enough to

allow real~time computation (i.e. to compute a transform in the same

amount of time as it takes to acquire the N sample points). This

thesis gives a method for accomplishing the FFT on large data arrays

using a hard~wired processor.

1.1. Previous Work

Almost immediately after the Cooley-Tukey algorithm was pub­

lished, engineers began to explore designs for its implementation in

a dedicated processor which had a cycle time short enough to allow

real-time computation to be realized. Over the past ten years a

great body of literature has accumulated in the area of hardware FFT

processors. Initially, brute force approaches produced serial

1

2

architectures [3,5,6,62] that iteratively processed the input data

exactly as the software that preceded them. Subsequently, the serial

architecture was improved to the cascade architecture, sometimes

called a pipeline [5,6,37] (the term "pipeline" here is different

from the pipelining technique for increasing execution speed that

will be discussed). The cascade architecture contains m~log N stages

each of which processes data in blocks of r(m~i) (l~i~m). T~e advan~
tage of this architecture is that samples can be fed continuously

into the input end and at fixed time later the transformed values

emerge.

Parallel and array processor architectures which are faster than

those just mentioned have been proposed by Pease [48] and Bergland

[7]. However, these are much more complex and much more expensive

due to the large amount of hardware necessary for their implementa­

tion.

One major obstacle impeding all of these architectures was the

time and hardware complexity in performing multiplication of complex

numbers. Algorithms for determining the product of two binary

numbers were well known, but relatively slow compared to the desired

cycle times of the processors. Several ingenious techniques were

developed to avoid direct multiplications, notably the CORDIC tech­

nique [71] used by Despain [26] and a somewhat similar technique

developed by Liu and Peled [45]. These schemes rely on bitwise gen-

eration of the products through various algorithms. Recently, LSI

multiplier chips have become available commercially. These chips

function at high speed and are relatively inexpensive in comparison

to the cost of parallel implementations of the bitwise algorithms

just mentioned. These chips remove the obstacle that the alternate

techniques were trying to circumvent.

Other algorithms due to Rader and Brenner [57] and Winograd [74]

have been developed which convert the complex multiplications into

pure real or pure imaginary operations. While these are excellent

techniques in architectures where multiplications are relatively

expensive (in terms of time or hardware), the LSI multipliers make

them less attractive than algorithms such as will be proposed in this

3

thesis. The Winograd algorithm does not generate a scheme which

allows reduction of hardware when the complex multiplications are

done as a parallel operation since some of the operations are between

two real numbers, some between two imaginaries and some between a

real and an imaginary.

The design put forth in this proposal is based in good part on

algorithmic concepts by Pease. Others [34,36,70,73] have discussed

hardware implementations using PeasePs ideas, but none has recognized

its true flexibility and possibilities for modularity. Also,

Corinthios [20,21,22] has used the formalism of Pease to implement an

algorithm (previously noted by Cochran, Cooley, et. ale [16]) which

does not produce the output in bit reversed order. However, the

shuffle operation which affects data routing is different for each

iteration of the transform. and the associated control circuitry is

more complicated.

New Work

This thesis presents a new hardware implementatio~ of a modifi­

cation of the FFT algorithm. The processor exhibits the following

characteristics:

expandable to achieve

of a 60 million point

1)

2)

3)

4)

A pipelined "butterfly" operation computation module

Parallel processing architecture easily

very high speeds (e.g. computation

transform in 10 seconds).

Use of recently available LSI multiplier chips.

Use of a "perfect shuffle" operation to accomplishing data rout­

ing.

5) Extremely simple control logic

6) Low cost

The intended application areas for the specific processor which

was constructed as a demonstration of this design strategy are image

processing and image reconstruction from projections. Image process­

ing is the process of manipulating an image to obtain increased

visual impact or to emphasize interesting structures in order that

4

more information may be extracted from the image. Any linear modifi­

cation of an image may be expressed as an operation on its frequency

spectrum. Thus, Fourier filtering is a convenient tool to use in

effecting the modifications since quantitative description of the

changes (in terms of resolution, SNR, contrast texture, etc.) is

easily obtained and interpreted through the transfer function of the

filter. Up to the present, image processing investigators have been

hindered by the inablility to perform complex image processing opera­

tions in a timely manner due to software Fourier transform implemen­

tations. However, a high speed hardware Fourier transform processor

such as will be described should provide investigators with the means

to carry out such work.

Some of the image processing operations that are easily carried

out in the frequency domain are lowpass filtering to improve visual

impact, highpass filtering for edge detection or deblurring and

matched filtering for object identification and location.

Image reconstruction from projections has become a very impor­

tant area since the advent of Computer Assisted Tomography (CAT) as a

diagnostic medical tool. Rapid reconstruction « 10 sees.) of large

images (e.g. 256 x 256 pixels) from a large number of projections

(e.g. 150) necessitates high-speed special purpose hardware. There

are several algorithms for reconstruction which utilize the Fourier

transform and, thus, could be implemented using a hardware processor.

Further, it is of great interest in this field to perform dynamic

imaging. That is, acquiring "snapshots" of an area of the body at

several closely spaced (e.g. 100 msec) points in time to observe a

system in operation. This increases the need for high data

throughput and accentuates the need for high speed hardware.

In addition to two dimensional signal processing, a high perfor­

mance Fourier transform processor such as will be described is useful

for one-dimensional signal processing where the amount of computation

necessary makes implementation impractical. Some of these areas are

image reconstruction from projections chemical analysis using NMR

techniques, NMR flow imaging and X-ray crystallography.

5

While Fourier analysis is an extremely powerful tool, the image

processing investigator must remain aware of its limitations.

Mathematically, there are functions which do not have Fourier

transforms. There are 3 sufficient conditions for the existence of

the Fourier transform of a function, f(x):

I) The integral of f (x) from -00 to +00 exists.

2) The number of discontinuities in f are finite.

3) f(x) is of bounded variation.

The first two conditions are self-explanatory. The third is a

bit more complicated and its treatment is beyond the scope of this

thesis. Suffice it to say that a function that is of bounded varia­

tion has a finite number of maxima and minima in any finite interval.

Sin x-I is a good example of a function without bounded variation.

There are also functions whose Fourier transforms do not strictly

exist, but are said to have transforms in the limit.

purely periodic functions are in this class.

Impulses and

Any physical waveform that can be measured has a Fourier

transform by virtue of its physical existence. However, whenever

mathematical modeling or analysis is used to represent a physical

entity, one must be careful not to violate these conditions of

existence.

Further, one must be careful to realize the assumptions that are

made in applying Fourier analysis to a physical system. The most

important is that the system is linear. That is, the output from the

sum of a set of inputs is the same as the sum of their individual

outputs. Secondly, the system must be time stationary.

referred to above does not change with time.

The action

Finally, the investigator must be aware of the rules which must

be followed in moving from continuous Fourier analysis to the use of

any of the discrete Fourier transform techniques. An example of this

is the Shannon Sampling Theorem.

While real-time image processing is still a thing of the future,

a system utilizing an Ultrafast Fourier Transform Parallel Processor

(UFTPP) will increase processing speed by several orders of magnitude

6

over software and at least an order of magnitude over other hardware

transform devices. This increase in processing speed brings image

processing to the interactive level. That is, an image processing

investigator may be able to perform an operation on an image and see

the results within a few seconds (e.g. -10 sec.). This allows the

investigator more continuity of thought and the ability to exercise

subjective judgment much more easily than previously when several

minutes of computation were necessary to perform a single operation

on an image. Further, when the investigator arrives at an image

which satisfies him/her, one can quantitatively describe what pro­

cessing has been done by description of the various filters which

have been applied.

A system such as the one described in this thesis might be util­

ized as shown in Figure 1. The UFTPP looks like any other peripheral

to the central processor of the host computer; the programmer may

view it as an extremely fast FFT subroutine. A typical image pro­

cessing session may proceed as follows:

1) User sits down at the terminal and calls up an image stored on

the host computerPs mass storage.

2) The user inputs a frequency domain filter to the program

(through use of a joystick, trackball, TTY, lightpen, etc.).

3) The computer Fourier transforms the image, multiplies it by the

input filter and displays the results in about 10 seconds.

4) The user studies the result and instructs the computer whether

to save this image or discard it or return to step 2 for further

processing.

A system such as this may be realized for < $ISK not including

the host computer. The host computer need be nothing more than a

small minicomputer (e.g. PDP-ll/I0) or even a microprocessor. Of

course, the faster the host computer the faster the turnaround from

image to image. Almost all of the processing time will be the I/O

time to and from the UFTPP, disk and display. By todays technology

standards, only such superminis as the VAX-ll/780 will be able to

keep pace with the UFTPP.

LIGHT PEN

"-.i

fiG TERMiNAL

XBl1912 - 3926

OTHER

PERiPHERALS

o
c.'<It.~c..$.<lt-C:4lIC
C'iPc~ecccc:<",

tf:cc.c..ceo<:..Cs
Ce.e c .. C£CC<w
c.Cc. CIJlll..«:ecolll:.¢.

C-c:. e c. .. c C-<'<1ZlG

HOST CPU

o
VIDEO DISPLAY

FRAME

TAPE
DRIVE

I-'

CHAPTER 2

FFT DERIVATION AND MODIFICATION

2.1. Cooley-Tukey FFT Derivation

The continuous Fourier Transform, H(£), of a function h(t) is

given by

H(f) =:] h(t)e-j2ffftdt
-00

(1)

The discrete Fourier Transform is derived from the above by

introduction of a real space sampling function, a real space window

and a frequency space sampling function.

for the discrete transform is

N-1 .
H(f!NT) =: ~ h(gT) e-J2fffg!N

g=:O

N-1
=: ~ h(gT)Wfg

g=:O
where

The resulting expression

(2)

N =: # of points sampled
T =: interval between sample points
f =: 0,1,2,3, ••• ,N-1

W =: -j2fT!Ne

The FFT algorithm for computing (2) when N=:r1·rZ· ••• ·rm is

where

r -1
m

,~

k =0o

r -1m-I
:E
k =0

1

(3)

k = k
m

_
1

(r
Z

r
3

• •• r
m

_
I

) + k
m

_
2

(r
3

r
4

••• r
m

) + ••• + k
1
r
m

+ k
O

When N=rm, then (3) simplifies to

8

9

(4)

nk
h(k l~k 2~···'kO)Wm- m-

where

m-1 m-2
n=n 1r +n 2I' +•••+nOm- m-

m-l m-2
k"'k II' +k 2r + •••+kOm- m-

and

n . '" 0, 1, 2, ••• ,r-1.
~

Implementation on a binary digital computer is most simply done
m

when N = 2 and (4) becomes

1

L
k =0o

I

I:
k =0

1

H(nO,n l ,

I

1:
k

m
_

1
"'0

.,n 1) '"m-

h(k 1,k 2'··· ,kO)~km- m-

(5)

where

m-l
n=n 2

m-l

k=k 2m- 1
m-I

m-2
+ n 22 +m-

+ k 2m-2 +
m-2

and

n. "" 0,1.
~

iterationsIt is easy to see that computation of (5) requires m

the i th iteration involves the intermediate results from the

previous iteration. The intermediate results, H.(t), for the i th
~

where

iteration may be expressed as

10

• ,k
O

) (6)

n. lk .N/r
• , kO).W ~- m-~]

i-I i-2
(n. l r + n. 2r + ••• + nO) (. 1).W ~- 1.- m-1.-

k . lr
m-~-

i "" 1,2, ••• ,m

The expression inside the [] is the expression for a radix=r "but­

terfly" operation and the outside portion is known as the "twiddle

factor" (after Gentleman & Sande [32]). This expression effectively

says that each iteration in the calculation is an r=point "butterfly"

applied to N/r sets of points appropriately chosen from the inter­

mediate results of the previous iteration. The results of this cal­

culation are then individually "twiddled" according to the outer

expr ession. The radix, r, of the transform is chosen according to

the type of computing power available. (This will be discussed in

detail in chapter 3.) In the case of radix-2, the "butterflyll

results in a simple addition and subtraction of the two complex

numbers followed by multiplication of the difference by a twiddle

factor. The twiddle factor for the sum is always one.

thIt is important to notice that the m iteration produces the

set Fm(nO,n 1,nZ' ••• ,nm=l) as a result, but the frequency coefficients

in their correct order are F (n l,n 2' ••• ,nO). In other words, them m= m-
FFT algorithm produces its results in digit reversed order which must

be compensated for. (This will be taken up in chapter 5.)

A graphic representation of the FFT algorithm for radix-2 is

shown in Figure 2. This is known as the signal flow graph. Figure 3

shows the signal flow graph for the "twiddle factor" modification.

FFT Modification for Parallel Processing

Pease [48] describes the DFT as a matrix operation and proceeds

to derive the Cooley-Tukey FFT algorithm as follows. Let the DFT be

expressed as:

h(O)=Ho{O)

h{J)=Ho (1)

h(7)=Ho(1

Figure. 2

11

(0) =H{O)

H3{O= H(4)

~ (2)=H(2)

XBL784-3030

l-'
N

)

(7)

XBL784..3031

(=8~r=2~n=3)--

h{O-

h

2)

1-4"j h
~.

(JQ
g:
Ii
III

lI'1II 111'11 (1)w h) .- -

13

(7)r = 0, 1, ••• ,N-1
N-J

gr =~ e-j2nrs/N • f
ss=o

the matrix T
rs

= e-j2nrs/N and the sets {gr } and {f
s

} to

respectively, then (7) can be expressed as

If we allow

be g and T,

(8)g "" T ·T
N

Since the FFT produces its output in scrambled order (digit-reversed)

we must introduce an operator to reflect this:

T" N = QN"TN (9)

where Q
N

is the digit reversal matrix (operator) for size N.

Pease shows that the key to the FFT lies in the factorization of

T" as follows:

T"
N

fT"N/2

"'~"N/2K

T"N/2

o

T"N/2

"" o

(10)

where I is the identity matrix and ~

. 0 1 2 L-1
d~ag (W ,W ,W , ••• ,W)

the diagonal matrix

It is obvious that this process may be continued to any degree as

long as N/2 is an integer. When the factorization is halted the sub­

script on the T" matrices of the left side of (10) is the radix of

the transform referred to above.

At this point the Kronecker or direct product of matrices is

used. The Kronecker product for two matrices A '" aij and B '" bkh is

defined as

14

aOOE alOE aiOE

a
01

E . . .
A x E . . .

aOjE a o .E
~J

The result has dimensions i*k by j*h. Thus, (10) may be expressed as

(11)

where DN is the matrix quasi-diag (IK) and

T' 2 .~: ;~J -[: ~J]
When the factorization is carried all the way down to a radix-Z

transform (11) becomes, for N = Zn,

(12)

••• ·(IZx ••• XIZxT" 2)

where Qi = D (i+1) x I (n-i-1)·
r r

As with regular matrix multiplication, the Kronecker product is

not commutative. So, another operator is introduced which allows

commutation of matrices under the Kronecker product. This operator,

called the perfect shuffle operator, is defined as PN such that

PN • col(xO,x1'··· ,xN_1) '"' col(xO'xN!Z'x1,xN!Z ~ 1'··· .xN_1)

Using P
N

, it can be shown that

(13)

or

I 4XT' ZXIN!8

And. (IZ) can be rewritten as

(14)

15

(i-I) -(i-I)
If we define C = (T' ZXIN/Z) and Qi = P EiP and notice that

P~ = P
N

and p;(n-l) = P
N

for N= Zn, then we may write (14) as

= C E1 peEz P ••• C En P

And , f inally

(15)

n
T" = TIc E. P (16)

n=Zn i=1 ~

Thus, the FFT may be computed employing only the C operator (the but-

terfly operator), the E. operator (the twiddle factor operator) and
~

the shuffle operator P. The importance of this representation is

that the data routing is accomplished using the identical operator at

each iteration. The new signal flow graph for this operation is

shown in Figure 4. One will notice that this arrangement allows for

the completely parallel computation of the FFT with data routing

accomplished by hardwired paths as shown in Figure 5. This effec­

tively reduces the computation time to the order of logZN since all

N/Z Z-point butterflies are accomplished in parallel. However, if a

hardware implementation were designed, it would require N/Z complex

multipliers and N complex adders. At the present state of the art,

this is clearly too expensive.

The Perfect Shuffle Generating Function

Examination of Figure 5 shows that the parallel arithmetic units

are identical and that a single one working successively on each pair

of inputs could produce the results for that iteration. If it is

possible to implement the perfect shuffle in a serial fashion, then

an FFT processor with flexible parallel processing architecture and

simplified control logic may be realized.

Close inspection of the perfect shuffle operator reveals that

there is a perfect shuffle generating function, p(i), (i.e. a func­

tion which generates the index in the output vector of a given index

from the input vector) given by

h 0)

Figure 4

(N=8,f =2,n= 3)

16

H(S)

H(S)

H(3)

H(7)

MO)

h (1)

h(5)

h(S)

h(7)

Figure 5

17

j = p(i) = iOr - «i"r)!N"N) + (ier)!N

18

(17)

when r is the radix of the shuffle (and the transform) and N is the

length of the vector being shuffled (i.e. the length of the

transform). All operations are truncated integer arithmetic. In

words, the input address i is multiplied by r modulo N to yield the

output address j, which amounts to a left circular shift of i by r-l

bits.

By use of the perfect shuffle generating function, the results

f h .th. . H b d . d . 11 f h 1o t e ~ ~terat~on, ., may e eterm~ne ser~a y rom t e resu ts
~

of the previous iteration, H. 1 (see Eq" 6). Figure 6 shows a
~-

diagram of a serial FFT processor which uses the perfect shuffle for

data routing. Since the data routing does not change from iteration

to iteration as in the Cooley-Tukey algorithm, this machine has very

little control logic and a low parts count. And, as will be developed

in the next chapter, lends itself very well to techniques for

increasing execution speed such as pipelining and parallel process­

ing.

!
(

JmL784-3034

Perfect ~hllffll...

forward
Inverse
Flag

Reversal

a

Sequential

Generator

Interl
I n I ~ I II I

I 4- waysI I II Complu
0\ 4-

2N tipl
I I I I I

2N words

CHAPTER 3

ARCHITECTURE

3.1. Arithmetic Unit Implementation For Different Radices

A major factor which impacts the architecture of a Fourier

transform processor is the radix of the transform. Eq. 4 in chapter

2 gives the general expression for a radix-r transform (figure 3

shows the butterfly operations for an 8-point, radix-2 transform).

In this section we will examine what the implications of that expres­

sion are in terms of hardware. The discussion will be limited to

radices which are a power of two since the Cooley-Tukey algorithm is

most easily implemented under that condition.

As noted in Chapter 2, there are I' complex points involved in

the computation of one "butterfly" at each node of the signal flow

diagram for a radix-r transform. For maximum speed, this means that

there must be I' parallel data paths in the butterfly computation

unit. Each datum must be correctly weighted and combined with the

other weighted inputs to correctly compute the r-point transform dic-
if

tated by T (Eq. 11).
I'

In order to compare hardware costs of various radix transforms,

it is valuable to notice that any radix transform, Tr' may be further

factored until it is expressed in terms of a radix-2 transform.

that
z In the Eq. 12, thatassuming r=2 • same manner as we can see

recursive application of Eq. 11 eventually will express the radix-r

transform in terms of radix-2. Further, consider Eq. 13 and its

application to the resulting expression. The final result is an

expression which may be realized exactly as in the signal flow

diagram shown in Figure 3. In fact, Figure 3 may be in terpr eted as

either the signal flow diagram for a radix-2. 8-point transform of as

the inside of a "butterfly" computation element for a radix-8

transform. The only difference is that the eight inputs to the

radix-8 computation element are weighted according to the "twiddle

factor" formula given in Eq. 6.

20

21

There are three important implications of this analysis. First,

we note that a radix-r transformer may be implemented with.r log2r

complex adder/subtracter combinations (one complex adder and one com­

plex subtracter is necessary to implement one radix-2 "butterfly"

operation.) An equally fast radix r/2 processor would require four

parallel arithemetic units due to the N/r log N execution speed ofr
the Cooley-Tukey algorithm. In general. moving from radix-r to radix

s = q x r. the speed increase is

~ log N • X = ~·log N
r s s s

=> X = q·log q
s

It can be seen that the number of adders/subtracters stays constant

for equally fast machines of different radices.

Secondly. we see a difference in the number of complex multi­

pliers necessary to implement different radix proocessors. Again.

referring to Eq. 6. we first consider the number of multipliers

necessary within the radix-r transform computer. The recursive

At each step i. the weights used in the

nature of the FFT allows us to

(r=2q) transform using radix-2

i th step. 2(i-1) transforms of

f h ' 1st
outputs rom t e ~- step.

transform are given by

see that implementation of a

"butterflys" requires q steps.

d ' 2(q-i+1) f dra ~- are per orme

radix-r

At the

on the

where x = 0.1.2. • ••• i-1.

This would indicate i different weights for an
(i-y) y

However. recalling that W -W. this

F h 'h W(i/4) . d wO 1urt er. we not~ce t at = J an =.

i-point transform.

is reduced to i/2.

Multiplication by j

simply requires interchanging the real and imaginary parts of the

complex number. Thus for radices ~ 4. there is another savings of

two complex multipliers. For radix-2. there is only one.

The values input to the radix-r transform must be weighted

appropriately before the computation. Eq. 6 shows that the weights

are dependent on the position of the input value in the input vector.

However. there is always one weight which is unity. Therefore.

another (r-1) multipliers are necessary to complete the entire

transform step calculation.

22

In summary, the number of multipliers necessary to implement a

radix-r (r=2
q

) transform arithmetic unit is given by

M
q-1 .
[~ 2:L-1 (. r _ 2)l + (r-l) + 1
i=l 21.-1. 2
q-1

= [L r /2 2i] + (r-l)
i=l

(q-1)·r/2 - (2q - 2) + (r-l)

=: (q-1)"r/2 + 1

(18)

r
=: - log r - 1

2 2
The expression in [] is the number of multipliers within the arith-

metic unit. The (r-1) is the number of multipliers used for initial

weighting. Table I shows some examples of the number of complex mul­

tipliers necessary for radix-r arithmetic units (M) compared with an

equally fast version of a radix-2 machine (N).

TABLE I

r .9. M N

2 1 1 1
4 2 3 4
8 3 9 12
16 4 25 32
32 5 65 90

A third consideration for the radix-r processor is the amount of

coefficient storage necessary. Eq. 6 shows that the "twiddle factor"

at step i uses the (i-I) most significant digits (base r) of the data

address, digit reversed and masked as the base value to which Wmust

be raised. This value is then multiplied by k(m-i-l) which can take

on the values 0,1,2, ••• ,(r-1). When i=m, m-l digits are used to

compute the base value. During this iteration N/r different values

will be used indicating that the minimum number of coefficients that

must be stored for a radix-r transform is N/r. (It is assumed that

all coefficients will be stored at the address equal to the value to

which Wmust be raised to obtain that coefficient. For example. W8

would be stored at location 8.)

Arithmetically. the

The

hardware

k modifier(m-i-1)
implication.

of the base value has considerable

final "twiddle factor"

23

value may be determined from the base "twiddle factor" by squaring,

cubing, etc. (The highest power being r~1.) This requires log2r

stages of complex multipliers for a total of r-2. Alternatively, all

of the weighting factors may be stored directly raising the quantity

of storage necessary to (r-l)jr x N coefficients. In general, the

lower price of ROM storage would argue in favor of use of the extra

storage. However. parallel access of all r-l coefficients is not

possible since the k(. 1) parameter takes on all integral values
m-~-

less than r and the base values vary with iteration. Thus. multiple

read cycles would be necessary to find all coefficients; or. multiple

copies of the coefficients may be stored to allow parallel access.

Even storage of multiple copies of the coefficients would be cheaper

than the multiplier implementation (by today's standards).

3.2. Perfect Shuffle Data Handling

Any radix-r transformer must process r complex data points per

"butterfly". When a pipelined architecture is employed (as will be

discussed in the next section). it is desirable to access all r in

parallel as this provides the shortest pipe cycle time. It is in the

memory organization that the full impact of the perfect shuffle data

routing algorithm is found. While the Cooley-Tukey algorithm changes

the separation of the data points to be accessed at each iteration of

the transform. the perfect shuffle maintains a constant separation

between points. The Cooley-Tukey (decimation in time) algorithm

begins with a separation of data points of 2(m-1) (Eq. 6) for input

during the first iteration and ends with a separation of 1 at the m
th

iteration. It is exactly the opposite for decimation in frequency.

Output at each iteration is sequential for both algorithms. The per­

fect shuffle algorithm always accesses the data sequentially and at a

separation of r on output.

No memory architecture is possible that allows direct parallel

access of all input data values during all iterations of the Cooley­

Tukey algorithm. Some form of variable length buffer must be inter­

posed between the memory and arithmetic unit to match the correct

values. However. using RAM and an interleaved architecture guaran­

tees that all data values may be accessed in parallel when the

24

perfect shuffle is employed.

Close examination of the expression for the perfect shuffle

reveals that a physical memory cannot function as both input and out­

put simultaneously, as some input values will be destroyed by output

before they are read out. However, a memory may function in both

capacities at different times. When used as an input memory, access

is sequential, r values per cycle. This would require r-way inter-

leaving with addresses O,r,2r, ••• in the first memory leaf;

l,r+l,2r+l, ••• in the second and so on. When functioning as an out­

put memory, r complex values must also be accessed in parallel. This

time however, at intervals of r. This demands that addresses

separated by r be stored in different memory leaves. Notice this is

exactly contrary to the sequential interleaving needed for input.
2

The result is a requirement for r -way interleaving in general in

order to accomplish both
2 2

Thus, addresses O,r ,2r , •••

sequential access and a radix-r shuffle.
2 2occupy a leaf; l,r +l,2r +1, ••• occupy

the next and so on. Which leaves are written into during a given

memory cycle is a function of whether the memory is reading or writ­

ing (input or output mode) as well as what the address is.

If multiple memory accesses can be accomplished during a machine
2

cycle, then the interleaving may be reduced to r /e where C is the

number of memory cycles that may be executed during one processor

execution cycle.

Shift register type memories may also be employed in a similar

flexible architecture [22]; however, I/O considerations argue in

favor of RAM (see Section 5.6.7).

3.3. Pipeline Architecture For The UFTPP (Horizontal Parallel Processing)

Pipelining is a familiar architectural technique for achieving a

form of parallel processing in computers. The basic idea is to break

a complex operation into a series of simpler steps. Between steps

the intermediate results are stored in registers. The operation is

begun on a new set of input data at the beginning of each clock

period as the results from the first step proceed to the second and
\

so on. After a fixed delay, the entire pipeline will be filled and

25

results will begin to emerge from the end of the pipe, one per clock

period. Since the simple operations require less time to complete

than the entire complex operation, the clock frequency may be

increased. Parallel processing is occurring since there are several

data sets at various stages of completion during each execution

cycle.

If the original operation would have taken time T to complete

and it has now been divided into a pipeline of S steps each of dura­

tion t, then the following expressions hold (assume M data sets are

to be processed)

x '" total time to process without pipelining '" MoT
Y '" latency of the pipeline'" S·t
Z '" processing time w1th pipelining '" MOt (19)
V = total computation time with pipelining '" (S+M)Ot

If S x t:::::: T (ioe ° each step in the pipeline requires almost the

whole pipe cycle to complete it, in other words, the choice of opera­

tions to be performed in each pipe cycle is time efficient), then the

speed-up factor is

WT
(S+M) ·t

'" MOT
~ (M0t)+T

M+n

for M»no

and n '" TIt.

In the case of the FFT, the number of operations to be performed

is

M = li . log N
r r

where N is the size of the transform and r is the radix.

stituted into Eqo 19 gives

This sub-

Z '" li ° log N°t
r r

for the total processing time if t is the processor cycle time.

(20)

The question then becomes IICan a radix-r Fourier Transform be

implemented in a pipelined machine?" It is clear that the log N
r

26

iterations of transform can be pipelined from the several processors

that implement it in a cascade architecture [6]. In each iteration

the following steps must be performed N/r times:

1) Read the next set of r data from the input memory; read the next

set of r coefficients (sine-cosine values) •

2) Perform complex multiplication of r input data pairs with the

sine-cosine sets.

3) Perform the radix-r butterfly operation.

4) Write the set of r results into the output memory.

It has already been shown that determination of the addresses

for the data in steps 1 & 4 is possible and straightforward. In sec­

tion 3.1 it was shown that a radix-r butterfly may be recursively

broken down into several radix-2 "butterfly" operations. A radix-2

"butterfly" is simply a complex multiplication followed by a complex

addition and subtraction. So, steps 2 and 3 rely on performing a

complex multiplication.

Complex multiplication may be expressed thus:

e + jf =(a + jb)x(c + jd)

= (ac - bd) + j(bc + ad)

(21)

=> e '" ac -bd and f = bc + ad

It is easily seen that it requires 4 independent real multiplications

and an addition and subtraction. A pipelined complex multiplier is

shown in Figure 7.

3.4. Multiple Arithmetic Units (Vertical Parallel Processing)

Section 2.3 showed that the perfect shuffle data routing algo­

rithm used by Pease could also be applied to a sequential processor

to simplifiy the hardware and section 3.3 showed that the technique

of pipelining could be applied to the simplified processor to achieve

horizontal parallel processing. Vertical parallel processing (i.e.

use of multiple arithemetic units working simultaneously) is also

possible with this architecture.

27

Out
RealReal

Product

Holdlnl;J

Re~.

Real
X

Product

Real Holdln«,lJ
X

Rec;J.

Real
lma;
Out=

+ put

Reg.

Product

Real Hoh:tlng
X Reo.__________________J

r::------------~----1
I Reol Product I

Rtal Holdlnl;J I
IF-~ X IRI!lc;J.

I

Complex Multi pi

Figure 7

28

Equation 6 in section 2.1 shows that the results of the i th

iteration depends only upon the results from the i_1st iteration.

Further, it shows that pairs of data from that iteration are inputs

to only one butterfly operation in the subsequent iteration. Thus,

since the output address of any input pair may be determined from its

input address (section 2.3), it is clear that there are no conflicts

that would prevent several processors from working simultaneously on

the same transform. (For example, two radix-2 arithmetic units work­

ing together would process 4 complex pairs at each pipeline step.

Unit 1 would process pairs 0,1,4,5,8,9, ••• from the input and unit 2

would process 2,3,6,7, ••• Their corresponding output addresses would

be 0,2,8,10,16,18, ••• and 4,6,12.14, ••• , respectively.)

From equation 19, it can be seen that processing time with P

processors is

Wlog Nr
rOp (22)

cycles. As noted in section 3.1 a factor of 4 is gained in process­

ing speed for each factor of 2 increase in radix. Also, Table I

showed that fewer multipliers are necessary for the higher radix pro­

cessors as opposed to equally fast radix-2 units. However, there may

be cases where multiple copies of a less complex, smaller radix unit

may be more desirable from an implementation standpoint. One further

consideration concerns the application of the processor. If flexi-

bility in transform size is necessary, then the smaller the radix,

the more sizes of transforms may be computed. (Recall that given

radix
mr. only transforms of N ~ r where m is an integer may be com-

puted.)

It should be noted that certain values of P (Eq. 22) are more

convenient than others. When P is an integral power of 2, then the

only modification to the architecture is interleaving the memories

further. A parallel machine will process r·P data sets per cycle and

thus the memory must be interleaved r 2 .p ways (see section 3.2). It

is possible to implement a processor that does not contain an

integral power of two arithmetic units. However, in order to guaran­

tee that all rOP data sets can be accessed in parallel at all

29

addresses, the memories must be interleaved r 2 .p' ways where P' is

the smallest integral power of two larger than P. In addition, the

addressing hardware must be alterred to translate the logical

addresses to physical ones.

Both increasing the number of parallel arithmetic units and

increasing the radix cause memory fragmentation at the same quadratic

rate due to the r 2 .p memory interleaving requirement. .

The modularity of this design allows expansion of the machine

architecture to meet a wide range of speed and budget requirements

subject only to the constraints discussed above.

Comparison of the UFTPP architecture with other architectures

The basic classes of Fourier transform processor architectures

are the sequential, cascade. parallel and array types [5]. The

parallel and array architectures are. as yet, paper designs since

their implementation is not economically feasible. The parallel

architecture is depicted in Figure 5. The speed of the parallel

architecture is achieved when N/r arithmetic modules are used in the

UFTPP architecture. The array architecture is simply an extension of

the parallel and may be implemented in several ways (e.g. Figure 4.

Figure 3 or see [4]). The UFTPP cannot attain the speed of an array

architecture. The sequential architecture contains only 1 arithmetic

unit and has the speed of a 1 arithmetic unit UFTPP.

The most interesting architectures for comparison with the UFTPP

architecture is the cascade type (described in detail by Groginsky &

Works [37] and Bergland [5]). The cascade architecture computes a

fixed length transform using m=log N arithmetic units arranged in
r

series. Each of the m radix-r units computes the results for a given

iteration (i.e. the results of butterfly operations between complex

points seperated by r=iN where i is the position of the arithmetic

unit in the series starting with 1) from the output of the previous

unit. Each unit has associated with it a digital delay line (i.e.

shift register) of length (r=l)r- i N which pairs the correct data

points for the butterfly computation for that iteration. The latency

of this architecture is N cycles (i.e. the time from entrance of the

30

first data sample to the emergence of the first frequency coeffi­

cient) and the amount of intermediate storage necessary is N complex

words. The results are output in digit reversed order and requires

another N cycles.

The UFTPP architecture with m=log N arithmetic units has a com~r
putation time of N/r + logrN S cycles (from Eq. 19). This is

slightly different than the latency as the entire transform is com­

plete at that time. However without modification to the architecture

this is when the output is ready to be unloaded. Unloading also

requires N cycles. The UFTPP architecture requires 2N complex words

of storage.

If we set the expressions for the latency of the two architec­

tures equal to one another we see that

or.

s = N
logrN

When 8=15 (i.e. there are 15 pipeline segments in the UFTPP), compute

times (assuming identical clock speeds) for both architectures will

be equal when N=256. r=2; N=64, r=4; N=8. r=8. For N larger at the

given radix, the UFTPP will be faster.

The cascade architecture has the advantage that loading of new

input, unloading results and computation all take place simultane­

ously. This can only be accomplished with the UFTPP when another 2N

complex words of storage are used as input and output buffers. These

buffers are filled while transform computation is taking place on

data from two other memories.

The cascade architecture relies on the assumption that computa­

tion, loading and unloading speeds are approximately equal in order

to obtain its hardware efficiency. However, when higher clock speeds

are possible within the processor than are possible for I/O, then the

cascade loses its advantage. If T is the clock period for I/O data

transfers and t the processor clock period, then for T/t values in

31

the range of 2-5 the UFTPP architecture shows considerable savings in

hardware. Table II shows the number of arithmetic modules necessary

to perform a transform (P) in the same time as the m modules needed

for a cascade implementation for various radices (R) , transform sizes

(N) and speed-up ratios T/t. It is clear that for values of T/t > 5

and radices > 4 the UFTPP advantage will increase.

TABLE

T/t""" 2 3 4 5
N m P P P P

64 2 6 6 2 2 1
128 2 7 3 2 2 1
256 2 8 3 2 2 1
512 2 9 3 2 2 1
1024 2 10 3 2 2 2
2048 2 11 3 2 2 2
4096 2 12 4 3 2 2
8192 2 13 4 3 2 2
16384 2 14 4 3 2 2
~~-~--~------~---~-~-~~~~~~--~---~--~-=~~=~---=-=

64 4 3 1 1 1 1
256 4 4 1 1 1 1
1024 4 5 1 1 1 1
4096 4 6 1 1 1 1
16384 4 7 1 1 1 1

It has been shown that the cascade architecture is more hardware

efficient when no buffer memories are used and the I/O clock speed

and processor clock speeds are the same. However, if the I/O clock

speed is slower than possible for the processor (which is generally

the case when the Fouier transform processor is a peripheral device

to a central processor), then considerable hardware savings may be

realized in the arithmetic units when arranged in the UFTPP architec­

ture rather than the cascade. The UFTPP architecture requires 4N

complex memory words as opposed to N for the cascade; however. this

is offset by the savings in the arithmetic units as shown by Table

II.

CHAPTER 4

NUMBER REPRESENTATION & ARITHMETIC

4.1. Fixed Point VB. Floating Point Representation

The establishment of machine word size, number representation

and arithmetic required an analysis of the errors to be expected with

each of the various choices. This analysis was carried out via

software simulation of the entire Fourier transform computation on a

CDC 7600 computer.

The advantages and disadvantages of fixed point arithmetic vs.

floating point arithmetic have been extensively discussed in the com­

puter science literature [e.g. 31,65]. The facts which bear directly

on the implementation of a Fourier Transform processor are:

1) Fixed point arithmetic offers a constant absolute error depen­

dent on the number of bits used. Floating point exhibits a con­

stant relative error; that is, the error associated with a

number is a fixed fraction of its value with the value of the

fraction dependent on the number of bits used.

2) Floating point offers a larger dynamic range (i.e. the range of

numbers that can be represented with a given number of bits)

than does fixed point.

3) Floating point arithmetic requires more hardware than does fixed

point.

A fixed point number is simply a group of n bits whose values

are agreed upon by convention. Regardless of these conventions there

are only 2n different combinations possible. If the least signifi­

cant bit represents the value X, then the precision of that number is

± X/2. A floating point number consists of two parts, the mantissa

and the exponent. The mantissa is a fixed point number and the

exponent is an exponential modifier whose base is agreed upon by con-

vention. For

point notation.

example, scientific notation

The number 3.1415 x 108 has

is a form of floating

a mantissa equal to

3.1415 and an exponent of 8. The base of the exponent is 10. The

32

33

precision of the floating point number is a function of both parts.

In the above example, the precision of the mantissa is + .00005,

but the error is multiplied by 108 to give a final error of ± 5000.

It can be seen that floating point representations exhibit a constant

relative error.

It is also easy to see from the above example that floating

point offers a much larger dynamic range than fixed point. The range

of floating point is determined by the base used and the number of

bits in the exponent. The number

d (, b ') 1.'S 2m • 2n
represente uS1.ng 1.nary

of finite values that can be
m+n= 2 where m is the number of

bits in the mantissa and n the number of bits in the exponent. Thus,

it is seen that for a constant number of bits the same number of

numbers may be represented in either a floating or fixed-point system

but their precision and spacing are different.

When performing floating point arithmetic there are two opera­

tions which must be accomplished that are not necessary in fixed

point. The first, binary point alignment, concerns addition and sub­

traction only. Before two numbers of differing exponents can be added

or subtracted their exponents must be made equal and mantissas

adjusted accordingly. The second operation is normalization of the

result following addition, subtraction or multiplication. In float­

ing point representation, the minimum error is achieved when the most

significant bit has value (i.e. is not a place holder). After the

above operations, this may not be the case. The operation of shift­

ing the result until its most significant bit occupies the most sig­

nificant position and adjusting the exponent is called normalization.

Both of these operations are easily implemented; however, they do

represent an increase in necessary hardware.

Error propogation in computing Fourier Transforms has been given

considerable attention in the literature for both the fixed-point

[15,54,67,69,72] and floating-point cases [15,41,44]. Because of the

complexity of the Fourier transform, only upper and lower bound ana­

lyses have been performed. The most useful result for the purpose of

this thesis is that of Welch [72] which shows for an array of N

values

34

rms (error) oc ~
rms(computed result) rms(orig. array)

This result for the one-dimensional case will be shown to extend to

two-dimensional transforms performed as a series of one-dimensional

transforms which are of interest here.

In order to make decisions as to word size, fixed or floating

point representation and, in the case of fixed-point, the number of

precision bits to be used, computer simulations were performed using

several different phantoms (Figure 8). Computer subroutines were

written which performed both fixed and floating point arithmetic

using different word sizes and different numbers of precision bits.

(Precision bits are the bits to the right of the binary point.) For

each simulation the input array (phantom) was forward transformed and

inverse transformed several times. Each forward-inverse computation

is referred to as an iteration. At several points, absolute errors

were computed by subtracting the original image from the current

result. The absolute values of the errors were histogrammed. The

metric used was the 97th percentile of the absolute value of the

errors. Figure 9 shows the behavior of fixed-point arithmetic when

the number of precision bits is varied. Data were taken after 1, 10

and 20 iterations. It can be seen that the error varies as the log

of the number of bits used and propogates linearly with the number of

iterations. Several different word lengths were used. The bits not

used for precision allowed different ranges of values in the input

arrays. (For example, if a 24 bit word was being used with 16 preci­

sion bits, 8 bits are available for range.) Assuming twos complement

representation. input values could vary from _2 7 to +2 7• Regardless

of word length, input values or range, all results were the same

within statistical variation supporting the premise that fixed-point

representation exhibits constant absolute error behavior.

For the case of floating-point representation, it was observed

that for a given input array the relative behavior was the same as

fixed-point although the values of the errors were different. Figure

10 shows the behavior of phantom #1 whose range was 10. Table III

shows the error for various phantoms of various ranges after 10

iterations using 24-bit floating point. This is an excellent illus-

Figure 8

Phantom
NO.1

hantom

No.

h nto

No.

XBB804-4842

35

36

FIXED POINT ARITH M C

-

10 iteration

All Phantoms

I iteration

165 1l......!..__.....1...__...l-._~.1..__~

12 16 20

Number of bits
XBLSOI- 3032

Figure 9

FLOATING POINT ARITHM C

Phantom No.1

166 ~__~__~__.........__..,.ll

12 16 20 24
Number of bits

XBL801- 3033

Figure 10

37

38

tration of the data dependent behavior of errors under floating~point

r epresentation •

TABLE III

Phantom

Phantom In ~range ° 50) 1.7 -4to x 10_3
Phantom In range ° to 2000) 8.5 x 10_4
Phantom IF3 range 0 to 250) 1.1 x 1°_3
Phantom IF3 (range 0 to 1000) 1.2 x 10

Considering the image processing applications of the UFTPP, it

was decided that it was desirable to keep errors in the 1% range.

The simulations indicated that this would require approximately 16

precision bits in the fixed point case and 20-24 in floating point.

The fixed point would require additional bits to provide adequate

range as well. Even though floating-point representation might allow

a slightly shorter word length, the simplicity of fixed-point arith­

metic hardware argued in favor of its use in the first version of

this machine. In subsequent versions, however, it might be advanta­

geous to use floating point.

The last consideration with respect to error propogation con­

cerns handling of normalization in the fixed point case. The choice

is to shift right one bit after each iteration or to divide by N

after the entire transform. If one shifts after each iteration one

prevents the possibility of overflow but sacrifices some precision.

Waiting to divide by N after the entire transform requires m=log2N

more bits to be added to all words which represents a very signifi-

cant addition in hardware. Simulations were performed to observe

just how much additional error would be introduced by dividing by 2

after each iteration. Table IV shows the differences in error under

the same conditions as in Figure 9. It can be seen from this table

that the difference in error is only about 10%. The amount of

TABLE IV

Iterations

Bits
-rr­
16
20

3.0 x
3.0 x
1.5 x

6.0
4.0
3.5

10
-2x 10_3

x 10~4
x 10

1.3 x
4.0 x
3.0 x

39

hardware saved by performing the normalization at each iteration is

worth the tradeoff of a 10% larger error.

In summary, it has been shown that for the purposes of the UFTPP

and its applications fixed-point arithmetic using 16 precision bits

should result in about 1% accuracy even when several iterations of

transforms are performed. Since the two-dimensional transforms are

to be accomplished with a series of one-dimensional transforms, it

seems reasonable that the error growth should continue to follow the

square root of N dependence demonstrated by Welch.

The overall word length to be used is largely determined by the

cost that can be tolerated for the implementation of the real multi­

pliers. As mentioned in Chapter 1, LSI multiplier chips have become

available that perform 8-, 12-, or 16-bit multiplications. It is

relatively straightforward to implement a double precision multipli­

cation using four of these chips. The choice is then whether 24- or

32-bit words are more desirable. When 16 bits are used for preci­

sion, the available input ranges would be + 128 or + 32,768 for

the 24- or 32-bit cases, respectively. It is clear that 24 bits

simply does not allow a reasonable range and, thus, 32-bit words were

chosen. Figure 11 shows the hardware configuration for performing a

32 x 32-bit multiplication yielding a 63-bit product.

40

-"'--------~ 63 ------------_.._

PRODUCT REGISTER

17

17

16 15 16 15 15 15

A ; E D;B tP B tP E

Input Register No. 1

C (OEF)

16 x 16

MUltiplier

Input

D E F
t=16-.....,.....:-15:=1!J

-"---32 ­
Register No.2

16 ll6

Multiplier

..
8 C

"t 15:::i!J

16 ll6

MUltiplier

A

r l6

16 16

A D

16 It 16

Multiplier

XBL792 - 3212

Figure 11

CHAPTER 5

PROCESSOR IMPLEMENTATION

Overall System Description

Demonstration and implementation of the architectural design put

forth in this thesis was achieved by construction of a radix-2, one

arithmetic unit prototype system for transformation of arrays up to

4096 complex values. As outlined in previous chapters larger and

faster systems are easily designed. The system consists of an arith­

metic unit, a memory system, a multiplexer system, an interface (for

the host computer) and overall control logic. Figure 12 shows a

schematic diagram of these constituents and their interconnections.

The arithmetic unit houses the complex multiplier. cosine and sine

read-only-memories, the butterfly computation module. and normaliza­

tion circuitry. The memory system consists of four independent phy­

sical memories that may serve as processor input memory, processor

output memory, computer input buffer or computer output buffer. The

multiplexer system consists of all the selectors shown in Figure 12.

It performs a routing function that brings the data from/to the

appropriate memories to/from their destinations/sources. The inter­

face allows the loading of data from the computer into the computer

output buffer (in the UFTPP), unloading results from the computer

input buffer to the computer and control of the UFTPP by the host

computer. The control logic section initializes the processor. moni­

tors progress of transform computation. buffer loading/unloading and

communicates information concerning the status of the processor to

the computer via the interface.

The processor is implemented on a total of 8 boards each measur­

ing 2411 x 18.5". Each board has 400 edge-connectors along one of the

24" edges. Of these. 80 are reserved for power and ground connec­

tions leaving 320 available for general use. A power and ground

plane was laid down (one on each side of each board) using printed

circuit technology to allow for low resistance power and ground dis­

tribution and to minimize ground loops. All other connections were

41

.l::­
N

12ii

Me8Tu",yNo.4

4096,,~.

32

32

32

32

64blh

Iiom.,y~.3

4096,,~.

MemorltNo.2MemovyMo.t

lEnob!e

II
f
G
A
T
E

·32bih

SINE
&lEIiIORY

%lwds

32bih

Ii

II

CONTIiOI. LOGIC

, r

IiIA~

E !l E
Ii!l G
II ~ I
~ES

'if 5 T
S ~

'>i
1-"

OQ

&:::
11
ro
I-'
N

J<Bl191i-3916

43

wirewrapped. The eight circuit boards communicate with each other

via a wirewrapped backplane.

The Arithmetic Unit

The arithmetic unit is implemented on two boards. Together they

house a complex multiplier, the butterfly module, the sine/cosine

memories, and the normalization circuitry. Each arithmetic board

houses 8 LSI multiplier chips, 16 PROM chips and approximately 325

other MSI integrated circuits (e.g. 4-bit adders, 6-bit registers,

etc.). Each board draws about 20 amps. Figure 13 shows the component

side of one of the arithmetic boards and Figure 14 shows the wiring

side of the same board.

In order to minimize the number of connectors necessary on each

board, a technique similar to bit-slicing but applied to words has

been employed. The output of the entire arithmetic unit is two com­

plex values. Rather than having one board compute the first complex

value and the other board the second one, a more efficient usuage of

the connectors is made if one board compures the real parts of both

complex values and the second board computes the imaginary parts.

Thus, each board houses two real multipliers, a sine or cosine memory

and half of a butterfly module. If we further divide the two complex

inputs into their real and imaginary halves (C
1

~ (R
1
,I1) and C2 ~

(RZ,I
Z
»' then the two real multipliers on the first board, AI, com­

pute the values: R
1

cos and 1
Z

sin. The difference between these

two values is the real part of the complex product, R
3

, as indicated

by Eq. 21 (Chapter 3). The multipliers on the second board, AZ, com­

pute the values R
Z

sin and 1 2 cos. The sum of these two is the ima­

ginary part of the complex product, 1
3

•

The basic algorithm for implementation of the real multiplier is

as shown in Figure 11 (Chapter 4). However, since the 63-bit product

is to be combined with a 3Z-bit value in the butterfly module, it is

not necessary to compute all 63 bits. Only 3Z-bit accuracy is neces­

sary at the output of the complex multiplier and it can be shown that

only 37-bits need to be computed at the outputs of the real multi­

pliers. Figure 15 shows the hardware configuration necessary to

44

Figure 13 CBB790~16710

45

Fi gure 14 CBB790-16712

46

......--------37---------..-

PRODUCT REGISTER

31 6

s.e.

XBLBOI- 3034

D E F
t:::: 16 ---11----15~

32
Input Register NO.2

ABC
t:= 16 .t::15::t~

32
Input Register NO.1

9 discord 9 discord

16>< 16 16><16 16><16 16><16
(J)

Q MULTIPLIER MULTIPLIER MULTIPLIER MULTIPLIER
<C

<1l

A 4> D A D 8 4> E

Figure 15

47

implement a real multiplier of this nature. Simulations have shown

that results obtained from this implementation do not differ from the

63-bit result by more than 3 x 10-
6

• Since the numbers used in the

UFTPP have 16 precision bits, their accuracy is 2-
17 = 7.6 x

10-6 • Thus. the results in the 63-bit product are indistinguishable

from the results in the 37-bit version. This represents a 50% reduc­

tion in hardware for each of the four real multipliers.

The real multipliers are pipelined as described in Chapter 3.

Figure 15 indicates the 4 stages each contains. Between each of the

stages are registers which capture the results from the previous

stage at each clock interval.

The inputs to the multipliers are either data values from a

memory or a sine/cosine value. The sine and cosines are stored in

ROM. The sine ROM is on one board and the cosine on the other. Each

board makes its value available to the other one. The addresses for

the ROMs are generated through a bit reversal and masking function

described by Pease [48].

In all of the simulations cited in Chapter 4. it was assumed

that the sine and cosine values are represented with N-2 bits of pre­

c~s~on. The two remaining bits allow for a range of ± 2 (actually

-2 + 2-(N-2) to +2 - 2-(N=2». The sine/cosine memories are 32 bits

wide using 30 bits of precision.

The data inputs to the arithmetic unit are pairs of complex

values as indicated by the signal flow graph (Figure 4) in Chapter 2.

If we label them C1
and C

2
, then C

2
is the value to be II twiddled II

(i.e. multiplied by the sine/cosine values) and C1
is saved until the

butterfly operation is ready to be performed.

The butterfly module consists of two adders and two subtractors.

"Word-slicing" each results in half containing one adder and one sub­

tractor (and produces either the real parts or the imaginary parts of

the two complex pairs. The result from the half complex multiplier

is added to and subtracted from the corresponding half of the other

input value to yield the result.

R
3

= R
4

and R
1

- R3 = RS and the

The first board. AI, computes R
1

+
second board computes II + 1

3
= 1

4

48

and II 13 ~ IS. Depending upon the direction of the transform,

this result may be divided by two (i.e. shifted right one bit with

sign extension) to incorporate the l/N normalization necessary for

the forward transform. This result is then the output of the arith­

metic module.

The forward transform computation is

and the inverse is

R(f) 1
~ ~

N

n
L h(t) e
i~l

2nft/N

h(t) ~ t H(f) ej2nft/N
i~O

The latency of the pipeline through the arithmetic unit is 10

clock periods including generation of sine/cosine table look-up

address, reading the sine/cosine values, delay through the real mult­

tipliers, performing the butterfly and normalization. Enumeration of

all pipe cycles is given in detail in section 5.5.

Overflow detection is relatively simple when twos complement

arithmetic is used. Overflow may occur in the final stage of the

complex multiplier where the real products are combined or in any of

the adders/subtractors in the butterfly unit. Special precautions

have been taken in the multiplier to insure that no overflow will

occur there.

Under twos complement arithmetic, subtraction of two arguments.

a = b, is simply a + (-b) where -b is b complemented bitwise and then

incremented. It is clear that overflow may occur in twos complement

addition only where the signs of both inputs are alike. Similarly,

for subtraction overflow may occur only when a and -b have the same

sign. Addition overflow of two binary numbers results in a sum that

is one bit longer than the inputs. Therefore, overflow detection may

be accomplished by comparing the sign bit of the N-bit result with

the sign bit of inputs. If overflow has occurred the sign bit will

be complemented (the true result would be N + 1 bits long) and will

no longer be the same as the sign bits of inputs. The boolean

expression for this function is:

49

o (a + b) • (a + s)

where

a is the sign bit of the first input
b is the sign bit of the second input
s is the sign bit of the N-bit sum

This may be realized in only 2 stages of logic if the XOR function is

available.

As noted by Welch [72], in order to insure that overflow will

not occur two conditions must be met. First, all of the input com­

plex values must have a modulus ~ M/2 (where M is the maximum value

which can be represented with the available bits) and a normalization

of l/Z must be performed after each iteration of the transform. In

the case of the processor under consideration here, 16-bits are used

for the range of input values. This allows values from (_ZI5 + 1) to

(+ZI5 1). Thus, the maximum value of the modulus of any input

should be Z14 - 1 = 16,383.

5.3. The Memory System

The memory system consists of four physical memories anyone of

which may serve as processor input, processor output, computer input

or computer output. The motivation for including the computer

input/output buffers was to allow processing of the current transform

while loading of the next and unloading of the last was taking place.

Thus. the pipelining technique is extended one more level and further

time savings are realized.

Each of the four memories are identical. with the exception of

control logic for each which determines which of the four logical

functions each memory will perform at any given time. Each memory

contains a memory address register. MAR, (Ii-bits wide), a bidirec­

tional memory data register. MDR, (i28-bits wide) and a 4K word x

64-bit memory array. The data path is lZ8-bits wide because on each

memory cycle two complex values must be read/written or two 64-bit

words. (Each 64-bit word represents one complex value. the real part

occupies 32-bits and the imaginary part occupies 3Z-bits).

50

Each memory consists of 64 memory chips, 64 4-bit registers for

the MDR, 3 chips for the MAR, 44 hex 3-state buffer rcs and 10 chips

for control. Total chip count for each board is 370 or 740 for the

entire system. Each board draws about 15-17 amps for a total of 30­

34 for the system.

As described in section 3.2, this memory must be interleaved

22=4 ways for radix-2. At anyone time, the logical interleaving is

only 2-ways to allow both complex values to be accessed in parallel;

however, when the memory is an input memory (i.e. in read mode)

access must be sequential and when it is an output memory (i.e. write

mode) access must be at intervals of 2. This flexible interleaving

architecture requires an array of 3-state buffers as shown in Figure

16 even though the memory chips and registers have 3-state outputs.

Careful examination of data paths during read and write cycles shows

that a single data bus cannot be constructed that will function prop­

erly in both read and write modes. The 3-state buffers serve to con­

figure to separate busses, one for reading and one for writing.

The longest transform which may be computed is dictated by

memory size which in this case is 4K. Since there must be four

memory leaves, each will be 1 K long. The memory chips which were

chosen for this processor are the AMI 2114A-l lK x 4-bit VMOS sem­

iconductor memories with a cycle time of 150 nanoseconds. Each

memory leaf contains 16 of these chips.

Timing and control of the memory is relatively straight forward.

At the beginning of each memory cycle, the address is clocked into

the MAR. Which memory leaves will be accessed during this cycle is a

function of the LSB (least significant bit) of the address and

whether the memory is in read or write mode. This information is in

the form of a chip select signal. The read/write signal and the

remaining address bits are presented to the memory chips after a

fixed delay of 50 nsec. which allows the signals to settle.

After 150 nsec. (the cycle time of the memory chips) the data

has either been written into the memory or read from the memory.

When in read mode, the data are clocked into the memory data register

at the beginning of the subsequent clock period.

128 Memory d aa-

- - I ; Dno

64+ I 64 +64
l-'
0'\

R

e ry
leaf

I
leaf

2

y
leaf

y
leaf

XBL802-3096

Vl
l-'

52

When a given memory is serving as processor input or output. a

new cycle is initiated at each clock period. However, when it serves

as either computer input/output a new cycle is initiated only when

the computer has filled/emptied the MDR from the previous cycle. The

input/output interface informs the memory when to cycle via two con­

trol lines, one for input and one for output. Further details on

this are given below in section 5.7.

The overall control of what logical function a physical memory

will serve is a function of four variables. The first is the itera­

tion number within the transform since at the end of each iteration,

the processor input and processor output memories must exchange

roles. Secondly, the size of transform affects which memory will

contain the final results of the transform. When m = log2 N is odd,

then the memory that was the processor output during the first itera­

tion will contain the final results. When m is even. the original

processor input memory will contain the final results. The memory

that contains the results must become the computer input buffer on

initiation of the next transform. The other will become the output

buffer. The third and fourth variables are specified by a 2-bit

counter which cycles through 4 distinct states to allow each memory

to occupy one of the four functional positions.

Table V shows the function each of the four memories (numbered

1-4) will perform for each of the 16 combinations of the four control

variables. M is the LSB of the value logZ N (N is the size of the

transform). I is the LSB of the iteration number (beginning at 0) and

MCl and MCO are the MSB and LSB of the Z-bit memory control counter.

respectively. UI indicates UFTPP input. UO indicates UFTPP output.

CI computer input and CO computer output.

This state table is easily converted to truth tables for the

read/write and other control signals needed for memory operation.

5.4. The Multiplexer System

The multiplexer system is a switchyard which connects four fixed

direction busses with four bidirectional busses as depicted in Figure

17. The four fixed direction busses are the processor input bus,

l;:j
1-'­

0"1
&::
11
III

I-'
'-Jl

~u

PHYSICAL SET-

• "I Com fer j i

Switch
...

•

~

y emory Memo
41: #: :#

1 2

vo
w

XBL792-

54

TABLE V

Memory Function

M MCl MCa I DI DO CI CO

0 0 0 0 1 2 3 4
0 0 0 1 2 1 3 4
0 0 1 0 4 3 1 2
0 0 1 1 3 4 1 2
0 1 0 0 2 1 4 3
0 1 0 1 1 2 4 3
0 1 1 0 3 4 2 1
0 1 1 1 4 3 2 1
1 0 0 0 1 2 3 4
1 0 0 1 2 1 3 4
1 0 1 0 4 3 2 1
1 ·0 1 1 3 4 2 1
1 1 0 0 1 2 3 4
1 1 0 1 2 1 3 4
1 1 1 0 4 3 2 1
1 1 1 1 3 4 2 1

processor output bus, the computer input bus and the computer output

bus. The bidirectional busses are the four memory busses. Each bus

has a memory address associated with it.

Each of the four multiplexer boards house approximately 100

chips and draws about 6-8 amps. This yields 400 chips and 24-32 amps

for the entire multiplexer system.

The source and destination of the four data paths which flow

through the switchyard are determined from Table V. The same four

control lines which go to the memory are inputs to the multiplexer.

The multiplexer itself consists of all of the selectors shown in Fig­

ure 12. There are two 1-of-4 selectors which determine the processor

input and computer input memories and there are four 1-of-2 selectors

which determine which memories receive data from the processor and

computer. Since the memory busses are bidirectional, these selectors

are 3-state and each is enabled only when the memory to whose bus it

is connected is in read mode.

As can be seen from Figure 17 the entire multiplexer has a total

of 128 x 8 1024 I/O lines. This is clearly too many for implemen­

tation on one board. Implementation of even one of the 1-of-4 selec­

tors would require 128 x 5 =640 lines which is too many given the

board layout described in section 5.1. However, the "word-slicing"

approach may be applied here again. If the eight switchyard inputs

55

were reduced from 128 to 32, then the total number of connections is

reduced to 256 which is within the limit of 320 available. This

approach requires 4 boards to implement the entire multiplexer. Each

board contains the two I-of 4 selectors and four l-of-2 selectors.

They are each 32-bits wide.

The result is that each data bus is split into 4 parts as it

enters the multiplexer and reassembled as it leaves the multiplexer.

The four address busses, each 12 bits wide and associated with one of

the data busses, is treated in the same manner. However, due to

hardware implementation considerations each was split into three

slices of 4-bits each. The address selectors add 32 to the total

number of connectors necessary for a total of 288.

The four control lines are inputs to combinatorial logic which

derives the enable and select signals for each individual selector.

Since the word-slice approach is used, the control logic is identical

for each card.

Due to connector restraints on the arithmetic boards, where the

input and output interfaces are housed, the computer input and output

busses are not implemented exactly as indicated in Figure 12. Rather

than 128-bit busses, they are 32-bit busses that are time division

multiplexed. There are four time divisions. The data that is present

on a bus during each time division is determined by two control lines

from the corresponding interface. Each multiplexer board responds to

only one of the four possible conbinations of the two lines and

thereby the 128-bit pair of complex values is slowly built up and

then written into the memory in only one cycle.

5.5. The Pipeline

The memory, arithmetic unit and multiplexer are connected

together in a pipeline architecture as described in Chapter 3. The

general flow of data is from the memory, through the multiplexer,

into the arithmetic unit, out of the arithmetic unit, through the

multiplexer and back into the memory. The clock synchronizes move­

ment of data from one stage to another. There are a total of 15

stages in the UFTPP pipeline. The functions performed at each stage

56

are:

0) Generate Input Data Memory Address

Generate SIN/COS address

1) Route address through the multiplexer.

Bit reverse and mask SIN/COS address

2) Read data from memory

Read SIN and COS

3) Route data through multiplexer

Negate SIN if this is a forward transform

4) Complex multiplication - Stage #1

5)

6)

7)

8)

9)

Complex multiplication - wait for LSI multiplier chips

Complex multiplication - Stage 1!2

Complex multiplication - Stage #3

Complex multiplication - Stage 1!4

Complex multiplication - Stage 1!5 - check for overflow

10) Perform Butterfly - check for overflow

11) Normalize result if this is a forward transform

Generate output address and shuffle

12) Route butterfly results and address through the multiplexer

13) Write results into memory

After 13 clock periods (the latency of the pipe), the pipeline

is full and results for that iteration begin to emerge. At any given

time there are 13 data items being processed and are at various

stages of completion.

5.6. Overall Timing and Control

When the perfect shuffle routing algorithm is used, very little

control logic is necessary. Most control functions are concerned

with global operations such as detection of iteration completion,

transform completion and host computer I/O. The only functions

directly tied to the perfect shuffle are the address generators. The

control section of the UFTPP is composed of the following functional

57

blocks:

1) Perfect Shuffle Address Generator

2) Control/Status Register

3) N - register

4) Iteration Counter

5) Finite State Generator

6) Memory Counter

7) Clock Generation and Distribution

8) Computer Input Interface

9) Computer Output Interface

The Perfect Shuffle Address Generator

As noted in section 2.3, perfect shuffle address generation

involves a left circular shift of the input address by r-l bits.

Hardware implementaion of this is trivial for fixed n where n is the

number of bits in the address to be shuffled. For variable n, clas­

sical digital design techniques may be employed to implement a cir­

cuit to select the correct bit(s) and insert them in the low order

position(s) while the other bits are shifted to the left.

Two perfect shuffle address generators are necessary for the

UFTPP. One to generate the processor output memory addresses and one

for the computer output buffer address.

5.6.2. Control/Status Register and the N - Register

The control/status register (CSR) is the main vehicle for com­

munication with the host computer. It is a seven-bit register con­

sisting of a GO bit, a computer input buffer empty flag (B.), a com­
1.

puter output buffer full (B) flag, a transform complete flag (T), an
o

overflow flag (0), a transform direction flag (F) and a reset bit

(R). All bits are readable and writable from the computer. The N ­

register is a 12-bit register that is loaded with the size of

transform to be computed by the host computer.

58

The B., B , and T flags are self-explanatory. They are cleared
~ 0

at transform initiation and are set when the appropriate condition

exists. (For example, B. is set after N complex data values have
~

been sent to the computer.) The Overflow flag (0) is cleared at

transform initiation and set if at any time during the transform com­

putation an overflow is detected. This flag is purely an error indi­

cator and does not affect the operation of the processor in any way.

The transform direction flag tells the processor whether to perform a

forward (F = 1) or inverse (F = 0) transform. The GO and RESET bits

are the only two "commands" that the processor understands. When the

RESET bit is set, the processor performs a master reset and comes to

a state of readiness to begin processing. This bit is also accessi­

ble through a button on the front panel. The GO bit initiates a

transform as well as readiing the buffers to be filled/emptied.

5.6.3. The Iteration Counter

The iteration counter is a four-bit counter that keeps track of

the present iteration of the transform being computed. It is cleared

at transform initiation and incremented each time that the output

address counter reaches N, the size of the transform. When it

reaches m = log2N, the transform is complete and the T bit is set.

5.6.4. The Finite State Generator

The UFTPP is a finite state machine and the phase

is under the control of the finite state generator.

which the machine may be in are:

0) Initialization

1) Initialization pause

2) Compute state

3) Iteration transition

4) Iteration pause

5) Transform pause

of execution

The 6 states

State 5 is the state which is entered when RESET is asserted.

The processor remains in this state until GO is asserted. The tran-

59

sition is then made to State 0 where all address counters,

control/status flags and the iteration counter are initialized and

the memory control counter updated. Upon the initiation of the next

clock period, State 1, a wait state, is entered which is to allow

control signals derived from the just initialized signals to settle.

The following clock transition initiates State 2, during which one

iteration of the transform is computed. When the iteration is com­

plete, State 3 is entered. Here the processor input and output

address counters are reinitialized and the iteration counter incre~

mented. State 4 is entered on the next clock transition. During

this state, the transform complete signal is generated from the new

iteration value. If the transform is complete. State 5 is entered,

otherwise State 1 is entered and another iteration is begun.

5.6.5. Memory Counter

The memory counter is a two=bit counter that controls which phy­

sical memory will perform which logical function as outlined in sec­

tion 5.4. It is initialized only when RESET is asserted. Otherwise,

it is incremented each time a new transform is initiated. Basically.

it assures that the memory which contains the results from the last

transform becomes the next computer input buffer and that the last

computer output buffer becomes the processor input for the first

iteration. The transition table which defines the functions of each

of the four memories was given in Table V. section 5.5.

5.6.6. Clock Generation and Distribution

Most operations in the pipeline are combinatorial and do not

require any sub-pipecycle timing (a pipecycle is the period between

positive transitions of the pipeline clock). There are two opera­

tions that do require it. however. These are memory reads/writes and

the 16-bit multiplications. For this purpose, the pipecycle has been

divided into 4 segments which are delimited by transitions of two
•

signals. the pipeline clock (CLK) and a tri-state enable signal

(TRIEN) which is 90 degrees out of phase with the clock. These sig­

nals are supplied in both true and inverted forms to ease decoding as

shown in Figure 18.

60

ee
I~u

F
ig

u
re

18

zw

61

In the case of the memory, the first quarter of the pipecycle is

used to allow the address bus to settle and derive the chip select

and write enable signals. The remaining three-quarters is the memory

access time.

The LSI multipliers have internal input and output registers

which must be loaded and unloaded. Due to this architecture, the

multipliers form their own segment in the pipeline (see pipeline

stage 5, section 5.5 above). During segment 1 of the pipecycle, the

new inputs to the LSI multipliers are clocked into external registers

and the product from the previous cycle is clocked into the input

register of the next pipe segment. During segment 2 of the pipecycle

(beginning with the positive transition of TRIEN), the input regis­

ters of the multipliers are enabled and the output registers dis­

abled. During segment 3, the data for the new inputs are clocked

into the internal registers and the product from the previous set of

inputs is clocked into the internal output registers. Segment 4 is

used to enable the output registers so that they may bel unloaded at

the beginning of the next pipecycle.

A 20 MHz crystal is used as the timebase source from which both

the CLK and TRIEN signals are derived. The UFTPP is designed to run

at a minimum pipecycle duration of 200 nsec. This makes each segment

of the cycle 50 nsec long. The eLK and TRIEN signals are transmitted

to the other boards differentially to allow for minimal signal degra­

dation. Once on the destination board they are converted back to

single signals and distributed to the chips using standard TTL clock

drivers.

ComQuter I/O Interfaces

The UFTPP operates as a completely asynchronous system from its

host processor. The interfaces serve to synchronize data flow

to/from the host from/to the processor input and output buffer

memories. The processor under discussion here was interfaced to a

PDP11/34 minicomputer which operates using 16-bit word I/O data

transfers. Thus, 4 I/O operations are required to transfer one com­

plex pair of data values. The interface sends/receives the 16-bit

62

parcels to/from the computer and generates requests for memory cycles

after every eight computer r/o transfers (since the memory writes two

complex data values per cycle).

The input and output interfaces each has a memory address gen­

erator associated with it. The output interface receives data from

the computer to be transformed. Since the Pease algorithm used here

requires data shuffling previous to each iteration (see Eq. 15, ch.

2), there is a perfect shuffle address generator associated with the

output interface. There is also a comparator attached to the address

generator whose output sets the BO flag in the CSR when N complex

values have been received.

The Pease algorithm produces its output in bit-reversed order as

noted in Chapter 2. However, the algorithm is a pre-shuffle (the

data are shuffled before each iteration) algorithm as noted above,

but the output from the arithmetic unit is always shuffled when it is

written into the output memory. Thus, an extra shuffle is performed.

This has an interesting and useful effect. The results from Eq. 15

are stored at addresses which are bit-reversed values of the fre­

quency bins they represent (see also Sec. 2.1). The extra shuffle

performs another left circular shift of this address by r-l bits (in

the case of radix 2, one bit). This might be symbolicly represented

as

(nO,n
1
,n

2
, ••• ,nm_1) -~ (n

1
,n

2
,n

3
• •••• n

m
_

1
·n

O
)

The result is that the frequencies are bit-reversed pairwise by their

m-2 most significant bits. This is fortuitous in the case of the

UFTPP architecture since the memories access data in sequential pairs

during read cycles. Because the 1SB of the frequency has been shuf­

fled back into the least significant position, the frequency coeffi­

cients are stored in sequential pairs in the output buffer. The

address generator for the computer input interface is a variable

length bit reverser which operates on m-2 bits. This address is then

routed to the appropriate memory and the frequency values are

accessed in the normal pairwise fashion. The interface then sends

the results to the computer in unscrambled order. Because this

access is not in any sequential fashion, it is an argument against

63

using a memory based on a sequential technology (such as CCD or mag­

netic bubbles) and for truly random access memories.

5.8. Computer Operation and I/O

The UFTPP can be veiwed as an extremely fast subroutine by the

programmer. As currently implemented, the program must explicitly

load data and unload results, in a programmed I/O fashion. However,

if the computer side of the of the interface were given DMA (direct

memory access) capabilities, the results would be loaded and unloaded

transparently to the program. This would not require any change in

the UFTPP side of the interface or to any other part of the UFTPP.

The UFTPP is designed to perform transforms continuosly in

parallel with I/O to/from the computer. Each time the processor is

instructed to GO, the previous results are made ready for trasmission

to the host and the data just loaded from the computer are

transformed. A single transform would have the following operational

sequence:

(1) Initialize processor with RESET

(2) Issue GO command to ready computer output buffer

(3) Load UFTPP with data

(4) Issue GO command to perform transform

(5) Wait for completion

(6) Issue GO command to ready output buffer

(7) Unload results

When performing several transforms in succession the command

stream is considerably streamlined:

(1) Initialize processor with Reset

(2) Issue GO commend to ready output buffer

(3) Load UFTPP with data; unload results unless this is first

transform

(4) Issue GO command to perform transform

Inc. Even

to low by

Table VI.

64

(5) Wait for completion

(6) Go to step 3, unless all data have been sent already

(7) Issue last GO command to ready last results

(8) Unload last results

5.9. Implementation Costs

The implementation costs for the prototype UFTPP were moderate

computer standards. The actual costs are enumerated in

The sixteen 16x16-bit multipliers were donated by TRW,

including the cost of the multipliers, the $14.5K price

tag is very low in comparison to the cost of array processors with

similar computational capabilities.

TABLE VI

UFTPP Cost Summary

Memory Chips
Other Integrated Circuits
Printed Circuit Boards
Mechanical Hardware
Power Supply
Chassis
~ultipliers (Donated)

Total

2750
4500
1000
1300

695
300

4000

$14 550

CHAPTER 6

APPLICATIONS

6.1. Implementation

The UFTPP prototype was connected to a host DEC PDP-11!34 com­

puter at the Donner Laboratory (part of the Lawerence Berkeley

Laboratory). and integrated into the data acquisition and reconstruc­

tion system [40] for the Donner 280-crystal Position Emission Tomo­

graph [25]. The processor clock speed was set at 2.5 MHz. When com­

pared to software running on the host or on a CDC 7600 computer, the

UFTPP was faster by factors of 3400 and 17, respectively.

times are given in Table VII.

Exact

Two-dimensional (256 x 256) complex image transforms were per­

formed using a series of one-dimensional transforms as described by

Gonzalez and Wintz [35]. The intermediate result from the first pass

were stored on disk due to memory limitations. Transposition of the

rows and columns of the intermediate result was performed in place

using the algorithm by Eklundh [29]. Following the second pass the

results were again stored on disk as well as displayed on a 256 x 256

gray-level display. Inverse transforms on the computed frequency

spectrum were performed in a similar manner.

6.2. Image Processing Applications

High & Lowpass Filtering

System software was developed to allow generalized 2-D filtering

of images. Image filtering in general is the process of altering the

TABLE VII

(time in milliseconds)

N PDP11!34 CDC7600 UFTPP

64 244 1.5 .077
128 581 3.1 .179
256 1316 6.8 .410
512 3137 15.2 .819

1024 7088 33.2 2.048
2048 16198 70.3 4.506
4096 33667 152.0 9.830

65

66

frequency content of an image. The operation may be performed in

either real space using convolution or in frequency space using mul­

tiplication. When the size of the convolution kernel is small, there

are advantages to performing the convolution in real space. However,

for generalized 2-D filtering where one desires the capability of

manipulating all frequency components up to the Nyquist limit, fre­

quency space manipulations are usually superior. This is due to the

fact that 2-D convolution requires the order of N4 operations while

2-D Fourier filtering requires only 4N 2 log2N + N2 operations

(2N 2 logZN for the forward transform, N2 for the filtering, and

ZN 2 log2N for the inverse transform). Thus when 4log 2N + 1 < N2

(i.e. N ~ 4) Fourier filtering requires less time.

If we have an image i(x,y) with Fourier transform I(u,v) and a

filter kernel f(x,y) with Fourier transform F(u,v), then the filter­

ing operation may be expressed as either

g(x,y} - i(x,y) * f(x,y)

(where * denotes convolution), or

G(u,v) - I(u,v) x F(u,v)

F(u,v) is usually referred to as the transfer function of the

filter and determines which frequencies are passed unaltered and

which frequencies are attenuated or stopped completely. Often a

filter is defined directly in frequency space via its transfer func­

tion.

The software written to implement generalized 2-D filtering

includes 7 different classes of frequency space windows: ideal,

exponential, trapezoidal, Hamming, Hann, Butterworth, and Parzen.

For each filter window, the user may specifiy the cutoff frequency

for the selected window. The definition of ideal, exponential and

trapezoidal windows may be found in Gonzalez & Wintz[35J, the defini­

tion of the Hamming, Hann and Butterworth windows may be found in

Hamming [39]. For a given cutoff frequency, it is well known that

the shape of the window effects both resolution of the image and

artifacts introduced by the filtering process. The steeper the rol­

loff the higher the resolution, but the more artifacts introduced.

67

Different imaging situations have different requirements and require

different window shapes. The cutoff frequency of a filter is the

frequency at which the transfer function goes to zero. In the

lowpass case, this defines the maximum resolution of the filtered

image. However, if the window of the filter is not rectangular, the

resolution of the image is further degraded by the rolloff of the

window.

Lowpass filtering (i.e. passing low frequencies and attenuating

high frequencies) is usually performed to suppress statistical noise

which is dominant in the higher frequencies of an image. Noise

suppression comes, of course, at a cost of lower resolution since the

high frequency power associated with resolution is attenuated by the

filter. In an image without statistical noise, the high frequencies

contribute to the definition of the edges in the image. Figure 19

shows an example of an image without noise and the result after

lowpass filtering with a Hamming filter with cutoff frequency of 85

cycles per domain or the delineation of the edges in the result is

less clear since the image has been blurred by the low pass filter.

High pass filtering is a sharpening operation used for removing

isotropic blurring or edge-detection. In high pass filtering, the

high frequency components associated with abrupt changes in gray­

level are passed and the low frequencies are attenuated. An example

of edge detection using a highpass Butterworth filter is shown in

Figure 19.

6.2.2. Matched Filtering

Up to this point the discussion of filtering has been concerned

with radially symmetric high or low pass filters. There are cases

where nonsymmetric filters are of use. One example of this is

matched filtering. The operation of matched filtering involves the

computation of the correlation function between an image and a tem­

plate to determine if the pattern present in the template is also

present anywhere in the image. Brigham [12] shows that correlation

functions are easily computed in Fourier Space by multiplying the

Fourier transform of the initial function by the complex conjugate of

SPATIAL FILTERING

68

Rea I Space Fourier Space

Origina I

Butterworth
High Pass
Filter
(Fp=.32cpp,
Fs=A cpp*)

Hamming
Low Pass
Filter

(Cutoff I875cpp)

(*cpp =cycles per pixel)

Figure 19

XBB804-4844

69

the Fourier transform of the correlation function followed by inverse

transformation of the result.

Figures 20 & 21 show two examples of matched filtering. The

initial image is shown in the upper left and the template to be

matched in the upper right. The full correlation function is shown

in the lower left. Notice that all objects in the image yield some

degree of correlation. However, after threshholding only the objects

with good matches to the template stand out. The object which

matches the template best in size, shape and orientation yields the

largest signal. Note the bright point in the upper right quadrant of

Figure 20 which corresponds with the object which exactly matches the

template. Figure 21 shows the same initial image matched with

another template. The end result in this case (lower right) shows

maximum correlation in the two positions corresponding to the two

objects most similar to the template.

6.3. Image Reconstruction From Projections

The problem in image reconstruction is to recover an image,

i(x,y), from a set of its projections, p(r,B). The projections are

sets of line integrals through the object and are assumed to be

related to it by the expression

00

p(r,B) "" f i(x,y)ds
-00

where rand s are the coordinates of a system rotated by an angle B

from the fixed (x,y) system and are related by

x "" r·cosB - s·sinB

y "" r·cosB + s·cosB

The basic operation in reconstruction is called backprojection

and is given by the expression

"b (x, y) "" [p (x ·cosB + Y·cosB, B)dB
o

However, it has been shown that b is not the original image i, but

rather i convolved with a smearing function whose frequency spectrum

71

MATCHED ILTERING

Scene Template

ss Correlation Cross Cor lati n
(hresh Ided)

XBB804-4841

Figure 20

cene

MATCH D FILTERING

72

plate

Figure 21
XBB804-4840

73

is

-1 2 2 -1/2Z(u,v) ~ IRI ~ (u +v)

Since bgi*z, it is immediately apparent that i may be recovered by

the deconvolution or filtering of b in 2-space with a filter whose

transfer function is

2 2 1/2
A(u,v) ~ IRI ~ (u +v)

This algorithm is known as the Filtered Backprojection.

It has also been shown [2] that this filtering operation is com­

mutative with the backprojection operator and may be carried out on

the projections before backprojection with equivalent results. This

algorithm is known as the Backprojection of Filtered Projections.

When the projection data used for reconstruction contains sta­

tistical fluctuations, the ramp filter, A(u,v) (given above), ampli­

fies the high frequency noise in the reconstructed image. In order

to suppress this noise, the ramp may be rolled off by a window func­

tion such as one of those given above. The noise suppression comes,

of course, at the expense of resolution.

Image reconstruction from projections is fundamental to Computer

Assisted Tomography (CAT), the recently developed diagnostic medical

tool which produces cross-sectional images of the human body. The

images may be collected in two modes, transmission or emission. In

transmission mode, an external X-ray source is passed through the

body and an attenuated beam emerges on the other side. The projec­

tion data are a function of the ratio of the emergent beam strength

to the incident beam. The reconstructed image represents the distri­

bution of attenuation coefficients in the plane of the body being

imaged. In emission mode, the object is to map an unknown distribu­

tion of radioactive source. The data at each point of a projection

collected in this mode are a sum of all the source strength along the

line perpendicular to the projection and intersecting it at that

point. Emission CAT (ECAT) suffers from the further problem that as

the radioactivity leaves the body it is attenuated by the tissue that

it passes through in the same manner as in transmission mode. How-

74

ever, the initial source strength is not known nor is the point of

emission. Thus, one does not know how much tissue a given photon has

travelled through so that correction for attenuation is difficult.

Gullberg [38] has recently developed a method for determining

window functions which can be applied to the ramp filter to yield a

transfer function which when used for reconstruction will correct for

the effects of constant attenuation yet maintain a known point spread

function (resolution). Attenuation correction in single-gamma ECAT

has previously been very time consuming and computer memory expen­

sive. However, this technique incorporates the attenuation correc­

tion into the filtering step of the Backprojection of Filtered Pro­

jections algorithm. Whereas other techniques of compensation for

attenuation in ECAT do not require Fourier transform operations, this

apparently superior method needs to use Fourier transformation of for

its implementation. Thus, the need for a rapid Fourier transform

method.

Since the patient is exposed to radiation in either the

transmission or emission mode of CAT, it is always desirable to

minimize the amount of exposure. Limiting the number of photons col­

lected as projection data lowers the signal-to-noise ratio (SNR) in

the projections. This lowered SNR is transferred to the image (and

degraded further) by the reconstruction operation. Tsui [68] has

recognized that the global SNR of a projection is not distributed

uniformly among the frequency components of it. Using the Weiner

formulation for a stochastic filter. he has developed an algorithm

for determining a new transfer function at each projection angle

which not only removes the I/R blurring, but suppresses noise by

weighting the frequency components of the projection according to the

SNR at each frequency. That is. the frequencies which exhibit high

SNR are passed relatively unattenuated and those with low SNR are

highly attenuated. The determination of the transfer function

requires computation of the power spectral density at each frequency.

Once the filter is determined it is applied to the projection data

before backprojection. Tsui has shown that this technique shows

excellent results for large dose reductions.

I
75

1 +

The form of the minimum mean-squared error filter developed by

Tsui is:

If IH(f) '" -...!,"~" -

y1f1m
S (f)

where

f is the frequency
m is the average value of the projection data for the angle

under consideration
S(f) is the value of the power spectrum of the projection data at f
Yis a gain factor which effects the smoothing characteristics

(noise suppression)

Implementation of this reconstruction algorithm requires compu­

tation of the power spectrum (the square of the Fourier transform) of

the projection data at each angle. A new filter transfer function is

then constructed using the formula given above. This filter is

applied to the projection data before backprojection.

Both of these important advances in reconstruction tomography

rely on the capability to compute the Fourier transform. Due to the

number of forward and inverse transforms that are necessary to per­

form a single reconstruction (approx. 150) software implementations

of FFT computation are not practical in the clinical setting. How-

ever, even with the filtering operation being performed in software,

a minicomputer (such as a PDP 11/34) equipped with a UFTPP and a

comercially available hardware backprojection device can perform the

reconstruction in 30-45 seconds.

Once obtained. the reconstructed images may be postprocessed

with to increase visual impact or emphasize interesting structures.

An example of a reconstructed emission image of the brain showing C­

11 methionine distribution is shown in Figure 22. Three smoothed

versions of the original data were obtained by lowpass filtering

after reconstruction are also shown in Figure 22. Notice that the

ventricles in the center of the brain are more apparent in the image

that was smoothed with the Hamming filter whose cutoff was .1875 cpp.

Extraction of temporal relations in multidimensional signal pro­

cessing requires time domain Fourier transformation of 2-D and 3-D

spatial arrays of sequentially acquired data. For example. two-

LOW PASS IMAGE ENHANCEMENT
76

Rea I Space Fourier Space

Original

(Cutoff =,25cpp*)

(Cutoff =.I875cpp)

(Cutoff =, 125cpp)

(*cpp =cyel es per pixel)

Figure 22

XBB804-4843

77

dimensional projection images of isotope distribution in the heart

can be obtained every 10 seconds. As many as 100 128x128 images

might be collected. Analysis by the methods of Budinger [13]

requires 16,384 128-point transforms to be computed.

These are only a few of the applications that high performance

Fourier transform processor may be used for in the field of image

processing. Investigators in the field of electron microscopy rou­

tinely deals with images of dimension 1024 x 1024. 2048 x 2048 and

sometimes even 4096 x 4096 and could make excellent use of a UFTPP.

The area of digital signal processing in general offers an even wider

spectrum of possible applications. The fields of NMR chemical

analysis, x-ray crystallography, geophysics and many others have

large computation problems to which a processor such as the UFTPP

might be applied.

CHAPTER 7

CONCLUSION

A new. flexible architecture for a hardware Fourier transform

processor has been developed which can achieve extremely high

throughput rates. It can handle variable length transforms and can

be configured with anywhere from 1 to N/2 arithmetic units as

required by speed or dictated by economic constraints. The outstand­

ing characteristics of the architecture include

(l) A pipelined "butterfly" computation module

(2) Multiple arithmetic units (vertical parallel processing)

(3) Use of LSI multiplier chips

(4) Use of the "perfect shuffle" data routing algorithm

(5) Extremely simple control logic

(6) Low cost

The architecture followed from the fully parallel machine con­

cept proposed by Pease in 1969. This machine uses a perfect shuffle

data routing operation to maintain uniformity in data routing for all

iterations. However, even today implementation of such a machine is

impractical. By means of deriving a perfect shuffle generating func­

tion. it was denmonstrated that the output address of an input data

value could be derived from the input addresso This coupled with the

fact that pairs of data from the previous iteration are inputs to

only one butterfly operation in the succeeding iteration allows many

arithmetic units to be in parallel operationo The perfect shuffle

data routing allows addition of arithmetic units in increments of

powers of two with the only cost being further interleaving of the

memories ° A processor with P arithmetic units processes a transform

in

N°log N
r

reP

cycles °

78

79

The radix of the machine is a very improtant design parameter

since each increase in radix by a factor of two yields an increase in

computational speed by a factor of four as well as a savings in

hardware over four radix-r/2 modules. However, this requires

increased memory interleaving, a wider data path throughout the pro­

cessor, more complex arithmetic units and limits the flexibility in

the sizes of the transforms which can be computed.

The value of the flexibility of the UFTPP architecture demon­

strates itself best when compared against the cascade architecture.

The cascade must have m=log N stages and computes only an N-point
r

transform in 2N execution cycles. The UFTPP may have 1 to N/2

modules with speeds varying from !log N to log N cycles. Further, a
r r r

UFTPP may compute any size (power of 2) transform up to N. The cas-

cade processor cycle time must be the same as the input/output cycle

time as it has no buffer storage. However, a UFTPP must have 2N com­

plex words of storage which may serve as an input/output buffer.

This allows the processor cycle time to be much faster than the

input/output cycle time and allows less hardware to do the job in the

same time.

As demonstration of the feasibility of implementing such a pro­

cessor, a 1 arithmetic unit version was fabricated. The machine has

the capability of computing any size transform up to 4096 that is a

power of two and uses 32-bit arithmetic. The UFTPP is implemented on

8 circuit boards consisting of 2 boards for the arithmetic unit, 4

boards for the multiplexer and 2 memory boards. Each board is 61

em. x 47 cm. A total of approximately 1700 MSI integrated circuits

and 16 LSI multipliers were used in the implementation. There are 4

physical memories that may serve the logical functions of processor

input, processor output, computer input buffer, and computer output

buffer. The multiplexer implements the variable connections.

Two-dimensional Fourier transforms were computed using a series

of 2N one-dimensional transforms. Several types of spatial filters

were implemented in a software system which utilized the UFTPP to

filter phantom images and reconstructed Emission Computer Assisted

Tomography images. The backprojection of filtered projections

80

algorithm was also implemented using the standard ramp filter which

can be rolled off by several different user-selected windows. In

addition. the UFTPP can be utilized to constuct special types of

filters for use in reconstruction such as the one proposed by

Gullberg to correct for attenuation effects or the one proposed by

Tsui which yields the minimum mean squared error and allows consider­

able dose reduction.

Digital signal processing is applicable to almost all areas of

physical science. In most areas there are problems which are. at

present. computationally intractable or are very expensive in terms

of large computer time. The evolution of digital signal processing

hardware since the formulation of the FFT algorithm has helped move

the boundary of computationally intractable problems steadily back.

The UFTPP architecture offers new possibilities for moving that boun­

dary still further back. Its flexibility allows it to conform to

most speed or economic requirements. Further developments in

integrated circuit technology should make later versions even faster

and simpler (in terms of number of ICs). However, even as the boun­

dary is moved back. new even more difficult problems come into view

from over the horizon. So goes the battle.

81

REFERENCES

I. Agarwal, R.C. and Cooley, J.W., "New Algorithms for Digital Con­
volution", IEEE Trans. Acous., Speech and Sig. Proc., ASSP-25:5,
Oct. 1977, 392-410.

2. Bates, R.H. and Peters, T.M., "Toward Improvements in Tomography",
New Zealand J. 14 1971, 883-886.

3. Bergland, G.D. and Hale, H.W., "Digital Real~Time Spectral Analy­
sis", IEEE Tran. Comput. EC-16:2, April 1967, 180-185.

4. Bergland, G.D., "A Fast Fourier Transform Algorithm Using Base 8
Iterations", J. Math. Comput. 22, April 1968, 275-279.

5. Bergland, G.D., "Fast Fourier Transform Hardware--An Overview",
IEEE Trans. Aud. and Electroac. AU-17:2, June 1969, 104-108.

6. Bergland, G.D., "Fast Fourier Transform Hardware--A Survey", ibid.
109-119.

7. Bergland, G.D., Wilson, D.E., "An FFT Algorithm for a Global Highly
Parallel Processor", IEEE Trans. Aud. and Electroac. AU-17:2, June
1969, 125-127.

8. Bergland, G.D., "A Parallel Implementation of the Fast Fourier
Algorithm", IEEE Trans. Comput. C-21:4, April 1972, 366-370.

9. Bloomfield, P., Fourier Analysis of Time Series: An Introduction,
John Wiley & Sons, New York, 1976.

10. Bongiovanni, G., Corsini, P. and Frosini, G., "One-dimensional and
Two-dimensional Generalized Discrete Fourier Transforms", IEEE------Acous., Speech and Sig. Proc. ASSP-24:1, Feb. 1976, 97-99.

11. Bracewell, Ronald N., The Fourier Transform and Its Applications,
McGraw-Hill, New York, 1978.

12. Brigham, E.O., The Fast Fourier Transform, Prentice~Hall, New Jersey,
1974.

13. Budinger, T.F., "Multidimensional Space and Time Signal Processing
in Biology and Medicine", Proc. IEEE Int. Symposium on Circuits and
Systems, Houston, April 28-30, 1980, (in press).

14. Buijs, H.L., Pomerleau, A., et aI., "Implementation of a Fast
Fourier Transform for Image Processing Applications", IEEE Trans.
Acous., Speech and Sig. Proc. ASSP-22:6, Dec. 1974, 420-424.

15. Chan, O.W.C. and Jury, E.F., "Roundoff Error in Multidimensional
Generalized Discrete Transforms", IEEE Trans. Circ. and Sys. CAS­
21:1, Jan. 1974, 100-108.

82

16. Coehran~ W.T., Cooley, J.W., et aI., "What Is the Fast Fourier
Transform?", Proe. IEEE 55:10, Oct. 1967, 1664-1674.

17. Cohen, D., "Simplified Control of FFT Hardware", IEEE Trans. Aeous.,
Speech and Sig. Proe. AASP-24:6, Dec. 1976, 577-579.

18. Cooley, J.W. and Tukey, J.W., "An Algorithm for the Machine Cal­
culation of Complex Fourier Series", J. Math Comput. 19, April
1965, 297-301.

19. Cooley, J.W., Lewis, P.A.W. and Welch, P.D., "Historical Notes on
the Fast Fourier Transform", Proc. IEEE 55:10, Oct. 1967, 1675­
1677 .

20. Corinthios, M.J., "The Design of a Class of Fast Fourier Trans­
form Computers, IEEE Trans. Comput. C-20:6, June 1971, 617~623.

21. Corinthios, M.J., "A Fast Fourier Transform for High Speed Signal
Processing", IEEE Trans. Comput. C-20:8, Aug. 1971, 843-844.

22. Corinthios, M.J., Smith, K.C. and Yin, J.L., "A Parallel Radix-4
Fast Fourier Transform Computer", IEEE Trans. Comput. C-24:1,
Jan. 1975, 80-92.

23. Cyre, W.R. and Lipovski, G.J., "On Generating Multipliers for a
Cellular Fast Fourier TRansform Processor", IEEE Trans. Comput.
C-21, Jan. 1972, 83-87.

24. Dere, W.Y. and Sakrison, D.J., "Berkeley Array Processor",
Trans. Comput. C~19:5. May 1979, 444-447.

25. Derenzo, S.E •• Budinger, T.F., Cahoon, J.L., Greenberg, W.L.,
Huesman, R.H. and Vuletich. T., "The Donner 280-Crystal High Resolu­
tion Positron Tomograph", IEEE Trans. Nucl. Sci. NS-26:2, 1979,
2790-2793.

26. Despain, A.M., "Fourier Transform Computers Using CORDIC Itera­
tions", IEEE Trans. Comput. C-23:l0, Oct. 1974, 993-1001.

27. Despain, A.M., " Very Fast Fourier Transform Algorithms for Hard­
ware Implementation", IEEE Trans. Comput. C-28 :,;2." May 1979, 333­
341.

28. Dunnigan, G.J. and Llewellyn, R.E., "FFT Implementation for Effi­
cient Calculation of Overlapped Spectra", Proc. IEEE E1ectronis and
Aerospace Systems Convention (EASCON '74), Washington, D.C., Oct.
7-9, 1974, 363-368.

29. Ek1undh, J.O., "A Fast Computer Method for Matrix Transposing",
IEEE Trans. Comput. C-21:7, July 1972, 801~803.

30. Fino, B.J. and A1gaxi. V.R., "Parallel and Pipeline Computation of
Fast Unitary Transforms", Electron Lett. 11:5, March 1975, 93-94.

83

31. Flores, S., The Logic of Computer Arithmetic, Prentice~Hall, New
Jersey, 1963.

32. Gentlemen, W.M. and Sande, G., "Fast Fourier Transform for Fun and
Profit", AFIPS Proceedings, 1966. Fall Joint Computer Conference,
VoL 29, 563-6.78.

33. Gibbs, J.E., "Instant Fourier Transform", Electron. Lett. 13:5,
March 3, 1977, 122-123.

34. Gold, B. and Bially, T., "Parallelism in FFT Hardware", IEEE
-..;;;;...-~"'--~

Aud. and Electroac. AU~21:1, Feb. 1973, 5-16.

35. Gonzalez, R.C. and Wintz, P., Digital Image Processing, Addison
Wesley, Reading, Mass., 1977.

36. Gottlieb, P. and DeLorenzo, t.J., "Parallel Data Streams and Serial
Arithmetic for FFT Processors", IEEE Trans. Acous., Speech and Sig.
Proc. ASSP-22:2, April 1974, 111-117.

37. Gorginsky, H.L. and Works, G., "A Pipeline FFT", IEEE Trans. Comput.
C-19:ll, Nov. 1970, 1015-1019.

38. Gullberg, G.T., "The Attenuated Radon Transform: Theory and Appli­
cation in Medicine and Biology", Ph.D. Thesis, University of Cali­
fornia, Berkeley, Lawrence Berkeley Laboratory LBL-7486, June 1979.

39. Hamming, R.W., Digital Filters, Prentice Hall, Englewood Cliffs,
New Jersey, 1977.

40. Huesman, R.H. and Cahoon, J.L., "Data Acquisition, Reconstruction and
Display for the Donner 280-Crystal Positron Tomograph", presented at
the IEEE Nuclear Science Symposium, San Francisco, California,
October 17~18. 1979 (in press).

4L James, D., "Quantization Errors in the Fast Fourier Transform",
IEEE Trans. Acous., Speech and Sig. Proc. AASP-23:3, June 1975,
277-283.

42. Kahaner, D.K., "Matrix Description of the Fast Fourier Transform",
IEEE Trans. Aud. and Electroac. AU-18:4, Dec. 1970, 442-450.

43. Klahn, R., Shwety, R. R., et aL, "The Time-saver: FFT Hardware",
Electronics, June 24, 1968, 92-97.

44. Liu, B. and Kaneko, T., "Roundoff Error in Fast Fourier Transforms",
Proc. IEEE 63:6, June 1975, 991-992.

45. Liu, B. and Peled, A., "A New Hardware Realiztion of High-Speed
Fast Fourier Transformers", IEEE Trans. Acous., Speech and Sig.
Proc., ASSP-23:6, Dec. 1975, 543-547.

84

46. Martinson s L.W. and Smith, R.J., "Digital Matched Filtering with
Pipelined Floating Point Fast Fourier Transforms", IEEE Trans.
Acous., Speech and Sig. Proc. ASSP-23:2, April 1975, 222-234.

47. Pease, M.C., "The Direct Product and Kronecker Sum", Ch. XIV.
Methods of Matrix Algebra, Academic Press, New York, 1965.

48. Pease, M.C., "An Adaption of the Fast Fourier Transform for Parallel
Processing", JACM 15:2, April 1968, 252-264.

49. Pease, M.C., "Organization of Large Scale Fourier Processors",
JACM 16: July 1969, 474-482.

50. Peled, A, and Liu, B., "A New Hardware Realization of Digital Fil~

ters, IEEE Trans. Acous., Speech and Sig. Proc. ASSP-22:6, Dec. 1974,
456-462.

51. Peled, A. and Liu, B., "Some New Realizations of Dedicated Hardware
Digital Signal Processors", Proc. IEEE Electronics and Aerospace
Convention (EASCON '74), Washington D.C., Oct. 7-9, 1974, 464-468.

52. Peled, A., "On the Hardware Implementation of Digital Signal Pro­
cessors", IEEE Trans. Acous., Speech and Sig. Proc. ASSP-24:1,
Feb. 1976, 76-86.

53. Peled, A. and Liu, B., Digital Signal Processing: Theory, Design
and Implementation, Wiley &Sons, New York, 1976.

54. Pomerleau, A" Buijs, H,L., and Fournier, M., "A Two-Pass Fixed Point
Fast Fourier Transform Error Analysis", IEEE Trans. Acous., Speech
and Sig. Proc. ASSP-25:6, 582.

55. Pratt, W., Digital Image Processing, John Wiley & Sons, New York,
1978.

56. Prescott, J., "An Improved Fast Fourier Transform", IEEE Trans.
Acous., Speech and Sig. Proc. ASSP-23:3, June 1976, 226-227.

57. Rader, C.M. and Brenner, N.M., "A New Principle for Fast Fourier
Transformation", IEEE Trans. Acous,. Speech and Sig. Proc. ASSP­
24:3, June 1976, 264-266.

58. Rader, C.M. and Brenner, N.M., "Application of the Rader~Brenner

FFT Algorithm to Number Theoretic Transforms", IEEE Trans, Acous.,
Speech and Sig. Proc., ASSP-25:2, April 1977, 196-198.

59. Rosenfeld, A. and Kak, A.C., Digital Picture Processing, Academic
Press, New York, 1976.

60. Rivard. G.E., "Direct Fast Fourier Transform of Bivariate Func­
tions", IEEE Trans. Acous., Speech and Sig. Proc. ASSP-25:3, June
1977, 250-252.

85

61. Shanks, J.L. and Cairns, T.W .• "Use of a Digital Convolution Device
to Perform Recursive Filtering and the Cooley~Tukey Algorithm",
IEEE Trans. Comput. C-17:10. Oct. 1968, 943-949.

62. Shively, R.R., "A Digital P-ocessor to Generate Spectra in Real
Time", IEEE Trans. Comput. C-17, May 1968, 485-491.

63. Silverman, H.F., "An Introduction to Programming the Winograd
Fourier Transform Algorithm (WFTA) " , IEEE Trans. Acous., Speech
and Sig. Proc., ASSP-25:2, April 1977, 152-165.

64. Sloate, H., "Matrix Representations for Sorting and the Fast
Fourier Transform", IEEE Trans. Circ. and Sys. CAS-21:1, Jan.
1974, 109-116.

65. Stein, M.L. and Munr, W.B., Introduction to Machine Arithmetic,
Addison-Wesley, New York, 1971.

66. Stone, H.S., "Parallel Processing with the Perfect Shuffle", IEEE
Trans. Comput. C-20:2, Feb. 1971, 153-161.

67. Sundaramurthy, M., and Umpathireddy. V., "Some Results in Fixed­
Point Fast Fourier Transform Error Analysis", IEEE Trans. Comput.
C-26:2, March 1977, 305-308.

68. Tsui, E.T. and Budinger, T.F., "A Stochastic Filter for Transverse
Section Reconstruction", IEEE Tran. Nuc1. Sci. NS-26:.2, 1979,
2687-2690.

69. Thong, T. and Liu, B., "Fixed Point Fast Fourier Transform Error
Analysis", IEEE Trans. Acous q Speech and Sig. Proc. ASSP-24:6,
Dec. 1976, 563-573.

70. Veenkant, R.L., "A Serial Minded FFT", IEEE Trans. Aud. and Electroac.,
AU-20:5, August 1972, 180-185.

71. VoIder, J. E., "The CORDIC Trigonometric Computing Technique", IRE
Tran. Elect. Comput. ED-8. Sept. 1959, 330-334.

72. Welch, P.D., "A Fixed Point Fast Fourier Transform Error Analysis".
IEEE Trans. Aud. and Electroac. AU-17:2, June 1969, 151-157.

73. Welchel, J.E. and Gunn, D.F., "FFT Organizations for High-Speed
Digital Filtering". IEEE Trans. Aud. and Electroac. AU-18:2,
June 1970, 159-168.

74. Winograd, S., "On Computing the Discrete Fourier Transform", Proc.
Nat. Acad. Sci. USA 73:4, April 1976, 1005-1006.

75. Yuen, C.K., "On the Twiddling Factors", IEEE Trans. Comput. C-22:5,
May 1973, 544-545.

76. Zohar, S., "Fast Hardware Fourier Transformation Through Counting ii
,

IEEE Trans. Comput. C-22:5, May 1973, 433-441.

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

