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Sea level rise (SLR), a well-documented and urgent aspect of
anthropogenic global warming, threatens population and assets
located in low-lying coastal regions all around the world. Common
flood hazard assessment practices typically account for one driver
at a time (e.g., either fluvial flooding only or ocean flooding only),
whereas coastal cities vulnerable to SLR are at risk for flooding
from multiple drivers (e.g., extreme coastal high tide, storm surge,
and river flow). Here, we propose a bivariate flood hazard assess-
ment approach that accounts for compound flooding from river flow
and coastal water level, andwe show that a univariate approachmay
not appropriately characterize the flood hazard if there are com-
pounding effects. Using copulas and bivariate dependence analysis,
we also quantify the increases in failure probabilities for 2030 and
2050 caused by SLR under representative concentration pathways
4.5 and 8.5. Additionally, the increase in failure probability is shown
to be strongly affected by compounding effects. The proposed failure
probability method offers an innovative tool for assessing com-
pounding flood hazards in a warming climate.

sea level rise | coastal flooding | compound extremes | copula |
failure probability

Flooding hazard, characterized by the intensity/frequency of
flood events (1), is an important consideration in local level

planning and adaptation (2). Coastal cities are especially de-
manding sites for flood hazard assessment because of exposure
to multiple flood drivers such as coastal water level (WL), river
discharge, and precipitation (3, 4). Furthermore, dependence
among the flood drivers [e.g., coastal surge/tide, sea level rise
(SLR), and river flow] can lead to compound events (5) in which
the simultaneous or sequential occurrence of extreme or non-
extreme events may lead to an extreme event or impact (6). For
example, in estuarine systems, the interplay between coastal WL
and freshwater inflow determines the surface WL (and hence the
flood probability) at subtidal (7) and tidal (8–11) frequencies.
In the United States, flood hazard assessment practices are

typically based on univariate methods. For example, procedures
for rivers often treat oceanic contributions (e.g., tides and storm
surges) using static base flood levels (e.g., ref. 12), and do not
consider the dynamic effects of coastal WL (e.g., ref. 13). Simi-
larly, flood hazard procedures for coastal WLs (e.g., ref. 14) do
not account for terrestrial factors such as river discharge or di-
rect precipitation into urban areas. Previous studies indicate that
univariate extreme event analysis may not correctly estimate the
probability of a given hydrologic event (15, 16). This points to the
potential importance of multivariate analysis of extreme events
in coastal/estuarine systems and consideration of compounding
effects between flood drivers (6). Bivariate extreme event anal-
ysis has been explored in a coastal context with different vari-
ables and in different areas (5, 17–33) (see SI Appendix, Table S2
for more details). Bivariate flood hazard studies have been
performed for coasts of the United Kingdom (34–36) and Aus-
tralia (37, 38); however, they do not consider the impacts of SLR
on the estimated flood hazard.

SLR is a well-documented and urgent aspect of anthropogenic
global warming (39–46) that threatens coastal communities all
around the world. Without flood adaptation, annual losses of
0.3 to 9.3% of global gross domestic product are expected by
2100 (47), while only ∼70% of the coastal landscapes projected
to experience future flooding have some capacity to respond
dynamically to SLR (48). High-quality sea surface WL data,
recorded at tide gauges around the world over the last 100+ y,
document a significant globally averaged acceleration in mean
SLR of about 0.009 mm·y−2 since 1880 and 0.022 ± 0.015 mm·y−2

between 1952 and 2011, and a globally averaged mean SLR of
∼2.8 mm·y−1 between 1993 and 2009 (39, 49–53). Analysis of
satellite altimetry records suggests an SLR rate of 3.3 ±
0.4 mm·y−1 between 1993 and 2014 (54). The rate of SLR over
recent decades is one order of magnitude larger than SLR over
the past millennia (55), and projections of SLR over the 21st
century, based on current trajectories of anthropogenic activi-
ties and greenhouse gases emissions (56), cannot rule out an
increase greater than 1 m (55, 57–59).
SLR brings the height of high tides closer to flood stage, and

increases the frequency of both nuisance floods (60–64) and
destructive flood events (65, 66), such that today’s century-level
floods are expected to become decadal by 2050 (67–70). SLR
further complicates coastal flood hazard analysis by introducing
nonstationarity (71). Physically, SLR adds to the height of future
storm tides, reduces pressure gradients that are important for
transporting fluvial water to the ocean, and enables greater up-
stream tide/wave propagation (72, 73).
In this study, we propose a framework that takes the impacts

of SLR into account for flood hazard analysis in coastal systems
under multiple flood drivers and integrates the concepts of
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bivariate hazard analysis (74) and nonstationary hazard assess-
ment. We first propose a bivariate flooding assessment approach
that accounts for the compounding effects of fluvial flooding and
coastal sea level (with future SLR). We then integrate the notion
of failure probability to achieve a practical tool for assessing
future hazards. Using this framework, we show that ignoring
SLR and its compounding impacts may lead to a significant
underestimation of future coastal flooding hazard.
Although the framework outlined here is general and can be

applied to different regions, for illustration, we focus on the
United States, in which over half of the population live in coastal
regions (75). Also, 8 out of the 20 most vulnerable cities in terms
of average annual losses due to flooding in the globe are located
in the United States (2). Using copulas and bivariate dependence
analysis (Methods), we quantify increases in flood probabilities
caused by SLR based on 2030 and 2050 projections, under rep-
resentative concentration pathways (RCPs) 4.5 and 8.5. Finally,
we evaluate the change in failure probability of compound flood
events due to SLR. Note that an inverse analysis for identifying
potentially dangerous multivariate occurrences having a fixed
level of “acceptable risk,” as clarified in ref. 76, can be carried
out by inverting the formulas outlined in Methods. However, this
is outside the scope of the present work; for further details
please see also refs. 30, 31, 74, and 77.
Here we use three sets of data, available at eight estuarine

systems along the coasts of United States (SI Appendix, Fig. S1):
(i) hourly WL, (ii) daily freshwater inflow to the lower estuary as
a representative of fluvial flow, and (iii) future local SLR pro-
jections to describe the impacts of SLR on increased likelihood
of flooding by 2030 and 2050. Using these data, we implement
univariate and bivariate analysis of coastal flooding for the cur-
rent and future climate with rising sea levels. In each case, the
observation gauges are carefully chosen to make sure that the
longest and highest-quality data in that system are analyzed. For
extreme WL analysis along tidal rivers, when significant de-
pendence between deriving factors is detected, it is critical to
appropriately characterize correlation structure and carefully
take the nonlinear interaction between freshwater inflow and
upcoming surge tides into account. Otherwise, either large as-
tronomic tidal variabilities may mask the correlation between
meteorologically driven components or potential adjustments
of WL measured at tide gauge by river discharge may not be
appropriately treated.
Coastal WLs resulting from tides and nontidal processes (e.g.,

storm surge) are taken from hourly coastal WL data at eight tide
gauges shown in SI Appendix, Fig. S1 and provided by National
Oceanic and Atmospheric Association (https://tidesandcurrents.
noaa.gov/). The Galveston and San Francisco records with 70 y and
157 y of data have the shortest and longest available WL series,
respectively (see SI Appendix, Table S1 for more information).
The estimated daily freshwater discharges for all of the estu-

aries are obtained from United States Geological Survey website
(waterdata.usgs.gov/nwis/rt), except for San Francisco Bay (SF
Bay), for which the Net Delta Outflow Index (NDOI), an output
of the California Department of Water Resources Dayflow
program (www.water.ca.gov/dayflow/), is used as a proxy for
tidally averaged daily river inflow to SF Bay from the Sacra-
mento River delta. NDOI accounts for about 90% of the inflow
to SF Bay; and accounts for river inflows, precipitation, agri-
cultural consumptive demand, and California Water Project ex-
ports (78, 79). The Columbia River and Buffalo Bayou River,
with 660,500 km2 (80) and 270 km2 watersheds, (waterdata.usgs.
gov/tx/nwis) are the largest and the smallest watersheds, re-
spectively, in this study. Size and drainage characteristics of the
watershed (e.g., time of concentration) and different forcing
mechanisms cause the fluvial flow to occur on different time
scales ranging from a few hours (i.e., due to intense local pre-
cipitation) to a few days (i.e., rain on snow events) and even

weeks (i.e., Spring snowmelt freshets). The case studies in-
vestigated here, with relatively long records available, cover a
wide range of estuarine systems from moderately (e.g., Hudson
River) to strongly (e.g., Potomac River) convergent and from
moderately (e.g., Delaware River) to strongly (e.g., Columbia
River) dissipative (81); this points to the potential applicability
of our proposed approach to many estuarine/coastal systems
around the world.
The probability distribution of local SLR projections (FSLR) at

the eight sites of interest, under RCPs 4.5 and 8.5 of Coupled
Model Intercomparison Project Phase 5 (CMIP5) scenarios, are
provided by ref. 59 in a discrete form by specifying seven quan-
tiles of the following orders: qi = 0.005, 0.05, 0.17, 0.5, 0.83, 0.95,
and 0.995. A continuous version of FSLR is constructed via a
suitable linear interpolation (see SI Appendix for further details).

Results and Discussion
First, we discuss the differences between univariate and bivariate
flooding probabilities for three selected estuarine systems along
the coasts of United States, where the variables of interest
(fluvial flow and coastal WL) are statistically dependent, namely,
Philadelphia, PA; San Francisco, CA; and Washington, DC. The
results for the rest of the studied estuarine systems, with no
significant dependence between variables, are presented in SI
Appendix. Here, a direct approach to the hazard assessment is
adopted, as clarified in ref. 76. The target is to compute the
return periods and/or the failure probabilities associated with
observed (and future projected) occurrences.
Fig. 1A shows the annual maximum fluvial flow versus the

associated maximum coastal WL measured within 1 day of the
flood peak (black dots). For the sake of illustration, a reference
bivariate occurrence zp = ðxp, ypÞ is chosen, and is indicated by a
red circle. Here xp and yp correspond, respectively, to 20-y return
levels of the variables X (fluvial flow) and Y (coastal WL), so that
zp has marginal univariate return periods (RPs) equal to 20 y
(Methods). These univariate hazard scenarios (HSs) for zp are
shown by a thick green line on the x axis (for X) and a thick blue
line on the y axis (for Y). In the bivariate framework, we use
copulas to model the compounding effects of fluvial flow and
coastal WL (Methods). Here, the HS of interest is the “OR” one,
meaning that it is sufficient that either the fluvial flow or the
coastal WL or both be large to make a bivariate occurrence
hazardous (i.e., the union of the regions i, ii, and iii in Fig. 1A,
where either X > xp, Y > yp, or both). To highlight the differences
between the case of assuming the variables X and Y as dependent
or independent within this bivariate framework, in Fig. 1, the red
curve indicates the isoline of the actual joint distribution FXY
crossing zp, whereas the black curve indicates the isoline of FXY
under the unreasonable assumption of independence between
the variables X and Y. Indeed, the more the variables are de-
pendent, the more the two curves are different (e.g., compare
Fig. 1 C and D).
The univariate analysis (i.e., green and blue dashed lines in

Fig. 1), however useful for flood events driven only by river
discharge (i.e., far upstream in tidal rivers) or only by coastal WL
(i.e., at coastal regions not influenced by fluvial flow), may not
appropriately characterize the flood hazard at/near estuaries. In
estuaries, flood hazard can be influenced by interactions between
fluvial flooding and coastal WL (30, 31, 33, 82), and hence a
particular hazard level may be more frequent than expected.
For the case of zp (indicated by the red circle) with a marginal

univariate RP of 20 y, the associated estimates of the bivariate
OR RPs are shown in Fig. 1, for Philadelphia, PA (Fig. 1B), San
Francisco, CA (Fig. 1C), and Washington, DC (Fig. 1D). In all
cases, it is evident that the bivariate OR RP is shorter than the
20-y univariate RP (see also Methods): ∼13 y for Philadelphia,
∼11 y for San Francisco, and ∼16 y for Washington, DC. This
indicates that ignoring the compounding impacts of fluvial flow
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and coastal WLs may inappropriately characterize the coastal
flood hazard, and can lead to underestimation of it: Actually, a
shorter RP entails a larger frequency of occurrence. The results
for 5-, 10-, 20-, and 50-y RPs for all of the studied coastal systems
are shown in SI Appendix, Section 5 and Figs. S20–S27.
The dependence between coastal WL and fluvial flow strongly

influences the joint flood probability and, in turn, the OR RP. In
Washington, DC (Fig. 1D), where the two flood drivers are
highly correlated (Kendall tau rank correlation coefficient of
0.53; see also SI Appendix, Figs. S10 and S18), an event with
marginal univariate RPs of 20 y, and a ∼10-y OR RP based on
the incorrect assumption of independence, becomes a ∼16-y
event when the dependence structure is resolved. On the other
hand, in San Francisco (Fig. 1C), where the two flood drivers are
weakly correlated (Kental tau ∼0.15), an event with a marginal
univariate RP of 20 y, and a ∼10-y OR RP based on the as-
sumption of independence, becomes an ∼11-y event. According
to the theory of copulas, the marginal univariate RP becomes a
better predictor of the OR RP with increasing correlation be-
tween the two drivers. Thus, resolving the correlation structure is
critical to quantifying the compound OR RP precisely.
A further key question is, to what extent will the flood hazard

change as a result of increasing sea levels? With rising sea levels,
the likelihood of high WLs at any given time increases. Conse-
quently, the bivariate OR flood hazard necessarily increases as
well, and we can quantify the effects of SLR conditions on
coastal flooding using a failure probability approach (Methods).
The term “failure probability” refers to the probability of ob-
serving a potentially hazardous flood event (i.e., lying in a spe-
cific HS) at least once in a given design lifetime (e.g., 30 y) (74,
83). Fig. 2 shows the failure probability computed following a
univariate approach (black curves), and compounding fluvial
flow and coastal WL for current (red curves) and future SLR

conditions over a 30-y temporal horizon for 2030 SLR based on
RCP 4.5 (purple curves) and 2050 SLR based on RCP 8.5 (green
curves). In each case, it is assumed that the WL distribution does
not change over the design lifetime.
Considering the three sites where the dependence is signifi-

cant [namely, Philadelphia (PA), San Francisco (CA), and
Washington (DC)], the plots also show the OR failure proba-
bilities under an unreasonable independence assumption (blue
lines in Fig. 2). As a result, these probabilities are always larger
than the ones computed using the true copula fitted on the data;
in turn, including compounding effects but (falsely) assuming
independence may overestimate the hazard (at least in the OR
case), suggesting that a correct modeling of the dependencies
should always be carried out. Thus, Fig. 2 suggests that (i)
neglecting the compounding impacts of flood drivers causes
significant underestimation of failure probabilities; (ii) the as-
sumption of independence between variables, when there is
significant correlation, results in overestimation of failure prob-
abilities; and (iii) SLR significantly increases the failure proba-
bility in the near future/midfuture in all of the cases studied here.
For example, we consider New York, NY, which is projected to
experience US$174 million per year of loss due to flooding if no
further flood management measures are implemented (84).
Based on the current conditions, the failure probability at the
20-y return level over a 10-y design life time (e.g., 2017–2026) is
expected to be 0.40 based on univariate analysis, and 0.65 based
on the bivariate OR analysis. Now considering 2030 sea levels
based on RCP 4.5, the failure probability at the same return level
based on the bivariate OR analysis increases to 0.95 (0.82 to
1.00 with 95% confidence), a significantly larger value. The sit-
uation becomes worse under more-threatening SLRs. At the
same return level, 2050 SLR under RCP 8.5, representing the
worst-case scenario among the CMIP5 models used for AR5

Fig. 1. (A) Illustration of the univariate and bivariate HSs. The black circles represent observed bivariate occurrences, the red circle is the reference occurrence
z*, and the red line is the isoline of FXY crossing z*. The hazardous regions i, ii, and iii are indicated as shaded areas. The estimates of the bivariate OR RPs
associated with the occurrence z* are indicated in the legends for (B) Philadelphia, PA, (C) San Francisco, CA, and (D) Washington, DC, with Kendall tau rank
correlation coefficients of 0.3, 0.15, and 0.53, respectively. In B–D, the black line shows the isoline of FXY crossing z*, under the unreasonable assumption of
independence between fluvial flow and Coastal WL.
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(85), failure probability increases even more in the following
decades. The results suggest that, under this scenario, the failure
probability approaches one in six of the study areas (namely,
Houston, TX; Los Angeles, CA; New York, NY; Norfolk, VA;
Philadelphia, PA; and San Francisco, CA). Similar failure
probability figures for different HSs are shown in SI Appendix,
Section 6 and Figs. S28–S59.
This increase in failure probability due to SLR is a natural

consequence of compounding effects of flood drivers. Given the
expected rise in incidence and/or magnitude of high coastal WLs
in the coming decades, this bivariate OR approach may be im-
portant for assessing socioeconomic impacts on coastal com-
munities. The United States, for example, has two of the three
top at-risk coastal cities in terms of assets exposed to flooding,
and 17 port cities with populations larger than 1 million (44, 45,
85), and so suffers and will suffer from increased frequency of
coastal flooding. However, in addition to the rise in mean coastal
WL due to SLR, we expect that other impacts may also affect the
frequency of flooding in estuaries, like changes in future fluvial
flow regimes, wave−tide interaction, and geomorphic evolution
affecting tide/surge propagation along the channel (72, 73, 76,
84, 86–89). In this study, we focus on the interactions between
different SLR scenarios and current fluvial flood information,
mainly because we have more confidence in the sign of change in
future sea levels in a warming climate. The other components of
coastal flood hazard (e.g., change in local fluvial flow regimes)
are more uncertain and require further in-depth research.
Hence, a key issue is developing datasets for coastal communities
with contemporaneous measurements of different flood drivers.
Nevertheless, the proposed framework can incorporate any
combination of two (or even more) flood hazard drivers. It is also
able to systematically deal with nonstationarity, and thus it can
quantify the change in failure probability in response to the
trending nature of drivers/hazards.

Methods
In this work, we consider annual maxima, and use the corresponding block
maxima mathematical framework. Robust definition of compound events (3)
and the efficient sampling for joint probability analysis (90) are challenging
tasks. A desired approach should appropriately represent the information
entailed in the data while simplifying the sources data (i.e., refs. 5, 91, and
92). The two variables of interest here are (i) the largest annual freshwater
inflow to the lower estuary and (ii) the corresponding largest observed
hourly WL within ±1 d. This procedure provides the pairs of interest for any
given year (annual bivariate vectors) that can be assumed to be independent
for physical reasons.

First, we need to identify suitable HSs that refer to the regions where the
values of the variable(s) of interest may be considered as hazardous according
to appropriate criteria. An HS is simultaneously characterized by (i) a geo-
metrical component (i.e., a hazardous region, either on the real line in the
univariate case or in the real plane in the bivariate case) and (ii) a proba-
bilistic component (i.e., the probability that an occurrence belongs to the
hazardous region). This makes it possible to use the HS for both RP and
failure probability analyses (74, 77).

In the univariate case, given a critical threshold x*, the corresponding
univariate HS is defined as the set of occurrences such that fX > x*g. In the
bivariate case, given a critical pair z* = ðx*, y*Þ, the corresponding bivariate HS
is taken to be the inclusive OR one, defined as the set of occurrences such that
either fX > x*g, fY > y*g, or both (74). The choice of a bivariate OR approach
is a natural one in the present context, since it is sufficient that either the
fluvial discharge, the coastal WL, or both be large to produce a potentially
hazardous occurrence. This represents a valuable approximation of the dy-
namics of coastal flooding, in which the combined events due to nonextreme
discharges and WLs might also potentially generate hazardous occurrences.

The geometry of the HSs introduced above are illustrated in Fig. 1A, for
given critical thresholds x* and y*. The green half-line on the horizontal axis
indicates the univariate HS fX > x*g corresponding to the variable X, and the
blue half-line on the vertical axis indicates the univariate HS fY > y*g cor-
responding to the variable Y. The shaded region is the bivariate OR HS
corresponding to the pair ðX,YÞ, where either X > x*, Y > y*, or both.

The fundamental difference between a univariate and a bivariate ap-
proach lies in the related failure mechanism. In the former case, failure is
ruled solely by a single variable, whereas, in the latter, the compounding
effects of two variables may result in hazardous occurrences, even if none of
the variables take on extreme values. An occurrence may be labeled as

Fig. 2. Estimated failure probability due to a 20-y event for a temporal horizon of 30 y. The solid black and red curves show the estimated failure probability
computed based on, respectively, the univariate and bivariate OR HSs, according to present climate. Failure probability (and 95% confidence bands) for
projected SLR is shown with solid (and dashed) curves for 2030 under RCP 4.5 (purple) and for 2050 under RCP 8.5 (green). In cases with significant correlation
between fluvial flow and coastal WL (namely, Philadelphia, San Francisco, and Washington, DC), failure probability under the unreasonable assumption of
independence is shown as a blue curve.
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hazardous or not, depending on the chosen failure mechanism. For instance,
the occurrences in regions ii and iii of Fig. 1Awould be considered as hazardous
if the ruling variable were the fluvial flow X, but the ones in region iii would
not be hazardous according to their WL (since Y ≤ y*). Similarly, the occur-
rences in regions i and ii would be hazardous if the ruling variable were the
WL Y, but the ones in region i would not be such in terms of the river flows
(since X ≤ x*). Instead, all of the occurrences in the regions i, ii, and iiiwould be
hazardous according to the (bivariate) OR criterion. Thus, the OR approach may
account for the physically based fact that the combined events of X and Y
(even if not extreme) may yield hazardous events.

Univariate and Bivariate Models. Below, the construction of an appropriate
probability model is explained, separately, for the univariate and the
bivariate approaches.
Univariate model. In this case, only one flood driver (either fluvial flow or
coastal WL) is considered for hazard assessment. The generalized extreme
value (GEV) distribution turns out to adequately fit the available samples of
both flood drivers according to the bootstrap p values of the goodness-of-fit
tests, which, in all cases, are larger than 5% (SI Appendix, Figs. S2–S9).
Bivariate model. A variety of parametric and nonparametric methods have
been developed for bivariate frequency analysis (93). We use copulas to
construct a bivariate model. Copulas offer several advantages for multi-
variate modeling, such as the following: (i) It is possible to account sepa-
rately for the marginals and the joint behavior of the variables of interest,
(ii) the mathematical formulation is feasible, and (iii) marginal distributions can
be freely chosen. Also, copulas allow computing the RPs and the failure
probabilities of interest (15, 74, 77). See refs. 94–96 for a theoretical in-
troduction, and see refs. 97–99 for practical descriptions.

According to Sklar’s Theorem (100), the joint distribution FXY of the pair
(X,Y ), with marginal distributions FX and FY, for all ðx, yÞ∈R2, can simply be
written as

FXY ðx, yÞ=CXY ðFX ðxÞ, FY ðyÞÞ, [1]

where the function CXY : ½0,1�× ½0,1�→ ½0,1� is the bivariate copula of (X,Y)
providing the analytical formula of the dependence structure ruling the
random joint dynamics of X and Y. Practically, a bivariate model can be
constructed by fitting suitable univariate laws on the marginals (in the
present context, distributions), and fitting an appropriate copula on the
observed pairs (97, 98). To select an appropriate bivariate model, here a
thorough statistical analysis was carried out, involving 24 copula models
covering a wide variety of dependence structures (see SI Appendix,
Section 4).

RP Analysis. In the present annual-based framework, the RP T associated with
a given HS (either univariate or bivariate) can be defined as

T = 1=PfHSg, [2]

where, P{HS} is the probability that an event occurs in the HS of interest (74, 77).

In the univariate case, where the HS is identified via a critical threshold x*
(or y*), Eq. 2 reduces to the traditional formula

TX = 1=ð1− FX ðx*ÞÞ, [3]

where FX is the distribution of X, and 1− FX ðx*Þ represents the probability
that an occurrence lies on the horizontal green half-line in Fig. 1A (or,
equivalently, the probability of the region ii∪iii). The same approach can be
taken to define the RP TY for Y and the region i∪ii.

In the bivariate OR case, where the HS is identified via a critical pair
z* = ðx*, y*Þ as in Fig. 1A, exploiting the Sklar’s Theorem, Eq. 2 becomes

TOR = 1=ð1− FXY ðx*, y*ÞÞ= 1=ð1−CXY ðFX ðx*Þ, FY ðy*ÞÞÞ, [4]

where, FXY is the joint distribution of the pair ðX,YÞ, and 1− FXY ðx*, y*Þ is
equal to the probability of X >x* OR Y > y*, i.e., the probability that a bi-
variate occurrence lies in the shaded region i∪ii∪iii in Fig. 1A. For a thorough
mathematical treatment, see refs. 74 and 77.

Since, for all copulas, CXY ðFX ðx*Þ, FY ðy*ÞÞ≤minfFX ðx*Þ, FY ðy*Þg, it turns
out that both TOR < TX and TOR < TY . Thus, potentially hazardous bivariate
OR regions are more frequent than the corresponding univariate ones.
Therefore, neglecting the compounding effects of hazard drivers may result
in an underestimation of the hazard when the combined action of X and Y
plays a significant role.

Failure Probability Analysis. For a given design lifetime T (typically in years),
let (S1, . . ., ST) be a sequence of relevant annual bivariate HSs (in the present
case, the OR ones). In general, the corresponding failure probability pT can
be defined as

pT = 1− PfðX1,Y1Þ∉ S1, . . . , ðXT ,YT Þ∉ ST g, [5]

equivalent to the complement of the probability that no hazardous event
occurs in T years. For an OR HS, identified by a critical pair z* = ðx*, y*Þ, in
the case of independent identically distributed occurrences, the failure
probability is a monotonically increasing function of T, and is given by

pT =1− ½CXY ðFX ðx * Þ, FY ðy * ÞÞ�T , [6]

representing the probability that at least one bivariate OR hazardous occurrence
happens during a T-year temporal horizon (see ref. 74 for further details). As
explained earlier, since CXY ðFX ðx*Þ, FY ðy*ÞÞ≤minfFX ðx*Þ, FY ðy*Þg, and FX ðx*Þ
and FY ðy*Þ represent the probabilities of “safe” univariate X and Y occurrences,
it turns out that pT ,OR ≥pT ,X and pT ,OR ≥pT ,Y for all Ts, implying that OR oc-
currences are generally more hazardous than univariate ones.

To integrate the concept of nonstationarity to the proposed bivariate HS
and failure probability estimates framework, we perturbed the annual bi-
variate vectors using Monte Carlo simulations exploiting the projected dis-
tribution of SLR. The details are explained in SI Appendix. In Results and
Discussion, it is shown how the SLR may increase the failure probability of
coastal flood defenses in the future.
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