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A CLARTFICATION -OF MULTI-REGGE THEORY*

R. Shankar

lawrence Berkeley Laboratory
"University of California

» . _Berkeley, California 94720
¢ February 7, 1973
ABSTRACT

We are concerned here with the amplitude for the
reaction a +b =l +2 + -+ + N. We assert that the
Yprevalent notion of adding multi-Regge ‘diagrams, corre-
sponding to the different ordering of final particles,
has no basis Arguments supporting this assertion are

' followed by a list’ of rules for calculating cross
sections. A sample of the literature that motivated

this paper is briefly discussed.
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I. INTRODUCTION
Many models have been proposed on the basis of a generalization
of Regge theory from 2 « 2 reactions to 2 =N reactions. We are

concerned here with two eoncepts that seem widespread.

FConcept 4: The amplitude M, for the: 2 - N process, is a sum of

amplitudes corresponding to all the multi-Regge diagrams related by a

permutation of final particle legs.
Coucept.B: If A,dis accepted, the ouestion of interference terms
between the different terms arises. One finds arguments that either
emphasize their insignificdnee or.exploit their iﬁportance.

We argue here that cohcept A Has no place in any theory that

generalizes 2 =2 Regge theory, by seeking asymptotic expansious of

M in certein special regions of phase spaee. ‘We shall, however, work

within the framework of the Bali, Chew, and Pignotti (BCP)V’% multi- .
Regge hypothesis; vwhich seems to be the natural generalization of the
"J plane" analyticity of 2 -+ 2 - reactions. We shall show that concept
A»has no place in the implementation of this hypothesis. Concept A
seems to be a result of the,superficial.resemblsnce that multi-Regge
diagrams beer to Feynman diagrams. V

' In Sec. II we see how, and in what sense, multiFRegge‘diagrams
approximate the actual amplitude, M. We dilate on those aspecps_
that distinguish an asymptotic expansion within an S-matrix framewofk
from pepturbative expansions of field'theory.. Rules for calculating
cross sections are discussed in Sec. ITI. In Sec. IV we discuss a
sample of the literature where-concepts A and B are employed. We have
not specified whether the final particles are distinguishable,

identical, or a mixture of both, since our assertion regarding concept
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A is independent of this question. In what follows, however, it must

be born in mind that we use the word "phése.spacéf to méan @, the
matheméfical.phase_space, in which the final pa;ticle momenta go over all
the values Allowed by energy momentum consgrvation. (We contrast ¢M‘
with ¢6, the observable phase spaée, in which the moﬁenta of the
final particles are restricted so that each distinguishable final

state occurs Just once)

II. THE MULTI-REGGE HYPOTHESIS OF BCP

We assume familiarity with Tolie: variablesl’2 and deal only
with certain'special aspects that are germane to the issue. For

concreteness, the reader may consider the N =

2 case, in what
follows.
(1) Consider the amplitude- M, for the procésé'

a8 +b—=1+2+ ... +N, involving spinless particles.
1,2

Bali, Chew,
.and Pignotti explain how, by ordering the N particles in any
arﬁitrary way; we can define the Toller variables. Figure 1l is the
Toller diagram employed for this purpose. We emphasize.that
(a) It is klnematlcal in nature and merely establishes a

convention for the Toller variables.

v (b)r'The ordering-of particles in Fig. 1 is not their ordering
in rapi&ity. The latter is decidéd by the values of the w's, g?#,,
and t's. Thus, one Toller diagram and the set of variables defined
by it, are all we need to span the entire phase space ¢.

(c) No factorization of M is intended or implied.

_symbolic form (for brevity) we have

| vhere, in Eq. (1), £

_spécial circumstances.

wlju’

We have then

M = M(t cees m2,w5,'-"') = M(t12’

12)1-‘25)..'; §12)§23, '.; 812,.“)

where 31 i+l stands for the group variebles of the ith link. We

now expand the amplitude over the 0(2,1) group functions. 1In

M(tlZ’”»'; 812:"‘) = fulz u23 eee x a 12(812)d 23(8_23)...

2 JBoeee ’
X 312 2 (tla’t23’“.) (l)

{141 Stands for the label of the irreducible
: yi+l ; ‘
representations of 0(2,1), the d's are the group functions, and B

is the "partial wave amplitude.” (We are aware that the above symbolic

form has’ suppressed the m,n indices, the contours in the £ planes
etc )
(i1) The multi-Regge hypothesis: "The amplitude B 1is an

ahalytic function of the Z's,vwith the rightmost singularity being a

factorizable pole « "

- plane.

) in the 2 We are

_ 1,00t 10 1,141
not interested in analyzing the validity of the above hypothesis, .

.but rather in examining the'consequences.

(1i1) The above hypothesis, even if true, is useful only in
For the ordering of particles in Fig. 1, there

is one part of phase space where, as s = ®, we can hﬁve ti i .
2

fixed, the subenergies In this

. 1,2
si,i+l'-”°’ i.e., gi,iﬂ_m.
region the particles will be ordered in rapidity as they are in

Fig. 1 (see Fig 2). In such a :egion, the contributions from the
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rightmost poles will domihate the £ integrals, and we can write the
famous expansion:
2 ap(typ)

M(t,, *"*5 855
12,77 f12 a.ll§—>

o T € SN |
¥ (cosh &, L 0 N-1,N'°N .l,N

Bon{ty:1,w) Y
+ terms coming from the nonleading>singularities of the £ planee,

whose effect is negligible in this part of space phase

(

= Mll)'+ neglected terms.. : - (2)

In Mii)

corresponding to this ordering of perticles; while the superscript

]

indicates that only the leading pole was retained in each expansion.

, the subscript refers to the region of>phase space, ¢i,

We represent M{l) by a muitiQRegge diagram (Fig. 3), (the origin of
all this misunderstanding!), and remark that: |

(a) It is a dynamical diagram.

(b) Factorization is implied.

(c). Rapidity ordering of particles is as in diegrem

To calculate any cross section in this part of- ¢1, we can use Ml 1)

instead of M, with 1little error. If we want, we can keep two poles,
o and o in.each ekpansion (assuming the second leading singularity
is a poie) to get Miz),which will be a sum of 21 terms, each with
its own diagram. Here the addivity is a consequenee of Cauchy's

theorem and not the superposition brinciple;
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(iv) Consider now the part of phase space where the rapidity
plot is as in Fig. 4. It is clear that the physics here is as simple

as in Flg 2. However, cannot be held fixed as

= ('p' - pJ_)2

s12 —)m; Therefore the Toller varlables defined in Fig l are

undesirable, desplte their formal completeness. An expan51on 1n those

variables 'will' et best heve poor convergence propertles. (We
cannot, asymptotically, call 8 few terms of the expansion as "leadlng '
and 1gnore the rest.) To exp101t the dynamlcal 51mp11f1catlon in the
situatlon, we must draw & new Toller diagram with partlcle ordering

(21113;)*:5:"‘1‘1)-. ThEI? %12 = (pa

p2)2 can be held fixed as
8, =@ (so that 512 - =) to yield: :

12

N SR - '
M o= B (% ,)(s,) B(tla,wg,t%)- (’cN_l N)

+ terms from neglected singularities . 3)

By our convention; the leading term is Mé;). To calculate cross

or u?)

sections in this neighborhood, we can use Mél) instead of

M.

It is clear that in the N! regions of phase space,

: ¢l,¢2,---¢N!,'corresponding to the different orderings of final

particles in rapidity, we must define N! different Toller diagrams
and N! sets of Toller variables, in order to:exploit the simplicity

introduced by the multi-Regge hypothesis. The reason for permuting

the legs is thus the need to set up new sets of Toller variables, and

not the superposition or Bose ﬁrinciple. It is clear that nowheie

does the theory require or admit the addition of one expansion, Mi;.
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of ¢i’ to another, .Mj’ of ¢J.; of one anﬁ the same axﬁplitude, M. _ using an M constructed by adding t gnd' u ﬁegge poles, do not
" The different e'xpansibns are alternate and not additive. In ¢i we _ test th? theory. _ .
can use Mil) or M§2) but not M(].) v M(.l)-  Such an addition is Van : ‘ We sim:_'Llarly conclude thgt the. following, oft-quoted r‘ecipe',
arbitrary recipe, and certainly not forced upon us by the super;- K for processes with identi-.cal'pa.rtiqles'in the final state,is also
position -or que’ principles. in fact, tﬁe’se prinéipies aré. not imposed | . ad hoc, and poﬁ & jconsequence of the multi-Reg.gg hypothesis‘: .
ion, M by hand (as in perturbative fireld theories where ‘M is built . ' - Step l Cé.lcuiaﬁe the multi-Regge amplitude Mi corresponding
from lit'tle, pieces), but are demanded of M ' in -S-matrix Regge calc;xl;.--v to _°’?e orde‘ring_pfl_fina.'l particle n;omenta.. -(The‘n. ' Mi é.pproa.ch?s M_
tions, where one begins with thé"'comﬁlete" amplitbude.'an'd seeks its .- ine sub-reigicjanv of ¢l vhere the Qegge ‘limi.t ».is reached.). |
asymptotic expansions. : o o o ” '. " : Steé 2 ‘ Set. M= ;Mi’ where» i runs through"a;l the permu.-
These ideas are transparent in the 2 =2, equai ma,ss., case. .' tations of the identical particle momenta in the final state.
The t- and u-channel expansions (not their leading pole appz;dximatibixé) . fThough this recipe guarantees Bose statistics manifestly, the
l(t and l% are each alternate, complete expansions of . M A ch_dice { fla.w.in the argument is the fql;ow_ing. - Bose statistics merely' Ire.quires
between them is made when we wish to approximate M i.n some special : that M(A) = M(B) , vhere A and B ‘are two points in phaée space,
:;agions of phase space. If we approximate Mt by the leading pole related by a permutation of identical bosons. There is, howevér, no
contribution Mgl) , we are assured that at any fixed ¢, a.é s -)m, requirement tha.§ M achieve this éymmetry by the recipe M = ZMi .

_Mf_‘l) will approach M to any given accuracy. In practice, when we

1)

We illustrate this point by considering a Veneziano-like amplitude, ‘
work at fixed s, M§ ' ' '

can be & poor epproximation to M except for B(u,t), for a fictitious 2 —+2 process where the s channel has

(1) | _ - (2) :
very small t. At larger t’_if. Mg™' is a bad fit, we can try Mg identical particles and no resonances. Bose symmetry requires that if

etc. While adding more t poies to M‘t is not guarapteed to give

better gpprqutiop, it is a legitimate process one can try. S@ilar : ' B(u,t) - ?lg‘lj%)z
_ .z?esults. hold for M- By contrast, the process of adding some singu- o (1im u- a?t=b)
larities of M, to s§me of M,, to get approximations for M, is a - then we P“St have
pﬂrel& ai'bitrary reciﬁe and not a conséquence of the 'theor&. The . ' o " F Kb)
ex?ansionﬁ, Mt and Mu, ére dual and alternativg, as Ms’ the diréct » ) | B(u’t) (lim taa,1}=1>/) -
channel expansion (which may possibly be approximated by a few reson-  ° fThis is certainly true of the beta function B(u,t). However, when
ances) is dual to Mt , the cross cha.pnel Regge expansion (which Ima.y : .we expand it‘ to display the pole structure,- we haye

" possibly be epproximated by a few R_egge poles). Fits to the data,
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© ¢ () : ' We then have, in the multi-Regge approximation, o, :Z 31.
gy(u . _ i
B(u,t = — exhibiti th t 1 . ’
(u,t) t - §N (exhibiting the po gs) : (¢) 1If identical particles are present, consider just the
N=0 ; '
distinguishable orderings, i.e., Op = Ei.
) - distinguishable
SN(t) i : : 'Such approximations to ‘UT may, for example, be useful in
Z T (exhibiting the u poles) .
=0 N .

bootstrap calculations that connect 2 -2 absorptive parts to 2 =2

_ ) total cross sections, via unitarity. In these calculations, it is
(The gy and g, are the same in both expansions.) »

. hoped that the contributions to - o . from the subregions of ¢'i,'
While either expansion has Bose symmetry as defined above, the . .

where M:El) approximates M well, will dominate. The sharp fall
symmetry is not achieved by the recipe. It is clear that, while

off of residues with momentum transfers makes this plausible.

‘

- . : . Py Mas Y
i gN(u) gN(t) o . _ . ~In practice, however, the condltlons forv distinct, nonover-
+ ) o .
N:O t - gN u -gN

lapping regions” can only be achieved by restricting the Toller
' . . . variables of each ordering.by clumsy constraints. {In 2 -2 equal
is manifestly symmetric, it is not equal to the amplitude B(u,t)." ' - '

mass scattering, the t -channel |MtI2 is to be integrated over _¢_t,'

the forward hemisphere, i.e., from t =0 to t = %—(hmz - 8); and
: _ the u channel |Mu|2 over §, from u=0 to u= %(lime -s)l.
III. CROSS SECTION CALCULATIONS : " :
However, due to the rapid fall off of residues, in t, in the leading
For brevity, we restrict ourselves to total cross sections, ) 1 ) (l) .
' , term M( ) of M, we can integrate |Mb |© over all t. The same
GT’ for 2 = N processes. The rules for partial cross sections will - t (1),2 )
v . goes for IR% |°.  We then have symbolically (omitting flux factors),
be clear from this. In Erinc:LEle , to- calculate O in the multi-Regge . :
' pole approximatlon, we must: . , : s (lj j2. a (1) 2
e o~ ~ ' 1
- _ .. © ~' G, +0 = M ag, + - M af
(a) Divide the phase space ¢ in KR! distinct, nonoverlapping total = % u ¢ M| t M ¢u
) : t u
regions ¢i ; corresponding to the different orderings of final
particles in ra.pidity. ' -
o) S S
(v) 1In each region ¢i » approximate M by M~/ or M§2) , p T
ete., integra.te_the approximate IMiI over ¢i to get the approxi- ’ |

_mate contribution o, . For 2 —2 reactions, as s -, this will be an excellent approxi-

mation. If N > 2, largeness of s does not guarantee large
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subenergies siJ' We must then use severe cuts on the data (and
hence the phase space @) to ensure large sij's. Then, the assumed
t dependence of the residues will allow us to perform free integrals

in the +t's without appreciable overcounting.

If we relax fhe'constraints on the s,.'s, we face the prospect

ij
of double counting, by doing free t integrals over phase space--we

run through the same region of phase space seveialvtimes, each time
integratiné a-different épprokimation for |M|2. ‘When we do this,
we must be cognizant of this error. _

We urge the reader to read Ref. 3; where the author deals with
. the cross sections for the-reacti§n§ 15 —mt ¥ mx + kno. Apart
from his remark on interference terms, we find that his paper adheres

to the above rules.

IV. LITERATURE SAMPLING

We now discuss briéfly, a sample {by no means exﬁaustive),.
of instances where cohcepts A and B; meﬁfioned earlier, are
encouhtered.
‘Ref. hliz Theoretic;l_papers tﬁat assume M is a sﬁm of pieées from
all disgrams o#tained by permuting finai particlé legs. It is argued’
in Ref. U that the interference terms are negligible, while Ref. 5
exploits their importanée.
Ref. 6: A double-Regge analysis of D —;n+bop &t 13.1 GeV/e. _
Achiéves & good fit by phase‘spaée ovércounting, of‘thé type discussed
b;‘earligr (by admitting small syy reglons). It is shown that
cohereht addition of amplitudes obtained by permuting external legs

is in disagreement with data. -
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Ref. 7: Fits data by coherent addition of permuted pieces in double-
Regge analysis of Kn-Kx p at 5.5 Gév/c.
Ref. 8: A study of pp = pp + 2x + 2% at 23 GeV/c. Gets M by

(a) Adding diagrams corresponding to different ordering of

"the protons in the chain (allowing them to go at the most oéne link from

the ends).
' . (b) Symmetrizing by hand with respect to identical piohs.

We find that a common trend in current phenomenology is to fit

- the Regge parameters 6f various diégrams in regions of phase_sﬁace

where they best approximate the amplitu&e, and then, to use their sum,‘

_coherent or incoherent, to get thé cross Sections.in the rest of’

< phase space. Since such fits involve multiple counting in the amplitude

or phase space, they neither verify nor vilify the BCP multi-Regge
hypothesis.

How then are we to test the above hypothesis? The heart of

the multi-Regge hypothesisvis that in certain special régions of phase
épggg, the 2 =N Qmplitﬁde.may be described by a few factorizable
Regge poles. Factorizability implies that,xhewtrajeétory and residue
of.a Regge pole, dedﬁced in one situation, mgy be usgd'in other
situations where it occurs. We thereforé‘suggést the following

‘type of test of the hypothesis. For example, we could consider the

1 region appropriate to the multi-Regge diagram of Fig. 5. _The'end

PPP(t2) are known from pi-nucleon

scattering. We can thus measure the middle coupling appp(tl,tz,w)

couplings, a“np(tl) and B

(vhere P 1is the pomeron).

This residue, together with dep(t), measured from, say, nd

‘scattering, must then fully determine M in the region corresponding

to Fig. 6, if the multi-Regge hypothesis is correct.

fu,
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It mey be argued that the BCP hyi)othesis. is not the, but &,
— multi-Regge hypothesis, a.n'd therefore, theorists and phenqme'nologists
need not a.dhere‘ to the rules it implies. Though we do not share such
o skepticism, V:IWe nevertﬁeless wish to say this: Am] multi-Regge tﬁeory,
” which is a natural generalization of 2 — 2 Regge theory, will like-
wise séek asymptotic expansions of M 1in certain special regions o_f
phase space. . éuch expansions will be alternate and not a.ddit_ive, Just
as in 2 -2 theory. Add.iné dia.ére.ms obtained by permuting external .
legs has & nﬁtural and legitimate place in perturbative field theory
and in the reflexes. of its expert practitioners, but not in any S-matrix

calculation like 2 -2 Regge theory or its generalization.
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FIGURE CAPTIONS

Fig. 1. Toller diagram for a +b =1 + 2 + *-°N.

Fig. 2. Rapidity plot for multi-Regge region of Fig. 1.

Fig. 3. Multi-Regge diagram depicting Mil)‘ of Eq. (2).

Fig. 4. Rapidity plot in multi-Regge region of #,.

o)

Fig. 5. 11+p - n+p P in double Regge region.

Fig. 6. Double Regge region of s 'd -)yr+pod.
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