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A NOTE ON VOLill1E-AVERAGING 

by 

T.·N Harasimhan 
Earth Sciences Division 

Lawrence Berkeley Laboratory 

ABSTRACT 

In conceptualizing and quantifying the physical world 
of the porous medium, we are led to the considera tion of 
properties averaged over finite subdomains. These averages 
are evaluated through some meaningful procedure of integra­
tion. In order that the physical significance of the 
averaging is assured, the procedure of integration must be 
consistent with the axiomatic foundations of integration and 
its relation to the nature of phys ical quan ti ties. This 
paper points out the difference between extensive quantities 
(measures) and intensive quantities (potentials), and shows 
how the latter are to be first converted to the former before 
physically meaningful integration can be performed. The 
paper then proceeds to show how the averaging procedure can 
be simplified in special circumstances. The paper concludes 
with a consideration of how the volume-average of the concep­
tual-computational world can meaningfully simulate the 
physical world perceived through measurements. 



I NTRODUCTI ON 

A NOTE ON VOLUME-AVERAGING 

by 

T. N. Narasimhan 
Earth Sciences Division 

Lawrence Berkeley Laboratory 

LBL 8792 

In cons i deri ng mass and energy transpQ)rt through porous media, we 

encounter two types of physical properties. The first type which is of 

an extensive nature, includes mass and energy. Different from extensive 

properties are those properties which denote concentrations or intensities 

of mass or energy. These properties, independent of the quantity or shape 

of the porous medium are known as intensive properties and include as ex- . 

amples, temperature, pressure, density and porosity. 

Mass and energy transfer in porous media occur in microscopic 

pores and are governed by physical phenomena interacting at that scale. 

However, quantified observations of mass and energy transfer in porous 

media are made on a much larger, macroscopic scale with the help of 

various measuring instruments. These instruments act as integrating 

devices and provide data meaningful in a statistical sense. As it 

happens, we have far greater ability to directly rrieasure intensive 

physical properties than we have for measuring extensive properties. 

For example, fluid pressure and temperature (both intensive properties) 

are perhaps the most widely measured quantities in mass and heat trans­

fer studies. 

Using data statistically meaningful on a macroscopic scale, we 

first construct a conceptual model of the physical world in which in-

tensive properties are placed in mutual, cause and effect relationships 

between each other on the foundation provided by the law of mass (or 

energy) conservation. We then proceed to implement the conceptual model 
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through a computational model in which we define averages over sub­

regions of the porous medium which are larger than those sampled by 

the measuring devices. Thus, our understanding the physical world of 

the porous medium is very much related to averaging. A clear definition 

of what we wish to average and how we shall achieve the averaging is of 

fundamental importance. 

The law of mass conservation, which constitutes the king-pin of 

the conceptual model is based on the simple concept of addition. 

Obviously, the quantity that is conserved must possess the additive 

property. Only extensive properties possess the additive property. In­

tensive properties do not. 

Basic to the procedure of mathematical integration is the process of 

addition. That is, the integrand must possess the additive property. 

If we wish to perform integration that has physical meaning (e.g. con­

serve mass or energy over a part or whole of a porous medium) then the 

integrand must be a physical quantity possessing the required additive 

property. 

The theory of sets and the associated concept of a measure (Narasimhan~ 

1976, 1978) provides the fundamental link between the physical world 

subject to the laws of mass and energy conservation and the conceptual­

computational world of quantification. Properties such as mass, energy 

and volume are "set" functions defined over a set of spatial points. A 

"measure" is a set function which possesses the following properties: 

a) Its domain is the set of spacial points and whose range is the set 

of non-negative numbers, b) its value is zero over a null-set, and c) 

it possesses the additive property; that is, if f is a measure and A 

and B are two disjoint sets, then f (AUB) = f(A) + f(B). We can easily 

see: a) i"that Mass and Energy are always positive in sign, b) that 

without space mass and energy do not exist, and c) that if A and B 
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are two disconnected subdomains of the porous medium then the mass or 

energy contained in subdomains A and B together is equal to the sum 

of the mass (or energy) in A plus the mass or energy in B. Despite 

their simplicity, (a), (b) and (c) are very important concepts and 

form the axiomatic foundation not only of the theory of integration, but 

also of the mathematical theory of transient transfer of mass and heat 

in porous media. 

With the above elaborate introduction we now pass on to the 

consideration of volume-averaging. 

VOLUME-AVERAGE 

Given the spatial distribution of an intensive property of in­

terest, the aim of volume-averaging is to evaluate the average value 

of the property over some macroscopic subdomain of the flow region .. 

We seek to. achieve this by integrating the property in some meaningful 

fashion over the subdomain. However, since an intensive property does 

not possess the additive property, it cannot be directly integrated. 

For the integration to be physically meaningful, the intensive quantity 

has to be converted to an extensive property or a measure. To this end, 

we introduce the concept of a "capacity" function which correlates 

an intensive quantity with a corresponding measure. 

As an illustration, consider the familiar example of heat and 

temperature. For a unit volume of the flow region, defining c as 

the capacity function, we have 

H Ho = pc(T-To) (1 ) 

where (H - Ho) is the heat content of the unit volume element with 

reference to heat content at temperature To' p is mass density, c is 

specific heat capacity defined as the heat energy required to change the 

temperature of a unit mass of the material by unity and T is the average 

temperature over the unit volume element. 
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Suppose we wish to evaluate the average temperature over some 

arbitrary subdomain £ of the porous medium over which the temperature 

distribution is known. Then we first divide the subdomain into the 

small volume elements dV, which are sufficiently large (non-microscopic) 

to permit a statistically. meaningful definition of temperature. Next we 

compute the heat content over each dV using the capacity function and 

sum up the heat contents of all dV's over the subdomain to obtain the 

heat content of 1. Finally, we define an average temperature for the 

subdomain by dividing its heat content by its heat capacity. Thus, 

<T > = 1 !PCTdV 
£ V <pc> 

£ £ 
. V£ 

(2) 

where <T>£ is the average temperature over £, V£ is the volume of 

5ubdomain £, <P>£ is the average density and <c>£ is the average specific 

~eat of the material contained in £. 

Note that if the material contained in £ is heterogeneous or if 

P and"c ~re functioffiof T, then, it is critical to properly define 

<P>£ and <c>£ in an appropriate fashion. As"we shall see later, we 

could attempt to compute<P£ and <c£ by an averaging procedure analogous 

to (2). Or, perhaps more reliably, we may rely on experimental data to 

obtain these quantities. 

We may point out here that the meaning of a subdomain as used 

here is quite flexible. Thus. if the subdomain £ is restricted to a 

particular phase (e.g. solid, liquid), then 

that ~articular phase. 

<T> is an average for 
. £ 

In groundwater hydrology, the most frequently measured intensive 

property is fl ui d pressure p whil e the measure of interest is mass 

of water. For a .subdomain £ in a porous medium at a given av~rage ele-

vation one could relate Mw,£ and <p>£ with the help of the capacity 
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function M~,)(, as follows: 

M = M* <p> + constant w,)(, c,)(,)(, 
(3) 

where M n is the mass of water contained in,Q;. As defined by Narasimhan w,x, 

and Witherspoon (1977), M* n is the fluid mass capaCity oft defined as c,x, 

the mass of water required to change the average pressure over )(, by 

unity. In view of (3) and in a fashion analogous to (2), we can write: 

1 1 m~pdV (4) <p> = 
)(, V <m*> 

Q, C)(' 
V)(, 

where <m~>)(, is the average specific fluid mass capacity of the material 

in )(, and m* is the specific fluid mass capacity of the material con-c 

tained in dV defined as fluid mass capacity per u'nit volume of the porous 

medlum. Here too, one could obtain m* by averaging procedure or obtain c 

it from experimental data. 

It is of considerable interest to emphasize here that in setting 

up the conceptual equation of transient groundwater flow (e.g. Nara­

simhan and Witherspoon, 1977) we first evaluate the rate of accumulation 

of mass over a small volume element using divergence and then convert 

the rate of accumulation of mass to an equivalent change in potential 

by dividing it by its fluid mass capacity. The averaging procedure 

embodied in (4) is thus fully consistent with the concept of the non-

steady diffusion equation. 

SI~1PLIFIED VOLUME AVERAGING 

In (2) and (4) the capacity functions are different from unity. 

However, in the case of those intensive properties that a~e V61ume­

normalized measures' the capacity function is unity. Examples of this 

type of property include mass density, chemical concentration' and 

porosity. For ~hese properties, the volume ~verage becomes much' 
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simpler. Thus, 

<p> = ~,J pdV 
(5) 

fL 

VfL 

<0>fL = ~,f adV (6) 
VfL 

and <n> = ~ 1 ndV (7) 
fL 

fL V 
fL 

where 0 is concentration of a solute and n is porosity. 

All volume normalized quantities, however, can not be volume-

averaged in the simple fashion illustrated in (5), (6) and (7): For 

example, the quantity m~ denotes the mass of water required to change 

the average pressure over a unit volume by unity and is a volume nor-

malized quantity. So also, is the product pc which denotes the quan-

tity of heat requried to change the temperature of a unit volume of the 

material by unity. In these cases one is tempted to define 

<m*> = 1 1 m*dV c fL VfL C 

VfL 

(8 ) 

and 
<pc> pcdV (9) 

fL 

Yet, if we recall that m~ reflects the deformation and desaturation 

properties of the fluid filled porous medium and that <pc> reflects 

thermodynamic properties of materials, it is not clear whether the inte-

grand in (8) or (9) can be considered to be additive from a physics 

view point especially if the material in fL .is heterogenous. For example, 

if clay is interspersed as aggregates in sand, can one consider the 
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~ , ; 

the compressibility of thebul k. to. be equal to the weighted. $,um of 

the compressibilities of sand and, clay? Physically, ther~js reason to 

suspect that the deformation of the aggregated bulk may be quite com­

plex and that for a given claycmltent two different a.ggregates may 

exhi bit different deforma ti on patterns. Therefore, a more meaningful . . 

method of obtaining volume averages of capacity functions may be to 

depend on carefully controlled field or laboratory experiments. 

TRANSIENT AND STEADY FLOWS 

Although, strictly speaking, volume averaging has to incl~de 

the capacity coefficient within the integral sign many workers (e.g. 

Gr"ay, 1975; Slattery, 1978; Pinder and Bear. 1978) define volume averaae 

by the simple expression 

. <ljJ>~ = 1 J\'JdV 
V~ 

V~ 

(10). 

where ljJ is ~ intensive property. Obviousl~, as a general definition 

of volume averaging (10) is not physically correct. However, (10) 

could be a valid expression under certain conditions. We will now con-

sider this in some detail. 

In the light of (5),(6) and (7), equation 10 could be valid if ljJ is 

a property such as density, porosity or chemical concentration. Thus, in 

first condition under whith (10) could be valid is that ljJ is a 

vol~me-normalized measure. 

A second possibility is that the material occupying the volume 

element V~ has a constant value for the capacity coefficient. Thus, in 

(2) p and c are both constant over V~ so that <p>~ = p and <c>~ =c 

and these quantities essentially cancel each other. Similarly, in 

(4) ,if m~ is constant over V~, then m~ = <m~>~. In this case too, 
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the two quantities will cancel each other. Under these conditions, 

both (2) and (4) will simplify to the form of expression in (10). 

A final possibility is that the flow system under consideration 

is characterized by steady flows and one is merely interested in the 

pattern of potential distribution arising due to known· boundary 

conditions. Note carefully that the steady-state problem is inde~endent 

of the capacity term since the quantity of mass or energy stored in 

the system does not change with time. Indeed, in considering the steady­

state system if one chooses to ,neglect the actual quantity of mass or 

energy stored and concerns oneself only with the potential distribution, 

then one could ass.ign any arbitrary, constant value for the capacity 

,term over Vi' thereby leading to a justification for using the expression 

( 10 ) for volume-averaging. 

The fact that many workers have persisted in using (10) as 

the fundamental definition of volume averaging leads to the inference that 

our approach to the physics of the problem is significantly influenced by 

our historical preference to the steady-state problem which is relativelv more 

easv to solve than the transient problem. 

A LINK BETWEEN MEASUREMENT AND MODELING 
;:' 

Having provided a physically meaningful definition of a volume­

average we now consider its usefulness. The obvious first use of an 

average value of an intensive quantity over a volume is that one could 

multiply the average by the capacity of the volume element and compute 

the mass, energy or even the void volume stored in that element. 

The second, most important use of the average value of an intensive 

quantity relates to the fact that gradients of intensive quantities give 

rise to forces which govern movement of fluids or heat. On a macros-
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·copic scale, these gradients depend on the spatial distributio~of the 

average potential over subdomains .It is therefore necessary .that the 

volume average of a potential computed for a given vol~me ,el~,ment. 

be associated with a certain spatial location or point within the 

element. 

Suppose the volume of the element V~ is much larger than the volume 

oV whi ch Js the mi nimum size requi red for the property to be stati s­

tically meaningful. Then, if a measuring device is placed at a given 

point in V~ it will presumably sample a volume oV and provide an average 

measurement of the property over oV. The important question now arises, 

what is the location of this point within V
t 

such that the physically 

measured value at this point will equal the volume-averaged value, over 

the element which is to be associated with this point? . 

Note, in this case, that V~ is a conceptual e,lement created to 

simulate the physical world and has.to be, for convenience,larger than 

oV. 

The exact location of the point at which the.measured value equals 

the volume average clearly depends on the way the property varies over 

the element and the continuity of the variation. In general, a,s the 

spatial variation of the property changes with time; so will the location 

of the point. However. for computational purposes, it is extremely de­

sirable that the point remains fixed in time. Under what conditions will 

the point remain fixed in space? 

If we take the simple one dimensional case of a uniform material 

with constant capacity coefficient and consi.der a finite interval over 

which the property varies linearly,.: then we can verify without undue 
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difficulty that the volume average of the property will be exactly equal 

to the arithmetic mean, which, in turn, is equal to the value of the 

property exactly half way over the interval. Without offering a proof 

here, we could conjecture that in general two- or three-dimensions if 

V has arbitrary shape and if the desired intensive property varies ,Q, 

linearly over V , the volume average will be equal to the magnitude of ,Q, . 

the property at the center of gravity of V,Q,' 

If the aforesaid conjecture is true, then, by choosing V,Q, to be 

small enough to satisfy the linearity criterion and associating the volume 

average with the center of gravity, one could make the computational 

model consistent with the real world of observation. Indeed it appears 

that this linearity condition provides the vital link between the worlds 

of measurement and of modeling. 

On the other hand if the capacity coefficient is variable over 

the element or if the intensive property varies non-linearly over the 

element, then as the shape of these variations change with time over 

the element, so also will the location of the point at which the physical 

measurement and volume averages coincide. Any errors in this regard 

will lead to inaccuracies in the evaluation of ~patial gradients and 

consequently to errors in the evaluation of the diffusion equation. 

It is pertinent to point out here that the well-known finite element 

method often employs higher order (non-linear variations) approximations 

for the variation of potentials over finite subdomains of the flow region. 

Moreover, where the medium is heterogeneous,a single element of mass 

conservation may include more than one material with varying capacity 

coefficients, with the volume averaged quantities of the subdomain 
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associ ated with a poi nt located at the j unction of two or more different 

materials. In the light of the observations made earlier in this 

paragraph, it is easy to see that when dealing with transient flow 

problems the finite element approach can not always assure that the 

nodal point represents the point at which physical measutement and volume 

averages will coincide. To this extent, the foundations of the finite 

element scheme needs reconsi·deration for transient problems. However, 

for steady state problems, where the capacity function is unimportant, 

the finite element method, as it is employed now, is quite suitable. 

It is not out of place to mention here that the finite element method, 

as was· origi na lly introduced by structural engi neers or even Gal erki n IS 

original paper, concerned itself strictly with the steady state ,. 

problem. 

SUMMARY AND CONCLUSIONS 

Volume averages of intensive quantities are required i~ the 

.conceptualization of heat and mass transfer problems. Integration is 

the fundamental tool employed in evaluating volume averages. Funda­

mental to integration is the additive property. Since intensive 

quantities are not additive, they ought to be first converted to 

extensive properties (measures) which possess the additive property. 

Capacity functions are functions which correlate intensive and extensive 

properties~ These functions are essential components in the volume 

averaging process. The conventional definition of volume-averaging, 

in which several workers neglect the capacity coefficient, is valid 

only under certain limited circumstances. Notable among these is that 

the system is steady state and that one is not interested in the actual 

quantity of mass or energy stored in the system. 



-12-

In addition to aiding in the estimation of the quantity of fluid 

stored within a volume element, volume averages also help in the 

evaluation of motion. In order that this could be achieved with least 

error, the volume element should be small enough so that the desired 

property varies linearly over it. In this case, if the capacity 

function is constant over the element, the volume average can be 

associ ated with center of gravity of the el ement. The 1i nearity 

criteri on provi des the vi ta 1 1 ink between the worl d of meas.urement and 

that of computation. If the property varies non-linearlYiwithin V
1

' 

then computational errors may occur which may be controlled only with 

extra effort. 

. , The importance of the concept of measure in integration and its 

relevance to the diffusion equation was originally proposed by this 

author during early 1975 in informal communications to fellow researchers 

in the field. The idea was described in a report published by the 

Lawrence Berkeley Laboratory in 1976, which, with some slight changes, 

was published as a journal paper in 1978. Recently, Pinder (1979) 

correctly drew attention to the importance of the concept of an extensive 

property in integration and the related volume averaging procedure. 

Pinder's presentation suggested to the author that the time has apparently 

arrived to recognize the importance of the foundations of integration 

in modeling physical systems governed, among. others, by the diffusion 

process. This recognition provided motivation for the present paper 

which has attempted to highlight some of the fundamental consequences 

associated with volume-averaging. 
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NOTATIONS 

A,B: Set of spatial points 

c: Specific heat capacity 

<c> . 9: Average value specific heat capacity over 
subdomain £ 

f: Set function 

H: Heat content at temp T [Energy] 

Ho: Heat content at Temp to [Energy] 

M~,£: Fluid mass capacity of subdomain £ [LT2]' 

m~: Specific fluid mass capacity [T2/L2] 

<m*> : c £ 
Average value of specific fluid mass [T2/L2] 
capacity over subdomai'n £ 

m w, £ 
Mass of water in subdomain £ [M] 

n: Porosity 

p: Pressure 

Average pressure over volume element £ [M/LT2] 

T: Temperature 

T : Reference temperature o 

<T>£: Average temperature over subdomain £ 

U: Union of sets 

Volume of element £ 

(J : Concentration 

~: Any intensive property 

Energy 
[r1] [Temp] 

[M] [Temp] 
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