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A NOTE ON VOLUME-AVERAGING
by

T. N Narasimhan
Earth Sciences Division
Lawrence Berkeley Laboratory

ABSTRACT

In conceptualizing and quantifying the physical world
of the porous medium, we are led to the consideration of
properties averaged over finite subdomains. These averages
are evaluated through some meaningful procedure of integra-
tion. In order that the physical significance of the
averaging 1is assured, the procedure of integration must be
consistent with the axiomatic foundations of integration and
its relation to the nature of physical quantities. This
paper points out the difference between extensive quantities
(measures) and intensive quantities (potentials) and shows
how the latter are to be first converted to the former before
physically meaningful dintegration can be performed. The
paper then proceeds to show how the averaging procedure can
be simplified in special circumstances. The paper concludes
with a consideration of how the volume-average of the concep-
tual-computational world can meaningfully simulate the
physical world perceived through measurements.
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A NOTE ON VOLUME-AVERAGING

by
T. N. Narasimhan

Earth Sciences Division
Lawrence Berkeley Laboratory

INTRODUCTION.

In considering mass aha energy transport through pordus media, we
encounter two types of physical properties. The first‘typé which is of
an extensive nature, includes mass and energy. Different from extensive
properties are_those properties which denote concentrations‘or infensities
of mass or energy. These properties, independent of the quantity.or shape
of the porous medium are known as intensive properties and include as ex-:
amp]eé; temperature; pressure, density and po}osity.

Mass and energy transfer in porous media occur in microscopic
pores and are governed by physical phenomena interacting at that scale.
However, quantified observations of mass and energy transfer in porous
media are made on a much larger, macroscopic scale with the help of
various measuring instruments. These instruments act as integrating
deviées énd provide data meaningful in a statistical sense. As it |
happens, we have far greater ability to directly measure intensiVe
physicai properties than we have for measuring extensive properties.

For example, fluid pressure and temperature.(both intensive properties)
are perhaps the mosﬁ widely measured quanfities in mass and heat trans-
fer studies. | | |

Using data statistically meahingfu] on a macroscopic scale, we
first constrﬁct a conceptual model of the physical world in which in-
tensive properties are placed fn mutual, cause and effect relationships
between each other on the foundation provided by the law of mass (or

energy) conservation.  We then proceed to implement the conceptual model
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through a computational model in which we define averages over sub-
regions of the porous medium which are larger than those sampled by
the measuring devices. Thus, our understanding the physical world of
the porous medium is very much related to averaging. A clear definition
of what we wish to average and how we shall achieve the averaging is of
fundamental importance.

The 1aw of mass conservat1on, which const1tutes the king-pin of
the conceptua] mode1 is based on the simple concept of addition.
'Obv1ous1y, thevquant1ty that is conserved must possess the add1t1ve
v property On1y extensive properties possess the additive property. In-
.tens1ve propert1es do not.

Bas1c to the procedure of mathematical 1ntegrat1on is the process of
'add1t1on That is, the integrand must possess the additive property.

If werwish to perform integration that has physical meaning'(e.gl con-
serve nass or energy over a part or whole of a porous medium)’then the
1ntegrand must be a physical quantity possessing the required eddittuef
property. o | |

f The theory of sets and‘the associated concept of a measure (Narasimhan,
1976, 1978) provides the fundamental link between the physical world
subject to the Taws of mass and energy conservation and the conceptua1—
computational world of quantificatton. Properties such as mass; energy
and uo1ume.are "set" functions defined over a set oftspat1a1 points. A
"measure" is a set function which possesses the‘fo11ow1n§ propertie5°
a) Its doma1n is the set of spacial points and whose range 1s the set
of non—negat1ve numbers, b) its value is zero over a nu11 set and c)
it possesses the add1t1ve property, that is, if f is a measure and A
and B are two disjoint sets, then f (AUB) = f(A) + f(B). We can eas11y
see:' a) rthat Mass and Energy are always posittve in stgn; b) that

without space mass‘and energy'do not exist; and c) that if A and B
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are two disconnected subdomains of the porous medium then the mass or
energy conta1ned in subdomains A and B together is equa] to the sum
vof the mass (or energy) in A plus the mass or energy in B Desp1te |
their s1mp11c1ty, (a), (b) and (c) are very 1mportant concepts and
form the ax1omat1c foundat1on not only of the theory of 1ntegrat1on,.but
also of the mathematical theory of trans1ent trensfer of mass:and heat
1n.porous media | B
w1th the above e]aborate 1ntroduct1on we now pass on to the
cons1derat1on of vo]ume averag1ng
VOLUME-AVERAGE |

- Given the spatial distribution of;an intensive property of in-
terest, the aim of volume-averaging is to evaluate the average value
of the property over some macroscopic subdomain of the flow region..
_ we $eek to.achieve this by integrating the property in some meaningful
fashion over the subdomain. However, since an jntensive'property»does
not possess the additive property, it cannot be directly integrated.
For the integration to be physically meaningful, the intensive quantity
has to be converted to an extensive property or a measure. To this end,
we introduce the concept of a "capacity" function‘whjch correlates
an intensive quantity with a corresponding measure.

As an illustration, consider the familiar example of heat and . .

temperature. For a unit volume of the flow region, defining c as

the capacity function, we have

Ho-Hy = oc(T-T) - | (1)
where (H - Ho) is the heat content of the unit volume element with
reference to heat content at temperature To,p‘iS mass density, c is
specific heat capacity defined as the heat energy required to change the
temperature of a unit mass of the material by unity and T is the average

temperature over the unit volume element.
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Suppose we wish to eva]uaté the averagé temperaturé over some
arbftrary subdomain ¢ of the porous'medium over which the temperaiuré
distribution is known. Then we first divide the éubdomain into the
small Qo]umeve]emenfs dV, which éfe sufficiently large (non-microscopic)
‘to permif a statisticé]fysmeaningfu1 definition of tempekéture. Next we
cdhpute the heat content over each dV using the capacity function and
sum up the heat contents of all dV's over the subdomain to obtain the
heat cohtent‘of 2. Finally, we define an average temperature for the
subdomain by dividing its heat content by its‘heat capacify. Thus,

<T > = 1 pcTdV ' (2)

L < >
Vg <ec>,

Yy

wheré'<T>é is the average temperature over ¢, Vz is the volume of

subdomain 2, <p>, is the average density and<C>kis the average specific

heat of the material contained in %. '
Note that if the material contained in 2 is heterogeneous or if

o and ¢ are functiorsof T, then, it is critical to properly define

. and <c>21n an appropriate fashion. As we shall see later, we

could atiempt to cdmpute<pE and <c3 by an averaging procedure analogous

\'<’p>

to (2). Or, perhaps more reliably, we may rely on experimental data to
obtain these quantities.

‘We may point out here that the meaning of a subdomain as used
here is quite flexible. Thus, if the subdomain & is restricted to a
particular phase (e.g. solid, 11QU1d), then <T>£ is an average for
that particular phase. |

In groundwater hydrology, the most frequently measured intensive
property is fluid pressure p while the measure of interest is mass
~of water. For a subdomain ¢ in a porous medium at a given average e]g—

vation one could relate Mw and P>, with the help of the capacity

L



function Mé g as follows:

= * .
Mw,z Mc,2<p>z + constant (3)

where MW . is the mass of water contained in-g. As defined by Narasimhan

and Witherspoon (1977), Mé . is the fluid mass capabity‘ofﬁ,defined as

the mass of water required to change the average pressure over % by

unity, In view of (3) and in a fashion analogous to (2), we can write:

B N T (4)
L V <m*> ¢ : :
L C % v
2

where <mé>2 is the'average specific f1uid masé capacity of the material
in 2 and mg is the épecific fluid mass capacity of the materiai con-
ta%ned‘in‘dv defined as fluid mass capacity per unit vd]ume of the porous
medfumi Here too, one could obtain mé by aVekaging procedure or obtain
it ffom experimenta] data.

It is of considerable interest to emphaSize here that in éetting
Qp the cbncéptua] equation of transient groundwater'f1ow (e;g. Nara-
simhan and Witherspoon, 1977) we first evalUéfe the rate‘of.accumulétion
of mass over a small volume element using divergence and then convert
tﬁe rate of accumulation of mass to an equivalent change in potential
by dividing it by its fluid mass capatity. The averaging procedure
embodied in (4) is thus fully consistent wfth the concept of the non-

steady diffusion equation.

SIMPLIFIED VOLUME AVERAGING
ih.(Z) and (4) the capacity‘functionélare different from unity.
Howeber, ih}the case 6fathose 1nten§1vevproperties that are volume-
norma]iéed measures'the‘capacity function is unity. Examples of this
tybe of property include mass denSity, chemicé] concentration and-

porosify. For these properties, the volume average becomes much



simpler. Thus,

j—
_—
o
=

<p> =

[ v odV
2
V,Q,
1
<o>, = Vl y adV (6)
. .
] '
and > = = ndV (7)
% V2 ‘
VSL

where o is concentration of a solute and n is porosity.

A1l volume normalized quantities, however, can not be volume-
‘averaged in the simple fashion illustrated in (5), (6) and (7). For
example, the quantity mé denotes the mass of water reqqired to change
the average pressure over a unit volume by unity and is a vo1umevnorr
malized quantity. So also, is the product pc which denotes the quan-
tity of heat requried to change the temperature of a unit volume of the

material by unity. In these cases one is tempted to define

<> = VQ m*dV (8)
Vz
and
<pc> = ]V pCdV ) (9)
2 2y
2

Yet, if we recall that mé reflects the deformatiqn and desaturation
properties of the fluid filled porous medium and that <pc> ref]ects
thermodynamic properties of materials, it is not clear whether the inte-
grand in (8) or (9) can be considered to be additive from a physics

view point especially if the material in g is heterogenqus. For example,

if clay is interspersed as aggregates in sand, can one consider the



the compressibility of the bulk to. be equal to the weighted, sum of

the compressibilities of sand and clay? Physically, there is reason to
suspect that the deformation of the aggfegated bulk may_pe qyite com-
plex and that for a given c]aypcmmentvtwo differentjéggrggates may
.Hexhjbit different deformation patterns. Therefore, a more meéningfu]
‘methdd of obtaining vo]qme averages of capacity funqtions_may be td

depend on carefully controlled field or 1aboratory experiments.

TRANSIENT AND STEADY FLOWS
" Although, strictly sﬁeaking, volume éverdging_has to include
the éapacity coefficient within the integral sign many workers (e.g.
‘Gray, 1975; Slattery, 1978; Pinder and Bear, 1978) define volume averade
by the simple expression '
<y> = vdv. o (10)
where ¥ is any intensive property. Obviously, as a general definition
of volume averaging (10) s not physically correct. -However, (10)
could be a valid expression under certain conditions. We will now con-
sider this in some detail.

In the Tight of (5),(6) and (7), equation 10 could be valid if ¥ is
a.propérty such as denSity, porosity or chemical concentration. Thus, in
first ﬁondition'under'whiChv(]O) | éou]d be‘valid is that v isa
volume-normalized measure. | ﬁ o |

A'sétdnd possibility is that thé'hétéé{aT'dCtupying the Vo]ume.\
e]ement-VQ has a constant vé]ue fo? fhe Eabécify cbéfficient. Thus, in
(2). " and ¢ are both constant over V, so that <p>, = p and <c>, =c

and these quantities essentially cancel each other. FSim11ar1y, in

4 , 1f m* is constant over V , then m* = <m* . In this case too,
e 9 c c7g
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the two quantities will cancel each other. Under these conditions,

both (2) and (4) will simplify to the form of expression in (10).

A final possibility is that the flow system under considerattbn
is charactertzed by steady f]owé'and one is merely interestedjin:the'
pattern of potential distribution arising due to known bonndary
conditions. Note carefully that the steady-state prob]em“1$ 1nde§endént
of the capacity term since theiquantity’of mass or energy stored in
the system does not change with time. Indeed;:in considering the steady-
state system if one chooses to neglect the actual quantity of mass or
energy stored and concerns oneself only with the potential distribution,
then one could assign any arbitrary, constant value for the capacity
q;term over.VQ, thereby leading to a justification for using the expression

(10 ) for volume-averaging.

The fact that many workers have persisted in using (10 ) as
the fundamental definition of volume averaging leads to the inference that
our approach to the physics of the problem is significantly influenced by
our historical preference to the steady-state problem which is relatively more

easy to solve than the transient problem.

A LINK BETWEEN MEASUREMENT AND MODELING

Having provided a physically meaningfu]vdefinition of a volume-
average we now consider 1t$ usefu]ness.‘ The obvious first use of an
average value of an intensive quantity orer a yo]ume is that one could
multiply the average by the capacity of the‘volume element and compute
the mass, energy or even the void vo]ume stored 1n that e]ement

The second, most 1mportant use of the average va1ue of an intensive
quant1ty relates to the fact that grad1ents of 1ntens1ve quant1t1es g1ve

rise to forces wh1ch govern movement of fluids or heet, On a macros-



- copic scale, these gradients depend on the spatial distribution of the
average potential over subdomains. It is therefore necessary that the
volume average of a potential computed for a giyen»yo]qme‘e]ement. o
be associated with a certain spatial Tocation or point within the
element.

Suppose the volume of the element V2 is much larger than the’vo]ume
8V which'is the minimum size required for the property to be statis-.
tically meaningful. Then, if a measuring device is p]gced at‘a given
poinp in V2 it will presumably sample a volume 8V and provide an .average
measurement of the property over 6V. .The important question now arises,
what is the 1ocation’of this pointhwfthin V% such‘that‘the physically
,vmegsured value at this point wil]_equa] the vo]ume-averaged value over
the element which is to be associated with this point?

Note, invthis case, that Vg is a conceptual eJement created to
simulate the physical world andvhasfto be, for convenience, larger than
sV. | |

' The exact location of the point at which the measured value equals
the volume average clearly depends on the way the property varies over
the element and the continuity of the variation. Ih general, as the
spatial variation of tHe property changes with time, so will the Jocation
of the point. However; for computationa] purposes, it is extremely de-
sirable that the point remains fixed in time. Under what conditions will
the point remain fixed in space? _

If we take the simple one dimensional case of a uniform material
with constant capacity coefficient and cbnsider a finite interya] over

which the property varies linearly, then we can verify without undue
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difficulty that the volume average of the property will be exactly equal
to the arithmetic mean, which, in turn, is equal to the value of the
property exactly half way over the interval. Without offering a proof
here, we could conjecture that in general two- or three-dimensions if-
Vz has arbitrary shape and if the desired intensive property varies
Tinearly over Vz’ the volume average will be equal to the magnitude of
the property at the center of gravity of VQ.

If the aforesaid conjecture is true, then, by choosing Vz to be
small enough to satisfy the Tinearity criterion and associating the volume
‘average with the center of gravity, one could make the computational
model consistent with the real world of observation. Indeed it appears
that this linearity condition provides the vital link between the worlds
of measurement and of modeling.

On the other hand if the capacity coefficient is variable over
the element or if the intensive property varies non-Tinearly over the
element, then as the shape of these variations change with time over
the element, so also will the location of the point at which the physical
measurement and volume averages coincide. Any errors in this regard
will Tead to inaccuracies in the evaluation of spatial gradients and
consequently to errors in the evaluation of the diffusion equation.
It is pertinent to point out here that the well-known finite element
method often employs higher order (non-linear variations) approximations
for the variation of potentials over finite subdomains of the flow region.
Moreover, where the medium is heterogeneous,a single element of mass
conservation may include more than one material with varying capacity

coefficients, with the volume averaged quantities of the subdomain
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associated with a point 1o¢éted at the junction of two or more different
materials.- In the 1light of the observations made earlier in this
paragraph, it is easy to see that when dealing with transient flow
problems the finite element approach can not a]Ways assure that the
nodal pdint represents the point at which physical measurement and volume
averages wi]]icojncide. To this extent, the foundations of the finite
element scheme heeds reconsideration for transient problems. However,
for steady state problems, where the capacity function is unimportant,
the finite element method, as it is employed now, is quite suitable.
It is not out of place to mention here that the finite element method,
as was originally introduced by structural engineers or even Galerkin's
original paper,-concerned itself strictly with the steddy state -
" problem. | | |
SUMMARY AND CONCLUSIONS

Volume averages of intensive quantities are required in the
.conceptualization of heat and mass tfansfer problems. Integration is
the fundamental tool emplioyed in evaluating volume averages. Funda-
mental to integration is the additive property. Since intensive
quantities are nof additive, they ought to be first converted to
extensive properties (measures) which possess the additive-property.
Capacity functions are functions which corre]ate:intensive and extensive
propertieé; These functions are essential components-in the volume
averaging process. The conventional definition of volume-averaging,
in which several workers neglect the capacity-coefficient, is valid
only under certain limited circumstances. Notable among these is that
the system is steady state and that one is not interested in the actual

quantity of mass or energy stored in the system.
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In addition to aiding in the estimation of the quantity of fluid
stored within a volume element, volume averages also help in the -
evaluation of motion. In order that this could be achieved with least
error, the volume element should be small enough so that the desired
property varies linearly over it. In .this case, if the:capacity -
function is constant over the element, the. volume average can be
associated with center of graVity of the element. .The linearity
criterion provides the vital link between the world of measurement and
that of computation. If the property varies non-linearly:within VQ,
then computational errors may occur which may be controlled only with
extra -effort.

v The importance of the concept of measure in integration and its
relevance .to the diffusion equation was originally proposed by this
author during early 1975 in informal communications to fellow researchers
in the field. The idea was described in a report published by the
Lawrence Berkeley Laboratory in 1976, which, with some slight changes,
was published as a journal paper in 1978. Recently, Pinder (1979)
correctly drew attention to the importance of the concept of an extensive
property in integration and the related volume averaging procedure.
Pinder's presentation suggested to the author that the time has apparently
arrived to recognize the importance of the foundations of integration

~in modeling physical systems governed, among others, by the diffusion
process. . This recognition provided motivation for the present paper.

which has attempted to highlight some of the fundamental consequences

associated with volume-averaging.
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NOTATIONS

Set of spatial points

Specific heat capacity

Average value specific heat capacity over
subdomain 2 ' :

Set function

‘Heat content at temp T  [Energy] -

Heat content at Temp To [Energy]

Fluid mass capacity of subdomain & [LTZ]B

Specific fluid mass capacity [t%/L%]
Average value of specific fluid mass [T2/L2]

capacity over subdomain &

Mass of water in subdomain & [M]

Porosity
 Pressure [M/LTz]

Average pressure over volume element g [M/LT2]

Temperature

Reference temperature
Average temperature oVer subdomain &
Union of set§

Volume of e]emenf 2 L
Concentration M/L

Any intensive property

Ener
[MI[Temp]

Energy
[MI[Temp]
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