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Off-lattice active Brownian particles form clusters and undergo phase separation even in the absence of
attractions or velocity-alignment mechanisms. Arguments that explain this phenomenon appeal only
to the ability of particles to move persistently in a direction that fluctuates, but existing lattice models
of hard particles that account for this behavior do not exhibit phase separation. Here we present a
lattice model of active matter that exhibits motility-induced phase separation in the absence of velocity
alignment. Using direct and rare-event sampling of dynamical trajectories, we show that clustering and
phase separation are accompanied by pronounced fluctuations of static and dynamic order parameters.
This model provides a complement to off-lattice models for the study of motility-induced phase
separation. Published by AIP Publishing. https://doi.org/10.1063/1.5023403

I. INTRODUCTION

Active matter refers to systems whose elements propel
themselves by dissipating energy. Natural examples of active
matter include bacteria; synthetic examples include suspen-
sions of colloids that can catalyze chemical reactions on their
surface.1–16 Continuous dissipation of energy ensures that
active matter is “far” from equilibrium and able to display
complex behavior that includes the generation and rectifica-
tion of large fluctuations;2,17–24 anomalous interfacial prop-
erties;25 and phase separation in the absence of interparticle
attractions.1,6,9,11,12,14,26–33 This latter phenomenon, known as
motility-induced phase separation (MIPS), is similar in some
respects to equilibrium gas-liquid phase separation, e.g., MIPS
can be described by free-energy-like quantities,1,5,9,14 and dif-
ferent in others, e.g., active clusters fluctuate more than passive
ones4,28,34 (and more generally, it may be difficult to define the
concept of a nonequilibrium “phase”35).

To probe these connections at a fundamental level, it is nat-
ural to identify the simplest models that exhibit such phenom-
ena. Lattice models enable us to identify the microscopic origin
of emergent phenomena, and they can be simulated on larger
scales than their off-lattice counterparts, so facilitating calcu-
lation of, e.g., critical exponents.36–39 The Ising model is the
simplest model that displays equilibrium phase separation.38

The Katz-Lebowitz-Spohn driven lattice gas is the prototypi-
cal example of drive-induced phase separation.40,41 For active
matter, there exist lattice models of MIPS induced by velocity
alignment.6,27,42,43 However, lattice models that account only
for volume exclusion and persistent motion exhibit cluster for-
mation and coarsening but do not undergo macroscopic phase
separation.44,45

Here we introduce a lattice model that exhibits MIPS,
in the absence of velocity alignment, and so allows study of

a)swhitelam@lbl.gov

the phenomenon in the simplest possible setting. Our starting
point is the observation that simple kinetic arguments used
to describe MIPS in off-lattice models appeal only to the fact
that active particles diffuse and move persistently in a direction
that fluctuates.9 We show that a lattice model of active matter
that captures the essence of such motion indeed exhibits MIPS
(see Fig. 1), but only if particles possess the ability to move
in a direction other than that of their drift. MIPS occurs in a
region of phase space analogous to where it occurs off lattice
(Fig. 2). We also use a simple rare-event sampling method46,47

to show that clustering and phase separation is accompanied
by non-Gaussian fluctuations of a particular dynamic order
parameter (Fig. 3). This model allows the study of MIPS in a
simple setting and provides a complement to other models of
the phenomenon.1,6,9,11,12,14,26–33

II. MODEL AND PHENOMENOLOGY

We consider a square lattice of size L2 in two dimen-
sions, on which live N hard particles. The particle density is
φ = N /L2. We apply periodic boundaries in both directions.
As shown in Fig. 1(a), particles α = 1, 2, . . ., N possess a
(unit) orientation vector eα that can point in the direction of
any nearest-neighbor site. Particle α on site i moves to a vacant
nearest-neighbor site j with rate v+, v−, or v0, if eα·rij = +1, �1,
or 0, respectively, where rij is the unit vector pointing from site
i to site j. Particles cannot move to an occupied site. A particle’s
orientation vector rotates π/2 clockwise with rate D+ and π/2
counter-clockwise with rate D

�

. The orientation of a particle
is unaffected by the orientation of neighboring particles (c.f.
Refs. 6, 27, and 43). We simulated collections of particles using
a continuous-time Monte Carlo algorithm.48 We choose any
possible process with probability W /R, where W is the rate of
the process and R is the sum of rates of all possible processes,
and update time by an amount 1/R after each move. An iso-
lated active lattice particle moves in a manner similar to that of
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FIG. 1. (a) Rates for the motion of isolated lattice-based active particles (particles may not move to an occupied site), and the color scheme used in pictures:
particles that point toward nearest-neighbor particles are shown in red, and those that do not are shown in blue. (b) Time-ordered configurations for density
φ = 1/5 and v+ = 25, showing motility-induced phase separation. Lattice size is 2002.

its off-lattice active Brownian counterpart (see Appendixes A
and B)—both move ballistically on short scales and diffusively
on large scales—and so we expect collections of such on-lattice
particles to exhibit MIPS.

In Fig. 1(b), we show that this expectation is borne out.
Randomly dispersed and oriented particles readily cluster and
undergo phase separation, here via a spinodal decomposition-
like mechanism involving the aggregation of many clusters
(elsewhere in parameter space, we observe nucleation and
growth of clusters). Similar in qualitative terms to their off-
lattice counterparts,9,28 clusters show pronounced fluctuations
and transient internal voids; see Fig. 6 (Multimedia view).
In this paper, we model unbiased rotational diffusion of the
orientation vector (D+ = D

�

≡ Drot = 1/10). In order to mimic
positional diffusion that would occur off-lattice, we allow lat-
eral and backward motion with some rate that is in general
less than the drift rate (we set v− = v0 = 1). The presence of
such motion is crucial. When v0 = v− = 0, i.e., when particles
can move only in the direction of alignment, phase separation
does not occur44,45 (see Fig. 7). Two particles that meet head-
on cannot move until one of them rotates. When jammed in this
way they cannot merge with larger clusters in order to drive
phase separation. This effect does not occur in off-lattice mod-
els or experiment, where two agents that meet head-on can slip
past each other (by rectifying each other’s motion). In other
words, lattice-based active particles that cannot move against
their orientation vector experience an unphysical kinetic trap
that prevents MIPS (an exception is the model of Ref. 26,
which achieves phase separation on-lattice by using a coarse-
grained density field, effectively allowing particles to pass
through each other). Introduction of local diffusion (nonzero

v−, v0) removes this trap. Thus, in the absence of velocity align-
ment, MIPS on-lattice is achieved by a combination of volume
exclusion, persistent motion, and local diffusive motion.

In Fig. 2, we show in a space of density φ and the
rate v+ for forward motion where MIPS occurs. As a sim-
ple measure of clustering we use f 4, the fraction of par-
ticles with 4 neighbors. Figure 2 shows the mean 〈f 4〉

and log-variance ln(〈f 2
4 〉 − 〈f4〉

2) of this quantity from sin-
gle simulations begun from disordered initial conditions
[we defined averages of a microstate-dependent quantity
Q(C) as 〈Q〉=

∑
k Q(Ck)R(Ck)−1/

∑
k R(Ck)−1, where k labels

microstates and 1/R(C) is the mean time taken to escape
microstate C]. The region in which phase separation occurs
can be roughly predicted by a flux-balance argument (see
Appendix C) similar to that used off-lattice9 (a more refined
estimate of the position of the binodal could be made using
the hydrodynamic approach used in Ref. 42). From this, we
estimate that a fraction

f =
Pe κ − 1/φ

Pe κ − 1
(1)

of particles will be in the dense phase, where
4κ ≡ 1 − (1 − 2Drot/Σ)2Σ/Drot ; Σ ≡ v+ + v− + 2v0 + 2Drot;
and the Péclet number Pe ≡ (v+ − v−)/(2Drot) [for the param-
eters used, we have Pe = 5(v+ � 1)]. In Fig. 2, we plot the
line f = 1/2. This line matches approximately the curvature
of the phase boundary obtained by computer simulation, con-
firming that MIPS on-lattice occurs for a density-dependent
Péclet number, as it does off lattice.9 In addition, the variance
of f 4 is large even in the ordered phase, indicating pronounced
fluctuations of clusters (which is the case off lattice28).

FIG. 2. (a) Mean and (b) logarithm of
the variance of f 4, the fraction of parti-
cles with 4 neighbors, as a function of
density φ and v+ [the Péclet number Pe
= 5(v+ � 1)]. As in the off-lattice model
of Ref. 9, we observe phase separation
at a density-dependent value of Pe. The
dotted white line is the contour f = 1/2
from Eq. (1). Lattice size is 1002.
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FIG. 3. Trajectory sampling yields an upper bound I0(ν) on the large-deviation rate function for trajectory activity ν. Typical behavior is signaled by the
vanishing of the rate function, while rare behavior corresponds to large values of the rate function. As we vary v+, we change typical trajectories from being
more active (large ν, top) to being less active (small ν, bottom). The MIPS transition occurs near the parameter set of the middle panel; see Fig. 2. Configurations
from some typical and rare trajectories are shown in panels (A)–(I). Lattice size is 1002, and density is φ = 1/5.

III. TRAJECTORY SAMPLING
A. General considerations

To more thoroughly probe the fluctuations associated with
clustering and phase separation, we used a simple method of
rare-event sampling.46,47 The method is motivated by the “ther-
modynamics of trajectories” or “s-ensemble” formalism49–53

but is implemented differently; it could be considered a form
of nonequilibrium umbrella sampling. Briefly, we wish to cal-
culate ρ(a, K), the probability distribution, over an ensemble
of trajectories, of a quantity a = A/K. Here A is an observ-
able extensive in the length of the trajectory and K is the
number of simulation steps (configuration changes) in each
trajectory in the ensemble. We define a trajectory as a sequence
x = {C1, C2, . . ., CK} of microstates Ck visited by the dynam-
ics. The probability of a step Ck → Ck+1 in this sequence
is W (Ck → Ck+1)/R(Ck), where W (Ck → Ck+1) is the rate
for the enacted process, and R(Ck) ≡

∑
C′ W (Ck → C ′) is

the sum of rates of all processes leading out of state Ck .
Direct simulation of the model allows for efficient sampling
of ρ(a, K) for typical values of a and poor sampling of
ρ(a, K) for rare values of a. We therefore make use of a “change
of measure”54–60 and introduce a reference model whose rates

Wref (C → C ′) = e−sα(C→C′)W (C → C ′) (2)

are chosen so that the reference model’s typical values of a are
generated with low probability by the original model. Here
α(C → C ′) is the change of A upon moving from C to C ′,
and s is a parameter. If P[x] and Pref[x] are the probabilities
of generating a trajectory x using the original and reference
models, respectively, then the ratio w[x] = P[x]/Pref[x] is

w[x] = esA[x]+Kq[x], (3)

where

q[x] ≡ K−1
K−1∑
k=0

ln
Rref (Ck)
R(Ck)

, (4)

and Rref (Ck) ≡
∑

C′ Wref (Ck → C ′). The quantity we want, the
probability density of a over trajectories of length K, is

ρ(a, K) =
∑

x

P[x]δ(A[x] − Ka)

≡
∑

x

Pref [x]w[x]δ(A[x] − Ka)

= esKa
∑

x

Pref [x]eKq[x]δ(A[x] − Ka). (5)

The probability distribution ρ(a, K) is a reweighted ver-
sion of the reference-model probability distribution ρref (a, K)
≡

∑
x Pref [x]δ(A[x] − Ka), which can be seen by writing (5) as

ρ(a, K) = ρref (a, K)esKa
∑

x Pref [x]eKq[x]δ(A[x] − Ka)∑
x Pref [x]δ(A[x] − Ka)

≡ ρref (a, K)esKa〈eKq[x]〉a. (6)

Taking logarithms gives

I(a) = Iref (a) − sa − K−1 ln〈eKq[x]〉a, (7)

where I(a) ≡ �K�1 ln ρ(a, K) is the large-deviation rate func-
tion, for the original model, for the dynamic observable a.54

I ref(a) is the equivalent quantity for the reference model.
Simulations of the reference model produce values of a that
concentrate on as, where I ref(as) = 0, and so

I(as) = −sas − K−1 ln〈eKq[x]〉as . (8)

Simulations of the reference model, for given s, allow the two
terms on the right-hand side of (8) to be estimated and there-
fore furnish one value I(as) of the rate function of the original
model. By repeating the process for a range of values of s, one
can reconstruct the curve I(a). In this sense, the rate function of
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the reference model, I ref(a), can be considered to be a nonequi-
librium “umbrella potential” whose purpose is to concentrate
sampling at a particular value of a.

The average in Eq. (8) can be evaluated by determining
the statistics of q[x] for a set of typical reference-model tra-
jectories (those for which A[x] = Kas).46,47 For models (such
as the present one) that possess well-defined steady-state mea-
sures, one can obtain a bound I0(a) > I(a) on the rate function
from individual trajectories of the reference model.47 Applying
Jensen’s inequality to Eq. (8) gives

I(as) < I0(as) = −sas − K−1 ln eK〈q[x]〉as

= −sas −
∑

C

πref (C) ln
Rref (C)
R(C)

, (9)

where as = As/K is a value of a typical of the reference model,
and πref(C) is the steady-state probability of visitation, by the
reference model, of state C. For a given value of s, Eq. (9) yields
one point I0(as) on the curve I0(a); repeating the procedure for
several values of s gives the whole curve.

B. Sampling trajectories of active particles

We next choose a dynamic observable a whose rate-
function bound I0(a) > I(a) we wish to calculate. We choose
a guided by studies of glasses. There, authors often choose
to count the number of events that occur in a particular time,
with the average time taken to leave configuration C being
1/R(C). This choice allows the identification of phase tran-
sitions out of equilibrium.52,53,61 Similar physics should be
accessible by measuring the values of R(C) of states explored
by a fixed number of configuration changes. We therefore take
the reference-model bias α(C → C ′) = B(C ′), where B(C ′)
= R(C ′) is the escape rate from the state to which the model
is moving (we use B to emphasize that this choice can be
varied); the order parameter against which dynamics are condi-
tioned is A/K = K−1 ∑K−1

k=0 B(Ck+1), the mean relaxation rate of
configurations comprising the trajectory (hereafter called the
“activity” of the trajectory52). The reference model (2) is then

Wref (C → C ′) = e−sB(C′)W (C → C ′). (10)

We simulate it as we do the original model, but now choosing
events C → C ′ with probabilities W ref(C → C ′)/Rref(C). One
can guide the reference model toward quickly or slowly relax-
ing configurations by varying the sign and magnitude of s. We
compute (9) by running a single reference-model trajectory,
for a given value of s, and evaluating the expression

I0(as) = −sK−1
K−1∑
k=0

[B(Ck+1) − B(Ck)]

−K−1
K−1∑
k=0

ln
∑

C′ e
−s[B(C′)−B(Ck )]W (Ck → C ′)∑

C′ W (Ck → C ′)
, (11)

note that we have written ln
∑

C′ e
−sB(C′) ≡ sB(C)

+ ln
∑

C′ e
−s[B(C′)−B(C)] so that numbers appearing in exponen-

tials are not too large. The first term on the right-hand side of
(11) becomes negligible for large K.

The reference model is a tool whose purpose is to tell
us with what probability the original model will yield (rare)
values of an observable. At the same time, configurations

of the reference model indicate the nature of the config-
urations that will be visited, with low probability, by the
original model. The reference model satisfies the relation
Wref (C → C ′)/Wref (C ′ → C) = e−s[B(C′)−B(C)]W (C → C ′)/
W (C ′ → C). Given that B = R counts the numbers and types
of particle-vacancy contacts, it is clear that biasing the system
toward quickly (s > 0) or slowly relaxing (s < 0) configurations
is akin to equipping particles with (anisotropic) repulsions or
attractions, respectively. In the case v+ = v− = v0, the original
model comprises a set of diffusive hard particles, and the ref-
erence model, which measures the number of particle-vacancy
bonds, is the Ising lattice gas with particle-particle interaction
energy�s. Rare, slowly relaxing configurations of the origi-
nal model therefore look like typical lattice gas configurations
in the presence of an attractive interaction—i.e., they can be
phase-separated—and rare, quickly relaxing configurations of
the original model look like typical configurations of the lattice
gas in the presence of repulsive interactions (which for certain
particle densities are periodic and so hyperuniform62).

In Fig. 3, we show I0(ν), an upper bound on the
rate function associated with the (scaled) activity
ν ≡ (ΣNK)−1 ∑K−1

k=0 B(Ck) (here N is the number of particles).
To make this figure, we ran single reference-model trajecto-
ries of length K = O(108) for several values of s, both positive
and negative. For each trajectory (prepared by starting with
a single cluster and running until we entered steady state),
we evaluated a (=νNΣ) and I0(a), using Eq. (11). Large val-
ues of ν correspond to active trajectories, i.e., those whose
configurations change rapidly. Typical behavior is signaled by
I = 0, while atypical behavior corresponds to large values of
I. See Fig. 6 of Ref. 54 for an illustration of the relationship
between a rate function and the associated probability density.

We see that increasing v+ changes the typical behavior
of the system (where the rate function vanishes) from being
more active (top) to being less active (bottom). The snapshots
(right) show that activity (ν) and clustering are largely anti-
correlated: active trajectories generally contain configurations
that are disordered, while less-active trajectories display clus-
tered configurations.63 However, activity (ν) and clustering are
not perfectly correlated: for instance, there exist rare, active
trajectories that exhibit “checkerboard” clustering. The cur-
vature of the rate functions about their minima indicates the
nature of near-typical fluctuations. For non-propelled particles
(top), small fluctuations of ν are Gaussian, i.e., the rate func-
tion is quadratic about its minimum. Near the MIPS transition
(middle panel), fluctuations become non-Gaussian, similar to
the behavior of equilibrium systems near a phase boundary.37

Note, however, that substantial non-Gaussian fluctuations per-
sist into the region of phase separation (bottom panel). Non-
Gaussian fluctuations of a different order parameter, cluster
size, are seen in off-lattice models of active matter.28

The non-monotonic behavior seen in the rate functions
indicates a change in the atypical behavior of trajectories as
a function of s, the field conjugate to ν.47 Trajectories con-
ditioned upon certain values of ν can contain configurations
very different to those observed in typical trajectories, e.g.,
rare configurations can be clustered while typical ones are dis-
ordered (top panels). Thus by varying v+, we observe the MIPS
transition at the level of typical trajectories (note the position
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of the minima of the rate functions in the figure), while by
varying s (conditioning against different ν), we can observe
changes at the level of atypical trajectories (note the configu-
rations associated with large values of the rate functions). A
related scenario is seen in model lattice proteins64 using the
“s-ensemble” method of rare-event sampling.

IV. CONCLUSIONS

We have presented an on-lattice model of hard active par-
ticles that exhibits MIPS in the absence of velocity alignment.
The model exhibits clustering and phase separation qualita-
tively similar to that seen in off-lattice models. Both direct
simulations and trajectory-sampling methods show that pro-
nounced fluctuations are present even within the ordered phase
of the system. Lattice models provide a simple complement to
off-lattice models, and the one presented here provides a sim-
ple way of studying motility-induced phase separation in the
absence of velocity alignment.
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APPENDIX A: MOTION OF AN ISOLATED
OFF-LATTICE ACTIVE BROWNIAN PARTICLE

In this section, we recall some features of the typi-
cal motion of an isolated off-lattice two-dimensional active
Brownian particle, of the type considered in some simula-
tion studies.9,28 In Appendix B, we show that an on-lattice
active particle moves in a qualitatively similar way. The situ-
ation and notation considered in this section draws upon Sec.
4.3.1 of Ref. 8 (although it is not identical to the situation
considered there); more comprehensive treatments of active-
particle motion can be found elsewhere.8,65,66

1. Preliminaries

Consider numerical integration of the position of an active
Brownian particle in d = 2. The particle is subject to thermal
fluctuations and able to move deterministically in the direction
of its orientation vector. After step N of the simulation, its
position vector is RN =

∑N
i=1 ∆ri, where

∆ri = `0 (cos θi−1x̂ + sin θi−1ŷ) +
√

2∆τDxη
x
i x̂ +

√
2∆τDyη

y
i ŷ.

(A1)

Here x̂ and ŷ are Cartesian unit vectors; `0 = V0∆τ is the
displacement magnitude of the deterministic force; ∆τ is the
integration time step; Dx and Dy are diffusion constants; θi�1

is the angle (after step i � 1 and before step i) between the
particle’s orientation vector and the x-axis; and ηx

i and ηy
i are

Gaussian white noise terms with zero mean and unit variance,
i.e., 〈ηαi 〉 = 0 and 〈ηαi η

β
j 〉 = δα,βδi,j.

Let the particle angle evolve according to

θi = θi−1 + ηi, (A2)

where ηi is drawn from an even distribution P(ηi). Let this
distribution be bounded by ±π and have zero mean, in which
case 〈sin ηi〉 = 0 and λ ≡ 〈cos ηi〉 , 0 (in general). We assume
that angular changes at different times are uncorrelated.

For the sake of generality we shall consider three cases.
The first is that of driven matter (see, e.g., Refs. 40 and 67),
where the particle’s orientation vector does not rotate. In this
case P(ηi) = δ(ηi) and λ = 1. The second case is that of active
matter, in which the particle’s orientation angle rotates diffu-
sively. In this case, we have 0 < λ < 1. For the particular case
of a Gaussian distribution P(ηi), we have

λ =

∫ π

−π

dη cos η ·
1

√
2πσ2

exp

(
−
η2

2σ2

)
≈ e−σ

2/2, (A3)

forσ small enough that the limits of the integral can be approx-
imated by ±∞ (the exact solution can be written in terms of
the error function). The third case is that of Brownian matter,
where P(ηi) is drawn uniformly from the interval [�π, π). In
this case λ = 0 (here the particle moves diffusively, with a dif-
fusion constant renormalized by the drift parameter; see, e.g.,
Ref. 68).

To work out properties of the particle’s motion, we will
need

〈cos θi〉 = 〈cos(θi−1 + ηi)〉

= 〈cos θi−1〉〈cos ηi〉 − 〈sin θi−1〉〈sin ηi〉

= 〈cos θi−1〉λ, (A4)

using the fact that noise terms at different times are uncorre-
lated. Equation (A4) is a recursion relation and implies

〈cos θi〉 = cos θ0λ
i, (A5)

where θ0 is the particle’s initial angle. Similarly, 〈sin θi〉

= sin θ0λ
i.

To compute second moments of position, we need to
average

∆ri · ∆rj

=
(
`0 cos θi−1 +

√
2∆τDxη

x
i

) (
`0 cos θj−1 +

√
2∆τDxη

x
j

)
+

(
`0 sin θi−1 +

√
2∆τDyη

y
i

) (
`0 sin θj−1 +

√
2∆τDyη

y
j

)
.

(A6)

Anything linear in ηx or ηy will not survive the averaging; what
remains to be averaged is

`2
0 cos(θj−1 − θi−1) + 2∆τDxη

x
i η

x
j + 2∆τDyη

y
i η

y
j . (A7)

For i = j, we have

〈∆ri · ∆ri〉 = `
2
0 + 2(∆τDx + ∆τDy). (A8)

For j > i, we have

〈∆ri · ∆rj〉 = `
2
0〈cos(θj−1 − θi−1)〉

= `2
0λ

j−i. (A9)

2. Character of motion

The position of the particle after step N is RN =
∑N

i=1 ∆ri,
and so
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FIG. 4. Numerical integration of
Eqs. (A1) and (A2) confirms the
analytic results derived here, for (a)
mean displacement (for α = x, y) and
(b) mean-squared displacement. The
black dotted lines are analytic results
(A14) and (A15); the blue dashed line
Deff is the result (A18). Here V0 = Dx
= Dy = ∆τ = 1, and σ2 = 0.15, which
gives λ ≈ 0.93. Numerical averages are
taken over 106 trajectories of a particle
initially at the origin and oriented in the
x-direction.

〈RN 〉 =

N∑
i=1

〈∆ri〉

= `0 (cos θ0x̂ + sin θ0ŷ)
N∑

i=1

λi−1 (A10)

= `0e0
1 − λN

1 − λ
, (A11)

where e0 ≡ cos θ0x̂ + sin θ0ŷ is the initial orientation vector of
the particle. Here the angle brackets denote an average over
trajectories (i.e., noise), for particles that start at the origin with
angle θ0.

For λ . 1 and N small, we can write λN ≈ 1 + N ln λ, in
which case

〈RN 〉 ≈ N`0e0
(− ln λ)
1 − λ

, (A12)

i.e., on small scales, the particle moves ballistically. For large
N, the mean displacement does not vanish but tends instead to
the limit

〈R∞〉 = `0e0
1

1 − λ
. (A13)

Thus drift on short times generates a net displacement that is
“remembered” by the particle at long times. Only if we average
over initial orientations e0 does the net displacement vanish.

Results for the case of driven matter (λ = 1) and Brownian
matter (λ = 0) can be obtained straightforwardly from (A11).
Collecting these results, we have

〈RN 〉 = `0e0 ×




N (λ = 1)
1−λN

1−λ (0 < λ < 1)

0 (λ = 0),

(A14)

for off-lattice driven, active, and Brownian matter, respec-
tively.

The noise-averaged mean-squared displacement is

〈RN · RN 〉 = 〈

N∑
i=1

∆ri ·

N∑
i=j

∆rj〉

=

N∑
i=1

〈∆ri · ∆ri〉 + 2
N−1∑
i=1

N∑
j=i+1

〈∆ri · ∆rj〉

= N`2
0 + 2N(∆τDx + ∆τDy) + 2`2

0

N−1∑
i=1

N∑
j=i+1

λj−i

= N`2
0 + 2N(∆τDx + ∆τDy)

+ 2`2
0

λ

(1 − λ)2
(N(1 − λ) − 1 + λN ). (A15)

In the case of active matter, we have ballistic motion on small
scales, when λN ≈ 1,

〈RN · RN 〉 ≈ `
2
0N2 + 2N(∆τDx + ∆τDy). (A16)

We have diffusive motion on large scales (when N →∞), with
an effective diffusion constant

Deff ≡ lim
N→∞

1
4N∆τ

〈RN · RN 〉 (A17)

=
`2

0

4∆τ
1 + λ
1 − λ

+
1
2

(Dx + Dy), (A18)

which is renormalized by the self-propulsion of the particle.
Collecting results we have

〈RN · RN 〉 =




N2`2
0 + 2N(∆τDx + ∆τDy) (λ = 1)

Eq. (A15) (0 < λ < 1)

N`2
0 + 2N(∆τDx + ∆τDy) (λ = 0),

for off-lattice driven, active, and Brownian matter, respec-
tively.

In Fig. 4, we confirm these analytic results numerically:
an active Brownian particle moves ballistically at short times,
possesses a mean displacement that is non-vanishing, and is
effectively diffusive at long times.

APPENDIX B: MOTION OF AN ISOLATED
ON-LATTICE ACTIVE BROWNIAN PARTICLE

In this section, we show that the motion of an isolated
lattice-based active particle is similar to that of the off-lattice
particle of Appendix A.

1. Preliminaries

Consider an isolated on-lattice active Brownian particle of
the type described in the main text, evolved using a continuous-
time Monte Carlo algorithm. After step N of a simulation, the
particle’s position vector is RN =

∑N
i=1 ∆ri, where

∆ri = (p1(i) − p4(i)) cos θi−1x̂ + (p3(i) − p2(i)) sin θi−1x̂

+ (p1(i) − p4(i)) sin θi−1ŷ + (p2(i) − p3(i)) cos θi−1ŷ.

(B1)

Here θi�1 ∈ {0, π/2, π, 3π/2} is the orientation angle of the
particle immediately prior to step i. The functions pα(i) have
the following properties: p1(i) is 1 if 0 < ξ i ≤ v+/Σ and 0
otherwise, where ξ i is a random variable uniformly distributed
on (0, 1] and Σ ≡ v+ + 2v0 + v− + 2Drot is the total rate for all
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the processes accessible to an isolated particle. Similarly, p2(i)
is 1 if v+/Σ < ξi ≤ (v+ + v0)/Σ and 0 otherwise; p3(i) is 1 if
(v+ + v0)/Σ < ξi ≤ (v+ + 2v0)/Σ and 0 otherwise; and p4(i) is
1 if (v+ + 2v0)/Σ < ξi ≤ (v+ + 2v0 + v−)/Σ and 0 otherwise.

The angular degree of freedom θ evolves according to
θi = θi�1 + ∆θi, where

∆θi = p5(i)
π

2
− p6(i)

π

2
. (B2)

Here p5(i) is 1 if (v+ + 2v0 + v−)/Σ < ξi ≤ (v+ + 2v0 + v−
+ Drot)/Σ and 0 otherwise, and p6(i) is 1 if (v+ + 2v0 + v−
+ Drot)/Σ < ξi ≤ 1 and 0 otherwise.

Noise terms are different times uncorrelated and so
averages 〈·〉 over noise for trajectories of N total steps
are given by

∏N
i=1 ∫

1
0 dξi(·). We then have 〈p1(i) cos θi�1〉

= 〈p1(i)〉〈cos θi�1〉, etc. We also have

〈cos θi〉 = 〈cos (θi−1 + ∆θi)〉

= 〈cos θi−1〉〈cos∆θi〉 − 〈sin θi−1〉〈sin∆θi〉

= 〈cos θi−1〉λ, (B3)

where λ ≡ 1 � 2Drot/Σ (note that λ in the equations of
Appendix A is distinct). The recursion relation (B3) implies
〈cos θi〉 = cos θ0λ

i, where θ0 is the initial angle of the particle.
Similarly, we have 〈sin θi〉 = sin θ0λ

i.
We then have

〈∆ri〉 =
v+ − v−
Σ

e0λ
i−1 ≡ `0e0λ

i−1, (B4)

where e0 ≡ (cos θ0, sin θ0) is the initial orientation vector of
the particle. We have defined `0 ≡ (v+ − v−)/Σ (note that `0 in
the equations of Appendix A are distinct). Finally,

〈∆ri · ∆ri〉 = 〈(p2(i) − p3(i))2 + (p1(i) − p4(i))2〉

=
v+ + 2v0 + v−

Σ
, (B5)

and, for j > i,

〈∆ri · ∆rj〉 = 〈p1(j) − p4(j)〉 × 〈(p1(i) − p4(i)) cos(θj−1 − θi−1)〉

(B6)

= `2
0λ

j−i−1. (B7)

2. Character of motion

Using the results of Appendix B 1, we have

〈RN 〉 =

N∑
i=1

〈∆ri〉 =
v+ − v−
Σ

e0
1 − λN

1 − λ
, (B8)

for 0 < λ < 1. Recall that λ ≡ 1 � 2Drot/Σ. Thus

〈RN 〉 = `0e0 ×




N (λ = 1)

1 − λN

1 − λ
(0 < λ < 1)

0 (λ = 0),

(B9)

for on-lattice driven, active, and Brownian matter, respectively
[driven matter corresponds to Drot = 0; Brownian matter cor-
responds to `0 = 0, where `0 ≡ (v+ − v−)/Σ]. For active matter,
we have ballistic motion for small N,

〈RN 〉 ≈ N`0e0
(− ln λ)
1 − λ

, (B10)

and long-time non-vanishing mean displacement,

〈R∞〉 = `0e0
1

1 − λ
≡
v+ − v−
2Drot

e0, (B11)

similar to the off-lattice result (A13). This result suggests
defining the Péclet number Pe ≡ (v+ − v−)/(2Drot) so that
〈R∞〉 = Pe e0.

The mean-squared displacement for 0 < λ < 1 reads

〈RN · RN 〉 = 〈

N∑
i=1

∆ri ·

N∑
i=j

∆rj〉

=

N∑
i=1

〈∆ri · ∆ri〉 + 2
N−1∑
i=1

N∑
j=i+1

〈∆ri · ∆rj〉

= N
v+ + 2v0 + v−

Σ

+ 2`2
0

1

(1 − λ)2
(N(1 − λ) − 1 + λN ), (B12)

FIG. 5. Numerical evolution of an on-lattice active particle confirms the analytic results derived here, for (a) mean displacement (for α = x, y) and (b)
mean-squared displacement. The black dotted lines are analytic results (B9) and (B12); the blue dashed line Deff is the result (B14). Here v+ = 4, v−
= v0 = 1, and D+ = D

�

= 0.1. Numerical averages are taken over 106 trajectories of a particle initially at the origin and oriented in the x-direction.
The qualitative similarity between this figure and Fig. 4 emphasizes that isolated on-lattice and off-lattice active Brownian particles move in a similar
fashion.
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implying a long-time effective diffusivity

Deff ≡ lim
N→∞

1
4N
〈RN · RN 〉 (B13)

=
1
4
v+ + 2v0 + v−

Σ
+
`2

0

2
1

1 − λ
. (B14)

Thus an isolated active on-lattice Brownian particle behaves in
a similar way to its off-lattice counterpart: it moves ballistically
at short times, possesses a mean net displacement that is non-
vanishing, and is effectively diffusive at long times.

Collecting results for all three cases, we have

〈RN · RN 〉 =




N(N − 1)`2
0 + N(v+ + 2v0 + v−)/Σ (λ = 1)

Eq. (B12) (0 < λ < 1)

N(v+ + 2v0 + v−)/Σ (λ = 0),

(B15)

for on-lattice driven, active, and Brownian matter, respectively.
In Fig. 5, we confirm these analytic results numerically:

an on-lattice active Brownian particle moves ballistically at
short times, possesses a mean net displacement that is non-
vanishing, and is effectively diffusive at long times, just like
its off-lattice counterpart.

APPENDIX C: FLUX-BALANCE ARGUMENT
TO ESTIMATE ONSET OF PHASE SEPARATION

To estimate when phase separation should occur on lat-
tice, we construct a kinetic-theory argument, following the
argument used in Ref. 9 to predict phase separation in an
off-lattice model of active matter. Consider a simulation box
containing a dense phase of density (number of particles per
unit area) φd and a gas of density φg. Consider a planar inter-
face between these two phases and focus on the net rate of
departure and arrival of particles, at the interface, due to the
persistent component of particle motion. We ignore the dif-
fusive component of particle motion because diffusion alone
does not cause clusters to form.

Departure—Particles arriving at the interface will initially
point into the dense phase. In order to leave, they must rotate
so that they point in the opposite direction. The character-
istic number of steps required for a particle to point in the
direction opposite its arrival is k = 2

∑∞
m=1 m 2−m = 4. The

number of particles leaving the interface in this interval is
Noff ∼ lint × φd (for v +� Drot), where lint is the length of the
interface.

Addition—The characteristic number of steps made by an
isolated particle, as a trapped particle makes a single rota-
tional step, is Σ/(2Drot)≡ 1/(1� λ). Thus an isolated parti-
cle makes S = k/(1� λ) steps in the characteristic time taken
for a trapped particle to become free. From the results of
Appendix B 1, only those isolated particles within a distance
|〈RS〉| = `0(1 � λS)/(1 � λ) can reach the interface in S steps
[recall that `0 ≡ (v+ − v−)/Σ]. We then estimate that Non is

Non ∼
φg

4
× lint × `0

1 − λS

1 − λ
. (C1)

The factor of 1/4 comes from the fact that only 1/4 of particles
will, on average, point toward the interface.

Flux balance—Equating Noff and Non, we get

φd

φg
=
v+ − v−
8Drot

(1 − λk/(1−λ)). (C2)

This relation contains the drift velocity of the particle and its
rotational diffusion constant. As in Appendix A, it is natural
to define the Péclet number

Pe ≡
v+ − v−
2Drot

. (C3)

We also define κ ≡ (1 � λk /(1�λ))/4, in which case (C2) reads
φd

φg
= Pe κ. (C4)

We shall assume that the dense phase has density φd ≈ 1.
Mass conservation—There are N tot = φA particles in

the simulation box, A being the simulation box area. Let
there be Nd = φdAd ≈ Ad particles in the dense phase and
Ng = φg(A � Ad) particles in the gas phase, where Ad is the
area of the simulation box taken up by the dense phase. Mass
conservation implies

Ad + φg(A − Ad) = φA. (C5)

We use Eq. (C4) to eliminate φg = (Pe κ)�1 from Eq. (C5).
We eliminate A and Ad from the same equation in favor of
f ≡ Ad/(φA), the fraction of particles in the solid phase. We get

f =
Pe κ − 1/φ

Pe κ − 1
. (C6)

From Eq. (C6), we see that phase separation is only possible
if Pe > 1/(κφ). Thus infinite Pe is required to induce phase
separation in the limit of vanishing packing fraction. For large
Pe, we have f → 1, i.e., all particles will be in the dense phase.
[In the limit of large v+ we have κ → (1 � e�4)/4 ≈ 0.245.]

The contour f = 1/2 from Eq. (C6) is plotted against sim-
ulation data in Fig. 2. The correspondence shown there indi-
cates that a flux-balance argument can describe the essence of
motility-induced phase separation for on-lattice active matter,
just as it does off lattice.

APPENDIX D: SUPPLEMENTAL FIGURES

FIG. 6. Movie of phase separation and cluster dynamics. Multimedia view:
https://doi.org/10.1063/1.5023403.1

https://doi.org/10.1063/1.5023403.1
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FIG. 7. When lateral motion is not possible (here v− = v0
= 0), phase separation does not occur. A pre-built compact
cluster of particles dissolves into several smaller ones.
(v+ = 25, φ = 1/5). When lateral motion is restored, phase
separation is made possible; see Fig. 1 of the main text.
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