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Abstract
Aims/hypothesis Diabetic kidney disease (DKD) is the leading cause of kidney failure and has a substantial genetic component. Our
aim was to identify novel genetic factors and genes contributing to DKD by performing meta-analysis of previous genome-wide
association studies (GWAS) on DKD and by integrating the results with renal transcriptomics datasets.
Methods We performed GWAS meta-analyses using ten phenotypic definitions of DKD, including nearly 27,000 individuals with
diabetes. Meta-analysis results were integrated with estimated quantitative trait locus data from human glomerular (N=119) and tubular
(N=121) samples to perform transcriptome-wide association study. We also performed gene aggregate tests to jointly test all available
common genetic markers within a gene, and combined the results with various kidney omics datasets.
Results The meta-analysis identified a novel intronic variant (rs72831309) in the TENM2 gene associated with a lower risk of the
combined chronic kidney disease (eGFR<60 ml/min per 1.73 m2) and DKD (microalbuminuria or worse) phenotype (p=9.8×10−9;
although not withstanding correction for multiple testing, p>9.3×10−9). Gene-level analysis identified ten genes associated with DKD
(COL20A1, DCLK1, EIF4E, PTPRN–RESP18, GPR158, INIP–SNX30, LSM14A andMFF; p<2.7×10−6). Integration of GWAS with
human glomerular and tubular expression data demonstrated higher tubular AKIRIN2 gene expression in individuals with vs without
DKD (p=1.1×10−6). The lead SNPs within six loci significantly altered DNA methylation of a nearby CpG site in kidneys
(p<1.5×10−11). Expression of lead genes in kidney tubules or glomeruli correlated with relevant pathological phenotypes (e.g.
TENM2 expression correlated positively with eGFR [p=1.6×10−8] and negatively with tubulointerstitial fibrosis [p=2.0×10−9], tubular
DCLK1 expression correlated positively with fibrosis [p=7.4×10−16], and SNX30 expression correlated positively with eGFR
[p=5.8×10−14] and negatively with fibrosis [p<2.0×10−16]).
Conclusions/interpretation Altogether, the results point to novel genes contributing to the pathogenesis of DKD.
Data availability The GWAS meta-analysis results can be accessed via the type 1 and type 2 diabetes (T1D and T2D, respec-
tively) and Common Metabolic Diseases (CMD) Knowledge Portals, and downloaded on their respective download pages
(https://t1d.hugeamp.org/downloads.html; https://t2d.hugeamp.org/downloads.html; https://hugeamp.org/downloads.html).
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Abbreviations
ACR Albumin/creatinine ratio
CKD Chronic kidney disease
DKD Diabetic kidney disease
DNCRI Diabetic Nephropathy Collaborative

Research Initiative
eQTL Expression quantitative trait locus
ESRD End-stage renal disease
EWAS Epigenome-wide association study
FinnDiane Finnish Diabetic Nephropathy Study
GWAS Genome-wide association studies
LD Linkage disequilibrium
LDSR Linkage disequilibrium score regression
MAF Minor allele frequency
mGFR Measured GFR
mQTL Methylation quantitative trait locus
MR Mendelian randomisation
PoPS Polygenic Priority Score
SUMMIT SUrrogate markers for Micro- and

Macrovascular hard endpoints for Innovative
diabetes Tools

SUMMIT-1 SUMMIT type 1 diabetes studies
SUMMIT-2 SUMMIT type 2 diabetes studies
TWAS Transcriptome-wide association study

UK-ROI All Ireland-Warren 3-Genetics of Kidneys in
Diabetes (GoKinD) United Kingdom

λGC λ genomic control inflation factor

Introduction

Diabetes is the leading cause of kidney disease. Diabetic kidney
disease (DKD) is associated with high cardiovascular risk [1]
and mortality [2] and, consequently, both diabetes and kidney
disease are leading causes of death worldwide [3]. Both envi-
ronmental and genetic factors have a major impact on the risk
of developingDKD [4, 5]. Althoughmore than 300 genetic loci
have been associated with chronic kidney disease (CKD) in the
general population, these loci show limited effect in DKD,
especially in individuals with type 1 diabetes [6]. Genome-
wide association studies (GWAS) have previously identified a
handful of genetic loci for DKD at the genome-wide signifi-
cance level (p<5×10−8) [7–11]. Recently, a meta-analysis of
GWAS, including up to 19,406 individuals with type 1 diabetes
from the Diabetic Nephropathy Collaborative Research
Initiative (DNCRI), identified 16 loci. The strongest association
was a common missense variant in the COL4A3 gene, which
also showed evidence of association in individuals with type 2
diabetes [6]. A GWAS meta-analysis from The SUrrogate
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markers for Micro- and Macrovascular hard endpoints for
Innovative diabetes Tools (SUMMIT) consortium, includ-
ing 6000 individuals with type 2 diabetes from five differ-
ent studies, identified three loci for DKD, includingUMOD
and PRKAG2 previously identified in the general popula-
tion [12]. However, meta-analysis with SUMMIT type 1
diabetes studies (SUMMIT-1, N=5156) did not yield any
genome-wide significant findings. To increase the power to
detect novel genetic risk factors for DKD shared among
diabetes subtypes, we aggregated all available data for
DKD in individuals of European ancestry with type 1 or
type 2 diabetes (N~27,000). Specifically, we performed
GWAS meta-analyses on ten different DKD case–control
definitions, meta-analysing summary statistics from
DNCRI [6], SUMMIT-1 [4] and SUMMIT type 2 diabetes
studies (SUMMIT-2) [12], followed by integration with
diverse biological data to improve our understanding of
the underlying biological mechanisms and clinical correla-
tions (Fig. 1).

Methods

For detailed methods, please refer to the electronic supple-
mentary material (ESM) Methods.

Participating studies and phenotype definitionsA total of ten
case–control definitions for DKD were included in DNCRI
[6], based on either urinary AER (divided into controls with
normal AER, and cases wi th microa lbuminur ia ,
macroalbuminuria or end-stage renal disease [ESRD]),
eGFR, or both, and harmonised to match and include all
seven phenotypic definitions assessed in SUMMIT-1 [4]
and SUMMIT-2 [12] analyses (ESM Table 1). All individ-
uals (both cases and controls) had diabetes (either type 1 or
type 2 diabetes). For three phenotypic comparisons not
initially part of the SUMMIT analysis, GWAS and meta-
analysis were performed with three SUMMIT-2 studies and
the Scania Diabetes Registry type 1 diabetes cohort.
Individuals from the Finnish Diabetic Nephropathy Study
(FinnDiane) were included in both the original DNCRI
(N=6019) and SUMMIT-1 analyses (N=3415) and thus
were excluded here from the SUMMIT-1 data (ESM
Table 2). All contributing studies were performed in accor-
dance with the Declaration of Helsinki and Declaration of
Istanbul.

Genome-wide association study and meta-analysis
Genotyping and statistical analysis of the DNCRI [6] and
SUMMIT [4, 12] cohorts have been previously described.
Analysis plans were similar in the cohorts (ESM Table 3).
Imputation was performed using 1000Genomes Phase 3
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Fig. 1 Schematic illustration of the study design, from GWAS meta-
analysis to integration with various omics data sets. GWASmeta-analysis
for ten different phenotypic definitions of DKD included up to 26,785
individuals with either type 1 or type 2 diabetes from the previous DNCRI
and SUMMIT GWAS meta-analyses. The TWAS integrated the GWAS
meta-analysis results with kidney eQTL data for tubular and glomerular
compartments, identifying genes with differential expression in DKD.
The mQTL data identified SNPs associated with DNA methylation at
CpG sites. Single nucleus Assay for Transposase-Accessible Chromatin

using sequencing (snATACseq) was informative of chromatin openness
in various kidney cell types. The RegulomeDB is a database with exten-
sive epigenetic annotation for SNPs. The promoter capture HiC (PCHiC)
sequencing data identified sequence interaction with gene promoters,
proposing target genes. Kidney transcriptomics provided data on gene
expression in glomerular and tubular tissue in nephrectomy samples, or
in Pima Indian biopsies, correlated with various renal variables.
scRNAseq, single-cell RNA sequencing; T1D, type 1 diabetes; T2D, type
2 diabetes
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reference panel in DNCRI, and the older 1000Genomes Phase
I panel in the SUMMIT cohorts. Analyses were performed in
unrelated individuals using the SNPtest additive score test,
adjusting for age, sex, diabetes duration, the genetic principal
components, and study-specific covariates (e.g. site or
genotyping batch). Variants were filtered for INFO imputation
quality score ≥0.3 (DNCRI) or ≥0.4 (SUMMIT) and minor
allele count ≥10 in both cases and controls. In SUMMIT,
variants were further filtered to those with minor allele
frequency (MAF) ≥0.01. Meta-analyses of DNCRI,
SUMMIT-1 and SUMMIT-2 summary statistics were
performed with inverse variance fixed effect methods based
on the effect sizes. Variants were limited to those found in at
least two studies.

Power calculations indicated 80% power to detect associa-
tions with p<5×10−8 and an OR of 1.20 for the combined ‘all
vs ctrl’ phenotype for common variants with MAF≥10%, or
with an OR of 1.28 and 1.73 for low-frequency (MAF 5%)
and rare (MAF 1%) variants, respectively (ESM Fig. 1).

Correction for multiple testing was estimated with spectral
decomposition of the ten DKD traits, suggesting 5.36 effec-
tive tests, leading to a corrected significance threshold of
p<9.3×10−9.

Gene prioritisation analysis Gene prioritisation at the top loci
was performed using two complementary similarity-based
gene prioritisation approaches (Polygenic Priority Score
[PoPS] v0.1 [13] and MAGMA v1.06b [14]), which integrate
GWASwith gene set enrichment based on a variety of biolog-
ical annotation datasets.

Gene-level analysis SNPs from the GWAS meta-analysis
summary statistics were aggregated by gene-level regression
analysis using two related programs, MAGMA v1.06b [14]
and PASCAL v2016 [15], using default parameters. Gene-
level significance thresholds were determined by a
Bonferroni multiple testing correction based on the number
of genes tested for each of the ten phenotypes (from
p<2.7×10−6 to p<2.3×10−6).

Transcriptome-wide association study In the transcriptome-
wide association study (TWAS), MetaXcan [16] was applied
with default parameters to integrate GWAS meta-analysis
results with kidney expression quantitative trait locus
(eQTL) datasets for micro-dissected human glomerular
(N=119) and tubular (N=121) samples [17]. Significance
threshold of p<4.1×10−6 was determined by Bonferroni
correction for two tissues and 6050 genes found in either
tubular or glomerular eQTL data.

Kidney eQTL, methylation quantitative trait loci, and
colocalisation analysis Kidney-specific eQTL associations
were queried for glomeruli [17], tubules [17], and a meta-

analysis of four eQTL studies with 451 kidney samples
[17–20]. Kidney methylation quantitative trait locus (mQTL)
associations were sought in 188 healthy kidney samples
profiled by the Infinium MethylationEPIC Kit and
BeadChips (Illumina, USA), with p<1.5×10−11 considered
significant. For the significant CpG sites, we tested associa-
tion with DKD in our epigenome-wide association study
(EWAS) of 1304 All Ireland-Warren 3-Genetics of Kidneys
in Diabetes (GoKinD) United Kingdom (UK-ROI) collection
and FinnDiane par t ic ipants , analysed using the
Infinium MethylationEPIC Kit and BeadChips, as previously
described [21]. To estimate posterior probability that the
GWAS association colocalised with the kidney eQTL and
mQTL signals, we performed Bayesian multiple-trait-
colocalisation analysis, with posterior probability >0.8 consid-
ered evidence of colocalisation.

Human kidney gene expression For the 29 lead genes, we
studied gene expression in kidneys in human transcriptomics
data from nephrectomy samples (433 tubule and 335 glomer-
ulus samples) [22] and kidney biopsies from the Pima Indian
cohort (67 glomerular and 47 tubulointerstitial tissues) [23],
and tested for correlation with relevant pathological pheno-
types. The micro-dissected nephrectomy samples were from
individuals with varying degree of diabetic and hypertensive
kidney disease, and gene expression was defined with RNA
sequencing. The study was approved by the institutional
review board of the University of Pennsylvania.

In the Pima Indian cohort, gene expression profiling in the
first biopsy was performed with Affymetrix gene chip arrays
[23], and with Illumina RNA sequencing for the second biop-
sy [6]. Available phenotypes included progression to ESRD,
measured GFR (mGFR), albumin/creatinine ratio (ACR),
HbA1c and six kidney morphological variables for both biop-
sies, and change in the phenotypes between the first and the
second study biopsies (27 phenotypes in total [24]). The study
was approved by the Institutional Review Board of the
National Institute of Diabetes and Digestive and Kidney
Diseases.

Linkage disequilibrium score regression and Mendelian
randomisation Linkage disequilibrium (LD) score regression
(LDSR) [25] was performed at LDhub (http://ldsc.
broadinstitute.org/, accessed 22 August 2019) between our
10 DKD GWAS and 78 glycaemic, autoimmune,
anthropometric, bone, smoking behaviour, lipid, kidney, uric
acid, cardiometabolic and ageing-related traits (ESMTable 4).
LDSR associations with Bonferroni-adjusted p<6.4×10−4

were considered significant. To identify causal relationships
for significant traits in the LDSR against DKD, we performed
summary-based two-sample Mendelian randomisation (MR)
with inverse variance-weighted regression implemented in
TwoSampleMR v0.5.6 R package [26]. Causality was further
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assessed using methods less sensitive to pleiotropy/
heterogeneity [27].

Results

GWASmeta-analysis The GWASmeta-analysis of the DNCRI
(type 1 diabetes), and SUMMIT-1 and SUMMIT-2 meta-
analyses included up to 26,785 individuals with either type 1
or type 2 diabetes from 25 studies; 11,380 individuals had any
DKD (micro- or macroalbuminuria or ESRD) and 15,405
individuals had normal AER (ESM Table 2). QQ plots, λ
genomic control inflation factor (λGC) and LDSR intercepts
of the meta-analysis indicated no marked inflation or popula-
tion stratification bias of the results (ESM Fig. 2).

Themeta-analysis identified a novel association between the
combined CKD–DKD phenotype (cases with eGFR <45 ml/
min per 1.73 m2 and microalbuminuria or worse, vs controls
with normal AER and eGFR ≥60 ml/min per 1.73 m2) and
rs72831309 (MAF=4%; OR 2.08, p=9.8×10−9; Fig. 2a,
Table 1 and ESM Table 5). Of note, the association was barely
above the threshold after correction for multiple testing due to
multiple phenotypes (p>9.3×10−9). We observed no heteroge-
neity between individuals with type 1 or type 2 diabetes
(pHET=0.88). The variant is located in an intron of the
TENM2 gene encoding the teneurin transmembrane protein 2.
The variant was imputed with moderate imputation quality

across cohorts (INFO score 0.38–0.66). In the FinnDiane
cohort with the strongest statistical significance, the association
remained (though slightly attenuated) after re-imputation with a
population-specific panel (INFO=0.92, p=2.0×10−4, OR 1.70
[95% CI 1.28, 2.24] vs INFO=0.66, p=1.0×10−6, OR 2.27
[95% CI 1.64, 3.16]).

At the previously identified COL4A3 locus, we identified a
secondary association peak (rs6436688, p=1.8×10−7 for
severe DKD; ESM Fig. 3) in only partial LD (D′=0.51,
r2=0.08) with the lead variant rs55703767. The association
at rs6436688 remained nominally significant after conditional
analysis for rs55703767 (p=0.002).

In addition to theCOL4A3 locus, nine other previously iden-
tified, mostly low-frequency or rare variants were associated
with various kidney phenotypes (Table 1 and ESM Fig. 4).
None of these variants were found in the SUMMIT meta-
analyses (filtered to MAF≥1%), and thus, these associations
represent the originally reported associations from the DNCRI
[6]. One common (chr14q12), and four of our previously iden-
tified rare DNCRI loci (TAMM41, HAND2–AS1, DDR1–
VARS2, BMP7; MAF~1%) associated with microalbuminuria
demonstrated attenuated association when combined with the
SUMMIT meta-analyses (with the rare variants only found in
SUMMIT-2). The lack of replication across diabetes subtypes
suggest either false positives or a lack of power to detect an
association for rare variants in individuals with type 2 diabetes
DKD (a more heterogeneous disease, particularly for the early

Table 1 GWAS meta-analysis result summary for loci with p<5×10−8

Phenotype CHR:POS SNP EA NEA EAF OR (95% CI) p value Dir N (studies) Genes

Novel locus

CKD+DKD 5:166978230 rs72831309 A G 0.039 2.08 (1.62, 2.67) 9.8×10−9 +++ 8570 (7) TENM2a,b

Previous loci

CKD 2:3745215 rs12615970 A G 0.867 1.31 (1.20, 1.44) 9.4×10−9 +?? 18,488 (13) ALLCb, COLEC11

All vs Ctrl 2:228121101 rs55703767 T G 0.207 0.86 (0.82, 0.90) 1.9×10−9c −+− 26,898 (24) COL4A3a,b

CKD+DKD 2:228121101 rs55703767 T G 0.210 0.81 (0.75, 0.88) 4.7×10−8 −+− 17,611 (17) COL4A3a,b

Severe DKD 2:228121101 rs55703767 T G 0.208 0.82 (0.77, 0.87) 3.6×10−11c −−− 21,898 (23) COL4A3a,b

ESRD 3:926345 rs115061173 A T 0.014 9.40 (4.22, 20.93) 4.1×10−8 +?? 4827 (3) LINC01266b, CNTN6a

Micro 3:11910635 rs142823282 A G 0.983 0.15 (0.08, 0.27) 8.3×10−10c −?? 6076 (2) TAMM41

ESRD vs all 3:36566312 rs116216059 A C 0.016 8.73 (4.13, 18.45) 1.4×10−8 +?? 3667 (2) STACb, DCLK3

Severe DKD 4:71358776 rs191449639 A T 0.005 32.42 (9.77, 107.59) 1.3×10−8 +?? 7768 (2) MUC7, AMTN

Micro 7:99728546 rs77273076 T C 0.008 9.16 (4.29, 19.56) 1.1×10−8 +?? 7500 (2) MBLAC1, ZNF3

ESRD vs macro 8:128100029 rs551191707 CA C 0.122 1.69 (1.40, 2.04) 4.4×10−8 +?? 3634 (7) PRNCR1b

Micro 11:16937846 rs183937294 T G 0.993 0.06 (0.02, 0.16) 1.7×10−8 −?? 6076 (2) PLEKHA7a,b

CKD 18:1811108 rs185299109 T C 0.007 20.75 (7.30, 59.00) 1.3×10−8 +?? 7223 (2) LINC00470

a Gene prioritised by PoPS
bGenes underlying the lead SNP
c p<9.3×10−9 (i.e. corrected for 5.36 effective tests [phenotypes])

CHR:POS, variant chromosome and basepair position; Ctrl, control; Dir, direction of association in DNCRI (type 1 diabetes), SUMMIT-2 (type 2
diabetes) and in SUMMIT-1 (type 1 diabetes), respectively; EA, effect allele; EAF, effect allele frequency; Genes, closest gene(s); Micro,
microalbuminuria vs normal AER; NEA, non-effect allele; N (studies), number of contributing individuals and studies
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stages of DKD [i.e. microalbuminuria]). Alternatively, this
could simply represent a lack of shared biology across diabetes
subtypes, again possibly due to the different underlying causes
of kidney damage in individuals with type 1 vs type 2 diabetes.

Two variants, chr3:141792314:I and rs186434345, were
associated with ESRD (N=940, p=4.6×10−10), and with the
CKD–DKD phenotype (N=2571, p=4.0×10−8) in the
SUMMIT-2 and SUMMIT-1 cohorts, but were absent in
DNCRI. When the original SUMMIT–FinnDiane GWAS was
included in the analysis, both associations were non-significant
(chr3:141792314:I, p=0.056, N=3207; rs186434345, p=0.002,
N=4782) and thus excluded from further consideration.

Gene prioritisation To identify the underlying causal genes
within each of our top loci, we used the PoPS [13] method
that leverages genome-wide enrichment of biological annota-
tions in combination with GWAS summary statistics to
prioritise candidate genes. To increase precision, we

intersected the results with both the simple nearest-gene
approach and MAGMA gene prioritisation. Four genes
(COL4A3, PLEKHA7, CNTN6 and TENM2) were both the
PoPS prioritised gene and the nearest protein coding gene to
the lead SNP (Table 1). Of note, the CNTN6 locus contained
only two protein coding genes and the TENM2 locus only one.
When taking the intersect between PoPS genes and genes that
were withinMAGMA’s top 10% of prioritised genes genome-
wide, COL4A3 was the only prioritised gene (ESM Fig. 5).
The gene set that prioritised COL4A3 for severe DKDwas the
fibulin 2 protein–protein interaction network (‘FBLN2 PPI
subnetwork’), which together with 26 correlated reconstituted
gene-sets makes up the ‘basement membrane’ meta-gene set
derived in Marouli et al [28] (ESM Table 6).

Gene-level analysis To improve power and jointly test all
available common genetic markers within a gene, SNPs from
the GWAS meta-analysis summary statistics were aggregated

Fig. 2 TENM2 gene rs72831309 is associated with CKD–DKD. (a)
Regional association plot of the meta-analysis results. (b) Forest plot of
association across the contributing cohorts from DNCRI (FinnDiane,
JOSLIN, UK-ROI, GWU_GoKinD) [6], SUMMIT-T1D (EURODIAB)
[4] and SUMMIT-T2D studies [12]. (c) SNP rs72831309 overlaps a
predicted CREB1 binding motif sequence; data from RegulomeDB.org
(v.2.0.3). (d) Human kidney single-cell RNA expression of TENM2,
showing strongest expression in podocytes, parietal epithelial cells and
proximal convoluted tubules. (e, f) Tubular TENM2 expression is

correlated with higher eGFR (e) and less fibrosis (f). CD, collecting
duct; CT, connecting tubule; CTRL, control; DCT, distal convoluted
tubule; ENDO, endothelium; FPKM, fragments per kilo base of
transcript per million mapped fragments; GWU_GoKinD, George
Washington University Genetics of Kidney in Diabetes; IC, intercalated
cell (A/B); JOSLIN, Joslin Diabetes Center participants; LEUK,
leucocyte; LOH, loop of Henle; MES, mesangial cells; PC, principal
cell; PCT, proximal convoluted tubule; PEC, parietal epithelial cells;
PODO, podocytes; T2D meta, meta-analysis of type 2 diabetes cohorts
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by gene and tested jointly for association using two similar
programs, MAGMA and PASCAL. In addition to COL20A1
and SNX30 identified previously [6], we identified eight novel
gene associations (p<2.7×10−6; Table 2 and ESM Fig. 6). The
lead variants in these loci indicated no significant heterogene-
ity between type 1 and type 2 diabetes apart from theGPR158
locus (pHET=0.005; ESM Table 7). MAGMA’s gene-level
analysis type 1 error was well controlled, with all but one
λGC inflation factor under 1.05 (MAGMA’s ESRD vs all
λGC=1.07). The genome-wide gene-level results from
PASCAL showed slightly more inflation (λGC up to 1.15 for
ESRD vs all).

Integration of GWAS with kidney eQTL data We performed
TWAS for each of the ten DKD meta-analyses to
predict differential gene expression between cases and
controls based on eQTL data in glomerular and
tubulointerstitial samples from histologically normal
kidneys [17]. The type 1 error was well controlled
(λGC 0.968–1.097; ESM Fig. 7). Expression levels of
AKIRIN2 were predicted to be higher in the tubular
tissue of cases with severe DKD (or macroalbuminuria
alone), as compared with controls with normal AER
(p values 1.1×10−6 and 1.7×10−6, respectively; Fig.
3a and ESM Tables 8, 9).

Table 2 Significant gene-level DKD association results from MAGMA and PASCAL

Phenotype Gene Chr bp start bp end N SNPs p value Method Genes

CKD PTPRN 2 220149345 220179295 72 2.13×10−6 MAGMA 18,461

CKD RESP18 2 220187131 220202899 62 2.27×10−6 MAGMA 18,461

Severe DKD MFF 2 228189866 228222552 439 2.07×10−6 PASCAL 21,790

ESRD vs macro EIF4E 4 99794607 99856786 150 5.79×10−7 MAGMA 18,442

ESRD vs macro EIF4E 4 99799606 99851786 269 9.28×10−7 PASCAL 21,762

All vs Ctrl INIP 9 115443786 115485387 111 4.89×10−7 MAGMA 18,475

All vs Ctrl INIP 9 115448790 115480387 248 1.87×10−6 PASCAL 21,784

All vs Ctrl SNX30 9 115506911 115642267 505 1.30×10−6 MAGMA 18,475

Severe DKD GPR158 10 25459290 25896158 1875 1.63×10−6 MAGMA 18,467

ESRD vs macro DCLK1 13 36337789 36710514 1162 1.39×10−6 MAGMA 18,442

Severe DKD LSM14A 19 34658352 34725420 180 1.90×10−6 MAGMA 18,467

CKD extremes COL20A1 20 61919538 61967285 146 1.94×10−7 MAGMA 18,440

ESRD vs all COL20A1 20 61919538 61967285 145 5.26×10−7 MAGMA 18,439

bp start/end, bp position of the start and the end of the gene region; Ctrl, control; Genes, number of genes tested; macro, macroalbuminuria; N SNPs, no.
of SNPs in the gene region

Fig. 3 TWAS indicates increased AKIRIN2 expression in severe DKD.
(a) The GWAS SNP effect sizes for association with severe DKD (normal
AER vs macroalbuminuria or ESRD) are correlated with TWAS eQTL
weights to predict AKIRIN2 expression, suggesting that elevated
AKIRIN2 levels in tubules are associated with severe DKD

(p=1.1×10−6). The eQTL data for 39 SNPs explained 5% of the variance
in tubular AKIRIN2 expression (p=0.01). (b) AKIRIN2 expression is
correlated with renal fibrosis. FPKM, fragments per kilo base of transcript
per million mapped fragments
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Kidney eQTL and mQTL associations Kidney eQTL and
mQTL data were queried for the top three variants at each
lead locus from the GWAS meta-analyses and gene-level
analyses. Kidney eQTL data suggested SNX30 as the target
gene in the INIP–SNX30 region (rs786959 eQTL
p=4.6×10−7), and the GWAS association colocalised with
the eQTL signal with moderate evidence (posterior probabil-
ity 0.70; ESM Table 10). Altogether, 17 variants were signif-
icantly associated with kidney DNA methylation levels at six
CpG sites (p<1.5×10−11; ESM Table 11), of which the mQTL
colocalised with the GWAS association in LSM14A, DCLK1
andCOL20A1 (posterior probability for colocalisation >0.80).
SNPs in the LSM14A gene were associated with severe DKD
and cg14143166 methylation levels (p=1.9×10−28).
Interestingly, cg14143166 methylation in blood was nominal-
ly associated with DKD status in our EWAS in the UK-ROI
and FinnDiane cohorts (p=0.03), suggesting that the DKD
association at LSM14A is mediated through methylation
changes. Similarly, blood methylation levels at significant
kidney mQTL CpG sites (rs7664964–cg25974308
p=1.1×10−11) in EIF4E were nominally associated with
eGFR slope in diabetes (p=0.04) [29].

Gene expression and pathological phenotypesAltogether, we
identified 29 lead genes or transcripts from GWAS, gene

prioritisation, gene-level analyses, kidney eQTL data or
TWAS. Among these, the expression levels of 14 genes
significantly correlated with eGFR, glomerulosclerosis or
fibrosis in transcriptomics data obtained from 433 tubular
and 335 glomerular nephrectomy samples with varying
degree of diabetic and hypertensive kidney disease
(p<2.2×10−4; Fig. 4 and ESM Table 12) [22]. For example,
tubular TENM2 expression correlated positively with eGFR
(p=1.6×10−8; Fig. 2e) and negatively with tubulointerstitial
fibrosis (p=2.0×10−9; Fig. 2f), tubular DCLK1 expression
correlated positively with fibrosis (p=7.4×10−16; Fig. 7c),
and tubular SNX30 expression correlated positively with
eGFR (p=5.8×10−14) and negatively with fibrosis
(p<2.0×10−16). In the Pima Indian kidney biopsy data, tubular
DCLK1 expression was suggestively correlated (p<8.6×10-4,
corrected for 29 genes and two tissues) with higher level of
fibrosis, and LSM14A negatively correlated with the change in
mesangial volume between the two study biopsies (non-
significant after further conservative correction for 27 tested
phenotypes). Multiple genes were nominally (p<0.05) corre-
lated with these renal variables (ESM Fig. 8, ESM Table 13).

Genetic correlation of DKD between type 1 and type 2 diabe-
tes and general population kidney traits We performed
LDSR to study the genetic correlation of DKD traits

EIF4E

SNX30

COLEC11

DCLK1

LSM14A

COL4A3

STAC
DCLK1

LSM14A

INIP

TENM2

TAMM41

COLEC11

SNX30

PLEKHA7

COL4A3

EIF4E

MFF

AKIRIN2

ALLC

ZNF3

Fibrosis

BX1
Fibr

BX1
ΔMesV

eGFR

DN Wor
DN Ju

GlomScl

GENE

GENE

Glomerular gene expression

Tubular gene expression

Fig. 4 Tubular and glomerular gene expression of the lead genes corre-
lates with multiple morphological and pathological renal variables and
with DKD. Golden rectangles indicate glomerular gene expression, green
ellipses tubular gene expression, and grey circles the morphological
phenotypes. Blue lines indicate negative correlation and red lines indicate
positive correlation. Correlation with fibrosis, glomerulosclerosis
(GlomScl) and eGFR were measured in the nephrectomy samples [22];
correlations with p<2.2×10-4 (corrected for 29 genes, two tissues and four
tests) are shown. For the biopsy data in Pima Indians, suggestive

correlations with p<8.6×10−4 are shown (corrected only for 29 genes
and two tissues), including fibrosis at first biopsy and change in the
mesangial volume between the first and the second biopsies.
Association with DKD (diabetic nephropathy) was queried in two data
sets (Woroniecka et al [36] and Ju et al [35]), with p<4.3×10−4 or p<0.05
and fold change>1.5. BX1 Fibr, fibrosis at first biopsy; BX1 ΔMesV,
change in the mesangial volume between the first and the second biop-
sies; DN Wor, diabetic nephropathy in Woroniecka et al [36]; DN Ju,
diabetic nephropathy in Ju et al [35]; GlomScl, glomerulosclerosis
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between individuals with type 1 and type 2 diabetes but,
likely due to limited sample size, no significant correla-
tions were observed. When compared with the kidney
traits from the CKDgen consortium, the ‘All vs Ctrl’
phenotype was correlated with microalbuminuria in the

general population [30] and ACR in diabetes [30], both
in the main meta-analysis and for type 1 and type 2 diabe-
tes separately (p<0.01). In addition, microalbuminuria in
type 2 diabetes was correlated with microalbuminuria in
the general population [30], and CKD in type 2 diabetes

Fig. 5 Genetic correlation between DKD phenotypes (y-axis) and kidney
phenotypes in the general population (x-axis). Correlations were calculat-
ed with LD score regression for the whole meta-analysis (any diabetes,
purple), type 2 diabetes only (red), and type 1 diabetes only (blue). The
first column (purple) indicates genetic correlation for the DKD pheno-
types between individuals with type 1 or type 2 diabetes (none signifi-
cant). Only significant correlations (p<0.01) are shown. General

population GWAS results were taken from CKDgen consortium: ACR
[30]; ACR in diabetes [30]; microalbuminuria [30]; eGFR [32]; and CKD
[31]. ACR DM, ACR in diabetes; Ctrl, control; ESRD vs macro, ESRD
vs macroalbuminuria comparison; MiA, microalbuminuria; Micro,
microalbuminuria (in current study); T1D, type 1 diabetes; T2D, type 2
diabetes
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Fig. 6 Genetic correlation between DKD phenotypes and various traits
based on LDSR, and estimates of causal associations based on MR. (a)
For LDSR only significant trait combinations are shown (p<0.05/
78=6.4×10−4). (b) MR results for DKD (All vs Ctrl comparison) with

inverse variance-weighted method for the traits significant in LDSR
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SNPs and thus, was not included in MR). Horizontal bars represent 95%
CI. Ctrl, control
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was positively correlated with CKD in the general popu-
lation [31] and negatively with eGFR in the general popu-
lation [32]; these were not significantly correlated in indi-
viduals with type 1 diabetes despite a larger number of
samples (Fig. 5).

Genetic correlation and MR with related traits LDSR of relat-
ed metabolic traits revealed significant genetic correlation
(p<6.4×10−4) between DKD and 15 traits including multiple
obesity-related traits, mother’s age at death, type 2 diabetes,
coronary artery disease, HDL-cholesterol, urate, and two
smoking-related traits (Fig. 6 and ESM Fig. 9). MR of these
traits suggested that being overweight or obese was a causal
risk factor for DKD (Fig. 6b and ESM Table 14). The causal
effects were directionally consistent across methods, with no

evidence of heterogeneity (I2=0–42.9%, p>0.05; ESM
Table 14) or unbalanced horizontal pleiotropy (ESM
Table 15). The MR Egger method, more robust for pleiotropic
effects, further supported a causal role for higher BMI, waist
circumference and hip circumference in DKD risk (p<0.05;
ESM Table 14, ESM Fig. 10).

Discussion

We have performed the largest GWAS meta-analysis to date
on kidney complications in diabetes, including ten different
phenotypic definitions in up to 26,785 individuals with either
type 1 or type 2 diabetes, and integrated the results with
emerging kidney omics data (Fig. 1). In the single-variant

Fig. 7 DCLK1 is associated with ESRD. (a) TheDCLK1 gene region was
associated with ESRD vs macroalbuminuria in the MAGMA gene-level
analysis (p=1.39×10−6). (b, c) Tubular DCLK1 expression is highest in
DKD (p=2.17×10−4) (b) and correlated with the level of fibrosis (c) in
the nephrectomy samples. (d) Glomerular DCLK1 expression is higher in
DKD than in healthy controls (Ju et al [35]: fold change 1.98, p=1.2×10−4).
(e) Tubular DCLK1 expression is higher in DKD than in healthy controls
(Woroniecka et al [36]: fold change 2.09, p=0.003). (f, g) Kidney DCLK1
expression is strongest in mesangial cells in human single-cell RNA
sequencing data from individuals with diabetes and healthy controls [34].

In boxplots (b, d, e) the centrelines show the medians; box limits indicate
the 25th and 75th percentiles; whiskers extend from the hinge to the most
extreme value no further than 1.5 × the IQR (i.e. the distance between the
first and third quartiles). CD, collecting duct; CT, connecting tubule;
CTRL, control; DCT, distal convoluted tubule; DM, diabetes mellitus;
ENDO, endothelium; FC, fold change; FPKM, fragments per kilobase of
transcript per million mapped fragments; glom, glomerular; HTN, hyper-
tension; IC, intercalated cell (A/B); LEUK, leucocyte; LOH, loop of Henle;
MES, mesangial cells; PC, principal cell; PCT, proximal convoluted
tubule; PEC, parietal epithelial cells; PODO, podocytes; tub, tubular
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analysis with the combined CKD–DKD phenotype, we iden-
tified one novel locus, rs72831309, intronic in TENM2.
TENM2 encodes the teneurin transmembrane protein 2
involved in cell–cell adhesion. The variant rs72831309 alters
a predicted CREB1 transcription factor binding site (Fig. 2c),
and is nominally associated with expression of a TENM2 anti-
sense transcript TENM2-AS1 in kidneys (p=0.007; ESM
Table 10). Furthermore, chromatin conformation data in the
GM12878 cell line indicated that the rs72831309 region inter-
acts with the TENM2 transcription start site, as well as with
three antisense transcripts (CTB-180C19.1 [Ensembl
ENSG00000254365 ] , CTB–105L4 . 2 [En s emb l
ENSG00000253527] and CTB–78F1.1 [Ensembl
ENSG00000254187]) within the TENM2 gene [33].
Whereby kidney single-cell RNA sequencing indicated
TENM2 expression particularly in podocytes (Fig. 2d) [34],
lower tubular TENM2 expression was associated with renal
fibrosis (p=2.0×10−9) and lower eGFR (p=1.6×10−8) in the
nephrectomy samples. Despite multiple supporting lines of
evidence, the locus still needs further validation as the impu-
tation quality of rs72831309 was on the low end across our
cohorts (0.38–0.66), and the association did not remain signif-
icant after correction for multiple testing (p>9.3×10–9).

Gene-level analysis identified ten genes associated with
DKD. The DCLK1 gene encodes a doublecortin-like kinase.
The histone modification-based ChromHMM 15-state model
for fetal kidney indicated strong transcription overlapping one
of the three lead SNPs in the DCLK1 locus (rs61948262), and
ChIP-seq data supported ZSCAN4 binding to the locus in the
HEK293 kidney epithelial cell line. In addition, the lead SNPs
were kidney mQTLs for DCLK1 CpG sites (p=6.8×10–22).
Furthermore, multiple lines of evidence highlight the impor-
tance of DCLK1 in DKD. The correlation between tubular
DCLK1 expression and fibrosis was among the strongest corre-
lations both in the nephrectomy samples (p=7.4×10−16; Fig. 7)
and in the Pima Indian biopsies (p=3.0×10−4), and glomerular
DCLK1 expression was nominally associated with glomerular
width, mesangial volume and podocyte foot process width in
the Pima Indian biopsies (p<0.05; ESM Table 13).
Furthermore, both glomerular and tubular DCLK1 expression
were elevated in DKD in two additional datasets (fold change
1.98, p=1.2×10−4 for glomeruli [35]; fold change 2.09, p=0.003
for tubules [36]; Fig. 7). Finally, we previously identified a
subset of transcripts, including DCLK1, targeted by the early
growth response-1 transcription factor in a murine model of
DKD. In that study, Dclk1 expression was upregulated in
diabetic vs non-diabetic Apoe−/− mouse kidneys [37]. Taken
together, these expression data in human and experimental
DKD identify DCLK1 as a novel target.

Kidney eQTL data for the top SNPs in the INIP–SNX30
locus pointed towards SNX30, encoding the sorting nexin
family member 30, with the DKD risk-associated rs786959
A allele associated with higher SNX30 expression

(p=4.6×10−7). On the contrary, in our transcriptomics data
higher tubular SNX30 was correlated with higher eGFR
(p=5.8×10−14) and lower level of fibrosis (p<2.0×10−16);
g lomerular express ion was corre la ted with less
glomerulosclerosis (p=8.0×10−5). Finally, kidney SNX30
expression was associated with higher eGFR in the general
population using TWAS based on kidney tubular eQTL [17]
and GWAS on eGFR [31] (p=0.046; ESM Table 8).

The TWAS analysis based on our GWAS results, integrated
with micro-dissected tubular and glomerular eQTL data,
predicted that AKIRIN2 gene expression is elevated in tubules
in individuals with severe DKD compared with individuals
with normal AER (p=1.1×10-6). AKIRIN2 gene expression
was highly correlated with the level of fibrosis (p=2.8×10−7).
AKIRIN2 encodes a conserved nuclear factor that is a down-
stream effector of the toll-like receptor, TNF and IL-1β signal-
ling pathways, involved in stimulating proinflammatory path-
ways [38]. This factor binds to nuclear NF-κB complexes and
is required for the transcription of a subset of NF-κB-dependent
genes such as IL6, CXCL10 and CCL5 [39]; NF-κB activation
drives inflammatory responses and is activated in DKD [40].

The strongest regulatory evidence in RegulomeDB was
obtained for rs1260634 intronic in the LSM14A gene:
rs1260634 exerts strong transcription in 125 tissues including
fetal kidney chromatin state model, is located in a ZNF362
binding sequence in HEK293 cell line, and affects a predicted
transcription factor binding motif for Kruppel-like factors 4
and 12 (KLF4 and KLF12) and Sp8 transcription factor (ESM
Fig. 11). Furthermore, in our kidney mQTL data, rs1260634
showed strong association (p=2.1×10−28) with cg14143166,
where methylation in blood was associated with DKD in our
EWAS data (p=0.03). Tubular LSM14A expression correlated
with higher eGFR (p=2.9×10−6), and glomerular expression
with the decrease in mesangial volume (p=6.5×10−4; signifi-
cant after correction for 29 tested genes and two tissues, but
not for 27 phenotypes). LSM14A encodes an Sm-like protein,
thought to participate in pre-mRNA splicing, and implicated
in innate antiviral responses [41].

Other noteworthy novel genes include EIF4E and PTPRN.
EIF4E encodes a common mRNA translation initiation factor;
its activation and/or suppression are influenced by mTOR
signalling cascades involved in DKD [42] as well as high
glucose and high insulin environments in renal epithelial cells
[43]. PTPRN encodes islet antigen 2 (IA-2), a major type 1
diabetes autoantigen involved in glucose-stimulated insulin
secretion [44]. In mice, IA-2 is required to maintain normal
levels of renin expression in kidneys [45]. Finally, theMFF gene
identified in our gene-level analysis has been previously related
to DKD [46]. However, the association may be driven by the
neighbouring COL4A3 association, as suggested previously [6].

Indeed, one limitation of our gene-level analysis is the
inability to confidently assign genes to a given set of correlat-
ed SNPs within a region.While it is reasonable to prioritise the
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gene in which the SNPs lie, it remains possible that extended
LD patterns are tagging other nearby genes. Similarly,
assigning a causal gene for the lead SNPs is not straightfor-
ward. We have utilised the eQTL and other data when avail-
able but also used a simple nearest-gene approach to name the
associated region.

In the transcriptomics analyses, as expected, all 13 signif-
icant correlations with the level of fibrosis were observed for
tubular gene expression, and the two observed correlations for
glomerulosclerosis were for glomerular expression of SNX30
and COLEC11 (Fig. 4). Interestingly, eight out of ten correla-
tions with eGFR were obtained for tubular rather than glomer-
ular gene expression, supporting the importance of tubular
damage in the loss of renal function.

While there is a strong epidemiological link between DKD
and coronary artery disease in diabetes [1], our LDSR is the
first study to report a genetic correlation between these major
diabetic complications. Among the lipid traits, significant
correlation with DKD was found only for lower HDL-choles-
terol, despite previous MR of kidney disease in the general
population implicating HDL as a marker of dyslipidaemia
rather than a causal factor [47]. Indeed, our subsequent MR
found no evidence of causality between HDL and DKD; in
concordance with our previous MR on BMI [48], only
obesity-related traits were causal risk factors for DKD.
However, we cannot exclude that the associations detected
in our studies might partly reflect collider bias. Of note, our
current MR was in line with our previous MR in type 1 diabe-
tes suggesting that serum urate levels are not a causal risk
factor for DKD [49]; similar negative results were also report-
ed for non-diabetic CKD [50].

Most kidney disease in individuals with type 1 diabetes is
considered to occur due to diabetic nephropathy, histological-
ly characterised by thickening of the glomerular basement
membrane and mesangial expansion, as well as renal tubular,
interstitial and arteriolar lesions. In individuals with type 2
diabetes, only a proportion of DKD is purely due to diabetic
nephropathy, whereas ageing, obesity and hypertension also
contribute to kidney decline. These differences were also seen
in our genetic correlation analysis, with CKD in type 2 diabe-
tes genetically resembling CKD and eGFR in the general
population, and no significant correlation observed in individ-
uals with type 1 diabetes. Thus, including individuals with
type 2 diabetes in the meta-analysis increases the heterogene-
ity of the underlying disease. However, as type 2 diabetes
represents 95% of all diabetes cases, including those individ-
uals increases statistical power for our current work and future
GWAS meta-analyses integrating multiple subtypes of diabe-
tes to identify shared genetic risk factors for DKD.
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