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ABSTRACT: The discovery of high-performing and stable
materials for sustainable energy applications is a pressing goal in
catalysis and materials science. Understanding the relationship
between a material’s structure and functionality is an important step
in the process, such that viable polymorphs for a given chemical
composition need to be identified. Machine-learning-based surrogate
models have the potential to accelerate the search for polymorphs
that target specific applications. Herein, we report a readily
generalizable active-learning (AL) accelerated algorithm for
identification of electrochemically stable iridium oxide polymorphs
of IrO2 and IrO3. The search is coupled to a subsequent analysis of
the electrochemical stability of the discovered structures for the
acidic oxygen evolution reaction (OER). Structural candidates are
generated by identifying all 956 structurally unique AB2 and AB3
prototypes in existing materials databases (more than 38000). Next, using an active learning approach, we find 196 IrO2 polymorphs
within the thermodynamic amorphous synthesizability limit and reaffirm the global stability of the rutile structure. We find 75
synthesizable IrO3 polymorphs and report a previously unknown FeF3-type structure as the most stable, termed α-IrO3. To test the
algorithms performance, we compare to a random search of the candidate space and report at least a 2-fold increase in the rate of
discovery. Additionally, the AL approach can acquire the most stable polymorphs of IrO2 and IrO3 with fewer than 30 density
functional theory optimizations. Analysis of the structural properties of the discovered polymorphs reveals that octahedral local
coordination environments are preferred for nearly all low-energy structures. Subsequent Pourbaix Ir−H2O analysis shows that α-
IrO3 is the globally stable solid phase under acidic OER conditions and supersedes the stability of rutile IrO2. Calculation of
theoretical OER surface activities reveal ideal weaker binding of the OER intermediates on α-IrO3 than on any other considered
iridium oxide. We emphasize that the proposed AL algorithm can be easily generalized to search for any binary metal oxide structure
with a defined stoichiometry.

■ INTRODUCTION

To understand or simulate the properties of novel polymorphs
of functional materials, their crystal structure must first be
solved for, which remains a challenging problem in materials
science.1,2 Large high-throughput ab initio datasets3−6 have
enabled approaching many problems in materials research with
machine learning,7 but these datasets are systematically biased
toward known materials or hypothetical materials derived from
common crystal prototypes. Thus, there is a need for the
systematic exploration of structural diversity at target elemental
compositions.
Contemporary approaches to inorganic crystal structure

prediction include a variety of methods that explore the
expansive potential energy landscape and include simulated
annealing, evolutionary algorithms, and particle swarm
optimization.8−15 These approaches are comprehensive but
become intractable as the number of polymorphic config-

urations increases exponentially with the number and types of
elements considered.16 Recent materials discovery approaches
employing surrogate models in lieu of density functional theory
(DFT) calculations include a tight-binding model utilizing
genetic algorithms,17 agent-based rapid generation of phase
diagrams in diverse chemistries,18 and an image-based
materials representation procedure from Noh et al.,19 which
was used to find stable vanadium oxide polymorphs. Active
learning (AL) frameworks in conjunction with surrogate
models have emerged as a computationally efficient approach
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for problems in materials science and a potential alternative to
established crystal structure prediction (CSP) methods.20−24

In this article we report a rapid crystal structure discovery
approach that leverages machine-learning surrogate models
and an AL framework to accelerate the discovery of
polymorphs at target chemical compositions. Our method
does not rely on the existence of past DFT data but instead
sequentially generates the minimum-sized dataset to effectively
search within a structurally diverse space of candidates
generated from crystal structure prototypes. We demonstrate
the application of this methodology in the space of iridium
oxide polymorphs, an important class of materials with
applications in electrochemistry, but with unresolved struc-
ture−activity properties critical for understanding their
catalytic activity. In particular, rutile-IrO2 (R-IrO2) (Ir

4+), the
most stable form of iridium oxide at standard conditions, is a
well-studied electrocatalyst for the oxygen evolution reaction
(OER).25−32 Previous studies on a SrIrO3 OER electrocatalyst
demonstrated that Sr leaching might leave behind a highly
oxidized Ir6+ species which was argued to be responsible for
the observed OER activity.25 Other groups also observed
reconstruction of IrOx catalysts under reaction conditions and
subsequent formation of an unknown structure.33 Highly
oxidized IrO3 phases are also formed as the terminal structure
of LixIrO3 anodes.

33 For these reasons, we focused our search
on stable polymorphs in the IrO2 and oxidized IrO3
stoichiometries.
Here, we first detail the generation of our candidate

structures for IrO2 and IrO3 and introduce the AL accelerated
surrogate model. Next, we demonstrate the application of our
AL scheme to the IrO2 and IrO3 prototype spaces and evaluate
the algorithm’s performance toward acquiring of the most
stable polymorphs. We analyze the crystallographic motifs of
the DFT-relaxed structures and identify structural trends
within the most stable polymorphs. Lastly, we incorporate
discovered structures into bulk and surface Pourbaix diagrams
and evaluate their catalytic OER performance.

■ COMPUTATIONAL METHODS
Our approach utilizes an active learning framework and
surrogate models, whereby a regression model is trained to
compute enthalpies of formation (ΔHf) by iteratively sampling
structures from a set of polymorph candidates. Figure 1 shows
a schematic overview of the AL loop. We first generate the
structure candidate space, followed by an iterative search
through the space via a continuously retrained surrogate model
using Gaussian processes regression (GPR), which is then used
to acquire subsequent structures for DFT optimization. No
prior DFT training data are required to start the algorithm,
eliminating any initial built-in bias in the model and allowing it
to quickly respond to new acquisitions.
The candidate structure datasets for IrO2 and IrO3 were

constructed by first obtaining all AB2 and AB3 structures in the
Materials Project4 and OQMD7 databases (in total 7160 AB2
and 31224 AB3 entries). To reduce the size of the candidate
space while maintaining maximum structural diversity,
structurally redundant systems were removed via a space-
group-based structural classification scheme developed by Jain
et al.34 In short, a material’s structural identity is defined by a
unique combination of the element-nonspecific stoichiometry
(AB2, AB3, etc.), space group symmetry, and Wyckoff
positions, collectively termed a material's structural prototype.
Materials of the same prototype are considered to be

structurally equivalent. Eliminating these redundant materials
results in orders of magnitude reduction of the search space to
697 and 259 unique prototypes for AB2 and AB3, respectively.
Finally, only structures containing fewer than 75 atoms (566
AB2 and 256 AB3) were included to reduce the computational
expense of subsequent DFT calculations. We next substituted
iridium and oxygen for the A and B sites, and these Ir−O
adapted polymorphs were isotropically relaxed to accommo-
date their atomic radii. Bulk DFT optimizations were
performed on these systems, yielding 714 relaxed bulk IrOx
polymorphs (466 and 248 structures for IrO2 and IrO3,
respectively), after discarding 108 nonconverged structures.
The relatively small size of our candidate space allows us to
tractably optimize all structures and allows us to readily
benchmark the performance of our algorithm. Full details of
the candidate space generation and DFT calculations can be
found in the Supporting Information. All structurally unique
IrOx optimized structures (575 in total) can be accessed
through the MPcontribs platform.35

The active learning algorithm proceeds through a structure
featurization scheme based on Voronoi tessellation developed
by Ward et al.36 which produces a 271-length fingerprint
vector that is invariant to isotropic lattice changes and
insensitive to the precise atomic coordinates. These finger-
prints encode both chemical and structural information by
constructing attributes from elemental properties which are
weighted by the local environment of the structure via the

Figure 1. AL accelerated polymorph discovery algorithm diagram.
Following the generation of the hypothetical crystal structure dataset
(candidate space), the AL algorithm proceeds iteratively through (1)
candidate selection in which a subset of structures in the candidate
space are selected based on an acquisition function (in lieu of training
data, the initial candidates are randomly sampled), (2) structural
relaxation into local energy minima (ΔHf computed), (3) structure
featurization to produce numerical vector for input into ML model,
(4) machine-learning (ML) model training based on acquired
structures and ΔHf, and (5) prediction of candidate space’s ΔHf
distribution via ML model. The algorithm repeats steps 1−5 until a
suitable stop criterion is reached.
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construction of the Wigner−Seitz cell.37 Because our AL
framework focuses on fixed compositions, the dimensionality is
reduced to 101 nonzero variance features. We further reduce
the dimensionality to 10 features via principal component
analysis (PCA),38 which we found to capture 80% of the
variance in the full feature set while also demonstrating an
optimal cross-validation mean absolute error (MAE) (see
Figure S1).
The active learning algorithm proceeds through iterative

generations of ML training, prediction, and acquisition steps
that are visualized in Figure 1. To meet our primary goal of
identifying the most stable polymorphs within the candidate
space, we construct the AL framework to be (1) responsive in
improving itself by learning from small batches of newly
acquired DFT data and (2) aware of limitations in its surrogate
model by incorporating uncertainty estimates into the
acquisition decision criteria. GPR satisfies both requirements,
and we use them here with a Gaussian kernel as implemented
in CatLearn.20 In the initial generation (generation 0), the

model is trained on a set of randomly sampled candidates
(unbiased sampling) and is then used to predict the formation
enthalpy (ΔHf) of all structures in the candidate space. The
predicted energy landscape is then used to choose the next
polymorphs to acquire (calculate via DFT) by selecting
systems that minimize the GP-LCB (Gaussian process lower
confidence bound) acquisition function, U = μ − κσ.39 Here, μ
and σ are the predicted ΔHf mean and uncertainty,
respectively, and κ is a parameter that weights exploitation vs
exploration of the search space (set to 1). At every generation
of the AL loop, N structures that minimize the acquisition
function are acquired for DFT optimization and are
subsequently added to the training dataset, where N is the
AL bin size (here set to 5). The value of N determines the
degree of parallelization of the routine. In practice, the
algorithm can proceed until no more stable polymorphs are
found or after an allocated computational budget is exhausted.
Although initially unique, the structures in the candidate set

often relax into one another over the course of the DFT

Figure 2. (a) The state of the AL algorithm at five different generations. The enthalpy of formation per atom (ΔHf) is plotted, ordered by stability,
against all IrO3 candidates, with the 1 σ uncertainty estimate shown for each prediction. The number of DFT training points at each generation is
displayed. Hollow gray markers indicate a GP model predicted ΔHf while red symbols indicate a DFT-computed quantity. At the top of subplots
a.i−v, the x-axis positions of the ten most stable polymorphs are tracked at each generation by either red (acquired) or gray (not acquired) vertical
lines. Insets of the low-energy region for each generation is displayed below each subplot. The top ten most stable systems are colored and labeled
i−vii to indicate their identity. (b) Crystal structures of the eight most stable IrO3 polymorphs (structure iii not shown). (c) The number of most
stable 10 polymorphs of IrO3 discovered (Ndiscovered) vs the number of DFT calculations for the GP-LCB (blue) and random (gray) acquisition
methods. The results are averaged over 100 independent runs ,and the 1 σ standard deviation between these runs is displayed. All structurally
unique IrOx DFT optimized structures can be accessed through the MPcontribs platform.35
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optimization, introducing duplicates in the post-DFT struc-
tures. The duplicates are removed during each generation of
the AL algorithm by using the structure similarity quantifica-
tion method of Su et al.40

■ RESULTS
Active Learning Algorithm Applied to the Discovery

of Stable Iridium Oxide Polymorphs. We next applied the
AL algorithm to the discovery of stable and unique
polymorphs of IrO2 and IrO3 individually. Results for IrO2
are provided in the Supporting Information (Figure S2); here
we focus on IrO3 since it is a comparatively unexplored oxide
system.
Figure 2a shows a sequence of snapshots of the AL

algorithm applied to IrO3 at different generations. Each subplot
reports the predicted (gray) and DFT-derived (filled red)
formation enthalpies (ΔHf) for each structure, sorted by
stability such that structures more likely to be selected by the
acquisition criteria are farther left. As the algorithm acquires
DFT data, the GP model’s accuracy increases, as evidenced by
the decreasing uncertainties when comparing the initial and
latter generations (Figure 2a.i−v). At the top of each subplot
of Figure 2a the x-axis positioning of the ten most stable
polymorphs is tracked. Initially, these ten structures are
randomly distributed across the entire candidate space due
to the lack of training data for the GP model. However, after
only three generations (Figure 2a.ii) the GP model is
sufficiently accurate to predict the most stable polymorphs as
low-energy structures. By the sixth generation (40 DFT
relaxations) 4/10 of the most stable polymorphs have been
acquired, including the globally stable phase of IrO3, which was
found on average in only 4.3 generations (averaged over 100
independent runs). By the 13th generation of the algorithm all
10 of the most stable structures were acquired.
Seven of the most stable IrO3 polymorphs discovered are

shown in Figure 2b. All of the low-energy IrO3 structures are
constructed from octahedrally coordinated units, with a variety
of symmetries and packing modes. The globally stable crystal
structure consists of a six-atom primitive cell with a space
group number of 167 (R3̅c) in the rhombohedral crystal
system, has exclusively corner-sharing octahedra, and is
isomorphic to FeF3.

41 Herein, this structure will be termed
α-IrO3. The second most stable polymorph (Figure 2b.ii) is
similar to α-IrO3, only differing by the stacking of the
alternating layers orthogonal to the c lattice vector. We label
this structure α2-IrO3 in Figure 2b, and it is only 2 meV/atom
less stable than α-IrO3, well within the margin of error for
DFT. The fourth most stable structure (R-IrO3) is notable for
being the first in the series to have mixed edge- and corner-
sharing octahedra and is structurally similar to rutile-IrO2 (R-
IrO2).
Figure 2c reports the discovery rate of the AL algorithm by

plotting the number of the ten most stable systems acquired
against the number of DFT calculations with the GP-LCB
acquisition and a random acquisition scheme to serve as a
baseline. The results of Figure 2c are averaged over 100
independent runs of the AL algorithms with the standard
deviation shown. Overall, the GP-LCB runs outperform the
random acquisition runs, with on average ∼100 DFT
calculations needed to discover the ten most stable structures.
This demonstrates over a factor of 2 improvement in
performance compared to random acquisition, which does
not acquire the most stable structures until all ∼250 candidates

are computed. The results for IrO2 (Figure S2) show a higher
discovery rate for GP-LCB compared to the random
acquisition method, although the GP-LCB method “saturated”
at 9/10 and was unable to acquire the last structure until the
candidate space was exhausted. The performance of GP-LCB
relative to random is expected to increase with the size of the
candidate space, since the probability of selecting stable
structures is inversely proportional to the size of the candidate
pool.
We next evaluate the prediction accuracy of the IrO2 and

IrO3 GP regression models utilizing the full DFT optimized
dataset of 487 IrO2 and 249 IrO3 structures. This dataset
corresponds to the final generation of the AL algorithm in
which all structures have been acquired. Figure 3 plots the GP

model predicted ΔHf against the DFT-computed values for
two cases. Case 1 shows the predictions on the structural
fingerprints prior to DFT optimization (gray), as is done in the
regular operation of the algorithm. Case 2 shows the prediction
of the same GP model using the post-DFT optimized
fingerprints (blue) with 10-fold cross-validation. It is evident
that using the preoptimization fingerprints results in the GP
model being highly inaccurate in predicting the postrelaxation
ΔHf’s of the candidate space, with a seemingly large MAE of
∼1.5 eV/atom. In contrast, the same GP model does
comparatively much better at predicting the formation energies
of post-DFT optimized structures with an MAE of ∼0.2 eV/
atom.
The drastic decrease in prediction error is not surprising,

since the post-DFT fingerprints directly correspond to the
target ΔHf values, and is primarily due to the large degree of
structural drift that occurs during DFT relaxation, the extent of
which is not known a priori. In fact, we observe that most of
the predictions from pre-DFT features overpredict the
formation energy (i.e., less stable than their DFT analogous)
and lie above the parity line. This behavior is consistent with

Figure 3. Parity plot of the predicted and actual formation enthalpy
(ΔHf) for the final Gaussian regression ML models for IrO2 and IrO3,
predicting on either the preoptimized (gray) or the postoptimized
(blue) fingerprints. The final ML regression models are trained on the
DFT ΔHf values for all structurally unique polymorphs and
correspond to the final generation of the AL algorithm.
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what one would expect thermodynamically: structures that are
initialized in high-energy configurations will naturally reconfig-
ure into a more stable local configuration, resulting in
discrepancies between the pre-DFT predicted and final
formation energies. In practice, our approach still performs
notably well because (1) the energy tends to decrease post-
DFT relaxation, meaning favored acquisitions are likely to
perform even better, and (2) the preoptimized structures that
are similar enough to the most stable final equilibrium
structures will not restructure considerably, meaning that
their predicted formation energies will be close enough (and
low enough) to be quickly picked up by the acquisition criteria.
Additionally, the number of duplicates produced during AL is
also a factor in increasing the effective performance. For
example, there are eight duplicates of α-IrO3 produced during
the full AL routine due to distinct pre-DFT candidates relaxing
into the same energy basin, and this overrepresentation of α-
IrO3 phase effectively increases the chance of it being acquired
by a factor of 8.
Crystal Coordination Analysis of Discovered Phases.

We next assess stability trends and structural variety of the
DFT optimized structures, consisting of 384 and 191 unique
IrO2 and IrO3 polymorphs. Figure 4a,b shows the DFT
computed ΔHf for IrO2 and IrO3 plotted against the inverse
density, a quantity that is sensitive to crystal porosity and
connectivity. To obtain a physically meaningful cutoff for ΔHf,
we computed the “amorphous limit” of Persson and co-
workers for both IrO2 and IrO3, which provides a stringent
upper bound to polymorph synthesizability.42 We found the
amorphous limit for both IrO2 and IrO3 to occur at a ΔHf of

−0.34 eV/atom and are displayed as horizontal lines in Figure
4a,b. There are 196 and 75 polymorphs for IrO2 and IrO3,
respectively, that are within the amorphous synthesizability
limit.
Computed materials span a large range of densities and

coordination environments. The lowest volume (highest
density) structures correspond to an atomic packing factor of
roughly 0.5, which is where the most stable structures are
found. The highest volume (lowest density) systems sampled
have atomic packing factors close to 0.15. However, for IrO3
there is a comparatively weaker relationship between the
energy and volume, such that even highly porous structures are
within 0.1 eV/atom of the most stable phase. This is indicative
of IrO3’s high degree of polymorphism and ability to readily
form layered and/or porous structures.
Ir−O coordination environments were classified (octahedral,

square pyramidal, tetrahedral, cubic, etc.) by using the
chemEnv package, developed by Waroquiers et al.43 as
implemented in the Pymatgen software.44 Our dataset contains
structures with coordination numbers ranging from 2 to 10,
with coordination numbers of six (octahedral, blue) and four
(tetrahedral, red) being the most prevalent (see Figure 4). The
vast majority of the most stable (within 0.1 eV/atom)
structures adopt an octahedral coordination environment, a
common coordination motif found to be favorable in many
other transition metal oxides.43 The arrangement of the
octahedral units, which are connected through either corner-
or edge-sharing octahedra, can furthermore be used to classify
the structures, which typically have a combination of the two.
Of the top ten IrO2 and IrO3 structures, 9 IrO2 and 5 IrO3

Figure 4. ΔHf for the 384 IrO2 (a) and 191 IrO3 (b) structurally unique DFT optimized structures in the candidate dataset plotted against the
volume per atom. Insets in the low-energy region for (a) and (b) are shown. The color bar represents the average coordination number between Ir
and O, with the most common, 6 (octahedra) and 4 (tetrahedral) coordinations, highlighted. For IrO2 (c) and IrO3 (d) we highlight the structures
of select polymorphs. The amorphous limits for IrO2 and IrO3 (Figure S2) defining a strict upper bound for synthesizability are displayed in (a)
and (b) as horizontal lines.
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structures have a mixed corner- and edge-sharing octahedral
packing. This demonstrates that IrO2 prefers to form edge-
sharing octahedra as a result of having to share more oxygens
to maintain its stoichiometry. IrO3 has comparatively more
oxygens per unit cell and as such can adopt completely corner-
sharing arrangements similar to cubic perovskite-type
structures.
Figures 4c and 4d show a selection of metastable structures

for IrO2 and IrO3, respectively. For IrO2, we reaffirm the rutile
ground state. Additionally, the experimentally synthesized
high-pressure pyrite phase of IrO2 was found in our dataset and
has a ΔHf ∼ 0.1 eV/atom greater than rutile, in agreement with
theoretical and experimental calorimetric data.45,46 Several
common AB2 crystal structures were found within the dataset,
including brookite-,47 anatase-,48 and columbite-IrO2 phases.
For IrO3 the eight most stable systems are reported in Figure 2
and labeled as (1)−(8) in Figure 4b. In addition to the most
thermodynamically stable systems, we have identified several
interesting metastable structures, including two-dimensional
(i), highly porous (iii), and one-dimensional (v) polymorphs
with varying degrees of porosity and connectivity, which are
important structural properties for applications as battery
cathodes and ionic conductors.33,49

Electrochemical OER Application. We next performed
ab initio thermodynamic analyses to test the OER electro-
chemical operational stability and activity of the most stable
IrOx structures in aqueous solution. In particular, we compare
the stability and activity of R-IrO2 to our newly discovered α-
IrO3 and R-IrO3 polymorphs. In addition, we have also
computed the stability and activity of a delithiated form of a
recently reported β-LixIrO3 structure, referred here to as β-
IrO3.

33,49 The OER activity was computed assuming the most
common single-site associative OER mechanism utilizing the
thermodynamic limiting potential analysis with the computa-
tional hydrogen electrode as described extensively in numerous
previous works50−53 (see also Supporting Information for
details).
The calculated bulk Pourbaix diagram of the Ir−H2O system

is shown in Figure 5. The diagram was constructed by
considering the thermodynamic equilibrium between the
following species: Ir, R-IrO2, α-IrO3, R-IrO3, β-IrO3, and an
aqueous dissolved IrO4

− species. Here, we neglect hydroxide
phases, as they were not considered in the polymorph search;
for a brief discussion on the relative stability of hydroxide
phases see Figure S5. To obtain free energies, we utilized a free
energy correction to our calculated values to reproduce the
known experimental ΔHf and ΔGf of R-IrO2.

54 While Ir and R-
IrO2 are most stable at low bias, α-IrO3 becomes the
thermodynamically dominant phase under the relevant
conditions for the OER (potentials >1.23 VRHE and in an
acidic environment). The stability regions for the less stable β-
IrO3 and R-IrO3 polymorphs (in the absence of other IrO3
phases) are also included (unfilled solid lines). It can be seen
that these phases have a reduced, but sufficiently large, stability
window relative to IrO2 and IrO4

−. Removal of the IrO3 phases
from the bulk Pourbaix diagram results in a completely
different thermodynamic picture of IrO2 stability (Figure S4).
In total, we have discovered 21 unique IrO3 polymorphs with a
nonzero bulk Pourbaix stability region (0 ≤ pH ≤ 14).
Interestingly, these 21 structures are more stable than the most
stable IrO3 structure in Materials Project55 (which is also
present in our dataset, Figure 4d.iv). We note that the
thermodynamic driving force toward these stable IrO3 phases

under OER conditions suggests that these structures may form
spontaneously under reaction conditions. Because of the highly
oxidizing conditions, the synthesis of the above IrO3 crystal
phases at ambient conditions is unlikely. On the other hand, in
situ A-type ion electrochemical leaching from AIrO3
materials25,49 or highly oxidizing pretreatments of IrO2 phases
might be potential synthetic routes to IrO3.
We next computed the surface energy Pourbaix plots and

OER activity for various surface facets at select coverages (for
simplicity we only choose bare and one monolayer of OH*
and O*) of all four systems from Figure 5; results are
summarized in Figure 6. For each polymorph, surfaces were
constructed by cleaving along the Miller indices with the
highest calculated diffraction peaks, corresponding to planes
with higher density of atoms. The surface free energy Pourbaix
plots identify which surface facets and surface coverage species
are thermodynamically preferred under OER conditions. Our
results show that most of the facets prefer to have a high
surface coverage of O*; therefore, we consider mainly oxygen-
terminated surfaces for the OER analysis. Our results are
comparable to previous studies on the electrochemical stability
of IrO2 surfaces,56,57 but without considering highly
reconstructed facets such as (101). The surface stability
analysis is therefore crucial for accurate determination of the
activity.
The calculated OER activities of relevant OER stable

surfaces are plotted against the ΔGO − ΔGOH descriptor and
are shown in Figure 6b. There, we display two thermodynamic
limiting potential volcanos based on (1) the standard
universal50 (black) and (2) fitted (gray) scaling relations
between the OER intermediates (Figure S6). Additionally, we
have also added a kinetic OER volcano (dashed line) from
Dickens et al.61 based on the detailed microkinetic model
developed for rutile systems. The kinetic volcano is
constructed at the potential required to reach 10 mA cm−2.
The thermodynamic and kinetic volcanos agree remarkably

Figure 5. Revised bulk Pourbaix diagram of the Ir−H2O system as a
function of applied potential (USHE) and pH. The diagram was
constructed with Ir(s) (blue), R-IrO2 (green), various IrO3
polymorphs, and a dissolved IrO4

− ion species (dark gray). The
stability regions corresponding to the metastable R-IrO3 and β-IrO3
polymorphs (see text), in the absence of any competing IrO3 phase,
are displayed as yellow and pink lines, respectively. The thermody-
namic onset of OER (water equilibrium at 1.23 VRHE) is also shown.
To be compared to Figure S4 without IrO3 phases. See Table S3 for
the bulk formation energies (ΔGf) used to construct the diagram.
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well in the strong binding portion (left-hand side) of the plot
and exhibit a similar optimum value, ΔGO − ΔGOH ≈ 1.55−
1.65 eV. The corresponding surface structures for selected
systems featuring high oxygen coverage are visualized in Figure
6c.
In general, the R-IrO2 surfaces bind the OER intermediates

relatively strongly, with theoretical limiting potentials of ∼1.8
VRHE (overpotential of 0.57 VRHE) having the *O to *OOH
potential limiting step, in agreement with previous theoretical
studies.57,62,63 The predicted overpotentials of our R-IrO2
systems are also within the range of experimentally observed
values (horizontal lines).25,58 The surfaces of the three IrO3
polymorphs have ΔGO − ΔGOH values shifted to higher
energies, indicative of overall weaker binding energetics (see
also Figure S6). On average, the adsorption of OH* and O* is
weakened by 0.7 and 1.2 eV relative to IrO2 (Table S4),
respectively. The highest performing systems include the α-
IrO3 (100), (110), and (211), followed by β-IrO3 (101), and
then R-IrO3 (110). These surfaces have overpotentials of ∼0.4
VRHE, which represents an ∼0.2 VRHE improvement over R-

IrO2, mirroring the observed shift in experimental onset

potentials (horizontal lines).25,58 The primary driver for the
improved OER activity is the higher oxidation state of IrO3

compared to IrO2, having only three 5d-electrons for Ir6+ as

opposed to five 5d electrons in Ir4+. Oxygen-saturated IrO3

systems thus bind OER intermediates more weakly, which
leads to a positive shift in ΔGO − ΔGOH. IrO2 and RhO2 are
generally overbinding for OER61 so there is consequent

improvement in OER activity when compared to these oxides.
These results are consistent with Back et al., who recently
computed elevated activity in highly oxidized IrO3 catalysts.

64

An added feature of α-IrO3 is comparably higher density of
active sites due to completely corner-sharing geometry. The
exact improvement in the theoretical overpotential is slightly
dependent on the DFT level of theory and the inclusion of spin

polarization and has been discussed recently.62,63

Figure 6. Summary of OER results for the following four bulk structures of IrOx: R-IrO2 (green), α-IrO3 (purple), R-IrO3 (orange), and β-IrO3
(pink). (a) Surface energy Pourbaix diagrams for each structure, with the surface energy of various facets and coverages shown as a function of
applied potential (VRHE). The bulk Pourbaix diagram’s bounds of stability at pH 0 are superimposed as horizontal bars at the bottom of each
subplot. The pseudostability regimes for the metastable β-IrO3 and R-IrO3 are indicated by dashed vertical lines. (b) OER activity volcano for IrOx
systems considered utilizing the ΔGO − ΔGOH descriptor. The horizontal lines correspond to recent experimental OER limiting potentials for R-
IrO2 (110)

58 and SrIrO3,
25 at 10 mA cm−2 (extrapolated values). (c) Corresponding structural models for selected OER surfaces at one monolayer

O* coverage used for calculation of the overpotentials. Color legend: oxygen (red), purple (iridium), and coordination motif (white).
Computational cell is displayed by black lines. All OER slab models and corresponding DFT energies are freely available under the
“FloresActive2020”59 dataset at Catalysis-hub.org.60
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■ CONCLUSION
We have described a cogent procedure for generating and
searching a structurally diverse candidate space of bulk
structural prototypes with a desired composition. Once this
space is enumerated, we show how it can be efficiently
searched using an algorithm with an active learning loop
without a prior knowledge of accurate atomic positions. In
most cases, the DFT optimization of only a fraction of the
candidates leads to identification of the most stable
polymorphs. In particular, this approach is well-suited for
discovery in structurally diverse chemical spaces, such as metal
oxides and other metal−ligand bulk systems, where there exists
a large degree of structural diversity. The current data set
includes octahedral, tetrahedral, square-pyramidal, cubic, and
square-planar Ir−O conformers. We also note that our AL
algorithm is capable of discovering experimentally known
phases such as pyrite, columbite, and layered IrO2 and several
recently discovered layered IrO3 phases formed by Li+

deintercalation. In particular, we have identified a number of
previously unknown IrO3 polymorphs below the amorphous
synthesizability limit, including a new globally stable α-IrO3
phase. This high-valency Ir6+ phase is stable under OER
relevant conditions and has an ideal 100% corner-sharing
octahedral structure, a short Ir−O bond length of 1.93 Å, and
also a very high surface coverage of active oxygens.
Calculations of surface thermodynamics reveal this structure
and other OER stable IrO3 phases have much higher
theoretical OER activity than a benchmark rutile IrO2. The
thermodynamic stability and high OER activity of the α-IrO3
phase may provide clues as to the nature of the yet
uncharacterized structures reported after reconstruction of
SrIrO3 and IrOx precursors under OER reaction conditions.
Methods combining diverse structural generation, AL-enabled
accelerated searches, and ab initio simulation of material
performance could open up new avenues for in silico material
design with application tailored structural properties.
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