Estimating local daytime population density from census and payroll data

Geoff Boeing

To cite this article: Geoff Boeing (2018) Estimating local daytime population density from census and payroll data, Regional Studies, Regional Science, 5:1, 179-182, DOI: 10.1080/21681376.2018.1455535

To link to this article: https://doi.org/10.1080/21681376.2018.1455535

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

Published online: 02 Jun 2018.
Estimating local daytime population density from census and payroll data
Geoff Boeing

ABSTRACT
Daytime population density reflects where people commute and spend their waking hours. It carries significant weight as urban planners and engineers site transportation infrastructure and utilities, plan for disaster recovery, and assess urban vitality. Various methods with various drawbacks exist to estimate daytime population density across a metropolitan area, such as using census data, travel diaries, GPS traces, or publicly available payroll data. This study estimates the San Francisco Bay Area’s tract-level daytime population density from US Census and LEHD LODES data. Estimated daytime densities are substantially more concentrated than corresponding night-time population densities, reflecting regional land use patterns. We conclude with a discussion of biases, limitations, and implications of this methodology.

ARTICLE HISTORY
Received 13 February 2018; Accepted 19 March 2018

KEYWORDS
population density; daytime density; census; ACS; LEHD; LODES; San Francisco Bay Area; payroll data

JEL CLASSIFICATION
J10; R12; R14; R20; R30; R40

When we study urban density, we often mean night-time population density: where people live and sleep. However, urban planners and engineers are equally interested in daytime density – where people commute and spend their waking hours – to site transportation infrastructure and utilities, plan for disaster recovery, and assess urban vitality (Schmitt, 1956). Planners might estimate local daytime population density across a metropolitan area using, for example, American Community Survey (ACS) data, travel diaries or publicly available payroll data. This study estimates the San Francisco Bay Area’s tract-level daytime population density from US Census and payroll data. It then explores biases, limitations and implications. This methodology easily scales nationwide.

We use three input data products: the 2010 US Census TIGER/Line tracts shapefile with DP1 attributes;1 the US Census Bureau’s 2010 states shapefile;2 and the 2010 Longitudinal Employer–Household Dynamics Origin–Destination Employment Statistics (LODES)3 for California. LODES is an administrative payroll enumeration of jobs with both workplaces
and residences (geocoded at the block level) in the state. However, if the employer has multiple workplaces, the reported payroll-based workplace may not be the one to which the employee actually commutes (Nelson & Rae, 2016).

We prefer the 2010 demographic data to more recent ACS data because the latter’s tract-level estimates encompass five-year rolling averages. Accordingly, we prefer not to compare 2014 LODES data with 2010–14 ACS data as the Bay Area experienced substantial housing, economic and demographic upheaval over this timeframe, patterns obscured in the ACS rolling averages (Boeing & Waddell, 2017). To avoid an inconsistent comparison, we opt for more

Figure 1. Estimated daytime population density in the San Francisco Bay Area.

The LODES is notoriously noisy (and synthetic), so we aggregate and sum the origin–destination pairs to the tract level, at which it converges reasonably well to the observed distribution (Spear, 2011). We then merge these data with the Bay Area tract-level population and calculate daytime population density D_t for each tract t as:

$$D_t = \frac{P_t + I_t - O_t}{A_t}$$

where P_t is the tract’s population; I_t is its inbound commuters; O_t is its outbound commuters; and A_t is its land area (km2). We map these tracts in Figure 1 by trimming their geometries to California’s state shapefile extents to make the bay legible (census tracts otherwise cover it) and because we normalized by land area. However, this does raise an interesting question about the large population of houseboats off the shores of Sausalito. Finally, we produce an interactive web map.

The median daytime population density across all Bay Area tracts is 2097 persons/km2, but the distribution has an extreme right tail: the standard deviation, σ, of Figure 1’s highest quantile (15,330) far exceeds the average σ across its other quantiles (249). Table 1 lists the 10 tracts with the highest daytime densities, all of which are within the city of San Francisco. The densest tract – comprising the central Financial District and Union Square neighbourhoods – contains over 127,000 persons/km2 during the day, when its population swells by a factor of 40. Among these 10 tracts, only one has a net outflow of commuters. Region-wide, the tract daytime population’s Gini coefficient is 70% higher than that of night-time population (0.36 versus 0.21), suggesting that people concentrate into fewer tracts during the day but disperse more evenly among all tracts when they return home at night.

We cannot calculate confidence intervals to assess the estimates in a meaningful way from these data, as they are not sampled. The decennial census is a complete enumeration and the LODES data are an administrative payroll enumeration. Had we used ACS data, we could have looked at sample estimates and standard errors, but this still would not account for the LODES enumeration. More importantly, we systematically ignore or discount the flow of tourists, shoppers, students, telecommuters, the self-employed, government workers and populations less legible to these data products, such as certain minority groups and the homeless (Spear, 2011). According to its post-enumeration survey, the 2010 census systematically over-counted white Americans and undercounted black and Hispanic Americans as well as renters (Groves, 2012).

<table>
<thead>
<tr>
<th>Tract</th>
<th>Population</th>
<th>Daytime population</th>
<th>Land area (km2)</th>
<th>Daytime density (persons/km2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06075011700</td>
<td>1783</td>
<td>70,728</td>
<td>0.556</td>
<td>127,198</td>
</tr>
<tr>
<td>06075020100</td>
<td>6172</td>
<td>42,635</td>
<td>0.446</td>
<td>95,652</td>
</tr>
<tr>
<td>06075012301</td>
<td>2734</td>
<td>8006</td>
<td>0.092</td>
<td>86,882</td>
</tr>
<tr>
<td>06075011800</td>
<td>1500</td>
<td>4850</td>
<td>0.057</td>
<td>85,743</td>
</tr>
<tr>
<td>06075061100</td>
<td>4307</td>
<td>19,051</td>
<td>0.240</td>
<td>79,424</td>
</tr>
<tr>
<td>06075030101</td>
<td>4233</td>
<td>22,416</td>
<td>0.346</td>
<td>64,768</td>
</tr>
<tr>
<td>06075017801</td>
<td>3499</td>
<td>13,051</td>
<td>0.214</td>
<td>60,971</td>
</tr>
<tr>
<td>06075061500</td>
<td>11,502</td>
<td>92,865</td>
<td>1.670</td>
<td>55,617</td>
</tr>
<tr>
<td>06075012502</td>
<td>3821</td>
<td>3319</td>
<td>0.061</td>
<td>54,162</td>
</tr>
<tr>
<td>06075012302</td>
<td>3073</td>
<td>4829</td>
<td>0.093</td>
<td>52,122</td>
</tr>
</tbody>
</table>
Nevertheless, Figure 1’s density patterns conform to expectations. The Bay Area’s polycentric urban cores clearly stand out, but there are anomalies. Owing to its student and government worker populations (which LODES ignores), the University of California, Berkeley’s campus shows an absurdly low daytime density. What about other places that would be prime locations for urban vitality, but whose daytime populations are drastically underrepresented by residence and commute, such as public plazas, parks and high schools? Alternative data, such as mobile phone traces, could tell other sides of this story, but are biased toward certain populations and can be difficult to acquire. Finally, not all urban spaces are created equal: the characteristics, culture and type of density matter. An office building and a public square could exhibit similar daytime density while contributing very differently to urban vitality, let alone posing different problems for infrastructure engineering and evacuation planning.

Human density plays a recognized role in city vitality, reduced energy consumption and greenhouse gas emissions, and increased pooling and matching agglomeration efficiencies. This study has discussed one method of estimating daytime density from census population data and LODES payroll data, producing a rough estimate biased toward commuters and against less-legible daily population flows.

NOTES

1. US Census tracts 2010 TIGER/Line shapefile with DP1 (see http://www2.census.gov/geo/tiger/TIGER2010DP1/Tract_2010Census_DP1.zip).
2. US Census Bureau 2010 US states 1:500,000 resolution shapefile (see http://www2.census.gov/geo/tiger/GENZ2010/gz_2010_us_040_00_500k.zip).
3. California LEHD LODES7 2010 origin–destination main data (see https://lehd.ces.census.gov/data/lodes/LODES7/ca/od/ca_od_main_JT00_2010.csv.gz).
4. A Python and a Jupyter notebook were used to conduct this analysis and to produce the choropleth map. For the code, see https://github.com/gboeing/data-visualization/tree/master/daytime-population-density/.

ORCID

Geoff Boeing http://orcid.org/0000-0003-1851-6411

REFERENCES

