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Abstract

Background: Epistasis and gene-environment interactions are known to contribute significantly 

to variation of complex phenotypes in model organisms. However, their identification in human 

association studies remains challenging for myriad reasons. In the case of epistatic interactions, 

the large number of potential interacting sets of genes presents computational, multiple hypothesis 

correction, and other statistical power issues. In the case of gene-environment interactions, the lack 

of consistently measured environmental covariates in most disease studies precludes searching for 

interactions and creates difficulties for replicating studies.

Results: In this work, we develop a new statistical approach to address these issues that leverages 

genetic ancestry, defined as the proportion of ancestry derived from each ancestral population (e.g. 

the fraction of European/African ancestry in African Americans), in admixed populations. We 

applied our method to gene expression and methylation data from African American and Latino 

admixed individuals respectively, identifying nine interactions that were significant at p < 5 × 
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10−8. We show that two of the interactions in methylation data replicate, and the remaining six are 

significantly enriched for low p-values (p < 1.8 × 10−6).

Conclusion: We show that genetic ancestry can be a useful proxy for unknown and unmeasured 

covariates in the search for interaction effects. These results have important implications for our 

understanding of the genetic architecture of complex traits.

Keywords

Gene-environment interaction; gene-gene interactions; admixture

II. Background

Genetic association studies in humans have focused primarily on the identification of 

additive single nucleotide polymorphism (SNP) effects through marginal tests of association. 

There is growing evidence that both epistatic and gene-environment (G × E) interactions 

contribute significantly to phenotypic variation in humans and model organisms (Hemani et 

al., 2014; Jemal et al., 2011; Kang et al., 2014; Rouhani et al., 2014). In addition to 

explaining additional components of missing heritability, interactions lend insights into 

biological pathways that regulate phenotypes and improve our understanding of their genetic 

architectures. However, identification of interactions in human studies has been complicated 

by the computational and multiple testing burden in the case of epistatic interactions, and the 

lack of consistently measured environmental covariates in the case of G × E interactions 

(Eichler et al., 2010; Manolio et al., 2009).

To overcome these challenges, we leverage the unique nature of genomes from recently 

admixed populations such as African Americans, Latinos, and Pacific Islanders. Admixed 

genomes are mosaics of different ancestral segments (Seldin, Pasaniuc, & Price, 2011) and 

for each admixed individual it is possible to accurately estimate genetic ancestry, the 

proportion of ancestry derived from each ancestral population (e.g. the fraction of European/

African ancestry in African Americans) and commonly denoted as θ (Alexander, Novembre, 

& Lange, 2009). Ancestry has been previously leveraged to demonstrate that an array of 

environmental and biomedical covariates are correlated with θ (Burchard et al., 2003; Cheng 

et al., 2012; Choudhry et al., 2006; Florez et al., 2011; Kumar et al., 2013; 2010; Price et al., 

2008; Reiner et al., 2007; Sanchez et al., 2010; Shaffer et al., 2007; Ziv et al., 2006) and we 

therefore consider its use as a surrogate for unmeasured and unknown environmental 

exposures. θ is also correlated with the genotypes of SNPs that are differentiated between 

the ancestral populations, suggesting that θ may be effectively used as a proxy for detecting 

multi-way epistatic interactions. Therefore, we propose a new SNP by θ test of interaction in 

order to detect evidence of interactions in admixed populations. Detecting SNP by θ 
interactions promises to yield insights into the genetic architecture of disease risk and other 

complex traits.

We first investigate the properties of our method through simulated genotypes and 

phenotypes of admixed populations. In our simulations we demonstrate that differential 

linkage-disequilibrium (LD) between ancestral populations can produce false positive SNP 

by θ interactions when local ancestry is ignored. To accommodate differential LD, we 
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include local ancestry in our statistical model and demonstrate that this properly controls this 

confounding factor. We also show that our approach, the Ancestry Test of Interaction with 

Local Ancestry (AITL), is well-powered to detect G × E interactions when θ is correlated 

with the environmental covariates of interest and multi-way epistatic interactions. The power 

for detecting pairwise G × G interactions at highly differentiated SNPs is lower than direct 

interaction tests even after accounting for the additional multiple testing burden. However, 

the results of our simulations show that AITL is well powered to detect multi-way epistasis 

involving tens or hundreds of SNPs of small effects, not detectable by pairwise tests.

We first examined molecular phenotypes by applying our method to gene expression data 

from African Americans, as well as DNA methylation data from Latinos. Gene expression 

traits have previously been shown to have large-scale differences as a function of genetic 

ancestry (Price et al., 2008). Other molecular phenotypes, such as LDL levels, have also 

been shown to be associated with genetic ancestry (Fraser, Lam, Neumann, & Kobor, 2012; 

Galanter et al., 2017; Peralta et al., 2010; Price et al., 2008; Reiner et al., 2007; Spielman et 

al., 2007). For gene expression in particular, Price et al. (2008) showed that the effects of 

ancestry on expression are widespread and not restricted to a handful of genes. Additionally, 

molecular phenotypes are often used in deep phenotyping and Mendelian randomization 

studies and are thus directly relevant to elucidating disease biology(Delude, 2015; 

Vimaleswaran et al., 2013).

We identified one genome-wide significant interaction (p < 5 × 10−8) associated with gene 

expression in the African Americans and eight significant interactions (p < 5 × 10−8) 

associated with methylation in the Latinos. Two of the eight interactions associated with 

DNA methylation in the Latinos also replicated and the remaining six were enriched for low 

p-values (p < 1.8 × 10−6). To demonstrate that our approach works in larger data sets we also 

applied AITL to asthma case-control data from Latinos and observed well-calibrated test 

statistics. Together, these results provide evidence for the existence of interactions regulating 

expression and methylation and show that our approach is statistically sound.

III. Materials and Methods

Our approach is best illustrated with an example. First consider testing a SNP for interaction 

with an environmental covariate E. θ can serve as a proxy for E if the two are correlated, 

even if E is unknown or unmeasured (see Figure 1a). Now consider testing a SNP s for 

interaction with a SNP j≠ s that is highly differentiated in terms of ancestral allele 

frequencies. For example, a SNP that has a high allele frequency in one ancestral population 

and a low allele frequency in the other ancestral population. θ can be used as a proxy for j 
because θ and the genotypes of SNP j will be correlated. Consider the case where j has a 

frequency of 0.9 in population 1 and frequency of 0.1 in population 2. Individuals with large 

values of θ (percentage of ancestry from population 1) are more likely to have derived j from 

population 1 and on average have greater genotype values at j. Similarly, individuals with 

small values of θ are more likely to have derived j from population 2 and on average have 

smaller genotype values. Thus, θ will be correlated with the genotypes of the individuals for 

highly differentiated SNPs and can serve as a proxy for detecting interactions (see Figure 

1b).
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Consider an admixed individual i who derives his or her genome from k ancestral 

populations. We denote individual i’s global ancestry proportion as 

θi1,  θi2, …,  θik ,  where ∑ j = 1
k θi j = 1. The local ancestry of individual i at a SNP is denoted 

as γia ∈ {0,1,2} and is equal to the number of alleles from ancestry a ∈ {1 … k} inherited at 

that SNP. Current methods allow us to estimate ancestry directly from genotype data both 

globally and at specific SNPs (Alexander et al., 2009; Baran et al., 2012). We denote the 

genotype of an individual i at a given SNP as gi ∈ {0,1,2} and the corresponding phenotype 

as yi.

In this work, we model continuous phenotypes in an additive linear regression framework. 

Assuming n (unrelated) individuals, define y  to be the vector of all individuals’ phenotypes. 

The model for the phenotype is then

y =  X β +   ε

where ε   ∼  𝒩 0,  σ   is a n×1 vector of error terms, X is a n×v matrix of v covariates, and β

is a v×1 vector of the covariate effect sizes. We note that in our notation v 2 = v T v  for a 

vector   v . Assuming independence, the likelihood under this model is:

L =   1
σ 2π

n
 exp − 1

2σ2 y − X β
2

Then the log likelihood is given by the following expression:

log L =   − nlog 2π − nlog σ −
y − X β

2

2σ2

Let L1 denote the likelihood under the alternative and L0 the likelihood under the null. We 

can compute the log-likelihood ratio statistic (D) using a maximum likelihood approach:

D = − 2  log L1 − log L0 = 2 nlog σL1
+

y − X β L1

2

2σL1
2 − 2 nlog σL0

+
y − X β L0

2

2σL0
2

where β L1
 and σL1

 are the maximum likelihood estimators of β  and σ under the alternative, 

respectively and β L0
 and σL0

 are the maximum likelihood estimators (MLEs) of β  and σ 

under the null, respectively.

We note that for a case-control phenotype we would use the following likelihood and log-

likelihood ratio statistic, assuming a logistic regression model:
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L =   ∏
i = 1

n 1

1 + e
−Xi β

yi

1 − 1

1 + e
−Xi β

1 − yi

D = − 2  log L1 − log L0 = − 2 ∑
i = 1

n
−log 1 + e

−Xi β L1 + ∑
i = 1

n
1 − yi − Xi β L1

+ 2

∑
i = 1

n
−log 1 + e

−Xi β L0 + ∑
i = 1

n
1 − yi −Xi β L0

where Xi is the i-th row of the matrix X, which correspond to the covariates of individual i 
and yi ∊ {0,1} is the phenotype of individual i.

For linear regression, the MLE of the effect sizes is β = XTX
−1

XT y , and the MLE of the 

error variance is σ2 = 1
n y − X β

2
. β L1

, σL1
2  and β L0

,  σL0
2  are the effect sizes and error 

variance estimates that maximize the respective likelihoods. D is distributed as χ2 with k 
degrees of freedom (df), where k is the number of parameters constrained under the null.

1-df Ancestry Interaction Test (AIT)

The first test we present is the standard direct test of interaction. We test for a SNP’s 

interaction with θ instead of an environmental covariate or another genotype. Let 

g = g1,  …, gn  be the vector of the individuals’ genotypes at a given SNP, 

θ a = θ1a,  …, θna  be the vector of their global ancestries for ancestry a, and g × θ a be the 

vector of interaction terms which result from the component-wise multiplication of the 

genotype and global ancestry vectors. We test the alternative hypothesis βG × θ ≠ 0  against 

the null hypothesis βG × θ = 0 .

H1: y =  βg g + βG × θ g × θ a + βθ θ
a

H0: y =  βg g + βθ θ a

In this test of interaction, we test a single ancestry versus the other ancestries that may be 

present in the population of interest. One parameter is constrained under the null which 

results in a statistic with k=1 df.
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1-df Ancestry Interaction Test with Local Ancestry (AITL)

Given that the individuals we analyze in this work are assumed to be admixed, there is 

potential for confounding due to differential LD. An interaction that is not driven by biology 

could occur due to the possibility that a causal variant may be better tagged by a SNP being 

tested on one ancestral background versus another (See Figure 1c). We account for the 

different LD patterns on varying ancestral backgrounds by including local ancestry as an 

additional covariate in AITL. By including local ancestry, we assume that the SNP being 

tested is on the same local ancestry block as the causal SNP that it may be tagging. Such an 

assumption is reasonable because admixture in populations such as Latinos and African 

Americans are relatively recent events and their genomes have not undergone many 

recombination events. As a result, local ancestry blocks on average stretch for several 

hundred kilobases (Price et al., 2007; M. W. Smith et al., 2004).

Let γ a = γ1a, …, γna  be the vector of local ancestry calls for all individuals for ancestry a 

and let g × γ a be the interaction terms from piecewise multiplication of the two vectors. We 

use the following alternative and null hypotheses:

H1: y =  βg g + βG × θ g × θ a + βθ θ
a

+ βγ γ
a

+ βG × γ g × γ a 

H0: y =  βg g + βθ θ
a

+ βγ γ
a

+ βG × γ g × γ a

Here we are testing for an interaction effect, i.e. βG × θ ≠ 0, and constrain one parameter 

under the null resulting in a statistic with k=1 df. All of these test statistics are 

straightforwardly modified to jointly incorporate several ancestries in the case of multi-way 

admixed populations. This can be done by adding in global and local ancestry terms for 

ancestries that are not collinear. For example, in Hispanic Latinos, this would be the 

European and Native American components of ancestry. Similarly, for K-way admixed 

populations, global and local ancestry components may be added into the analysis as long as 

ancestries included are not highly collinear.

Standard Pairwise Test of Interaction and Controlling Confounding in Admixed 
Populations

Here we present the standard approach for testing for interaction between two SNPs s and j. 
We use the following alternative and null hypotheses.

H1: y =   βs g
s

+ β j g
j

+ βs × j g
s

× g j + βθ θ a 

H0: y =  βs g s + β j g j + βθ θ a 
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If AITL is significant for a given SNP s, then any SNP j tested for interaction with s may be 

biased if j is correlated with covariates that are also correlated with θ. We thus, propose the 

following alternative and null hypotheses:

H1: y =   βs g
s

+ β j g
j

+ βs × j g
s

× g j + βθ θ a +  βs × θ g s × θ a  

H0: y =  βs g
s

+ β j g
j

+ βθ θ a +  βs × θ g s × θ a  

We note that the utility of this test will require further investigation (see Discussion).

Simulation Framework

For all our simulations, we simulated 2-way admixed individuals. Global ancestry for 

ancestral population 1 (θ1) was drawn from a normal distribution with μ = 0.7 and σ = 0.2. 

Individuals i with θi1 > 1 or θi1 < 0 were assigned a value of 1 or 0, respectively. We 

simulated phenotypes of individuals to investigate our method in four different scenarios: G 
× E interactions, pairwise epistatic interactions, multi-way epistatic interactions, and false 

positive interactions due to local differential tagging.

To simulate phenotypes under the situation of a G × E interaction, we simulated a single 

SNP. For each individual i, we assigned the local ancestry or the number of alleles derived 

from population 1 (γi1) for each haplotype by performing two binomial trials with the 

probability of success equal to θi1. We then drew ancestry specific allele frequencies 

following the Balding-Nichols model by assuming a FST = 0.16 and drawing two population 

frequencies, p1 and p2, from the following beta distribution (Balding & Nichols, 1995).

p1, p2  ∼ Beta
p 1 − FST

FST
,

1 − p 1 − FST
FST

where p is the ancestral population allele frequency and is set to 0.2. Genotypes were drawn 

using a binomial trial for each local ancestry haplotype with the probability of success equal 

to p1 or p2 for values of γi1 = 0 or 1. Environmental covariates correlated with the 

proportion of ancestry from population 1, Ei, were generated for each individual i by 

drawing from a normal distribution 𝒩 μ = θi1,  σE , where σE is the standard deviation of the 

environmental covariates. σE was varied from 0 to 5 in increments of 0.005 to create Ei’s 

that were correlated with individuals’ global ancestries in varying degrees. We generated 

phenotypes for individuals assuming only an interaction effect by drawing from a normal 

distribution, 𝒩 μ = βG × E ×  g
i1 × Ei,  σ = 1  for a given interaction effect size (βG×E). We 

show the relationship of this simulation framework with modeling environment as a linear 

function of ancestry (see Environment as a Linear Function of Genetic Ancestry). In 

addition, we simulated the case in which E is a smooth (C∞) function of genetic ancestry so 
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that E can be approximated using a Taylor series expansion (see Environment as a Smooth 
Function of θ).

To simulate phenotypes based on pairwise epistatic interactions, we simulated two SNPs. At 

both SNPs, we assigned the local ancestry values as described for the G × E case. We 

assigned genotypes for individuals at the first SNP assuming an allele frequency of 0.5 for 

both populations and drawing from two binomial trials. We assigned genotypes at the second 

SNP over a wide range of ancestry specific allele frequencies to simulate different levels of 

SNP differentiation. Ancestry specific allele frequencies were initially p1 = p2 = 0.5 and 

iteratively increasing p1 by 0.005 while simultaneously decreasing p2 by 0.005 until p1 = 

0.95 and p2 = 0.05. Genotypes at the second SNP were drawn using the same approach 

described for G × E. Using the simulated genotypes, phenotypes were drawn from a normal 

distribution, 𝒩 μ = βG × G ×  g
i1 × gi2,  σ = 1 , where gis is the genotype for individual i at the 

simulated SNP.

To simulate phenotypes based on multi-way epistatic interactions, we simulated a SNP s and 

m (independent) SNPs with pairwise interactions with s. Genotypes for individuals at SNP s 
were assigned assuming an allele frequency of 0.5 for both populations and drawing from 

two binomial trials. Genotypes at the m interacting SNPs were assigned in the same manner 

as the second SNP in the pairwise interaction simulations. Using the simulated genotypes, 

phenotypes were drawn from a normal distribution, 𝒩 μ = ∑ j = 1
m βs × j   gis × gi j ,  σ = 1

where gix is the genotype for individual i at the simulated SNP x.

To simulate the scenario of differential LD on different ancestral backgrounds leading to 

false positives, we simulated phenotypes based on a single causal SNP that was tagged by 

another SNP. At both SNPs, local ancestries were assigned as described previously and 

genotypes were drawn using ancestry specific allele frequencies. Ancestral allele 

frequencies were assigned such that the average r2 between the causal and tag SNP was 

0.272 on the background of ancestral population 1 and 0.024 on the background of ancestral 

population 2. Thus, the tag SNP was only a tag on the population1 background and not on 

the population 2 background. Phenotypes were drawn from a normal distribution, 

𝒩 μ = βCausal × gic,  σ = 1 , assuming no interaction and βCausal = 0.7, where gic is the 

genotype of individual i at the causal variant c.

Environment as a Linear Function of Genetic Ancestry—Assume environment is a 

linear function of genetic ancestry, i.e E = αθ + δ, where δ ∼ 𝒩 μδ, σδ  and 

θ ∼ Truncated 𝒩 μθTR, σθTR,  a = 0,  b = 1 . This means θ ∼ 𝒩 μθ, σθ , under the constraint 

that 0 < θ < 1. The assumption of a truncated normal distribution for θ is reasonable; indeed, 

we find no significant difference with the empirical distribution in our data (p=0.701 for 

GALA II Mexicans and p=0.216 for GALA II Puerto Ricans, Kolmogorov-Smirnov Test). 

Let π1 =
a − μθ

σθ
 ,  π2 =

b − μθ
σθ

, Z = Φ(π2) − Φ(π1), ϕ the probability density function of the 

standard normal, and Φ the cumulative distribution function of the standard normal. Then θ 
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will have mean μθTR = μθ +
ϕ π1 − ϕ π2

Z σθ and variance 

σθTR
2 = σθ

2 1 +
π1ϕ π1 − π2ϕ π2

Z −
π1ϕ π1 − π2ϕ π2

Z

2
.

This implies E is random variable with mean given by E[E] = E[αθ + δ] = αE[θ] + E[δ] = 

αE[θ] = αμθTR, and variance given by var E =  α2var θ + var δ = α2σθTR
2 + σδ

2. Thus our 

simulation framework captures the case where E is normally distributed with mean and 

variance given above.

Environment as a Smooth Function of θ—More generally, if the environment E is a 

smooth function (thus, also continuous) of θ, then E can be written as a Taylor series 

expansion[31]. Let r ∈ ℤ and αr ∈ ℝ. If environment is a function of ancestry, i.e.

E = f θ = α0 + ∑
r = 1

∞
αr θ − μθ

r

Then the correlation between E and θ is given by

cor E,  θ =  cor θ,  α0 + ∑
r = 1

∞
αrcor θ,   θ − μθ

r

We show empirically that as r → ∞, cor(θ,(θ − μθ)r) → 0 (see Supplementary Figure S6). 

This implies that cor(E,θ) is dominated by the first few terms of the summation.

Thus, we simulated an environmental factor of the form

E = f θ = α0 + ∑
r = 1

2
αr θ − μθ

r

where α0 ∼  𝒩 μ = 0, σ . We varied σ from 0 to 1 in increments of 0.1 to allow for the 

correlation between E and θ to vary from 0 to 1. α1 was set to 1 (which corresponds to the 

first derivative f’(μθ) being positive, indicating that the environment increases with ancestry 

at the mean) and α2 was set to 0.1 (which corresponds to the second derivative f’’(μθ) being 

positive, indicating the environment is concave upward at the mean) for all simulations. Note 

that although we made specific choices of these coefficients, this provides a general 

framework for modeling environment as a smooth function of ancestry.

We implemented our approach in an R package (GxTheta), which is available for download 

at http://www.scandb.org/newinterface/GxTheta.html
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Ancestry Inference

Global ancestry inference was done using ADMIXTURE (Alexander et al., 2009) and local 

ancestry inference was done using LAMP-LD (Baran et al., 2012). CEU and YRI from 1000 

Genomes Phase 3 (McVean et al., 2012) were used as the European and African reference 

panels. For the Native American reference panels, 95 Native Americans genotyped on the 

Axiom LAT1 array were used (Drake et al., 2014).

Filtering for Related Individuals

All analyses in real data were filtered for related individuals due to the possibility of cryptic 

relatedness causing false positives. To filter for related individuals, we estimated kinship 

coefficients between all pairs of individuals using REAP (Thornton et al., 2012). We defined 

two individuals as related if they had a kinship coefficient greater than or equal to 0.025. For 

a pair of related individuals, we removed the one with a greater number of other individuals 

to whom he or she was related. In the case of a tie, we removed one of the pair at random.

Data Normalization

Gene Expression Normalization—Gene expression data (see Results) were first 

standardized for each gene such that mean expression was 0 and variance was 1. We then 

computed a covariance matrix of individual’s expression values and performed PCA on the 

covariance matrix. Residuals were computed for all expression values by adjusting for the 

top 10 principal components and the mean for each gene was added back to the residuals. 

Due to the high dynamic range of gene expression compared to methylation we 

conservatively chose to additionally perform quantile normalization. We then sorted the gene 

expression residuals and used the quantiles of their rank order to draw new expression values 

from a normal distribution,  𝒩 μ = 0,  σ = 1 , by using the inverse cumulative density 

function24,25.

Methylation Data Normalization—Raw methylation values (see Results) were first 

normalized using Illumina’s control probe scaling procedures. All probes with median 

methylation less than 1% or greater than 99% were removed and the remaining probes were 

logit-transformed as previously described (Du et al., 2010). To control for extreme outliers, 

we truncated the distribution of methylation values. For a given probe, we first computed the 

mean and standard deviation of the methylation values. We then set any methylation values 

deviating more than 2.58 standard deviations from the mean to the methylation value 

corresponding to the 99.5th quantile.

IV. Results

Simulated Data

To determine the utility of using θ as a proxy for unmeasured and unknown environmental 

covariates, we applied the AITL to simulated 2-way admixed individuals. We tested θ1, the 

proportion of ancestry from ancestral population 1, for interaction with simulated SNPs (see 

Simulation Framework). Power was computed over 1,000 simulations, assuming 10,000 

SNPs being tested, and using a Bonferroni correction p-value cutoff of 5 × 10−6. We 

calculated the power using assumed interaction effect sizes (either βG×G or βG×E) of 0.1, 0.2, 
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0.3, and 0.4 (see Simulation Framework). Although the few interactions reported for human 

traits and diseases have smaller effects in terms of the phenotypic variance they explain, we 

simulated large effects because genetic and environmental effect sizes in omics data, such as 

the expression and methylation data considered here, are known to be of larger magnitude. 

For example, some cis-eQTL SNPs explain up to 50% of the variance of gene expression 

(Grundberg et al., 2012). However for most phenotypes, known interactions will explain a 

very small proportion of the phenotypic variance, mainly due to the fact that so few 

interactions have been identified and replicated (Aschard, Gusev, Brown, & Pasaniuc, 2015).

Power When Using θ as a Proxy for Highly Differentiated SNPs—To determine 

whether using θ as a proxy for highly differentiated SNPs is more powerful than testing all 

pairs of potentially interacting SNPs directly, we simulated two interacting SNPs in 1000 

admixed individuals (see Simulation Framework). We then tested for an interaction using 

AITL by replacing the genotypes at the highly differentiated SNP with θ 1. We observed that 

even with moderate effect sizes, using θ in place of the actual genotypes does not provide 

any increase in power even after accounting for multiple corrections (see Figure 2a). This is 

in agreement with recent work showing the limited utility of local ancestry by local ancestry 

interaction test to identify underlying SNP by SNP interaction when genotype data are 

available (Aschard et al., 2015). For the larger effect sizes we simulated, we do see power 

increasing as the difference between ancestral frequencies increases. The plots show that 

AITL has little power unless the effect was very strong. Figure 2b reveals that even with the 

multiple correction penalty, testing all pairwise SNPs directly is always more powerful. We 

note that when testing the interacting SNPs directly, we used a cutoff p-value of 1 × 10−9 

since in theory we were testing all unique pairs of 10,000 SNPs. Based on these results, we 

would recommend testing for pairs of interacting SNPs directly if pairwise G × G 
interactions are a subject of interest in the study.

However, when multi-way interactions are considered, AITL may become more powerful 

since differentiated SNPs across the genome will be correlated with genetic ancestry. These 

simulations are important as other studies have suggested that higher order interactions may 

be important for some traits (De, Hu, Moore, & Gilbert-Diamond, 2015; Hemani et al., 

2014; Ritchie et al., 2001). To evaluate the ability of θ to serve as a proxy for multiple 

(independent) differentiated SNPs, we simulated a scenario where a candidate SNP z had 

interactions with m SNPs (see Simulation Framework). For each interaction, we assumed a 

small interaction effect size (βG×G = 0.025), which would not be detectable using a pairwise 

approach, as we demonstrated in the pairwise simulation. Figure 3 shows that AITL is better 

powered to detect the existence of interactions than a pairwise approach in the presence of 

multiple interacting SNPs with a candidate SNP.

Power When Using θ as a Proxy Environmental Covariate—When assessing the 

utility of θ as a proxy for an environmental covariate E, we simulated 3000 individuals. E 
was simulated such that it was correlated with the global ancestries in varying degrees (see 

Simulation Framework). Our simulation framework is similar to modeling E as a linear 

function of θ. Figure 4 shows the power of the AITL as a function of the Pearson correlation 
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between θ 1 and E. The power of testing E directly is exactly the power of the AITL when 

the correlation is equal to 1. As expected, as the correlation increases, the power increases as 

well. When the effect size is 0.1, the power to detect a G × E interaction is low whether one 

uses θ1 or E. However, both tests are much better powered for effect sizes greater than or 

equal to 0.2, with the AITL’s power being dependent on the level of correlation. We saw 

similar results when we simulated the case where E is a smooth function of θ (see 

Environment as a Smooth Function of θ and Supplementary Figure S7). Note that using θ as 

a proxy for E is equivalent to testing GxE in the presence of measurement error. Under the 

assumption of non-differential error with regard to the outcome (e.g. the correlation between 

θ and E is equal among cases and control) such a test is underpowered but has a controlled 

type I error rate under the null (Wong, Day, Luan, Chan, & Wareham, 2003).

Differential LD—To demonstrate that differential LD has the potential to cause inflated 

test statistics, we ran 10,000 simulations of 1000 admixed individuals. For each individual 

we simulated 2 SNPs, a causal SNP and a tag SNP. The LD between the tag SNP and causal 

SNP was different based on the ancestral background the SNPs were on (see Simulation 

Framework). Over 10,000 simulations, we computed the mean χ1
2 test statistic for the AIT 

and the AITL. We note that the phenotypes for these simulations were generated under a 

model that assumed no interaction. We observed a mean χ1
2 = 0.996 with a standard deviation 

of 1.53 for AITL. AIT, which does not condition on local ancestry, had a mean χ1
2 = 3.59

with a standard deviation of 3.60. We also looked at genomic control λGC, the ratio of the 

observed median χ2 over the expected median χ2 under the null (Devlin & Roeder, 2004). 

λGC compares the median observed χ2 test statistic versus the true median under the null. In 

our simulations, we observed λGC = 5.81 for AIT and λGC = 0.980 for AITL (see 

Supplementary Figure S1). Last, we computed the proportion of test statistics that passed a 

p-value threshold of .05 and .01 in our simulations. The AIT had 3687 statistics passing a p-

value of .05 and 1687 at a threshold of .01, whereas AITL had 464 and 96 at the same p-

value thresholds. The results for AITL are as expected under a true null. The results from 

our simulations show that not accounting for local ancestry can result in inflated test 

statistics and can potentially lead to false positive findings.

Real Data

Coriell Gene Expression Results—We first applied our method to the Coriell gene 

expression dataset (Simon-Sanchez et al., 2006). The Coriell cohort is composed of 94 

African-American individuals and the gene expression values of ~8800 genes in 

lymphoblastoid cell lines (LCLs). Since African Americans derive their genomes from 

African and European ancestral backgrounds, we tested for interaction between a given SNP 

and the proportion of European ancestry, θEUR. Each SNP by θEUR term was tested once for 

association with the expression of the gene closest to the SNP. We observed well-calibrated 

statistics with a λGC equal to 1.04 (see Supplementary Figure S2). In the LCLs, we found 

that interaction of rs7585465 with θEUR was associated with ERBB4 expression (AITL p = 

2.95 × 10−8, marginal p = 0.404) at a genome-wide significant threshold (p ≤ 5 × 10−8). 

Here the marginal p-value is derived from standard linear regression of expression on 
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genotype while controlling for global population structure. rs7585465 has a ‘C’ allele 

frequency of 0.218 in the Corriell data and appears to be differentiated between CEU and 

YRI with allele frequencies of 0.619 and 0.097 in the respective populations.

Given that the gene expression values come from LCLs (all cultured according to the same 

standards), the SNPs may be interacting with epigenetic alterations due to environmental 

exposures that have persisted since transformation into LCLs. This scenario is unlikely, and 

we believe that signals are driven by multi-way epistatic interactions. In our simulations, we 

showed that using θ as a proxy for a single highly differentiated SNP is underpowered 

compared to testing all pairs of potentially interacting SNPs directly. However, there are 

many SNPs that are highly differentiated across the genome with which θ will be correlated. 

It is therefore possible that θ is capturing the interaction between the aggregate of many 

differentiated trans-SNPs (i.e. global genetic background) and the candidate SNP. This is 

consistent with a recently reported finding, conducted in human iPS cell lines, that genetic 

background accounts for much of the transcriptional variation(Martin et al., 2014; Rouhani 

et al., 2014).

Although we believe the ERBB4 result to be representative of multi-way epistasis, we 

performed a standard pairwise interaction test (see Methods) to check for interaction 

between rs7585465 and other SNPs genome-wide. Interestingly, we found that the standard 

interaction test (see Methods) showed substantial departure from the null with a λGC equal 

to 1.8 (see Supplementary Figure S3). Since the interaction of rs7585465 by θ was 

significant, the pairwise interaction test statistics of rs7585465 by any SNP j can be inflated 

if j is correlated with θ. We found that including the original significant SNP by θ term in 

the null (see Methods) brought the λGC down to 1.05, and controlled for such scenarios in 

this dataset (See Supplementary Figure S3). As we had previously anticipated, identifying 

the exact interactions driving the SNP by θ interaction proved to be difficult. We found one 

borderline significant SNP (rs4839709, p = 3.08 × 10−7) but no interactions that passed 

genome-wide significance. These results are consistent with what we have observed in 

simulations, in which even though a standard pairwise interaction test is underpowered to 

detect interactions, AITL is able to identify the main locus involved in a multi-way 

interaction.

GALA II Case-Control—To determine if our method is biased in large structured genome-

wide association study (GWAS) data, we applied AITL to case-control data from a study of 

asthmatic Latino individuals called the Genes-environments and Admixture in Latino 

Americans (GALA II) (Borrell et al., 2013). The dataset includes 1158 Mexicans and 1605 

Puerto Ricans, which were analyzed separately. Case status was assigned to individuals if 

they were between the ages of 8 and 40 years with a physician-diagnosed asthma. 

Additionally, they had to have experienced 2 or more asthma related symptoms in the 

previous 2 years at the time of recruitment (Torgerson et al., 2012). In the Mexicans and 

Puerto Ricans there were 548 and 797 cases, respectively. In our analysis, we also included 

BMI, age, and sex as additional covariates. We observed well-calibrated statistics with a 

λGC equal to 1.00 and 0.98 in the Mexicans and Puerto Ricans, respectively (see 

Supplementary Figure S4). In contrast to the molecular phenotype data, searches for 

interactions in these phenotypes did not yield any findings passing genome-wide 
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significance. This is consistent with previous disease studies that have failed to find many 

replicable interactions in disease studies (Aschard et al., 2015). In the data here, the lack of 

any findings may be due to the relatively small sample size or because the effects of the 

interactions are extremely small (if they exist for covariates correlated with θEUR).

GALA II Methylation Results—We searched for interactions in methylation data derived 

from a study of GALA II asthmatic Latino individuals (Borrell et al., 2013). The 

methylation data is composed of 141 Mexicans and 184 Puerto Ricans. As the phenotype, 

we used DNA methylation measurements on ~300,000 markers from peripheral blood. As 

we had done with gene expression, we tested for interaction between a given SNP and θEUR 

using AITL. All SNPs within a 1 MB window centered around the methylation probe were 

tested. We used the European component of ancestry because it is the component shared 

most between Mexicans and Puerto Ricans (see Table 1). We observed well-calibrated test 

statistics with λGC equal to 1.06 in the Mexicans and 0.96 in the Puerto Ricans (see 

Supplementary Figure S5). We tested 128,794,325 methylation-SNP pairs, which result in a 

Bonferroni corrected p-value cutoff of 3.88 × 10−10. However, this cutoff is extremely 

conservative given the tests are not independent. We therefore report all results that are 

significant at 5 × 10−8 in either set as an initial filter. We found 5 interactions in the 

Mexicans and 3 in the Puerto Ricans that are significant at this threshold (see Table 2).

Unlike the Coriell individuals, who are 2-way admixed, the GALA II Latinos are 3-way 

admixed and derive their ancestries from European, African, and Native American ancestral 

groups. Consequently, to confirm that incomplete modeling or better tagging on one of the 

non-European ancestries was not driving the results, we retested all significant interactions 

including a second component of ancestry for AITL. In the case of the Mexicans, we 

included African and European ancestry, and in the case of the Puerto Ricans, we included 

European and Native American ancestry. Even after adjusting for the second ancestry the 

interactions between SNP and θEUR remained highly significant (see Supplementary Table 

1).

As we did for the gene expression data, we attempted to identify pairwise interactions 

involved in the methylation data results. For each genome-wide significant result, we 

performed a standard pairwise interaction test of all SNPs with the original SNP found to be 

significant with AITL. We were unable to identify any significant interactions after applying 

genomic control to the results. For all tests, we included the significant SNP by θ term (see 

Methods) in the null. For this dataset, unlike the gene expression data, we observed 

substantial remaining departure from the null (see Supplementary Table S2) even after 

including the original significant SNP by θ term, suggesting there may be other factors that 

need to be accounted for when testing for interactions in admixed populations. The results 

from our pairwise scan are what we would anticipate, given that in simulations only AITL 

(not the standard pairwise interaction test) was able to identify the main locus involved in 

the multi-way interaction.

We then performed a replication study of the significant Puerto Rican associations in the 

Mexican cohort and vice versa. To account for the fact that we are replicating eight total 

results across both populations, we used a Bonferroni corrected p-value threshold equal to .
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05/8 = 6.25 × 10−3. Two of the SNPs that AITL originally identified to have significant 

interaction with ancestry in Puerto Ricans, rs4312379 and rs8117083, replicated in the 

Mexicans (Table 2). They were also still highly significant after adjusting for a second 

component of ancestry as well (Table S1). Furthermore, there was a highly significant 

enrichment of low p-values in the replication study among the discovery results (permutation 

p < 1 × 10−4). Furthermore, 5 out of the 6 non-replicating results have a p-value less than 

0.05 (binomial test p < 1.8 × 10−6). The results of the permutation and binomial test suggests 

that the interactions that did not replicate are likely to do so with bigger sample sizes. It is 

important to note that replicated interactions and the enrichment for low p-values do not 

necessarily indicate that the same genetic or environmental covariates are interacting with 

the genetic locus in both populations. The covariates correlated with θEUR in one population 

are not necessarily those correlated with θEUR in the other population. There may be 

correlations which exist in both populations but θEUR serves as a proxy for all such 

correlated covariates and therefore should not be necessarily viewed as a proxy for any 

specific one. Overall, our results from the GALA II (methylation) cohort suggest there are 

both genetic and environmental variables contributing to epistasis that have yet to be 

discovered in admixed individuals.

V. Discussion and Conclusions

For many disease architectures, interactions are believed to be a major component of 

missing heritability (Eichler et al., 2010). Finding new interactions has proven to be difficult 

for logistical, statistical, biological, and computational reasons. In this study, we have 

demonstrated that in admixed populations, testing for G × θ interactions can be leveraged to 

overcome some of the difficulties typically encountered when searching for interactions. The 

computational cost is minimal and has the same order of magnitude as running a standard 

GWAS.

One drawback of our method is that it does not identify which covariate is interacting with a 

genetic locus. Nevertheless, the approach can show whether an interaction effect exists in a 

given dataset and if it does exist, our method ensures that an underlying genetic or 

environmental covariate(s) is correlated with ancestry. Additionally, in the case where there 

is no marginal effect, our approach identifies new loci and shows that the genetic locus 

influences the phenotype and exerts its effects through interactions, which has important 

implications for the genetic architecture of the phenotype. The relative contribution of 

additive and non-additive genetic effects to variability in molecular phenotypes and disease 

risk is an important area of investigation, and our approach provides a direct test for 

detecting non-additive contributions (Powell et al., 2013). Also, if the SNP that is being 

tested for interaction with ancestry is a perfect ancestry informative marker (i.e. is fixed for 

the major allele in one population and is fixed for the minor allele in the other population), 

potential multicollinearity may arise between genotype and local ancestry when fitting the 

AITL model. In this scenario, our approach is unable to disentangle the signal from 

differential tagging and the interaction between genotype and ancestry. However, such cases 

are exceedingly rare and are not the case for any of the results presented here.
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Environmental covariates are often not consistently measured across cohorts whereas genetic 

ancestry is nearly perfectly replicable. Testing for the presence of interaction using a nearly 

perfectly reproducible covariate may enhance our understanding of the genetic basis of 

disease and other traits. Our method also provides the additional benefit of not being 

confounded by interactions between unaccounted-for covariates (Keller, 2014).

Association testing for interaction effects involving continuous environmental exposures in 

the context of mixed-models remains an open problem. For binary environmental exposures, 

it has been shown that mixed-models control for population structure nominally better than 

including genetic ancestry (or principal components) as a covariate (Sul et al., 2016). 

Because it is unclear how mixed-models perform with continuous environmental exposures, 

especially those correlated with ancestry, in our analyses we took the standard approach of 

filtering related individuals and including ancestry as a covariate.

It has been shown that 2-step analyses may be more powerful for detecting interactions 

when exposures are binary (Hsu et al., 2012; Kooperberg & LeBlanc, 2008; Murcray, 

Lewinger, & Gauderman, 2008). However, these studies have primarily been done in a 

single homogeneous population, and the correct null distribution for the interaction effect 

must assume that the second stage procedure is independent of the marginal effect test 

statistic. In real data, using a 2-step approach in conjunction with AITL to test for 

interactions may be problematic because the interaction effect size will not necessarily be 

independent of the marginal effect size, as the allele frequency at any SNP will be a function 

of ancestry in an admixed population. Additionally, only 1 of the interaction results that we 

report here had a marginal effect (p< 0.05) and thus would have been missed by a 2-step 

approach. Thus, our approach can serve to complement or extend the frequently used 2-step 

procedure for detecting interaction effects.

Results from our multi-way epistasis simulation analyses and empirical data in cell lines 

suggest that genetic ancestry is a good proxy for genetic background, since all highly 

differentiated SNPs across the genome will be correlated with genetic ancestry. Our 

simulations also demonstrated that genetic ancestry can be a good proxy for an 

environmental covariate depending on the correlation between the two. However, it may be 

the case that there are multiple environmental factors interacting with a genetic locus, all of 

which are correlated with θ in differing degrees and effect sizes. Such a situation would 

mirror what we saw in our multi-way G × G simulations where a single interaction may not 

be detectable by using a traditional G × E test, but because θ aggregates the effects of all 

interacting covariates, AITL would be able to detect it. There are also other contexts in 

which modeling SNP by θ may be useful, such as using variance components. For example, 

SNP by θ interaction terms can be used in a mixed-model framework to test for interaction 

effects because genetic ancestry is correlated with many genetic markers and environmental 

covariates (Yang et al., 2010). We note that in our simulations, we made a normality 

assumption about the distribution of environment, as has been done in the majority GWAS to 

date. As is the case with linear regression, if model assumptions such as normality are not 

met, this may induce false positives associations.
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For some traits, there may be systematic differences between ancestral populations in the 

genetic effects on the trait. In admixed individuals with these ancestral populations, the 

effect of genetic variation on phenotype will be reflected in the correlation between 

phenotype and θ, thereby affecting epistatic and G × E interactions. It will be interesting to 

see how much of the phenotype-ancestry correlations are due to epistatic and G × E 
interactions.

In our analysis of real data, we discovered gene by θ interactions associated with some 

genes that have known interactions. The GALA II dataset consists of asthmatic cases and 

controls from the GALA II study (Nishimura et al., 2013). The interactions that we detected 

could be signal from environmental factors interacting with genetic risk factors. Smoking, in 

particular maternal smoking during pregnancy, has been shown to contribute to methylation 

status in this dataset (Galanter et al., 2017). Various other environmental factors have also 

been shown to differ between racial/ethnic groups and may contribute to these interactions 

(Nishimura et al., 2013). The detected interactions could also result from multiway epistasis 

which may be part of a wider gene network, as others have shown for other phenotypes (De 

et al., 2015; Ritchie et al., 2001). In the GALA II Mexicans, the interaction of rs925736 with 

ancestry was associated with the methylation of HDAC4, a known histone deacetylase 

(HDAC). In concert with DNA methylases, HDACs function to regulate gene expression by 

altering chromatin state (Z. D. Smith & Meissner, 2013). In Europeans, HDACs have been 

shown to be associated with lung function through direct genetic effects and through 

environmental interactions (Artigas et al., 2011; Liao, Lin, & Christiani, 2013). For the 

GALA II Puerto Ricans, rs17091085 showed an interaction associated with the methylation 

state of SERPINA6 (Table 2). Of note, interaction between birth weight and SERPINA6 has 

been previously associated with Hypothalamic-Pituitary-Adrenal axis function (Anderson et 

al., 2014). Further investigations of our interaction findings are thus warranted.

In the GALA II (methylation) dataset, two of the eight significant associations replicated 

and, in general, the results had an enrichment of low p-values in the replication dataset. 

However, we note that if the interactions detected by AITL are multi-way epistasis it is more 

likely that the results will replicate. This is because most SNPs differentiated in the 

Mexicans will still be differentiated in the Puerto Ricans, and thus will be correlated with θ. 

If the interactions detected by AITL are G × E interactions, then the interactions are less 

likely to replicate because the same environmental covariate(s) will need to be correlated 

with ancestry in both groups.

Another caveat is that the Mexicans and Puerto Ricans, though independent, are part of the 

same study and occasionally technical artifacts, such as issues with genotyping or measuring 

methylation, can affect downstream analyses of both populations. For our analyses, we have 

taken careful quality-control steps to ensure that this is not the case and there is no apparent 

inflation of test statistics as demonstrated by our values for genomic control. Future research 

of interactions using AITL should keep such caveats in mind.

We investigated in detail the potential of single SNP-SNP interactions driving the results that 

were found both in the gene expression and methylation datasets. As demonstrated by the 

wide range of λGC values, we observed that non-linear effects can cause substantial 
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departure from the null when testing for pairwise SNP-SNP interactions (Table S2). This is 

especially true when testing for interaction between SNPs s and j, where s has a significant 

interaction with θ and j is correlated with covariates that are also correlated with θ. As we 

saw in the gene expression data, including the significant SNP by θ term can properly 

control for such situations, but its use in standard pairwise interaction tests warrants further 

investigation.

Our analysis revealed the existence of interactions but does not provide a direct way to 

determine the covariate that is interacting with a SNP. Further methodological work is 

required to uncover the exact environmental exposures or genetic loci with which SNPs are 

interacting. The existence of gene by θ interactions in GALA II underscores why modeling 

interactions should be considered for future association studies and for heritability 

estimation in admixed populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Examples of How Genetic Ancestry Can Be A Proxy for Interacting Covariates. (a) Model 

of how genetic ancestry θ can be correlated with various environmental exposures, some of 

which affect a phenotype. (b) Example of how the correlation between the probability of an 

AA genotype (bars 2–4) and values of θ (bar 1) increase with higher levels of SNP allele 

frequency differentiation. In this plot p1 and p2 denote the allele frequency of allele A in 

ancestral populations 1 and 2 respectively. (c) Example of how effect sizes at a tag-SNP may 

differ due to differential LD on distinct ancestral backgrounds (here, EUR and AFR).
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Figure 2. 
Power Plots for Pairwise Interaction Simulations. Power of testing G × θ (a) versus testing 

pairwise SNPs directly (b) as a function of the difference in the ancestral allele frequencies 

at a differentiated SNP.
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Figure 3. 
Power Plots for Multi-way Pairwise Interaction Simulations Power of testing G × θ as a 

function of the difference in the ancestral allele frequencies for multiple interacting SNPs.
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Figure 4. 
Power Plots for G × E Interaction Simulations. Power of testing G × θ as a function of the 

correlation between an environmental covariate and genetic ancestry.
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Table 1.

Distribution of Ancestry in Coriell and GALA II.

Dataset θEUR θAFR θNAM

Coriell μ=0.212,
σ=0.021

μ=0.788,
σ=0.021

NA

GALA II MX μ=0.396,
σ=0.149

μ=0.043,
σ=0.025

μ=0.561,
σ=0.159

GALA II PR μ=0.641,
σ=0.094

μ=0.246,
σ=0.101

μ=0.113
σ=0.024

Mean and variance of the global ancestry distributions for each dataset. EUR, AFR, and NAM refer to European, African, and Native American 
ancestry respectively.
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Table 2.

GALA II DNA Methylation Analysis Results.

GALA II Population Probe Gene Probe ID rsid Distance 
of SNP 

to Probe

Marginal p-value AITL p-value AITL Replication p-value

MX CNFN cg14327995 rs16975986 280795 2.49E-09 5.69E-09 9.27E-03

MX C11orf95 cg16678159 rs7106153 249768 2.58E-01 2.52E-08 9.39E-02

MX NA cg05697734 rs1560919 13711 1.14E-01 2.21E-08 8.18E-03

MX TNK2 cg01792640 rs67217828 278866 4.49E-01 6.38E-09 1.43E-02

MX HDAC4 cg06533788 rs925736 9548 4.51E-01 3.09E-09 2.80E-02

PR NA cg07436864* rs8117083 31813 7.46E-02 1.34E-09 5.34E-03

PR NA cg16803083* rs4312379 63847 3.69E-01 2.29E-08 2.31E-04

PR SERPINA6 cg10025865 rs17091085 247796 6.83E-01 2.97E-08 8.05E-03

P-values for AITL applied to the methylation data in the GALA II Latinos. MX and PR denote Mexicans and Puerto Ricans respectively in the 
GALA II population columns. The probe gene column shows the gene that the methylation probe lies in. The marginal column is the p-value for 
standard linear regression of methylation on genotype while controlling for population structure.

*
indicates results that replicated between the Mexicans and Puerto Ricans.
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