
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Diversity, Collaboration, and Learning by Invention

Permalink
https://escholarship.org/uc/item/7kc3w1ns

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 35(35)

ISSN
1069-7977

Authors
Wiley, Jennifer
Goldenberg, Olga
Jarosz, Andrew
et al.

Publication Date
2013
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7kc3w1ns
https://escholarship.org/uc/item/7kc3w1ns#author
https://escholarship.org
http://www.cdlib.org/


Diversity, Collaboration, and Learning by Invention 
 

Jennifer Wiley (jwiley@uic.edu)  
Department of Psychology, 1007 W. Harrison Street 

Chicago, IL 60607 USA 
 

Olga Goldenberg 
Department of Psychology, 1007 W. Harrison Street 

Chicago, IL 60607 USA 
 

Andrew F. Jarosz 
Department of Psychology, 1007 W. Harrison Street 

Chicago, IL 60607 USA 
 

Michael Wiedmann  
Institut für Psychologie, Engelbergerstr. 41 

D-79085 Freiburg DE 
 

Nikol Rummel  
Institut für Erziehungswissenschaft, Universitätsstraße 150 

D-44801 Bochum DE 
 
 

Abstract 
Learning-by-invention is an approach to mathematical 
instruction where small groups explore possible methods of 
solution before learning the “right answer” (e.g., Schwartz & 
Martin, 2004; Kapur & Bielaczyc, 2011). In a series of studies 
we have been investigating the effects of group composition 
in terms of math ability on learning by invention. An initial 
result showed that groups consisting of a mix of both high and 
low math ability students generated a broader range of 
solution attempts when asked to invent a formula for standard 
deviation compared to more homogeneous math ability 
groups. Moreover, this wider range of solution alternatives 
predicted better performance on quizzes following a lesson on 
the topic. Subsequent work is suggesting that who emerges as 
the leader of the group matters. Ongoing analyses are also 
exploring which features of the collaborative discourse are 
critical for students to take advantage of the affordances of 
learning by invention. 

Keywords: Collaboration, Learning, Problem Solving. 

Introduction 
It is said that the road to success is paved with failure. It’s 
also said that those who do not learn from their mistakes are 
destined to repeat them.  The provocative implication of 
these aphorisms is that there may be ways in which failure 
may be instrumental for successful learning, as long as one 
is able to take something away from the failure experiences. 
This is the premise behind learning-by-invention activities. 
In learning-by-invention, students are asked to attempt to 
create a mathematical formula to accomplish a goal before 
an instructional lesson is provided about the canonical 
approach. The experience of working in a problem space 
before being told a correct answer may lay the groundwork 
for future conceptual understanding, and thereby prepare 

students for future learning. And, these benefits might 
accrue when solvers become aware of what approaches do 
not work, or become aware of constraints, obstacles, or 
desired properties for a solution through previous failures. 
There is now substantial evidence that having students 
engage in learning-by-inventions activities in small groups 
can lead to better understanding of new mathematical and 
statistical formulas compared to more traditional, direct 
methods of instruction (e.g., Schwartz & Martin, 2004; 
Kapur, 2012; Kapur & Bielaczyc, 2011).  One main 
question for our investigations is whether the composition 
of the small groups in terms of their relative expertise or 
math ability might affect the likelihood that group members 
are able to take advantage of learning-by-invention 
activities. A second main question is whether there are 
critical features of the group interactions, such as in who 
emerges as a discourse leader, or what is said during group 
discussions, that can be shown to facilitate learning. 

Although one could expect that groups where all members 
possess superior math skills would be more successful at 
any mathematical problem solving activity, another 
hypothesis is that there may be advantages to being in a 
group where there are a variety of backgrounds, 
perspectives or viewpoints that can be contributed. In 
particular, these investigations are exploring whether 
diversity in small groups may be one key to unlocking the 
potential benefits of learning-by-invention activities. 

Obviously working in groups with students with more 
advanced math skills or knowledge may help students with 
less advanced skills or knowledge by exposing them to 
advanced math concepts or ideas that they might not 
consider when working alone. However, it is also possible 
that collaborating with students with less math knowledge 
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might contribute to more successful problem solving or 
learning by students with more math knowledge. The work 
of Webb and others has suggested that more skilled students 
may benefit from teaching or explaining math concepts to 
others (e.g. Webb, 1980). In addition, to the extent that 
students with different mathematical backgrounds might 
approach problem solving in different ways, then diverse 
groups may help all members think about a broader range of 
possible solution approaches which may be particularly 
important when creative, inventive or innovative thinking is 
required (Canham, Wiley, & Mayer, 2012; Dunbar, 1995; 
Wiley & Jensen, 2005; Wiley & Jolly, 2003). 

Previous research on learning-by-invention tasks has 
suggested that groups who generate the widest range of 
possible solution attempts during the invention phase 
experience the best learning from the activity (Kapur & 
Bielaczyc, 2011). Based on this, we predict that the 
composition of the group in terms of their math expertise 
should matter, and that there may be special affordances to 
working in diverse groups.  In addition, for groups whose 
members demonstrate the best understanding of the new 
principle following learning-by-invention, we explore what 
features of their discussion may have contributed to their 
success. 

Consistency in Tea 
Small groups of undergraduates worked together on an 
invention activity before receiving a lesson on the standard 
deviation formula. For the invention activity, students were 
given data sets representing yearly antioxidant levels for 5-6 
years of tea grown by three tea growers. Students were told 
that a company wished to buy tea from the grower with the 
most consistent levels of antioxidants from year to year and 
the company has asked for the students’ help. They were 
prompted to generate as many invented formulas or step-by-
step instructions as they could for how they could compute 
the consistency of antioxidant levels for each tea grower.  

Methodology 
Two populations of undergraduate Psychology students at 
the University of Illinois at Chicago participated in this 
study1. Complete data are available for 25 triads who 
participated as part of a Research Methods course, and 20 
triads from an Introductory Psychology course.  
  Math ability/expertise was estimated based on a median-
split derived from historical data from this student 
population. Students with Math ACT scores of 24 or below 
were considered to have relatively low skill, and those with 

                                                           
1 Participants from the Research Methods Sample, who were 

more advanced in their studies, were found to outperform the 
Introductory Psychology Sample on the quiz, F(1,125) = 5.90, p < 
.02, η² = .05. Importantly, this did not interact with the group 
composition factor, F < 1.07, which meant the two samples could 
be collapsed in order to increase power, while the sample variable 
was retained as a covariate in all aggregated analyses reported 
below (for analyses of samples separately, see Wiedmann, Leach, 
Rummel, & Wiley, 2012). 

scores of 25 or above were considered to have relatively 
high skill. A score of 25 puts students in the 80th percentile 
in national norms. Students categorized as having low 
(M=21.1, SD=2.91) versus high math skill (M=28.5 
SD=2.78) differed significantly on the Math ACT, t(122) = 
14.46, p < .001. Of the 45 groups, all students were 
considered to have low math skill in 11 groups, all students 
were considered to have high skill in 9 groups, and 25 
groups had a mix of high and low skill members. Students 
were not informed about the nature of their group 
compositions. 

Groups first worked on the invention task for 30 minutes, 
and discussions were video recorded for the Introductory 
Psychology groups. For all groups, the worksheets from the 
invention activity were collected. Following the invention 
activity, participants individually read through an overview 
of the standard deviation formula and a worked example of 
how to compute standard deviation. Following instruction, 
all students were given a quiz to assess learning outcomes. 
Two items asked students to apply the formula of standard 
deviation to a new problem about the weather, and a third 
item required them to use standard deviation to invent 
standardized scores in order to compare two students’ test 
performances across different courses. Each item asked 
students to explain the mathematical reasoning behind their 
answers. This quiz served as the assessment of learning 
outcomes from the activity. 

Solution Attempts and Quiz Performance  
Coding The group worksheets from the invention activity 
(and video protocols when available) were coded for their 
inclusion of a variety of different solution approaches to the 
problem. An initial coding scheme was developed based on 
categories used by Kapur (2012). It included 5 main 
categories: 1) computing central tendencies and sums, 2) 
graphical representations, 3) frequency counts, 4) 
computing differences between adjacent scores, and 5) 
computing ranges and deviations from the mean. The final 
coding scheme with 22 subcategories was established post 
hoc based on an examination of the solutions that were 
actually obtained so that each distinct solution type had its 
own subcategory. To score the data, coders assigned each 
solution attempt to one of the 22 codes. They then 
determined whether an instance of each subcategory was 
represented in the written artifacts or not using 0, 1 coding. 
The total number of different solution approaches was 
computed by adding the number of subcategories that had at 
least one instance present in the worksheet or discussion 
(i.e., the total of the 0, 1 coding across the 22 categories).  
  In addition, a task analysis of understanding the standard 
deviation formula was used to identify several critical 
insights that students might reach during their discussions. 
The first is that methods such as noticing a high score, 
graphing histograms or bar graphs, summing scores or 
computing central tendencies will not help or are not 
sufficient to quantify consistency. Noticing differences in 
the range of values across data sets is an important first step 
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toward understanding variance. Two other key insights are 
that variance is best computed in relation to some reference 
point (such as a mean), and that somehow variations in 
positive and negative directions need to be preserved so that 
they do not cancel out when summed. Based on this 
analysis, solution attempts that included recognition of 
range, deviations from the mean, and the need to consider 
absolute values were all categorized as being of higher 
quality, and a subtotal of higher quality solution approaches 
was computed in addition to the overall total number of 
different solution approaches. 

Quiz responses were scored by categorizing each 
explanation according to the mathematical concept that was 
referenced. The same basic categories were applied across 
the 3 problems. Explanations that focused on central 
tendencies, sums, or maximum scores earned 1 point. 
Explanations that focused on ranges or differences between 
scores earned 2 points. If explanations included an incorrect 
approximation of the SD formula, they received 3 points.  If 
explanations demonstrated a correct use of the SD formula 
they received 4 points.  Combining across the three items, a 
maximum of 12 points could be reached and the final 
explanation quality composite score was computed as a 
proportion of that total. Cronbach’s α among the three quiz 
items was .80. Krippendorff’s α indicated good interrater 
reliability on all coding metrics (> .77).  
 
Quiz Performance An ANCOVA showed a significant 
effect of group composition on quiz performance, F(2,123) 
= 12.41, p < .01, η² = .17. Planned comparisons indicated 
that students in the all-low math groups had lower scores on 
the quizzes than students in either the mixed or all-high 
groups, who did not differ in quiz performance.  
  A follow-up analysis was performed to see if group 
heterogeneity affected low-skill and high-skill students 
differently. As shown in Figure 1, both high- and low-skill 
members seemed to benefit from participation in mixed 
groups. A 2x2 ANCOVA (Math Skill x Group 
Heterogeneity) revealed two significant main effects. As 
might be expected, high skill students did better than low 
skill students, F(1, 122) = 28.44, p < .01, η² = .19. In 
addition, the main effect for group heterogeneity, F(1, 122) 
= 6.29, p = .01, η² = .05, and the lack of a significant 
interaction, F < 1, indicated that both high-skill and low-
skill students benefited from working in heterogeneous 
(mixed) groups. 
 
Solution Attempts Average totals of different solution 
approaches as a function of group composition are shown in 
Figure 2. Examples of the inscriptions made on worksheets 
during the different kinds of solution attempts are shown in 
Figure 3. An ANCOVA on the total number of different 
solution approaches showed a significant effect of group 
composition, F(2, 41) = 8.55, p = .001, η² = .29. Planned 
comparisons indicated that the mixed groups considered 
significantly more different solution approaches than the all-
low and all-high groups, who did not differ.  

 
 

Figure 1: Quiz performance by group composition 
 
  When only higher quality solution approaches were 
considered, a different pattern emerged. An ANCOVA on 
the number of higher quality representations included in the 
group worksheets showed a significant effect of group 
composition, F(2, 41) = 9.47, p < .001, η² = .32. Planned 
comparisons indicated that the all-low groups considered 
fewer different high-quality solution approaches than the 
all-high and mixed groups, who did not differ. Although the 
mixed groups also tended to include higher numbers of low-
quality solution approaches, this effect did not reach 
significance, F(2, 41) = 2.76, p < .08, η² = .12.  
 

 
 

Figure 2: Solution attempts by group composition 
 
Mediational analyses suggested that it was the discussion of 
a wide range of solution approaches during learning-by-
invention activities, including the number of higher quality 
solution attempts, that mediated the effects of group 
composition. Heterogeneity predicted the variety of 
representations, B = 1.83 (SE = .27), t(126) = 6.61, p < .05, 
and variety of representations predicted quiz performance, B 
= .02 (SE = .01), t(126) = 2.47, p < .05. The total effect of 
heterogeneity on quiz performance was also significant, B = 
.09 (SE = .03), t(126) = 2.84, p < .05. However, this 
relationship decreased to non-significance when the 
mediating influence of the variety of representations was 
included in analysis, B = .04 (SE = .04), t(126) = 1.23, p = 
.22.  
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Figure 3: Example inscriptions from solution attempts 

In addition, the indirect effect (the mediated effect) of 
heterogeneity on quiz performance through representation 
variety was 0.05 (SE = 0.02), and the 95% bias-corrected 
confidence intervals for the size of the indirect effect did not 
include zero, (.01, .08) which shows that the indirect effect 
was significant at a p = .05 level (Preacher & Hayes, 2004, 
2008; Shrout & Bolger, 2002). Taken together, these 
findings provide evidence for full mediation. This analysis 
suggests that heterogeneity in groups led to better quiz 
performance because it affected the variety of solutions that 
were discussed during the learning-by-inventing activity. 
Additional analyses showed that the benefits of solution 
diversity during group discussion were demonstrated to 
contribute to better quiz performance even when the math 
ability of the students was taken into account. 

Analyses of Group Interactions  
  The second phase of analyseshas been attempting to 
understand conditions led to the success of the more diverse 
groups. In this pass through the data, the potential effects of 
group interactions, such as who emerges as a discussion 
leader, as well as the quality and content of group 
discussions, on learning outcomes are examined. Research 
on decision making groups using hidden profile paradigms 
has demonstrated the important role of leaders and experts 
in information sharing. For example, recognition of 
expertise has been found to be critical for increasing 
contributions to the group by expert members (Franz & 
Larson, 2002). In addition, group members are more likely 
to share valuable information when they are assigned a high 
status position, such as a group leader (Wittenbaum, 
Hollingshead, & Botero, 2004). This supports the 
hypothesis that the expertise of group leaders may be an 
important predictor of effective information sharing in 
learning-by-invention tasks that can subsequently influence 
learning outcomes. Differences in the group discourse and 
their relation to learning outcomes are also being explored. 
 
Coding Discourse coding was performed on the 14 mixed 
group discussions for which video recordings were 
available. Leadership was operationalized by identifying the 
group member who contributed the largest proportion of 
utterances to the group discussion. Seven of the groups in 
the sample had a leader high in math skill, and seven of the 
groups had a leader low in math skill. 
  A second goal for the discourse analyses was to explore 
the content and nature of the discourse acts. Each utterance 
made by a group member was coded into one of the 
following categories: (a) solution proposal, (b) clarification 
request or response, (c) evaluative comment, (d) comment 
related to group task coordination, (e) calculation, (f) 
comment on expertise, (g) comment about being stuck or at 
impasse, or (h) off-task comment.  

 
Leadership When the effects of these two leader types were 
examined, we found that groups with high math leaders 
discussed more high quality solution attempts (M = 3.00, SD 
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= .38) than groups with low math leaders (M = 1.57, SD = 
.79), t(12) = 2.97, p < .05. In terms of learning outcomes, 
members of groups with high math leaders scored higher on 
the quiz assessing their understanding of the standard 
deviation formula (M = .82, SD = .16) than members of 
groups with low math leaders (M = .68, SD = .16), t(40) = 
2.78, p < .01. The results of a 2x2 between-subjects 
ANOVA (math skill by leader type) with quiz performance 
as the dependent variable revealed no significant interaction 
(F(1, 38) < 1), suggesting that the expertise of the leader 
benefited both high and low skill students similarly.  
 
Content of Discussions On average, these groups 
contributed around 180 utterances during the invention 
discussion. Only about 10 of these utterances were 
proposals or amendments to proposals for solution methods. 
Almost half of the comments were clarifications or requests 
for clarifications about a proposed solution. About 30 were 
evaluations of suggested approaches. All other categories 
represented 10% or less of the utterances. 
  Results from this discourse analysis suggest that groups 
who generated a wider range of solutions, proposed more 
solutions, made more clarifications of proposed solutions, 
and made fewer comments about being at impasse. A more 
interesting observation is that they also engaged in more 
discussion of task coordination. When explored in the 
context of leader type, groups with a high math leader made 
more comments related to task coordination, fewer 
comments about being at impasse, and devoted less 
discussion to determination of math expertise. Ongoing 
analyses are more specifically examining who contributes 
what to the discussion and when. Analyses suggest that low 
math students are the ones more likely to make comments 
about expertise, and also, surprisingly, that they are the ones 
more likely to contribute evaluations of the proposed 
solutions. This may account for why evaluative comments 
do not seem to relate to better performance in this sample. 
As the discourse analysis deepens and matures, this 
approach is hoped to generate a better understanding of 
what features of discussion may be critical for learning from 
invention, so that these features may be used to engineer the 
design of effective classroom invention activities.  

Discussion 
The results of this research have shown that groups with 

members of different backgrounds or expertise may 
generate a broader range of solution approaches during 
invention tasks, and that this may benefit understanding of 
the canonical solution. Group composition in terms of math 
skill affects when students are able to get the most out of 
mathematical learning-by-invention activities. Students who 
worked in mixed groups were better at explaining their 
understanding of standard deviation on a quiz following the 
activity than students who worked in more homogeneous 
groups. Significant effects of group composition were seen 
in the variety of solution approaches that were considered 
by groups, particularly higher quality approaches. 

Interestingly, it was the mixed groups who generated the 
widest variety of solution attempts, suggesting that they 
seem to be in a particularly good position to make the most 
of invention exercises. This is consistent with several other 
findings suggesting that diversity in expertise among group 
members contributes to more adaptive, flexible and creative 
problem solving (Canham, Wiley, & Mayer, 2012; 
Goldenberg & Wiley, 2011; Wiley & Jensen, 2005; Wiley 
& Jolly, 2003). Additionally, the consideration of a wider 
variety of solution approaches during the invention phase, 
including a larger number of higher quality approaches, 
predicted the uptake of a later lesson about the standard 
deviation formula and mediated the effects of group 
composition and diversity on learning.  

To further explore the conditions that might enable 
effective learning from invention, we found that who 
emerges as the leader of a diverse group matters. Mixed 
groups with high math leaders discussed more high quality 
solution attempts as compared to groups with low math 
leaders. Interestingly, our discourse coding is also 
suggesting an important role for defining or coordinating the 
task among group members (c.f. Moreland & Levine, 1992). 
Groups with high math leaders made more comments in 
relation to task execution which seemed to relate to their 
productivity. Yet, it is important to recognize that the 
leaders self-selected in this study and this can introduce 
many reasons why these particular groups may have been 
more or less effective. We are currently conducting a 
follow-up experiment, again in the context of statistics 
instruction as part of an undergraduate Psychology course, 
where we will be assigning high math and low math 
students to be leaders for the small group activity. 
Experimental assignment is critical for determining whether 
and how the expertise of the group leader itself may be 
important for effective learning from invention activities.    

The results thus far suggest that generating a wide variety 
of approaches to solution may be one important factor 
determining whether invention discussions prepare students 
for later learning. Yet, in some cases a richer discussion 
around fewer alternatives may also lead to successful 
learning-from-invention, especially if the discussion leads to 
key insights. Alternatively, we have some evidence that a 
few of the groups seemed to benefit from the visual 
affordances of the graphical representations they made. It is 
possible that some specific kinds of solution attempts may 
be particularly helpful toward preparation for future learning 
(i.e., more visual ones or more abstract ones; Ainsworth, 
2006, Schwartz, 1995).  

The continued analysis of the discussion protocols is 
intended to serve as source of insight on what particular 
behaviors one may wish to support while students engage in 
learning-by-invention tasks. Thus far interactions among 
group members have not been scripted, roles have not been 
assigned, and students have not been given any specific 
direction how to engage in the task together. A next step 
that others have already begun pursuing (Kapur & 
Bielaczyc, 2011; Roll, Aleven & Koedinger, 2009) is to 
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provide some support to students in order to maximize the 
benefits of engaging in invention tasks, but not so much 
support that the benefits of invention over direct instruction 
are nullified. Indeed, in most of Webb’s previous studies 
showing benefits of peer collaboration on learning in math, 
the peer interaction was carefully scaffolded which may 
have allowed for more stable benefits of mixed ability 
groups to emerge. One goal for the closer analysis of our 
discussion protocols is to gain an even better understanding 
of the conditions that facilitate learning by invention, and 
how we can capitalize on the intriguing possibility that 
exploration and failure can sometimes reap benefits toward 
more sophisticated conceptual understanding in 
mathematics and statistics.  
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