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ABSTRACT OF THE DISSERTATION

Theory and Applications for Gradual Type Migration

by

Zeina Mohamed Magdy Abdelmigeed Mahmoud

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Jens Palsberg, Chair

Gradual typing enables migrating untyped code to typed code by supporting programs

with partial type annotations. Supporting programs with partial type annotations enables

developers to incrementally add type information to their untyped programs. However,

manually annotating code has proven to be an error prone and time consuming task for

developers. For this reason, researchers have set out to develop ideas and to construct tools

for automatic code annotation with types, that is, a variant of type inference. The particular

problem formulations vary based on the specific type system at hand. The solutions range

from too theoretical to be implemented in practice to too practical to have a fundamental

underlying methodology that allows the solution to be widely adaptable. Because the problem

formulations and the proposed solutions vary, it is hard to unify the approaches and apply

them to a variety of settings.

We aim to bring order to the space of tool support for gradual types. We focus on

automatic code annotation as the primary goal. We accomplish our goals in three steps. First,

ii



we show how to design fundamental algorithms to support automatic code annotation in a

gradually typed language. Second, we show that it is possible to design novel gradually typed

systems that enable tool support. In particular, we design a Rank-2 intersection type system

and a Tensor Type system. Third, we adapt our tool design to tackle the static analysis

problem of eliminating branches that depend on shape information, which is a problem we

encountered in various popular machine learning benchmarks. The tool is successful on a

suite of popular PyTorch benchmarks.
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CHAPTER 1

Introduction

1.1 Landscape

Programming languages today fall into one of three categories. The first consists of statically

typed languages, which require static type annotations for the whole program. The type

annotations could be explicit. In other words, they appear in the program text and are

provided by the developer. They could also be implicit, allowing the developers to skip

them and letting a variant of the Hindley-Milner algorithm restore them [Hin82]. One of

the advantages of working with a statically typed language is better code documentation,

readability and maintainability. IDEs can exploit types to provide better editing support,

such as code completion. Compilers can also utilize type information for code optimization.

If the type system is sound with respect to the semantics of the language, then a typed

program will satisfy certain guarantees. Statically typed languages only accept programs

that adhere to the type system. Therefore, even though a program could have run correctly

if we were to ignore the type annotations, the program will not compile anyway if it does not

adhere to the system. Examples of statically typed languages include C++ and Java.

The second category consists of dynamically typed languages, which typically require

no type annotations from the developer. Programs in this category do not have to satisfy

specific type requirements in order to run. Such languages lack the runtime guarantees that
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are present in some statically typed languages, however; dynamically typed languages are

expressive and flexible. This is due to two reasons. First, they enable the developer to write

programs that are almost impossible to assign types to. Second, many of them offer a degree

of type safety because they tag values in the program with their appropriate types. These

tags make it possible to catch and generate runtime type errors. Examples of dynamically

typed languages include PHP, JavaScript and Python.

The third category consists of gradually typed languages. Gradually typed languages can

compile programs with type annotations but they do not require them. So gradually typed

languages aim to leverage benefits from statically typed and dynamically typed languages.

In this dissertation, we use the term "gradual typing" loosely to encompass all languages

which allow mixing typed and untyped code. So for this presentation, this category overlaps

with dynamically typed languages with type hints.

In addition to allowing mixed type code, gradually typed languages often but not always

contain a type which we will refer to as Dyn [ST06]. We can view Dyn as the type that

contains all values. The Dyn type enables us to mix between typed and untyped code at a

fine granularity, including at the expression or function level. Examples of such languages

from industry include TypeScript [BAT14], which is a gradually typed version of JavaScript

and Hack, which is a gradually typed version of PHP.

Typescript and Hack promise many advantages compared to JavaScript and PHP. One of

their advantages that they support type annotations, which IDEs can leverage. They also

support type consistency checking as well as integration with JavaScript and PHP, which

makes them as flexible and expressive as their untyped siblings. TypeScript and Hack then

erase types before the program is run. Therefore, they do not impose significant performance

overhead compared to their corresponding untyped languages, which makes them practical.
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However, there are gradually typed languages which aim to enforce that the untyped

portion of the code does not violate the invariant implied by the type annotations in the

surface syntax. Examples of such langauges include Typed Racket [TFF17] and Reticulated

Python [VSS17]. Many researches found that such checks can impose significant runtime

overhead [TFG16, GM18]. Felleisen and Greenman [GF18] formalized degrees of runtime

type enforcement in gradually typed programs and how they relate to performance overhead

in gradually typed programs.

A popular use case for gradual types is to incrementally make untyped programs typed.

Untyped programs are written in dynamically typed languages. Thus, the first step of adding

types to untyped programs is to consider a dynamically typed language and add gradual

typing support to it. The second step is to annotate all programs with Dyn. Untyped programs

can then be viewed as gradually typed programs with Dyn annotations. Finally, we can now

incrementally replace some of the Dyn annotations in our programs with more precise types.

A common goal is to want to replace all Dyn occurrences with different types. However,

this is not always possible. The reason is that a gradually typed system can be viewed as

a super-set of a static and dynamic systems, which allow us to type-check partially typed

programs. But the static system alone could sometimes be too restrictive to allow expressing

certain programs, which is why we may not always be able to remove all Dyn occurrences in

a gradually typed program. Another consequence of annotating gradually typed programs

with more precise types is that the programs may fail with a type error. The reason this

could happen is that when we replace a Dyn occurrence with more precise types, we may pick

the wrong replacement type, which can introduce a static type error which hasn’t previously

existed for the program.
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1.2 Thesis statement

The motivation for this dissertation is the third step of taking untyped code to typed

code, which is replacing Dyn annotations with more precise types. The task of manually

annotating programs requires a lot of effort from the developer because it is error prone

[HFS22, ST13, KM17, WMW17, FM14, CT21]. This makes the task quite tedious and time

consuming. We observe that in order to realize the full vision of gradual types, we must

add a level of automation to annotating gradually typed programs. This observation led

us to two paths. First, we can answer fundamental tool support questions. However, the

more complex a type system is, the harder it can be to answer tool support questions for

it. Second, we may design gradually typed languages that facilitate tool support. However,

we must simultaneously account for the gradual typing criteria for our language design and

those criteria may clash with our goal for automatic tool support, asking us to make difficult

choices.

To address the two paths mentioned above, we provide a methodology for representing

code annotation problems in gradual types via a constraint based approach. Next, we design

languages that enable automatic code annotations. We observe that a syntactic interpretation

of gradual types simplifies our analysis and employ it in our design. We observe that it can

be tricky to satisfy all gradual typing criteria while simultaneously providing tool support

for gradually typed languages. We also observe that our core methodology for providing

tool support for gradually typed languages with a constraint based approach is adaptable to

different type systems and different problem formalizations. These observations led us to the

following thesis statement.

The design of gradually typed languages can and should take into account tool support for

adding and exploiting types.
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Equipping some gradually typed languages with tool support for automatic code annotation

is possible. However, the more complex and expressive a language is, the harder it can be to

provide such tool support. With that in mind, we can design gradually typed languages that

take tool support into consideration. This imposes restrictions on the language design which

may hinder its ability to preserve certain gradual dynamic guarantees. Moreover, our core

methodology for addressing problems related to automatic code annotations is adaptable to

various type systems and different problem specifications.

1.3 Dissertation Overview

In Chapter 2 we give detailed background on gradual typing and consider different gradual

typing designs. We then delve into our specific landscape, which is automatic code annotation

on gradual types. We go over variants of the problem, as well as related problems from the

literature.

In Chapter 3, we present the first step we take to address the problem of tool support in

gradual types, where we consider the simplest language and the simplest type system possible,

namely, the Gradually Typed Lambda Calculus (GTLC) [CS16]. We ask fundamental

questions that can help us automatic code annotation in this setting. The questions are:

1. Can a program be typed any further?

2. Is there a version of the program that is more precise than all other versions?

3. Are there finitely many ways to annotate the program?

4. Is there a way to annotate the program such that it cannot be typed any further?
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We discover that the complexities of these four questions range from polynomial to

NP-hard, leading us to believe that automatic code annotation for gradually typed languages

is hard. When considering a more complex type system, we observe that answering the above

three questions does not get easier, which leads us to our next observation.

In chapter 4, we design a Rank-2 intersection type system that can support gradual types,

as well as automatic code annotation for them. The reason we consider a Rank-2 intersection

type system, as opposed to a full-fledged intersection type system, is that type inference

for Rank-2 intersections is decidable [Jim95], but it is undecidable for unrestricted ranks

[CLP19]. We set out to satisfy gradual typing guarantees, while providing code annotation

tool support and observe that it is difficult to satisfy all criteria at once. For this type system,

we could not satisfy the gradual typing dynamic criteria from Siek at al. [SVC15a]. We

discuss the challenges and the trade offs when it comes to satisfying code automation criteria

as well as gradual typing criteria.

In chapter 5, we aim to scale our ideas for automatic code annotations. With the rise of

AI programs, we observe a need for languages that can reason about partial type information

and that can support tensors, which is a central data structure in AI programs. Tensors are

a useful abstraction which makes writing AI programs easier. It is used in many popular

machine learning frameworks such as PyTorch [PGC17] and TensorFlow [AAB16]. Thus, we

design a gradually typed language that supports tensor shapes where we view shapes as type

annotations for tensors. Our language satisfies static criteria from Siel et al. [SVC15a] but

we leave dynamic criteria to future work. Our methodology from the previous two works

carried over into our tensor language, but we tweak the set of questions that we ask about

tool support in order to suit the developer needs for AI programs. Thus, we ask the following

three questions:
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1. Can we remove all Dyn occurrences from the progoram?

2. Given a set arithmetic constraints, can we find valid type annotations that satisfies

them?

3. Can we eliminate branches that depend on the input for all inputs to the program?

In addition to tacking the problem from a theoretical perspective, we build a tool that

demonstrates the practicality of our approach on a suite of PyTorch benchmarks.

1.4 Contributions

The contributions for this dissertation can be summarized as follows:

1. A formalization of fundamental questions about automatic code annotations and their

complexities for the Gradually Typed λ-calculus.

2. A gradual Rank-2 intersection type system which enables gradual typing tool support

3. A gradual Tensor language which enables tool support and a tool that demonstrates

such tool support

4. An adaptation of the solution to automatic code annotation to the branch elimination

problem

7



CHAPTER 2

Type Inference, Type Migration and Algorithmic Support

Since type migration is closely related to type inference, we begin with a brief survey of type

inference. We then discuss type migration.

2.1 An overview of Type Inference

There are several notions of type inference. The first assumes a program with some missing

types and aims to restore them. This is known as Hindly Milner type inference [Mil78].

The inference algorithm accepts a program, generates equational constraints and then

solves them using unification. That approach is straightforward and works well for simple

types [GR13, RY08, Rem05]. However, it fails on richer type systems. For example, type

inference with polymorphic recursion [Hen93], intersection types [KW04] or shapes [HKS22]

is undecidable. This led researchers to consider decidable restrictions of such systems, such

as Rank-2 intersection types [Jim95]. In an attempt to expand the uses of Hindley Milner

inference to more settings, soft typing attempts to adapt this inference style to untyped

programming languages [CF91], but the next approach is far more successful in this direction.

The next approach of type inference assumes untyped code and uses static analysis to

infer types [JMT09, PS91, FFK96]. One approach in this category uses set-based analysis.

For example, Palsberg and Schwartzbach [PS91] utilize set-based analysis to infer sets of
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value types for object oriented languages. Their inferencer accepts a program, generates

subset constraints for it and then computes the transitive closure propagated through set

constructors. The result of the transitive-closure computation is a conservative approximation

of the sets of values that each expression in the program computes. A set-based approach

has been used for various languages but it falls short when it comes to inferring polymorphic

types.

The first two approaches only apply to whole modules which makes them less adaptable

to practice because it is harder to locate and debug static type errors. To solve this problem,

researchers have considered local type inference [PT00]. Local type inference is practical and

efficient but the inferred types can be incorrect for whole programs. Thus, this inference style

is considered as a more limited form of type inference. Despite its flaws, local type inference

is especially useful for programming with generics in languages such as Java and Scala.

In the context of gradually typed languages, we have two categories of type inference:

static and dynamic. Static type inference includes the inference tool for Python by [HUE18],

and the inference tool for Dart by [HMS16]. Some approaches to type inference add types for

the purpose of program understanding but without a guarantee that the resulting program

type checks. A recent example is the inference tool for Python [XZC16]. Static type inference

also includes the foundational work by Siek et al. [SV08] and Garcia and Cimini [GC15].

One property of the inference algorithm in Garcia and Cimini [GC15] is that it outputs a

type containing type variables whose instantiation is not decided. This raises the question

of what to do with those type variables. This bring us to dynamic type inference, which

includes Miyazaki et al. [MSI18]. The paper by Miyazaki et al. [MSI18] builds on the work

of Garcia and Cimini [GC15] but proposes to delay the decision about what to do with the

type variable until runtime, when those variables are instantiated.
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2.2 What is Type Migration?

Type Migration is a way to formalize automatic program annotation in gradual types. It was

first defined in terms of the Gradually Typed Lambda Calculus (GTLC) [ST06] but has later

been extended to richer languages. Type migration is closely related to type inference but

there are several fundamental differences between them.

2.2.1 The Gradually Typed Lambda Calculus

Our starting point for studying type migration is the GTLC. It is the gradually typed version

of the Simply Typed Lambda Calculus (STLC). The GTLC contains a type Dyn which

represents the absence of type information. That type gives rise to a binary relation called

type precision which allows us to compare programs by how static they are. Program A is

more precise than Program B if we can obtain program B by replacing some of the types in

program A with Dyn.

2.2.2 The gradual typing criteria

The GTLC satisfies the static and dynamic properties of Siek et al. [SVC15a]. The properties

aim to ensure that the gradual language is safe and that it meets developer expectations

statically as well as dynamically. The most notable criteria is the Gradual Guarantee, which

is divided into static and dynamic. The static gradual guarantee states that when making a

well-typed program less precise, the program must continue to type check. All systems that

we will consider in this dissertation satisfy the static gradual guarantee. In constrast, the

dynamic gradual guarantee handles runtime enforcement of gradual types. In this dissertation,
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different languages satisfy different static and dynamic criteria. We will discuss this in detail

in upcoming chapters.

2.2.3 Type Migration

Type migration is the process of making a program more precise, while maintaining its

well-typedness. It is useful for porting gradually typed code from untyped to typed, which is

key for leveraging gradual typing benefits.

2.2.4 Algorithmic support

Algorithmic support for type migration is important for migrating unannotated legacy code

in gradual languages. The task of manually annotating code is tedious and time consuming,

which is a barrier to taking full advantage of gradual types. In this dissertation, we focus

on whole program type migration. We hope that future work extends automatic program

annotation that supports modularity.

Consider a gradually typed program. Generally, when we face a migration task in this

setting, the first thing we want to know is whether any improvement is possible; if not, then

we are done right away. Otherwise, the best we can hope for is that one of the migrations is

the greatest in the ⊑-order; we call it the top migration. In the absence of a top choice, we

can ask whether the set of migrations is finite. If so, then we have a finite set of migrations

that cannot be improved in the ⊑-order; they are maximal. We must pick one, even though

none of them is ⊑-greater than the others. If the migration space is finite, then we can find

all the maximal migrations by iterating through the migration space. Even, if it is infinite,

there may still be maximal migrations, in which case we can choose one of them. Or perhaps

the migration space has no maximal element at all.
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We distill the properties mentioned above into four key questions to ask of every migration

problem:

1. is any improvement possible? (Singleton problem)

2. does a top migration exist? (Top-choice problem),

3. is the set of migrations finite? (Finiteness problem)

4. does a maximal migration exist? (Maximality problem)

Information about which kind of program we are facing will help the developer figure

out how long we should continue a migration exploration. Figure 2.1 provides a pictorial

representation of the problems.

In Chapter 3, we present algorithms (with names in bold below) and a hardness result for

deciding the four questions above for the gradually typed λ-calculus [ST06].

In Chapter 4, we extend the system with gradual intersection types and prove that the

Singleton problem, Top-Choice problem and Finiteness problem have the same complexities

as those of the GTLC. By contrast, for Chapter 5 which migrates tensor shapes, we present

variants of these questions that are better matches to a developer’s needs in this context than

those listed here.
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Figure 2.1: Nested sets of λ-terms: (a) no improvement is possible; (b) a top migration exists; (c) the

set of migrations is finite; (d) a maximal migration exists; (e) all lambda-terms.
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CHAPTER 3

Migrating Gradual Simple Types

In this chapter, our goal is to provide a foundation for better tool support by settling

decidability questions about migration with gradual types. We present three algorithms and

a hardness result for deciding key properties and we explain how they can be useful during

an exploration. In particular, we show how to decide whether the migration space is finite,

whether it has a top element, and whether it is a singleton. We also show that deciding

whether it has a maximal element is NP-hard. Our implementation of our algorithms worked

as expected on a suite of microbenchmarks.

3.1 Introduction

Background. Static type checking has led to more reliable and faster software because

types make programs more readable, prevent entire classes of mistakes, and help compilers

optimize data layout and data access. By contrast, dynamically typed languages allow

programmers to quickly prototype systems and build programs that are correct but fit no

particular type system. The complementary strengths of static and dynamic typing have

led researchers to explore ways to combine them. In this chapter we will focus on one such

combination, namely the well-known gradual typing of [ST06]. Gradual typing combines

static typing with a dynamic type that we will write as Dyn. One way to take advantage of
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Dyn is to use static types as much as possible and use Dyn otherwise. Gradual typing enables

programmers to get the discipline of static typing and the freedom of dynamic typing in a

way that gives well-understood benefits [SVC15a].

Gradual typing has found practical application in Typed Racket [TF08], TypeScript

[BAT14], Reticulated Python [VKS14], and others. In each case a programmer can view a

program in the original dynamic language (Racket, JavaScript, and Python) as a program

in the gradually typed variant where all types are Dyn. Then the goal of type migration is

to change some of the Dyn types to more precise types. This goal was formalized by [ST06]

who defined ?a binary precision order ⊑ on types, including Dyn ⊑ int and (Dyn → Dyn) ⊑

(Dyn → bool); the type on the right of ⊑ is more precise. Similarly, the precision order ⊑ on

terms that says that E ⊑ E ′ if E ′ has more precise type annotations than E. For example,

(λx : Dyn.x) ⊑ (λx. : int.x), where we improve Dyn to int. Thus, the goal of type migration

of E is to find E ′ such that E ⊑ E ′ and E ′ type checks in the gradual typing discipline.

Ultimately, programmers may prefer to find an E ′ that is the top element of the migration

space, if it exists, or else find a maximal element that cannot be improved.

We consider the four key problems which we discussed in Chapter 2. Specifically, our

singleton checker decides whether any improvement is possible, our top-choice checker decides

whether a top migration exists, and our finiteness checker decides whether the set of possible

migrations is finite. We also show that the maximality problem is NP-hard. Our results can

be summarized as follows:

Singleton problem: decidable in O(n2) time (Theorem 3.9) Singleton Checker

Top-choice problem: decidable in EXPTIME (Theorem 3.23) Top-Choice Checker

Finiteness problem: decidable in EXPTIME (Theorem 3.20) Finiteness Checker

Maximality problem: NP-hard (Theorem 3.24).
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In Section 3.2 we recall the gradually typed lambda calculus, we formalize the four key

properties as decision problems, and we give examples of programs with different properties.

Our singleton checker (Section 3.3) relies on a theorem known as the static gradual guarantee

[SVC15a] and on a type checker. The idea is to try all one-step improvements (that each

replaces a single occurrence of Dyn) and see if any of them type check. If none of those im-

provements type checks, then no improvement is possible. Our finiteness checker (Section 3.4)

uses type constraints. Specifically, it represents the set of possible migrations as the set of

solutions to constraints that it generates from the program. Then, it decides whether the set

of solutions is finite. Our top-choice checker (Section 3.5) first runs our finiteness checker

and then searches the set of migrations. Our NP-hardness proof (Section 3.6) reduces 3SAT

to maximality: it maps a 3SAT formula to a program in such a way that the formula is

satisfiable if and only if the program has a maximal migration.

Our implementation of our algorithms worked as expected on a suite of microbenchmarks

(Section 3.7). We discuss related work in Section 3.8. Briefly, the most closely related work is

the POPL 2018 paper by Campora, Chen, Erwig, and Walkingshaw [CCE18], which presented

an efficient approach to migrating a program, but did not address the four problems listed

above. We use an entirely different approach, in part because the approach in [CCE18] may

produce non-maximal migrations (see Sections 3.7–3.8), which makes it unsuitable for our

decision problems.

An extended version of the chapter is available from our website; it has supplementary

material that consists of four appendices.
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3.2 The Gradually Typed Lambda Calculus

3.2.1 Syntax and Type System

Figure 3.1 shows the gradually typed λ-calculus [ST06], in the convenient reformulation

by [CS16]. We use n to range over natural numbers and we use x to range over term

variables. Types include the special type Dyn, as well as two base types bool and int, and

function types T → T . Terms include Booleans, natural numbers, variables, abstractions, and

applications. The typing rules for Booleans (T-True and T-False) and numbers (T-Num) are

straightforward, and the typing rules for variables (T-Var) and abstractions (T-Abs) are as in

simply-typed λ-calculus. The type rule for applications (T-App) uses notions of matching and

consistency to make it more flexible than the rule for applications in simply-typed λ-calculus.

Specifically, the use of matching T1 � (T11 → T12) allows T1 to be Dyn, in which case T11 and

T12 are also Dyn, as expressed in (M-Dyn). Additionally, the use of consistency T2 ∼ T11

allows the type T2 to have a relationship with T11 that is weaker than equality. Most notably,

the rules (T ∼ Dyn) (C-Dyn1 ) and (Dyn ∼ T ) (C-Dyn2 ) define that any type is consistent

with Dyn. Note that while ∼ is reflexive and symmetric, it fails to be transitive, which is an

essential part of the design of the entire calculus. The precision relations on types and terms

are as we introduced them briefly in Section 5.1.

Next we state four properties that will be useful throughout the chapter.

Theorem 3.1 (Unique Type). ∀E,Γ, T, T ′, if Γ ⊢ E : T and Γ ⊢ E : T ′, then T = T ′.

Theorem 3.2 (Weakening). ∀E,Γ, T, T ′ : if x ̸∈ FV (E), then Γ ⊢ E : T iff Γ, x : T ′ ⊢ E : T .

Theorem 3.3 (Static Gradual Guarantee [SVC15a]). ∀E,E ′,Γ, T : ∃T ′ : if Γ ⊢ E : T ∧ E ′ ⊑

E then Γ ⊢ E ′ : T ′ ∧ T ′ ⊑ T .

Theorem 3.4 (Finite Intervals). ∀El, Eu : { E | El ⊑ E ⊑ Eu } is finite.
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Syntax:

(Types) T ::= Dyn | bool | int | T → T

(Terms) E ::= true | false | n | x | λx : T.E | E E

(Environments) Γ ::= ∅ | Γ, x : T

Typing rules:
Γ ⊢ true : bool (T-True) Γ ⊢ false : bool (T-False) Γ ⊢ n : int (T-Num)

x : T ∈ Γ
Γ ⊢ x : T

(T-Var)
Γ, x : T1 ⊢ E : T2

Γ ⊢ (λx : T1.E) : T1 → T2
(T-Abs)

Γ ⊢ E1 : T1
T1 � (T11 → T12)

Γ ⊢ E2 : T2
T2 ∼ T11 (T-App)

Γ ⊢ E1 E2 : T12

Consistency:
T ∼ Dyn (C-Dyn1) Dyn ∼ T (C-Dyn2) bool ∼ bool (C-Bool)

int ∼ int (C-Int)
T1 ∼ T3 T2 ∼ T4

(T1 → T2) ∼ (T3 → T4)
(C-Arrow)

Matching:
(T1 → T2)� (T1 → T2) (M-Arrow) Dyn� (Dyn → Dyn) (M-Dyn)

Precision:

Dyn ⊑ T (P-Dyn) T ⊑ T (P-SameT)
T1 ⊑ T3 T2 ⊑ T4
T1 → T2 ⊑ T3 → T4

(P-Arrow)

E ⊑ E (P-SameE)
T1 ⊑ T2 E1 ⊑ E2

λx : T1.E1 ⊑ λx : T2.E2
(P-Abs)

E1 ⊑ E3 E2 ⊑ E4

(E1 E2) ⊑ (E3 E4)
(P-App)

Figure 3.1: The gradually typed λ-calculus.
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The type system assigns at most one type to every program, as expressed by Theorem 3.1.

The reason is that every bound variable is declared with a type. Given E,Γ, we can check in

linear time whether ∃T : Γ ⊢ E : T . We have implemented a type checker that carries out

this check. Some programs type check, like (λx : int. x)5, while other programs fail to type

check, like (λx : int. x)true, both programs in context of any environment. Theorem 3.2 is

a standard result about adding and removing parts of the environment that is true of many

type systems. The static gradual guarantee (Theorem 3.3) says that if an expression type

checks and we make the type annotations less precise, then the changed expression also type

checks. The precision order guarantees that the set of terms that fit between two terms is

finite (Theorem 3.4).

In Appendix A of the supplementary material we prove Theorem 3.1. We omit the

standard proof of Theorem 3.2. [SVC15a] proved Theorem 3.3. The proof of Theorem 3.4 is

straightforward and omitted.

3.2.2 Decision Problems

We define that E ′ is a Γ-migration of E (written E ≤Γ E
′) iff (E ⊑ E ′ ∧ ∃T ′ : Γ ⊢ E ′ : T ′).

Intuitively, this means that E ′ is a Γ-migration of E if E ′ improves E and E ′ type checks.

Given E, we define the set of Γ-migrations of E: MigΓ(E) = {E ′ | E ≤Γ E
′}.

An element E ′ of MigΓ(E) is a greatest element if ∀E ′′ ∈ MigΓ(E) : E ′′ ⊑ E ′. An element

E ′ of MigΓ(E) is a maximal element if ∀E ′′ ∈ MigΓ(E) : (E
′ ⊑ E ′′) ⇒ (E ′ = E ′′). In other

words, a greatest element is ⊑-greater than all others, while a maximal element cannot be

improved. If a greatest element exists, then it is unique, and it is also a maximal element.

For given E,Γ, our goal is to decide the four questions from Section 5.1 about MigΓ(E).

We formalize those questions as follows:
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Singleton problem: is MigΓ(E) a singleton?

Top-choice problem: does MigΓ(E) have a greatest element?

Finiteness problem: is MigΓ(E) finite?

Maximality problem: does MigΓ(E) have a maximal element?

3.2.3 The Programs in Figure 2.1 Have Different Properties

Figure 2.1 shows five example programs; now we will discuss them in detail.

No improvement is possible. Consider λx.x(succ(x)). This program uses x as both a

function and as an integer. This leaves a single choice for the type of x, namely Dyn. So, no

improvement is possible and MigΓ(E) is a singleton. In summary:

MigΓ( λx : Dyn. x(succ(x)) ) = { λx : Dyn. x(succ(x)) }

A top migration exists. Consider λx.x(succ(x(true))). This program applies x to

both an integer and to a Boolean. Additionally, the result of applying x is used as an

integer. Thus, we have two options for the type of x, namely Dyn → Dyn and Dyn → int.

We have that (Dyn → Dyn) ⊑ (Dyn → int). Thus, for E = λx.x(succ(x(true))) and

Γ = succ : {int → int}, we have that MigΓ(E) has a greatest element, namely the one that

annotates x with Dyn → int. In summary,

MigΓ( λx : Dyn. x(succ(x(true)))) ) = { λx : Dyn. x(succ(x(true)))),

λx : (Dyn → Dyn). x(succ(x(true))))

λx : (Dyn → int). x(succ(x(true)))) }
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Finitely many migrations exist but none is the single best. Consider

succ((λy.y)((λx.x)true)). This program binds x to a Boolean, then passes x to y, and finally

uses y as an integer. This means that for E = succ((λy.y)((λx.x)true)) and Γ = succ :

{int → int}, we have that MigΓ(E) has three elements, namely the ones that annotate x

and y as follows: [x : Dyn; y : Dyn] and [x : Dyn; y : int] and [x : bool; y : Dyn]. Notice that

while MigΓ(E) is finite, it has no greatest element. In summary,

MigΓ( succ((λy : Dyn.y)((λx : Dyn.x)true)) ) = { succ((λy : Dyn.y)((λx : Dyn.x)true)) ),

succ((λy : int.y)((λx : Dyn.x)true)) ),

succ((λy : Dyn.y)((λx : bool.x)true)) )

}

Infinitely many migrations exist and some are maximal. Consider λx.x. This

program has infinitely many migrations, which includes a maximal migration where we give

x the type int. In summary,

MigΓ( λx : Dyn.x ) = { λx : Dyn.x , λx : bool.x , λx : int.x , λx : (Dyn → Dyn).x , . . . }

Every migration can be improved. Consider λx.xx. This program has infinitely many

migrations and none of them is maximal. For example, let us give x the type Dyn → int.

This makes the program type check because when we apply x to x, the type of the argument

x (which is Dyn → int) is consistent with the argument type of x (which is Dyn). However,

we can improve Dyn → int by giving x the type (Dyn → Dyn) → int. Notice that

(Dyn → int) ⊑ ((Dyn → Dyn) → int). Notice also that giving x the type (Dyn → Dyn) → int

makes the program type check. This is because when we apply x to x, the type of the
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argument x (which is ((Dyn → Dyn) → int) is consistent with the argument type of x (which is

(Dyn → int)). In other words, we can check easily that ((Dyn → Dyn) → int) ∼ (Dyn → Dyn).

A similar improvement can be made for every type of x that makes the program type check.

So, indeed, none of the migrations is maximal. In summary,

MigΓ( λx : Dyn. xx ) = { λx : Dyn. xx , λx : (Dyn → Dyn). xx , λx : (Dyn → int). xx ,

λx : ((Dyn → Dyn) → int). xx , . . . }

3.3 The Singleton Problem

Our algorithm for the singleton problem relies on the static gradual guarantee (Theorem 3.3)

and on a type checker for the gradually typed lambda-calculus. The idea is to try all one-step

improvements and see if any of them type check. If none of those improvements type checks,

then no improvement is possible.

We begin by defining, for a type T , the set S(T ) of one-step improvements, and for a

term E, the set S(E) of one-step improvements. Intuitively, S(T ) is the set of types that are

one step above T in the precision relation. Similarly, S(E) is the set of terms that are one
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step above E in the precision relation. We go one step above by replacing a single occurrence

of Dyn by either bool, int, or (Dyn → Dyn).

S(bool) = ∅

S(int) = ∅

S(Dyn) = { bool, int, Dyn → Dyn }

S(T1 → T2) =
⋃

T ′
1∈S(T1)

{ T ′
1 → T2 } ∪

⋃
T ′
2∈S(T2)

{ T1 → T ′
2 }

S(n) = ∅

S(true) = ∅

S(false) = ∅

S(x) = ∅

S(λx : T.F ) =
⋃

T ′∈S(T )

{ λx : T ′.F } ∪
⋃

F ′∈S(F )

{ λx : T.F ′ }

S(E1E2) =
⋃

E′
1∈S(E1)

{ E ′
1E2 } ∪

⋃
E′

2∈S(E2)

{ E1E
′
2 }

For example,

S(λx : Dyn.x) = { λx : bool.x, λx : int.x, λx : (Dyn → Dyn).x }

Figure 3.2 shows the bottom three levels of the precision order for λx : Dyn.x. The idea is

to call S(λx : Dyn.x) to obtain the second “column” of Figure 3.2. Additionally, we can call

S(λx : Dyn → Dyn.x) to obtain the third “column” of Figure 3.2.

Now we state the correctness of S.
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λx : Dyn.x

λx : bool.x

λx : int.x

λx : Dyn → Dyn.x

λx : Dyn → bool.x

λx : Dyn → int.x

λx : Dyn → (Dyn → Dyn).x

λx : bool → Dyn.x

λx : int → Dyn.x

λx : (Dyn → Dyn) → Dyn.x

Figure 3.2: The bottom three levels of the migration space for λx : Dyn.x.

Theorem 3.5. ∀T : S(T ) = { Tu | Tu ̸= T ∧ ∀T ′ : (T ⊑ T ′ ⊑ Tu) iff ((T = T ′) ∨ (T ′ =

Tu)) }.

Theorem 3.6. ∀E : S(E) = { Eu | Eu ̸= E ∧ ∀E ′ : (E ⊑ E ′ ⊑ Eu) iff ((E = E ′) ∨ (E ′ =

Eu)) }.

The proof of Theorem 3.5 is by straightforward induction on T , and the proof of Theo-

rem 3.6 is by straightforward induction on E, using Theorem 3.5.

Theorem 3.7. ∀E,Γ : MigΓ(E) is a singleton iff S(E) ∩MigΓ(E) = ∅.

Proof. We will prove the two directions in turn.
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Forwards direction. Suppose MigΓ(E) is a singleton, that is MigΓ(E) = {E}. We

have from Theorem 3.6 that E ̸∈ S(E) so S(E) ∩MigΓ(E) = ∅.

Backwards direction. Suppose (1) S(E) ∩MigΓ(E) = ∅. Let (2) E ′ ∈ MigΓ(E) be

given. We have two cases: either E ′ = E or E ′ ̸= E.

Let us consider the case E ′ ̸= E. From (1) and (2) we have (3) E ′ ̸∈ S(E). From

(2) we have (4) E ⊑ E ′ and (5) ∃T ′ : Γ ⊢ E ′ : T ′. From Theorem 3.4 we have that (6)

{ E ′′ | E ⊑ E ′′ ⊑ E ′ } is finite. From (6) and Theorem 3.6, we have that there must

exist (7) E ′′ ∈ S(E) such that (8) E ⊑ E ′′ ⊑ E ′. From (5), (8), and the static gradual

guarantee (Theorem 3.3), we have that (9) ∃T ′′ : Γ ⊢ E ′′ : T ′′. From (8) and (9), we have

that (10) E ′′ ∈ MigΓ(E). However, together (7) and (10) say that E ′′ ∈ S(E) ∩MigΓ(E),

which contradicts (1). So we conclude that the case E ′ ̸= E is impossible. This leaves only

the case E ′ = E, which means that MigΓ(E) = {E}, which is a singleton.

Putting it all together. Our singleton checker works as follows:

Algorithm: Singleton Checker.

Instance: E,Γ, where FV (E) ⊆ Dom(Γ), where MigΓ(E) ̸= ∅.

Problem: Is MigΓ(E) a singleton?

Method: 1. boolean singleton = true

2. for (E ′ ∈ S(E)) {

3. if (∃T ′ : Γ ⊢ E ′ : T ′) {

4. singleton = false

5. }

6. }
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7. return singleton

Notice that we can verify the assumption MigΓ(E) ̸= ∅ by checking that ∃T ′ : Γ ⊢ E : T ′.

Theorem 3.8. Algorithm Singleton Checker returns true iff MigΓ(E) is a singleton.

Proof. We will go through the algorithm step by step.

Step 1: we declare a Boolean variable singleton with the initial value true. The idea

is that unless we find evidence of a second element of MigΓ(E), aside from E itself, the

algorithm will return true.

Step 2: we have from Theorem 3.7 that MigΓ(E) is a singleton iff S(E) ∩MigΓ(E) = ∅.

So, we must check that in the body of the for-loop the algorithm sets singleton to false

iff at least one E ′ ∈ S(E) has the property that ∃T ′ : Γ ⊢ E ′ : T ′.

Steps 3–4: if we find E ′ such that ∃T ′ : Γ ⊢ E ′ : T ′, then we set singleton to false.

Theorem 3.9. We can solve the singleton problem in O(n2) time.

Proof. We have from Theorem 3.8 that Algorithm Singleton Checker is correct. We can

generate S(E) in linear time in the size of E. The size of S(E) is linear in the size of E.

Thus, the algorithm runs a check of O(n) cases that each takes O(n) time, for a total of

O(n2) time.

3.4 The Finiteness Problem

Our algorithm for the finiteness problem uses constraints. Specifically, our algorithm represents

the set of possible migrations as the set of solutions to constraints that are generated from

the program. Then, our algorithm decides whether the set of solutions is finite.
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3.4.1 Constraints

We use v to range over a set of type variables TypeVar . Define the set TypeExp of type

expressions τ as follows.

τ ::= Dyn | bool | int | τ → τ | v

We define a class of constraints over type expressions. A constraint is of one of the following

four forms:
T ⊑ v Precision constraints

v � v′ → v′′ Matching constraints

τ = τ ′ Equality constraints

τ ∼ τ ′ Consistency constraints

A constraint system is a pair A = (V, S), where V is a finite set of type variables, and S

is a set of constraints in which all the type variables are members of V . Intuitively, a set of

constraints S represents the conjunction of the constraints in S. Define vars(A) = V .

We need notation for talking about different sets of systems of constraints:

PMEC if (V, S) ∈ PMEC , then S can contain Precision, Matching, Equality, and

Consistency constraints

MEC if (V, S) ∈ MEC , then S can contain Matching, Equality, and

Consistency constraints

EC if (V, S) ∈ EC , then S can contain Equality and Consistency constraints

C if (V, S) ∈ C , then S can contain Consistency constraints

C− if (V, S) ∈ C−, then S can contain any Consistency constraint of the form v ∼ τ .
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Those five sets of sets of constraints have the following relationships:

PMEC ⊇ MEC ⊇ EC ⊇ C ⊇ C−

We use φ to range over mappings from a finite set of type variables to types. We use Dom(φ)

to denote the domain of φ. For a type expression τ , we use φ(τ) to denote τ in which every

variable v has been replaced by φ(v). We order mappings as follows:

φ ≤ φ′ ⇐⇒ Dom(φ) = Dom(φ′) ∧ ∀v ∈ Dom(φ) : φ(v) ⊑ φ′(v)

Notice that ≤ is a partial order. If A = (V, S) is a constraint system, then we say that a

mapping φ from V to types is a solution of A if the following conditions are satisfied.

For each: we have:

T ⊑ v T ⊑ φ(v)

v � v′ → v′′ φ(v)� φ(v′) → φ(v′′)

τ = τ ′ φ(τ) = φ(τ ′)

τ ∼ τ ′ φ(τ) ∼ φ(τ ′)

Let Sol(A) denote the set of solutions of A.

3.4.2 Generating Constraints

From E,Γ, we generate constraints Gen(E,Γ) ∈ PMEC as follows. Assume that E has been

α-converted so that all bound variables are distinct from each other and distinct from the free

variables. Let X be the set of λ-variables x occurring in E, and let Y be a set of variables

disjoint from X consisting of a variable [[F ]] for every occurrence of the subterm F in E. Let
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Z be a set of variables disjoint for X and Y consisting of a variable ⟨G⟩ for every occurrence

of the subterm (F G) in E. The notations [[F ]] and ⟨G⟩ are ambiguous because there may be

more than one occurrence of some subterm F in E or some subterm G in E. However, it

will always be clear from context which occurrence is meant. Now we generate the following

constraints.

For every occurrence in E generate this

of a subterm of this form: constraint:

true [[true]] = bool

false [[false]] = bool

n [[n]] = int

(free variable) x [[x]] = Γ(x)

(bound variable) x [[x]] = x

λx : S.F [[λx : S.F ]] = x→ [[F ]] ∧ S ⊑ x

F G [[F ]]� ⟨G⟩ → [[FG]] ∧ ⟨G⟩ ∼ [[G]]

Before we state that the above reduction is correct, we introduce some helper notation. We

define let Dom(Γ) denote the domain of Γ: Dom(∅) = ∅ and Dom(Γ, x : T ) = Dom(Γ)∪ {x}.

We let FV (E) denote the set of free variables of E: FV (n) = ∅ and FV (True) = ∅ and

FV (False) = ∅ and FV (x) = {x} and FV (λx : T.F ) = FV (F ) \ {x} and FV (E1 E2) =

FV (E1) ∪ FV (E2).

Theorem 3.10. ∀E,Γ : if FV (E) ⊆ Dom(Γ), then (MigΓ(E),⊑) and (Sol(Gen(E,Γ)),≤)

are order-isomorphic.

We prove Theorem 3.10 in Appendix A of the supplementary material.
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3.4.3 Solving Constraints

Our algorithm for solving the finiteness problem uses four transformations that successively

transform the constraints to use fewer forms of constraints. Intuitively, the transformations

work as follows:

PMEC
SimPrec−→ MEC

SimMatch−→ EC
SimEq−→ C

SimCon−→ C−

Precision constraints. We define a simplification procedure SimPrec that transforms

every Precision constraint into zero, one, or more Equality constraints:

SimPrec : PMEC → MEC

We define SimPrec to leave the set of type variables unchanged, and to proceed by repeating

the following transformation until it no longer has an effect.

From To

Dyn ⊑ v (no constraint)

bool ⊑ v v = bool

int ⊑ v v = int

T ′ → T ′′ ⊑ v v = v′ → v′′ ∧ T ′ ⊑ v′ ∧ T ′′ ⊑ v′′

where v′, v′′ are fresh type variables

Theorem 3.11. ∀A ∈ PMEC : Sol(A) = Sol(SimPrec(A)).

Proof. Straightforward.
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Matching constraints. We define a simplification procedure SimMatch that replaces each

Matching constraint with one or three Equality constraints. We will use M to refer to the set

of Matching constraints. We will use match(A) to refer to the subset of Matching constraints

in A.

SimMatch : MEC × 2M → EC

Specifically, for S ⊆ match(A), we define SimMatch(A, S) by

replacing each (v � v′ → v′′) ∈ A ∩ S with (v = v′ → v′′), and

replacing each (v � v′ → v′′) ∈ A \ S with (v = Dyn) ∧ (v′ = Dyn) ∧ (v′′ = Dyn).

Intuitively, the role of S is to decide what to do with each matching constraint. Each matching

constraint (v � v′ → v′′) in S should be turned into an equality constraint (v = v′ → v′′).

Any other matching constraint (v � v′ → v′′) should be turned into the three constraints

(v = Dyn) ∧ (v′ = Dyn) ∧ (v′′ = Dyn).

Additionally, we define SimMatch to leave the set of type variables unchanged.

Theorem 3.12. ∀A ∈ MEC : Sol(A) =
⋃

S⊆match(A) Sol(SimMatch(A, S)).

Proof. Straightforward from the definition of �.

Theorem 3.13. ∀A ∈ MEC : Sol(A) is finite iff ∀S ⊆ match(A) : Sol(SimMatch(A, S)) is

finite.

Proof. Immediate from Theorem 3.12.
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Equality constraints. We define the set Subst of substitutions that have domain TypeVar

and range TypeExp. For a substitution σ ∈ Subst , we define Dom(σ) to be the set of type

variables v such that σ(v) ̸= v. We use σ ∪ σ′ to denote the union of two substitutions σ, σ′

that have disjoint domains.

We define a function Unify that solves the Equality constraints.

Unify : EC → (Subst ∪ {fail})

We define Unify(A) to produce the most general unifier (MGU) of the Equality constraints

in A, or, if no solution exists, return fail .

We define a function SimEq that uses a substitution to transform away all Equality

constraints.

SimEq : (EC × Subst) → C

We define SimEq(A, σ) as follows. First, the set of type variables is vars(A)\Dom(σ). Second,

the set of constraints consists of only Consistency constraints: apply the substitution to the

Consistency constraints in A and return only those transformed Consistency constraints.

Theorem 3.14.

∀A ∈ EC : Sol(A) =

 { (σ ◦ σ′) ∪ σ′ | σ′ ∈ Sol(SimEq(A, σ)) } if σ ̸= fail

∅ if σ = fail

where σ = Unify(A).
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Proof. In the case of σ ̸= fail , we have that Dom(σ) and Dom(σ′) = vars(A) \ Dom(σ) are

disjoint so (σ ◦ σ′)∪ σ′ is well defined. Additionally, we have σ = Unify(A) so any solution of

A when restricted to Dom(σ′) = vars(A) must equal an element σ′ of Sol(SimEq(A, σ)). We

can recover any such solution by combining σ′ with (σ ◦ σ′) which replaces any variable v in

the codomain of σ with σ′(v).

In the case of σ = fail , we have that a subset of A is unsolvable, so A is unsolvable, too,

hence Sol(A) = ∅.

Theorem 3.15. ∀A ∈ EC : Sol(A) is finite iff (σ ≠ fail implies Sol(SimEq(A, σ)) is finite),

where σ = Unify(A).

Proof. Immediate from Theorem B.4.3.

Consistency constraints. We define a function SimCon that simplifies a set of consistency

constraints.

SimCon : C → (C− ∪ {fail})

We define SimCon by repeatedly applying the following transformations until no transforma-

tion applies. When the To-column lists (fail), the entire transformation returns fail .
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From To

bool ∼ bool ∅

int ∼ int ∅

τ ∼ Dyn ∅

Dyn ∼ τ ∅

(τ1 → τ2) ∼ bool (fail)

(τ1 → τ2) ∼ int (fail)

bool ∼ (τ1 → τ2) (fail)

int ∼ (τ1 → τ2) (fail)

bool ∼ int (fail)

int ∼ bool (fail)

(τ1 → τ2) ∼ (τ ′1 → τ ′2) { (τ1 ∼ τ ′1), (τ2 ∼ τ ′2) }

τ ∼ v { v ∼ τ }

Theorem 3.16.

∀A ∈ C : Sol(A) =

 Sol(SimCon(A)) if SimCon(A) ̸= fail

∅ otherwise

Proof. Straightforward.

Boundedness. We introduce the core concept in our approach to solving the finiteness

problem. The idea is to check whether a constraint system is bounded, which we will define

in three steps.

First, we define a notion of a path in a type expression. For a type expression τ , we can

create a syntax tree in which every node is labeled by a member of {Dyn, bool, int,→} ∪
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TypeVar . For each node in the syntax tree for τ , we can consider the path α that leads from

the root to that node. We use τ(α) to denote label of the node reached by α. We define

paths(τ) to be the set of paths from the root of τ to all leafs of τ . We have that τ is finite so

also paths(τ) is finite.

Second, we define a predicate BoundedVar on a type variable, a type, and a constraint

system. The type is of a special form: each of its leaves is either bool or int, which means

that it is maximal in the precision order. We use MaximumType to denote the set of such

types.

BoundedVar : (TypeVar ×MaximumType × C−) → Boolean

BoundedVar(v, T, A) = ∀α ∈ paths(T ) : ∃(v ∼ τ ′) ∈ A : τ ′(α) = T (α)

Intuitively, BoundedVar(v, T, A) says that “the variable v is bounded by a ⊑-maximum type

T that can be pieced together from constraints in A”. Specifically, for every leaf in T , we

require that A contains a constraint (v ∼ τ ′) such that τ ′ has the same type as T at the

corresponding leaf. For example, suppose A = (V, S), where

V = { v, v1, v2 }

S = { v ∼ (bool → v1), v ∼ (v2 → int) }

We have BoundedVar(v, T, A), where T = bool → int. We can see this via a cases analysis,

one for each leaf of T . For the leaf bool of T , we have in A the constraint v ∼ (bool → v1),

where (bool → v1) has the same type (bool) as T at the corresponding leaf. Similarly, for

the leaf int of T . we have in A the constraint v ∼ (v2 → int), where (v2 → int) has the

same type (int) as T at the corresponding leaf.
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Third, we define a predicate Bounded on elements of C−:

Bounded : C− → Boolean

Bounded(A) = ∀v ∈ vars(A) : ∃T ∈ MaximumType : BoundedVar(v, T, A)

The Bounded predicate checks whether every solution must assign every variable a type that

is bounded by a certain ⊑-maximum type.

Theorem 3.17. For A ∈ C−: Sol(A) is finite iff Bounded(A).

Proof. In the forwards direction, suppose Sol(A) is finite. Thus, we can pick a maximal

φ ∈ Sol(A). Let v ∈ vars(A). We will define a T such that paths(T ) = paths(φ(v)). Let α ∈

paths(φ(v)). Given that φ is maximal, the constraints must force φ(v)(α) ∈ {Dyn, bool, int}.

The only way this is possible is that we can find a constraint (v ∼ τ ′) ∈ A such that

τ ′(α) ∈ {bool, int}. So we can define the leaf in T at the end of path α to be τ ′(α). As a

result, we have T ∈ MaximalType and BoundedVar(v, T, A). We conclude Bounded(A).

In the backwards direction, suppose Bounded(A). For each variable, we have a lower

bound and upper bound on the types that we can assign that variable. So, from Theorem 3.4

we have that Sol(A) is finite.

Theorem 3.18. For A ∈ C−, we can run Bounded(A) in polynomial time.

Proof. We can check Bounded(A) by, for each v ∈ vars(A), checking whether we can construct

T ∈ MaximumType such that BoundedVar(v, T, A). We do this as follows.

First we collect all constraints in A of the form (v ∼ τ ′). Let
⋃

τ ′ paths(τ
′) denote the union

of paths(τ ′) across all such τ ′. Notice that we can construct this union in polynomial time. We

see that
⋃

τ ′ paths(τ
′) defines the largest potential tree shape of T . For each α ∈

⋃
τ ′ paths(τ

′)

36



we can determine and record in polynomial time whether for any constraint (v ∼ τ ′) we have

τ ′(α) ∈ {bool, int}. Now we can do a tree traversal of the tree shape defined by
⋃

τ ′ paths(τ
′)

and determine whether any subset of
⋃

τ ′ paths(τ
′) defines a T ∈ MaximumType. This

traversal can be done in polynomial time.

In summary, for each of the polynomially many v ∈ vars(A), we do a polynomial-time

check, which gives a total of polynomial time.

Putting it all together. Our finiteness checker works as follows:

Algorithm: Finiteness Checker.

Instance: E,Γ, where FV (E) ⊆ Dom(Γ).

Problem: Is MigΓ(E) finite?

Method: 1. PMEC A1 = Gen(E,Γ)

2. MEC A2 = SimPrec(A1)

3. boolean finite = true

4. for (S ⊆ match(A2)) {

5. EC A5 = SimMatch(A2, S)

6. (Subst ∪ {fail}) σ = Unify(A5)

7. if (σ ̸= fail) {

8. C A8 = SimEq(A5, σ)

9. (C− ∪ {fail}) A9 = SimCon(A8)

10. if (A9 ̸= fail) {

11. if ¬Bounded(A9) {

12. finite = false

13. }
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14. }

15. }

16. }

17. return finite

Notice that we use as type annotations the names of the five sets of sets of constraints,

namely PMEC , MEC , EC , C , C−. We also use (Subst ∪ {fail}) and (C− ∪ {fail}) as type

annotations. We can check easily that the algorithm type checks.

Theorem 3.19. Algorithm Finiteness Checker returns true iff MigΓ(E) is finite.

Proof. We will go through the algorithm step by step.

Step 1: we have from Theorem 3.10 that (MigΓ(E),⊑) and (Sol(Gen(E,Γ)),≤) are

order-isomorphic. So, (MigΓ(E),⊑) is finite iff (Sol(Gen(E,Γ)),≤) = Sol(A1) is finite.

Step 2: we have from Theorem 3.11 that Sol(A1) = Sol(SimPrec(A1)) = Sol(A2).

Step 3: we declare a Boolean variable finite with the initial value true. The idea is

that unless we find evidence of infinitely many solutions, the algorithm will return true.

Step 4: we have from Theorem 3.13 Sol(A2) is finite iff ∀S ⊆ match(A2) :

Sol(SimMatch(A2, S)) is finite. So, we must check that in the body of the for-loop the

algorithm sets finite to false iff at least one S ⊆ match(A2) has the property that

Sol(SimMatch(A2, S)) is infinite. We will check this as we go through Steps 5-12.

Step 5: here we consider one of the cases of S ⊆ match(A2). The goal is to check that

the algorithm sets finite to false iff Sol(SimMatch(A2, S)) = Sol(A5) is infinite.

Steps 6–8: we have from Theorem 3.15 that Sol(A5) is infinite iff Sol(SimEq(A5, σ)) =

Sol(A8) is infinite, where σ = Unify(A5) and σ ̸= fail .
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Steps 9–10: we have from Theorem 3.16 that either SimCon(A8) returns fail , in which case

we have Sol(SimCon(A8)) = ∅, which is finite, and otherwise Sol(A8) = Sol(SimCon(A8)) =

Sol(A9).

Steps 11-12: we have from Theorem 3.17 that Sol(A9) is finite iff Bounded(A9). Thus, for

an execution arrives at Steps 11-12, we have that Sol(SimMatch(A2, S)) = Sol(A5), which is

finite iff Sol(A8) = Sol(A9) is finite. So the algorithm sets finite to false in exactly the

right cases.

Theorem 3.20. We can solve the finiteness problem in EXPTIME.

Proof. We have from Theorem 3.19 that Algorithm Finiteness Checker is correct. Let

us analyze the algorithm’s time complexity. Let n be the total size of E and Γ. Step 1

uses polynomial time to construct A1 = Gen(E,Γ), and the size of A1 is O(n). Step 2 uses

polynomial time to construct A2 = SimPrec(A1), and the size of A2 is O(n). Step 4 is a loop

that runs O(2n) iterations because match(A2) is of size O(n). Step 5 constructs A5 which is

of size O(n). Step 6 constructs σ = Unify(A5) which is of size O(2n), due to a well-known

property of unification. Step 8 constructs A8 = SimEq(A5, σ) which is of size O(2n). Step 9

constructs A9 = SimCon(A8) which is of size O(2n). Step 11 runs Bounded(A9) in time that

is polynomial in O(2n), due to Theorem 3.18. From the rule (2a)b = 2ab we have that in total

Step 11 runs in time that is O(2n).

In summary, we have a loop that runs O(2n) iterations that each takes O(2n) time. The

grand total is O(2n)×O(2n) = O(2n) which is in EXPTIME.
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3.4.4 Example of How Our Finiteness Checker Works: λx.x(succ(x(true)))

E = λx.x(succ(x(true)))

Γ = [ succ : int → int ]

First we construct Gen(E,Γ):

λx.x(succ(x(true))) [[λx.x(succ(x(true)))]] = x→ [[x(succ(x(true)))]]

Dyn ⊑ x

x(succ(x(true))) [[x]]� ⟨succ(x(true))⟩ → [[x(succ(x(true)))]]

⟨succ(x(true))⟩ ∼ [[succ(x(true))]]

x [[x]] = x

succ(x(true)) [[succ]]� ⟨x(true)⟩ → [[succ(x(true))]]

⟨x(true)⟩ ∼ [[x(true)]]

succ [[succ]] = Γ(succ)

x(true) [[x]]� ⟨true⟩ → [[x(true)]]

⟨true⟩ ∼ [[true]]

x [[x]] = x

true [[true]] = bool

Notice that the listing above has two occurrences of [[x]] = x. Viewed as a set, Gen(E,Γ)

consists of 12 constraints. Notice also that in the constraint for succ, we can use that

Γ(succ) = int → int.
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Next we apply SimPrec to Gen(E,Γ). This step removes Dyn ⊑ x, which leaves us with

the following 10 constraints.

λx.x(succ(x(true))) [[λx.x(succ(x(true)))]] = x→ [[x(succ(x(true)))]]

x(succ(x(true))) [[x]]� ⟨succ(x(true))⟩ → [[x(succ(x(true)))]]

⟨succ(x(true))⟩ ∼ [[succ(x(true))]]

x [[x]] = x

succ(x(true)) [[succ]]� ⟨x(true)⟩ → [[succ(x(true))]]

⟨x(true)⟩ ∼ [[x(true)]]

succ [[succ]] = int → int

x(true) [[x]]� ⟨true⟩ → [[x(true)]]

⟨true⟩ ∼ [[true]]

true [[true]] = bool

Let us use A10 to denote the above set of 10 constraints. In the listing of A10, we have three

Matching constraints, which for brevity of notation, we will number from 1 to 3, as follows:

1 : [[x]]� ⟨succ(x(true))⟩ → [[x(succ(x(true)))]]

2 : [[succ]]� ⟨x(true)⟩ → [[succ(x(true))]]

3 : [[x]]� ⟨true⟩ → [[x(true)]]

Now we must consider all subsets of {1, 2, 3}. For each S ⊆ {1, 2, 3}, we must determine

whether SimMatch(A10, S) has finitely many solutions.
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Let us focus on S = {1, 2, 3} and construct SimMatch(A10, {1, 2, 3}):

λx.x(succ(x(true))) [[λx.x(succ(x(true)))]] = x→ [[x(succ(x(true)))]]

x(succ(x(true))) [[x]] = ⟨succ(x(true))⟩ → [[x(succ(x(true)))]]

⟨succ(x(true))⟩ ∼ [[succ(x(true))]]

x [[x]] = x

succ(x(true)) [[succ]] = ⟨x(true)⟩ → [[succ(x(true))]]

⟨x(true)⟩ ∼ [[x(true)]]

succ [[succ]] = int → int

x(true) [[x]] = ⟨true⟩ → [[x(true)]]

⟨true⟩ ∼ [[true]]

true [[true]] = bool

Notice that the only change from A10 to SimMatch(A10, {1, 2, 3}) is that three occurrences

of � turned into =.
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Next we apply SimEq to SimMatch(A10, {1, 2, 3}). Notice that SimMatch(A10, {1, 2, 3})

has 7 Equality constraints. Those 7 Equality constraints are satisfiable and have the following

most general unifier (φ123), where p, q are type variables.

v : φ123(v)

[[λx.x(succ(x(true)))]] : (p→ q) → q

x : p→ q

[[x(succ(x(true)))]] : q

[[x]] : p→ q

⟨succ(x(true))⟩ : p

[[succ]] : int → int

⟨x(true)⟩ : int

[[succ(x(true))]] : int

⟨true⟩ : p

[[x(true)]] : q

[[true]] : bool

Let us use A′ to denote the subset of 3 Consistency constraints in SimMatch(A10, {1, 2, 3}),

which is:

⟨succ(x(true))⟩ ∼ [[succ(x(true))]]

⟨x(true)⟩ ∼ [[x(true)]]

⟨true⟩ ∼ [[true]]
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Next we apply φ123 to A′. The result is that SimEq(SimMatch(A10, {1, 2, 3}), φ123) is:

p ∼ int

int ∼ q

p ∼ bool

Let us use A123 to denote the above set of 3 Consistency constraints.

Next we apply SimCon to A123. The effect is to change int ∼ q into q ∼ int:

p ∼ int

q ∼ int

p ∼ bool

Let us use Acm to denote the above set of 3 Consistency constraints. We observe that

Bounded(Acm). Now we use Theorem 3.17 to conclude that Sol(Acm) is finite.
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Let us return to the step in which we consider different subsets of the Matching constraints.

Above we showed that SimMatch(A10, {1, 2, 3}) is finite. Now let us focus on S = ∅ and

construct SimMatch(A10, ∅):

λx.x(succ(x(true))) [[λx.x(succ(x(true)))]] = x→ [[x(succ(x(true)))]]

x(succ(x(true))) [[x]] = Dyn

⟨succ(x(true))⟩ = Dyn

[[x(succ(x(true)))]] = Dyn

⟨succ(x(true))⟩ ∼ [[succ(x(true))]]

x [[x]] = x

succ(x(true)) [[succ]] = Dyn

⟨x(true)⟩ = Dyn

[[succ(x(true))]] = Dyn

⟨x(true)⟩ ∼ [[x(true)]]

succ [[succ]] = int → int

x(true) [[x]] = Dyn

⟨true⟩ = Dyn

[[x(true)]] = Dyn

⟨true⟩ ∼ [[true]]

true [[true]] = bool

Next we apply SimEq to SimMatch(A10, ∅). Notice that SimMatch(A10, ∅) has 13 Equality

constraints. Those 13 Equality constraints are unsatisfiable because of two constraints

[[succ]] = Dyn and [[succ]] = int → int. So, Sol(SimMatch(A10, ∅)) = ∅.
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Let us return to the step in which we consider different subsets of the Matching con-

straints. From the case of S = ∅, we see that for sets S where 2 ̸∈ S, we have that

SimMatch(A10, S) contains an unsatisfiable subset of Equality constraints. So, for each of

those cases, Sol(SimMatch(A10, S)) = ∅.

Now let us focus on S = {2} and construct SimMatch(A10, {2}):

λx.x(succ(x(true))) [[λx.x(succ(x(true)))]] = x→ [[x(succ(x(true)))]]

x(succ(x(true))) [[x]] = Dyn

⟨succ(x(true))⟩ = Dyn

[[x(succ(x(true)))]] = Dyn

⟨succ(x(true))⟩ ∼ [[succ(x(true))]]

x [[x]] = x

succ(x(true)) [[succ]] = ⟨x(true)⟩ → [[succ(x(true))]]

⟨x(true)⟩ ∼ [[x(true)]]

succ [[succ]] = int → int

x(true) [[x]] = Dyn

⟨true⟩ = Dyn

[[x(true)]] = Dyn

⟨true⟩ ∼ [[true]]

true [[true]] = bool

Next we apply SimEq to SimMatch(A10, {2}). Notice that SimMatch(A10, {2}) has 11 Equal-

ity constraints. Those 11 Equality constraints are satisfiable and have the following most

general unifier (φ2), where p, q are type variables:
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v : φ2(v)

[[λx.x(succ(x(true)))]] : Dyn → Dyn

x : Dyn

[[x(succ(x(true)))]] : Dyn

[[x]] : Dyn

⟨succ(x(true))⟩ : Dyn

[[succ]] : int → int

⟨x(true)⟩ : int

[[succ(x(true))]] : int

⟨true⟩ : Dyn

[[x(true)]] : Dyn

[[true]] : bool

Next we apply φ2 to A′, The result is that SimEq(SimMatch(A10, {2}), φ2) is:

Dyn ∼ int

int ∼ Dyn

Dyn ∼ bool

Let us use A2 to denote the above set of 3 Consistency constraints.

Next we apply SimCon to A2. The effect is that SimCon(A2) = ∅. Finally we observe

that Bounded(∅). Now we use Theorem 3.17 to conclude that Sol(∅) is finite.
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Let us consider the case of S = {1, 2} and construct SimMatch(A10, {1, 2}):

λx.x(succ(x(true))) [[λx.x(succ(x(true)))]] = x→ [[x(succ(x(true)))]]

x(succ(x(true))) [[x]] = ⟨succ(x(true))⟩ → [[x(succ(x(true)))]]

⟨succ(x(true))⟩ ∼ [[succ(x(true))]]

x [[x]] = x

succ(x(true)) [[succ]] = ⟨x(true)⟩ → [[succ(x(true))]]

⟨x(true)⟩ ∼ [[x(true)]]

succ [[succ]] = int → int

x(true) [[x]] = Dyn

⟨true⟩ = Dyn

[[x(true)]] = Dyn

⟨true⟩ ∼ [[true]]

true [[true]] = bool

Next we apply SimEq to SimMatch(A10, {1, 2}). Notice that SimMatch(A10, {1, 2}) has 9

Equality constraints. Those 9 Equality constraints are unsatisfiable because of two constraints

[[x]] = ⟨succ(x(true))⟩ → [[x(succ(x(true)))]] and [[x]] = Dyn.

So, Sol(SimMatch(A10, {1, 2})) = ∅.
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Let us consider the case of S = {2, 3} and construct SimMatch(A10, {2, 3}):

λx.x(succ(x(true))) [[λx.x(succ(x(true)))]] = x→ [[x(succ(x(true)))]]

x(succ(x(true))) [[x]] = Dyn

⟨succ(x(true))⟩ = Dyn

[[x(succ(x(true)))]] = Dyn

⟨succ(x(true))⟩ ∼ [[succ(x(true))]]

x [[x]] = x

succ(x(true)) [[succ]] = ⟨x(true)⟩ → [[succ(x(true))]]

⟨x(true)⟩ ∼ [[x(true)]]

succ [[succ]] = int → int

x(true) [[x]] = ⟨true⟩ → [[x(true)]]

⟨true⟩ ∼ [[true]]

true [[true]] = bool

Next we apply SimEq to SimMatch(A10, {2, 3}). Notice that SimMatch(A10, {2, 3}) has 9

Equality constraints. Those 9 Equality constraints are unsatisfiable because of two constraints

[[x]] = Dyn and [[x]] = ⟨true⟩ → [[x(true)]]. So, Sol(SimMatch(A10, {2, 3})) = ∅.

In summary, we have shown that in every case of S, we find that SimMatch(A10, S) is

finite.

We conclude that Sol(Gen(E,Γ)) is finite, which in turn means that MigΓ(E) is finite.
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3.4.5 Example of How Our Finiteness Checker Works: λx.xx

E = λx.xx

Γ = [ ]

First we construct Gen(E,Γ):

λx.xx [[λx.xx]] = x→ [[xx]]

Dyn ⊑ x

xx [[x]]� ⟨x⟩ → [[xx]]

⟨x⟩ ∼ [[x]]

x [[x]] = x

x [[x]] = x

Notice that the listing above has two occurrences of [[x]] = x. Viewed as a set, Gen(E,Γ)

consists of 5 constraints.

Next we apply SimPrec to Gen(E,Γ). This step removes Dyn ⊑ x, which leaves us with

the following 4 constraints.

λx.xx [[λx.xx]] = x→ [[xx]]

xx [[x]]� ⟨x⟩ → [[xx]]

⟨x⟩ ∼ [[x]]

x [[x]] = x
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Let us use A4 to denote the above set of 4 constraints. In the listing of A3, we have a single

Matching constraint, which for brevity of notation, we will give number 1:

1 : [[x]]� ⟨x⟩ → [[xx]]

Now we must consider all subsets of {1}. For each S ⊆ {1}, we must determine whether

SimMatch(A4, S) has finitely many solutions.

Let us focus on S = {1} and construct SimMatch(A4, {1}):

λx.xx [[λx.xx]] = x→ [[xx]]

xx [[x]] = ⟨x⟩ → [[xx]]

⟨x⟩ ∼ [[x]]

x [[x]] = x

Next we apply SimEq to SimMatch(A4, {1}). Notice that SimMatch(A10, {1}) has 3 Equality

constraints. Those 3 Equality constraints are satisfiable and have the following most general

unifier (φ1), where p, q are type variables:

v : φ1(v)

[[λx.xx]] : (p→ q) → q

[[xx]] : q

x : p→ q

[[x]] : p→ q

⟨x⟩ : p
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Let us use A′ to denote the subset of 1 Consistency constraint in SimMatch(A4, {1}), which

is:

⟨x⟩ ∼ [[x]]

Next we apply φ4 to A′, The result is that SimEq(SimMatch(A10, {1, 2, 3}), φ1) is:

p ∼ p→ q

Let us use A1 to denote the above set of 1 Consistency constraint.

Next we apply SimCon to A1. The effect is no change: SimCon(A1) = A1. We observe

that Bounded(A1) is false. Now we use Theorem 3.17 to conclude that Sol(A1) is infinite.

In Appendix A of the supplementary material, we show that p ∼ (p→ q) has no maximal

solution, so λx.xx has no maximal migration.

3.5 The Top-Choice Problem

The top-choice problem is: given E,Γ, does MigΓ(E) have a greatest element? In other

words, is MigΓ(E) finite and does it have a single maximal migration? We begin with the

observation that if MigΓ(E) has a greatest element, then MigΓ(E) is finite.

Theorem 3.21. If MigΓ(E) has a greatest element, then MigΓ(E) is finite.

Proof. Suppose MigΓ(E) has a greatest element Eg, which means that any migration E ′ must

satisfy E ⊑ E ′ ⊑ Eg. Thus, MigΓ(E) ⊆ { E ′ | E ⊑ E ′ ⊑ Eg }. We have from Theorem 3.4

that { E ′ | E ⊑ E ′ ⊑ Eg } is finite so also MigΓ(E) is finite.
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Given Theorem 3.21, our algorithm for solving the top-choice problem begins with checking

that MigΓ(E) is finite. We do this with the finiteness checker that we presented in Section 3.4.

Next we explore MigΓ(E) and look for elements E ′ that are maximal elements MigΓ(E),

that is, MigΓ(E
′) is a singleton. We do this with the singleton checker that we presented in

Section 3.3.

Putting it all together. Our top-choice checker works as follows:

Algorithm: Top-Choice Checker.

Instance: E,Γ, where FV (E) ⊆ Dom(Γ).

Problem: Does MigΓ(E) have a greatest element?

Method: 1. int numMax = 0

2. if (MigΓ(E) is finite) {

3. 2Terms workset = {E}

4. 2Terms done = ∅

5. while (workset ̸= ∅) {

6. pick E ′ ∈ workset

7. remove E ′ from workset and add E ′ to done

8. if (∃T ′ : Γ ⊢ E ′ : T ′) {

9. if (MigΓ(E
′) is a singleton) {

10. numMax = numMax + 1

11. } else {

12. add (S(E ′) \ done) to workset

13. }

14. }

15. }
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16. }

17. return (numMax == 1)

Theorem 3.22. Algorithm Top-Choice Checker returns true iff MigΓ(E) has a greatest

element.

Proof. We will go through the algorithm step by step.

Step 1: we declare an integer variable numMax that holds the number of maximal elements

of MigΓ(E) encountered so far.

Step 2: we check that MigΓ(E) is finite because otherwise MigΓ(E) has no greatest

element. Additionally, the finiteness check ensures that the search space is finite.

Steps 3–4: we declare two sets of terms, called workset and done. The idea is classical:

workset contains terms that we must process, while done holds terms that we have already

processed.

Step 5: we will iterate until workset is done. This is guaranteed to terminate because of

the finiteness check in Step 2.

Steps 6–7: we pick a term E’ to process and update workset and done accordingly.

Step 8: we check that E ′ type checks; otherwise E ′ ̸∈ MigΓ(E).

Steps 9–12: we check whether E ′ is a maximal element of MigΓ(E). If so, then we increase

numMax by 1, and otherwise use S(E ′) to add terms that are one step above E ′ to workset,

except for those that we have processed already.

Step 17: if we found a single maximal element, then that element is the greatest element,

and we return true. Otherwise, we return false.

Theorem 3.23. We can solve the top-choice problem in EXPTIME.
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Proof. We have from Theorem 3.22 that Algorithm Top-Choice Checker is correct. We

have from Section 3.4 that the search space is bounded by a term of a size that is exponential

in the size of the input. The total number of terms between E and that bound is exponential

in the size of the input. For each term in the search space, we do an amount of work that is

polynomial in the size of the term. In summary, the algorithm runs in EXPTIME.

3.6 The Maximality Problem

The question of whether the maximality problem is decidable remains an open problem. In

this section we will give a semi-algorithm for the maximality problem and we will show that

the problem is NP-hard.

3.6.1 A Semi-algorithm for the Maximality Problem

We can adapt the top-choice checker in Section 3.5 to become a semi-algorithm for the

maximality problem. We make two modifications, as follows.

First, we skip the check of finiteness. This will ensure that we may find maximal migrations

for any input program, but may also make the modified algorithm fail to terminate on some

inputs.

Second, we make the algorithm output the maximal migrations, rather than merely

counting them.

This semi-algorithm works well for our microbenchmarks: whenever maximal migrations

exist, our algorithm finds at least one of them. In practice, we stop the algorithm at a given

level of the migration space.
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We can adapt the top-choice checker based on programmer needs. For example, we can

stop the search based on the desired length of the type annotations, based on the time

available, or based on the number of migrations that we want to inspect.

3.6.2 The Maximality Problem Is NP-hard

Theorem 3.24. The maximality problem is NP-hard.

Proof. We will do a polynomial-time reduction from 3SAT to the maximality problem. Let

F =
m∧
i=1

li1 ∨ li2 ∨ li3

be a formula in which each lij is either a Boolean variable xk or its negation x̄k, where

k ∈ 1..n. From F , we construct the following λ-term EF and type environment ΓF :

EF = λv1 : (Dyn → int). . . . λvm : (Dyn → int).

(v1v1) + . . .+ (vmvm) +

([λx̄1 : Dyn.(λy1 : int. x̄1)((vg11x̄1) + . . .+ (vg1m1
x̄1))]

([λx1 : Dyn.(λz1 : int. x1)((vf11x1) + . . .+ (vf1m1
x1))] true)) + . . .+

([λx̄n : Dyn.(λyn : int. x̄n)((vgn1x̄n) + . . .+ (vgnmn
x̄n))]

([λxn : Dyn.(λzn : int. xn)((vfn1xn) + . . .+ (vfnmn
xn))] true))

ΓF = [ + : int → int → int ]

The environment ΓF assigns a type to the binary operator +; we write uses of + in infix

notation. The program EF has a variable vi for every clause in F , and it has an expression

that binds xk and x̄k for every variable xk in F .
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We use the following notation in the definition of EF . If a variable xk occurs mk times in

F , we use fkp to denote the index of the clause that contains the pth occurrence. Similarly, if

a variable x̄k occurs m̄k times in F , we use gkp to denote the index of the clause that contains

the pth occurrence.

The size of EF is linear in the size of F , and we can map F to EF in polynomial time in

a straightforward manner. Additionally, we can check easily that

ΓF ⊢ EF : (Dyn → int) → . . .→ (Dyn → int) → int

The idea of EF is that the expressions (vi vi) cause EF to have no maximal migration,

unless the other expressions change that. Specifically, we showed in Section 3.4.5 that λx.x x

has no maximal migration; here each (vi vi) plays the role of (x x). So, for EF to have a

maximal migration, we need the other expressions to put a bound on every vi. This happens

exactly when F is satisfiable.

We will show the following property: F is satisfiable iff EF has a maximal migration.

Let us consider Gen(EF ,Γ) (Section 3.4.2). In essence, Gen(EF ,Γ) has three interesting

subsets.

First, for each vi, we have in EF the expression (vivi). This expression ensures that any

type of vi, is of the form ri → int where ri ∼ (ri → int) (see Section 3.4.5).

Second, for each literal in the i’th clause in F , which is li1 ∨ li2 ∨ li3, we have in EF

the expression (vilij). This expression generates the constraint ri ∼ lij (see the constraint

generation rule for application in Section 3.4.2).

57



Third, for a variable xk we have in EF the expression

. . .+ ([λx̄n : Dyn.(λyn : int. x̄n)(. . .)]([λxn : Dyn.(λzn : int. xn)(. . .)] true))

The backbone of this expression is . . .+([λx̄n : Dyn.x̄n]([λxn : Dyn.xn] true)). This expression

generates the constraints bool ∼ xk ∼ x̄k ∼ int (see Appendix A of the supplementary

material). This is shorthand for the three constraints (bool ∼ xk) and (xk ∼ x̄k) and

(x̄k ∼ int). The above expression ensures that we cannot have at the same time that xk is

bool and that x̄k is int.

Forwards direction. Suppose F is satisfiable and let ψ be a solution of F . Define φ

as follows:

For each xk such that ψ(xk) = true, define φ(xk) = bool and φ(x̄k) = Dyn.

For each xk such that ψ(xk) = false, define φ(xk) = Dyn and φ(x̄k) = int.

For each vi, define φ(vi) = Dyn → int.

We will show that φ is a maximal solution of Gen(EF ,Γ). First we show that φ is a

solution. We will consider, in turn, each of the three interesting subsets of Gen(EF ,Γ). (1)

Given that φ(vi) = Dyn → int, we have φ(ri) = Dyn. So, we have that φ |= ri ∼ (ri → int).

(2) For a constraint ri ∼ lij, we have φ(ri) = Dyn, so φ |= ri ∼ lij. (3) For a variable xk, we

can check easily that φ |= bool ∼ xk ∼ x̄k ∼ int.

Second we will show that φ is maximal.

Consider xk. Notice that while one of φ(xk) and φ(x̄k) is Dyn, we cannot replace that Dyn

with anything larger because of the constraint bool ∼ xk ∼ x̄k ∼ int.
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Consider vi. From that F is satisfiable, we have that we can find j ∈ {1, 2, 3} such that

φ(lij) ∈ {bool, int}. From the constraint ri ∼ lij, we have that φ(ri) ∈ {Dyn, bool, int}.

We also have the constraint ri ∼ (ri → int), so we see that we must have φ(ri) = Dyn. We

conclude that we cannot replace φ(vi) with anything larger.

Backwards direction. Suppose Gen(EF ,Γ) has a maximal solution φ. Define a

mapping ψ as follows.

ψ(x) =

 true if φ(x) = bool

false if φ(x) = Dyn

We will show that ψ satisfies F . Consider the i’th clause of F . Given that φ is a maximal

solution of Gen(EF ,Γ), we have that φ(vi) is constrained by something, which must happen

in a constraint of the form ri ∼ lij. Given that φ is a maximal solution of Gen(EF ,Γ),

we know that, for each x, the mapping φ assigns either [φ(x) = bool and φ(x̄) = Dyn], or

[φ(x) = Dyn and φ(x̄) = int]. So, we can find j ∈ {1, 2, 3} such that φ(lij) ∈ {bool, int}.

We have two cases.

First, suppose lij is x. From φ(lij) = φ(x) ∈ {bool, int}, we get φ(x) = bool, hence

ψ(x) = true, which means that ψ satisfies the i’th clause.

Second, suppose lij is x̄. From φ(lij) = φ(x̄) ∈ {bool, int}, we get φ(x̄) = int, hence

φ(x) = Dyn, hence ψ(x) = false, which means that ψ satisfies the i’th clause.

3.6.3 Example of How the NP-hardness Proof Works

F2 = (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x3)
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From F2, we construct the following λ-term EF2 and type environment Γ:

EF2 = λv1 : (Dyn → int). λv2 : (Dyn → int).

(v1v1) + (v2v2) +

([λx̄1 : Dyn.(λy1 : int. x̄1)(v2x̄1)]

([λx1 : Dyn.(λz1 : int. x1)(v1x1)] true)) +

([λx̄2 : Dyn.(λy2 : int. x̄2)(v1x̄2)]

([λx2 : Dyn.(λz2 : int. x2)(v2x2)] true)) +

([λx̄3 : Dyn.(λyn : int. x̄3) 0]

([λx3 : Dyn.(λz3 : int. x3)((v1x3) + (v2x3))] true))

Γ = [ + : int → int → int ]

Notice the use of 0 in EF2 ; it signals an empty sum that stems from that x̄3 does not occur

in F2.

We have that F2 is satisfiable and we will show that Gen(EF2 ,Γ) has a maximal solution.

Here are the three interesting subsets of Gen(EF2 ,Γ):

r1 ∼ (r1 → int) r1 ∼ x1 r2 ∼ x̄1 bool ∼ x1 ∼ x̄1 ∼ int

r2 ∼ (r2 → int) r1 ∼ x̄2 r2 ∼ x2 bool ∼ x2 ∼ x̄2 ∼ int

r1 ∼ x3 r2 ∼ x3 bool ∼ x3 ∼ x̄3 ∼ int
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We see that all of x1, x̄1, x2, x̄2, x3, x̄3 are bounded. Now we turn to r1 and r2. Let focus on

a particular satisfying assignment for F2, namely ψ defined as follows: ψ(x1) = true and

ψ(x2) = true and ψ(x3) = false. From ψ we get φ:

φ(x1) = bool φ(x2) = bool φ(x3) = Dyn φ(v1) = Dyn → int = r1 → int

φ(x̄1) = Dyn φ(x̄2) = Dyn φ(x̄3) = int φ(v2) = Dyn → int = r2 → int

We can check easily that φ |= Gen(EF2 ,Γ). Additionally, we can check that φ is a maximal

solution. Let us check every use of Dyn. First consider φ(x̄1) = Dyn. We see that the

constraints bool ∼ x1 ∼ x̄1 ∼ int and φ(x1) = bool imply that we must have

bool = φ(x1) ∼ x̄1 ∼ int

Thus, we cannot improve φ(x̄1) = Dyn. Similar reasoning applies to the cases of φ(x̄2) = Dyn

and φ(x3) = Dyn. Next consider φ(v1) = Dyn → int. We see that the constraints r1 ∼ (r1 →

int) and r1 ∼ x1 and that φ(x1) = bool imply that we must have

(r1 → int) ∼ r1 ∼ φ(x1) = bool

Thus, we cannot improve φ(v1) = Dyn → int. Similar reasoning applies to the case of

φ(v2) = Dyn → int.

We can do a similar analysis of other satisfying assignments for F2 and in each case we

will find that Gen(EF ,Γ) has a maximal solution.
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3.6.4 Can the NP-hardness Proof Be Adapted to Other Problems?

For each of the top-choice problem and the finiteness problem, we have an exponential-time

upper bound on the time complexity but no lower bound. Let us consider whether the

NP-hardness proof for the maximality problem can be adapted to the top-choice problem or

the finiteness problem. We make two observations based on the example in Section 3.6.3.

First, if we try other satisfying assignments of F than the ψ that we used in the example,

we get other maximal solutions of Gen(E,Γ) that are different from ψ. So, MigΓ(EF ) does

not have a greatest element, hence the proof is of no help with proving a lower bound for

top-choice problem.

Second, consider an assignment φ that assigns φ(x1) = φ(x̄1) = φ(x2) = φ(x̄2) = φ(x3) =

φ(x̄3) = Dyn. This part of the definition of φ satisfies most of the constraints in Gen(E,Γ)

and leaves only r1 ∼ (r1 → int) and r2 ∼ (r2 → int). However, those constraints have

infinitely many solutions. So, MigΓ(EF ) has infinitely many solutions, hence the proof is of

no help with proving a lower bound for finiteness problem.

3.7 Implementation and Experimental Results

Implementation. We have implemented our algorithms in Haskell, for a total of 1,159 lines

of code. This includes a type checker, a singleton checker, a top-choice checker, a finiteness

checker, and a search for a maximal migration. In addition to answers to the singleton,

top-choice, and finiteness questions, our tool outputs a maximal migration, if one exists.
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Benchmark Singleton? Top Choice? Finite? Has Max?
λx.x(succ(x)) ✓ ✓ ✓ ✓

λx.x(succ(x(true))) × ✓ ✓ ✓
λx.+ (x 4)(x true) × ✓ ✓ ✓

(λx.x)4 × ✓ ✓ ✓
succ((λy.y)((λx.x)true)) × × ✓ ✓

λx.x × × × ✓
λx.λy.yxx × × × ✓
λx.(λy.x)xx × × × ✓

λx.(λf.(λx.λy.x)f(fx))(λz.1) × × × ✓
λx.xx × × × ×

(λx.λy.y(xI)(xK))∆ × × × ?
selfInterpreter × × × ?

Figure 3.3: Our benchmarks. Legend: ✓ means yes, and × means no, and ? means unknown.

Benchmark Singleton? Top Choice? Finite? Has Max?
λx.x(succ(x)) 326± 18ns 131 ± 2 µs 126 ± 5 µs 545± 12ns

λx.x(succ(x(true))) 147 ± 5 ns 313 ± 6 µs 296 ± 4 µs 3 ± 1 µs
λx.+ (x 4)(x true) 168 ± 3 ns 533± 14µs 517± 12µs 3 ± 1 µs

(λx.x)4 132 ± 6 ns 35 ± 1 µs 33 ± 1 µs 531± 32ns
succ((λy.y)((λx.x)true)) 335 ± 3 ns 209 ± 4 µs 196 ± 4 µs 2 µs

λx.x 46 ± 3 ns 6 ± 1 µs 6 µs 371± 20ns
λx.λy.yxx 132 ± 2 ns 19 ± 1 µs 19 µs 2 ms
λx.(λy.x)xx 142 ± 3 ns 25 µs 25 ± 1 µs 2 ± 1 µs

λx.(λf.(λx.λy.x)f(fx))(λz.1) 213 ± 3 ns 77 ± 2 µs 77 ± 2 µs 4 ± 1 ms
λx.xx 88 ns 8 µs 8 µs 2 ms

(λx.λy.y(xI)(xK))∆ 310 ± 4 ns 131 ± 3 µs 131 ± 3 µs 367 ± 7 ms
selfInterpreter 672± 15ns 587± 14µs 586± 17µs 5 s

Figure 3.4: Execution times.

63



Benchmarks. Figure 3.3 shows our benchmarks (column 1) and their key features (columns

2–5): is the set of migrations a singleton, does it have a greatest element, is it finite, and

does it have a maximal element?

Notice that the benchmarks include the programs in Figure 2.1. Additionally, the

benchmark (λx.λy.y(xI)(xK))∆ has the curious property that it is strongly normalizing but

untypable in System F [GR88, Section 4]. It uses the abbreviations I = λa.a, K = λb.λc.b,

and ∆ = λd.dd. Finally, the benchmark selfInterpreter is the lambda-term

Y [λe.λm.m(λx.x)(λmn.(em)(en))(λm.λv.e(mv))]

which is a self-interpreter for pure lambda-calculus [Mog92, Section 3]. It uses the abbreviation

Y = λh.(λx.h(xx))(λx.h(xx)).

For all benchmarks, we use Γ = [succ : int → int , + : int → int → int].

Execution. We ran each of our tools 100 times or more on each benchmark. Figure 3.4 shows

the mean and standard deviation of the timing in each case. We left out the standard deviation

in cases where it rounded off to zero. We managed the process with the help of Criterion, a

benchmarking tool for Haskell, http://hackage.haskell.org/package/criterion.

Our results. Our tool answers all the questions in Figure 2.1 correctly, with the footnote

that for λx.xx, we stopped the exploration at level 5, and for the last two benchmarks, we

stopped the exploration at level 4. The early termination is due to that our maximality

checker is a semi-algorithm rather than a decision procedure, and for those three programs,

no maximal solution exists. Figure 3.5 shows maximal migrations that our tool has given as

output. We have used our tool to check that each of those maximal migrations type checks
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Benchmark Maximal migration
λx.x(succ(x)) λx : Dyn.x(succ(x))

λx.x(succ(x(true))) λx : (Dyn → int).x(succ(x(true)))
λx.+ (x 4)(x true) λx : (Dyn → int).+ (x 4)(x true)

(λx.x)4 (λx : int.x)4
succ((λy.y)((λx.x)true)) succ((λy : int.y)((λx : Dyn.x)true))

λx.x λx : int.x
λx.λy.yxx λx : int.λy : (int → int → int).yxx
λx.(λy.x)xx λx : Dyn.(λy : int.x)xx

λx.(λf.(λx.λy.x)f(fx))(λz.1) λx : int.(λf : Dyn.(λx : int.λy : int.x)f(fx))
(λz : int.1)

λx.xx no maximal migration
(λx.λy.y(xI)(xK))∆ unknown

selfInterpreter unknown

Figure 3.5: Our tool’s output of maximal migrations.

and is indeed maximal. We do the maximality check by using our singleton checker to check

that its set of migrations is a singleton.

Comparison. Our tool uses the same input format as the tool that accompanies the

chapter by [CCE18]. This enables a head-to-head comparison of our tool and their tool,

for our benchmarks. Their tools supports multiple lambda constructors; we used the one

called CDLam, which provides the most flexibility for migration. We ran their function called

measureMG, which produces a type for the entire program but outputs no migration. So,

we compare the types generated by the two tools, see Figure 3.6. Notice that for every

benchmark, the type produced by their tool is ⊑-related to the type produced by our tool.

For six benchmarks, the types are different, for three benchmarks the types are the same, and

for one benchmark, no maximal migration exists but the tool from [CCE18] produces a type
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Benchmark POPL 2018 tool Our tool
λx.x(succ(x)) Dyn → Dyn Dyn → Dyn

λx.x(succ(x(true))) Dyn → Dyn (Dyn → int) → int

λx.+ (x 4)(x true) Dyn → int (Dyn → int) → int

(λx.x)4 Dyn int

succ((λy.y)((λx.x)true)) int int

λx.x Dyn → Dyn int → int

λx.λy.yxx Dyn → Dyn → Dyn int → (int → int → int) → int

λx.(λy.x)xx Dyn → Dyn Dyn → Dyn

λx.(λf.(λx.λy.x)f(fx))(λz.1) Dyn → Dyn int → int

λx.xx Dyn → Dyn no maximal migration
(λx.λy.y(xI)(xK))∆ Dyn → Dyn unknown

selfInterpreter Dyn unknown

Figure 3.6: The types for the entire program produced by the tool from [CCE18] and by our tool.

anyway. The differences highlight that the tool from [CCE18] may produce non-maximal

migrations.

The reduction. We have implemented the reduction in Section 3.6.2 from 3SAT to the

maximality problem. Each use of the reduction maps a Boolean formula to a lambda-term. We

have experimented with mapping several Boolean formulas to lambda-terms and found that

in each case, our maximality checker gave the expected result. In particular, the maximality

checker found correctly (in 1.11 ms) that EF2 from Section 3.6.3 has a maximal migration.

As another example, we tried the following unsatisfiable Boolean formula F3.

F3 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x̄3) ∧

(x̄1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3)
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We stopped exploration at level 3 (after 478 ms), reflecting that EF3 has no maximal migration.

3.8 Related Work

We will discuss related work on type migration in more detail. The most closely related work

is the POPL 2018 paper by [CCE18] which we have discussed in Chapter 2. Campora et al.

presented an efficient approach to migrating a program, but did not address our four decision

problems. We saw in Section 3.7 that the approach in [CCE18] may produce non-maximal

migrations; we will give an example of this below. The approach of [CCE18] integrates

gradual types and variational types. Specifically, for each λ-bound variable, the approach

uses constraints and unification to produce a static variational type that potentially can

replace Dyn. If the program has n such variables, those choices between Dyn and a static type

create a finite migration space of size 2n, which the approach searches efficiently.

For example, consider the program (λx : Dyn.xx), which has no maximal migration. The

constraint generation procedure generates a constraint of the form α ≈⊤ d⟨Dyn, α⟩ → β.

Here, α, β are type variables, d⟨Dyn, α⟩ is a type that signals a choice between Dyn and α,

and ≈⊤ is a relationship that must be established via unification. The unification procedure

finds that if we pick α, then α = α → β has no solution, so the approach picks Dyn. As a

final step, the approach converts β to Dyn, and outputs the type (Dyn → Dyn) for α, which

happens to be the type of the entire term (as shown in Figure 3.6). The example shows that

cases where unification fails tend to push the results towards types with more uses of Dyn.

Notice also that the approach’s finite migration space ensures that it always find a migration,

even for (λx : Dyn.xx) which has no maximal migration. We found that the approach is of

little help with deciding questions such as the maximality problem and the finiteness problem.

67



[SV08] presented the first algorithm for type migration with gradual types. Their starting

point was the type system by [ST06], for which they did type migration with a unification-

based algorithm. Later, [GC15] presented a different unification-based algorithm for a similar

type system. Both [SV08] and [GC15] proved correctness, while neither had a report on

experiments. Those two papers and use similar forms of consistency constraints to ours, but

they differ in what questions they answer about such constraints. Specifically, [SV08] and

[GC15] focus on finding a single solution, while this chapter studies properties of the set of

solutions.

[RCH12] presented a migration algorithm for an object-oriented language with subtyping.

They proved that the added types cannot cause new run-time failures.

3.9 Summary

We have presented algorithms and a hardness result for deciding key properties of programs

in the gradually typed lambda-calculus. Several problems remain open, including whether

the maximality problem is decidable, whether the finiteness problem is NP-hard, and whether

the top-choice problem can be approached more efficiently than using the finiteness checker

as a subroutine.

68



CHAPTER 4

Designing and Migrating Rank-2 Intersection Types

In this chapter, we present a gradual intersection type system that satisfies algorithmic

migration criteria of Chapter 2 and some of Siek et al’s gradual typing criteria. Our type

system is the first gradual intersection type system that has algorithmic support for type

migration. We achieve this by using Rank-2 intersection types and by showing that three

migration problems, the Singleton, Top Checker and Finiteness problems, have the same

time complexities as for the GTLC, which we presented in the proceeding chapter. The

Maximality problem remains open.

4.1 Introduction

4.1.1 Gradual intersection types.

Originally, researchers designed intersection types to characterize normalization properties

of lambda-terms [BCD83]. Later, Reynolds introduced intersection types into programming

languages in Forsythe [Rey88, Rey96], and they have since been used with a refinement

restriction [FP91, DP00, DP03], and broadly building on Reynolds’ work, without a refinement

restriction [Dun14, OSA16].
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Mainstream languages with support for intersection types include Java, TypeScript,

and Scala. In more detail, Java has supported intersection types since Java 5 in 2004

[Zar19, Jav22], while TypeScript has supported intersection types since TypeScript 1.6

in 2015 [Sha22, Typ22], and Scala has supported intersection types since Scala 3 in 2021

[Wam20, Sca22]. In Java, a typical use of intersection types is for extending two types

without naming a new type. In TypeScript and Scala, a typical use of intersection types is

for expressing ad hoc polymorphism.

Typed Racket has supported intersection types since 2015 [KKT15]. Castagna and Lanvin

introduced a theoretical model of gradual intersection types [CL17]. Both type systems are

highly expressive but neither conforms all of Siek et al’s criteria [SVC15a].

Similarly, Castagna et al’s gradual intersection types [CLP19] satisfy some of Siek et al’s

criteria but does not explore the dynamic gradual guarantee.

None of the works have explored algorithmic support for type migration.

4.1.2 The Rest of the Chapter.

In Section 4.2 we discuss potential pitfalls and we justify our design. In Sections 4.3–4.4 we

present our Rank-2 intersection type system and show that it satisfies some of the criteria

from Siek et al. [SVC15a]. In Section 4.5 we show that our type system satisfies our migration

criterion, in Section 4.6 we present experimental results, in Section 4.7, we show how to extend

our gradual language with further flexibility by adding commutativity and associativity and

in Section 4.8 we discuss related work.
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4.2 Design Motivation

In this section we introduce the running example of the chapter and use it to motivate our

design choices. Our goal is to design a language that supports automatic type migration. We

obtain such a language by restricting gradual intersection types in a way that facilitates tool

support, while simultaneously satisfying some of Siek et al’s criteria.

4.2.1 Example

Our running example is the program

(λx : Dyn.(x 4) + (x True))(λy : Dyn.5) (4.1)

The program executes in a few steps and gives the result 10.

Let us consider type migration for the example. In the GTLC, we can give x a more

precise type know that the argument is a function to Int:

(λx : Dyn → Int.(x 4) + (x True))(λy : Dyn.5) (4.2)

The program applies x to both an integer and a Boolean. Hence, in a type language with

intersections, we can give it the following type:

(λx : (Int → Int) ∧ (Bool → Int).(x 4) + (x True))(λy : Dyn.5) (4.3)

Here the intersection, expressed by ∧, means that x has both the type (Int → Int) and the

type (Bool → Int). Notice that the type of x is fully static and is useful because x is used
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twice. Indeed, the type of x says that we use x both as a function of type (Int → Int) and

as a function of type (Bool → Int).

In a GTLC extended with our rank-2 intersection types, we cannot make the type of y

any more static. The reason is that the argument (λy : Dyn.5) has type (Dyn → Int) and

no type that is more precise is also consistent with both (Int → Int) and (Bool → Int).

The notion of consistency is central in gradual typing; As we shall see in the next section,

consistency only needs to be defined for simple types. Thus, the definition of consistency is

the same as that in Chapter 3.

4.2.2 Rank-2 intersection types avoid undecidability.

For full-fledged intersection types, type inference is undecidable [KW04], which seems like a

bad omen for type migration with gradual intersection types. We avoid undecidability by

using a restricted form of types, namely Rank-2 intersection types [Lei83, Jim95, KW04] for

which type inference is EXPTIME-complete [Jim95].

we consider the type migration problem as at least as hard as the type inference problem.

Type inference assigns a fully static type to every expression in the program. Type migration

in gradually typed systems does not assume that every variable can be assigned a static type.

If the underlying type system cannot express the type of a variable, then we must assign it a

dynamic type. The migration space is often infinite for a given program, and so unless we

would like to assign a Dyn type to every variable in a program, migration is a non-trivial task.

4.2.3 One type per variable occurrence avoids bloated migration spaces.

Rank-2 intersection types have the potential to bloat the migration space. For example,

consider the program λx : Dyn.xx, which is untypable in the STLC and has no maximal
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migration in the GTLC [MP19]. This program can be migrated in many ways using Rank-2

intersection types, including

λx : (Dyn ∧ (Dyn → Dyn)).xx

λx : (Dyn ∧ (Dyn → Dyn) ∧ ((Dyn → Dyn) → Dyn)).xx

. . .

What we see here is an infinite migration path that bloats the migration space with migrations

of little interest.

More generally, consider a program with a type annotation T . Non-trivial intersections

can be all types that are less precise than T , but they are all expected to be valid types,

intuitively, because we are merely removing type information from T . These conjuncts are not

useful however, because they are not carrying new type information. For example, suppose

that T = Int → Int. A program with such type annotation should also typecheck with the

types: Int → Dyn, Dyn → Int, Dyn → Dyn and Dyn. All of these types could be elements

of the conjunction and thus subject to migration themselves. This could result in up to an

exponential overhead in the migration space.

We avoid bloat by restricting, for λx : σ.e, the number of conjuncts in σ to be the

number of free occurrences of x in e, or a single conjunct that would be the type of every

free occurrence of x in e. If σ has a wrong number of conjuncts, we consider λx : σ.e to be

ill-typed. For example, for the identity function λx : σ.x, where x occurs a single time, the

type σ must have a single conjunct. Another example is the program λx : σ.xx, for which σ

must have two conjuncts, that is, one for each occurrence of the variable x.
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The unique-type property of this system pushes us towards having a a simple type rule

for a function application (E1 E2): if E1 has type (σ1 ∧ σ2) → σ′, and E2 has type σ, then

we will check both that σ1 is consistent with σ and that σ2 is consistent with σ.

As a technical device, we will label each variable occurrence to help tie it to “its” conjunct

in an intersection type. For example, we can label as follows: λx : (Int → Int) ∧ Int.x0 x1.

Here, x0 has type (Int → Int), while x1 has type Int.

Notice that this restriction results in the loss of commutativity and associativity, but we

later extend our system with a limited form of commutativity and associativity. We discuss

this in Section 4.7.

4.2.4 Our language must satisfy the Static Gradual Guarantee

Our design decision to allow a single conjunct to be the type of every free occurrence of a

variable has a side effect: we must disallow idempotence. We previously established that

multiple conjuncts in an abstraction annotation correspond to multiple variable occurrences

in the abstraction body. So, consider the ill-typed expression (λx : Dyn∧ Int.x). which has a

single occurrence of x but two conjuncts in the type of x. If we make the type of x more

precise, we can get the expression (λx : Int ∧ Int.x), which is also ill-typed, for the same

reason as before. However, if type intersection is idempotent, we would have identities like

Int∧ Int = Int, which would mean that (λx : Int∧ Int.x) can be rewritten as (λx : Int.x),

which type checks. Here, idempotence helped get us from an ill-typed expression to a more

precise well-typed expression, which violates the static gradual guarantee. The static gradual

guarantee ensures that well-typed programs in the original static language remain well-typed

in the gradual language, which is an important requirement for gradual languages. Thus, we

must disallow idempotence.
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While Neergaard and Mairson [NM04] showed that the lack of idempotence can cause

type inference to be the same as normalization in intersection types, we do not face this issue

in our type-system. Intuitively, the reason this is not an issue is that we consider a syntactic

interpretation of gradual types and restrict the types in such a way that they can be captured

by our constraints.

4.2.5 Soundness and Migratory typing

We discuss the soundness theorem we achieved in this system. Our soundness theorem is

weaker than the one for, say, a model of Typed Racket. Specifically, the underlying static

type system is essentially the STLC plus some syntactic sugar. The translation from a Rank-2

gradual program into this underlying system must erase gradual types up to a simple type.

This approach directly implements the design philosophy outlined of Cimini and Siek [CS16]

and others and fails to achieve a traditional soundnesss theorem for this particular extension.

Thus, the rank-1 type from our running example would be translated to the rank-0 type

Dyn → Int.

Our characterization rests on the results of Greenman and Felleisen [GF18] who establish

that, in the context of gradual typing, different type-enforcement systems yield different

type-soundness guarantees. Technically speaking, Greenman et al.’s work differentiates three

variants of type soundness, in decreasing order of strength:

1. one based on a higher-order enforcement of types, a direct model of Tobin-Hochstadt

and Felleisen [TF08] work on Typed Racket;

2. one inspired by transient checking, an idea due to Vitousek et al. [VSS17] and their

work on Reticulated Python; and
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3. the non-enforcement of types, as popularized by TypeScript [BAT14].

Lazarek et al. [LGF21] also provide empirical evidence that higher-order semantics are

not always beneficial in practice.

In addition to weakening the soundness guarantees of our system, our translation also

inhibits proper blame tracking in some cases. Consider the program:

(λx : Int → Int ∧ Int.xx)((λy : Dyn.y)True).

Traditionally, we should expect that the type-enforcing casts blame the term

((λy : Dyn.y)True)

, because the expression does not yield a value of type int. Since our translation to GTLC

yields:

(λx : Dyn.xx)((λy : Dyn.y)True)

However, the blame is instead assigned to the first occurrence of x in the first function,

because it is not a function. That is, rather than identifying the outer boundary, the error is

caught deep in the resulting target syntax tree.
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Figure 4.1: Our calculus and its relation to four other languages.

4.3 Our Type System

We present a gradual Rank-2 intersection type discipline for a λ-calculus. This design came

about via a stepping stone. First we design the static Rank-2 type system and then we

gradualize it using the methodology of Garcia et al. [GCT16]. The system extends STLC

syntactically which helps us with the gradualization procedure, but does not provide practical

usability over the STLC so we omit it from the chapter. Appendix B.1 contains the static

Rank-2 type system and the gradualization procedure. In outline, this involves defining a

concretization function and using it to define type precision and consistency.

We prove in Section 4.4 that our language satisfies some of the criteria from Siek et al.

[SVC15a] including a weak type soundness theorem a la TypeScript. Those proofs involve

a total of five languages, as illustrated in Figure 4.1. Briefly, our gradual Rank-2 calculus

is a conservative extension of both a static Rank-2 calculus and the dynamically typed

lambda-calculus (DTLC). We define the semantics of our language by compiling it to the

GTLC. The GTLC itself has a semantics that is defined via compilation to a cast calculus.
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4.3.1 Types and terms.

Figure 4.2 presents our types and terms. Types have three different ranks, as in any Rank-2

type system. Rank-0 types are the types of the GTLC. Any gradual language must contain

the Dyn type, and here Dyn ends up as a Rank-0 type. Rank-1 types are conjunctions of

Rank-0 types. Type environments map variables to Rank-1 types, which means that also

type annotations are Rank-1 types. Finally, we have Rank-2 types, which we can assign to

expressions. A Rank-2 type is either a Rank-0 type or a type of the form T 1 → T 2. We use a

notion of rank from Jim [Jim95], and we note that some authors use different definitions of

rank, including [Lei83].

Our language is a standard lambda-calculus with booleans and integers. The terms are

the same as those of the GTLC [ST06, SV08, SVC15b], in the convenient reformulation by

Cimini and Siek [CS16], except for two differences. First, type annotations have Rank-1, as

mentioned before. Second, each variable has a label that indicates its order of occurrence

in an expression. Those labels enable us to easily implement a design decision from Section

4.2, which is to assign a single type to each variable occurrence. Furthermore, types are

labeled with 0, 1 or 2 to indicate their rank. Throughout the chapter, we may skip writing

the superscripts when they can be inferred easily from the context.

Figure 4.2 also defines type precision and term precision, which enable us to state and

prove the static gradual guarantee.

Type precision is defined by rules that are much like those of the GTLC. The main

difference lies in the new rule (T 1and), which says that we can make an intersection type

more precise by making each of the conjuncts more precise. This rule is unsurprising given

that we have a similar rule (T 1T 2arr) for function types.

Term precision is defined by rules that are like those of the GTLC.
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Syntax:

(Types) τ 0, σ0, T 0 ::= Dyn | Bool | Int | T 0 → T 0

τ 1, σ1, T 1 ::= T 0 | T 1 ∧ T 1

τ 2, σ2, T 2 ::= T 0 | T 1 → T 2

τ, σ, T ::= τ 0 | τ 1 | τ 2

(Terms) E ::= true | false | n | xl | λx : σ1.E | E E

(Environments) Γ ::= ∅ | Γ, x : σ1

(Labels) ::= l ∈ N

Type precision:

Dyn ⊑ T 2 Dyn ⊑ T 1 T 2 ⊑ T 2

T 1
1 ⊑ T 1′

1 T 1
2 ⊑ T 1′

2

T 1
1 ∧ T 1

2 ⊑ T 1′
1 ∧ T 1′

2

(T 1and)

T 1 ⊑ T 1′ T 2 ⊑ T 2′

T 1 → T 2 ⊑ T 1′ → T 2′
(T 1T 2arr)

Term precision:

E ⊑ E(P-Refl-E)
T 1
1 ⊑ T 1

2 E1 ⊑ E2

λx : T 1
1 .E1 ⊑ λx : T 1

2 .E2

(P-Abs) E1 ⊑ E3 E2 ⊑ E4

(E1 E2) ⊑ (E3 E4)
(P-App)

Figure 4.2: The gradual Rank-2 intersection-typed λ-calculus: types and terms.
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4.3.2 Typing Rules.

Figure 4.3 presents our typing rules, along with the helper relations, matching and consistency,

which are standard in gradual type systems. Indeed, our definitions of matching and

consistency are the same as those in the GTLC [CS16].

We can think of matching as a check to ensure we can represent a type as an arrow type.

Clearly this is true for an arrow type, while Dyn, after a suitable runtime check, can be

represented as Dyn → Dyn. Otherwise, the matching relation is undefined.

Consistency is defined only for Rank-0 types, which is because our type rule for function

application assigns the argument a Rank-0 type, as we will explain in more detail below.

Our typing rules use judgments of the form Γ ⊢ E : T 2, where the type environment Γ is

a function that maps variables to T 1 types.

The rules (T-True), (T-False) and (T-Num) are straightforward and standard.

The rule (T-Var) assigns a variable occurrence the “right” type from the type environment.

The label of each occurrence of x is an index between 1 and n, so if Γ maps a variable to

σ0
0 ∧ . . . ∧ σ0

n, then a variable x with label i gets the type σ0
i . We can compare rule (T-Var)

to the rule from the static Rank-2 intersection type system in [Jim95]:

x : (
∧

i∈I τi) ∈ Γ where i ∈ I

Γ ⊢ x : τi

This rule allows us to assign the variable x any type from the intersection, but it does not

give us a unique type for each expression. So we modify the rule to express the idea that

we want to assign a type from the intersection to the “right” variable occurrence. Given a

variable xl, rule (T-Var) grabs the type at position l in the Rank-1 type given to x by Γ. For
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Typing Rules
Γ ⊢ E : T 2.
Γ ⊢ true : Bool (T-True) Γ ⊢ false : Bool (T-False) Γ ⊢ n : Int (T-Num)

x :
∧

i∈I τ
0
i ∈ Γ l ∈ I

Γ ⊢ xl : τ 0l
(T-Var)

Γ, (x : σ0
0 ∧ . . . ∧ σ0

n) ⊢ E : τ
where ∀i ∈ 0..n, xi occurs in E,

and σ0
0 = . . . = σ0

n = σ0

Γ ⊢ (λx : σ0.E) : σ0 → τ
(T-Abs-0)

Γ, (x : σ0
0 ∧ ... ∧ σ0

n) ⊢ E : τ where ∀i ∈ 0..n, xi occurs in E

Γ ⊢ (λx : σ0
0 ∧ ... ∧ σ0

n.E) : σ
0
0 ∧ ... ∧ σ0

n → τ
(T-Abs-1)

Γ ⊢ E : τ where x0 does not occur in E

Γ ⊢ (λx : τ 0.E) : τ 0 → τ
(T-Abs-2)

Γ ⊢ E1 : σ1
σ1 � ((

∧
i∈I τ

0
i ) → σ)

Γ ⊢ E2 : σ
0

∀i ≤ I : σ0 ∼ τ 0i (T-App)
Γ ⊢ E1 E2 : σ

Consistency:
σ0 ∼ Dyn (C-Dyn1) Dyn ∼ σ0 (C-Dyn2) Bool ∼ Bool (C-Bool)

Int ∼ Int (C-Int)

σ0 ∼ σ′0 τ 0 ∼ τ ′0

(σ0 → τ 0) ∼ (σ′0 → τ ′0)
(C-Arrow)

Matching:
(σ1 → τ 2)� (σ1 → τ 2) (M-Arrow) Dyn� (Dyn → Dyn) (M-Dyn)

Figure 4.3: The gradual Rank-2 intersection-typed λ-calculus: Typing Rules

example, consider Γ = [x : (Int ∧ Bool)]. Here, the occurrence x1 gets the type Int and the

occurrence x2 gets the type Bool. Thus, our version of the rule supports unique types.
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Our type system has three rules for λ-abstraction: (T-Abs-0), (T-Abs-1), and (T-Abs-2).

Our motivation for those rules begins with the single rule for λ-abstraction from the static

Rank-2 intersection type system in [Jim95]:

Γ, x : σ ⊢ E : τ

Γ ⊢ (λx : σ.E) : σ → τ

The above rule covers three distinct possibilities in a uniform manner: σ is a T 0 type, σ is an

intersection type, and x does not occur free in E. However, in our type system, we want to

give a single type for each variable occurrence, which is difficult to achieve with a single rule.

In particular, we want to design our type system such that it is an extension of the GTLC.

For example, the expression λx : Int.x + x should be well-typed but also the expression

λx : (Int → Int) ∧ Int.xx should be well-typed. So, instead of a single rule, (T-Abs-0)

covers the case where σ is a T 0 type, (T-Abs-1) covers the case where σ is an intersection

type, and (T-Abs-2) covers the case where x does not occur free in E.

The rule (T-Abs-0) allows us to type check expressions in the same way as the GTLC. For

an expression of the form λx : σ0.E where x occurs in E a total of n times, when type checking

E, we append n occurrences of σ0 to the type environment as follows x : (σ0∧ ...∧σ0). By the

time we get to type checking a particular occurrence, we can grab the type based on the index.

So to type check λx : Int.x+ x, we type check x+ x in the context of Γ = [x : (Int ∧ Int)].

The rule (T-Abs-1) adds a binding of the type annotation to the environment. For

example, we can handle λx : (Int → Int) ∧ Int.xx by appending x : (Int → Int) ∧ Int to

the type environment. The first occurrence of x gets the type Int → Int, and the second

occurrence gets the type Int.
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The rule (T-Abs-2) handles the case where a bound variable does not occur in the body

of the abstraction at all. In this case, we leave the type environment unchanged when we

type check the body of the λ-abstraction.

Our type system has a single rule (T-App) for function application that is quite different

from the corresponding rule from the static Rank-2 intersection type system in [Jim95]:

Γ ⊢ E1 : ((
∧

i∈I τi) → σ) (∀i ∈ I) Γ ⊢ E2 : τi

Γ ⊢ E1 E2 : σ

In the above rule, the argument types are Rank-0 types and the rule does not yield

unique types. In contrast, our rule implements a design decision from Section 4.2, which

is to type check the argument once and thereby get unique types. So, our rule (T-App)

assigns a single σ0 to the argument. If in (E1 E2) we have that the type of E1, after

matching, is of the form T 1 → σ, we require that every type in the conjunction T 1 must

be consistent with the argument type. This means that we do not admit the program

(λx : (Int → Bool) ∧ (Bool → Bool).x)(λy : Int.y). We will however annotate the program

as follows: (λx : (Int → Bool) ∧ (Bool → Bool).x)(λy : Dyn.y).

4.3.3 Example.

Let us demonstrate how the typing rules work by going over the derivation tree for one of

our examples, namely (λx : τ.(x 4) + (x True))(λy : Dyn.5).

Let τ = (Int → Int) ∧ (Bool → Int), let τ1 = Int → Int, let τ2 = Bool → Int, and let

Γ = [+ : Int → Int → Int, x : τ ].

Let us begin with the type derivation for the subexpression λx : τ.(x 4) + (x True),

omitting a lookup in Γ to get the type of +:
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Γ ⊢ x0 : τ1 Γ ⊢ 4 : Int
Γ ⊢ x0 4 : Int

T-App Γ ⊢ x1 : τ2 Γ ⊢ True : Bool
Γ ⊢ x1 True : Int

T-App

Γ ⊢ (x0 4) + (x1 True) : Int
T-App

∅ ⊢ λx : τ.(x0 4) + (x1 True)) : τ → Int
T-Abs-1

Our full derivation tree is then as follows:

· · ·
∅ ⊢ λx : τ.(x0 4) + (x1 True)) : τ → Int

∅ ⊢ 5 : Int
∅ ⊢ λy : Dyn.5 : Dyn → Int

T-Abs-2

∅ ⊢ (λx : τ.(x0 4) + (x1 True))(λy : Dyn.5) : Int
T-App

Let us discuss a few highlights from this example. First, each variable is labeled based

on its occurrence in the expression. When a variable is type checked, we check the label.

In the derivation, we have Γ ⊢ x0 : τ1 since τ = (Int → Int) ∧ (Bool → Int) and we are

interested in the 0th element, which is τ1 = Int → Int. The second point to note is about

abstractions. When we type check the expression λx : τ.(x 4) + (x True), we must check

that the number of conjuncts in τ matches the number of variable occurrences. We have

two conjuncts in τ and two variable occurrences. This is checked by T-Abs-1. On the other

hand, when type-checking the expression λy : Dyn.5, we can see that y does not occur in

the body, which is why we have a Rank-0 type annotation. This is handled by T-Abs-2.

Finally, when type checking the top level application, we can see that the function type is

τ → Int = ((Int → Int) ∧ (Bool → Int)) → Int and the argument type is Dyn → Int.

Clearly, (Int → Int) ∼ (Dyn → Int) and (Bool → Int) ∼ (Dyn → Int). This is handled by

T-App.

As shown, the typing rules ensure that the number of conjuncts in a type annotation

matches the number of variable occurrences, as we can see from the uses of T-Var.
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4.3.4 Semantics.

Like for GTLC, we define the dynamic semantics of our calculus by a translation to a cast

calculus [SVC15a]. Indeed, we use the same cast calculus that researchers have used as the

target for translation of GTLC.

Our translation from Rank-2 to the cast calculus proceeds in two steps: first we translate

Rank-2 to GTLC, and then we translate GTLC to the cast calculus. The first step is new,

while the second step is standard. This level of modularity enables us to rely on known

properties of the second step when we prove properties of our semantics. Indeed, for our

purposes the key notation from the GTLC and the cast calculus that we need are as follows,

all taken from Siek et al. [SVC15a].

We begin with some GTLC notation. For a GTLC type environment Γ, a GTLC term E,

and a GTLC type T , a GTLC type judgment is of the form Γ ⊢G E : T . We let ⊑G denote

the precision relation in GTLC. For the full definition of the GTLC, see Appendix B.5.

Next we introduce some cast-calculus notation. The calculus extends the STLC with the

type Dyn and a cast expression E : (S ⇒L T ) that has the following type rule:

Γ ⊢CC : S

Γ ⊢CC (E : (S ⇒L T )) : T

The cast expression casts the type from S to T , and L is referred to as the blame label. We

use f → r to denote a step of execution of a cast-calculus term f to r. The full definitions can

be found in appendix B.5. As usual, f →∗ r denotes zero, one, or more steps of execution.

Now we move on to notation about the semantics of GTLC. The translation of the GTLC

to the cast calculus is written Γ ⊢ E ⇝ f : T , where Γ is a GTLC type environment, E is a

GTLC term, f is a cast-calculus term, and T is the type of f . The semantics of GTLC is given
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T (∅) = ∅ T (n) = n
T (Γ, x : σ) = T (Γ), x : T (σ) T (True) = True

T (False) = False
T (τ 0) = τ 0 T (xl) = x

T (τ1 ∧ ... ∧ τn) = τ1 ⊓ ... ⊓ τn T (λx : τ 1.E) = λx : T (τ 1).T (E)
T (τ1 → τ2) = T (τ1) → T (τ2) T (E1 E2) = T (E1) T (E2)

Figure 4.4: Compilation from Rank-2 to GTLC.

by first translating to a term in the cast calculus and then executing the cast-calculus term.

Specifically, the notation E ⇓G v means that we execute a GTLC term E to a cast-calculus

value v as follows:

E ⇓G v ∼= [∅ ⊢ E ⇝ f : T ∧ f →∗ v]

We use E ⇑G to denote that the GTLC term E diverges.

Now we can define the semantics of our Rank-2 calculus. First we define how to translate a

Rank-2 term E to a GTLC term T (E). This will be relevant for theorem 4.4.2; see Figure 4.4.

The translation scheme T replaces each intersection type with the precision-order greatest

upper bound of the entries in the intersection. Additionally, T removes the label from each

variable. Otherwise, T leaves the term unchanged.

Second, we define that a Rank-2 term E evaluates to a cast-calculus value v, written

E ⇓ v, as follows.

E ⇓ v ∼= [∅ ⊢ T (E)⇝ f : T ∧ f →∗ v]

Above we see how we first translate E to the GTLC term T (E) and then proceed with the

GTLC semantics of T (E). We use E ⇑ to denote that the Rank-2 term E diverges.

We define E ⇓S v as follows:

86



E ⇓S v ∼= [∅ ⊢ T (E)⇝ f : T ∧ f →∗ v]
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4.4 Our Type System satisfies Standard Criteria for Gradual Types

We first prove that our type system satisfies three basic properties (Section 5.1), after which

we prove that our type system satisfies the criteria in [SVC15a] (Sections 5.2–5.4).

4.4.1 Basic Properties

As foreshadowed in Section 4.2, our type system assigns every expression a unique type.

Additionally, translation from Rank-2 to GTLC preserves typability and is monotonic.

Theorem 4.4.1 (Unique Type). ∀Γ, E, T, T ′, if Γ ⊢ E : T and Γ ⊢ E : T ′, then T = T ′.

See Appendix B.1 for the proof.

Theorem 4.4.2 (Typability preservation). ∀Γ, E, T if Γ ⊢ E : T then T (Γ) ⊢G T (E) : T (T ).

Proof. By induction on E, using that deriving the greatest upper bound preserves typability.

Notice that Theorem 4.4.2 uses the T function to map Rank-1 types to Rank-0 types.

Recall that this is done by taking the greatest upper bound of the entries in the intersection.

Theorem 4.4.3 (Monotonicity). If E1 ⊑ E2, then T (E1) ⊑G T (E2).

Proof. By induction on E1.

4.4.2 Gradual as a Superset of Static and Dynamic

Our gradual Rank-2 type system is a conservative extension of static Rank-2.
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Theorem 4.4.4 (Conservative Extension of Static Rank-2). For all static Γ, E and T , we

have:

1. Γ ⊢S E : T iff Γ ⊢ E : T .

2. E ⇓S v iff E ⇓ v

See Appendix B.1 for the proof.

Our gradual Rank-2 type system is a conservative extension of the GTLC. Let GTLC0 be

the set of Rank-2 terms in which all the types are of Rank-0. When we apply T on terms in

GTLC0, the only effect is to remove the label from each variable. Thus, intuitively, T is the

identity function on GTLC0. The proof can be found in Appendix B.1.

Theorem 4.4.5 (Conservative Extension of GTLC). For any Γ that uses only Rank-0 types,

E in GTLC0, and a Rank-0 type T , such that Γ is defined only on free variables of E:

1. Γ ⊢ E : T iff Γ ⊢G T (E) : T .

2. E ⇓ v iff T (E) ⇓G v

Proof. Siek et al. [SVC15a] showed that GTLC extends both the STLC and DTLC. So,

given that Rank-2 is a conservative extension of GTLC, we have by transitivity that Rank-2

extends both the STLC and the DTLC.
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Following an idea of Siek and Taha [ST06], which is used also by Siek at al. [SVC15b],

we encode the DTLC into the gradual Rank-2 calculus using the following mapping [.]:

[true] = true

[false] = false

[n] = n

[x] = x

[λx.e] = λx : Dyn.[e]

[e1 e2] = ((λx : Dyn.x)[e1])[e2]

Let ⇓D denote evaluation of DTLC.

Theorem 4.4.6 (Embedding of DTLC). Suppose that E is a term of the DTLC.

1. ⊢ [E] : Dyn.

2. E ⇓D v iff [E] ⇓ v.

Proof. Notice that Gradual Rank-2 conservatively extends GTLC by theorem 4.4.5, so since

DTLC can be embedded in GTLC, then it can also be embedded in Gradual Rank-2.

4.4.3 Soundness

We were unable to obtain a traditional soundness theorem while simultaneously satisfying

our migration criteria as well as the static gradual guarantee. Instead, we satisfy a weaker

theorem which we will state in this section. Before we state the theorems, let us state the

background definition.

Following [SVC15b], we define subtyping for Rank-0 types, see Figure 4.5.
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Int <: Int Bool <: Bool Dyn <: Dyn

τ 0 <: σ0

Dyn <: σ0

σ0
0 <: τ

0
1 τ 02 <: σ

0
2

τ 01 → τ 02 <: σ
0
0 → σ2

0

Figure 4.5: Subtyping for Rank-0 types.

As we described before, our Type Safety theorem is weaker than the traditional soundness

theorem. We weakened the theorem by applying the transformation function T to the Rank-2

type annotation T , which translates it to a Rank-0 type annotation. This transformation

could potentially erase type information. The same applies to our Blame-Subtyping theorem.

In summary, the theorems do not make guarantees about the original type of the program,

but rather, about a well-defined, Rank-0 translation of this type. This yields a different

theorem than the traditional soundness theorem, causing the system to be unsound with

respect to the types in the source program. It is unclear weather our type system could

satisfy the traditional type safety theorem while satisfying all of the remaining properties.

Theorem 4.4.7 (Type Safety). If ∅ ⊢ E : T , then either E ⇓ v and ∅ ⊢ v : T (T ) for some v,

or E ⇓ blameT (T )L for some L, or E ⇑.

Proof. Straightforward from the definition of T , Theorem 4.4.2, and that GTLC itself satisfies

type safety.

Theorem 4.4.8 (Blame-Subtyping). If ∅ ⊢ T (E)⇝ f : T and f contains a cast f ′ : T1 ⇒L T2

and T1 <: T2 and E ⇓ blameTL′, then L ̸= L′

Proof. Immediate from the definition of T and that GTLC itself satisfies blame-subtyping.
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4.4.4 The Gradual Guarantee

Our Rank-2 calculus satisfies the static gradual guarantee (item 1 below) and some items

from the dynamic gradual guarantee (items 2–3 below), while items 4 and 5 are weaker

varations of the dynamic gradual guarantee.

Theorem 4.4.9 (Gradual Guarantee). ∀Γ,Γ′, E, E ′, T suppose Γ ⊢ E : T and Γ′ ⊑ Γ and

E ′ ⊑ E.

1. For some T ′, we have Γ′ ⊢ E ′ : T ′ and T ′ ⊑ T .

2. If E ⇓ v then E ′ ⇓ v′ and v′ ⊑ v

3. If E ⇑ then E ′ ⇑

4. If E ′ ⇓ v′ then E ⇓ v where v′ ⊑ v or E ⇓ blameT (T )L

5. If E ′ ⇑ then E ⇑ or E ⇓ blameT (T )L.

Proof. We prove item 1 in Appendix B.2, while items 2–5 are straightforward from the

definition of T , Theorem 4.4.3 (for items 2+4), and that GTLC itself satisfies the gradual

guarantee.
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4.5 Migration

In this section, we show that the three migration problems found to be decidable for the

GTLC are also decidable for our Rank-2 intersection type discipline. The key technical

problem is to represent the migration space in a way that enables us to design algorithms for

the migration problems. We consider a constraint based approach.

In Chapter 3, we showed that for the GTLC, the singleton problem, the top-choice problem,

and the finiteness problem are all decidable, while the maximality problem is NP-hard. Let

us consider each problem in turn and discuss what changes when we go from the GTLC to

our Rank-2 intersection type discipline.

A program for which the migration space is a singleton in both the GTLC and our type

system is λx : Int.x. The reason is that no type is more precise than Int. In the GTLC,

also the program λx : Dyn.x (succ x) has a singleton migration space. The reason is that x

cannot be a number and a function at the same time. However, in our type system, this is

no longer true: we can migrate the program to λx : (Int → Int) ∧ Int.x (succ x).

A program for which the migration space has a ≤Γ-greatest element in the GTLC is

λx : Dyn → Dyn.(x 4) + (x True)). Indeed, the top migration in the GTLC is λx : Dyn →

Int.(x 4)+ (x True)). This migration is ≤Γ-maximal in our type system but not ≤Γ-greatest.

We note that once we have annotated x with a type of the form T 0 → T 0, we cannot

migrate the annotation to a type of the form (T 0 ∧ T 0) → T 0 because this would lead to

a type outside rank 2. However, in our type system we can migrate the original program

to λx : (Int → Int) ∧ (Bool → Int).(x 4) + (x True), which is ≤Γ-maximal. A different

example is (λx : Dyn.x)4, which both in the GTLC and in our type system has the ≤Γ-greatest

migration (λx : Int.x)4.
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An example of a program with a finite migration space in the GTLC is succ((λy :

Dyn.y)((λx : Dyn.x)True)). Note that since each variable has a single occurrence, we

are restricted to use T 0 types in the annotations of x and y. In both the GTLC and

our type system, the migration space has three elements, which, aside from the original

one, are succ((λy : Int.y)((λx : Dyn.x)True)) and succ((λy : Bool.y)((λx : Dyn.x)True)).

However, finiteness in the GTLC does not imply finiteness in our type system. For example,

λx : Dyn.x (succ x), which has a singleton migration space in GTLC, as we saw earlier, has an

infinite migration space in our type system. The reason is that we can migrate the program

to λx : (Int → σ) ∧ Int.x (succ x) for any σ.

Notice that the previous example relies on that our language has a finite number of base

types. This holds for many widely used languages with an infinitely countable set of types.

For example, Java has eight built-in types: boolean, byte, char, short, int, long, float, and

double, and we can compound them in systematic ways, allowing us to enumerate the space.

The program λx : Dyn.x x has no maximal migration in the GTLC, but it has a maximal

migration in our type system, namely λx : (Int → Int) ∧ Int.x x. Indeed, it has infinitely

many maximal migrations of the form λx : (σ′ → σ) ∧ σ′.x x where σ and σ′ are ⊑-maximal

T 0 types.

4.5.1 Constraints

For a given program, we will represent the migration space as the set of solutions to a

constraint problem.
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4.5.1.1 Type variables.

Assume that E has been α-converted so that all bound variables are distinct from each other

and distinct from the free variables. Let X be the set of λ-variables x occurring in E, and let

Y be a set of variables disjoint from X consisting of a variable [[F ]] for every occurrence of the

subterm F in E. Let Z be a set of variables disjoint for X and Y consisting of a variable ⟨G⟩

for every occurrence of the subterm (F G) in E. The notations [[F ]] and ⟨G⟩ are ambiguous

because there may be more than one occurrence of some subterm F in E or some subterm G

in E. However, it will always be clear from context which occurrence is meant.

A constraint is given by the grammar:

C ::= C1 ∧ C2 | C1 ∨ C2 | τ ⊑ (v01 ∧ . . . ∧ v0n) | v01 ∼ v02 |

v0 = τ 0 | v01 = v02 | v0 = v01 → v02 |

v21 = (v01 ∧ . . . ∧ v0n) → v22 | v2 = (v01 ∧ . . . ∧ v0n) → v0

Let the set proper(T 2) be the subset of T 2 types that each contains at least one intersection

type with at least two conjuncts. In the grammar above, v0, v01, v02, . . . , v0n are type variables

that range over T 0 types, while v2, v21, v22 are type variables that range over proper(T 2) types.

Suppose C is a constraint and φ is a mapping that maps each type variable v0 to a T 0 type

and that maps each type variable v2 to a proper(T 2) type. We define φ |= C (pronounced:

φ solves C) by the recursive definition in Figure 4.6. We use Sol(C) to denote the set of

solutions of C. Let Dom(φ) denote the domain of a mapping φ. We order mappings as

follows:

φ ≤ φ′ ⇐⇒ Dom(φ) = Dom(φ′) ∧ ∀v ∈ Dom(φ) : φ(v) ⊑ φ′(v)
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φ |= C1 ∧ C2 ⇐⇒ φ ⊨ C1 ∧ φ ⊨ C2

φ |= C1 ∨ C2 ⇐⇒ φ ⊨ C1 ∨ φ ⊨ C2

φ |= τ ⊑ (v01 ∧ . . . ∧ v0n) ⇐⇒ τ ⊑ (φ(v01) ∧ . . . ∧ φ(v0n))
φ |= v01 ∼ v02 ⇐⇒ φ(v01) ∼ φ(v02)

φ |= v0 = τ 0 ⇐⇒ φ(v0) = τ 0

φ |= v01 = v02 ⇐⇒ φ(v01) = φ(v02)

φ |= v0 = v01 → v02 ⇐⇒ φ(v0) = φ(v01) → φ(v02)

φ |= v21 = (v01 ∧ . . . ∧ v0n) → v22 ⇐⇒ φ(v21) = (φ(v01) ∧ . . . ∧ φ(v0n)) → φ(v22)

φ |= v2 = (v01 ∧ . . . ∧ v0n) → v0 ⇐⇒ φ(v2) = (φ(v01) ∧ . . . ∧ φ(v0n)) → φ(v0)

Figure 4.6: Definition of φ |= C.

4.5.2 A Constraint-based Representation of the Migration Space

4.5.2.1 The idea.

Figure 4.7 shows how we generate constraints for an expression. Each judgment is of the

form Γ ⊢ E : i, t2|C where Γ is a type environment, E is an expression, i ∈ {0, 2} is an input

tag, t2 is a skeleton, and C is a constraint. Let us go over what each of those components

mean. Γ is the type environment under which our initial program E type checks. We always

assume a well-typed program. i can be thought of as an input to the constraint generator

and it stands for the migration space ranks. If our input tag is 0, our constraints will only

describe the Rank-0 migration space. Otherwise, our constraints will describe the Rank-2

migration space, which also includes the Rank-0 migration space. In particular, if the input

tag is 0 then we generate equivalent constraints to [MP19] because our calculus conservatively
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extends GTLC. Therefore, we may capture the Rank-0 space by telling the generator to only

generate constraints for Rank-0 migrations.

We require that i is greater than or equal to the rank of the type of E because a program

that is strictly Rank-2 cannot have a Rank-0 migration. This follows directly from the

definition of precision and the definition of a migration. Hence, the requirement ensures that

all migrations are at least as precise as the input term. We can think of constraint generation

as a function that takes a type environment Γ, an expression, and a tag as input and returns

a skeleton and a constraint as output. The type environment is only for variables such as +

that are free in the top-level term. A skeleton describes an “upper bound” on the structure

of a type. In particular, it tells us that when a migration has to have a Rank-2 type, we

can determine exactly how many conjuncts there are and where those conjuncts are located

in the type. This is useful for programs that can have both, a Rank-0 type and a Rank-2

type. For example, λx : Dyn.xx is such a program. In this case, we are saying that when

λx : Dyn.xx has a Rank-2 type, the skeleton will be 2 → 1, which means we will have an

arrow type with two conjuncts in the domain. This is what we mean by the "structure" of

the type. The skeleton generated for a program will always be meaningful. In particular, we

will never generate a strictly Rank-2 skeleton for a constant, because a constant will always

have a simple type.

Each type variable in our constraints carries a tag representing a rank. For example,

type variables for program variables are tagged with 0, in accordance with the T-Var rule.

Similarly, type variables for arguments are also tagged with 0, in accordance with the T-App

rule. For other expressions, we will tag a variable with the minimum rank possible. For

example, if a variable ends up with the type Int, while that could be tagged with 0 or 2,

we will tag that variable with 0. So variables tagged with tag 2 are strictly Rank-2 and not
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Rank-0. Generally, our constraints consider all possibilities for different tags, as we will see

later. We will distinguish occurrences of program variables via notation such as x0 and x1.

4.5.2.2 Skeletons.

For the purpose of generating constraints that involve intersections, we need to know the

number of conjuncts in each intersection. For this reason, we avoid use of Rank-1 variables

and instead we introduce the concept of skeletons, see Figure 4.7. In the figure, 1 describes

the structure of a Rank-0 type. A Rank-0 type can also have the structure 1 → t0 where t0 is

the structure of a Rank-0 type. A t2 can either be a t0 or a type of the form n→ t2. This

mimics the structure of the grammar for types. In general, skeletons are similar to types

except that they describe the structure of a type rather than an actual type. Note that the

skeleton associated with a type variable describes its structure in case it is a higher rank. For

example, a type variable for the expression λx.x+ x has the skeleton 2 → 1. That is to say

that if we want the Rank-2 solution, this is what the structure looks like. But we can also

have the Rank-0 solution which must also be captured by the constraints. This is why our

constraints have conjunctions of the same variable over different tags.

4.5.2.3 Auxiliary functions.

We have auxiliary functions that determine the structure of the domain (Dom), Range (Cod)

and Rank (Tag) of a given skeleton. For example, the domain and codomain of a Rank-0

type is also of Rank-0. For determining the rank of a variable, we compute the tag of the

lowest rank: Tag(n → t) = 2 when n > 1. When we see that n > 1, we know that this

structure can only be of Rank-2. However, if we have 1 → t, we know that the result depends

on t. If t is Rank-0, the final result is Rank-0 and if it is Rank-2, the final result is of Rank-2.
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4.5.2.4 Shorthands.

We will use these shorthands. First, v0 � v′0 → v′′0 is a shorthand for

(v0 = v′0 → v′′0) ∨ ((v0 = Dyn) ∧ (v′0 = Dyn) ∧ (v′′0 = Dyn))

Additionally, we will use v2�(v01∧. . .∧v0n) → v′′2 as a “shorthand” for v2 = (v01∧. . .∧v0n) → v′′2,

we will use v2�(v01∧ . . .∧v0n) → v′′0 as a “shorthand” for v2 = (v01∧ . . .∧v0n) → v′′0. Those last

three shorthands are convenient for writing in a style where the superscript of the left-hand

side of � is a meta-variable.

4.5.2.5 The constraint generation rules.

Let us consider each rule in Figure 4.7. We use fresh type variables of the forms x0l , x0, etc,

and also [[E]] and ⟨E⟩, where E is a term. The rule S-True assigns tag 0 to the type variable

[[True]] and returns 1, which is a Rank-0 skeleton. The rules S-False and S-Num are similar.

We have two rules for variables. For a variable that is free in the top-level term, S-Var-F

assigns the Rank-0 type in Γ, while for other variables S-Var-B allocates a new Rank-0

variable.

We have three rules for abstractions. Rule S-Abs-0 handles the case where the input tag

is 0. In this case, all tags must be 0, which is why we use 0 when generating constraints for

the body E of an abstraction λx : τ.E. For an abstraction λx : τ.E with n occurrences of x

in E, we must ensure that all elements of the type annotation are equal and have tag 0.

Rule S-Abs-1 handles the case where a bound variable occurs n times in the body of an

abstraction. The skeleton we return must be of the form n→ t because we have n occurrences

of x in E. This will determine how many elements should be in the conjunction of the type
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Skeletons:

t2 ::= n→ t2 | t0

t0 ::= 1 | 1 → t0

n ::= n ∈ N

Auxiliary functions:
Dom(n→ t) = n Cod(n→ t) = t Tag(n→ t) = 2 if n > 1

Dom(1) = 1 Cod(1) = 1 Tag(1 → t) = Tag(t)
Tag(1) = 0

Constraints:
Γ ⊢ true : i, 1 | [[True]]0 = Bool (S-True) Γ ⊢ false : i, 1 | [[False]]0 = Bool (S-False)

Γ ⊢ n : i, 1 | [[n]]0 = Int (S-Num) Γ ⊢ x0 : i, 1 | x00 = Γ(x)(S-Var-F)

Γ ⊢ xl : i, 1 | x0l = [[xl]]
0where x /∈ Dom(Γ) (S-Var-B)

Γ ⊢ E : 0, t where x occurs in E n times and n ≥ 1 | C

Γ ⊢ (λx : τ 0.E) : 0, 1|C ∧
(
[[λx : τ 0.E]]0 = x0 → [[E]]0 ∧ τ 0 ⊑ x0 ∧ x0 = x01 ∧ x0 = x0n

) (S-Abs-0)

Γ ⊢ E : 2, t where x occurs in E n times and n ≥ 1 | C
l = Tag(n→ t)

j = Tag(t)

(S-Abs-1)

[[λx : τ 1.E]]0 = x0 → [[E]]0) ∧ τ 1 ⊑ x0
)
∧ x0 = x01 ∧ ... ∧ x0 = x0n

)(
([[λx : τ 1.E]]j = x0 → [[E]]j ∨

τ 1 ⊑ (
∧n x0i ) ∨

[[λx : τ 1.E]]l = (
∧n x0i ) → [[E]]0

)
∧

Γ ⊢ (λx : τ 1.E) : 2, n→ t | C ∧
((

[[λx : τ 1.E]]l = (
∧n x0i ) → [[E]]j ∨

Γ ⊢ E : i, t j = Tag(t) where x does not occur in E | C

Γ ⊢ λx : τ 0.E : i, 1 → t | C ∧
((

[[λx : τ 0.E]]j = x0 → [[E]]j ∨

[[λx : τ 0.E]]0 = x0 → [[E]]0
)
∧ τ 0 ⊑ x0

)
(S-Abs-2)

Γ ⊢ E1 : 0, t1 | C1 Γ ⊢ E2 : 0, t2 | C2

(S-App-0)
Γ ⊢ E1 E2 : 0, 1 | C1 ∧ C2 ∧ [[E1]]

0
� ⟨E2⟩0 → [[E1 E2]]

0 ∧ ⟨E2⟩0 ∼ [[E2]]
0

Γ ⊢ E1 : 2, t1 | C1

j = Tag(Cod(t1))
Γ ⊢ E2 : 0, t2 | C2

n = Dom(t1) l = Tag(t1) (S-App-1)

⟨E2⟩0 ∼ [[E2]]
0)
))(

([[E1]]
j
� ⟨E2⟩0 → [[E1 E2]]

j ∨ ([[E1]]
0
� ⟨E2⟩0 → [[E1 E2]]

0) ∧
∧(

∧
i∈{1,...,n} ⟨E2⟩0i ∼ [[E2]]

0)
)
∨

∨[[E1]]
l
� ⟨E2⟩01 ∧ ... ∧ ⟨E2⟩0n → [[E1 E2]]

0)

Γ ⊢ E1 E2 : 2, Cod(t1) | C1 ∧ C2 ∧
((

([[E1]]
l
� ⟨E2⟩01 ∧ ... ∧ ⟨E2⟩0n → [[E1 E2]]

j

Figure 4.7: Constraint generation
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of the abstraction. However, it does not imply that the abstraction can only get a Rank-2

type, which is why we interpret the skeleton as an upper bound for the rank. We must also

consider the possibility of the abstraction having a Rank-0 type. Specifically, we have the

disjunction ([[λx : τ.E]]l =
∧n x0i → [[E]]j ∨ [[λx : τ.E]]l =

∧n x0i → [[E]]0) because for [[E]], the

skeleton t is an upper bound on the rank, which is why we tag [[E]] with j and also 0. The

same idea goes for the constraint ([[λx : τ.E]]j = x0 → [[E]]j ∨ [[λx : τ.E]]0 = x0 → [[E]]0. Here,

note that we tag [[E]] with 0 and since x is tagged with 0 so [[λx : τ.E]] also gets the tag 0.

We also explicitly determine the number of conjuncts in our Rank-2 type. Note that we may

have duplicate constraints in case j happens to be 0, but this will not affect the solvability or

the time complexity of the solution procedure.

Rule S-Abs-2 considers the possibility where a bound variable does not occur in the body

of the abstraction. Then we know we should tag x with 0 and we have two possibilities for j

since the skeleton t of E is an upper bound on the tag.

Rule S-App-0 for an application E1 E2 generates a constraint known from Chapter 3.

The constraints generated here capture the Rank-0 migrations generated for applications

while another rule generates constraints that capture the Rank-2 migrations. Rule S-App-1

considers the number of conjunctions we need for E1 using the skeleton given by E1, but also

considers the possibility that E1 is of Rank-0. Notice that j is the tag of the codomain of t1,

though this is only an upper bound, which is why we must not only tag E1 E2 with j, but with

0 as well. Specifically, rule S-App-1 has both ([[E1]]
l
� ⟨E2⟩01∧ ...∧⟨E2⟩0n → [[E1 E2]]

j ∨ [[E1]]
l
�

⟨E2⟩01∧ ...∧⟨E2⟩0n → [[E1 E2]]
0) and ([[E1]]

j
� ⟨E2⟩0 → [[E1 E2]]

j ∨ ([[E1]]
0
� ⟨E2⟩0 → [[E1 E2]]

0).

Again, j may happen to be 0, resulting in a duplicate constraint.

Note that all rules ending in −0 are necessary because they allow us to capture the

migrations that belong to the GTLC. Having tags on type variables that specify the rank
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allows each type variable to represent a single expression which is a key to generalizing the

approach in Chapter 3.

4.5.2.6 Correctness.

Our constraint represents the migration space in the sense that the set of solutions of the

constraint is order-isomorphic with the migration space.

Definition 4.1. Suppose that Γ ⊢ E : T and Γ ⊢ E : i, t | C for i ∈ {0, 2} where the rank

of T is less than or equal to i. Then Gen(E,Γ, i) = C.

Theorem 4.5.1. ∀E,Γ : if FV (E) ⊆ Dom(Γ) then (MigΓ(E),⊑) and (Sol(Gen(E,Γ, 2)),≤)

are order-isomorphic.

See Appendix B.3 for the proof.

4.5.3 Example of how Constraint Generation Works

Let us demonstrate how the constraint generation rules in Figure 4.7 work by applying them

to the example E0 = (λx : Dyn.(x0 4) + (x1 True))(λy : Dyn.5). Note that we use x0 and x1

to distinguish the two occurrences of x. We will use Γ = [+ : Int → Int → Int] with the

input tag 2, so we will derive Γ ⊢ E0 : 2, 1 | C, where C is shown in Figure 4.8.
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4.5.3.1 Derivation.

We can use the rules in Figure 4.7 to produce the following derivation tree for E0, omitting

the constraints, and omitting a lookup in Γ to get the type of +:

Γ ⊢ x0 : 0, 1 Γ ⊢ 4 : 0, 1

Γ ⊢ x0 4 : 0, 1
S-App-0

Γ ⊢ x1 : 0, 1 Γ ⊢ True : 0, 1
Γ ⊢ x1 True : 0, 1

S-App-0

Γ ⊢ (x0 4) + (x1 True) : 2, 1
S-App-0

Γ ⊢ λx : Dyn.(x0 4) + (x1 True) : 2, 2 → 1
S-Abs-1

Notice that λx : Dyn.(x0 4) + (x1 True) has the skeleton 2 → 1. The full derivation tree is

then as follows:

· · ·
Γ ⊢ λx : Dyn.(x0 4) + (x1 True)) : 2, 2 → 1

S-Abs-1
Γ ⊢ 5 : 0, 1

Γ ⊢ λy : Dyn.5 : 0, 1
S-Abs-0

Γ ⊢ (λx : Dyn.(x0 4) + (x1 True))(λy : Dyn.5) : 2, 1
S-App-1

4.5.3.2 Duplication.

In Figure 4.8, notice that the constraint has eight occurrences of (C ′ ∨ C ′) for different cases

of C ′, which is due to the simplicity of the example. For a particular case of this pattern,

let us consider the last step of deriving Γ ⊢ E0 : 2, 1 | C, which is done with the S-App-1

rule. In the first two lines of the conclusion of the S-App-1 rule, we have a disjunction of two

matching constraints that here become:

[[λx : Dyn.(x0 4) + (x1 True)]]
2

� (v01 ∧ v02) → [[E0]]
0 ∨

[[λx : Dyn.(x0 4) + (x1 True)]]
2

� (v01 ∧ v02) → [[E0]]
0
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+ (x0 4)

(x1 True)

(x0 4) + (x1 True)

λx : ...(x True)

λx : Dyn . 5

E0

(x0 4)

Figure 4.8: The constraint for E0 = (λx : Dyn.(x0 4) + (x1 True))(λy : Dyn.5).
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The tags on the left-hand sides are the same by definition, while the tags of [[E0]] is j in one

entry and 0 in the other. However, here j = 0; why is that? To answer this question, we must

consider one of the hypotheses of S-App-1, which here is: Γ ⊢ (λx : Dyn.(x0 4) + (x1 True)) :

2, t1 | C1. Here, t1 = 2 → 1, so j = Tag(Cod(t1)) = Tag(Cod(2 → 1)) = Tag(1) = 0. In

summary, in the S-App-1 rule, the tag j may be 0, which is already covered by a different

constraint. By the way, notice how the skeleton 2 → 1 was the key to generating the right

number of entries in each intersection.

Duplication can also happen with the rule S-Abs-1. The last rule used to derive Γ ⊢ (λx :

Dyn.(x0 4) + (x1 True)) : 2, t1 | C1 is S-Abs-1. In the first two lines of the conclusion of the

S-App-1 rule, a disjunction of two equality constraints that here become:

[[λx : Dyn.(x0 4) + (x1 True)]]
2 = (x00 ∧ x01) → [[(x0 4) + (x1 True)]]

0 ∨

[[λx : Dyn.(x0 4) + (x1 True)]]
2 = (x00 ∧ x01) → [[(x0 4) + (x1 True)]]

0

The tags on the left-hand sides are the same by definition, while the tags of [[(x0 4)+(x1 True)]]

is j in one entry and 0 in the other. Also in this case can we do a calculation that shows that

j = 0.

Intuitively, the example program has no nested Rank-1 types, which leads to simple

skeletons, like 2 → 1. Those simple skeletons, in turn, lead to constraints of the form

(C ′ ∨ C ′).
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4.5.3.3 Different ranks.

The function λx : Dyn.(x0 4) + (x1 True) might end up with a Rank-0 type or a Rank-2 type,

and we need to be open to both possibilities. We achieve that in Figure 4.8 via a disjunction

over two constraints, one for each possibility. Specifically, we have:

([[λx : Dyn.(x0 4) + (x1 True)]]
2 = (x00 ∧ x01) → [[(x0 4) + (x1 True)]]

0 ∧ . . . ) ∨

([[λx : Dyn.(x0 4) + (x1 True)]]
0 = x0 → [[(x0 4) + (x1 True)]]

0 ∧ . . . )

In contrast, the type variables that represent the function λy : Dyn.5, which are of the form

[[λy : Dyn.5]], are always tagged with 0. This is because λy : Dyn.5 is an argument in a

function call and arguments must be rank 0.

4.5.3.4 Consistency.

The S-App-1 rule produces constraints that ensure consistency between the argument type

and the type that the function expects. Like above, we need to be open to two possibilities:

the function may end up with a type of rank 0 and or with a type of rank 2. For the function

call E0, this manifests itself in Figure 4.8 as the following disjunction:

([[λx : Dyn.(x0 4) + (x1 True)]]
0

� ⟨λy : Dyn.5⟩0 → [[E0]]
0 ∧

⟨λy : Dyn.5⟩0 ∼ [[λy : Dyn.5]]0) ∨

([[λx : Dyn.(x0 4) + (x1 True)]]
2

� (v01 ∧ v02) → [[E0]]
0 ∧

v01 ∼ [[λy : Dyn.5]]0 ∧ v02 ∼ [[λy : Dyn.5]]0)

106



Notice that in the case of rank 2, the constraint ensures consistency with each of the entries

of the intersection. Notice also that those consistency constraints are over Rank-0 types.

4.5.4 The Finiteness Problem

4.5.4.1 Algorithm outline.

For solving the finiteness problem for a program E, we first generate a constraint and then we

apply a decision procedure that is similar to the one in Chapter 3. Here we give an overview

of the decision procedure; full details are in Appendix B.4.

The first step is to transform away all precision constraints. Constraints of the form

Dyn ⊑ v are removed while the rest are simplified to be equalities over Rank-0 types. The next

step is to transform the constraint into disjunctive normal form (DNF), that is, a disjunction

of conjunctions. Each conjunction contains equality and consistency constraints. The use of

DNF enables us to consider each clause of the DNF separately. The idea is that the set of

solutions for the entire constraint is finite if and only if the set of solutions for each clause of

the DNF is finite. The next step is to check each clause for finiteness, which we do with a

procedure similar to the one in [MP19]. The only minor difference has to do with handling

Rank-2 type variables, which turns out to be straightforward because they appear only in

equations. The finiteness checker first solves the equations, then applies the most general

unifier to the consistency constraints, and finally checks that each type variable is bounded

by a ⊑-maximum type.

Recall that an instance of the Finiteness problem is a program.

Theorem 4.5.2. We can solve the Finiteness problem in EXPTIME.

See Appendix B.4 for the proof.
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Our type system is a conservative extension of the GTLC, which means that a program

that follows the GTLC syntax is well-typed in GTLC only if it can be typed in our type

system with the same type. One consequence of that is that if the migration space of a

program is finite in Rank-2, then it is also finite in GTLC.

Theorem 4.5.3. If a program has a finite migration space in gradual Rank-2 then it has a

finite migration space in GTLC.

Proof. Straightforward.

4.5.4.2 Example.

Let us return to our running example (λx : Dyn.(x0 4) + (x1 True))(λy : Dyn.5) and check it

for finiteness. First we generate the constraint in Figure 4.8, and then we notice that all three

precision constraints are of the form Dyn ⊑ vi and can be removed. Next, we convert the

constraint to DNF and proceed to process each clause separately. For one of those clauses,

once we solve the equalities and apply the most general unifier to the consistency constraints,

we have:

⟨True⟩0 ∼ Int ∧ [[x1 True]]
0 ∼ Int ∧ ⟨True⟩0 ∼ Bool ∧ ⟨True⟩0 ∼ y0

In the first three entries of the conjunction, we have consistency constraints that each bounds

a type variable. However, the fourth entry is a consistency constraint among two type

variables and we see that no constraint bounds y0. So, we conclude that the set of solutions

for this constraint is infinite, hence the space of solutions for the entire constraint in Figure 4.8

is infinite.
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4.5.5 The singleton problem

In Chapter 3, we solved the singleton problem for the GTLC via a stepping function S; we

will do something similar. Intuitively, S generates a set of types that are “one level above” a

given type (and similarly for terms) in the precision relation. This works because the GTLC

precision relation has finite intervals. Fortunately, our calculus has this property as well,

which enables us to navigate a migration space effectively.

Theorem 4.5.4 (Finite Intervals). ∀El, Eu : {E | El ⊑ E ⊑ Eu} is finite.

Straightforward from the definition of ⊑ and the stepping function S.

To generalize the stepping function from Chapter 3, we must define it on T 0 types and T 1

types, and then extend it to terms. In each case, the stepping function takes a minimal step

along the precision relation. Since annotations have two different ranks, we have one function

for each rank. For Rank-0 we define the stepping function in the same way as [MP19]. For

Rank-1, additionally we must handle intersections. We observe that the only non-trivial

minimal step from Dyn to a strict Rank-1 type is Dyn ∧ Dyn. Any other type will be at least

two steps above Dyn. We must also consider the Rank-0 types that are one level above Dyn

and we union the cases. Stepping for an intersection type is done in a similar way to stepping

from an arrow type. We then extend the stepping function to terms in a straightforward way.

Here follows the detailed definition.

We begin by defining S0 on T 0 types.
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S0(Bool) = ∅

S0(Int) = ∅

S0(Dyn) = { Bool, Int, Dyn → Dyn }

S0(τ1 → τ2) =
⋃

τ ′1∈S0(τ1)

{ τ ′1 → τ2 } ∪
⋃

τ ′2∈S0(τ2)

{ τ1 → τ ′2 }

Next, we define S1 over T 1. This definition extends S0 to T 1 types. Specifically, when

called on Dyn, it combines the result of S0 with Dyn ∧ Dyn. S1 handles the ∧ constructor in

the same way that S0 did on → constructors.

S1(σ) = S0(σ) where σ ∈ T 0 ∧ σ ̸= Dyn

S1(Dyn) = S0(Dyn) ∪ {Dyn ∧ Dyn}

S1(τ1 ∧ τ2) =
⋃

τ ′1∈S1(τ1)

{ τ ′1 ∧ τ2 } ∪
⋃

τ ′2∈S1(τ2)

{ τ1 ∧ τ ′2 }

We now define S on terms in the same way as the GTLC. The difference is that since

annotations are T 1 types, we call S1 instead of S0.

S(n) = S(true) = S(false) = S(x) = ∅

S(λx : T.E) =
⋃

T ′∈S1(T )

{ λx : T ′.E } ∪
⋃

E′∈S(E)

{ λx : T.E ′ }

S(E1E2) =
⋃

E′
1∈S(E1)

{ E ′
1E2 } ∪

⋃
E′

2∈S(E2)

{ E1E
′
2 }
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Our singleton checker works in the same way as the one in Chapter 3 for the GTLC.

Specifically, to check that the migration space for a term E is a singleton, it calculates S(E)

and verifies that every element of E doesn’t type check.

Theorem 4.5.5. We can solve the singleton problem in polynomial time.

Proof. S generates the next level of the migration space in polynomial time because each

annotation leads to a finite number of branches.

4.5.6 The Top-choice problem

The Top Choice problem deals with whether a migration space contains a greatest element.

We can solve the Top Choice problem using the finiteness checker and the stepping function.

This relies on the following property, which is also true of the GTLC.

Theorem 4.5.6. If MigΓ(E) has a greatest element, then MigΓ(E) is finite.

Proof. Suppose MigΓ(E) has a greatest element Eg, which means that any migration E ′ must

satisfy E ⊑ E ′ ⊑ Eg. Thus, MigΓ(E) ⊆ { E ′ | E ⊑ E ′ ⊑ Eg }. We have from Theorem 4.5.4

that { E ′ | E ⊑ E ′ ⊑ Eg } is finite so also MigΓ(E) is finite.

Our top-choice checker works in the same way as the one in Chapter 3 for the GTLC.

Specifically, we first check that the migration space is finite, and then we use the stepping

function to search for a greatest element.

Theorem 4.5.7. We can solve the top-choice problem in EXPTIME.

Proof. The execution time is dominated by the finiteness checker, which runs EXPTIME

(Theorem 4.5.2).
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4.5.7 The Maximality problem

In Chapter 3, we showed that for the GTLC, the Maximality problem is NP-hard while they

gave no decidability result. For our calculus of Rank-2 intersection types, we have neither a

lower bound nor a decidability result for the Maximality problem. In particular, the proof of

NP-hardness in Chapter 3 doesn’t work because it relies on that all uses of a variable have

the same type. In contrast, our calculus enables different uses of a variable to have different

types. For example, consider the following unsatisfiable Boolean formula F3.

F3 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x̄3) ∧

(x̄1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3)

The proof of NP-hardness of Maximality in Chapter 3 encodes F3 as a program with no

maximal migration in GTLC. However, for that same program we used our implementation

to find a maximal migration with Rank-2 types. We view the Maximality problem as an

interesting and practically relevant topic for future work.

In the absence of a decidability result for Maximality, we note that our stepping function

enables us to navigate a migration space effectively. This provides a semi-algorithm for

finding maximal migrations in a breadth-first-search manner, if such migrations exist. Indeed,

in our experiments, we found maximal migrations for all programs in the benchmark suite

in Chapter 3, including those for which their semi-algorithm for GTLC timed out. Those

benchmarks are exclusively untyped terms, that is, all variables are annotated with Dyn. This

opens the question of whether every untyped term has a maximal migration in our type

system. We leave this to future work.
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4.6 Experimental Results

Our experimental evaluation answers two questions about using our type system for type

migration. The questions and our claims are as follows.

1. Does our type system lead to different migrations than GTLC? Yes, we get different

migrations for some microbenchmarks.

2. Does our type system lead to more maximal migrations compared to GTLC? Yes, for

our two largest microbenchmarks, we found maximal migrations, while none are known

in GTLC.

In the remainder of this section, we show how our evaluation supports our claims.

We implemented our algorithms in 1,400 lines of Haskell. We will present experimental

results from running our implementation on the benchmark suite in Chapter 3 plus our running

example. Figure 4.9 lists the benchmarks, except selfInterpreter , which is the lambda-term

Y [λe.λm.m(λx.x)(λmn.(em)(en))(λm.λv.e(mv))]

which is a self-interpreter for pure lambda-calculus [Mog92]. It uses the abbreviation Y =

λh.(λx.h(xx))(λx.h(xx)).

For all benchmarks, we use Γ = [succ : int → int , + : int → int → int].

We compare the results with those in Chapter 3 to illustrate how the type systems provide

different maximal migrations and migration spaces.

We ran the finiteness check, the singleton check, the top-choice check and the maximality

check on our benchmark suite.
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4.6.1 The Singleton Check

For GTLC, a single benchmark, λx.x(succ(x)), in the benchmark suite has a singleton

migration space. However, none of the benchmarks has a singleton migration space in our

type system. In particular, we can migrate λx.x(succ(x)) to λx : (Int → Int)∧Int.x (succ x).

As we described with our running example, these annotations describe the underlying program,

and it is up to the programmer to decide if this is the program they intended to write.

4.6.2 The Top-Choice Check

For GTLC, each of four benchmarks has a migration space with a greatest element. However,

in our type system, only one of those has a migration space with a greatest element. For

example, λx : Dyn → Dyn.(x 4) + (x True)) has a top migration in the GTLC, namely

λx : Dyn → Int.(x 4) + (x True)). This migration is ≤Γ-maximal in our type system but not

≤Γ-greatest, as we saw earlier. This indicates that we have expanded the migration space

with more informative types.

4.6.3 The Finiteness Check

We ran experiments on the finiteness check for the benchmark suite in Figure 4.9 and the

results confirm that if a benchmark has a finite migration space in our type system, then

it has a finite migration space in GTLC (Theorem 4.5.3). The results also show that the

converse is false, as evidenced by three benchmarks.
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4.6.4 The Search for Maximality

Figure 4.9 shows results from running the maximality search. (In Figure 4.9 two of the

programs take two lines, which we indicate with horizontal lines.)

We were able to find maximal migrations for all the benchmarks using our tool. Larger

benchmarks like selfInterpreter required some user interaction, where we found more precise

migrations, picked some picked a migration that we believe could lead to a maximal migration

then ran the tool again on the new program until reaching a maximal migration.

In some situations, the maximal migration in our type system is more precise than that

in GTLC, like in the case of the first benchmark. In some other situations, the maximal

migration in GTLC was also maximal in Rank-2, but Rank-2 gave other migrations as well.

This was the case for our second and third benchmarks.

In the case of λx.xx, the program has no maximal migration in the GTLC, but has a

maximal migration in our type system. For each of two other benchmarks, no maximal

migration is known in the GTLC, but we found one for our type system. Notice that

[(λx.λy.y(xI)(xK))∆]′ uses Dyn twice, while [selfInterpreter ]′ uses Dyn four times. Thus, here

we see nontrivial uses of advanced gradual types and we are able to make sense of them. For

example, for [(λx.λy.y(xI)(xK))∆]′, the type of x reflects that we apply x to I and K and

the type of λd.dd gives the best type that fits the type of x. For selfInterpreter , we found a

useful gradual intersection type for the Y combinator.

As for the performance, 10 of our benchmarks run between 0.00 seconds to 2.11 seconds,

with 8 benchmarks running under 0.25 seconds. We have manually found maximal migrations

for the three larger benchmarks as we described above. For the second and third benchmarks

of our table, we have first annotated the program with Dyn ∧ Dyn because our tool currently

returns the first maximal migration available, which would be a GTLC maximal migration
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in this case. Since we are able to navigate the migration space though, several other ways

can be explored to return specific migrations. Finally, for the last example, after annotating

the program with Dyn ∧ Dyn, the closest maximal migration that is returned by the tool

is different than the one in the table, but the migration in the table can also be found by

probing the tool to return the list of migrations at a given level.
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4.7 Flexible Rank-2: Adding Associativity and Commutativity

Automatic program migration is a non-trivial problem which required many language re-

strictions, resulting in loss of flexibility in the source language. In this section, we propose a

methodology for introducing flexibility to our language without losing important migratory

properties. We propose a separation of concerns between migration of programs and flexibility

of the source language. Specifically, we design a flexible user-facing language containing

additional language features that allow the ease of use. A program in this language will then

be translated to a corresponding program in the core language where migration can occur.

Migrated programs will then be translated back to migrations in the flexible language.

We demonstrate this concept by extending our initial type system with commutativity

and associativity in a system we refer to as Flexible Rank-2, which subsumes gradual

Rank-2 (Theorem 4.7.3). Commutativity adds flexibility to our type system as it allows

the programmer to change the code without necessarily changing the corresponding type

annotations. The rest of the section is organized as follows. In subsection 4.7.1 we introduce

commutativity and associativity to our type system by defining a notion of equivalence and

introducing it to our typing rules. We demonstrate the added flexibility of the system with

an example. In subsection 4.7.2, we introduce the notion of migration in Flexible Rank-2

and show that every well-typed Flexible Rank-2 program can be mapped to an equivalent

well-typed Gradual Rank-2 program (Theorem 4.7.1). We then demonstrate that every

migration in gradual Rank-2 can be mapped to an equivalent migration in Flexible Rank-2

(Theorem 4.7.2). Finally, in subsection 4.7.3, we show that all gradual properties that hold

for gradual Rank-2 also hold for Flexible Rank-2.
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4.7.1 Flexible Rank-2

Figure 4.10 contains our typing rules. Notice that all typing rules are similar to those of

Gradual Rank-2 except for the (T-Abs-1-f) rule. In an abstraction λx : σ.E, this rule allows the

current type environment containing x : σ0
0 ∧ ...∧ σ0

n to match the correct variable occurrence

in an abstraction with the correct conjunct, while admitting any equivalent annotation

σ ∼= σ0
0 ∧ ... ∧ σ0

n, which allows us to admit an abstraction of the form λx : σ.E, instead of

limiting well-typedness to λx : σ0
0 ∧ ...∧ σ0

n.E. Equivalence is defined to admit commutativity

and associativity. The definition of consistency does not vary under equivalence because

consistency is defined over Rank-0 types, while the equivalence relation is concerned with

Rank-1 and Rank-2 types. The definition of matching also does not vary under equivalence

as it deals with arrow types. Note that Flexible Rank-2 subsumes Gradual Rank-2 because

the rule (T-Abs-1), uses equality instead of equivalence between the type annotation and

the type in the type environment. Indeed, the type system in Figure 4.10 subsumes the core

Rank-2. We state this formally in theorem 4.7.3.

Definition 4.2 formally defines an equivalence relation that admits commutativity and

associativity which is then used in the typing rules. For the remaining theory, we will also

need to extend the definition to terms (Definition 4.3), as we will see later in the section.

Definition 4.2 (Type Equivalence).

τ ∧ σ ∼= σ ∧ τ

τ1 ∧ (τ2 ∧ τ3) ∼= (τ1 ∧ τ2) ∧ τ3
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Definition 4.3 (Term Equivalence).

E ∼= E

λx : τ.E ∼= λx : τ ′.E ′ ⇐⇒ E ∼= E ′ ∧ τ ∼= τ ′

E1 E2
∼= E ′

1 E
′
2 ⇐⇒ E1

∼= E ′
1 ∧ E2

∼= E ′
2

Let us present an example of how Flexible Rank-2 provides better usability. The following

two programs are valid under our new language.

(λx : (Int → Int) ∧ (Bool → Int).(x 4) + (x True))(λy : Dyn.5) (4.4)

(λx : (Bool → Int) ∧ (Int → Int).(x 4) + (x True))(λy : Dyn.5) (4.5)

This implies that if the programmer modifies the body of the function to be (x True)+(x 4),

the programmer would not have to change the type annotation.

Notice that in 4.4, the derivation tree would look the same as that of our core language.

in 4.5, the rule (T-Abs-1-f) will account for commutativity and associativity. We can see this

by considering the following sub-derivation:
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Γ, (x : (Int → Int) ∧ (Bool → Int))

⊢f (x 4) + (x True) : Int

σ ∼= (Int → Int) ∧ (Bool → Int)

Γ ⊢f λx : (Bool → Int) ∧ (Int → Int).(x 4) + (x True) : σ → Int

In the sub-derivation, the type environment carries the correct order of conjuncts, which is

(Int → Int) ∧ (Bool → Int). The equivalence relation admits (Bool → Int) ∧ (Int → Int)

as a valid type annotation.

4.7.2 Migration Properties

In this section, our goal is to show that a separation of concerns between migration and

flexibility is possible. We demonstrate this by proving that a well-typed program in Flexible

Rank-2 can be mapped to an equivalant program in Gradual Rank-2. We also show that

if a program is migrated in Gradual Rank-2, then there exists an equivalent migration in

Flexible Rank-2.

Let us start with background definitions. Definition 4.4 extends Type Precision to Flexible

Type Precision by relaxing the original definition. It states that there must exist a re-ordering

of the types involved in the relation such that precision holds. Definition 4.5 extends this

notion to terms in a similar fashion. With precision defined, we can extend the definition of

migration to Flexible Rank-2 (definition 4.6) by replacing term precision with Flexible term

precision in the original definition (definition ??).

Definition 4.4 (Flexible Type Precision). τ ≲ σ iff ∃τ ′ : τ ∼= τ ′ ∧ τ ′ ⊑ σ

Definition 4.5 (Flexible Term Precision). E ≲ E ′ iff ∃E ′′ : E ∼= E ′′ ∧ E ′′ ⊑ E ′
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Definition 4.6 (Flexible Migration). E ′ is a flexible Γ-migration of E (written E ≤Γf
E ′) iff

(E ≲ E ′ ∧ ∃T ′ : Γ ⊢f E
′ : T ′).

Theorem 4.7.1 states that if we can type check a program in Flexible Rank-2, then we

can type check an equivalent program in Gradual Rank-2 type system. The proof can be

found in Appendix B.6.

Theorem 4.7.1. If Γ ⊢f E : T then ∃T ′, E ′ such that T ′ ∼= T,E ′ ∼= E and Γ ⊢ E ′ : T ′

Theorem 4.7.2 states that if we can migrate a program in our original type system, then

we can migrate a program under equivalence in our flexible type system. The proof can be

found in Appendix B.6.

Theorem 4.7.2. Suppose Γ ⊢f E : T . Then for Es
∼= E with Γ ⊢ Es : Ts, if Es ≤Γ E

′
s, then

there exists an E ′ such that E ≤Γf
E ′ with E ′ ∼= E ′

s.

Theorem 4.7.3 also clearly holds, and states that a term in Gradual Rank-2 is also

well-typed under our language extension.

Theorem 4.7.3 (Flexible Rank-2 subsumes Gradual Rank-2). If Γ ⊢ E : T then Γ ⊢f E : T

4.7.3 Gradual Properties

We will now restate the gradual criteria that we have proven for our core Rank-2 type system

and prove them for our extension.

First, the definition of T from figure 4.4 still applies to our language because T does not

differ on commutativity or associativity.

We define that E ⇓f v as follows:
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E ⇓f v ∼= [∅ ⊢ T (E)⇝ f : T ∧ f →∗ v]

Finally, we define E ⇓S v as follows:

E ⇓S v ∼= [∅ ⊢ T (E)⇝ f : T ∧ f →∗ v]

Theorem 4.7.4 (Conservative Extension of Static Rank-2). For all static Γ, E and T , we

have:

1. Γ ⊢S E : T iff Γ ⊢f E : T .

2. E ⇓S v iff E ⇓f v

Proof. Part 1 is immediate from the fact that Flexible Rank-2 is a conservative extension

to Rigid Rank-2 and Rigid Rank-2 is a conservative extension to Static Rank-2. Part 2 is

straightforward by considering the definitions of ⇓f and ⇓s.

We will now prove the gradual guarantee. We require an auxiliary theorem which we

prove in appendix .

Theorem 4.7.5. Let Γ ⊢ Es : Ts and Γ ⊢f E : T and Es
∼= E and Ts ∼= T . Then for

every E ′ ≲ E, there exists some E ′
s
∼= E ′ with E ′

s ⊑ Es, where ∀Γ′, if Γ′ ⊢ E ′
s : T ′

s, then

Γ′ ⊢f E
′ : T ′ where T ′ ≲ T , T ′

s ⊑ Ts, Γ′ ⊑ Γ and T ′ ∼= T ′
s.

Theorem 4.7.6 (Gradual Guarantee). ∀Γ,Γ′, E, E ′, T suppose Γ ⊢f E : T and Γ′ ⊑ Γ and

E ′ ≲ E.

1. For some T ′, we have Γ′ ⊢f E
′ : T ′ and T ′ ≲ T .

2. If E ⇓f v then E ′ ⇓f v
′ and v′ ≲ v
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3. If E ⇑f then E ′ ⇑f

4. If E ′ ⇓f v
′ then E ⇓f v where v′ ≲ v or E ⇓ blameT (T )L

5. If E ′ ⇑f then E ⇑f or E ⇓f blameT (T )L.

Proof. For item 1, note that if Γ ⊢f E : T then for some Es
∼= E and Ts ∼= T , Γ ⊢ Es : Ts, by

theorem 4.7.1.

Given that Γ′ ⊑ Γ, then by theorem 4.7.6, we have that since Γ ⊢ Es : Ts, then for all

E ′
s ⊑ Es, Γ′ ⊢ E ′

s : T
′
s for some T ′

s ⊑ Ts.

Note that since Es
∼= E, for every E ′ ≲ E, there exists some E ′

s
∼= E ′ with E ′

s ⊑ Es. So

from the above, we have Γ′ ⊢ E ′
s : T

′
s, for some T ′

s ⊑ Ts. From theorem 4.7.5, Γ′ ⊢f E
′ : T ′ for

some T ′ ≲ T .

Items 2-5 are immediate from the definition of ⇓f and ⇑f and theorem 4.7.6.

Theorem 4.7.7 (Embedding of DTLC). Suppose that E is a term of the DTLC.

1. ⊢ [E] : Dyn.

2. E ⇓D v iff [E] ⇓f v.

Proof. Follows immediately from the definition of ⇓f and theorem 4.4.6.

Theorem 4.7.8 (Type Safety). If ∅ ⊢f E : T , then either E ⇓f v and ∅ ⊢f v : T (T ) for

some v, or E ⇓ blameT (T )L for some L, or E ⇑f .

Proof. The proof is straightforward from the definition of T , which preserves equality under

∼=, Theorem 4.4.2 and that GTLC itself satisfies type safety.

Theorem 4.7.9 (Blame-Subtyping). If ∅ ⊢ T (E)⇝ f : T and f contains a cast f ′ : T1 ⇒L T2

and T1 <: T2 and E ⇓f blameTL
′, then L ̸= L′
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Proof. Immediate from the definition of T which preserves equality under ∼= and that GTLC

itself satisfies blame-subtyping.

4.8 Related work

We will discuss related papers, as well as the language Typed Racket.
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4.8.1 Three related papers.

Property Castagna and Castagna Ângelo and Ours

Lanvin 2017 et al. 2019 Florido 2019

Extension of a static type system ? ✓ ? ✓

Extension of a dynamic type system ✓ ✓ ? ✓

Type safety ✓ ✓ ? ?

Blame-subtyping ? ✓ ? ?

Static gradual guarantee ? ✓ ? ✓

Dynamic gradual guarantee ? ? ? ?

The Singleton problem is decidable ? ? ? ✓

The Top Choice problem is decidable ? ? ? ✓

The Finiteness problem is decidable ? ? ? ✓

The Maximality problem is decidable ? ? ? ?

Figure 4.11: Comparison with closely related work.

In Figure 4.11 we summarize our comparison with three related papers by Castagne et al.

[CL17], by Castagna et al. [CLP19], and by Angelo and Florido [AF19]. Figure 4.11 begins

with Siek et al.’s criteria from 2015 and then lists the four migration problems defined in

Chapter 3.

Castagna et al. [CL17] deal with full-fledged set-theoretic types, which makes the

decidability problems a major open challenge. Their types satisfy the natural distribution

laws. Section 4 of their paper states that types are unique, Theorem 3 in their paper says
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that compilation is type preserving, and Theorem 2 states type safety. However, in section 5

the paper mentions that it is unknown whether it satisfies the static gradual guarantee, and

in section 6 the paper says that a blame theorem is “not worth proving” for their calculus.

The paper has no details about whether the type system is a conservative extension of a

static type system or of the GTLC, and whether cast insertion is monotonic. Finally, the

decidability problems remain open for this system.

Castagna et al. [CLP19] deals with gradual set-theoretic types that, like the types in

[CL17], satisfy natural distribution laws. The type system also has subtyping, regularity, and

contractivity. This is unlike our system where we do not consider subtyping, and where our

types are not commutative or idempotent. Their system is also unrestricted in the number

of conjuncts in an intersection type, while we limit the number of types in an intersection

type by the number of variable occurrences. Their type system has no rank restriction on

argument types, while ours does. We type check each argument once to be able to have a

unique type for each expression. In contrast, their type system does not support unique

types, which we can see from the Materialize rule in Figure 1 of their paper. We had private

communication with one of the authors and learned that their system is a conservative

extension of its static counterpart since the only difference between the static and gradual

rules is their Materialize rule. Additionally, their Materialize rule also gives that their system

satisfies that the static gradual guarantee. We also learned that it is still an open problem

whether cast insertion is type preserving and monotonic. Theorem 4.11 in their paper states

type safety, while Corollary 4.12 in their paper states a blame theorem that is closely related

to blame-subtyping. Finally, the decidability problems remain open for this system.

The type systems by Castagna et al. [CL17] and by Castagna et al. [CLP19] are both

more expressive than ours. The restrictions we imposed on our type system allow it to satisfy

some of Siek et al’s criteria [SVC15a] while enabling algorithmic support for type migration.
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Angelo and Florido introduced a gradual Rank-2 intersection type system. In their type

system, type intersection is idempotent and the typing rules for abstraction and application

that are entirely different from ours. They do not consider Siek et al’s criteria [SVC15a] .

Their focus is on type inference but with the limitation that type inference cannot introduce

intersection types: it only infers simple types. Thus, type migration like we showed for our

running example is out of scope for the type inference algorithm by Angelo and Florido

[AF19].
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4.8.2 Typed Racket.

Typed Racket supports gradual intersection and union types. Both intersection types and

union types are commutative and idempotent, and intersection types have no restriction on

the rank. Typed Racket imposed a restriction that all top-level constructors in an intersection

have to be disjoint. This restriction is called tidiness and was initially introduced by Wright

[WC97]. However, this restriction has since been lifted. It remains an open question weather

better migration tool support can be provided for gradual languages with that restriction.

Typed Racket uses macro gradual typing which means that we can annotate with types

only at the module level, unlike our system which uses micro gradual typing, where we can

annotate programs at a finer granularity. Accordingly, we will divide our running example

into two modules. For comparison with our system, we consider following version of our

running example:

1 #lang typed/racket

2 (: f : (Intersection (Number −> Number) (Boolean −> Number)) −> Number)

3 (define (f x)

4 (+ (x 4) (x true)))

5

6 (: g (Intersection (Number −> Number) (Boolean −> Number)))

7 (define (g x) 5)

8

9 (f g)

In the above code, we have two functions. The first one in line 3 defines the function f

and the one in line 6 defines the function g. In line 9, f is called with g as an argument.

The above code uses a intersection types which are similar to the ones in our system. Typed

Racket does not support dynamic enforcement of intersection types.
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4.8.3 Migrating Gradual Types

In this section, we discuss the work by Campora et al. [CCE18] and its relation to our

work. One of the goals in both works is to find maximal migrations. The starting calculi

in their work and ours are different. We consider Gradual Rank-2, while Campora et al.

[CCE18] considers the ITGL, which is a language with a principle type inference algorithm.

In contrast, Gradual Rank-2 does not have such an algorithm. The definitions of maximal

migrations are different across both works. Our definition of maximality is based on the

precision ordering, where a maximal migration must be the most precise migration, while

in their work, a migration is maximal if no more Dyn can be eliminated. This leads to a

key difference between their work and ours, which is that Campora et al. [CCE18] work

with finite migration spaces only, which is why their definition of maximality is possible. In

contrast, we consider the entire migration space of a program, which can be infinite. This

yields scenarios where a program cannot be assigned a maximal migration because it does

not exist. Indeed, in Chapter 3, we showed that this problem is NP-hard.

4.8.4 typewhich

In this subsection we discuss how Phipps-Costin et al. [PAG21]’s work would fit into the

overall picture for our language.

Phipps-Costin et al. [PAG21] developed a theory and a tool called TypeWhich which

follow a constraint-based approach for finding migrations based on several criterion. Their

constraints can be expressed in Z3. We will discuss how might their approach be extended

to our work. TypeWhich reasons about GTLC programs. It takes a GTLC program and

migrates it, taking into account GTLC runtime semantics. Since our system is an extension

of GTLC and also compiles to GTLC, we can adapt the same constraints for our reasoning
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about runtime for our Rank-2 migrations. The main difference is that our migrations can

also have Rank-2 annotations instead of only GTLC annotations, so we would have to add

constraints which generate Rank-2 annotations.

We conjecture that this extension is possible. As we have seen from our constraints, which

have a solution space that is order-isomorphic to the migration space, our constraints can be

rewritten as equality constraints. We have seen examples of this when solving the finiteness

problem. Provided that we know the number of conjuncts in an intersection, which we know

by looking at the number of occurrences of bound variables, we can express our constraints

in Z3. We conjecture that we can add a constraint which relates a GTLC migration to a

Rank-2 migration by considering a type variable for a Rank-2 migration v and a GTLC

migration v′. The constraints would be of the form v = v1∧ ...∧vn and v′ = v1⊓ ...⊓vn. If we

give our constraints, along with the constraints from TypeWhich, along with a constraint

relating a GTLC migration to a Rank-2 migration to Z3, we believe that we could get Rank-2

migrations, which satisfy the GTLC runtime semantics, as outlined by Phipps-Costin et al.

[PAG21].

In summary, we conjecture that we can extend TypeWhich’s solution to accommodate

Rank-2 annotations because our system compiles programs into GTLC, and that the remaining

step is to encode our Rank-2 typing rules into Z3, with a constraint relating a GTLC migration

to a Rank-2 migration, allowing Z3 to find a satisfying assignment. We will leave this to

future work.

As it currently stands, Phipps-Costin et al.’s work is fundamentally different than ours in

that their work considers context based migrations, while we only consider whole programs.

130



4.9 Conclusion

The gradual Rank-2 intersection type discipline is a powerful extension of the GTLC that

satisfies key criteria for gradually typed languages. Our experiments show that Rank-2 types

lead to more maximal migrations than GTLC. The decidability of three migration problems

gives hope for scalable tool support for migration to Rank-2 intersection types.

Limitations In this work, we don’t consider natural extensions of intersection types, such

as union types [BDD95] and type-test operations [PAG21].

future work We leave to future work to consider those extensions as well as try to lift some

of the restrictions on intersection types while achieving our goal. In particular, adding union

types and type-test operations appear to be natural next steps for future work. We hope

our results can serve as a foundation for designing languages with both gradual intersection

types and support for type migration.
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Maximal GTLC Maximal Rank-2
λx : Dyn.x(succ(x)) λx : (Int → Int) ∧ Int.x(succ(x))

λx : Dyn → Int.x(succ(x(true))) λx : (Int → Int) ∧ (Bool → Int).x(succ(x(true)))
λx : Dyn → Int.+ (x 4)(x true) λx : (Int → Int) ∧ (Bool → Int).+ (x 4)(x true)

(λx : Int.x)4 (λx : Int.x)4
succ((λy : Dyn.y)((λx : Int.x)true)) succ((λy : Dyn.y)((λx : Int.x)true))

λx : Int.x λx : Int.x
λx : Int.λy : Int → Int → Int.yxx λx : Int.λy : Int → Int → Int.yxx

λx : Dyn.(λy : Int.x)xx λx : Dyn.(λy : Int.x)xx
λx : Int.(λf : Dyn. λx : Int.(λf : Dyn ∧ (Int → Int).

(λx : Dyn.λy : Int.x)f(fx))(λz : Int.1) (λx : Int.λy : Int.x)f(fx))(λz : Int.1)
No maximal migration λx : (Int → Int) ∧ Int.xx

unknown [(λx.λy.y(xI)(xK))∆]′

unknown [selfInterpreter]′

(λx : Dyn → Int. (λx : (Int → Int) ∧ (Bool → Int).
(x 4) + (x True)) (λy : Int.5) (x 4) + (x True)) (λy : Dyn.5)

where

[(λx.λy.y(xI)(xK))∆]′ = (λx : ((Int → Int) → Int) ∧ ((Int → Int → Int) → Int).

λy : Int → Int → Int.

y (x(λa : Int.a))(x(λb : Int.λc : Int.b)))

(λd : Dyn → Dyn.dd)

[selfInterpreter ]′ = Y ′[λe : Dyn.λm : Dyn.

m(λx : Int.x)

(λm : Int.λn : Int.(em)(en))

(λm : (Int → Int).λv : Int.e(mv))]

Y ′ = λh : (((Int → Int) → (Int → Int)) ∧ (Int → Dyn)).

(λx : (((Int → Int) → (Int → Int)) ∧ (Int → Int)).h(xx))

(λx : Dyn.h(xx))

Figure 4.9: Maximal migrations.
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Typing Rules
Γ ⊢f E : T 2.

Γ ⊢f true : Bool (T-True) Γ ⊢f false : Bool (T-False) Γ ⊢f n : Int (T-Num)

x :
∧

i∈I τ
0
i ∈ Γ l ∈ I

Γ ⊢f xl : τ
0
l

(T-Var)

Γ, (x : σ0
0 ∧ . . . ∧ σ0

n) ⊢f E : τ
where ∀i ∈ 0..n, xi occurs in E

and σ0
0 = . . . = σ0

n = σ0

Γ ⊢f (λx : σ0.E) : σ0 → τ
(T-Abs-0)

Γ, (x : σ0
0 ∧ . . . ∧ σ0

n) ⊢f E : τ
where ∀i ∈ 0..n, xi occurs in E

and σ ∼= σ0
0 ∧ . . . ∧ σ0

n

Γ ⊢f (λx : σ.E) : σ → τ
(T-Abs-1-f)

Γ ⊢f E : τ where x0 does not occur in E

Γ ⊢f (λx : τ 0.E) : τ 0 → τ
(T-Abs-2)

Γ ⊢f E1 : σ1
σ1 � ((

∧
i∈I τ

0
i ) → σ)

Γ ⊢f E2 : σ
0

∀i ≤ I : σ0 ∼ τ 0i (T-App)
Γ ⊢f E1 E2 : σ

Consistency:
σ0 ∼ Dyn (C-Dyn1) Dyn ∼ σ0 (C-Dyn2) Bool ∼ Bool (C-Bool)

Int ∼ Int (C-Int)

σ0 ∼ σ′0 τ 0 ∼ τ ′0

(σ0 → τ 0) ∼ (σ′0 → τ ′0)
(C-Arrow)

Matching:
(σ1 → τ 2)� (σ1 → τ 2) (M-Arrow) Dyn� (Dyn → Dyn) (M-Dyn)

Figure 4.10: The Flexible Gradual Rank-2 intersection-typed λ-calculus: Typing Rules
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CHAPTER 5

Generalizing Shape Reasoning with Gradual Types

Current machine learning libraries heavily rely on tensors because tensors provide an alterna-

tive to programming with scalars and nested loops. Tensors improve the process of program

development and understanding; however, they obscure shape information in the program,

which can cause shape errors that are difficult to detect. Shape analysis is beneficial beyond

preventing shape errors. It can provide the compiler with information so it can optimize its

resources. Shape analysis can also benefit various program transformation tools, which are

common in machine learning, so that they can make valid program transformations. Because

there are various contexts in which shape analysis is desirable, different works approach shape

analysis from different angles. These works currently lack an underlying theory that unifies

their approaches.

In tensor programs, expressing shapes through type annotations allows for effective

shape-checking and reasoning. While shape reasoning is valuable, manually annotating

programs with shapes is impractical and burdensome. However, gradual types offer a way to

incrementally introduce type annotations into programs. Our research focuses on automatic

type migration, which allows us to automatically annotate programs with shapes.

In this chapter, we develop a comprehensive gradual typing theory to reason about tensor

shapes. We show that by asking different questions about the migration space of a gradually

typed program, we can generalize shape analysis. We demonstrate this by solving three key
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problems on shapes: (1) how to find a static migration, (2) how to find a migration that

satisfies an arithmetic constraint, and (3) how to eliminate branches that depend on program

shapes for an infinite class of inputs. In doing so, we develop a novel tool to address the

first two problems. For the third problem. there are currently two PyTorch tools that aim

to eliminate branches. They do so by eliminating it for just a single input. We show that

our tool is the first to eliminate branches for an infinite class of inputs. Notice that these

problems are related to the problems discussed in Chapter 2. However, our modified questions

are relevant and useful for machine learning models. All programs we looked at are able to

be fully statically typed unless they had a bug, hence question 1. Developers would like to

query a tool for particular migrations based on some arithmetic constraints, hence question 2.

Finally, most models contain no control-flow and one of the goals is to eliminate control-flow

from the ones that have it, hence question 3.

5.1 Introduction

Multidimensional data structures are a common abstraction in modern machine learning

frameworks such as PyTorch [PGC17], TensorFlow [AAB16], and JAX [BFH18]. A significant

portion of programs written using these frameworks involve transformations on tensors.

Tensors in this setting are n-dimensional arrays. A tensor is characterized by its rank and

shape. The rank is the number of dimensions. For example, a matrix is two-dimensional;

hence it is a rank-2 tensor. The shape captures the lengths of all axes of the tensor. For

example, in a 2× 3 matrix, the length of the first axis is 2 and the length of the second axis

is 3; hence its shape is (2, 3).

Programming with abstractions like tensors provides the programmer with high level and

easy to understand constructs. The alternative approach is to program with scalars and nested
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loops [PS21]. This approach makes programs harder to visualize and understand. While

tensors bring ease of use to a programming language, their shapes are hard to track. Modern

machine learning frameworks support a plethora of operations on tensors, with complex

shape rules. PyTorch and TensorFlow for example support a mechanism called broadcasting

which enables tensors which have different shapes and even dimensions to be compatible

such that arithmetic operations could be performed on them. This involves modifying the

tensors involved in broadcasting. However, modern frameworks only modify the results for

optimally. Addition, for example, supports a mechanism called broadcasting, which allows us

to add tensors of different shapes, provided that they satisfy a set of rules. Reshapes and

convolutions give rise to complex shape rules with non-trivial arithmetic. Complex shape

rules make shapes hard to determine in programs, because shape information rarely explicitly

appears in them. As a result, shape errors occur frequently [ZCC18].

Undetected shape errors only appear at runtime, which is undesirable because we would

only know about the error when the wrong operation is finally invoked on concrete runtime

values. Tensor computations are costly and a program may take a long time to run before

finally crashing with an error. In fact, shape errors may not even appear at runtime because

running the program with an input might fail to catch the error because the error might only

manifest for specific input shapes.

The ability to reason about shapes is useful in various contexts in the machine learning

area. It can prevent programmers from making mistakes. It can also help compilers

optimize for computational resources and program transformation tools to make valid program

transformations. Users often add asserts or comments to help them reason about shapes.

These tasks have a high cognitive load on users, especially when they are dealing with

complex tensor operations. Shape asserts present even further challenges; they can manifest

in the form of branches on program shapes. We observed this pattern on various transformer
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benchmarks [Wol00]. Thus, in that pattern, the result of a branch depends on the shape of

the program input, so the branch result can vary over different inputs. In machine learning

programs, branches can be undesirable because they limit the back-ends a program can be

run on [RDH21]. In practice, various tools handle this challenge in different ways. Some

tools reject such programs entirely while other tools run the program on a single input to

eliminate branches. Running a program on a single input means that branch elimination is

correct for just one input, which is an unsatisfactory solution.

Aiming to prevent the need for ad-hoc shape asserts, entire systems have been build to

detect shape errors such as [PS21] and [SLZ18]. However, these systems are too specific. They

lack a general theoretical foundation that enables their solution to be adapted to a variety of

contexts, including incorporating their logic into compilers and program transformation tools.

A fundamental approach towards shape analysis is building a type system that supports

shapes and using it to reason about them. In that approach, shapes are type annotations.

Traditionally, types have been used to solve similar problems in the area of programming

languages [SSM19, SMS18]. We can consider a static type system with tensor shapes [RLW18].

A static type system has two limitations. First, a static type system may need to be elaborate

in order to capture the complexities of machine learning programs, which are typically

written in permissive languages such as Python. As a result, refinement or polymorphic

types may be needed. Second, a static type system has a high barrier of entry because it

requires the user to come up with non-trivial type annotations in advance. Third, many

machine learning programs are in Python, so they are usually only partially typed. Therefore,

fully typed programs are not readily available, which prevents this approach from being

backwards-compatible.
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A common way to circumvent the requirement of having a fully typed programs is to use

gradual types. In a gradually typed system, type annotations are not needed for the program

to compile. However, for a gradually typed system to be more widely usable, it should enable

fundamental yet practical tool support. Previous work such as [HKS22] designed a gradually

typed system for shapes. But the system is so powerful that practical, elaborate tool support

can be hard to obtain. We believe that the key to shape analysis with gradual types is to

balance between (1) the expressiveness of a gradually typed system and (2) the ease of tool

support in that system.

We show that gradual types can help us tackle shape-related problems in a fundamental

and unified way. We introduce a gradual typing system that reasons about shapes and enables

tool support. We obtain a system that enables tool support via a syntactic interpretation of

gradual types. We then define the migration space of a gradually typed program according to

that interpretation. The concept of a migration space has been formally defined in Chapter 3.

Let us revisit the intuition for it. Suppose we start with an untyped program. In a gradually

typed language, there can be various but valid ways to annotate that program. Some of

those possibilities include partially annotating the program with static types, which yields a

gradual migration. Other possibilities involve annotating the entire program with static types,

which yields a static migration. The migration space of a gradually typed program is the set

of migrations that represent all correct ways of typing our initial program. We demonstrate

that capturing the migration space enables various ways of reasoning about the shapes in a

gradually typed tensor program.

We distill shape analysis challenges into three key problems that we can ask of every

gradually typed tensor program to improve existing tool support, and we introduce a general

theory to solve all of them:
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Q(1) Static migration: Is the migration space non-empty? If so, does the migration space

contain a static migration and if so, how do we find one?

Q(2) Migration under arithmetic constraints : Given an arithmetic constraint on a dimension,

is there a migration that satisfies it and if so, how do we find one?

Q(3) Branch elimination: Can we prove that branch elimination is valid for an infinite set of

inputs, not just for a single input? If so, how do we represent that set of inputs?

Our results and contributions. We choose PyTorch as a setting for our evaluation and

build a tool, but our work is more generally applicable. First, we demonstrate how our

algorithms work for only Q(1) and Q(2). PyTorch does not currently have any comparable

tools for those problems. To address Q(3), we incorporate our reasoning into two existing

PyTorch tools that aim to eliminate branches from PyTorch programs. After augmenting

both tools with our logic, we are able to improve the performance and accuracy of both tools

as we will describe below. Our contributions can be summarized as follows:

1. A Gradually Typed Tensor Calculus that satisfies standard static gradual criteria

[SVC15a]

2. A formal characterization of the migration space via constraints

3. Algorithms for each of our three problems

4. A demonstration of how our algorithms work for Q(1) and Q(2) on four benchmarks

5. For Q(3), a comparison on six benchmarks, against HFTracer [Wol00], a PyTorch tool.

HFTracer eliminates all branches on one input, while we eliminate all branches on

infinite classes of inputs; we use constraints to represent infinite classes of inputs
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6. For Q(3), a comparison on five benchmarks against TorchDynamo [Ans22], a PyTorch

tool. TorchDynamo eliminates 0% of the branches in these benchmarks, while we

eliminate branches by 40% to 100% on infinite classes of inputs

5.2 Three Migration Problems

5.2.1 Our type system, informally

In this section, we introduce our type system informally. We discuss the formal details in

the next section. A tensor type in our system is of the form TensorType(d1, ..., dn) where

d1, ..., dn are dimensions. Every gradually typed system has a type Dyn, which represents the

absence of static type information. In our system, Dyn can appear as a dimension, in which

case the dimension is unknown. Dyn can also appear as a tensor annotation, in which case

even the rank of the tensor is unknown.

As discussed in the previous chapters, in gradual types, a precision relation refers to the

replacement of some of the occurrences of Dyn with static types. Dyn is the least precise

type because it contains no type information. TensorType(1, 2, 3) and TensorType(1, 2)

are unrelated by the precision relation because we cannot go from one type to another by

replacing Dyn occurrences with more informative types, while TensorType(Dyn, 2) is less

precise than TensorType(1, 2) because we can replace the Dyn in TensorType(Dyn, 2) with 1

to get TensorType(1, 2). This relation extends to programs. Program A is less precise than

program B if we can replace some occurrences of Dyn in program A to get to program B.

Intuitively, program B is more static than program A. Precision gives rise to the migration

space, as shown in the previous chapters. Given a well-typed program, its migration space is

the set of more precise programs that are well-typed.
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The migration space captures the different ways of correctly annotating a gradually

typed program. As such, we can capture certain parts of the space by imposing appropriate

constraints on it. With that in mind, let us look at examples of how reasoning about the

migration space is beneficial for solving key problems about the shapes in a gradually typed

program. Specifically, in Section 5.2.2, we will see two examples about Q(1) and Q(2)

respectively, and in Section 5.2.3, we will see an example about Q(3).

5.2.2 Examples of static migrations and migration under arithmetic constraints

Static migration Consider Listing 5.1 which has a clear bug. Let us understand what the

bug is.

Listing 5.1: Ill-typed convolution

10 class ConvExample(torch.nn.Module):

11 def __init__(self):

12 super(BasicBlock, self).__init__()

13 self.conv1 = torch.nn.Conv2d(in_channels=2, ..)

14 self.conv2 = torch.nn.Conv2d(in_channels=4, ..)

15

16 def forward(self, x: TensorType([Dyn, Dyn])):

17 self.conv1(x)

18 return self.conv2(x)

In line 7, x is annotated with TensorType([Dyn, Dyn]). This is a typical gradual typing

annotation which indicates that x is a rank-2 tensor. The annotation does not specify what

the dimensions are. In line 8, we are applying a convolution to x. According to PyTorch’s

documentation, for the convolution to succeed, x cannot be rank-2. Thus, the bug in this

program stems from a wrong type annotation. The migration space of this program can easily
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inform us that the program is ill-typed, because the space will be empty. The reason for

that is that the migration space of a well-typed program should contain at least one element,

which is the program itself. A tool that can reason about the migration space can easily

catch this bug in a single step.

Let us fix this bug by replacing the wrong type annotation with a correct one. In Listing 5.2,

we change x’s annotation from a rank-2 annotation to a rank-4 annotation: TensorType([Dyn,

Dyn, Dyn, Dyn], which is correct. This program compiles, but it contains a more subtle bug.

Let us look closely at the code to understand why that is the case.

In line 4, we are initializing a field, self.conv1, representing a convolution, torch.nn.Conv2d,

which takes various parameters. The parameter that’s relevant to our point is called in_-

channels and it is set to 2. In line 5, we are initializing another field, self.conv2, but this

time, we set the in_channels to 4. In line 7, we have a function that takes a variable x and

calls both convolutions on it in lines 8 and 9. To understand why this program contains

a bug, we must ask: how does the value of in_channels relate to x’s shape? PyTorch’s

documentation [PGM19] states that in the simplest case, the input to a convolution has the

shape (N, in_channels, H,W ). Indeed, in line 7, x is annotated with TensorType([Dyn,

Dyn, Dyn, Dyn], a typical gradual typing annotation indicating that x is a rank-4 tensor.

The annotation does not state what the dimensions are, but it is still consistent with the

shape stated in the documentation. Notice however that the x’s second dimension should

match the value of in_channels. However, we have two values for in_channels that do not

match. This mismatch will cause the program to crash if it ever receives any input, but not

before. Our key questions can help us discover the bug statically across all inputs.

Listing 5.2: Gradually typed convolution

19 class ConvExample(torch.nn.Module):
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20 def __init__(self):

21 super(BasicBlock, self).__init__()

22 self.conv1 = torch.nn.Conv2d(in_channels=2, ...)

23 self.conv2 = torch.nn.Conv2d(in_channels=4, ...)

24

25 def forward(self, x: TensorType([Dyn, Dyn, Dyn, Dyn])):

26 self.conv1(x)

27 return self.conv2(x)

By determining if we can replace all the Dyn dimensions in this program with numbers

(which is the answer to Q(1) from our key questions), we can discover that it is impossible to

assign a number to the second dimension of x and thus detect the error before running the

program. More generally, the absence of a static typing sometimes can reveal that a program

cannot run successfully on any input.

How can we benefit from the migration space to answer Q(1) and thus detect that this

program cannot be statically typed? We can consider the migration space for this program.

The space contains programs where x is a rank-4 tensor. A tool that can reason about

the migration space can then take an extra constraint on the second dimension of x. The

constraint should say that the second dimension must be a number. This constraint will

narrow down the migration space to an empty set. The reason is that there is no such

well-typed program. Therefore, we can conclude that the program cannot be statically typed

because the second dimension cannot be assigned a number.

Migration under arithmetic constraints Let us fix the bug. One way to fix the bug is

by removing self.conv1 from the program. We get the program in Listing 5.3.

Listing 5.3: Gradually typed convolution
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28 class ConvExample(torch.nn.Module):

29 def __init__(self):

30 super(BasicBlock, self).__init__()

31 self.conv2 = torch.nn.Conv2d(in_channels=4, ..)

32 def forward(self, x: TensorType([Dyn, Dyn, Dyn, Dyn])):

33 return self.conv2(x)

The program is correct and there can be various, correct ways to annotate it. The current

annotation for the variable x is that it is a tensor with four dimensions, but each dimension

is denoted by Dyn, so the values of the dimensions are unknown. Suppose we want to specify

constraints on those dimensions and determine if there are valid migrations that satisfy those

constraints. This would be useful, not just for the user, but for compilers, since they can use

those constraints to optimize for resources.

We can require some of the dimensions of x to be static and then provide arithmetic

constraints on each of them. In this example, let us require all dimensions to be static. A

tool can accept four constraints indicating this requirement. Then it can accept constraints

that specify ranges on those dimensions. For example, the first dimension could be between

5 and 20. The second dimension can only have one possible value, which is 4. So it is enough

to have a constraint requiring that dimension to be a number. The third dimension could

also be between 5 and 20, while the fourth dimension could be between 2 and 10.

By giving these constraints as input to a tool, we are constraining the space to only the

subspace that satisfies the constraints. A tool may find that this subspace indeed contains

programs and outputs one of them. As a result, we may get the program in Listing 5.4. As

shown, x has now been statically annotated with TensorType([19, 4, 19, 9]).

Listing 5.4: Statically typed convolution
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34 class ConvExample(torch.nn.Module):

35 def __init__(self):

36 super(BasicBlock, self).__init__()

37 self.conv2 = torch.nn.Conv2d(in_channels=4, ..)

38 def forward(self, x: TensorType([19, 4, 19, 9])):

39 return self.conv2(x)

5.2.3 An example of branch elimination

Listing 5.5: Branch elimination

40 class ConvControlFlow(torch.nn.Module):

41 def __init__(self):

42 super().__init__()

43 self.conv = torch.nn.Conv2d(

44 in_channels=512, out_channels=512, kernel_size=3)

45

46 def forward(self, x: TensorType([Dyn, Dyn, Dyn, Dyn])):

47 if self.conv(x).dim() == 4:

48 return torch.relu(x)

49 else:

50 return torch.nn.Dropout(x)

The program in Listing 5.5 is correct, but it contains control-flow in the form of a branch.

We want to eliminate this branch. We refer to eliminating branches from a program by branch

elimination. Eliminating branches enables programs to run on back-ends where branches

are undesirable. HFTracer runs a program on a single input and computes the result of

the branch and eliminates it accordingly. While the result of a branch could be fixed for
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all program inputs, the result may also vary. Thus, running a program on just one input

to eliminate a branch yields unsatisfactory branch elimination. We enable better branch

elimination by finding all inputs for which a branch evaluates to a given result by reasoning

about the program itself. We provide a mechanism to denote the set of inputs for which a

branch evaluates to the given result. Notice that we reason about the static information given.

Thus, if a variable has type Dyn, we optimistically assume that the program is well-typed

and that the value for that variable will have the appropriate type at runtime.

The program in Listing 5.5 contains a condition that depends on shape information. This

is a common situation, where ad-hoc shape-checks are inserted in a program to reason about

its shapes. Line 8 has function that takes a variable x and applies a convolution to it, with

self.conv(x), and a condition that checks if the rank of self.conv(x) is 4. Since x is

annotated as a rank-4 tensor on line 7, and convolution preserves the rank, self.conv(x)

must also be rank-4. So the condition must always be true under the information given by

x’s type annotation. We should be able to prove that the condition in line 8 always returns

true without receiving any input for the program, by inspecting all the valid types that

the program could possibly have. The migration space is useful for this analysis because it

captures all possible, valid type annotations for a program.

Thus, under the convolution typing rules, if self.conv(x).dim() == 4 is to evaluate

to true, then x is also rank-4, which is consistent with x’s current annotation. In con-

trast, if self.conv(x).dim() == 4 were to be false, i.e self.conv(x).dim() != 4 is true,

then this means that x is not rank-4. However, the migration space of a program can

never include inconsistent ranks for the same variable. Therefore, it is impossible to have

self.conv(x).dim() != 4, while also having that x is rank-4.
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A tool that reasons about the migration space as well as arbitrary predicates can make

this conclusion. In this example, we can make a definitive conclusion about the result of this

condition and we can re-write our program accordingly, as shown in Listing 5.6. This is a

high-level intuition to a key idea, which we will expand on and formalize in Section 5.5. We

will detail how we reason about the migration space in the presence of branches, and explain

why our approach works.

Listing 5.6: Branch elimination

51 class ConvControlFlow(torch.nn.Module):

52 def __init__(self):

53 super().__init__()

54 self.conv = torch.nn.Conv2d(

55 in_channels=512, out_channels=512, kernel_size=3)

56

57 def forward(self, x: TensorType([Dyn, Dyn, Dyn, Dyn])):

58 return torch.relu(x)

5.3 The Gradual Tensor Calculus

In this section, we describe our design choices then give the technical details of our type

system. We finally prove gradual typing criteria for our system.

5.3.1 Design Choices

Our design choices are guided by enabling four key requirements: (1) modularity and

backwards compatibility, (2) automatic tool support, (3) expressiveness, and (4) minimality
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of our language. We have made these four choices in the context of tool support for PyTorch,

but they can be extended to other frameworks. Here, we outline those design choices.

Modularity and backwards compatibility First, we require our system to support

modularity and backwards compatibility for programs. A gradually typed system suits our

needs because it supports partial type annotations. One of the implications of this support

is that gradually typed programs can compile with any amount of type annotations. In a

gradually typed system, a missing type is represented by the Dyn type.

The Dyn type can sometimes be assigned to a variable that has been used in different

parts of the program with different, possibly inconsistent types. This type is useful when the

underlying static type system is not flexible enough to fully type that program. For example,

we may have a program that takes a batch of images with a dynamic batch size, as well

as dynamic sizes, but with a fixed number of channels. In this case, a possible type would

be TensorType(Dyn, 3, Dyn, Dyn), which indicates a batch of images, where the batch size is

dynamic and the sizes are dynamic but the number of channels, which is 3, is fixed. Another

example is that a variable could be assigned a rank-2 tensor at one point in the program,

then a rank-3 tensor at a different point. A suitable type for that variable could simply

be Dyn. In both examples, if we did not have the Dyn type, we would need more complex

annotations. The Dyn type allows the gradual type checker to admit programs statically, and

determine how to handle variables with Dyn types at runtime. The flexibility of gradual types

stems from the consistency relation, which is symmetric and reflexive but not transitive. This

relation allows a gradual type checker to statically admit programs in the absence of type

information.
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Automatic tool support Second, we require automatic tool support. We design a simple

type system for a core language to enable us to define and solve problems for automatic

tool support in a tractable way. Tool support is tractable because we followed a syntactic

interpretation of gradual types. We base our approach on capturing the migration space by

extending the constraint-based approach that is outlined in Chapter 3 to solve our three key

questions.

Expressiveness Third, we require our system to be expressive enough to capture non-trivial

programs. Our type system is more expressive than PyTorch’s existing type-system, which

does not reason about dimensions. Our language consists of a set of declarations followed

by an expression. This structure is a convenient representation for the PyTorch neural

network models we encountered, which mainly consisted of a function which takes a set of

parameters. In the function body are tensor operations applied on those parameters. This

calculus structure is inspired by the calculus from Rink [Rin18]. Rink highlighted that many

DSLs can be mapped to their language. Besides adapting the structure of that calculus, we

choose three core operations that present different challenges for automatic tool support, and

then extend our support to 50 PyTorch operations.

Minimality Fourth, we require our language to be minimal so we can focus on our core

problems. First, we do not introduce branches to our core grammar since, in practice, all

tools on which we ran our experiments either do not accept programs with branches or aim

to eliminate branches. As Reed et al. [RDH21] noted, many non-trivial tensor programs do

not contain branches or statements.

Second, we do not consider runtime checks in gradual types. Those checks are typically

a bottleneck for the performance of gradually typed programs [TFG16, GM18]. There has
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been extensive research to alleviate performance issues by weakening these checks. As shown

by Greenman and Fellisen [GF18], the notion of soundness in gradual types is not an all-

or-nothing concept. Greenman and Felleisen [GF18] discuss three notions of soundness at

different levels of strength and how they relate to performance: higher-order embedding of

Tobin-Hochstadt and Felleisen [TF08], first-order embedding, as seen in Reticulated Python

[VSS17] and erasure embedding, as seen in TypeScript [BAT14].

Similar to Rink [Rin18] and Reed et al. [RDH21], we observe that a language free from

convoluted constructs represents a large subset of programs that are written in the machine

learning area. As such, runtime errors are not as interesting when compared to those that arise

in languages with constructs such as branches, functions, and function calls. Furthermore,

runtime checks impose a computation cost on already costly tensor computations. Different

compilers deal with runtime semantics in various ways. As a result, we choose to leave

runtime aspects to future work.

5.3.2 Design Details

Figure 5.1 contains our gradual core calculus. We begin with a static calculus and gradualize

it according to Cimini and Siek [CS16]. Our gradual calculus contains the dynamic type

denoted by Dyn. A dimension can be Dyn, and a tensor can also be Dyn. A tensor is denoted

by the constructor TensorType(σ1, ..., σn) where σ1, ..., σn are dimensions. However, if we

denote a dimension by U or D, it means the dimension is a number and cannot be Dyn.

Our language has three expressions. add(e1, e2) adds two tensors e1 and e2. reshape(e, τ)

takes an expression e and a shape τ and reshapes e to a new tensor of shape τ if possible.

Reshaping can be thought of as a re-arrangement of a tensor’s elements. That requires

the initial tensor to have the same number of elements as the reshaped tensor. τ can have
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(Program) p ::= decl∗ return e

(Decl) decl ::= x : τ

(Terms) e ::= x | add(e1, e2) | reshape(e, τ) |
Conv2D(cin, cout, κkernel, e)

(IntegerTuple) κ ::= (c∗)

(Const) c ::= ⟨Nat⟩
(Tensor Types) t, τ ::= Dyn | TensorType(list(d))

(Static Tensor Types) S, T ::= TensorType(list(D))

σ, d ::= Dyn | ⟨Nat⟩
U,D ::= ⟨Nat⟩

(Env) Γ ::= ∅ | Γ, x : τ

Notation:
δ is a sequence of dimensions with at most one occurrence of Dyn.

Figure 5.1: Gradual Tensor Core language

a maximum of one Dyn dimension. We will denote such a type by δ in our type checker.

Finally we have Conv2D(cin, cout, κkernel, e) which applies a convolution to e, given a number

representing the input channel cin, a number representing the output channel cout, and a

pair of numbers representing the kernel κkernel. The full version of convolution in PyTorch

has more parameters. We have accounted for those parameters in our implementation, but

because they create no new problems for us, our quest for minimality led us to leaving them

out.

Figure 5.2 contains gradual typing relations that are used in our gradual typechecking.

Those relations allow the typechecker to reason about the Dyn type. Matching, denoted by �,

and consistency, denoted by ∼, are standard in gradual typing and are lifted from equality
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Consistency
τ ∼ τ (c-refl-t) d ∼ d (c-refl-d)

d ∼ Dyn (d-refl-dyn) τ ∼ Dyn (t-refl-dyn)

∀i ≤ n : di ∼ d′i
TensorType(d1, ..., dn) ∼ TensorType(d′1, ..., d

′
n)

(c-tensor)

Type Precision
τ ⊑ τ (refl-t) d ⊑ d (c-refl-d)

Dyn ⊑ d (refl-dyn-1) Dyn ⊑ τ (refl-dyn-2)

∀i ≤ n : di ⊑ d′i
TensorType(d1, ..., dn) ⊑ TensorType(d′1, ..., d

′
n)

(p-tensor)

Program and term Precision
∀i ∈ {1, ..., n} decl′i ⊑ decli e

′ ⊑ e

decl′1, ..., decl
′
n return e′ ⊑ decl1, ..., decln return e

(p-prog) τ ′ ⊑ τ
x : τ ′ ⊑ x : τ

(p-decl)

e ⊑ e (p-refl)

Matching
TensorType(τ1, ..., τn)�

n TensorType(τ1, ..., τn)
Dyn�n TensorType(l) where l = [Dyn, ..., Dyn] and |l| = n

Figure 5.2: Auxiliary functions
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in the static counter part of the system. Matching and consistency are both weaker than

equality because they account for absent type information. Thus, if some type information

is missing but there are no conflicting type information, matching and consistency would

hold. Matching is a relation that pattern-matches two types. It is useful for arrow types

in traditional type systems. Specifically, an arrow type t1 → t2 matches itself. Type Dyn

matches Dyn → Dyn. The ability to expand Dyn to become a function type Dyn → Dyn is

valid in gradual types because it allows the system to optimistically consider the type Dyn

to be Dyn → Dyn. We have adapted this definition to our system. First, we annotated

matching with a number n to denote the number of dimensions involved. So we have that

TensorType(τ1, ..., τn)�
n TensorType(τ1, ..., τn) because any type matches itself. Similar to

how traditionally, Dyn� Dyn → Dyn, we have that Dyn�n TensorType(Dyn, ..., Dyn), where

Dyn, ..., Dyn are exactly n dimensions. Throughout this chapter, we will only use matching

with i = 4 so we may use matching as � instead of �4. Consistency is a symmetric, reflexive,

and non-transitive relation that checks that two types are equal, up to the known parts of

the types. For example, the type Dyn contains no information, so it is consistent with any

type, while the dimensions 3 and 4 are inconsistent because they are unequal. Figure 5.2

contains the formal definitions for matching and consistency.

∅ ⊢ ⊥
s-empty

decl∗ ⊢ Γ x /∈ dom(Γ)

decl∗ id : τ ⊢ Γ : id 7→ τ
(s-var)

Figure 5.3: Static context formation
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Typing rules:
decl∗ ⊢ Γ Γ ⊢ e : τ
⊢ decl∗ return e ok

(ok-prog) x : τ ∈ Γ
Γ ⊢ x : τ

(t-var)

Γ ⊢ e : TensorType(D1, ..., Dn)
∏n

1 Di =
∏m

1 Ui

Γ ⊢ reshape(e, TensorType(U1, ..., Um)) : TensorType(U1, ..., Um)
(t-reshape-s)

Γ ⊢ e : TensorType(σ1, ..., σm)
m∏
1

σi mod
n∏
1

di = 0 ∨
n∏
1

di mod

m∏
1

σi = 0 ∀di, σi ̸= Dyn

and Dyn occurs exactly once in d1, ...., dm, σ1, ..., σn

or
Dyn occurs more than once in d1, ...., dm,

Γ ⊢ reshape(e, TensorType(d1, ..., dn)) : TensorType(d1, ..., dn)
(t-reshape-g)

Γ ⊢ e : τ where
τ = TensorType(σ1 ... σn)

and Dyn occurs more than once with at least one occurrence in
δ and σ1, ...., σm

or τ = Dyn

Γ ⊢ reshape(e, δ) : δ
(t-reshape)

Γ ⊢ e : t t�4 TensorType(σ1, σ2, σ3, σ4) τ = calc-conv(t, cout, κkernel) cin ∼ σ2
Γ ⊢ Conv2D(cin, cout, κkernel, e) : τ

(t-conv)

Γ ⊢ e1 : t1 Γ ⊢ e1 : t2 (τ1, τ2) = apply-broadcasting(t1, t2) τ1 ∼ τ2
Γ ⊢ add(e1, e2) : τ1 ⊓∗ τ2

(t-add)

Figure 5.4: Typing Rules

Figure 5.3 contains the static context formation rule, and figure 5.4 contains our typing

rules. We need shorthands for some of our rules, which are contained in figure 5.5. Let us go

over each type rule in detail. ok-prog and t-var are standard.
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Greatest lower bound:
τ ⊓ τ ′|τ ≁ τ ′ = undefined

τ ⊓ τ = τ

Dyn ⊓ τ = τ

τ ⊓ Dyn = τ

TensorType(d1, ..., dn) ⊓ TensorType(d′1, ..., d
′
n) = TensorType(d1 ⊓ d′1, ..., dn ⊓ d′n)

d1 ⊓ d1 = d1

d1 ⊓ Dyn = d1

Dyn ⊓ d2 = d2

d1 ⊓ d2|d1 ≁ d2 = undefined

Greatest lower bound *:
τ ⊓∗ τ ′|τ ≁ τ ′ = undefined

Dyn ⊓∗ τ = Dyn

τ ⊓∗ Dyn = Dyn

TensorType(d1, ..., dn) ⊓∗ TensorType(d′1, ..., d
′
n) =

TensorType(d1, ..., dn) ⊓ TensorType(d′1, ..., d
′
n)

apply-broadcasting:
apply-broadcasting(τ1, τ2) is defined in the following way:

If τ1 = Dyn ∨ τ2 = Dyn, then return τ1, τ2.
Otherwise:

• Let τ1 and τ2 be equal in length by padding the shorter type with 1’s from index 0.

• Replace occurrences of 1 in τ1 with the type at the same index in τ2.

• Replace occurrences of 1 in τ2 with the type at the same index in τ1.

calc-conv:
Let t� TensorType(σ0, σ1, σ2, σ3). Then

calc− conv(t, cout, κkernel) = TensorType(t′0, t
′
1, t

′
2, t

′
3) where:

t′0 = σ0

t′1 = cout

t′2 =

{
σ2 − 1× (κkernel[0]− 1) if σ2 ∈ N
Dyn otherwise

t′3 =

{
σ3 − 1× (κkernel[1]− 1) if σ3 ∈ N
Dyn otherwise

Figure 5.5: Broadcasting, convolution, and greatest lower bound
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If two tensors x, y are “broadcastable”, let broadcast(x, y) denote the resulting tensor shapes.
The resulting tensor shapes are calculated as follows:

1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of
the tensor with fewer dimensions to make them equal length.

2. Then, for each dimension size, the resulting dimension size is the max of the shapes of
x and y along that dimension.

Figure 5.6: Broadcasting runtime semantics

t-reshape-s is the static type rule for reshape. For reshape to succeed, the product of the

dimensions of the input tensor shape must equal the product of dimensions of the desired

shape. t-reshape-g assumes we have one missing dimension. Here, we can still determine if

reshaping is possible using the modulo operation instead of multiplication. In this approach,

we admit a program if we cannot prove it is ill-typed statically. t-reshape admits the expression

if too many dimensions are missing.

To maintain minimality, t-conv deals with only the rank-4 case of convolution. t-conv

expects a rank-4 tensor, so it uses matching (�4) to check the rank. Next, cin should be equal

to the second dimension of the input, so the rule uses a consistency (∼) check. Since the

output of a convolution should also be rank-4, then apply calc-conv which, given a rank-4

input and the convolution parameters, computes the dimensions of the output shape. If a

dimension is Dyn, then the corresponding output dimension will also be Dyn.

Finally, t-add adds two dimensions. Unlike scalar addition, the types of the operands do

not have to be consistent. The reason is that broadcasting may take place. Broadcasting

is a mechanism that considers two tensors and matches their dimensions. Two tensors are

broadcastable if the following rules hold:
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1. Each tensor has at least one dimension

2. When iterating over the dimension sizes, starting at the trailing dimension, the dimension

sizes must either be equal, one of them is 1, or one of them does not exist

The runtime semantics of broadcasting are given by the PyTorch documentation. We

include them in Figure 5.6

That tensors involved in broadcasting do not actually get modified to represent the

modified shapes. This implies that the input shapes are not always consistent. Instead,

the broadcasted result is only reflected in the output of the operation. Therefore, we have

defined apply-broadcasting to simulate broadcasting on the inputs and consider what

the types for these inputs would be, if broadcasting was to actually modify the inputs.

In a static type system, the types of the modified inputs should be equal for addition to

succeed. In gradual types, the types of the modified inputs should be consistent because

equality lifts to consistency. We accomplish these requirements in our type rule. In particular,

apply-broadcasting takes care of broadcasting the dimensions. Suppose that we are adding

a tensor of shape TensorType(Dyn, 2, Dyn) to a tensor of size TensorType(1, 2, 2). Then the

output must be TensorType(Dyn, 2, 2). The reason is that the first Dyn could be any number

as per the broadcasting rules. So we cannot assume its value. The last dimension; however,

must be 2 according to the rules. We have that:

apply-broadcasting(TensorType(Dyn, 2, Dyn), TensorType(1, 2, 2)) =

(TensorType(Dyn, 2, Dyn), TensorType(Dyn, 2, 2))

After simulating broadcasting, we may proceed as if we are dealing with regular addition.

In other words, we check that the modified dimensions are consistent and get the greatest

157



lower bound. The greatest lower bound is a partial function which carries the dimensions of

the addition operation. So we have that:

(TensorType(Dyn, 2, Dyn) ⊓ TensorType(Dyn, 2, 2)) = TensorType(Dyn, 2, 2)

We will cover one last special case for addition. Simply applying the greatest lower bound

to the modified input types of addition is not general enough to cover the following case.

Suppose we are adding a tensor of shape Dyn to a tensor of shape TensorType(1, 2), then

we must output Dyn because the output type could be a range of possibilities. In this case,

apply-broadcasting does not modify the types because the tensor of shape Dyn could range

over many possibilities. We then apply our modified version of the greatest lower bound

denoted by ⊓∗, which behaves exactly like ⊓ except when one of the inputs is Dyn, where it

returns Dyn to get that:

TensorType(1, 2) ⊓∗ Dyn = Dyn

5.3.3 Example of how type checking works

Let consider an untyped version of Listing 5.2, which we will call Listing 5.7.

Listing 5.7: An example of incompatible dimension uses in Conv2D

59 class ConvExample(torch.nn.Module):

60 def __init__(self):

61 super(BasicBlock, self).__init__()

62 self.conv1 = torch.nn.Conv2d(in_channels=2, out_channels=2,

kernel_size=2, ...)
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63 self.conv2 = torch.nn.Conv2d(in_channels=4, out_channels=2,

kernel_size=2, ...)

64

65 def forward(self, x: Dyn):

66 self.conv1(x)

67 return self.conv2(x)

Consider self.conv1(x) and self.conv2(x). Looking at our core calculus again, we

have that a convolution is of the form Conv2D(cin, cout, κkernel, e). So self.conv1(x) can be

expressed as Conv2D(2, 2, (2, 2), x) in our calculus, while self.conv2(x) can be expressed

as Conv2D(4, 2, (2, 2), x) in our calculus (modulo the extra parameters such as padding and

stride, which we replaced by "...", and which do not affect the types of each of those

expressions).

The derivation tree for self.conv1(x) would be of the following form:

Γ ⊢ x : Dyn Dyn�4 TensorType(Dyn, Dyn, Dyn, Dyn)

τ = calc-conv(Dyn, 2, (2, 2)) 2 ∼ Dyn

Γ ⊢ Conv2D(2, 2, (2, 2), x) : TensorType(Dyn, 2, Dyn, Dyn)
(t-conv)

We have a similar derivation tree for self.conv2(x) which has the form:

Γ ⊢ x : Dyn Dyn�4 TensorType(Dyn, Dyn, Dyn, Dyn)

τ = calc-conv(Dyn, 4, (2, 2)) 4 ∼ Dyn

Γ ⊢ Conv2D(4, 2, (2, 2), x) : TensorType(Dyn, 2, Dyn, Dyn)
(t-conv)

In the derivation tree for self.conv1, we have that cin ∼ Dyn, where cin = 2. This

corresponds to in_channels=2. In the derivation tree for self.conv2, we have that cin = 4,
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which corresponds to in_channels=4. So observe that in the full derivation tree of the

program, we would have a consistency check of the form σ ∼ 4 and another consistency check

of the form σ ∼ 2, where σ refers to the second dimension of the shape of x.

As we know from the discussion in Section 5.2, even though we can migrate the Dyn type

of x to a rank-4 tensor with TensorType(Dyn, Dyn, Dyn, Dyn), the second dimension of x must

remain to be Dyn because of the fact that 4 ∼ σ and 2 ∼ σ both occur in the derivation tree.

We will expand on this example in Section 5.4 to answer Q(1).

5.3.4 The Gradual Criteria

We prove that our type system satisfies standard criteria from Siek et al. [SVC15a] that are

relevant to this project. Those are static criteria that concern the migration space. Since

we are not considering runtime aspects, we will leave the theorems about those aspects to

future work. First, we prove the static gradual guarantee, which describes the structure of

the migration space. The conservative extension theorem shows that our gradual calculus

subsumes its static counter-part. We use standard notations for our theorems. The full

definitions and proofs can be found in the Appendix .3.

We adapt the criteria to our calculus and re-write the Monotonicity w.r.t precision theorem

in the following way:

Theorem 5.3.1 (Monotonicity w.r.t precision). ∀p, p′ : if ⊢ p : ok ∧ p′ ⊑ p then ⊢ p′ : ok.

We have that gradual typing is a conservative extension of a static calculus. We denote a

well-typed program in the statically typed tensor calculus by ⊢S p : ok. The statically typed

tensor calculus is defined in Appendix .1.

160



Theorem 5.3.2 (Conservative Extension). For all static p, we have:

⊢S p : ok iff ⊢ p : ok

5.4 The Migration Problem as a constraint satisfiability problem

A migration is a more static, well-typed version of a program. We can define that P ′ is a

migration of P (written P ≤ P ′) iff (P ⊑ P ′ ∧ ⊢ P ′ : ok). Notice that our programs are

always closed. However, for an open program, one can adapt a more general definition of

the form P (written P ≤Γ P
′) iff (P ⊑ P ′ ∧ Γ ⊢ P ′ : ok) and ⊢ P ′ : ok can be written as

∅ ⊢ P ′ : ok.

Intuitively, this means that we are annotating a program with more static types such that

the program continues to type check. All migrations of a given program form the Migration

Space, denoted by Mig(P ).

Our goal is to capture the migration space via constraints, in the same way that we have

in Chapter 3. Every solution to our constraints for a program must map to a corresponding

migration for the same program. In other words, one satisfying assignment to the constraints

results in one migration.

In previous work such as [SMS18], constrained based approaches have been used. In

this chapter, we also follow a constrained based approach. Specifically, We follow the same

approach outlined in Chapter 3, which involves defining constraints whose solutions are

order-isomorphic with the migration space. However, due to the arithmetic nature of our

constraints, our solution procedure is different and we use an SMT solver to find a satisfying

assignment, which would equate to finding a migration. Later in this chapter, we will show

how to use this framework to answer our three key questions.
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5.4.1 Our source grammar, target grammar, and encoding the Tensor type and

the Dynamic type

We have two grammars of constraints. A high-level, source grammar, shown in figure 5.7, that

is used for generating the constraints. That grammar gets translated to low-level constraints,

which are drawn from our target grammar from Figure 5.9. Having two grammars is not

necessary, but it makes the constraint generation process more tractable and simplifies the

presentation. We can view the source grammar as syntactic sugar for the target grammar.

Our target constraints can be understood by an SMT solver.

Let us expand on both grammars. Our source constraint grammar which can be found in

figure 5.7 contains constraints that capture all well-typed programs that are more precise

than the current program. We will explain what those constraints mean in detail, but let

us present an overview. Our grammar consists of precision constraints of the for τ ⊑ x. x

here indicates a type variable for the variable x from the program. Thus, x in the constraint

τ ⊑ x captures all types that are more precise than τ . We also have matching constraints of

the form [[e]]� TensorType(δ1, δ2, δ3, δ4), consistency constraints of the form D ∼ δ, ⟨e⟩ ∼ ⟨e⟩

and greatest lower bound constraints of the form ⟨e⟩ ⊓∗ ⟨e⟩. Those are gradual typing

constraints that we use to faithfully model our gradual typing rules. Our constraint grammar

also contains short-hands such as can-reshape([[e]], δ) and apply-broadcasting([[e]], [[e]]).

Those short-hands represent the typing rules as well. can-reshape expands to further

constraints which evaluate to true if [[e]] can be reshaped to δ. Similarly, when expanded,

apply-broadcasting([[e]], [[e]]) captures all possible ways to broadcast two types. Because we

prioritize tractability of the migration space, we set the upper bound of tensor ranks to 4, via

a constraint of the form [[e]] ≤ 4. We make this decision because in practice, all benchmarks

we considered did not have tensors with ranks exceeding this number.

162



Since our constraints involve gradual types, let us describe how we encoded types so that

they can be understood by an SMT solver. Because we fixed an upper bound for tensor ranks,

we chose to encode tensor types as uninterpreted functions, which means that we have a

constructor for each of our ranks, of the form TensorType1, TensorType2, TensorType3, and

TensorType4. Each of the functions take a list of dimensions. Moving on to the dimensions,

we have that dimensions are either Dyn or natural numbers. We can easily represent natural

numbers in an SMT solver but we must also represent Dyn. One way to encode a Dyn

dimension d is as a pair (d1, d2). If d1 = 0, then d = Dyn. Otherwise, d is a number, and its

value is in d2. Let us formalize the constraint generation process next.

5.4.2 Constraint Generation

From p, we generate constraints Gen(p) as follows. Let p have the form decl∗ return e.

Assume that p has been α-converted so that all declared variables are distinct from each

other. Let X be the set of declaration-variables x occurring in e, and let Y be a set of

variables disjoint from X consisting of a variable [[e′]] for every occurrence of the subterm

e′ in e. Let Z be a set of variables disjoint from X and Y consisting of a variable ⟨e1⟩, ⟨e2⟩

for every occurrence of the subterm add(e1, e2) in e. Finally, let V be a set of variables

disjoint from X, Y , and Z consisting of dimension variables ζ. The notations [[e]] and ⟨e⟩ are

ambiguous because there may be more than one occurrence of some subterm e′ in e or some

subterm e′′ in e. However, it will always be clear from context which occurrence is meant.

For every occurrence of ζ, it is implicit that we have a constraint ζ ≥ 0 to prevent the solver

from assigning dimensions outside of N. We omit writing this explicitly at every step of our

constraint generation and resolution to avoid redundancy. With that in mind, we generate

the constraints in figure 5.8.
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(Constraints) ψ ::= ψ ∧ ψ | ψ ∨ ψ | True | False

| [[x]] = x | [[e]] = τ | τ ⊑ x

| |[[e]]| ≤ 4 | D ∼ δ | ⟨e⟩ ∼ ⟨e⟩

| [[e]]� TensorType(ζ1, ζ2, ζ3, ζ4)

| [[e]] = ⟨e⟩ ⊓∗ ⟨e⟩ | can-reshape([[e]], δ)

| [[e]] = calc-conv([[e]], cout, κkernel)

| ⟨e⟩, ⟨e⟩ = apply-broadcasting([[e]], [[e]])

Figure 5.7: Source constraint grammar
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⊢ x : τ : τ ⊑ x ∧ |x| ≤ 4
(t-decl)

Γ ⊢ x : x = [[x]]
(t-var)

Γ ⊢ e : ψ

Γ ⊢ reshape(e, δ) : ψ ∧ [[reshape(e, δ)]] = δ ∧ can-reshape([[e]], δ) ∧ |[[e]]| ≤ 4
(t-reshape)

Γ ⊢ e : ψ

Γ ⊢ Conv2D(cin, cout, κkernel, e) : ψ ∧ [[e]]� TensorType(ζ1, ζ2, ζ3, ζ4) ∧ cin ∼ ζ2 ∧

[[Conv2D(cin, cout, κkernel, e)]] = calc-conv([[e]], cout, κkernel)

(t-conv)

Γ ⊢ e1 : ψ1 Γ ⊢ e2 : ψ2

Γ ⊢ add(e1, e2) : ψ1 ∧ ψ2 ∧ [[add(e1, e2)]] = ⟨e1⟩ ⊓∗ ⟨e2⟩ ∧

(⟨e1⟩, ⟨e2⟩) = apply-broadcasting([[e1]], [[e2]]) ∧ ⟨e1⟩ ∼ ⟨e2⟩ ∧

|[[e1]]| ≤ 4 ∧ |[[e2]]| ≤ 4 ∧ |[[add(e1, e2)]]| ≤ 4

(t-add)

Figure 5.8: Constraint generation

Let us go over the rules in figure 5.8.

t-decl uses the precision relation ⊑ to insure that a migration will have a more precise

type, while t-var propagates the type information from declarations to the program.

t-reshape considers all possibilities of reshaping any tensor e with rank, at most 4, via

the constraint [[e]] ≤ 4. This restriction constraint captures all rank possibilities for [[e]] in

addition to [[e]] being Dyn. For each possibility, the number of occurrences of Dyn in δ and

[[e]] varies. This impacts the arithmetic constraints that make reshaping possible, as we can

see from the typing rules. As such, can-reshape simulates all such possibilities and generates

the appropriate constraints.

165



t-conv contains matching and consistency constraints, to model matching and consistency

in convolution’s typing rule. We have a constraint calc-conv, which generates the appropriate

arithmetic constraints for the output of the convolution, based on the convolution typing

rule, again accounting for the possibility of the input e having a gradual type.

t-add contains greatest lower bound constraints and consistency constraints, similar to the

add typing rule. We constrain the inputs e1and e2, as well as the expression itself, add(e1, e2)

to all be either Dyn or tensor of at most rank-4, via a ≤ constraint. We use the function

apply-broadcasting, which simulates broadcasting on the shapes, on dummy variables ⟨e1⟩

and ⟨e2⟩ (notice that the real shapes of e1 and e2 are represented by [[e1]] and [[e2]]). At this

point, we can check ⟨e1⟩ and ⟨e2⟩ for consistency and obtain the greatest lower bound, as per

our typing rules.

5.4.3 Constraint Resolution

Let us describe our target grammar. We define IntConst = N, and we use n to range

over IntConst. We use v as a meta variable. It ranges over variables which range over

TensorType(list(ζ)) ∪ {Dyn} and we use ζ as a meta variable that ranges over variables

that range over IntConst ∪ {Dyn}. This grammar is useful for our constraint resolution

process. In particular, the first step of solving our constraints is to translate them to low-level

constraints, drawn from our target grammar, before feeding them to an SMT solver. The

process of translating high-level constraints to our target constraints is detailed in Appendix

.4.
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(Constraints) ψ ::= ψ ∧ ψ | ψ ∨ ψ | ¬ψ | True | False

| v = TensorType(ζ, ..., ζ) | v = Dyn | v = v

| ζ = n | ζ = Dyn | ζ = ζ | ζ = ζ ∗ n+ n

| (ζ1 ∗ ... ∗ ζm) mod (ζ ′1 ∗ ... ∗ ζ ′n) = 0

Figure 5.9: Target constraint grammar

We define a solution φ as follows.

For each: we have:

ψ ∧ ψ′ φ ⊨ ψ ∧ ψ′

ψ ∨ ψ′ φ ⊨ ψ ∨ ψ′

¬ψ φ ⊨ ¬ψ

True φ ⊨ True

False φ ⊨ False

v = TensorType(ζ1, ...ζn) φ(v) = TensorType(φ(ζ1), ...φ(ζn))

v = Dyn φ(v) = Dyn

v = v′ φ(v) = φ(v′)

ζ = n φ(ζ) = n

ζ = Dyn φ(ζ) = Dyn

ζ = ζ ′ φ(ζ) = φ(ζ ′)

ζ = ζ ∗ n+ n′ φ(ζ) = φ(ζ ′) ∗ n+ n′

(ζ1 ∗ ... ∗ ζm) mod (ζ ′1 ∗ ... ∗ ζ ′n) = 0 (φ(ζ1) ∗ ... ∗ φ(ζm)) mod (φ(ζ ′1) ∗ ... ∗ φ(ζ ′n)) = 0

167



Given a program P , automatic code annotation works as follows. Let Solve be function that
takes a set of constraints and invokes an SMT solver, returning a mapping res : x× τ from
type variables to shapes.

1. Let C = Gen(p)

2. Solve(c) = res

3. For every variable x ∈ dom(res), we have that res(x) = t where t is a shape.

Given P , let res be the output of an SMT solver. Define reannotate as follows:

1. reannotate(p, res) = reannotate(decl∗, res)p

2. reannotate(decl1, ..., decln, res) = reannotate(decl1, res), ..., reannotate(decln, res)

3. reannotate(id : τ, res) = id : τ ′ if id : τ ∈ res

4. reannotate(id : τ, res) = undefined if id ̸ indom(res)

Figure 5.10: An algorithm for automatic code annotation

Let Gen(P ) be the constraint generation function and Sol(C) be the set of solutions to

constraints C. Then we can state the order-isomorphism theorem as follows:

Theorem 5.4.1 (Order-Isomorphism). ∀P,Γ : (Mig(P ),⊑) and (Sol(Gen(P )),≤) are order-

isomorphic.

The order-isomorphism theorem states that we have captured the migration-space with

our constraints such that, for a given program, the solution space and the migration-space

are order-isomorphic. For the proof, see Appendix .5.

Our algorithm for automatic code annotation is shown in Figure 5.10.
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5.4.4 A Migration Example

Let us now revisit Listing 5.7 and show how to migrate it by generating our constraints and

passing them to an SMT solver.

Let us recall that this listing had two expressions that map to Conv2D(2, 2, (2, 2), x) and

Conv2D(4, 2, (2, 2), x).

The first step is to generate high-level constraints: a conjunction of the following con-

straints.

Dyn ⊑ v1 (1)

v1 ≤ 4 (2)

v1 � TensorType(ζ3, ζ4, ζ5, ζ6) (3)

2 ∼ ζ4 (4)

v2 = calc-conv(v1, 2, (2, 2), (2, 2), (2, 2), (2, 2)) (5)

0 ≤ ζ3 ∧ 0 ≤ ζ4 ∧ 0 ≤ ζ5 ∧ 0 ≤ ζ6 (6)

v1 � TensorType(ζ9, ζ10, ζ11, ζ12) (7)

4 ∼ ζ10 (8)

v8 = calc-conv(v1, 2, (2, 2), (2, 2), (2, 2), (2, 2)) (9)

0 ≤ ζ9 ∧ 0 ≤ ζ10 ∧ 0 ≤ ζ11 ∧ 0 ≤ ζ12 (10)

Let us go over what each equation is for. Constraint (1) denotes that the type annotation

for the variable x must be as precise or more precise than Dyn. Constraint (2) denotes that

the type annotation for x could either be Dyn or a tensor with at most four dimensions. We
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use the ≤ notation to denote this. Notice that the type variable for x is v1. Constraints (3),

(4), (5) and (6) are for Conv2D(2, 2, (2, 2), x), while constraints (7), (8), (9) and (10) are for

Conv2D(4, 2, (2, 2), x). More specifically, constraints (3) and (7) determine the input shape

of a convolution while constraints (5) and (9) determine the output shape of a convolution.

Notice that constraints (6) and (10) are dimension constraints which indicate that dimensions

are natural numbers.

The main differences between the constraints for our core calculus and the ones in our

implementation is that calc-conv takes some additional parameters in our implementation

because we have implemented the full version of convolution.

The constraints above are high-level constraints which are yet to be expanded. For

example, � and ≤ constraints get transformed to equality constraints. We will skip writing

out the resulting constraints for simplicity. After expanding these constraints and running

them through an SMT solver, we get satisfying assignments. The fact that we got a satisfying

assignment lets us know that the migration space is non-empty, which means that the program

is well-typed. Let us go through some of relevant assignments:

φ(v1) = Dyn

φ(v2) = TensorType(Dyn, 2, Dyn, Dyn)

φ(v8) = TensorType(Dyn, 2, Dyn, Dyn))

Here, v1 is the type of x, v2 is the type of the first convolution and v8 is the type of the second

convolution. We can see that these assignments are a valid typing to the program because

the outputs of both convolutions should be 4-dimensional tensors with the second dimension

being 2, which stands for the output channel. And since the input x has been assigned Dyn

by our SMT solver, we cannot determine the last two dimensions of a convolution output.
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While this is a reasonable output, it may not be helpful to the programmer. Furthermore,

this program would not accept any concrete output. We know this from our constraints.

From constraints (3) and (7), we have that σ4 = σ10. Then from (4), (8), which are 2 ∼ σ4

and 4 ∼ σ10, we can see that the only satisfying solution is Dyn. This means that the program

cannot be statically typed. Next, we will see how to prove this formally.

5.4.5 Capturing a subset of the migration space to solve Q(1) and Q(2)

Let us discuss how to extend our approach to solve Q(1) and Q(2). In the example above,

the migration space is non-empty and we may want to know if we can statically type the

program. We have established that we cannot. As a first step, we may want to take our

core constraints above, which we will call C, and restrict the input to a rank-4 tensor. So

we can consider the constraint C ∧ x = TensorType(ζ ′1, ζ
′
2, ζ

′
3, ζ

′
4) where ζ ′1, ..., ζ ′4 are fresh

variables. We can begin to impose restrictions on ζ ′1, ..., ζ ′4 to make them concrete variables.

For example, if we restrict the last dimension to be a number, we can add the constraint

ζ ′4 ̸= Dyn. After running our constraints through the solver, we get the following assignments:

φ(v1) = TensorType(Dyn, Dyn, Dyn, 28470)

φ(v2) = TensorType(Dyn, 2, Dyn, 14236)

φ(v8) = TensorType(Dyn, 2, Dyn, 14236)

To prove that no concrete assignment to the second dimension of x is possible, we simply

add ζ ′2 ̸= Dyn to our original constraints and the constraints will be unsatisfiable, so we

conclude that the second dimension of x can only be Dyn.
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We can also answer Q(2) by feeding the solver additional arithmetic constraints about

dimensions. In our example, if we want the first dimension of x to be between 3 and 10, we

can add the constraint ζ ′1 <= 3 ∧ ζ ′1 >= 10 to C ∧ x = TensorType(ζ ′1, ζ
′
2, ζ

′
3, ζ

′
4) and rerun

our solver.

5.4.6 Decidability and Complexity of Migration

Our migration solution is based on a satisfiability problem. We have two questions to consider.

First, Is our migration problem decidable? and second If so, what is the time complexity?.

The migration problem is satisfiable if the underlying constraints are drawn from a

decidable theory. Those underlying constraints are the ones given by the grammar in

Section 5.4.3. Let us for a moment ignore constraints of the form (ζ1∗...∗ζm)mod (ζ ′1∗...∗ζ ′n) =

0. We observe that all the other constraints are drawn from a well-known decidable theory.

Specifically, the other constraints are drawn from quantifier-free Presburger arithmetic

extended with uninterpreted functions and equality. The satisfiability problem for this theory

is NP-complete [SB05]. Once we add constraints of the form (ζ1∗ ...∗ζm) mod (ζ ′1∗ ...∗ζ ′n) = 0,

the decidability-status of the satisfiability problem is unknown, to the best of our knowledge.

Fortunately, only three operations need this additional constraint: Reshape, View, or Flatten.

All the other 47 operations that our implementation supports need only constraints in the

NP-complete subset. We have summarized the operations encountered in practice in figure

5.13. Our implementation translates all of the constraints to Z3 format, and while our

benchmarks do need constraints outside the NP-complete subset, our experiments terminated.
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The complexity of migration depends on the size of the constraint we generate. The

bottleneck in our constraint generation process is the ≤ constraint. Let us see how to expand

it.

From : |[[e]]| ≤ 4

To : [[e]] = Dyn ∨ [[e]] = TensorType(ζ1) ∨ ... ∨ [[e]] = TensorType(ζ1, ζ2, ζ3, ζ4)

where ζ1, ..., ζ4 are fresh variables

This yields a complexity of 4n in the number of ≤ constraints. So assuming that any

additional constraints are drawn from the NP-complete subset, the problem will still be

decidable. Note that if we are working with a fixed rank, then these constraints will be

generated in polynomial time in the size of the program. We will see how even solving the

problem for a fixed rank has practical benefits in the next section.

5.5 Extending our approach to solve Q(3): Branch Elimination

In example 5.5 from Section 5.2, we considered a conditional that depended on the rank

of the input. In example 5.8, we consider a slightly more complicated example, where the

conditional depends on the value of one of the dimensions in the input shape.

Listing 5.8: An example of graph-break elimination

68 class ReshapeControlFlow(torch.nn.Module):

69 def __init__(self):

70 super().__init__()
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71

72 def forward(self, x: Dyn):

73 if x.reshape(100).size()[0] < 100:

74 return torch.dropout(x, p=0.5, train=False)

75 else:

76 return torch.relu(x)

The example uses the reshape function. Recall that reshape is an operation that takes

a tensor and re-arranges its elements according to the desired shape. In this case, we are

reshaping x to have the shape TensorType([100]). For reshaping to succeed, the initial tensor

must contain the same number of elements as the reshaped tensor. Let us establish that since

x is typed as Dyn, the program will type check. In the expression x.reshape(100).size(),

size() will return the shape of x.reshape(100), which is [100]. We are then getting the

first dimension of the shape in the expression x.reshape(100).size()[0], which is 100.

Thus, by inspecting the conditional if x.reshape(100).size()[0] < 100, we can see that

the conditional should always evaluate to false. With this information, the tracer can remove

branches from the program and continue the tracing process to obtain a full trace.

In TorchDynamo, Listing 5.8 gets broken into two different programs. One for when the

condition evaluates to true, and another for when the condition evaluates to false. But

intuitively, the condition could be eliminated to result in the program in Listing 5.9. Let us

see an example of how extend our constraint based solution to eliminate the extra branch.

We then formalize our approach.

Listing 5.9: An example of graph-break elimination

77 class ReshapeControlFlow(torch.nn.Module):

78 def __init__(self):
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79 super().__init__()

80

81 def forward(self, x: Dyn):

82 return torch.relu(x)

First, we can generate the core constraints for our program up to the point of encountering

a branch. x.reshape(100) is the same as reshape(x, TensorType(100)) from our core

calculus.

Dyn ⊑ v1 (1)

v1 ≤ 4 (2)

v2 = TensorType(100) (3)

can-reshape(v1, TensorType(100)) (4)

v2 = v3 (5)

(v3 = Dyn ∧ ζ4 = Dyn) ∨ (6)

((ζ4 = GetItem(v3, 1, 0) ∨ ζ4 = GetItem(v3, 2, 0) ∨

ζ4 = GetItem(v3, 3, 0) ∨ ζ4 = GetItem(v3, 4, 0)])) ∧

(0 ≤ ζ4)

We extend our constraint grammar with constructs that enable us to represent size()

and indexing into shapes. This includes constraints such as GetItem. We discuss this point

in Section 5.6.
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Let us discuss the constraints. Constraints (1) and (2) are for x. Notice that v1 is the

type variable for x. Constraints (3) and (4) are for reshape(x, TensorType(100)). Next,

when encountering the size function in a program, we simply propagate the shape at hand

with an equality constraint, which is seen in equation (5). If we are indexing into a shape, we

consider all the possibilities for the sizes of that shape and generate constraints accordingly.

In particular, we have that (v3 = Dyn ∧ ζ4 = Dyn) because a shape could be dynamic, which

means that if we index into it, we get a Dyn dimension. But since we restricted our rank

to 4, we can consider the possibilities of the index being 1, 2, 3 or 4, which is what the

remaining constraints do. GetItem expands to simpler constraints described by the same

grammar above, but intuitively, GetItem(v, c, i) generates constraints where v is the shape

we are indexing into, c is the assumed tensor rank, and i is the index of the element we want

to get. If we have a disjunction of GetItem constraints for every possible rank, then we can

capture all possibilities for what ζ4 can be.

After capturing the migration space up to the point of a conditional, we must also generate

a constraint for the conditional and its negation. More elaborately, we can generate the

constraint ζ4 < 100, where ζ4 holds the first dimension of the reshaping result. Namely,

x.reshape(100).size()[0]. So denote the set of constraints we generated by C. Then we

consider C ∧ ζ4 < 100 and C ∧ ¬(ζ4 < 100). We evaluate both sets of constraints. One set

must be satisfiable while the other must be unsatisfiable for us to conclude a result. If we are

unable to do so, this means that the input set is still too general such that for some inputs,

the branch may evaluate to true and for other inputs, the branch may evaluate to false. In

such case, we can ask the user to capture a stricter subset of the input by further constraining

it. We can then re-evaluate our constraints again to see if we are able to make a decision.

Figure 5.11 captures a simplified format of the predicates that appear in branches within

PyTorch programs. Predicates thus involve constants and type variables. Our constraints
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(Predicate) P ::= T > T | T ≤ T | T = T
(TypeV ariable) T ::= τ | < Var >

Figure 5.11: Constraint grammar for predicates

reason about a given program to represent its migration space up to the point of encountering

a conditional. We represent the conditional as a constraint which acts as a restriction on

the migration space to capture part of it. While branch elimination eliminates branches

correctly according to the type information that is statically available, it is not semantics

preserving. More specifically, because we optimistically assume that if a variable has a type

Dyn, that it will have the appropriate value at runtime, if we could remove a branch that

would trigger a runtime type error. However, we believe that this issue could be tackled using

gradual runtime semantics, which we leave to future work. Next, let us elaborate on how we

utilize the migration space for branch elimination. Consider the sequence e P where e is an

expression followed by a predicate P . Then generate constraints for e in the way we described

in Section 5.4 and denote them by C. Then, consider the predicate P . This predicate is an

additional constraint. Let us denote it by C ′. Let s1 = C ∧ C ′ and s2 = C ∧ ¬C ′. Solve the

constraints by following the steps in 5.4.3. If s1 is satisfiable and s2 is unsatisfiable, then the

result of the predicate is false. If s1 is unsatisfiable and s2 is satisfiable, then the result of the

predicate is true. Notice that we have two cases missing, which is when s1 is satisfiable and

s2 is satisfiable. This entails that the condition can evaluate to true or false, depending on

the input. Thus, the input has not been constrained enough by the current constraints on

the migration space to make a definitive conclusion. If both s1 and s2 evaluate to false, then
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the constraints imposed by predicate P on the migration space caused it to be empty, which

means that the program is ill-typed under that predicate. Notice that the above grammar

expands on the source constraint grammar we had before. However, it is straightforward

to translate the terms of this grammar to Z3. So, the translation was a straightforward

extension.

5.6 Implementation

5.6.1 The setting: Three PyTorch tracers

PyTorch has three tool-kits that rely on symbolic tracers. Let us go over each one. First,

torch.fx [RDH21] is a common PyTorch tool-kit and has a symbolic tracer. Symbolic tracing

is a process of extracting a more specialized program representation from a program, for

the purpose of analysis, optimization, serialization, etc. torch.fx does not accept programs

containing branches. HFtracer [WDS20] eliminates branches by symbolically executing

on a single input. Finally, TorchDynamo [Ans22] handles dynamic shapes by dividing the

program into fragments. This process is called a graph-break. Specifically, when encountering

a condition that depends on shape information and where shape information is unknown,

the program is broken into two parts. One fragment is for when the result of the condition

is true, and another is for when the result of the condition is false. Graph-breaks result in

multiple programs with no branches.

As a technical detail automatic code annotation for the purpose of program understanding

and better documentation is meant to be performed on a source language; branch elimination

is done in trace-time, on an intermediate representation. For the purpose of better readability,

we presented all the examples in Section 5.2 in source code syntax. In some of our larger
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benchmarks, the source code is different from the intermediate representation because more

high-level constructs were used, such as statements. However, statements do not influence our

theoretical results. Similarly, some of the examples below contain sequences of expressions. We

did not include sequences in our theory because they did not introduce additional challenges

to our problem. Finally, there are some constructs in PyTorch that propagate variable shapes,

such as dim() and size(). There are also getters which index into shapes. Those constructs

were used to write ad-hoc shape-checks. We dealt with them in our implementation by

propagating shape information accordingly.

5.6.2 Implementation details

Figure 5.12: Our core tool and the three tracers

We have implemented approximately 6000 LOC across three different tracers. Figure

5.12 summarizes how our implementation works. First, we implement a core constraint
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generator. This generator takes a program (in our benchmarks case, a program is generated

via torch.fx), and generates core, source constraints for it. Next is the constraint translator

which consists of two phases. In the first phase, it encodes the gradual types found in the

constraints then translates the source constraints into target constraints. In the second

phase, it translates the target constraints into Z3 constraints. This is a 1:1 translation. The

constraints are then fed into Z3 to generate a migration (in our benchmarks, it is a torch.fx

migration).

Next, we modify each of TorchDynamo and HFtracer to incorporate our reasoning and

use it for branch elimination. We must incorporate our logic into the tracers because branch

elimination happens in trace-time, unlike program migration which requires a whole program.

Our implementation faithfully follows our core logic, although we have made some practical

simplifications. First, there were operations where some edge cases did not exist in any of

our benchmarks, so we skipped implementing them. Second, for the view operation, we have

skipped implementing dynamism and required the solver to provide concrete dimensions.

This allowed us to carry out branch elimination without requiring an additional constraint

that disables dynamism, although the same effect can be accomplished in this manner as well.

Third, conv2D may accept rank-3 or rank-4 inputs, but we have limited our implementation

to the rank-4 case, since this is the case that is relevant to most of our benchmarks.

We have chosen Z3 as a constraint solver because it is efficient, can represent our constraints

and has a Python interface which enables ease of use. Our tool accepts custom user-constraints,

which can be used to answer different questions about the migration space.

Platform. We ran our experiments on a Mac Book Pro with an 8-Core CPU, 14-Core GPU

and 512GB DRAM.
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5.7 Experimental Results

Questions and claims. We answer the following three questions

Q(1) Can our tool determine if the migration space is non-empty? If so, can it determine if

the migration space contains a static migration and if so, can it find one? Yes. Our

tool is the first to affirmatively answer all three questions.

Q(2) Given an arithmetic constraint on a dimension, can our tool determine if there a

migration that satisfies it and if so, can it find one? Yes. Our tool is the first to retrieve

migrations that provably satisfy arbitrary arithmetic constraints.

Q(3) Can our tool prove that branch elimination is valid for an infinite set of inputs, not

just for a single input? If so, does it allow us to represent the set of inputs for which a

branch evaluates to true or false? Yes. We incorporate our logic into two different tools

and eliminate branches in all benchmarks we considered for infinite classes of input,

which we characterized via constraints. Neither tool was able to achieve this without

our logic.

5.7.1 Benchmark suite description

Figure 5.13 contains our benchmark names, lines of code and the number of flatten and

reshape operations in each benchmark. Those operations are special because our analysis on

them involves multiplication and modulo constraints.

Where did we get our benchmarks? ConvExample is the example in Listing 5.7, while

BmmExample is the program that was inspired by the paper [PS21] and involves an incorrect

use of batch matrix multiplication. ResNet50 and AlexNet are popular machine learning

181



models. The remaining benchmarks are transformer models [Wol00]. Those open-source

models are popular in the machine learning area.

Why did we use different benchmarks for different experiments? The first four

models do not contain branches, making them suitable for Q(1) and Q(2). The next 6 models

are average-size models that are suitable for our HFTracer experiments. Those experiments

required reasoning about whole programs and our tool was able to reason about them in

under two minutes. The final five benchmarks are of a larger size. We do not support

all the operations in those benchmarks. However, this did not pose a problem because in

TorchDynamo, we were not required to reason about entire programs. Instead, we were

required to reason about program fragments, which made our tool terminate in under three

minutes. Those benchmarks would cause performance slowdowns if reasoned about as whole

programs. We will discuss this later in detail.

5.7.2 Does a program have a static migration?

How we can run our tool to answer Q(1)

1. Generate the core constraints and check if they are satisfiable. If not, stop right away;

The program is ill-typed.

2. Determine if the input variable can have a concrete rank by asking the solver for

migrations of concrete ranks from one to four. If none exist, the input variable was

used at different ranks throughout the program.

3. If the input variable can be assigned concrete ranks, pick one of them and ask the tool

to statically annotate all dimensions.
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Benchmark LOC Flatten Reshape
BmmExample 4 0 0
ConvExample 6 0 0

AlexNet 24 1 0
ResNet50 177 1 0
XGLM 104 0 14
Electra 525 0 0
Roberta 533 0 0

MobileBert 2103 0 0
Bert 528 0 0

MegatronBert 1018 0 0
MarianMT 1735 0 315

Marian 1733 0 315
M2M100 1762 0 319

BlenderBot 2380 0 451

Figure 5.13: General benchmark information
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Benchmark Static migration? Time(s)
BmmExample No 0.03
ConvExample No 0.05

AlexNet Yes 2
ResNet50 Yes 5

Figure 5.14: Q(1): Static migration

4. If the solver cannot statically annotate all dimensions, relax this requirement for each

dimension to determine which one cannot be statically annotated.

We first traced our benchmarks using torch.fx, then ran the above steps on the output.

The first step simply involves running our tool, while the second and third steps require the

user to pass constraints to the tool and rerun it. Determining if a variable has a certain

rank requires a single run with our tool. Determining if a dimension can be static requires a

single run with our tool. The final step involves removing constraints. Each time we remove

a constraint from a dimension, we can run our tool once to determine a result.

Figure 5.14 summarizes our results. The first column in the figure is the benchmark

name. The second column asks if the benchmark has a static migration and the third column

measures the time it took to answer this question and retrieve a static migration. Below is a

summary of the results.

For ConvExample, the input can only be rank-4 and the second dimension can only be

Dyn. BmmExample has a type error. Finally, ResNet50 and AlexNet can be fully typed and

the inputs can only be rank-4 in both cases.
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Benchmark Arithmetic constraints? Time(s)
BmmExample No 0.03
ConvExample Yes 0.08

AlexNet Yes 2
ResNet50 Yes 347

Figure 5.15: Q(2): Migration under arithmetic constraints

5.7.3 Can we retrieve migrations that satisfy arithmetic constraints?

How we ran our tool to answer Q(2)

1. Follow the steps for answering Q(1)

2. If any dimensions can be static, then we apply further arithmetic constraints on some

of those dimensions and ask for a migration that satisfies them.

We ran the steps above in our extension of torch.fx. Step (2) requires one run with

our tool. Our results are summarized in figure 5.15. The first column is the benchmark

name. The second column asks if arithmetic constraints can be imposed on at least one of

the dimensions and the third column measures the time it took to answer this question and

retrieve a migration that satisfies an arithmetic constraint. Below is a summary of the results.

For ResNet50 and AlexNet, we added arithmetic constraints. For ConvExample, we fixed

the example like we did in Section 5.2 then added arithmetic constraints. We obtained valid

migrations that satisfy our constraints for all benchmarks, except for BmmExample which is

ill-typed and thus has an empty migration space. Notice that our tool can reason about any

arithmetic constraints that can be accepted by Z3.
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5.7.4 Can we perform branch elimination on an infinite class of inputs?

How to answer Q(3) We ran our extension of HFtracer, starting with annotating the

input with Dyn and then gradually increasing the precision of our constraints to provide

the solver with more information to eliminate more branches. The number of times we run

our tool here depends on how much information the user gives the tool about the input. If

the tool receives static input dimensions, then this will be enough to eliminate all branches.

But since we aim to relax this requirement, we could start with a Dyn shape then gradually

impose constraints, first with rank information, then with dimension information.

We were able to eliminate all branches this way. We followed similar steps in our

TorchDynamo extension but we faced some practical concerns because TorchDynamo currently

does not carry parameter information between program fragments. We had to resolve this

issue manually by passing additional constraints at every new program fragment.

Consider figures 5.16 and 5.17 which detail our HFtracer experiments on 6 workloads.

Figure 5.16 contains the original number of branches in the program, the remaining branches

after running our extension, without imposing any constraints on the input, and the number

of remaining branches after running our extension, with constraints on the input. The last

column of the figure is the time it takes to perform branch elimination with constraints.

HFtracer also eliminates all branches from the 6 workloads. However, it does this by

running the program on an input. We can obtain a similar result by giving a constraint

describing the shape of the input because we observed that for all benchmarks we considered,

an actual input is not needed to eliminate all branches, and we can relax this requirement

much further. Specifically, in some benchmarks, no constraints are needed at all to eliminate

all branches. While for some of them, it is enough to specify rank information. For one of

the benchmarks, we can specify a range of dimensions for which branches can be eliminated.
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Figure 5.17 details our results. It contains the benchmarks and the constraints we gave our

tool so that it could eliminate all branches from each benchmark.

Finally figure 5.18 represents branch elimination for TorchDynamo. Let us discuss what

the existing tracer does. There are two modes of operation in TorchDynamo called static and

dynamic. In the static mode, the tracer traces the program with one input which is provided

by the user. Branch elimination is therefore valid for a single input. In Dynamic mode, the

tracer also takes an input but it only records rank information and ignores the values of the

dimensions. So if a branch depends on dimension information, a graph-break will occur.

We focused on benchmarks where branches depend on dimension information. In figure

5.18, we impose constraints on the dimensions and eliminate branches which decreases the

number of times TorchDynamo breaks the program when tracing. The first column in the figure

indicates the benchmark names. Next is the original number of branches with TorchDynamo.

Then we have the remaining number of branches after incorporating our reasoning. Finally,

we measure time in seconds. The input constraints are range and rank constraints; we omit

the details.

5.7.5 Limitations

Performance limitations. From our four experiments, we observed that slowdowns can

be due to factors including the kind of constraints involved and the number of constraints

to solve. Our tool typically handles benchmarks that are under 1000 lines of code most

efficiently. However, range constraints impose overhead. For example, ResNet50 and XGLM

contain such constraints and they were the slowest in figures 5.15 and 5.16. The benchmarks

in figure 5.18 were over 1000 lines and we have observed performance issues where we had to
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Benchmark original w/o constraints with constraints Time(s)
XGLM 5 4 0 22
Electra 3 3 0 1
Roberta 3 0 0 3

MobileBert 3 3 0 1
Bert 3 0 0 3

MegatronBert 3 0 0 5

Figure 5.16: Q(3): HFtracer number of remaining branches

skip certain program fragments, which exceeded 5 minutes to terminate. On average, one

can expect a typical benchmark to contain approximately 1000 lines of code.

Implementation limitations. There are two limitations to our TorchDynamo experiments.

First, since PyTorch has various operations with many layers of abstractions and edge cases,

not every edge case was implemented. Given that this only affected a few branches, we chose

to skip those branches. This did not affect our experiments because TorchDynamo does not

require all branches to be removed. Each branch removed will result in one less graph-break.

TorchDynamo induces graph-breaks for reasons other than control flow. When graph-breaks

happen, we have to re-write an input constraint for the resulting fragments because there

is currently no clear mechanism in passing parameter information from one fragment to

another. We manually passed input constraints to program fragments until eliminating at

least 40% of branches and have stopped after that due to the large size of the benchmarks

and program fragments. We leave parameter information preservation during graph-breaks

to the TorchDynamo developers.
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Benchmark our constraint
XGLM Tensor(x, y)|x > 0, y < 2000
Electra Tensor(x, y)
Roberta No constraint

MobileBert Tensor(x, y)
Bert No constraint

MegatronBert No constraint

Figure 5.17: Q(3): HFtracer constraints on inputs for which branch elimination is valid

Benchmark original with constraints Time(s)
XGLM 5 0 45

MarianMT 44 26 75
M2M100 47 22 130
Marian 44 26 70

BlenderBot 35 19 40

Figure 5.18: Q(3): TorchDynamo number of remaining branches
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5.8 Related work

5.8.1 Related work about shapes in tensor programs

We first discuss related work about shapes in tensor programs.

Tensors Fitting Perfectly Paszke and Brennan [PS21] show how to do shape checking

based on assertions written by programmers. Their assertions can reason about tensor ranks

and dimensions, with arithmetic constraints. Our work also supports such constraints. Their

tool executes a program symbolically and looks for assertion violations. The more assertions

programmers write, the more shape errors their tool can report. Their tool uses Z3 to solve

constraints of a size that can be up to exponential in the size of the program. Our approach

is similar in that it enables programmers to annotate a program with types and to type check

the program and thereby catch shape errors. Another similarity is that we use Z3 to solve

constraints of exponential size. Our approach differs by going further: we can automatically

annotate a program with types and we can automatically remove unnecessary runtime shape

checks. Additionally, we have proved that our type system has key correctness properties.

Gradual Tensor Shape Checking Hattori et al. [HKS22] focuses on shape checking and

shape inference, while we focus on generalizing shape analysis for various tasks including

program migration and branch elimination. Hattori et al. [HKS22] define a gradually typed

system for tensor computations and, like us, they prove that it has key correctness properties.

They use refinement types to represent tensor shapes, they enable programmers to write

type annotations, and they do best-effort shape inference. Their refinements share some

characteristics with the assertions used by Paszke and Brennan [PS21], as well as with our

constraints. Their approach adds the traditional gradual runtime checks [ST06] in cases
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where annotations and shape inference fall short. Our work differs by enabling automatic

program optimizations through removing runtime checks, while we leave adding gradual

runtime checks to future work. Conceptually, our approach and the one from Hattori et al.

[HKS22] differ significantly. Firstly, as in Chapter 3, we follow a syntactic interpretation of

gradual types and consider type migration as a syntactic definition. Hattori et al. [HKS22]

follows a semantic interpretation of gradual types. It is unclear how migration would be

defined in this context. Another difference is that we have demonstrated scalability: their

benchmark programs are up to 258 lines of code, while our benchmark programs are up to

2,380 lines of code.

An Empirical Study on TensorFlow Program Bugs Zhang et al. [ZCC18] analyzed

the root causes of bugs in TensorFlow programs by scanning StackOverFlow and GitHub.

They identified four symptoms and seven root causes for such bugs. The most common

symptoms are functional errors, crashes, and build failure, while common root causes are data

processing errors, type confusion, and dimension mismatches. Our type system can help spot

those root causes because key parts of such code will have type Dyn, even after migration.

Static Analysis of Shape in TensorFlow Programs Lagouvardos et al. [LDG20] use

static analysis to detect shape errors in TensorFlow. Their approach statically detects 11 of

the 14 shape-related TensorFlow bugs reported by Zhang et al. [ZCC18]. However, they prove

no correctness properties. Our approach differs from Lagouvardos et al. [LDG20] by being

able to automatically annotate a program with types and being able to automatically remove

unnecessary runtime checks. Our work can reason about programs without requiring any type

annotations and only taking into account the shape information from the operations used in

the program, while Lagouvardos et al. [LDG20] requires a degree of type information. For
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example, looking at the constraints for Reshape, we can see that their constraint generator

may require a tensor rank, while our work does not rely on this assumption, because in

PyTorch, such information may not be statically available. Lagouvardos et al. [LDG20]

focus on TensorFlow, while we focus on PyTorch. The two languages have some semantic

differences. We leave extending our work to other languages to future work. Finally, in

contrast to their work, we have proved that our type system has key migratory properties,

such as that our constraints represent the entire migration space for a program, allowing us

to extract and reason about all existing shape information from the program according to

the programmer’s needs.

ShapeFlow Verma et al. [VS20] consider a dynamic analysis tool called ShapeFlow to

detect shape errors. It focuses on TensorFlow. The advantage of this approach is that, like

our approach, it does not require type annotations, but their analysis holds for only particular

inputs, in contrast to our approach, which reasons about programs across all possible inputs.

Unlike our work, the approach used in ShapeFlow has not been formalized, but there is

empirical evidence to support that it detects shape errors in most cases. Because we reason

about programs statically, our work is more suitable for compiler optimizations and program

understanding. Our shape analysis approach can be used to automatically annotate programs.

In contrast, ShapeFlow is more suitable if a programmer desires a light-weight form for error

detection that works in most cases.

Relay Roesch et al. [RLW18] designed an intermediate representation called Relay. It is

functional, similar to our calculus, but is statically-typed, unlike our type system, which is

gradually typed. Its goals are similar to ours in that it aims to balance between various

properties such as expressiveness, portability, and compilation. Unlike our system, as a static
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type system, Relay requires type annotations for every function parameter. Similar to our

approach, their work focuses on the static aspect of the problem and has left the runtime

aspect to future work.

The work by Roesch et al. [RLK19] extends the work by Roesch et al. [RLW18]. It

uses a static polymorphic type system for shapes. One of the main differences is that this

system also has a type named Any. Even though this type may enable partial annotations,

it is unclear whether this type has the same flexibility as our Dyn type, which is part of

gradually typed systems. Gradually typed systems enable type consistency, while statically

typed systems do not. Type consistency enables us to type check programs which may not

be well-typed in a statically typed system. Since the underlying system in relay is a static

type system, it is unclear whether the type any provides the same level of flexibility. Finally,

we have not considered polymorphic types and we leave it to future work.

Pytea [JKS22] is a static analysis tool that detects shape errors. Their approach is

different than ours in that it detects errors via symbolic execution. It considers all possible

execution paths for a program to reason about shapes. The number of execution paths can

be large. In contrast, our approach reasons about shapes which can be given in the form of

type annotations or can be detected from the program.

5.8.2 Related work about migratory typing

There are various works about migratory typing. We will discuss the most two related ones.

What is Decidable about Gradual Types? In Chapter 3, we defined the migration

space for a gradually typed program as the set of all well-typed, more-precise programs.

We represented the migration space for a given program by generating constraints where
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each solution represents a migration. The constraint-based approach enables us to give

algorithms for solving migration problems for a λ-calculus. In this chapter, we have followed

a syntactic interpretation of gradual types, which enabled us to adopt Chapter 3’s definition

for type migration and the migration space. Therefore, in our context of a tensor calculus

and rather different types, we use their idea of a migration space and constraints to give an

algorithm that automatically annotates a program with types and an algorithm that removes

unnecessary runtime checks. In contrast to their approach, we use an SMT solver because it

can deal with the arithmetic nature of tensor constraints.

TypeWhich Phipps-Costin et al. [PAG21] build a tool which extends on the work from

Chapter 3, by providing several criteria for choosing migrations from the migration space.

Their work is about simple types, while our work is about tensor shapes. While their work

is specifically focused on reasoning about the migration space for program annotation, we

reason about the migration space more generally, by using it for general tensor reasoning

tasks including program annotation and branch elimination. Their gradual language contains

traditional gradual runtime checks, which they may take into consideration when migrating

programs, while we leave runtime aspects to future work.

5.9 Conclusion

We have presented a method that reasons about tensor shapes in a general way. Our method

involves a gradual tensor calculus that satisfies key properties and supports decidable shape

analysis for a large set of operations. We have shown that our algorithm is practical by

showing that it works on 15 non-trivial benchmarks across three different tracers.
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CHAPTER 6

Conclusion

6.1 Summary

Developers need automated type annotation tools to cope with the migration of untyped

programs to partially or fully typed ones. My dissertation presents three different models of

automatic migration for three different scenarios.

Specifically, for the first scenario present in Chapter 3, we provided a foundation for

better tool support by settling decidability questions about migration with gradual types

for the Gradually Typed Lambda Calculus (GTLC) of Siek and Taha [ST06]. We presented

three algorithms and a hardness result for deciding key properties and we explained how they

can be useful during an exploration. In particular, we showed how to decide whether the

migration space is finite, whether it has a top element, and whether it is a singleton. We also

showed that deciding whether it has a maximal element is NP-hard.

In Chapter 4, our goal was to support type migration for intersection types while simulta-

neously satisfying most of Siek et al.’s gradual typing criteria [SVC15a]. The result is a system

which conservatively extends the GTLC with Rank-2 gradual intersection types and can type

strictly more programs than the GTLC but lacks certain properties that typically accompany

intersection types such idempotence, commutativity and associativity as a trade-off. When it

comes to gradual typing criteria, the system also lacks type soundness. However, it satisfies
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the remaining criteria. In our system, we showed how to decide whether the migration

space is finite, whether it has a top element, and whether it is a singleton at the same time

complexities that we did for the GTLC.

In Chapter 5, we considered machine learning frameworks such as PyTorch [PGC17]

where tensors are the central data structure. We recognized that shape information is useful

for preventing shape mismatches, providing better documentation and readability as well as

improving program capture. For this scenario, we designed a tensor based language and an

accompanying gradually type system, then we considered our constraint based approach from

above to solve several problems about migrating programs in this setting. The problems we

considered were (1) how to find a static migration, (2) how to find a migration that satisfies

an arithmetic constraint, and (3) how to eliminate branches that depend on input shapes

for an infinite class of inputs. We addressed all three problems and provided experimental

results that show improvement over existing PyTorch tools.

6.2 Future Work

In this work, we present results concerning automatic type migration for three scenarios.

Future work can pursue automatic type migration that supports subtyping [ST07, VKS14,

GCT16, TF08], refinement types [LT17, TF08], monotonic references [SVC15b], and set

theoretic types [CLP19, TF08].

In Chapter 4, we explore the Rank-2 system that supports three decision problems

for automatic type migration but misses some of the gradual typing criteria of Siek et al.

[SVC15a]. Thus, future work can also explore how to design systems that support automatic

type migration while simultaneously satisfying the gradual typing criteria of Siek et al

[SVC15a].

196



As shown in Chapter 3, the concept of a migration space can be adapted to different

settings, but the specific questions about the migration space may vary. Thus, future work

can consider more questions of the migration space, which can aid the developer in their

exploration during automatic code annotation.

Finally, which criteria should we require of a gradually typed system? In our work, we

aim to satisfy various criteria depending on the setting. In Chapter 3, our system satisfies

migration criteria as well as all refinement criteria of Siek et al. Given that the GTLC is

quite small, it is straightforward to satisfy all criteria. In Chapter 4, we face challenges when

trying to satisfy the same criteria, which leads us to enforcing several language restrictions,

in an effort to reach a trade-off between criteria that we can satisfy and the expressiveness

of our language. In Chapter 5, we tweak our migration criteria to fit the specific scenario

at hand, because we observe that different migration questions apply to different settings.

We also decide to opt for erasure semantics and notice that this choice was acceptable for

our results. Since efficiency is a crucial element in machine learning today, future work can

explore the trade-offs between adding runtime checks to the program and sacrificing efficient

versus type safety. More generally, future work can rethink migratory and gradual critrea

that a language must satisfy for a particular setting.

6.3 Final Remarks

In summary, my dissertation validates that algorithmic type migration poses interesting and

challenging questions. I demonstrate this point with three major case studies, ranging from a

simple core language to a useful framework language for machine learning.

Indeed, as this last result shows, concerns about algorithmic type migration should be

taken into account during the design of the gradual type system. My dissertation’s results
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show that it is factor of equal weight to many others and that doing so yields immediate

benefits.
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APPENDIX A

What is Decidable about Gradual Types?

A.1 Proof of the Unique Type Theorem

We will prove Theorem 3.1, which we restate here:

∀E,Γ, T, T ′, if Γ ⊢ E : T and Γ ⊢ E : T ′, then T = T ′.

Proof. We proceed by induction on the derivation of Γ ⊢ E : T . We will do a case analysis

based on the last rule that was used to derive Γ ⊢ E : T .

Case: T-Num. The last rule that was used to derive Γ ⊢ E : T ′ must be T-Num, so

T = int = T ′.

Case: T-True. The last rule that was used to derive Γ ⊢ E : T ′ must be T-True, so

T = bool = T ′.

Case: T-False. The last rule that was used to derive Γ ⊢ E : T ′ must be T-False, so

T = bool = T ′.

Case: T-Var. The last rule that was used to derive Γ ⊢ E : T ′ must be T-Var, so

T = Γ(x) = T ′.

Case: T-Abs. The last step of the derivation of Γ ⊢ E : T must be as follows:

Γ, x : T1 ⊢ F : T2
Γ ⊢ (λx : T1.F ) : T1 → T2

(T-Abs)
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. The last rule that was used to derive Γ ⊢ E : T ′ must be T-Abs, as follows:

Γ, x : T1 ⊢ F : T ′
2

Γ ⊢ (λx : T1.F ) : T1 → T ′
2

(T-Abs)

. For the subderivations Γ, x : T1 ⊢ F : T2 and Γ, x : T1 ⊢ F : T ′
2, we apply the Induction

Hypothesis to get that T2 = T ′
2. We conclude T1 → T2 = T1 → T ′

2.

Case: T-App. The last step of the derivation of Γ ⊢ E : T must be as follows:

Γ ⊢ E1 : T1
T1 � (T11 → T12)

Γ ⊢ E2 : T2
T2 ∼ T11 (T-App)

Γ ⊢ E1 E2 : T12

The last rule that was used to derive Γ ⊢ E : T ′ must be T-App, as follows:

Γ ⊢ E1 : T
′
1

T ′
1 � (T ′

11 → T ′
12)

Γ ⊢ E2 : T
′
2

T ′
2 ∼ T ′

11 (T-App)
Γ ⊢ E1 E2 : T

′
12

For the subderivations Γ ⊢ E1 : T1 and Γ ⊢ E1 : T
′
1, we apply the Induction Hypothesis to get

that T1 = T ′
1. From T1 = T ′

1 and T1 � (T11 → T12) and T ′
1 � (T ′

11 → T ′
12), we conclude that

(T11 → T12) = (T ′
11 → T ′

12), hence T12 = T ′
12.

A.2 Proof of the Order-Isomorphism

We will prove Theorem 3.10, which we restate here:

∀E,Γ : if FV (E) ⊆ Dom(Γ), then (MigΓ(E),⊑) and (Sol(Gen(E,Γ)),≤)

are order-isomorphic.
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Proof. If φ is a function from type variables to types, then we define the function Gφ from

terms to terms:

Gφ(true) = true

Gφ(false) = false

Gφ(n) = n

Gφ(x) = x

Gφ(λx : T.F ) = λx : φ(x).Gφ(F )

Gφ(E1 E2) = Gφ(E1) Gφ(E2)

Let E,Γ be given; they remain fixed in the remainder of the proof. Now we define the

following function αE with the help of Gφ:

αE : Sol(Gen(E,Γ)) → MigΓ(E)

αE(φ) = Gφ(E)

Notice that Γ plays no role in the definitions of Gφ and αE. We will show that αE is a

well-defined order-isomorphism. We will do this in four steps: we will show that αE is well

defined, injective, and surjective, and that it preserves order.

Well defined. We will show that if φ ∈ Sol(Gen(E,Γ)), then αE(φ) ∈ MigΓ(E).

Suppose φ ∈ Sol(Gen(E,Γ)). We must show

E ⊑ αE(φ) and ∃T ′ : Γ ⊢ αE(φ) : T
′.
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In order to show E ⊑ αE(φ), notice that E and αE(φ) differ only in the type annotations of

bound variables. If we have no bound variables in E, then E = αE(φ). Otherwise, notice

that for every occurrence of λx : T.F in E, we have that φ |= T ⊑ x and Gφ(λx : T.F ) =

λx : φ(x).Gφ(F ). So, we can show by induction on E that E ⊑ αE(φ).

Define Extend(Γ, E) to be Γ extended with (x : T1) for each occurrence in E of λx : T1.F .

In order to show ∃T ′ : Γ ⊢ αE(φ) : T
′, we have from Theorem B.3.1 that it is sufficient to

prove the stronger statement:

∀E ′ subterm of E : Extend(Γ, Gφ(E)) ⊢ Gφ(E
′) : φ([[E ′]]).

We proceed by induction on E ′.

Case: E ′ = true. Notice that φ |= [[E ′]] = bool and use T-True.

Case: E ′ = false. Notice that φ |= [[E ′]] = bool and use T-False.

Case: E ′ = n. Notice that φ |= [[E ′]] = int and use T-Num.

Case: E ′ = x, where x is free in E. Notice that φ |= [[E ′]] = Γ(x) and Extend(Γ, Gφ(E))(x) =

Γ(x) and use T-Var.

Case: E ′ = x, where x is bound in E. Notice that φ |= [[E ′]] = x and Extend(Γ, Gφ(E))(x) =

φ(x) and use T-Var.

Case: E ′ = λx : T1.F . Notice that φ |= [[E ′]] = x→ [[F ]]. Notice that Extend(Γ, Gφ(E)), (x :

T1) = Extend(Γ, Gφ(E)). So, from the induction hypothesis we have Extend(Γ, Gφ(E)) ⊢

Gφ(F ) : φ([[F ]]). Now we use T-Abs.

Case: E ′ = E1 E2. Notice that φ |= [[E1]] � ⟨E2⟩ → [[E1 E2]] and φ |= ⟨E2⟩ ∼

[[E2]]. From the induction hypothesis we have Extend(Γ, Gφ(E)) ⊢ Gφ(E1) : φ([[E1]]) and

Extend(Γ, Gφ(E)) ⊢ Gφ(E2) : φ([[E2]]). Now we use T-App.
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Injective. We will show that αE is injective, that is, we will show that

if αE(φ) = αE(φ
′), then φ = φ′.

Suppose αE(φ) = αE(φ
′). From the definition of αE we see that for every occurrence in E of

λx : T1.F , we have φ(x) = φ′(x). We will show that for every occurrence of a subterm E ′ in

E, we have φ([[E ′]]) = φ′([[E ′]]), and for every occurrence of a subterm (E1 E2) in E, we have

φ(⟨E2⟩) = φ′(⟨E2⟩). We proceed by induction on E ′.

Case: E ′ = true. From φ |= [[E ′]] = bool and φ′ |= [[E ′]] = bool, we have φ([[E ′]]) =

bool = φ′([[E ′]]).

Case: E ′ = false. From φ |= [[E ′]] = bool and φ′ |= [[E ′]] = bool, we have φ([[E ′]]) =

bool = φ′([[E ′]]).

Case: E ′ = n. From φ |= [[E ′]] = int and φ′ |= [[E ′]] = int, we have φ([[E ′]]) = int =

φ′([[E ′]]).

Case: E ′ = x, where x is free in E. From φ |= [[E ′]] = Γ(x) and φ′ |= [[E ′]] = Γ(x), we

have φ([[E ′]]) = Γ(x) = φ′([[E ′]]).

Case: E ′ = x, where x is bound in E. From φ |= [[E ′]] = x and φ′ |= [[E ′]] = x, we have

φ([[E ′]]) = φ(x) = φ′(x) = φ′([[E ′]]).

Case: E ′ = λx : T1.F . From the induction hypothesis, we have φ([[F ]]) = φ′([[F ]]). From

φ |= [[E ′]] = x → [[F ]] and φ′ |= [[E ′]] = x → [[F ]], we have φ([[E ′]]) = φ(x) → φ([[F ]]) =

φ′(x) → φ′([[F ]]) = φ′([[E ′]]).

Case: E ′ = E1 E2. From the induction hypothesis, we have φ([[E1]]) = φ′([[E1]]) and

φ([[E2]]) = φ′([[E2]]). From φ([[E1]]) = φ′([[E1]]) and φ |= [[E1]] � ⟨E2⟩ → [[E1 E2]] and

φ′ |= [[E1]]� ⟨E2⟩ → [[E1 E2]], we have φ([[E ′]]) = φ′([[E ′]]).
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Surjective. We will show that αE is surjective, that is, we will show that

if E0 ∈ MigΓ(E), then ∃φ ∈ Sol(Gen(E,Γ)) : E0 = αE(φ).

From E0 ∈ MigΓ(E) we have E ⊑ E0 and T0 such that Γ ⊢ E0 : T0. From Γ ⊢ E0 : T0 and

Theorem B.3.1, we have that Extend(Γ, E0) ⊢ E0 : T0.

We define φ as follows. Consider a derivation D of Extend(Γ, E0) ⊢ E0 : T0. First, for

x ∈ Dom(Extend(Γ, E0)), define φ(x) = Extend(Γ, E0)(x). Second, for every occurrence of a

subterm E ′ of E0, find the judgment in D of the form Γ′ ⊢ E ′ : T ′, and define φ([[E ′]]) = T ′.

Third, for every occurrence of a subterm E ′ of the form E1 E2 in E0, find the use of T-App

for E ′ and in that use, find the condition T1 � (T11 → T12), and define φ(⟨E2⟩) = T11.

We must show that φ ∈ Sol(Gen(E,Γ)). We will do a case analysis of the occurrences of

subterms E ′ in E.

Case: E ′ = true. From (T-True) we have that φ([[E ′]]) = bool so φ |= [[E ′]] = bool.

Case: E ′ = false. From (T-False) we have that φ([[E ′]]) = bool so φ |= [[E ′]] = bool.

Case: E ′ = n. From (T-Num) we have that φ([[E ′]]) = int so φ |= [[E ′]] = int.

Case: E ′ = x, where x is free in E. From (T-Var) we have that φ([[E ′]]) = φ(x) = Γ(x)

so φ |= [[E ′]] = Γ(x).

Case: E ′ = x, where x is bound in E. From (T-Var) we have that φ([[E ′]]) = φ(x) so

φ |= [[E ′]] = x.

Case: E ′ = λx : T1.F . The derivation D contains this use of T-Abs:

Γ, x : T1 ⊢ F : T2
Γ ⊢ (λx : T1.F ) : T1 → T2

(T-Abs)
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So, φ(x) = T1 and φ([[F ]]) = T2 and φ([[λx : T1.F ]]) = T1 → T2. So, φ |= [[λx : T1.F ]] = x→

[[F ]]. Additionally, we have E0 ∈ MigΓ(E) so if the type annotation of x in E is S, then we

have S ⊑ T1 = φ(x), so φ |= S ⊑ x.

Case: E ′ = E1 E2. The derivation D contains this use of T-App:

Γ ⊢ E1 : T1
T1 � (T11 → T12)

Γ ⊢ E2 : T2
T2 ∼ T11 (T-App)

Γ ⊢ E1 E2 : T12

So, φ([[E1]]) = T1 and φ([[E2]]) = T2 and φ([[E1 E2]] = T12 and φ(⟨E2⟩) = T11. We have

T1 � (T11 → T12). So, φ |= [[E1]] � ⟨E2⟩ → [[E1 E2]]. Additionally, we have T2 ∼ T11. So,

φ |= ⟨E2⟩ ∼ [[E2]].

Notice that αE(φ) = Gφ(E) = E0. The reason is that E0 differs from E only in the type

annotations of bound variables, and for the case of a subterm in E0 of the form λx : T.F , we

have that Gφ replaces the type annotation of x with φ(x) = T .

Preserves order. We will show that αE preserves order, that is, we will show that

if φ ≤ φ′, then αE(φ) ⊑ αE(φ
′).

We will prove the following stronger statement:

if φ ≤ φ′, then ∀E ′ : Gφ(E
′) ⊑ Gφ′(E ′).

Suppose that φ ≤ φ′. We proceed by induction on E ′.

Case: E ′ = true. We have Gφ(E
′) = true = Gφ′(E ′).

Case: E ′ = false. We have Gφ(E
′) = false = Gφ′(E ′).

Case: E ′ = n. We have Gφ(E
′) = n = Gφ′(E ′).
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Case: E ′ = x. We have Gφ(E
′) = x = Gφ′(E ′).

Case: E ′ = λx : T.F . From induction hypothesis, we have Gφ(F ) ⊑ Gφ′(F ). From φ ≤ φ′

we have φ(x) ⊑ φ′(x). From the definition of Gφ and (P-Abs) we have Gφ(λx : T.F ) = λx :

φ(x).Gφ(F ) ⊑ λx : φ′(x).Gφ′(F ) = Gφ′(λx : T.F ).

Case: E ′ = E1 E2. From induction hypothesis, we have Gφ(E1) ⊑ Gφ′(E1) and Gφ(E2) ⊑

Gφ′(E2). From the definition of Gφ and (P-App) we have Gφ(E1 E2) = Gφ(E1) Gφ(E2) ⊑

Gφ′(E1) Gφ′(E2) = Gφ′(E1 E2).

The completes the induction proof. We conclude:

αE(φ) = Gφ(E) ⊑ Gφ′E = αE(φ
′)

In summary, we have proved all four properties: αE is well defined, injective, and surjective,

and it preserves order.
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A.3 The Constraint p ∼ (p→ q) has no Maximal Solution

Lemma A.1. {(p, q) | p ∼ (p→ q)} = {(Dyn, b)} ∪ {(a→ b, c) | a ∼ (a→ b) ∧ b ∼ c}.

Proof. We will consider each direction in turn.

First consider ⊆. Suppose we have (p, q) such that p ∼ (p → q). Let us divide into

four cases of p. In one case, we have p = Dyn. So, (p, q) ∈ {(Dyn, b)}. In another case,

we have p = bool. However, this is impossible because p ∼ (p → q). In a third case, we

have p = int. However, this is impossible because p ∼ (p → q). In a fourth case, we have

p = a→ b, for some a, b. We have (a→ b) ∼ ((a→ b) → q), so a ∼ (a→ b) and (b ∼ q). So,

(p, q) ∈ {(a→ b, c) | a ∼ (a→ b) ∧ b ∼ c}.

Second consider ⊇. We divide into two subcases. In one case, consider (Dyn, b). We have

Dyn ∼ (Dyn → b), so (Dyn, b) ∈ (p, q) | p ∼ (p→ q). In another case, consider (a → b, c),

where a ∼ (a → b) ∧ b ∼ c. We have (a → b) ∼ ((a → b) → c), so (a → b, c) ∈

(p, q) | p ∼ (p→ q).

Define

bump(Dyn) = Dyn → Dyn

bump(s→ t) = bump(s) → t

Lemma A.2. bump(a) ∼ (bump(a) → b) and (a ⊑ bump(a)).

Proof. We proceed by induction on a.

In the base case of a = Dyn, we have bump(Dyn) = (Dyn → Dyn) ∼ ((Dyn → Dyn) → b) =

(bump(a) → b) and Dyn ⊑ bump(Dyn) as required.
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In the induction step, consider a = (s→ t). The induction hypothesis is that bump(a) ∼

(bump(a) → b)and(a ⊑ bump(a)), that is, bump((s → t)) ∼ (bump((s → t)) → b) and

((s→ t) ⊑ bump((s→ t))). From those properties we get that (bump(s) → t) ∼ ((bump(s) →

t) → b) and ((s→ t) ⊑ (bump(s) → t)). This implies that

bump(s) ∼ (bump(s) → t)

t ∼ b

s ⊑ bump(s)

Now let us proceed to proceed to do what we need to do. We have

bump(a)

= bump(s→ t)

= (bump(s) → t)

∼ ((bump(s) → t) → b

= (bump(s→ t)) → b

= bump(a) → b

Also,

a = (s→ t) ⊑ (bump(s)) → t = bump(s→ t) = bump(a)
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Lemma A.3. {(p, q) | p ∼ (p→ q)} has no maximal element.

Proof. Suppose we have (p, q) ∈ {(p, q) | p ∼ (p → q)}. Our goal is to show that there

exists (c, d) such that

(p, q) ̸= (c, d) ∧

(c, d) ∈ {(p, q) | p ∼ (p→ q)} ∧

p ⊑ c ∧

q ⊑ d

We divide into two cases, based on Lemma A.1.

First, suppose p = Dyn. We pick c = Dyn → Dyn and d = q. This satisfies the requirements

because

(Dyn, q) ̸= ((Dyn → Dyn), q) ∧

(Dyn → Dyn) ∼ ((Dyn → Dyn) → q) ∧

Dyn ⊑ (Dyn → Dyn) ∧

q ⊑ q.
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Second, suppose p = a→ b. We have (a→ b) ∼ ((a→ b) → q so a ∼ (a→ b) and b ∼ q. We

pick c = bump(a) → b and d = q. This satisfies the requirements because of Lemma A.2:

((a→ b), q) ̸= ((bump(a) → b), q) ∧

(bump(a) → b) ∼ ((bump(a) → b) → q) ∧

(a→ b) ⊑ (bump(a) → b) ∧

q ⊑ q
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A.4 The Constraints for succ((λy.y)((λx.x)true)) have two Maximal

Solutions

E = succ((λy.y)((λx.x)true))

Γ = [ succ : int → int ]

First we construct Gen(E,Γ):

succ [[succ]] = int → int

succ((λy.y)((λx.x)true)) [[succ]]� ⟨(λy.y)((λx.x)true)⟩ → [[succ((λy.y)((λx.x)true))]]

⟨(λy.y)((λx.x)true)⟩ ∼ [[(λy.y)((λx.x)true)]]

λy.y [[λy.y]] = y → [[y]]

Dyn ⊑ y

y [[y]] = y

(λy.y)((λx.x)true) [[λy.y]]� ⟨(λx.x)true⟩ → [[(λy.y)((λx.x)true)]]

⟨(λx.x)true⟩ ∼ [[(λx.x)true]]

λx.x [[λx.x]] = x→ [[x]]

Dyn ⊑ x

x [[x]] = x

(λx.x)true [[λx.x]]� ⟨true⟩ → [[(λx.x)true]]

⟨true⟩ ∼ [[true]]

true [[true]] = bool
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Next we apply SimPrec to Gen(E,Γ). This step removes Dyn ⊑ y and Dyn ⊑ x, which leaves

us with the following 12 constraints.

succ [[succ]] = int → int

succ((λy.y)((λx.x)true)) [[succ]]� ⟨(λy.y)((λx.x)true)⟩ → [[succ((λy.y)((λx.x)true))]]

⟨(λy.y)((λx.x)true)⟩ ∼ [[(λy.y)((λx.x)true)]]

λy.y [[λy.y]] = y → [[y]]

y [[y]] = y

(λy.y)((λx.x)true) [[λy.y]]� ⟨(λx.x)true⟩ → [[(λy.y)((λx.x)true)]]

⟨(λx.x)true⟩ ∼ [[(λx.x)true]]

λx.x [[λx.x]] = x→ [[x]]

x [[x]] = x

(λx.x)true [[λx.x]]� ⟨true⟩ → [[(λx.x)true]]

⟨true⟩ ∼ [[true]]

true [[true]] = bool

Let us use A12 to denote the above set of 12 constraints. In the listing A12, we have three

Matching constraints, which for brevity of notation, we will number from 1 to 3, as follows:

1 : [[succ]]� ⟨(λy.y)((λx.x)true)⟩ → [[succ((λy.y)((λx.x)true))]]

2 : [[λy.y]]� ⟨(λx.x)true⟩ → [[(λy.y)((λx.x)true)]]

3 : [[λx.x]]� ⟨true⟩ → [[(λx.x)true]]

Now we must consider all subsets of {1, 2, 3}. For each S ⊆ {1, 2, 3}, we must determine

whether SimMatch(A12, S) has finitely many solutions.
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We can see easily that we must focus on S = {1, 2, 3}; for any of the other choices of S,

we have that SimMatch(A12, S) is unsatisfiable. So, we construct SimMatch(A12, {1, 2, 3}):

succ [[succ]] = int → int

succ((λy.y)((λx.x)true)) [[succ]] = ⟨(λy.y)((λx.x)true)⟩ → [[succ((λy.y)((λx.x)true))]]

⟨(λy.y)((λx.x)true)⟩ ∼ [[(λy.y)((λx.x)true)]]

λy.y [[λy.y]] = y → [[y]]

y [[y]] = y

(λy.y)((λx.x)true) [[λy.y]] = ⟨(λx.x)true⟩ → [[(λy.y)((λx.x)true)]]

⟨(λx.x)true⟩ ∼ [[(λx.x)true]]

λx.x [[λx.x]] = x→ [[x]]

x [[x]] = x

(λx.x)true [[λx.x]] = ⟨true⟩ → [[(λx.x)true]]

⟨true⟩ ∼ [[true]]

true [[true]] = bool
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Next we apply SimEq to SimMatch(A12, {1, 2, 3}). Notice that SimMatch(A12, {1, 2, 3})

has 9 Equality constraints. Those 9 Equality constraints are satisfiable and have the following

most general unifier (φ123), where p, q are type variables:

v : φ123(v)

[[succ]] : int → int

[[succ((λy.y)((λx.x)true))]] : int

⟨(λy.y)((λx.x)true)⟩ : int

[[(λy.y)((λx.x)true)]] : q

[[λy.y]] : q → q

y : q

[[y]] : q

⟨(λx.x)true⟩ : q

[[(λx.x)true]] : p

[[λx.x]] : p→ p

x : p

[[x]] : p

⟨true⟩ : p

[[true]] : bool

Let us use A′ to denote the subset of 3 Consistency constraints in SimMatch(A12, {1, 2, 3}),

which is:

⟨(λy.y)((λx.x)true)⟩ ∼ [[(λy.y)((λx.x)true)]]

⟨(λx.x)true⟩ ∼ [[(λx.x)true]]

⟨true⟩ ∼ [[true]]
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Next we apply φ123 to A′. The result is that SimEq(SimMatch(A12, {1, 2, 3}), φ123) is:

int ∼ q

q ∼ p

p ∼ bool

Let us use A123 to denote the above set of 3 Consistency constraints. Next we apply SimCon

to A123. The effect is to change int ∼ q into q ∼ int:

q ∼ int

q ∼ p

p ∼ bool

Let us use Acm to denote the above set of 3 Consistency constraints. We observe that

Bounded(Acm). Now we use Theorem B.4.6 to conclude that Sol(Acm) is finite.

Notice that SimCon(A123) has three solutions:

φ1 x : Dyn; y : Dyn

φ2 x : Dyn; y : int

φ3 x : bool; y : Dyn

Notice that each of φ2 and φ3 is a maximal solution, but neither is a greatest solution.
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APPENDIX B

Design and Migration of Gradual Rank-2 Intersection

Types

B.1 The Rank-2 intersections λ-calculus

We present the Static Rank-2 λ-calculus in Figure B.1.

Definition B.1 (Concretization). Let γ : T → P(T ) be defined as follows:

γ(Dyn) = T 2 γ(Int) = {Int} γ(Bool) = {Bool}

γ(T 0
1 → T 0

2 ) = {τ1 → τ2 | τi ∈ γ(T 0
i )} γ(T 1

1 ∧ T 1
2 ) = {τ1 ∧ τ2 | τi ∈ γ(T 1

i )}

γ(T 1
1 → T 2

2 ) = {τ1 → τ2 | τ1 ∈ γ(T 1
1 ) ∧ τ2 ∈ γ(T 2

2 )}

Lemma B.1. (Type precision) T ⊑ T ′ if and only if γ(T ) ⊆ γ(T ′).

Proof. Straightforward by induction.

B.1.1 Proof of conservative extension

Theorem 4.7.4 (Conservative Extension of Static Rank-2). For all static Γ, E and T , we

have:

1. Γ ⊢S E : T iff Γ ⊢f E : T .

2. E ⇓S v iff E ⇓f v
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(Types) τ 0, σ0, T 0 ::= Bool | Int | T 0 → T 0

τ 1, σ1, T 1 ::= T 0 | T 1 ∧ T 1

τ 2, σ2, T 2 ::= T 0 | T 1 → T 2

τ, σ, T ::= T 0 | T 1 | T 2

(Terms) E ::= true | false | n | xl | λx : σ1.E | E E

(Environments) Γ ::= ∅ | Γ, x : σ1

(Labels) ::= l ∈ N

Typing Rules:
Γ ⊢S E : T 2.

Γ ⊢S true : Bool (T-True) Γ ⊢S false : Bool (T-False) Γ ⊢S n : Int (T-Num)

x :
∧

i∈I τ
0
i ∈ Γ l ∈ I

Γ ⊢S xl : τ
0
l

(T-Var)

Γ, (x : σ0
0 ∧ . . . ∧ σ0

n) ⊢S E : τ
where ∀i ∈ {1, . . . , n}, xi occurs in E

and σ0
0 = . . . = σ0

n = σ0

Γ ⊢S (λx : σ0.E) : σ0 → τ
(T-Abs-0)

Γ, (x : σ0
0 ∧ ... ∧ σ0

n) ⊢S E : τ where ∀i ∈ {1, ..., n}, xi occurs in E

Γ ⊢S (λx : σ0
0 ∧ ... ∧ σ0

n.E) : σ
0
0 ∧ ... ∧ σ0

n → τ
(T-Abs-1)

Γ ⊢S E : τ where x0 does not occur in E

Γ ⊢S (λx : τ 0.E) : τ 0 → τ
(T-Abs-2)

Γ ⊢S E1 : σ1
σ1 = ((

∧
i∈I σ

0) → σ)
Γ ⊢S E2 : σ

0

(T-App)
Γ ⊢S E1 E2 : σ

Figure B.1: The Rank-2 intersections λ-calculus.

Proof. Proof of item 1.

Cases x, n, True, False, λx : T.E: Straightforward, since the typing rules are the same in
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both cases.

Case E1 E2: Forward direction:

Γ ⊢S E1 : σ1
σ1 = ((

∧
i∈I σ

0) → σ)
Γ ⊢S E2 : σ

0

(T-App)
Γ ⊢S E1 E2 : σ

From the IH we get:

Γ ⊢ E1 : σ1
σ1 � ((

∧
i∈I τi) → σ)

Γ ⊢ E2 : σ
0

∀i ≤ I : σ0 ∼ τi (T-App)
Γ ⊢ E1 E2 : σ

Backward direction:

Γ ⊢ E1 : σ1
σ1 � ((

∧
i∈I τi) → σ)

Γ ⊢ E2 : σ
0

∀i ≤ I : σ0 ∼ τi (T-App)
Γ ⊢ E1 E2 : σ

From the IH we have that Γ ⊢S E1 : σ1 and Γ ⊢S E2 : σ0. Since Γ, E and T are static, we

know that σ1 = ((
∧

i∈I τi) → σ) and ∀i ≤ I : σ0 = τi so Γ ⊢S E1 E2 : σ and we are done

Proof of item 2 is straightforward.

B.1.2 Proof of the Unique Types theorem

Theorem 4.4.1 (Unique Type). ∀Γ, E, T, T ′, if Γ ⊢ E : T and Γ ⊢ E : T ′, then T = T ′.

Proof. We proceed by induction on the derivation of Γ ⊢ E : T . We will do a case analysis

based on the last rule that was used to derive ∅ ⊢ E : T .
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Case: T-Num. The last rule that was used to derive ∅ ⊢ E : T ′ must be T-Num, so

T = Int = T ′.

Case: T-True. The last rule that was used to derive ∅ ⊢ E : T ′ must be T-True, so

T = Bool = T ′.

Case: T-False. The last rule that was used to derive ∅ ⊢ E : T ′ must be T-False, so

T = Bool = T ′.

Case: T-Var. We have that the rule x : τ 0 ⊢ E : τ 0 must be T-Var, so T = Γ(x) = T ′.

Case: T-Abs-0. The last step of the derivation of Γ ⊢ E : T must be as follows:

Γ, (x : σ0
0 ∧ . . . ∧ σ0

n) ⊢S E : τ

where ∀i ∈ {1, . . . , n}, xi occurs in E

and σ0
0 = . . . = σ0

n = σ0

Γ ⊢S (λx : σ0.E) : σ0 → τ
(T-Abs-0)

The last rule that was used to derive Γ ⊢ E : T ′ must be T-Abs-0, as follows:

Γ, (x : σ0
0 ∧ . . . ∧ σ0

n) ⊢ E : τ ′

where ∀i ∈ {1, . . . , n}, xi occurs in E

and σ0
0 = . . . = σ0

n = σ0

Γ ⊢ (λx : σ0.E) : σ0 → τ ′
(T-Abs-0)

For the subderivations Γ, (x : σ0 ∧ ... ∧ σ0) ⊢ F : τ and Γ, (x : σ0 ∧ ... ∧ σ0) ⊢ F : τ ′, we

apply the Induction Hypothesis to get that τ = τ ′. So we are done.
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Case: T-Abs-1. The last step of the derivation of Γ ⊢ E : T must be as follows:

Γ, (x : σ0
0 ∧ ... ∧ σ0

n) ⊢ E : τ where ∀i ∈ {1, ..., n}, xi occurs in E

Γ ⊢ (λx : σ0
0 ∧ ... ∧ σ0

n.E) : σ
0
0 ∧ ... ∧ σ0

n → τ
(T-Abs-1)

The last rule that was used to derive Γ ⊢ E : T ′ must be T-Abs-1, as follows:

Γ, (x : σ0
0 ∧ ... ∧ σ0

n) ⊢ E : τ ′ where ∀i ∈ {1, ..., n}, xi occurs in E

Γ ⊢ (λx : σ0
0 ∧ ... ∧ σ0

n.E) : σ
0
0 ∧ ... ∧ σ0

n → τ ′
(T-Abs-1)

For the subderivations Γ, (x : σ0
0 ∧ ...∧ σ0

n) ⊢ F : τ and Γ, (x : σ0
0 ∧ ...∧ σ0

n) ⊢ F : τ ′, we apply

the Induction Hypothesis to get that τ = τ ′. So we are done.

Case: T-Abs-2 The last step of the derivation of Γ ⊢ E : T must be as follows:

Γ ⊢ F : τ where x does not occur in F
Γ ⊢ (λx : τ 0.E) : τ 0 → τ

(T-Abs-2)

The last rule that was used to derive Γ ⊢ E : T ′ must be T-Abs-2, as follows:

Γ ⊢ F : τ ′ where x does not occur in F
Γ ⊢ (λx : τ 0.E) : τ 0 → τ ′

(T-Abs-2)

For the subderivations Γ ⊢ F : τ and Γ ⊢ F : τ ′, we apply the Induction Hypothesis to get

that τ = τ ′. So we are done.

Case: T-App. The last step of the derivation of Γ ⊢ E : σ must be as follows:

Γ ⊢ E1 : σ1
σ1 � ((

∧
i∈I τi) → σ)

Γ ⊢ E2 : σ
0

∀i ≤ I : σ0 ∼ τi (T-App)
Γ ⊢ E1 E2 : σ
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The last rule that was used to derive Γ ⊢ E : σ′ must be T-App, as follows:

Γ ⊢ E1 : σ
′
1

σ′
1 � ((

∧
i∈I τ

′
i) → σ′)

Γ ⊢ E2 : σ
0′

∀i ≤ I ′ : σ0′ ∼ τi′ (T-App)
Γ ⊢ E1 E2 : σ

′

For the subderivations Γ ⊢ E1 : σ1 and Γ ⊢ E1 : σ
′
1, we apply the Induction Hypothesis to

get that σ1 = σ′
1. Similarly, for the subderivations Γ ⊢ E2 : σ

0 and Γ ⊢ E2 : σ
0′ , we apply

the Induction Hypothesis to get that σ0 = σ0′ . From σ1 = σ′
1 and σ1 � ((

∧
i∈I τi) → σ′) and

τ ′1 � ((
∧

i∈I τ
′
i) → σ′), we conclude that (

∧
i∈I τi) → σ′ = (

∧
i∈I τ

′
i) → σ′, hence σ = σ′.

B.2 Criteria of Rank-2

Theorem 4.4.9 (Gradual Guarantee). ∀Γ,Γ′, E, E ′, T suppose Γ ⊢ E : T and Γ′ ⊑ Γ and

E ′ ⊑ E.

1. For some T ′, we have Γ′ ⊢ E ′ : T ′ and T ′ ⊑ T .

2. If E ⇓ v then E ′ ⇓ v′ and v′ ⊑ v

3. If E ⇑ then E ′ ⇑

4. If E ′ ⇓ v′ then E ⇓ v where v′ ⊑ v or E ⇓ blameT (T )L

5. If E ′ ⇑ then E ⇑ or E ⇓ blameT (T )L.

Proof. Consider item 1. For the first statement, we proceed by induction. We replicate the

proof technique from [CS16].

Proof by induction on the proof structure of E ′ ⊑ E.

Case: n ⊑ n. This case is straightforward.
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Case: True ⊑ True. This case is straightforward.

Case: False ⊑ False. This case is straightforward.

Case x ⊑ x. This case is straightforward.

case: E ′
1 E

′
2 ⊑ E1 E2 Then by inspection on how E ′

1 E
′
2 ⊑ E1 E2 holds, we have that

E ′
1 ⊑ E1 and E ′

2 ⊑ E2. We also have the following type rule:

Γ ⊢ E1 : σ1
σ1 � ((

∧
i∈I τi) → σ)

Γ ⊢ E2 : σ
0

∀i ≤ I : σ0 ∼ τi (T-App)
Γ ⊢ E1 E2 : σ

We need to prove that ∃σ′ s.t. Γ′ ⊢ E ′
1E

′
2 : σ

′ and σ′ ⊑ σ where Γ′ ⊑ Γ′

Since E ′
1 ⊑ E1 (with smaller proof than E ′

1E
′
2 ⊑ E1E2) and Γ ⊢ E1 : σ1 and Γ′ ⊑ Γ,

we can apply the IH and obtain Γ′ ⊢ E ′
1 : σ′

1 with σ′
1 ⊑ σ1, for some σ′

1. Since E ′
2 ⊑ E2

(with smaller proof than E ′
1E

′
2 ⊑ E1E2) and Γ ⊢ E2 : σ

0, we can apply the IH and obtain

Γ′ ⊢ E ′
2 : σ

0′ with σ0′ ⊑ σ0.

Our general goal now is to apply T-App to prove Γ′ ⊢ E ′
1E

′
2 : σ

′, for some σ′. Now we

show that σ1 � ((
∧

i∈I τi) → σ) and σ0 ∼ τi

From Lemma B.2, since σ′
1 ⊑ σ1 and σ1 � ((

∧
i∈I τi) → σ, we have σ′

1 � ((
∧

i∈I τ
′
i → σ′

1),

for some τ ′i .σ′
1 where τ ′i ⊑ τi and σ′

1 ⊑ σ1 for all i ∈ I. So we get that σ′
1 � ((

∧
i∈I τ

′
i → σ′

1)

can be used in T − APP .

From Lemma B.3, since σ0 ∼ τi for all i ∈ I and σ′
0 ⊑ σ0 and τ ′i ⊑ τi, we obtain σ′

0 ∼ τ ′i .

Therefore, we can use T − APP in the following way:
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Γ′ ⊢ E ′
1 : σ

′
1

σ′
1 � ((

∧
i∈I τ

′
i) → σ′)

Γ′ ⊢ E ′
2 : σ

0′

∀i ≤ I : σ0′ ∼ τi′ (T-App)
Γ′ ⊢ E ′

1 E
′
2 : σ

′

As we have established earlier that σ′ ⊑ σ so we are done.

case: λx : τ 0
′
.E ′ ⊑ λx : τ 0.E where x does not occur in E

Then by inspection on how λx : τ 0
′
.E ′ ⊑ λx : τ 0.E holds, we have τ 0′ ⊑ τ 0

′ and E ′ ⊑ E. So

we can use T-Abs-2 in the following way

Γ ⊢ E : τ where x does not occur in E
Γ ⊢ (λx : τ 0.E) : τ 0 → τ

(T-Abs-2)

Since E ′ ⊑ E (with smaller proof than λx : τ 0
′
.E ′ ⊑ λx : τ 0.E and Γ′, x : τ 0

′ ⊑ Γ, x : τ 0

and Γ ⊢ E : τ , we can apply the IH and obtain Γ′ ⊢ E ′ : τ ′, for some τ ′ s.t. τ ′ ⊑ τ . Therefore

we can use T-Abs-2 in the following way

Γ′ ⊢ E ′ : τ ′ where x does not occur in E ′

Γ′ ⊢ (λx : τ 0
′
.E ′) : τ 0

′ → τ ′
(T-Abs-2)

Now, we need to prove that τ 0′ → τ ′ ⊑ τ 0 → τ . By definition of ⊑ as a precongruence,

τ 0
′ ⊑ τ 0 (which we have) and τ ′ ⊑ τ ′ (which we have) imply τ 0′ → τ ′ ⊑ τ 0

′ → τ . And we are

done.

Case λx : Dyn.E ⊑ λx : σ0′
1 ∧ ... ∧ σ0′

n .E
′ where x occurs in E
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We can use T-Abs-1 in the following way:

Γ, (x : σ0
0 ∧ ... ∧ σ0

n) ⊢ E : τ where ∀i ∈ {1, ..., n}, xi occurs in E

Γ ⊢ (λx : σ0
0 ∧ ... ∧ σ0

n.E) : σ
0
0 ∧ ... ∧ σ0

n → τ
(T-Abs-1)

From precision we have that Dyn ⊑
∧n

0 σ
0
i

If we recall the definition of precision on type environments, we can obtain Γ′, (x : Dyn ∧ ... ∧

Dyn) ⊑ Γ, (x : σ0
0 ∧ ... ∧ x : σ0

n).

Since E ′ ⊑ E (with smaller proof than λx : Dyn.E ′ ⊑ λx : σ0
0 ∧ ... ∧ σ0

n.E and Γ′, x :

Dyn ∧ ... ∧ Dyn ⊑ Γ, x : σ0
0 ∧ ... ∧ σ0

n and Γ, (x : σ0
0 ∧ ... ∧ σ0

n) ⊢ E : τ , we can apply the IH

and obtain Γ′, (x : Dyn ∧ ... ∧ Dyn) ⊢ E ′ : τ ′, for some τ ′ s.t. τ ′ ⊑ τ . Therefore we can use

T-Abs-0 in the following way:

Γ′, (x : Dyn ∧ ... ∧ Dyn) ⊢ E ′ : τ ′ where ∀i ∈ {1, ..., n}, xi occurs in E

Γ′ ⊢ (λx : Dyn.E ′) : Dyn → τ ′
(T-Abs-0)

Case λx : σ0
0 ∧ ... ∧ σ0

n.E ⊑ λx : σ0′
1 ∧ ... ∧ σ0′

n .E
′ where x occurs in E

We can use T-Abs-1 in the following way:

Γ, (x : σ0
0 ∧ ... ∧ σ0

n) ⊢ E : τ where ∀i ∈ {1, ..., n}, xi occurs in E

Γ ⊢ (λx : σ0
0 ∧ ... ∧ σ0

n.E) : σ
0
0 ∧ ... ∧ σ0

n → τ
(T-Abs-1)
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From precision we have that ∀i : σ0′
i ⊑ σ0

i

If we recall the definition of precision on type environments, we can obtain Γ′, (x : σ0′
1 ∧ ... ∧

σ0′
n ) ⊑ Γ, (x : σ0

0 ∧ ... ∧ σ0
n), because Γ′ ⊑ Γ and ∀i ∈ {1, ..., n} : σ0′

i ⊑ σ0
i .

Since E ′ ⊑ E (with smaller proof than λx : σ0′ ∧ ... ∧ σ0
n.E

′ ⊑ λx : σ0
0 ∧ ... ∧ σ0

n.E and

Γ′, x : σ0′
1 ∧ ... ∧ σ0′

n ⊑ Γ, x : σ0
0 ∧ ... ∧ σ0

n and Γ, (x : σ0
0), ..., (x : σ0

n) ⊢ E : τ , we can apply the

IH and obtain Γ′, (xσ0′
1 ∧ ... ∧ σ0′

n ) ⊢ E ′ : τ ′, for some τ ′ s.t. τ ′ ⊑ τ . Therefore we can use

T − Abs in the following way

Γ′, (x : σ0′
1 ∧ ... ∧ σ0′

n ) ⊢ E ′ : τ ′ where ∀i ∈ {1, ..., n}, xi occurs in E

Γ′ ⊢ (λx : σ0′
1 ∧ ... ∧ σ0′

n .E) : σ
0′
1 ∧ ... ∧ σ0′

n → τ ′
(T-Abs-1)

Now, we need to prove that σ0′ ∧ ...∧σn′ → τ ′ ⊑ τ 01 ∧ ...∧ τ 0n → τ . By definition of ⊑ as a

precongruence, we are done. We know that τ ′ ⊑ τ and that σ0′∧...∧σn′ → τ ′ ⊑ σ0
0∧...∧σ0

n → τ

so we are done.

Case λx : σ0.E ⊑ λx : σ0′ .E ′ where x occurs in E

We can use T-Abs-0 in the following way:

Γ, (x : σ0 ∧ ... ∧ σ0) ⊢ E : τ where ∀i ∈ {1, ..., n}, xi occurs in E

Γ ⊢ (λx : σ0.E) : σ0 → τ
(T-Abs-0)

From precision, we have that σ0′ ⊑ σ0.
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Since E ′ ⊑ E, we can apply the IH and obtain that Γ′, (x : σ0 ∧ ... ∧ σ0) : E ′ : t′ for

some t′ ⊑ t. So we can use T-Abs-0 in the following way:

Γ′, (x1 : σ
0′ ∧ ... ∧ σ0′) ⊢ E ′ : τ ′ where ∀i ∈ {1, ..., n}, xi occurs in E

Γ ⊢ (λx : σ0′ .E ′) : σ0′ → τ
(T-Abs-0)

And we have that σ0′ → t′ ⊑ σ0 → t since σ0′ ⊑ σ0 and t ⊑ t so we are done.

For the remaining items, first note that T preserves typability. Therefore, we can directly

apply the proof from [SVC15a] on GTLC for items 3 and 4. For 2 and 5 we also use the fact

that T is monotone on the precision ordering.

Lemma B.2 (Matching is monotone in its first argument.). if T ▷ τ1 → τ2 and T ′ ⊑ T then

there exists τ ′1, τ ′2 s.t. T ′ ▷ τ ′1 → τ ′2 and τ ′1 ⊑ τ1 and τ ′2 ⊑ τ2.

Lemma B.3 (consistency is monotone.). If τ1 ∼ τ2 and τ ′1 ⊑ τ1 and τ2′ ⊑ τ2 then τ1′ ∼ τ2′.

Proof. We will proceed induction on the structure of τ1 ∼ τ2.

Suppose we have τ1 ∼ Dyn. Then τ ′2 = Dyn so by C − Dyn2, we are done. A similar

argument applies to the case of Dyn ∼ τ2.

Case Bool ∼ Bool. We have τ ′1 − τ ′2 = Bool so we are done. The same applies for

Int ∼ Int.

Case (σ → τ) ∼ (σ′ → τ ′). We have that σ ∼ σ′ and τ ∼ τ ′. Then we have s ⊑ σ → τ

and u ⊑ σ′ → τ ′.

Subcase Dyn ⊑ σ → τ and Dyn ⊑ σ′ → τ ′. Clearly, Dyn ∼ Dyn.

Subcase s→ u ⊑ σ → τ and Dyn ⊑ σ′ → τ ′. We have Dyn ∼ s→ u.

s→ u ⊑ σ → τ and s′ → u′ ⊑ σ′ → τ ′.
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We have that s ⊑ σ, u ⊑ τ , s′ ⊑ σ′ and u′ ⊑ τ ′. We also have that s ∼ u and σ ∼ τ so by

induction, we get that s′ ∼ σ′ and u′ ∼ σ′ so we are done.

Case (σ ∧ τ) ∼ (σ′ ∧ τ ′). We proceed in the same way as the → case.

B.3 Proof of the order isomorphism

Theorem B.3.1 (Weakening). ∀E,Γ, T, T ′ : if xl ̸∈ FV (E), then Γ ⊢ E : T iff Γ, x : T ′ ⊢

E : T .

Theorem 4.5.1. ∀E,Γ : if FV (E) ⊆ Dom(Γ) then (MigΓ(E),⊑) and (Sol(Gen(E,Γ, 2)),≤)

are order-isomorphic.

Proof. If φ is a function from type variables to types, then we define the function Gφ from

terms to terms:

Gφ(true) = true

Gφ(false) = false

Gφ(n) = n

Gφ(xl) = xl

Gφ(λx : T.F ) = λx : (
n∧
0

φ(x0i )).Gφ(F )

Gφ(E1 E2) = Gφ(E1) Gφ(E2)
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Let E,Γ be given; they remain fixed in the remainder of the proof. Now we define the

following function αE with the help of Gφ:

αE : Sol(Gen(E,Γ, 2)) → MigΓ(E)

αE(φ) = Gφ(E)

Notice that Γ plays no role in the definitions of Gφ and αE. We will show that αE is a

well-defined order-isomorphism. We will do this in four steps: we will show that αE is well

defined, injective, and surjective, and that it preserves order.

B.3.1 Well defined.

We will show that if φ ∈ Sol(Gen(E,Γ, 2)), then αE(φ) ∈ MigΓ(E). Suppose φ ∈

Sol(Gen(E,Γ, 2)). We must show

E ⊑ αE(φ) and ∃T ′,Γ′ : Γ′ ⊢ αE(φ) : T
′.

In order to show E ⊑ αE(φ), notice that E and αE(φ) differ only in the type annotations

of bound variables. If we have no bound variables in E, then E = αE(φ). Otherwise,

notice that for every occurrence of λx : τ.F in E, we have that φ |= τ ⊑ (
∧n

0 x
0
i ) and

Gφ(λx : τ.F ) = λx : (
∧n

0 φ(x
0
i )).Gφ(F ). So, we can show by induction on E that E ⊑ αE(φ).

Define Extend(Γ, E) to be Γ extended with (x : τ) for each occurrence in E of the form

λx : τ.F . In order to show ∃T ′,Γ′ : Γ′ ⊢ αE(φ) : T
′, we have from Theorem B.3.1 that it is

sufficient to prove the stronger statement:

Suppose Γ ⊢ E : i, t | C. Then ∀E ′ subterm of E where Γ′ ⊢ E ′ :

i′, t′ | C ′ is the subderivation : Extend(Γ, Gφ(E)) ⊢ Gφ(E
′) : φ([[E ′j]]).
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We will proceed by induction on E ′.

Case: E ′ = true. Notice that φ |= [[E ′]]0 = Bool and use T-True.

Case: E ′ = false. Notice that φ |= [[E ′]]0 = Bool and use T-False.

Case: E ′ = n. Notice that φ |= [[E ′]]0 = Int and use T-Num.

Case: E ′ = x0, where x0 is free in E. Notice that φ |= [[E ′]]0 = Γ(x) and

Extend(Γ, Gφ(E))(x) = Γ(x) and use T-Var.

Case: E ′ = xl. Notice that φ |= [[x]]0 = x0 and Extend(Γ, Gφ(E))(x) = φ(x0) and use

T-Var.

Case: E ′ = λx : τ 0.F where x does not occur in E ′.

Then for some Γ′, we have:

Γ ⊢ E : i, t j = Tag(t) where x does not occur in E | C

Γ ⊢ λx : τ 0.E : i, 1 → t | C ∧ (([[λx : τ 0.E]]j = x0 → [[E]]j∨

[[λx : τ 0.E]]0 = x0 → [[E]]0) ∧ τ 0 ⊑ x0)

(S-Abs-2)

Notice that either φ |= [[E ′]]j = x0 → [[F ]]j or φ |= [[E ′]]0 = x0 → [[F ]]0 From the induction

hypothesis we have Extend(Γ, Gφ(E)) ⊢ Gφ(F ) : φ([[F ]]
j). Now we use T-Abs-2.

Case: E ′ = λx : τ.F where there are n occurrences of x in E ′.

We have two possibilities for the subderivation of E ′. Suppose i = 2. Then we have:
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Γ ⊢ E : 2, t where x occurs in E n times and n ≥ 1 | C
l = Tag(n→ t)

j = Tag(t)

(S-Abs-1)

[[λx : τ.E]]0 = x0 → [[E]]0) ∧ τ ⊑ x0) ∧ x0 = x01 ∧ ... ∧ x0 = x0n)

(([[λx : τ.E]]j = x0 → [[E]]j∨
τ ⊑ (

∧n x0i )∨
[[λx : τ.E]]l = (

∧n x0i ) → [[E]]0)∧
Γ ⊢ (λx : τ.E) : 2, n→ t | C ∧ ((([[λx : τ.E]]l = (

∧n x0i ) → [[E]]j∨

So we have four possibilities. Either φ |= [[λx : τ.F ]]l =
∧n x0i → [[F ]]j for j ∈ {0, 2}

and φ |= τ ⊑
∧n x0i , In this case, Extend(Γ, Gφ(E)), (x : τ) = Extend(Γ, Gφ(E)). From

the induction hypothesis we have Extend(Γ, Gφ(F )) ⊢ Gφ(F ) : φ([[F ]]
j). Now we use T-Abs-1.

Otherwise, We have φ ⊨ [[λx : τ.E]]j = x0 → [[F ]]j for j ∈ {0, 2} and φ ⊨ τ ⊑ x0 and

φ ⊨ x0 = x01 ∧ ... ∧ x0 = x0n.

Extend(Γ, Gφ(E)), (x : τ)) = Extend(Γ, Gφ(E)). So, from the induction hypothesis we have

Extend(Γ, Gφ(E)) ⊢ Gφ(E) : φ([[E]]
j). Now we use T-Abs-0.

Otherwise, suppose i = 0. Then we have:

Γ ⊢ E : 0, t where x occurs in E n times and n ≥ 1 | C
Γ ⊢ (λx : τ.E) : 0, 1|C ∧ ([[λx : τ.E]]0 = x0 → [[E]]0 ∧ τ ⊑ x0 ∧ x0 = x01 ∧ x0 = x0n)

(S-Abs-0)

We have φ ⊨ [[λx : τ.F ]]0 = x0 → [[E]]0 and φ ⊨ τ ⊑ x0 and φ ⊨ x0 = x01 ∧ ... ∧ x0 = x0n.

Extend(Γ, Gφ(E)), (x : τ ∧ ... ∧ τ)) = Extend(Γ, Gφ(E)). So, from the induction hypothesis

we have Extend(Γ, Gφ(E)) ⊢ Gφ(E) : φ([[E]]
0). Now we use T-Abs-0.

Case: E ′ = E1 E2. Again, we have two possibilities.
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Γ ⊢ E1 : 2, t1 | C1

j = Tag(Cod(t1))
Γ ⊢ E2 : 0, t2 | C2

n = Dom(t1) l = Tag(t1) (S-App-1)

⟨E2⟩0 ∼ [[E2]]
0))

(([[E1]]
j
� ⟨E2⟩0 → [[E1 E2]]

j ∨ ([[E1]]
0
� ⟨E2⟩0 → [[E1 E2]]

0)∧
∧∀i ∈ {1, ..., n} : ⟨E2⟩0i ∼ [[E2]]

0)∨
∨[[E1]]

l
� ⟨E2⟩01 ∧ ... ∧ ⟨E2⟩0n → [[E1 E2]]

0)

Γ ⊢ E1 E2 : 2, Cod(t1) | C1 ∧ C2 ∧ ((([[E1]]
l
� ⟨E2⟩01 ∧ ... ∧ ⟨E2⟩0n → [[E1 E2]]

j

From the induction hypothesis we have

Extend(Γ, Gφ(E)) ⊢ Gφ(E1) : φ([[E1]]
j) and

Extend(Γ, Gφ(E)) ⊢ Gφ(E2) : φ([[E2]]
0).

Then φ must be a solution to one of the following sets of constraints:

[[E1]]
l
� ⟨E2⟩01 ∧ ... ∧ ⟨E2⟩0n → [[E1 E2]]

j ∧
∧

i≤n ⟨E2⟩0i ∼ [[E2]]
0 for j ∈ {0, 2}

[[E1]]
j
� ⟨E2⟩0 → [[E1 E2]]

j∧ ⟨E2⟩0 ∼ [[E2]]
0 for j ∈ {0, 2}

In both cases, we use T-App.

Otherwise, for i = 0, we have:

Γ′ ⊢ E1 : 0, t1 | C1 Γ′ ⊢ E2 : 0, t2 | C2

(S-App-0)

⟨E2⟩0 ∼ [[E2]]
0

Γ′ ⊢ E1 E2 : 0, 1 | C1 ∧ C2 ∧ [[E1]]
0
� ⟨E2⟩0 → [[E1 E2]]

0 ∧ ⟨E2⟩0 ∼ [[E2]]
0∧

Then φ ⊨ [[E1]]
0
� ⟨E2⟩0 → [[E1 E2]]

0∧ ⟨E2⟩0 ∼ [[E2]]
0 and we can use T-App.

B.3.2 Injective.

We will show that αE is injective, that is, we will show that

if αE(φ) = αE(φ
′), then φ = φ′.
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Suppose αE(φ) = αE(φ
′). From the definition of αE we see that for every occurrence in E

of λx : T1.F , φ(x0) = φ′(x0). We will show that for every occurrence of a subterm E ′ in E

we have φ([[E ′]]j) = φ′([[E ′]]j), and for every occurrence of a subterm (E1 E2) in E, we have

φ(⟨E2⟩j) = φ′(⟨E2⟩j) or φ(t01)∧ ...∧ φ(t0n) = φ′(t01)∧ ...∧ φ′(t0n). We proceed by induction on

E ′.

Case: E ′ = true. From φ |= [[E ′]]0 = Bool and φ′ |= [[E ′]]0 = Bool, we have φ([[E ′]]0) =

Bool = φ′([[E ′]]0).

Case: E ′ = false. From φ |= [[E ′]]0 = Bool and φ′ |= [[E ′]]0 = Bool, we have φ([[E ′]]0) =

Bool = φ′([[E ′]]0).

Case: E ′ = n. From φ |= [[E ′]]0 = Int and φ′ |= [[E ′]]0 = Int, we have φ([[E ′]]0) = Int =

φ′([[E ′]]0).

Case: E ′ = x, where x is free in E From φ |= [[E ′]]0 = Γ(x) and φ′ |= [[E ′]]0 = Γ(x), we

have φ([[E ′]]j) = Γ(x) = φ′([[E ′]]j).

Case: E ′ = x, where x is bound in E. φ |= [[E ′]]0 = x0 and φ′ |= [[E ′]]0 = x0, we have

φ([[E ′]]j) = φ(x) = φ′(x) = φ′([[E ′]]j).

Case: E ′ = λx : τ 0.F where x does not occur in F From the induction hypothesis, we

have φ([[F ]]j) = φ′([[F ]]j). From φ |= [[E ′]]i = x0 → [[F ]]i and φ′ |= [[E ′]]i = x0 → [[F ]]i, we

have φ([[E ′]]i) = φ(x0) → φ([[F ]]i) = φ′(x0) → φ′([[F ]]i) = φ′([[E ′]]i).

Case: E ′ = λx : τ 0.F where x occurs in F n times.

From the induction hypothesis, we have that φ([[F ]]j) = φ′([[F ]]j). Notice that φ has to be a

solution to a constraint of the form [[E ′]]l = (
∧n x0i ) → [[F ]]j and φ′ has to be a solution of the

form: [[E ′]]l = (
∧n x0i ) → [[F ′]]j Then φ([[E ′]]l) = φ(xk) → φ([[F ]]j) = φ′(xk) → φ′([[F ]]j) =

φ′([[E ′]]l).
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Case: E ′ = λx : τ1 ∧ ... ∧ τn.F where x occurs in F n times.

From the induction hypothesis, we have φ([[F ]]) = φ′([[F ]]).

From φ |= [[E ′]]j = x01∧ ...∧x0n → [[F ]]i and φ′ |= [[E ′]]j = x01∧ ...∧x0n → [[F ]]i. So we have:

φ([[E ′]]j) = φ(x01) ∧ ... ∧ φ(x0n) → φ([[F ]]i) = φ′(x01) ∧ ... ∧ φ′(x0n) → φ′([[F ]]i) = φ′([[E ′]]j).

Case: E ′ = E1 E2. From the induction hypothesis, we have φ([[E1]]
i) = φ′([[E1]]

i) and

φ([[E2]]
0) = φ′([[E2]])

0. From φ([[E1]]) = φ′([[E1]]) and φ |= [[E1]]
i
� ⟨E2⟩01 ∧ ... ∧ ⟨E2⟩0n →

[[E1 E2]]
j and φ′ |= [[E1]]

i
� ⟨E2⟩01 ∧ ... ∧ ⟨E2⟩0n → [[E1 E2]]

j′ . So we have φ([[E ′]]j) = φ′([[E ′]]j).

Another case is ⟨E2⟩k ∈ Dom(φ) and we can proceed in a similar way.

B.3.3 Surjective.

We will show that αE is surjective, that is, we will show that

if E0 ∈ MigΓ(E), then ∃φ ∈ Sol(Gen(E,Γ, 2)) : E0 = αE(φ).

From E0 ∈ MigΓ(E) we have E ⊑ E0 and τ0 such that Γ ⊢ E0 : τ0. From Γ ⊢ E0 : τ0 and

Theorem B.3.1, we have that Extend(Γ, E0) ⊢ E0 : τ0.

We will show how to derive φ for each subterm E ′ and show that the result is well-typed.

Case: E ′ = true. From (T-True) we have that φ([[E ′]]0) = Bool so φ |= [[E ′]]0 = Bool.

Case: E ′ = false. From (T-False) we have that φ([[E ′]]0) = Bool so φ |= [[E ′]]0 = Bool .

Case: E ′ = n. From (T-Num) we have that φ([[E ′]]0) = Int so φ |= [[E ′]]0 = Int,

Case: E ′ = x0, where x is free in E. From (T-Var) we have that φ([[E ′]]) = φ(x00) = Γ(x)

so φ |= [[E ′]]0 = Γ(x).

Case: E ′ = xl where x is bound. From (T-Var) we have that φ([[E ′]]) = φ(x0l ) so

φ |= [[E ′]]0 = xl.
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Case: E ′ = λx : τ 0.F where x /∈ E. The derivation D contains this use of T-Abs-2:

Γ ⊢ F : τ where x0 does not occur in F

Γ ⊢ (λx : τ 0.F ) : τ 0 → τ
(T-Abs-2)

We have φ(x0l ) = τ 0 and φ([[F ]]i) = τ and φ([[λx : τ 0.F ]]) = τ 0 → τ where τ and τ 0 → τ

are Rank-i types where i = 0 or i = 2. So, φ |= [[λx : τ 0.F ]]i = x0 → [[F ]]i. Additionally, we

have E0 ∈ MigΓ(E) so if the type annotation of x in E is S, then we have S ⊑ φ(x0).

Case: E ′ = λx : σ0 ∧ ... ∧ σn.F where xi occurs n times in E. The derivation D contains

this use of T-Abs-1:

Γ, (x : σ0
0 ∧ ... ∧ σ0

n) ⊢ E : τ where ∀i ∈ {1, ..., n}, xi occurs in E

Γ ⊢ (λx : σ0
0 ∧ ... ∧ σ0

n.E) : σ
0
0 ∧ ... ∧ σ0

n → τ
(T-Abs-1)

So,
∧

i≤n φ([[x
0
i ]]) = σ0

i and φ([[F ]]i) = τ and φ([[λx : σ0
0 ∧ ... ∧ σn.F ]]

l) = σ0
n ∧ ... ∧ σn → τ .

So, φ |= [[λx : σ0
0 ∧ ... ∧ σ0

n.F ]]
l = (

∧n x0i ) → [[F ]]i where τ is a Rank-i type for i = 0 or i = 2.

Finally σ0
0 ∧ ...σ0

n → τ is Rank-l for l = 0 or l = 1. Additionally, we have E0 ∈ MigΓ(E) so

if the type annotation of x in E is S, then we have S ⊑ φ(x), so φ |= S ⊑ (
∧n x0i ) where

σ0 ∧ ... ∧ σn is a Rank-k type, τ is a Rank-i type and σ0
0 ∧ ... ∧ σ0

n → τ is a Rank-l type.

Case: E ′ = λx : σ0.F where x occurs n times in E. The derivation D contains this use of

T-Abs-0:

Γ, (x : σ0
0 ∧ . . . ∧ σ0

n) ⊢S E : τ

where ∀i ∈ {1, . . . , n}, xi occurs in E

and σ0
0 = . . . = σ0

n = σ0

Γ ⊢S (λx : σ0.E) : σ0 → τ
(T-Abs-0)
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So,
∧

i≤n φ(xi) = σi and φ([[F ]]i) = τ and φ([[λx : τ 0.F ]]i) = σ0 → τ . So, φ |= [[λx :

σ0.F ]]i = x0 → [[F ]]i where i = 0 or i = 2. Additionally, we have E0 ∈ MigΓ(E) so if the type

annotation of x in E is S, then we have S ⊑ σ0 = φ(x0), so φ |= S ⊑ x0.

Case: E ′ = E1 E2. The derivation D contains this use of T-App:

Γ ⊢ E1 : σ1
σ1 � ((

∧
i∈I τi) → σ)

Γ ⊢ E2 : σ
0

∀i ≤ I : σ0 ∼ τi (T-App)
Γ ⊢ E1 E2 : σ

Then we have φ([[E1]]
j) = σ1 where σ1 is Rank-j. And φ([[E2]]

0) = σ0 and φ(⟨E2⟩0) = (
∧

i∈I τi).

Then let
∧

i≤n φ(t
0
i ) = τi.

Finally, let φ([[E1 E2]]
k) = σ. So φ ⊨ [[E1 E2]]

k : σ where σ is a Rank-k type where k = 0 or

k = 1.

B.3.4 Preserves order.

We will show that αE preserves order, that is, we will show that

if φ ≤ φ′, then αE(φ) ⊑ αE(φ
′).

We will prove the following stronger statement:

if φ ≤ φ′, then ∀E ′ : Gφ(E
′) ⊑ Gφ′(E ′).

Suppose that φ ≤ φ′. We proceed by induction on E ′.

Case: E ′ = true. We have Gφ(E
′) = true = Gφ′(E ′).

Case: E ′ = false. We have Gφ(E
′) = false = Gφ′(E ′).

Case: E ′ = n. We have Gφ(E
′) = n = Gφ′(E ′).
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Case: E ′ = xl. We have Gφ(E
′) = xl = Gφ′(E ′).

Case: E ′ = λx : T.F . We have two cases. Either x ∈ Dom(E ′). In this case, from

induction hypothesis, we have Gφ(F ) ⊑ Gφ′(F ). From φ ≤ φ′ we have φ(x0l ) ⊑ φ′(x0l ).

From the definition of Gφ and (P-Abs) we have Gφ(λx : T.F ) = λx : φ(x0l ).Gφ(F ) ⊑ λx :

φ′(x0l ).Gφ′(F ) = Gφ′(λx : T.F ). Otherwise, x01 ∈ Dom(φ) ∧ ... ∧ x0n ∈ Dom(φ). We again

have that Gφ(F ) ⊑ Gφ′(F ). From φ ≤ φ′ we have φ(x0i ) ⊑ φ′(x0i ) for all i ≤ n. From

the definition of Gφ and (P-Abs) we have Gφ(λx : T.F ) = λx :
∧n

0 φ(x
0
i ).Gφ(F ) ⊑ λx :∧0

n φ
′(x0i ).Gφ′(F ) = Gφ′(λx : T.F ).

Case: E ′ = E1 E2. From induction hypothesis, we have Gφ(E1) ⊑ Gφ′(E1) and Gφ(E2) ⊑

Gφ′(E2). From the definition of Gφ and (P-App) we have Gφ(E1 E2) = Gφ(E1) Gφ(E2) ⊑

Gφ′(E1) Gφ′(E2) = Gφ′(E1 E2).

B.4 Constraints

B.4.1 Full grammars

PEC ::= PEC1 ∧ PEC2 | PEC1 ∨ PEC2 | τ ⊑ (v01 ∧ . . . ∧ v0n) | v01 ∼ v02 |

v0 = τ 0 | v01 = v02 | v0 = v01 → v02 |

v21 = (v01 ∧ . . . ∧ v0n) → v22 | v2 = (v01 ∧ v21 . . . ∧ v0n) → v0
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EC ::= EC1 ∧ EC2 | EC1 ∨ EC2 | v01 ∼ v02 |

v0 = τ 0 | v01 = v02 | v0 = v01 → v02 |

v21 = (v01 ∧ . . . ∧ v0n) → v22 | v2 = (v01 ∧ v21 . . . ∧ v0n) → v0

DNF (EC) is the DNF of EC

C∼ := C1∼ ∧ C2∼|C1∼ ∨ C2∼|v0 ∼ v0
′ |v0 ∼ τ |τ1 ∼ τ2

C− := C1− ∧ C2−|C1− ∨ C2−|v0 ∼ τ

B.4.2 Constraint solver

We refer to the set PEC as a constraint system C involving Precision, Equality and Consis-

tency.

We will define a series of transformations which simplify our constraints but maintain

the set of solutions. PEC, EC and C∼ are similar to those in [MP19].

B.4.2.1 Precision constraints.

We define a simplification procedure SimPrec that transforms every Precision constraint into

zero, one, or more Equality constraints:

SimPrec : PEC → EC
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We define SimPrec to leave the set of type variables unchanged, and to proceed by repeating

the following transformation until it no longer has an effect:

From To

PEC1 ∨ PEC2 SimPrec(PEC1) ∨ SimPrec(PEC2)

PEC1 ∧ PEC2 SimPrec(PEC1) ∧ SimPrec(PEC2)

Dyn ⊑ v0 True

Bool ⊑ v0 v0 = Bool

Int ⊑ v0 v0 = Int

w0
1 → w0

2 ⊑ v0 v0 = v01 → v02

w0
1 ⊑ v01

w0
2 ⊑ v02

where v01, v02 are fresh type variables

Dyn ⊑ v01 ∧ ... ∧ v0n|n > 1 True

Int ⊑ v01 ∧ ... ∧ v0n|n > 1 False

Bool ⊑ v01 ∧ ... ∧ v0n|n > 1 False

w0
1 → w0

2 ⊑ v01 ∧ ... ∧ v0n False

w0
1 ∧ ... ∧ w0

n ⊑ v01 ∧ ... ∧ v0n w0
1 ⊑ v01, ..., w

0
n ⊑ v0n

w0
1 ∧ ... ∧ w0

n ⊑ v01 ∧ ... ∧ v0n|m ̸= n False

c c

Theorem B.4.1. ∀A ∈ PEC : Sol(A) = Sol(SimPrec(A)).

Proof. Straightforward.

Theorem B.4.2. ∀A ∈ EC : Sol(A) = Sol(TR(A)).
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Proof. Since tags represent the lowest possible rank of a variable, a variable may not have

the two different ranks simultaneously, so removing a clause where a variable has conflicting

ranks maintains solvability. Furthermore, in our DNF, having False in a clause implies that

it evaluates to False, so we can remove it.

B.4.2.2 Equality constraints.

We define Subst as a disjunction of mappings of substitutions that have domain TypeVar

and range TypeExp. For a substitution σ, we define Dom(σ) to be the set of type variables v

such that σ(v) ̸= v. We use σ ∪ σ′ to denote the union of two substitutions σ, σ′ that have

disjoint domains. In particular, we have the following grammar:

Subst := σ|Subst ∨ Subst

We define a function Unify that solves the Equality constraints and ignores the consis-

tency constraints for each clause.

Unify : EC → subst

We define Unify(DNF (EC)) to produce the most general unifier (MGU) of each clause of

conjunctions in DNF (EC). if no solution exists, we remove that clause from our constraints.

In particular, we have that DNF (EC) has the form (x1 ∧ ... ∧ xn) ∨ ... ∨ (y1 ∧ ... ∧ ym)

with k clauses, then we output σ1 ∨ ... ∨ σk where σi is the MGU corresponding to the ith

clause for i ≤ k.
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Theorem B.4.3.

∀A ∈ EC : Sol(A) =

 { (σ ◦ σ′) ∪ σ′ | σ′ ∈ Sol(SimEq(A, σ)) } if σ ̸= fail

∅ if σ = fail

where σ = Unify(A).

Proof. The proof is the same as that in [MP19].

We define a function SimEq that uses Subst transform away all Equality constraints for

each corresponding clause of conjunctions. If a solution is False, we write False.

SimEq : (EC ′ × Subst) → C∼

We define SimEq(A′, S) as follows. For each clause in A′ and S, Let Ai be the ith clause in

A′. The set of type variables is vars(Ai) \Dom(σi) where σi is the ith clause in S. Second,

the set of constraints consists of only Consistency constraints: apply the substitution to the

Consistency constraints in Ai and return only those transformed Consistency constraints.

Theorem B.4.4. ∀A ∈ EC : Sol(A) is finite iff (σ ̸= fail implies Sol(SimEq(A, σ)) is finite),

where σ = Unify(A).

Proof. Immediate from Theorem B.4.3.

B.4.2.3 Consistency constraints.

We define a function SimCon that simplifies a formula consistency constraints.

SimCon : C∼ → C∼

240



We define SimCon by repeatedly applying the following transformations to each clause until

no transformation applies.
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From To

C1 ∧ C2 SimCon(C1) ∧ SimCon(C2)

C1 ∧ C2 SimCon(C1) ∨ SimCon(C2)

Bool ∼ Bool True

Int ∼ Int True

τ 0 ∼ Dyn True

Dyn ∼ τ 0 True

(τ 01 → τ 02 ) ∼ Bool False

(τ 01 → τ 02 ) ∼ Int False

Bool ∼ (τ 01 → τ 02 ) False

Int ∼ (τ 01 → τ 02 ) False

Bool ∼ Int False

Int ∼ Bool False

(τ1 → τ2) ∼ (τ 0
′

1 → τ 0
′

2 ) (τ 01 ∼ τ 0
′

1 ) ∧ (τ 02 ∼ τ 0
′

2 )

τ 0 ∼ v0 v0 ∼ τ

Theorem B.4.5.

∀A ∈ C : Sol(A) =

 Sol(SimCon(A)) if SimCon(A) ̸= fail

∅ otherwise

Proof. Straightforward.

We finally perform the boundedness check in the same way as in the previous work. Here,

we only consider the variables corresponding to the particular set we are looking at. In
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particular, we apply the following predicate to all clauses Ai in A and expect the predicate

to be true for all clauses for the space to be finite.

Bounded : C− → Boolean

Bounded(Ai) = ∀v,∈ vars(Ai) : ∃T ∈ MaximumType : BoundedVar(v, T, Ai)

Theorem B.4.6. For A ∈ C−: Sol(A) is finite iff Bounded(A).

Proof. The proof is the same as [MP19].

Note that in our solver, once we modify precision the precision constraints in the way we

described above, which is similar to the case of GTLC, we can replace matching constraints

with a conjunction of the two matching possibilities. At this point we are ready to write our

constraints in DNF and deal with every clause separately to determine finiteness. As we said,

since a single variable should not have different tags in a valid solution, conflicting tags in

one clause means that particular clause has no solution and we simply eliminate it. This is

still exponential complexity as before, since in the GTLC we are only dealing with matching

constraints. Here we are simply dealing with more cases.

Theorem 4.5.2. We can solve the Finiteness problem in EXPTIME.

Observe the definition of our solver above and note that the bottleneck is the step where

we convert our constraint into DNF. The rest of the steps have the same complexity as the

solver from the GTLC.
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B.4.3 The Singleton problem

The following theorems also hold for gradual Rank-2. The proof is the same as that for the

GTLC.

Theorem B.4.7. ∀T : S1(T ) = { τu | τu ̸= T ∧ ∀T ′ : (T ⊑ T ′ ⊑ τu) iff ((T = T ′) ∨ (T ′ =

τu)) }.

Theorem B.4.8. ∀E : S(E) = { Eu | Eu ≠ E ∧ ∀E ′ : (E ⊑ E ′ ⊑ Eu) iff ((E = E ′)∨(E ′ =

Eu)) }.
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B.5 Calculi and Runtime Semantics

Syntax:

(Types) T ::= Dyn | Bool | Int | T → T

(Terms) E ::= true | false | n | x | λx : T.E | E E

(Environments) Γ ::= ∅ | Γ, x : T

Typing rules:
Γ ⊢G true : Bool (T-True) Γ ⊢G false : Bool (T-False) Γ ⊢G n : Int (T-Num)

x : T ∈ Γ
Γ ⊢G x : T

(T-Var)
Γ, x : T1 ⊢G E : T2

Γ ⊢G (λx : T1.E) : T1 → T2
(T-Abs)

Γ ⊢G E1 : T1
T1 � (T11 → T12)

Γ ⊢G E2 : T2
T2 ∼ T11 (T-App)

Γ ⊢G E1 E2 : T12
Consistency:

T ∼ Dyn (C-Dyn1) Dyn ∼ T (C-Dyn2) Bool ∼ Bool (C-Bool)
Int ∼ Int (C-Int)

T1 ∼ T3 T2 ∼ T4
(T1 → T2) ∼ (T3 → T4)

(C-Arrow)

Matching:
(T1 → T2)� (T1 → T2) (M-Arrow) Dyn� (Dyn → Dyn) (M-Dyn)

Precision:

Dyn ⊑G T (P-Dyn) T ⊑G T (P-Refl-T)
T1 ⊑G T3 T2 ⊑G T4
T1 → T2 ⊑G T3 → T4

(P-Arrow)

E ⊑G E (P-Refl-E)
T1 ⊑G T2 E1 ⊑G E2

λx : T1.E1 ⊑G λx : T2.E2
(P-Abs)

E1 ⊑G E3 E2 ⊑G E4

(E1 E2) ⊑G (E3 E4)
(P-App)

Figure B.2: The gradually typed λ-calculus.
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B.5.1 The Cast Calculus CC

The Cast Calculus CC extends the STLC:

Typing Rules:

Γ ⊢CC E : T .

Γ ⊢CC true : Bool Γ ⊢CC false : Bool Γ ⊢CC n : Int

x : T ∈ Γ
Γ ⊢CC x : T Γ ⊢CC blameTL : T

Γ, (x : T1) ⊢CC E : T2
Γ ⊢CC (λx : T1.E) : T1 → T2

Γ ⊢CC E1 : σ
0 → σ Γ ⊢CC E2 : σ

0

Γ ⊢CC E1 E2 : σ

Γ ⊢CC E : T1
Γ ⊢CC E : (T1 ⇒L T2) : T2

Compilation from GTLC to CC:

Γ ⊢CC E ⇝ E ′ : T .

Γ ⊢CC true⇝ true : Bool Γ ⊢CC false⇝ false : Bool Γ ⊢CC n⇝ n : Int

x : T ∈ Γ
Γ ⊢CC x⇝ x : T

Γ, x : T1 ⊢CC E ⇝ E ′ : T2
Γ ⊢CC λx : T1.E ⇝ λx : T1.E

′ : T1 → T2

Γ ⊢CC E1 ⇝ E ′
1 : σ1

σ1 � (T → σ)
Γ ⊢CC E2 ⇝ E ′

2 : σ2
σ2 ∼ T

Γ ⊢CC E1 E2 ⇝ (E ′
1 : σ1 ⇒L0 (T → σ))(E ′

2 : σ
0 ⇒L1 T ) : σ

Figure B.3: CC
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B.5.2 Runtime Semantics

(Ground Types) G ::= Dyn → Dyn | Bool | Int

(Terms) E, f ::= | { | n | x | λx : T.E | E E | E : T ⇒L T | blameTL

(Values) v ::= true | false | n | x | λx : T.E | v : T1 → T2 ⇒L T3 → T4 |

v : G⇒L Dyn

r ::= v | blameTL

F ::= □f | v□ | □ : T1 ⇒L T2

(λx : T.f)v 7→ [x := v]f

v : B ⇒L B 7→ v

v : Dyn ⇒L Dyn 7→ v

v : G⇒L1 Dyn ⇒L2 G 7→ v

v : G1 ⇒L1 Dyn ⇒L2 G2 7→ blameG2L2 where G1 ̸= G2
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(v1 : T1 → T2 ⇒L T3 → T4)v2 7→ v1(v2 : T3 ⇒L T1) : T2 ⇒L T4

v : T ⇒L Dyn 7→ v : T ⇒L G⇒L Dyn if T ̸= Dyn, T ̸= G, T ∼ G

v : Dyn ⇒L T 7→ v : Dyn ⇒L G⇒L T if T ̸= Dyn, T ̸= G, T ∼ G

F [f ] 7→ F [f ′] if f 7→ f ′

F [blameT1L] 7→ blameT2L if Γ ⊢ F : T1 ⇒ T2

B.6 Flexible Rank-2: Adding Associativity and Commutativity

Definition B.2 (Type Equivalence).

τ ∧ σ ∼= σ ∧ τ

τ1 ∧ (τ2 ∧ τ3) ∼= (τ1 ∧ τ2) ∧ τ3
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Typing Rules
Γ ⊢f E : T 2.

Γ ⊢f true : Bool (T-True) Γ ⊢f false : Bool (T-False) Γ ⊢f n : Int (T-Num)

x :
∧

i∈I τ
0
i ∈ Γ l ∈ I

Γ ⊢f xl : τ
0
l

(T-Var)

Γ, (x : σ0
0 ∧ . . . ∧ σ0

n) ⊢f E : τ
where ∀i ∈ 0..n, xi occurs in E

and σ0
0 = . . . = σ0

n = σ0

Γ ⊢f (λx : σ0.E) : σ0 → τ
(T-Abs-0)

Γ, (x : σ0
0 ∧ . . . ∧ σ0

n) ⊢f E : τ
where ∀i ∈ 0..n, xi occurs in E

and σ ∼= σ0
0 ∧ . . . ∧ σ0

n

Γ ⊢f (λx : σ.E) : σ → τ
(T-Abs-1-f)

Γ ⊢f E : τ where x0 does not occur in E

Γ ⊢f (λx : τ 0.E) : τ 0 → τ
(T-Abs-2)

Γ ⊢f E1 : σ1
σ1 � ((

∧
i∈I τ

0
i ) → σ)

Γ ⊢f E2 : σ
0

∀i ≤ I : σ0 ∼ τ 0i (T-App)
Γ ⊢f E1 E2 : σ

Consistency:
σ0 ∼ Dyn (C-Dyn1) Dyn ∼ σ0 (C-Dyn2) Bool ∼ Bool (C-Bool)

Int ∼ Int (C-Int)

σ0 ∼ σ′0 τ 0 ∼ τ ′0

(σ0 → τ 0) ∼ (σ′0 → τ ′0)
(C-Arrow)

Matching:
(σ1 → τ 2)� (σ1 → τ 2) (M-Arrow) Dyn� (Dyn → Dyn) (M-Dyn)

Figure B.4: The Flexible Gradual Rank-2 intersection-typed λ-calculus: Typing Rules
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Definition B.3 (Term Equivalence).

E ∼= E

λx : τ.E ∼= λx : τ ′.E ′ ⇐⇒ E ∼= E ′ ∧ τ ∼= τ ′

E1 E2
∼= E ′

1 E
′
2 ⇐⇒ E1

∼= E ′
1 ∧ E2

∼= E ′
2

Definition B.4 (Flexible Type Precision). τ ≲ σ iff ∃τ ′ : τ ∼= τ ′ ∧ τ ′ ⊑ σ

Definition B.5 (Flexible Term Precision). E ≲ E ′ iff ∃E ′′ : E ∼= E ′′ ∧ E ′′ ⊑ E ′

Definition B.6 (Flexible Migration). E ′ is a flexible Γ-migration of E (written E ≤Γf
E ′)

iff (E ≲ E ′ ∧ ∃T ′ : Γ ⊢f E
′ : T ′).

Theorem 4.7.5. Let Γ ⊢ Es : Ts and Γ ⊢f E : T and Es
∼= E and Ts ∼= T . Then for

every E ′ ≲ E, there exists some E ′
s
∼= E ′ with E ′

s ⊑ Es, where ∀Γ′, if Γ′ ⊢ E ′
s : T ′

s, then

Γ′ ⊢f E
′ : T ′ where T ′ ≲ T , T ′

s ⊑ Ts, Γ′ ⊑ Γ and T ′ ∼= T ′
s.

Proof. Cases T-True, T-False, T-Num, T-Var are straightforward.

Case T-Abs-0

We have:
Γ, (x : σ0

0 ∧ . . . ∧ σ0
n) ⊢f E : τ

where ∀i ∈ 0..n, xi occurs in E

and σ0
0 = . . . = σ0

n = σ0

Γ ⊢f (λx : σ0.E) : σ0 → τ
(T-Abs-0)
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We also have:

Γ, (x : σ0
0′ ∧ . . . ∧ σ0

n′) ⊢ E ′ : τ ′

where ∀i ∈ {0, . . . , n′}, xi occurs in E ′

and σ0
0′ = . . . = σ0

n′ = σ0′

Γ ⊢ (λx : σ0′ .E ′) : σ0′ → τ ′
(T-Abs-0)

So Γ, (x : σ0
0 ∧ ... ∧ σ0

n) ⊢f E : τ and Γ, (x : σ0
0′ ∧ ... ∧ σ0

n′) ⊢ E ′ : τ ′ and E ∼= E ′

and τ ∼= τ ′. Then for every Ef ≲ E, there exists some Es
∼= Ef with Es ⊑ E ′, where if

Γ′, (x : σ0
0′′ ∧ ... ∧ σ0

n′′) ⊢ Es : Ts, then Γ′, (x : σ0
0′′ ∧ ... ∧ σ0

n′′) ⊢f Ef : T ′ where T ′ ≲ τ and

Ts ⊑ τ ′ and Γ′, (x : σ0
0′′ ∧ ... ∧ σ0

n′) ⊑ Γ′, (x : σ0
0′ ∧ ... ∧ σ0

n′). We also have that T ′ ∼= Ts.

Then notice that by the definition of equivalence on types that σ0
0 ∧ ... ∧ σ0

n = σ0′ . So

we can apply the induction hypothesis along with T-Abs-0 to get that for every λx : σ0′′ .Ef ≲

λx : σ0.E, we have λx : σ0′′ .Es
∼= λx : σ0′′ .Ef with λx : σ0′′ .Es ⊑ λx : σ0.E ′, where if

Γ′ ⊢ λx : σ0′′ .Es : σ
0′′ → Ts, then Γ′ ⊢f λx : σ0′′ .Ef : σ0′′ → T ′ where σ0′′ → Ts ⊑ σ0 → τ ′

and σ0′′ → T ′ ≲ σ0 → τ and σ0′′ → T ′ ∼= σ0′′ → Ts and Γ′ ⊑ Γ.

Case T-Abs-1-f we have:

Γ, (x : σ0
0 ∧ . . . ∧ σ0

n) ⊢f E : τ

where ∀i ∈ 0..n, xi occurs in E

and σ ∼= σ0
0 ∧ . . . ∧ σ0

n

Γ ⊢f (λx : σ.E) : σ → τ
(T-Abs-1-f)
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Γ, (x : σ0
0 ∧ ... ∧ σ0

n) ⊢ E ′ : τ ′ where ∀i ∈ 0..n, xi occurs in E ′

Γ ⊢ (λx : σ0
0 ∧ ... ∧ σ0

n.E
′) : σ0

0 ∧ ... ∧ σ0
n → τ ′

(T-Abs-1)

So Γ, (x : σ0
0 ∧ ... ∧ σ0

n) ⊢f E : τ and Γ, (x : σ0
0 ∧ ... ∧ σ0

n) ⊢ E ′ : τ ′ and E ∼= E ′ and

τ ∼= τ ′. Then for every Ef ≲ E, there exists some Es
∼= Ef with Es ⊑ E ′, where if

Γ′, (x : σ0
1′ ∧ ...∧σ0

n′) ⊢ Es : Ts, then Γ′, (x : σ0
1′ ∧ ...∧σ0

n′) ⊢f Ef : T ′ where T ′ ≲ τ and Ts ⊑ τ ′.

We also have that T ′ ≲ Ts. We also have that Γ′, (x : σ0
1′ ∧ ... ∧ σ0

n′) ⊑ Γ, (x : σ0
1 ∧ ... ∧ σ0

n).

Then notice that we have that σ ∼= σ0
0 ∧ ... ∧ σ0

n and that our induction hypothesis holds

for every Γ′, (x : σ0
1′ ∧ ... ∧ σ0

n′) ⊑ Γ, (x : σ0
1 ∧ ... ∧ σ0

n). So, for every σ′ ⊑ σ, we have

that there is some τd ⊑ σ0
0 ∧ ... ∧ σ0

n such that τd ∼= σ′. So we can apply the induction

hypothesis along with T-Abs-1-f or T-Abs-0 to get that for every λx : σ′.Ef ≲ λx : σ.E,

there exists some λx : τd.Es
∼= λx : σ′.Ef with λx : τd.Es ⊑ λx : σ0

1 ∧ ... ∧ σ0
n.E

′, where if

Γ′ ⊢ λx : τd.Es : τd → Ts, then Γ′ ⊢f λx : σ′.Ef : σ′ → T ′ where τd → Ts ⊑ σ0
0 ∧ ... ∧ σ0

n → τ ′

and σ′ → T ′ ≲ σ → τ . We also have that σ′ → T ′ ∼= τd → Ts because λx : τd.Es
∼= λx : σ′.Ef .

We also have that Γ′ ⊑ Γ.

Case T-Abs-2 is straightforward.

Case T-App
Γ ⊢f E1 : σ1

σ1 � ((
∧

i∈I τ
0
i ) → σ)

Γ ⊢f E2 : σ
0

∀i ≤ I : σ0 ∼ τ 0i (T-App)
Γ ⊢f E1 E2 : σ
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Γ ⊢ Es1 : σs1
σs1 � ((

∧
i∈I τ

0
si
) → σs)

Γ ⊢ Es2 : σ
0

∀i ≤ I : σ0
s ∼ τ 0si (T-App)

Γ ⊢ Es1 Es2 : σs

Since Γ ⊢ Es1 : σs1 and Γ ⊢f E1 : σ1 and Es1
∼= E1 and σs1

∼= σ1, by induction, for ev-

ery E ′
1 ≲ E1, there exists some Es′1

∼= E ′
1 with Es′1

⊑ Es1 , where if Γ′ ⊢ Es′1
: σs′1 , then

Γ′ ⊢f E
′
1 : σ

′
1 where σ′

1 ≲ σ1, σs′1 ⊑ σs1 and Γ′ ⊑ Γ and σs′1
∼= σ′

1.

Also since Γ ⊢ Es2 : σs2 and Γ ⊢f E2 : σ2 and Es2
∼= E2 and σs2

∼= σ2, by induction,

for every E ′
2 ≲ E2, there exists some Es′2

∼= E ′
2 with Es′2

⊑ Es2 , where if Γ′ ⊢ Es′2
: σs′2 , then

Γ′ ⊢f E
′
2 : σ

′
2 where σ′

2 ≲ σ2, σs′2 ⊑ σs2 and Γ′ ⊑ Γ and σs′2
∼= σ′

2.

Note that � is well-defined under ∼=. So we have that σ′
1�

∧
i∈I τ

0
i′) → σ′, and σ′

s1
�
∧

i∈I τ
0
s′i
) →

σ′
s. Note that τ 0i′ maps to some τ 0s′j for i, j ∈ 1, ..., n and that from σs′2

∼= σ′
2, we have that

σs′2 = σ′
2. So we can apply T-App and the induction hypothesis to get that Γ′ ⊢f E

′
1 E

′
2 : σ

′

where σ′ ≲ σ, σ′
s ⊑ σs and Γ′ ⊑ Γ. Clearly, σ′ ∼= σ′

s and Γ′ ⊑ Γ.

Theorem 4.7.1. If Γ ⊢f E : T then ∃T ′, E ′ such that T ′ ∼= T,E ′ ∼= E and Γ ⊢ E ′ : T ′

Proof. We proceed by induction on the derivation.

Cases T-True, T-False, T-Num, T-Var are straightforward.

Case:
Γ, (x : σ0

0 ∧ . . . ∧ σ0
n) ⊢f E : τ

where ∀i ∈ 0..n, xi occurs in E

and σ0
0 = . . . = σ0

n = σ0

Γ ⊢f (λx : σ0.E) : σ0 → τ
(T-Abs-0)
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By induction, we have that ∃τ ′, E ′ such that τ ′ ∼= τ, E ′ ∼= E and Γ, (x : σ0
0 ∧ ... ∧ σ0

n) ⊢

E ′ : τ ′.

Then we can apply:

Γ, (x : σ0
0 ∧ . . . ∧ σ0

n) ⊢ E ′ : τ ′

where ∀i ∈ 0..n, xi occurs in E ′

and σ0
0 = . . . = σ0

n = σ0

Γ ⊢ (λx : σ0.E ′) : σ0 → τ ′
(T-Abs-0)

Case:
Γ, (x : σ0

0 ∧ . . . ∧ σ0
n) ⊢f E : τ

where ∀i ∈ 0..n, xi occurs in E

and σ ∼= σ0
0 ∧ . . . ∧ σ0

n

Γ ⊢f (λx : σ.E) : σ → τ
(T-Abs-1-f)

By induction, we have that ∃τ ′, E ′ such that τ ′ ∼= τ, E ′ ∼= E and Γ, (x : σ0
0 ∧ ...∧ σ0

n) ⊢ E ′ : τ ′.

So we have that:

Γ, (x : σ0
0 ∧ ... ∧ σ0

n) ⊢ E ′ : τ ′ where ∀i ∈ 0..n, xi occurs in E ′

Γ ⊢ (λx : σ0
0 ∧ ... ∧ σ0

n.E
′) : σ0

0 ∧ ... ∧ σ0
n → τ ′

(T-Abs-1)

Case T-Abs-2 is straightforward.
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Case
Γ ⊢f E1 : σ1

σ1 � ((
∧

i∈I τ
0
i ) → σ)

Γ ⊢f E2 : σ
0

∀i ≤ I : σ0 ∼ τ 0i (T-App)
Γ ⊢f E1 E2 : σ

By induction, we have that ∃σ′
1, E

′
1 such that σ′

1
∼= σ1, E

′
1
∼= E1 and Γ ⊢ E ′

1 : τ
′
1 and ∃σ0′ , E ′

2

such that σ0′ ∼= σ0, E ′
2
∼= E2 and Γ ⊢ E ′

2 : σ
0′ .

Note that from σ0′ ∼= σ0, we have that σ0′ = σ0 and note that � is well-defined under ∼=. So

we have that σ′
1 � ((

∧
i∈I τ

0
i′) → σ′) with σ1 ∼= σ′

1, σ ∼= σ′ and (
∧

i∈I τ
0
i )

∼= (
∧

i∈I τ
0
i′).

Note that every τ 0i maps to some τ 0j′ for i, j ∈ 1, ..., n.

So we have that:

Γ ⊢ E ′
1 : σ

′
1

σ′
1 � ((

∧
i∈I τ

0
i′) → σ′)

Γ ⊢ E ′
2 : σ

0

∀i ≤ I : σ0 ∼ τ 0i′ (T-App)
Γ ⊢ E ′

1 E
′
2 : σ

′

Theorem 4.7.2. Suppose Γ ⊢f E : T . Then for Es
∼= E with Γ ⊢ Es : Ts, if Es ≤Γ E

′
s, then

there exists an E ′ such that E ≤Γf
E ′ with E ′ ∼= E ′

s.

Proof. By expanding the definition of ≤Γ, we have that some Γs ⊢ E ′
s : T

′
s with Es ⊑ E ′

s,

Ts ⊑ T ′
s and Γ ⊑ Γs. Since Es

∼= E and Es ⊑ E ′
s then it must be the case that E ≲ E ′

s.

Similarly, Γ ≲ Γs with T ≲ T ′
s. So we are done.
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APPENDIX C

Generalizing Shape Reasoning

.1 Static Tensor types

(Program) P ::= decl∗ return e

(Decl) decl ::= id : T

(Terms) e ::= x | add(e1, e2) | reshape(e, T ) |
Conv2D(cin, cout, κkernel, e)

(IntegerTuple) κ ::= (c∗)

(Const) c ::= ⟨Nat⟩
(Tensor Types) S, T ::= TensorType(list(D))

U,D ::= ⟨Nat⟩
(Env) Γ ::= ∅ | Γ, x : T

δ denotes a tensor type with at most once Dyn dimension.

Figure .1: Tensor Calculus
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Typing rules:
decl∗ ⊢s Γ Γ ⊢s e : T
Γ ⊢s decl

∗ return e ok
(ok-prog-s) x : T ∈ Γ

Γ ⊢s x : T
(t-var)

Γ ⊢s e : TensorType(D1, ..., Dn)
∏n

1 Di =
∏m

1 Ui

Γ ⊢s reshape(e, TensorType(U1, ..., Um)) : TensorType(U1, ..., Un)
(t-reshape-s)

Γ ⊢s e : T, T = TensorType(D1, D2, D3, D4),
S = calc-conv(T, cout, κkernel), cin = D2

Γ ⊢s Conv2D(cin, cout, κkernel, e) : S
(t-conv)

Γ ⊢s e1 : T1 Γ ⊢s e1 : T2 (S1, S2) = apply-broadcasting(T1, T2) S1 = S2

Γ ⊢s add(e1 e2) : S1
(t-add)

Figure .2: Typing Rules

.2 Gradual Tensor Types

.3 Static properties

Definition .1 (rank). rank(TensorType(d1, ..., dn)) = n.

Theorem .3.1 (Monotonicity w.r.t precision). ∀p, p′,Γ : if Γ ⊢ p : ok ∧ p′ ⊑ p then

Γ ⊢ p′ : ok.

Proof. Proof by induction on the proof structure of p′ ⊑ p.

Case decl∗
′
return e′ ⊑ decl∗ return e. Then by inspection, we have:
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(Program) p ::= decl∗ return e

(Decl) decl ::= x : τ

(Terms) e ::= x | add(e1, e2) | reshape(e, τ) |
Conv2D(cin, cout, κkernel, e)

(IntegerTuple) κ ::= (c∗)

(Const) c ::= ⟨Nat⟩
(Tensor Types) t, τ ::= Dyn | TensorType(list(d))

(Static Tensor Types) S, T ::= TensorType(list(D))

σ, d ::= Dyn | ⟨Nat⟩
U,D ::= ⟨Nat⟩

(Env) Γ ::= ∅ | Γ, x : τ

Notation:
δ is a sequence of dimensions with at most one occurrence of Dyn.

Figure .3: Gradual Tensor Core language

∀i ∈ {1, ..., n} decl′i ⊑ decli e
′ ⊑ e

decl′1, ..., decl
′
n return e′ ⊑ decl1, ..., decln return e

(p-prog)

We also have the following rule:

decl∗ ⊢ Γ Γ ⊢ e : τ
Γ ⊢ decl∗ return ∗e ok

(ok-prog)
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Consistency
τ ∼ τ (c-refl-t) d ∼ d (c-refl-d)

d ∼ Dyn (d-refl-dyn) τ ∼ Dyn (t-refl-dyn)

∀i ≤ n : di ∼ d′i
TensorType(d1, ..., dn) ∼ TensorType(d′1, ..., d

′
n)

(c-tensor)

Type Precision
τ ⊑ τ (refl-t) d ⊑ d (c-refl-d)

Dyn ⊑ d (refl-dyn-1) Dyn ⊑ τ (refl-dyn-2)

∀i ≤ n : di ⊑ d′i
TensorType(d1, ..., dn) ⊑ TensorType(d′1, ..., d

′
n)

(p-tensor)

Program and term Precision
∀i ∈ {1, ..., n} decl′i ⊑ decli e

′ ⊑ e

decl′1, ..., decl
′
n return e′ ⊑ decl1, ..., decln return e

(p-prog) τ ′ ⊑ τ
x : τ ′ ⊑ x : τ

(p-decl)

e ⊑ e (p-refl)

Matching
TensorType(τ1, ..., τn)�

n TensorType(τ1, ..., τn)
Dyn�n TensorType(l) where l = [Dyn, ..., Dyn] and |l| = n

Figure .4: Auxiliary functions
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∅ ⊢ ⊥
s-empty

decl∗ ⊢ Γ x /∈ dom(Γ)

decl∗ id : τ ⊢ Γ : id 7→ τ
(s-var)

Figure .5: Static context formation

We need to prove that Γ′ ⊢ decl∗
′
return e′ ok.

We have that decl∗ ⊢ Γ. We consider decl∗′ ⊢ Γ′. Then we know that Γ′ ⊑ Γ.

Since Γ ⊢ e : τ , then by lemma .1, we have that Γ′ ⊢ e′ : τ ′ where τ ′ ⊑ τ . So we have that:

decl∗
′ ⊢ Γ′ Γ′ ⊢ e′ : τ ′

Γ′ ⊢ decl∗
′
return e′ ok

(ok-prog)

Lemma .1 (Monotonicity of expressions). Suppose Γ ⊢ e : τ . Then for Γ′ ⊑ Γ and Γ′ ⊢ e : τ ′

with τ ′ ⊑ τ .

We proceed by induction on e.
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Typing rules:
decl∗ ⊢ Γ Γ ⊢ e : τ
⊢ decl∗ return e ok

(ok-prog) x : τ ∈ Γ
Γ ⊢ x : τ

(t-var)

Γ ⊢ e : TensorType(D1, ..., Dn)
∏n

1 Di =
∏m

1 Ui

Γ ⊢ reshape(e, TensorType(U1, ..., Um)) : TensorType(U1, ..., Um)
(t-reshape-s)

Γ ⊢ e : TensorType(σ1, ..., σm)
m∏
1

σi mod
n∏
1

di = 0 ∨
n∏
1

di mod

m∏
1

σi = 0 ∀di, σi ̸= Dyn

and Dyn occurs exactly once in d1, ...., dm, σ1, ..., σn

or
Dyn occurs more than once in d1, ...., dm,

Γ ⊢ reshape(e, TensorType(d1, ..., dn)) : TensorType(d1, ..., dn)
(t-reshape-g)

Γ ⊢ e : τ where
τ = TensorType(σ1 ... σn)

and Dyn occurs more than once with at least one occurrence in
δ and σ1, ...., σm

or τ = Dyn

Γ ⊢ reshape(e, δ) : δ
(t-reshape)

Γ ⊢ e : t t�4 TensorType(σ1, σ2, σ3, σ4) τ = calc-conv(t, cout, κkernel) cin ∼ σ2
Γ ⊢ Conv2D(cin, cout, κkernel, e) : τ

(t-conv)

Γ ⊢ e1 : t1 Γ ⊢ e1 : t2 (τ1, τ2) = apply-broadcasting(t1, t2) τ1 ∼ τ2
Γ ⊢ add(e1, e2) : τ1 ⊓∗ τ2

(t-add)

Figure .6: Typing Rules

Case x.

We clearly have that Γ ⊢ x : τ and Γ′ ⊢ x : τ ′ and τ ′ ⊑ τ .
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Greatest lower bound:
τ ⊓ τ ′|τ ≁ τ ′ = undefined

τ ⊓ τ = τ

Dyn ⊓ τ = τ

τ ⊓ Dyn = τ

TensorType(d1, ..., dn) ⊓ TensorType(d′1, ..., d
′
n) = TensorType(d1 ⊓ d′1, ..., dn ⊓ d′n)

d1 ⊓ d1 = d1

d1 ⊓ Dyn = d1

Dyn ⊓ d2 = d2

d1 ⊓ d2|d1 ≁ d2 = undefined

Greatest lower bound *:
τ ⊓∗ τ ′|τ ≁ τ ′ = undefined

Dyn ⊓∗ τ = Dyn

τ ⊓∗ Dyn = Dyn

TensorType(d1, ..., dn) ⊓∗ TensorType(d′1, ..., d
′
n) =

TensorType(d1, ..., dn) ⊓ TensorType(d′1, ..., d
′
n)

apply-broadcasting:
apply-broadcasting(τ1, τ2) is defined in the following way:

If τ1 = Dyn ∨ τ2 = Dyn, then return τ1, τ2.
Otherwise:

• Let τ1 and τ2 be equal in length by padding the shorter type with 1’s from index 0.

• Replace occurrences of 1 in τ1 with the type at the same index in τ2.

• Replace occurrences of 1 in τ2 with the type at the same index in τ1.

calc-conv:
Let t� TensorType(σ0, σ1, σ2, σ3). Then

calc− conv(t, cout, κkernel) = TensorType(t′0, t
′
1, t

′
2, t

′
3) where:

t′0 = σ0

t′1 = cout

t′2 =

{
σ2 − 1× (κkernel[0]− 1) if σ2 ∈ N
Dyn otherwise

t′3 =

{
σ3 − 1× (κkernel[1]− 1) if σ3 ∈ N
Dyn otherwise

Figure .7: Broadcasting, convolution, and greatest lower bound

262



If two tensors x, y are “broadcastable”, let broadcast(x, y) denote the resulting tensor shapes.
The resulting tensor shapes are calculated as follows:

1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of
the tensor with fewer dimensions to make them equal length.

2. Then, for each dimension size, the resulting dimension size is the max of the shapes of
x and y along that dimension.

Figure .8: Broadcasting runtime semantics

Case add(e1, e2)

We have that:

Γ ⊢ e1 : t1 Γ ⊢ e1 : t2 (τ2, τ2) = apply-broadcasting(t1, t2) τ1 ∼ τ2
Γ ⊢ add(e1, e2) : τ1 ⊔∗ τ2

(t-add)

By applying the IH, we have that Γ′ ⊢ e1 : t′1 and Γ′ ⊢ e2 : t′2 where t′1 ⊑ t1 and t′2 ⊑ t2.

Note that apply-broadcasting preserves monotonicity, by lemma .2. Furthermore, ⊔∗ and ∼

preserve monotonicity. Therefore we can apply (t-add) again to get that Γ′ ⊢ add(e1, e2) : t
′

where t′ ⊑ t.

Case reshape(e, τ).

We will proceed with case analysis on the derivation rules.
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Consider:

Γ ⊢ e : TensorType(D1, ..., Dn)
∏n

1 Di =
∏m

1 Ui

Γ ⊢ reshape(e, TensorType(U1, ..., Um)) : TensorType(U1, ..., Un)
(t-reshape-s)

.

By applying the IH, we have that Γ′ ⊢ e : t where t ⊑ TensorType(D1, ..., Dn). First, if

t = Dyn or has more than one occurrence of Dyn then we can either t-reshape or t-reshape-g

depending on the occurrences to get that Γ′ ⊢ reshape(e, τ) : τ . If t = TensorType(U1, ..., Un)

then it must be the case that D1 = U1, ..., Dn = Un. Otherwise, we know that
∏n

1 Di =
∏m

1 Ui

and that τ ′ is the same as τ except that one dimension is replaced with Dyn. Therefore,∏n
1 Di is divisible by the product of dimensions of τ ′ so we can apply t-reshape-g or t-reshape

depending on the Dyn occurrences.

Next, consider:

Γ ⊢ e : TensorType(σ1, ..., σm)
m∏
1

σi mod
n∏
1

di = 0 ∨
n∏
1

di mod
m∏
1

σi = 0 ∀di, σi ̸= Dyn

and Dyn occurs exactly once in d1, ...., dm, σ1, ..., σn

or

Dyn occurs more than once in d1, ...., dm,

Γ ⊢ reshape(e, TensorType(d1, ..., dn)) : TensorType(d1, ..., dn)
(t-reshape-g)

From the IH, we have that Γ ⊢ e : t with t ⊑ TensorType(σ1, ..., σm). Consider t.

If t = TensorType(σ1, ..., σm) then apply t-reshape-g or t-resshape depending on the Dyn

occurrences
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Finally, we consider:

Γ ⊢ e : τ where

τ = TensorType(σ1 ... σn)

and Dyn occurs more than once with at least one occurrence in

δ and σ1, ...., σm

or τ = Dyn

Γ ⊢ reshape(e, δ) : δ
(t-reshape)

Then by the IH. we have that Γ′ ⊢ e : t where t ⊑ τ . In this case, we will apply t-reshape.

Case Conv2D(cin, cout, κkernel, e).

Then we have:

Γ ⊢ e : t t�4 TensorType(σ1, σ2, σ3, σ4) τ = calc-conv(t, cout, κkernel) cin ∼ σ2
Γ ⊢ Conv2D(cin, cout, κkernel, e) : τ

(t-conv)

From the IH, Γ′ ⊢ e′ : t′ with t′ ⊑ t and e′ ⊑ e. We know that t′ �4 (σ′
1, σ

′
2, σ

′
3, σ

′
4)

with σ′
i ⊑ σi for i ∈ {1, ..., 4}. Since calc-conv preserves monotonicity, by lemma .3, then

calc− conv(t′, cout, κkernel) = τ ′ for τ ′ ⊑ τ so we can apply t-conv and we are done.

Lemma .2 (Monotonicity of broadcasting). for t′1 ⊑ t1 and t′2 ⊑ t2, we have that if

apply-broadcasting(t1, t2) = τ1, τ2 then apply-broadcasting(t′1, t
′
2) = τ ′1, τ

′
2 where τ ′1 ⊑ τ1

and τ ′2 ⊑ τ2.
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Proof. If either t1 = Dyn or t2 = Dyn then we return t1 and t2. By the definition of precision,

we must have that either either t′1 = Dyn or t′2 = Dyn then we return t′1 and t′2 and we already

know that t′1 ⊑ t1 and t′2 ⊑ t′2 so we are done.

Otherwise, we know that t1, t2, t′1 and t′2 are tensor types.

Consider apply-broadcasting(t1, t2) = τ1, τ2 and apply-broadcasting(t′1, t
′
2) = τ ′1, τ

′
2. We

know that t1 ∼ t′1 and t2 ∼ t′2. So rank(t1) = rank(t′1) and rank(t2) = rank(t′2). Broadcasting

preserves length. Therefore, rank(τ1) = rank(τ ′1) and rank(τ2) = rank(τ ′2).

Now we must show that each of the elements are related by precision, so let t1 =

TensorType(d1, ..., dn), t
′
1 = TensorType(d′1, ..., d

′
n), t2 = TensorType(k1, ..., kn), t

′
2 =

TensorType(k′1, ..., k
′
n).

Then we will have τ1 = TensorType(δ1, ..., δn), τ
′
1 =

TensorType(δ′1, ..., δ
′
n), τ2 = TensorType(κ1, ..., κn), τ

′
2 = TensorType(κ′1, ..., κ

′
n).

Assume di = 1 then δi = ki and d′i = 1 so δ′i = k′i and we know that k′i ⊑ ki. Similarly, if

ki = 1 then κi = di and k′i = 1 so κ′i = d′i and we have that d′i ⊑ di.

Lemma .3 (Monotonicity of convolution). for tensor types t′, t :

if t′ ⊑ t and calc-conv(t, cout, κkernel) = τ then calc-conv(t′, cout, κkernel) = τ ′ where τ ′ ⊑ τ .

Proof. Consider t = TensorType(d1, ..., dn) and t′ = TensorType(d′1, ..., d
′
n). By applying

calc-conv, we have that d1 = d′1 and d2 = d′2. By inspection, d′3 ⊑ d3 and d′4 ⊑ d4.

Lemma .4 (Monotonicity of matching). if t′1 �i t′2 and t′1 ⊑ t1 then t1 �
i t2 and t′2 ⊑ t2.

Proof. Straightforward.

Theorem .5. Let τ1 ∼ τ2. Then ∃τ3 such that τ1 ⊔∗ τ2 = τ3

266



Proof. We proceed by induction on the derivation.

Consider τ ∼ τ (c-refl-t). Then τ ⊔∗ τ = τ . Next, consider τ ∼ Dyn. Then we have that

τ ⊔∗ Dyn = Dyn.

Next, consider

∀i ≤ n : τi ∼ τ ′i
TensorType(τ1, ..., τn) ∼ TensorType(τ ′1, ..., τ

′
n)

(c-tensor)

Then by induction, we have that ∀i ∈ {1, ..., n} : τ ′i ∼ τi so we have that τ ′i⊔∗τi = τi”. Then

we get that TensorType(τ1, ..., τn) ⊔∗ TensorType(τ ′1, ..., τ
′
n) = TensorType(τ1”, ..., τn”)

Theorem .6. Gradual Tensor Types are unique

Proof. Straightforward.

Theorem .7 (Conservative Extension). For all static Γ, p, we have:

Γ ⊢S p : ok iff Γ ⊢ p : ok

Forward direction. We proceed by induction on derivation.

Proof. Case ok-prog-s

decl∗ ⊢s Γ Γ ⊢s e : T
Γ ⊢s decl

∗ return e ok
(ok-prog-s)

so clearly:
decl∗ ⊢ Γ Γ ⊢ e : T

Γ ⊢ decl∗ return e ok
(ok-prog)

Case t-var is straightforward.
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Case t-reshape-s maps directly to a rule in the gradual language so it is also straightfoward.

case t-conv

Γ ⊢s e : T, T = TensorType(D1, D2, D3, D4),

S = calc-conv(T, cout, κkernel), cin = D2

Γ ⊢s Conv2D(cin, cout, κkernel, e) : S
(t-conv)

So we have:

Γ ⊢ e : t, T �4 TensorType(D1, D2, D3, D4), T = calc-conv(T, cout, κkernel),

cin ∼ σ2

Γ ⊢ Conv2D(cin, cout, κkernel, e) : T
(t-conv)

Similarly for:

Γ ⊢s e1 : T1 Γ ⊢s e1 : T2 (S1, S2) = apply-broadcasting(T1, T2) S1 = S2

Γ ⊢s add(e1 e2) : S1
(t-add)

we have:

Γ ⊢ e1 : S1 Γ ⊢ e1 : S2 (S1, S2) = apply-broadcasting(S1, S2) S1 ∼ S2

Γ ⊢ add(e1, e2) : S1 ⊔∗ S2
(t-add)

Here, note that since S1 and S2 are static and S1 = S2 then S1 ⊔∗ S2 = S1
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Backwards direction. We can proceed by induction on the derivation. We have:

decl∗ ⊢ Γ Γ ⊢ e : T
Γ ⊢ decl∗ return e ok

(ok-prog)

From decl∗ ⊢ Γ, we get that decl∗ ⊢s Γ.

From the induction on the sub derivation, we get that Γ ⊢s e : T . Therefore, :

decl∗ ⊢s Γ Γ ⊢s e : T
Γ ⊢s decl

∗ return e ok
(ok-prog)

t-var is straightforward.

t-reshape-g and t-reshape do not apply since they all involve the Dyn type.

For t-reshape-s we get:

Γ ⊢ e : TensorType(D1, ..., Dn)
∏n

1 Di =
∏m

1 Ui

Γ ⊢ reshape(e, TensorType(U1, ..., Um)) : TensorType(U1, ..., Un)
(t-reshape-s)

.

we can apply the IH and get that Γ ⊢s e : TensorType(D1, ..., Dn). Therefore:

Γ ⊢s e : TensorType(D1, ..., Dn)
∏n

1 Di =
∏m

1 Ui

Γ ⊢s reshape(e, TensorType(U1, ..., Um)) : TensorType(U1, ..., Un)
(t-reshape-s)

.
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For t-conv we get:

Γ ⊢ e : S

S �4 TensorType(D1, D2, D3, D4)

T = calc-conv(t, cout, κkernel)

cin ∼ D2

Γ ⊢ Conv2D(cin, cout, κkernel, e) : T
(t-conv)

from the IH, we get that Γ ⊢s e : S. We know that → and ∼ are equality on static types,

so we can directly apply t-conv to get

Γ ⊢s e : S

S = TensorType(D1, D2, D3, D4)

T = calc-conv(t, cout, κkernel)

cin = D2

Γ ⊢s Conv2D(cin, cout, κkernel, e) : T
(t-conv)

Next, we have:

Γ ⊢ e1 : S1 Γ ⊢ e2 : S2 (T2, T2) = apply-broadcasting(S1, S2) T1 ∼ T2
Γ ⊢ add(e1, e2) : T1 ⊔∗ T2

(t-add)

We have that Γ ⊢s e1 : T1 and Γ ⊢s e2 : T2. We know that T1 ∼ T2 so T1 = T2. Therefore,

T1 ⊔∗ T2 = T1 so we get:
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Γ ⊢s e1 : S1 Γ ⊢s e2 : S2 (T2, T2) = apply-broadcasting(S1, S2) T1 = T2
Γ ⊢s add(e1, e2) : T1

(t-add)

decl∗ ⊢ Γ decl∗ ⊢d µ evalΓ,µ(e) = v

decl∗ return e ⇓ v (ev-prog)

.4 Type Migration

From e,Γ, we generate constraints Gen(e,Γ) as follows. Assume that e has been α-converted

so that all bound variables are distinct from each other and distinct from the free variables.

Let X be the set of declaration-variables x occurring in e, and let Y be a set of variables

disjoint from X consisting of a variable [[e′]] for every occurrence of the subterm e′ in e. Let

Z be a set of variables disjoint from X and Y consisting of a variable ⟨e1⟩, ⟨e2⟩ for every

occurrence of the subterm add(e1, e2) in e. Finally, let V be a set of variables disjoint from

X, Y and Z consisting of dimension variables ζ. The notations [[e]] and ⟨e⟩ are ambiguous

because there may be more than one occurrence of some subterm e′ in e or some subterm e′′
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in e. However, it will always be clear from context which occurrence is meant. We will Now

we generate the following constraints.

(Constraints) ψ ::= ψ ∧ ψ | ψ ∨ ψ | True | False

| [[x]] = x | [[e]] = τ | τ ⊑ x

| |[[e]]| ≤ 5 | D ∼ δ | ⟨e⟩ ∼ ⟨e⟩

| [[e]]� TensorType(ζ1, ζ2, ζ3, ζ4)

| [[e]] = ⟨e⟩ ⊔∗ ⟨e⟩ | can-reshape([[e]], δ)

| [[e]] = calc-conv([[e]], cout, κkernel)

| ⟨e⟩, ⟨e⟩ = apply-broadcasting([[e]], [[e]])
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Constraint generation:

Γ ⊢ x : τ : τ ⊑ x ∧ |x| ≤ 5
(t-decl)

Γ ⊢ x : x = [[x]]
(t-var)

Γ ⊢ e : ψ

Γ ⊢ reshape(e, δ) : ψ ∪ [[reshape(e, δ)]] = δ∧

can-reshape([[e]], δ) ∧ |[[e]]| ≤ 5

(t-reshape)

Γ ⊢ e : ψ

Γ ⊢ Conv2D(cin, cout, κkernel, e) : ψ∪

[[e]]� TensorType(ζ1, ζ2, ζ3, ζ4) ∧ cin ∼ ζ2∧

[[Conv2D(cin, cout, κkernel, e)]] = calc-conv([[e]], cout, κkernel)

(t-conv)

Γ ⊢ e1 : ψ1 Γ ⊢ e2 : ψ2

Γ ⊢ add(e1, e2) : ψ1 ∪ ψ2 ∪ [[add(e1, e2)]] = ⟨e1⟩ ⊔∗ ⟨e2⟩∧

(⟨e1⟩, ⟨e2⟩) = apply-broadcasting([[e1]], [[e2]]) ∧ ⟨e1⟩ ∼ ⟨e2⟩∧

|[[e1]]| ≤ 5 ∧ |[[e2]]| ≤ 5 ∧ |[[add(e1, e2)]]| ≤ 5

(t-add)

Figure .9: Constraint generation

.4.1 Constraint resolution

First, we will describe the grammar of the resulting constraints. We define IntConst = Z+

and we use n to range over IntConst. We use v as a metavariable that ranges over variables

that range over TensorType(list(ζ)) ∪ {Dyn}, and we use ζ as a metavariable that ranges

over variables that range over IntConst ∪ {Dyn}.
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(Constraints) ψ ::= ψ ∧ ψ | ψ ∨ ψ | ¬ψ | True | False

| v = TensorType(ζ, ..., ζ) | v = Dyn | v = v

| ζ = n | ζ = Dyn | ζ = ζ

| ζ = ζ ∗ n+ n

| (ζ1 ∗ ... ∗ ζm) mod (ζ ′1 ∗ ... ∗ ζ ′n) = 0

We define a solution ψ as follows.

For each: we have:

ψ ∧ ψ′ φ ⊨ ψ ∧ ψ′

ψ ∨ ψ′ φ ⊨ ψ ∨ ψ′

¬ψ φ ⊨ ¬ψ

True φ ⊨ True

False φ ⊨ False

v = TensorType(ζ1, ...ζn) φ(v) = TensorType(φ(ζ1), ...φ(ζn))

v = Dyn φ(v) = Dyn

v = v′ φ(v) = φ(v′)

ζ = n φ(ζ) = n

ζ = Dyn φ(ζ) = Dyn

ζ = ζ ′ φ(ζ) = φ(ζ ′)

ζ = ζ ∗ n+ n′ φ(ζ) = φ(ζ ′) ∗ n+ n′

(ζ1 ∗ ... ∗ ζm) mod (ζ ′1 ∗ ... ∗ ζ ′n) = 0 (φ(ζ1) ∗ ... ∗ φ(ζm)) mod (φ(ζ ′1) ∗ ... ∗ φ(ζ ′n)) = 0
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Next, we define a series of steps for constraint resolution.

Precision constraints. We define a simplification procedure SimPrec that transforms

every Precision constraint into zero, one, or more Equality constraints:

We define SimPrec to leave the set of type variables unchanged, and to proceed by

repeating the following transformation until it no longer has an effect.

From To

Dyn ⊑ x (no constraint)

TensorType(D1, ..., Dn) ⊑ x x = TensorType(D1, ..., Dn)

TensorType(d1, ..., dn) ⊑ x x = TensorType(ζ1, ..., ζn) ∧ ∀i ∈ {1, ..., n} : di ⊑ ζi

where ζ1, ..., ζn are fresh type variables

D ⊑ ζ D = ζ

Dyn ⊑ ζ (no constraint)

Matching constraints. We define a simplification procedure SimMatch that replaces each

Matching constraint with Equality and Disjunction constraints.

From : [[e]]� TensorType(ζ1, ζ2, ζ3, ζ4)

To : ([[e]] = Dyn ∧ ζ1 = Dyn ∧ ζ2 = Dyn ∧ ζ3 = Dyn ∧ ζ4 = Dyn) ∨

([[e]] = TensorType(ζ1, ζ2, ζ3, ζ4)
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≤ constraints. We define a simplification procedure SimLessThan that replaces each

Matching constraint with Equality and Disjunction constraints.

From : |[[e]]| ≤ 4

To : [[e]] = Dyn ∨ [[e]] = TensorType(ζ1) ∨ ... ∨ [[e]] = TensorType(ζ1, ζ2, ζ3, ζ4)

where ζ1, ..., ζ4 are fresh variables

Convolution constraints.

[[e]] = calc-conv([[e′]], cout, κkernel)

First, from a previous constraint, we know that [[e′]]� TensorType(ζ1, ζ2, ζ3, ζ4)

From : [[e]] = calc-conv([[e′]], cout, κkernel)
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To : [[e]] = TensorType(ϵ1, ϵ2, ϵ3, ϵ4) ∧

ϵ1 = ζ1 ∧

ϵ2 = cout ∧

(((ϵ3 = Dyn ∧

ζ3 = Dyn) ∨

(ζ3 ̸= Dyn ∧

ϵ3 = (ζ3 − 1× (κkernel[0]− 1)− 1) + 1)) ∧

(ϵ4 = Dyn ∧

ζ4 = Dyn) ∨

(ζ4 ̸= Dyn ∧

ϵ4 = (ζ4 − 1× (κkernel[0]− 1)− 1) + 1))

Broadcasting constraints.

From : ⟨e1⟩, ⟨e2⟩ = apply-broadcasting([[e1]], [[e2]])
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[[e1]] = Dyn ∧ ⟨e1⟩ = [[e1]] ∧ ⟨e2⟩ = [[e2]] ∨

[[e2]] = Dyn ∧ ⟨e2⟩ = [[e2]] ∧ ⟨e1⟩ = [[e1]] ∨

[[e1]] = TensorType(ϵ1) ∧ ...

∨

...

∨

[[e1]] = TensorType(ϵ2) ∧

[[e2]] = TensorType(σ1, σ2) ∧

⟨e1⟩ = TensorType(ϵ′1, ϵ
′
2) ∧

⟨e2⟩ = TensorType(σ′
1, σ

′
2) ∧

ϵ′1 = σ1 = σ′
1 ∧

(σ2 = ϵ2 = σ′
2 = ϵ′2 ∨

σ2 = 1 ∧ ϵ2 ̸= 1 ∧ σ′
2 = ϵ2 = ϵ′2 ∨

ϵ2 = 1 ∧ σ2 ̸= 1 ∧ ϵ′2 = σ2 = σ′
2) ∨

...

∨

([[e1]] = TensorType(ϵ1, ϵ2, ϵ3, ϵ4) ∧

[[e2]] = TensorType(σ1, σ2, σ3, σ4) ∧

⟨e1⟩ = TensorType(ϵ′1, ϵ
′
2, ϵ

′
3, ϵ

′
4) ∧

⟨e2⟩ = TensorType(σ′
1, σ

′
2, σ

′
3, σ

′
4) ∧

((ϵ1 = σ1 = ϵ′1 = σ′
1) ∨

((ϵ1 = 1 ∧ ζ1 ̸= 1 ∧ ϵ′1 = ζ1 ∧ ζ ′1 = ζ1) ∨

(ζ1 = 1 ∧ ϵ1 ̸= 1 ∧ ζ ′1 = ϵ1 ∧ ϵ′1 = ϵ1)) ∨ ... ∨

(ϵ4 = σ4 = ϵ′4 = σ′
4) ∨

((ϵ4 = 1 ∧ ζ4 ̸= 1 ∧ ϵ′4 = ζ4 ∧ ζ ′4 = ζ4) ∨

(ζ4 = 1 ∧ ϵ4 ̸= 1 ∧ ζ ′4 = ϵ4 ∧ ϵ′4 = ϵ4)))
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Reshape constraints.

From : can-reshape([[e]], (D1, ..., Dm))

To : [[e]] = Dyn ∨

([[e]] = TensorType(ϵ1) ∧ (ϵ1 = Dyn ∨

ϵ1 ̸= Dyn ∧

ϵ1 = D1 × ...×Dn)) ∨ ... ∨

([[e]] = TensorType(ϵ1, ..., ϵ4) ∧

(∃i ∈ {1, ..., 5} : ϵi = Dyn ∧

∀ϵj ̸= Dyn : D1 × ....×Dm mod
∏

ϵj = 0)

From : can-reshape(TensorType([[e]], (D1, ..., Dyn, ..., Dm))
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To : ([[e]] = Dyn ∨ ([[e]] = TensorType(ϵ1) ∧

ϵ1 = Dyn ∨

ϵ1 ̸= Dyn ∧

ϵ1 mod D1 × ...×Dm = 0) ∨ ... ∨

([[e]] = TensorType(ϵ1, ..., ϵ4) ∧

(∃i ∈ {1, ..., 5} : ϵi = Dyn) ∨

((∀i ∈ {1, ..., 5} : ϵi ̸= Dyn) ∧

(
5∏
1

ϵi mod D1 × ...×Dm = 0 ∨D1 × ...×Dm mod
5∏
1

ϵi = 0))

⊔∗ constraints. Let κ range over Dyn and TensorType(ζ1, ..., ζm).

From : [[e]] = ⟨e1⟩ ⊔∗ ⟨e2⟩

((⟨e1⟩ = Dyn ∨ ⟨e2⟩ = Dyn) ∧ [[e]] = Dyn) ∨

∀i ∈ {1, ..., 5}(⟨e1⟩ = TensorType(ϵ1, ..., ϵi) ∧

⟨e2⟩ = TensorType(ϵ′1, ..., ϵi) ∧

[[e]] = TensorType(ζ1, ...ζi) ∧

ζ1 = (ϵ1 ⊔ ϵ′1) ∧ ... ∧ ζi = (ϵi ⊔ ϵ′i))
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⊔ constraints

From : ϵ = ζ1 ⊔ ζ2

To : ϵ = ζ1 ∧ (ζ1 = ζ2) ∨ (ϵ = ζ2 ∧ (ζ1 = Dyn)) ∨ (ϵ = ζ1 ∧ (ζ2 = Dyn))

Consistency constraints. From D ∼ ζ to ζ = Dyn ∨ (D = ζ)

From ζ1 ∼ ζ2 to (ζ1 = ζ2) ∨ (ζ1 = Dyn) ∨ (ζ2 = Dyn)

From ⟨e1⟩ ∼ ⟨e2⟩ to:

⟨e1⟩ = Dyn ∨ ⟨e2⟩ = Dyn ∨ ... ∨

(⟨e1⟩ = TensorType(ζ1, ..., ζ4) ∧

⟨e2⟩ = TensorType(ζ ′1, ..., ζ
′
4) ∧

ζ1 ∼ ζ ′1 ∧ ... ∧ ζ4 ∼ ζ ′4)

.5 Proof of the Order-Isomorphism

We define that P ′ is a Γ-migration of P (written P ≤Γ P
′) iff (P ⊑ P ′ ∧ Γ ⊢ P ′ : ok).

Given P , we define the set of Γ-migrations of P : MigΓ(P ) = {P ′ | P ≤Γ P
′}.

∀P,Γ : if FV(P ) ⊆ Dom(Γ), then (MigΓ(P ),⊑) and (Sol(Gen(P,Γ)),≤) are order-

isomorphic.
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Proof. If φ is a function from type variables to types, then we define the function Gφ from

programs to programs:

Gφ(TensorConstant) = TensorConstant

Gφ(decl1, ..., decln return e) = Gφ(decl1), ..., Gφ(decln) return Gφ(e)

Gφ(x : τ) = x : Gφ(x)

Gφ(e) = e

Let P,Γ be given; they remain fixed in the remainder of the proof. Now we define the

following function αP with the help of Gφ:

αP : Sol(Gen(P,Γ)) → MigΓ(P )

αP (φ) = Gφ(P )

Notice that Γ plays no role in the definitions of Gφ and αe. We will show that αP is a

well-defined order-isomorphism. We will do this in four steps: we will show that αP is well

defined, injective, and surjective, and that it preserves order.

Well defined. We will show that if φ ∈ Sol(Gen(P,Γ)), then αP (φ) ∈ MigΓ(P ). Suppose

φ ∈ Sol(Gen(P,Γ)). We must show

P ⊑ αP (φ) and Γ ⊢ αP (φ) : ok.

In order to show P ⊑ αP (φ), notice that P and αP (φ) differ only in the type annotations of

bound variables. If we have no bound variables in P , then P = αP (φ). Otherwise, notice
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that for every declaration of x : τ in P , we have that φ |= τ ⊑ x and Gφ(x : τ) = x : φ(τ).

So we know that P ⊑ αP (φ).

Define Extend(Γ, P ) to be Γ extended with (x : τ) for each declaration x : τ in P . In

order to show Γ ⊢ αP (φ) : ok, we first show that:

For a return expression E in P , ∀E ′ subterm of E : Extend(Γ, Gφ(P )) ⊢ Gφ(E
′) : φ([[E ′]]).

and then we get that Γ ⊢ P : ok from ok-prog.

We proceed by induction on E ′.

Case: e′ = x, where x is free in E. Notice that φ |= [[e′]] = Γ(x) and Extend(Γ, Gφ(P ))(x) =

Γ(x) and use t-var.

Case: e′ = x, where x is bound in e. Notice that φ |= [[e′]] = x and Extend(Γ, Gφ(P ))(x) =

φ(x) and use t-var.

Case: e′ = add(e1, e2). Notice that φ |= [[e1]] = ⟨e1⟩ ⊔∗ ⟨e2⟩ and

φ |= (⟨e1⟩, ⟨e2⟩) = apply-broadcasting([[e1]], [[e2]]) and φ |= ⟨e1⟩ ∼ ⟨e2⟩ From the induction

hypothesis we have Extend(Γ, Gφ(e1)) ⊢ Gφ(e1) : φ([[e1]]) and Extend(Γ, Gφ(e2)) ⊢ Gφ(e2) :

φ([[e2]]). Now we use T-Add

Case: e′ = reshape(e0, δ).

We have that φ |= [[reshape(e0, δ)]] = δ and φ |= can-reshape([[e0]], δ). By induction, we have

Extend(Γ, Gφ(P )) ⊢ Gφ(e0) : φ([[e0]]). Consider the definition of φ |= can-reshape([[e0]], δ).

We have that if Dyn does not occur in δ and φ([[e0]])
∏
δ =

∏
φ([[e0]]) then we can use t-

reshape-s. Otherwise, based on the occurrences of Dyn in φ([[e0]]) and δ, we can use t-reshape-g

or t-reshape.
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Case: Conv2D(cin, cout, κkernel, e0). We have φ |= [[e0]] � TensorType(ζ1, ζ2, ζ3, ζ4) and

φ |= cin ∼ ζ2 and φ |= [[Conv2D(cin, cout, κkernel, e0)]] = calc-conv([[e0]], cout, κkernel). By

induction, we get that Extend(Γ, Gφ(P )) ⊢ Gφ(e) : φ([[e0]]). Then we use t-conv.

Injective. We will show that αP is injective, that is, we will show that

if αP (φ) = αP (φ
′), then φ = φ′.

Suppose αP (φ) = αP (φ
′).

From the definition of αP we see that for every declaration x : τ in P we have φ(x) = φ′(x).

We will show that for every declaration x : τ , φ(x) = φ′([[x]]). Note that for every variable

declaration x : τ , we have that φ |= τ ⊑ x and φ′ |= τ ⊑ x and since αP (φ) = αP (φ
′) then

φ(x) = φ′(x).

Next we show that for every occurrence of a subterm e′ in the return expression e, we

have φ([[e′]]) = φ′([[e′]]), and for every occurrence of a subterm add(e1, e2), we have that

φ(⟨e1⟩) = φ(⟨e′1⟩) and φ(⟨e1⟩) = φ(⟨e′1⟩). We proceed by induction on E ′.

Case: e′ = TensorConstant. From φ |= [[e′]] = shape(TensorConstant) and φ′ |= [[e′]] =

shape(TensorConstant) , we have φ([[e′]]) = shape(TensorConstant) = φ′([[e′]]).

Case: e′ = x, where x is bound in E. From φ |= [[e′]] = x and φ′ |= [[e′]] = x, we have

φ([[e′]]) = φ(x) = φ′(x) = φ′([[e′]]).

Case: e′ = reshape(e0, δ). From the induction hypothesis, we have φ([[e0]]) = φ′([[e0]]).

From φ |= can-reshape([[e0]], δ) and φ′ |= can-reshape([[e0]], δ) we have φ([[e′]]) = φ′([[e′]]) =

δ.

Case e′ = Conv2D(cin, cout, κkernel, e0). From the induction hypothesis, we have φ([[e0]]) =

φ′([[e0]]). From φ |= [[e0]]�TensorType(ζ1, ζ2, ζ3, ζ4) and φ′ |= [[e0]]�TensorType(ζ1, ζ2, ζ3, ζ4),
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φ |= cin ∼ ζ2 and

φ′ |= cin ∼ ζ2 and φ |= [[Conv2D(cin, cout, κkernel, e0)]] = calc-conv([[e0]], cout, κkernel) and φ′ |=

[[Conv2D(cin, cout, κkernel, e0)]] = calc-conv([[e0]], cout, κkernel) we have that φ([[e′]]) = φ′([[e′]]).

Case e′ = add(e1, e2). From the induction hypothesis, we have φ([[e1]]) = φ′([[e1]]) and

φ([[e2]]) = φ′([[e2]]). Then we have φ |= (⟨e1⟩, ⟨e2⟩) = apply-broadcasting([[e1]], [[e2]])

and φ′ |= (⟨e1⟩, ⟨e2⟩) = apply-broadcasting([[e1]], [[e2]]) and φ |= ⟨e1⟩ ∼ ⟨e2⟩ and φ′ |=

(⟨e1⟩, ⟨e2⟩) = apply-broadcasting([[e1]], [[e2]]). So we have that φ([[e′]]) = φ′([[e′]]).

Surjective. We will show that αP is surjective, that is, we will show that

if P0 ∈ MigΓ(P ), then ∃φ ∈ Sol(Gen(P,Γ)) : P0 = αP (φ).

From P0 ∈ MigΓ(P ) we have P ⊑ P0 and Γ ⊢ P0 : ok. From Γ ⊢ P0 : ok we have that

Extend(Γ, P0) ⊢ P0 : ok.

We define φ as follows. Consider a derivation D of Extend(Γ, P0) ⊢ P0 : ok. First, for

x ∈ Dom(Extend(Γ, P0)), define φ(x) = Extend(Γ, P0)(x). Second, for every occurrence of a

subterm e′ of the return expression e0, find the judgment in D of the form Γ′ ⊢ e′ : τ ′, and

define φ([[e′]]) = τ ′. Then for the subterm e′ of the form add(e1, e2) in e0, find the use of

T-Add for e′ and in that use, find the equation ((τ1, τ2) = apply-broadcasting(t1, t2) , and

define φ(⟨e1⟩) = τ1 and φ(⟨e2⟩) = τ2.

We must show that φ ∈ Sol(Gen(P,Γ)). First note that for every variable declaration

x : τ we have that φ(x) = τ .

Next, we will do a case analysis of the occurrences of subterms e′ in the return expression

e.
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Case: e′ = TensorConstant. We have that φ([[e′]]) = shape(TensorConstant) so φ |=

[[e′]] = shape(TensorConstant).

Case: e′ = x, where x is bound in E. From (t-var) we have that φ([[e′]]) = φ(x) so

φ |= [[e′]] = x.

Case: e′ = add(e1, e2) : τ1. The derivation D contains this use of T-Add:

Γ ⊢ e1 : t1 Γ ⊢ e1 : t2 (τ2, τ2) = apply-broadcasting(t1, t2) τ1 ∼ τ2
Γ ⊢ add(e1, e2) : τ1 ⊔∗ τ2

(t-add)

So, φ([[e1]]) = τ1 and φ([[e2]]) = τ2. By examining our constraints and the fact that

αP (φ) = Gφ(P ) = P0, we are done. We know that αP (φ) = Gφ(P ) = P0 is that P0 differs

from P only in the type annotations of variable declarations.

Case e′ = Conv2D(cin, cout, κkernel, e). We consider the use of T-Conv2D and inspect the

constraints and apply the reasoning above.

Case e′ = reshape(e′, δ). We consider the use of either T-reshape-s, T-reshape or

T-reshape-g and inspect the constraints and apply the reasoning above.

Preserves order. We will show that αP preserves order, that is, we will show that

if φ ≤ φ′, then αP (φ) ⊑ αP (φ
′).

Suppose that φ ≤ φ′.

First, for variable declarations x : τ , from φ ≤ φ′ we have φ(x) ⊑ φ′(x). From the

definition of Gφ and p-decl, we have that Gφ(x : τ) = x : φ(x) ⊑ x : φ′(x) = Gφ′(x : τ)

For the return expression e, we want to show the stronger statement that
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if φ ≤ φ′, then ∀e′ : Gφ(e
′) = Gφ′(e′).

Note that this is straightforward. The reason is that Gφ′(e′) = e′ = Gφ′(e′)
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