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ABSTRACT OF THE DISSERTATION

Integral and Euclidean Ramsey Theory

by

Eric Tressler

Doctor of Philosophy in Mathematics

University of California San Diego, 2010

Professor Ronald Graham, Chair

Ramsey theory is the study of unavoidable structure within a system. This idea is very

broad, and also useful in many applications, so the theory is vast. The original theorem

of Ramsey [32] states that given k, there is n such that for any graph G on n vertices,

either G or its complement contain Kk as a subgraph. Statements like this can be made

about any mathematical structure, but this dissertation will focus on sets of integers

and on Euclidean space, both of which support a large literature within Ramsey theory.

Finally, we will consider a problem in extremal combinatorics, a field that has a large

intersection with Ramsey theory.
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Chapter 1

Introduction

Ramsey theory is named after Frank Ramsey, who in 1930 proved what is now

known as Ramsey’s theorem [32]. Though not Ramsey’s original formulation, one com-

mon special case of Ramsey’s theorem states that given an arbitrary n, there exists a least

R(n) such that if the edges of the complete graph KR(n) are partitioned into two sets A and

B, one of the parts must contain a copy of Kn. In the more typical “chromatic” terminol-

ogy, we say that whenever the edges of KR(n) are 2-colored, there exists a monochromatic

Kn.

This theorem is especially easy to illustrate in the case n = 3. Figure 1.1 shows a

2-coloring of the edges of K5 with no monochromatic K3, demonstrating that R(3) > 5.

However, it is not possible to 2-color the edges of K6 red and blue without forming

a triangle, as is easily shown: let x be some vertex in K6; x has degree 5, so by the

pigeonhole principle, some 3 of the edges connected to x must be colored alike. Without

loss of generality, suppose the edges {x, y1}, {x, y2}, and {x, y3} are all red. If any of the

edges {y1, y2}, {y1, y3}, or {y2, y3} are red, then we have a monochromatic red triangle. If

all three of these edges are blue, then we have a monochromatic blue triangle. In either

case, there must exist a monochromatic K3, so R(3) = 6.

Ramsey’s theorem is archetypical of Ramsey theory as a whole, and it demonstrates

the central tenet of Ramsey theory: in a large enough system, there is always structure.

A few other results in Ramsey theory, apart from those in the following chapters, are

given here to show the massive scope of Ramsey theory:

1
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Figure 1.1: A 2-coloring of K5 with no monochromatic triangle.

Theorem 1 (Pigeonhole Principle). If k + 1 balls are placed into k bins, then some bin

contains at least 2 balls.

Theorem 2 (Hindman [25]). For any k, r > 0, if the subsets of N of size k are r-colored,

then there exists an infinite A ⊂ N all of whose subsets of size k are the same color.

Theorem 3 (Erdős-Szekeres [12]). For any k, there exists n such that any n points in

general position in the plane must contain a convex k-gon.

Theorem 4 (Kneser). If G is a nontrivial abelian group, and A and B are nonempty

finite subsets of G such that |A| + |B| ≤ |G|, then there exists a proper subgroup H of G

such that

|H| ≥ |A| + |B| − |A + B|.

Theorem 5 (Mantel’s Theorem). A graph on n vertices with at least bn2

4 c contains a

triangle.

The notion of a Ramsey-type theorem is very general, and Ramsey theory touches

on almost any conceivable mathematical object. Here we will be particularly interested

in two specific topics: first, we will discuss Ramsey theory on the integers, and then

in Chapter 3 we will look at Euclidean Ramsey theory. Finally, in Chapter 4 we look

at a problem in extremal graph theory, a subject many of whose theorems (including

Mantel’s Theorem above) might also be considered Ramsey theorems.



Chapter 2

Ramsey Theory on the Integers

As indicated in Chapter 1, when the integers are finitely colored in any way, there

are highly structured monochromatic subsets. Several classical theorems deal with these

structures; the first we introduce is Schur’s theorem.

Theorem 6 (Schur [33]). For any r, there is a least integer N such that if [N] is r-

colored, then there exists a monochromatic solution to the equation x + y = z with

x > y > 0.

A generalization of Schur’s theorem is Folkman’s theorem, published 54 years later;

below, for S ⊂ N, let ∑
(S ) B

∑
s∈A

s : A ⊆ S , A , ∅

 .
Theorem 7 (Folkman [13]). For any r, if N is r-colored there exist arbitrarily large

finite S ⊂ N with
∑

(S ) monochromatic.

A further extension of this idea comes from Neil Hindman, in a 1974 paper:

Theorem 8 (Hindman [24]). For any r, if N is r-colored, then there exists S ⊆ N infinite

such that
∑

(S ) is monochromatic.

The three theorems above do not tell the complete story of this problem. Schur’s

theorem has other well-known extensions – see chapters 8 and 9 of Ramsey Theory on

the Integers [30] and chapter 3 of Ramsey Theory (Second Edition) [20] for more on

these. There are still many related open questions, though, that have resisted attack.

3
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For instance, Schur’s theorem guarantees that if the integers are finitely colored, there

is a monochromatic set of the form {x, y, x + y}. It is also known (following quickly

from Schur’s theorem) that the same is true of sets of the form {x, y, xy}. It is still an

open question, though, whether for every r, if the integers are r-colored, there must be a

monochromatic set of the form {x, y, x + y, xy}.

Now we turn to the celebrated theorem of van der Waerden on arithmetic progres-

sions:

Theorem 9 (van der Waerden [41]). For any k, r ∈ N, there is a least integer w(k, r)

such that if [w(k, r)] is r-colored there must exist a monochromatic k-term arithmetic

progression (that is, a set of the form {a + bd : 0 ≤ b ≤ k − 1, d > 0}).

Van der Waerden’s theorem is probably the most widely-known Ramsey theorem on

the integers, and there is a wide literature surrounding it. Shelah showed that the upper

bounds on w(k, r) are primitive recursive [34], and in 2001 W.T. Gowers showed [19]

that

w(k, 2) ≤ 22222k+9

,

a result of work that led to his receiving the Fields medal.

There are other interesting and highly nontrivial facts about arithmetic progressions

– in 1975, Endre Szemerédi proved a much strengthened generalization of van der Waer-

den’s theorem, now known as Szemerédi’s Theorem:

Theorem 10 (Szemerédi [39]). If A ⊂ N has positive upper density – that is, if

lim sup
n→∞

|A ∩ [n]|
n

> 0,

then A contains arbitrarily long arithmetic progressions.

In 2004, Ben Green and Terence Tao proved that the primes contain arbitrarily long

arithmetic progressions [21]; of course, the primes do not have positive upper density.

As
∑

p prime
1
p = ∞, this work is a special case of a famous conjecture of Erdős:

Conjecture 1. If A ⊂ N satisfies ∑
a∈A

1
a

= ∞,

then A contains arbitrarily long arithmetic progressions.
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To date, it has not been shown that a set A satisfying the conditions of the conjecture

must contain even a 3-term arithmetic progression – the field of Ramsey theory on the

integers is alive and well.

In Landman and Robertson’s book Ramsey Theory on the Integers, there are dis-

cussions of several different variants of the van der Waerden numbers (i.e., replacing

the arithmetic progressions in van der Waerden’s theorem with other related structures),

many of which have interesting and surprising properties. We examine some of these

below.

2.1 Variants of van der Waerden numbers

2.1.1 Multi-Arithmetic Progressions

A multi-arithmetic progression (or MAP) of length k and gap size m is an increasing

sequence {x j}
k
j=1 ⊂ N such that {x j+1 − x j : j > 1} has cardinality m. Given an increasing

sequence x1, . . . , xk, call the x j+1 − x j the lengths of the gaps. Note that multi-arithmetic

progressions with gap size 1 are simply arithmetic progressions.

Define Bm(k, r) to be the least integer N such that for any r-coloring of [N], there

exists a monochromatic MAP of length k and gap size m. Bm(k, r) exists for all m, k, r >

0 because B1(k, r) exists by van der Waerden’s theorem, and clearly Bm(k, r) ≤ Bn(k, r)

for m > n. Given m, k, r below, we will call an r-coloring of [N] good if it contains no

monochromatic MAP of length k and gap size m.

Proposition 1. If k +
m(m+1)

2 > (k − 1)r + 1, then Bm(k, r) = (k − 1)r + 1.

Proof. To see that Bm(k, r) ≥ (k − 1)r + 1, note that in the interval [(k − 1)r], letting

each color appear k − 1 times gives a good coloring. To see the other direction, observe

that for Bm(k, r) to exceed (k − 1)r + 1, there must exist a good coloring χ of [(k −

1)r + 1], which implies by the pigeonhole principle that some color (say red) must show

up at least k times. Moreover, these k red elements must have at least m + 1 distinct

consecutive differences, or else they form a MAP. There are k − 1 total consecutive

differences between our red elements, of which (k − 1) − m can be taken to be 1. The

m remaining consecutive differences must be distinct from 1, so of course the minimal
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case is that we take these to be 2, 3, . . . ,m + 1. Thus, our interval must be of length at

least k (the number of our red elements) plus the sum of the differences:

N B k + [(k − 1) − m] +

m+1∑
i=2

i

= k + [(k − 1) − m] +
(m + 1)(m + 2)

2
− 1

= 2k − m − 2 +
(m + 1)(m + 2)

2

to accommodate our red elements. If N > (k − 1)r + 1, then there is no good coloring of

[(k − 1)r + 1], so Bm(k, r) = (k − 1)r + 1. �

In Table 2.1 we list some nontrivial values of Bm(k, r), obtained with a computer and

an optimized (but essentially brute force) algorithm. Note that though these numbers

appear to grow much more slowly than the van der Waerden numbers, there are very

many more multi-arithmetic progressions than arithmetic progressions. For any k, there

are O(n2) arithmetic progressions in [n]; for multi-arithmetic progressions with gap size

2, there are
(

n
2

)
choices of gap lengths. Given a pair a < b of gap lengths, and a number

of times 1 ≤ i < k − 1 a appears as a gap length, there are O(n) multi-arithmetic pro-

gressions, and hence O(n3) total MAPs of gap size 2. This makes exhausting over the

space of possible r-colorings computationally very expensive, and of course the expo-

nent grows with the gap size. The following proposition, used in some of the computer

calculations, shows that this estimate is essentially correct.

Proposition 2. There are fewer than

mk−1nm+1

2(k − 1)

MAPs of length k and gap size m in [n].

Proof. Fix n and let f (x) be the number of MAPs in [n] of length k and gap size m

whose minimal gap length is x. Since there are k − 1 gaps, f (x) = 0 for x ≥ n/(k − 1).

Since a MAP of length k and minimal gap length x spans at least k + x(k − 1) integers,

there are only (n − k − x(k − 1) + 1) ≤ (n − x(k − 1)) valid starting positions for such a

MAP. There are fewer than
(

n−x
m−1

)
choices for the remaining gap lengths and mk−1 MAPs
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associated to each starting position and set of gap lengths, so

f (x) ≤
(
n − x
m − 1

)
(n − x(k − 1))mk−1 ≤ nm−1(n − x(k − 1))mk−1.

Therefore the total number of MAPs of length k and gap size m is at most

bn/(k−1)c∑
x=0

f (x) ≤
bn/(k−1)c∑

x=0

nm−1(n − x(k − 1))mk−1

≤ nm−1mk−1

( n2

k − 1

)
− (k − 1)

n/(k−1)∑
x=0

x


= nm−1mk−1

[(
n2

k − 1

)
−

(
k − 1

2

) ( n
k − 1

) (n + k − 1
k − 1

)]
< nm−1mk−1

[(
n2

k − 1

)
−

(n
2

) ( n
k − 1

)]
= nm−1mk−1

(
n2

2(k − 1)

)
=

mk−1nm+1

2(k − 1)
.

�

B2(4, 2) = 9 B3(5, 3) = 17 B4(6, 3) = 19

B2(4, 3) = 16 B3(5, 4) = 27 B4(6, 4) = 29

B2(4, 4) = 25 B3(6, 3) = 25 B4(7, 3) = 24

B2(4, 5) = 37 B3(7, 2) = 15 B4(8, 3) = 31

B2(5, 2) = 14 B3(7, 3) = 35 B4(11, 2) = 23

B2(5, 3) = 35 B3(8, 2) = 19 B4(12, 2) = 25

B2(6, 2) = 21 B3(9, 2) = 23 B4(13, 2) = 29

B2(7, 2) = 28 B3(10, 2) = 27 B4(14, 2) = 31

B2(8, 2) = 41 B3(11, 2) = 32 B4(15, 2) = 35

B2(9, 2) = 53 B3(12, 2) = 37 B4(16, 2) = 38

B4(17, 2) = 41

Table 2.1: Some nontrivial values of Bm(k, r).
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Proposition 3. For m + 2 ≤ k ≤ 2m and r ≥ 2,

Bm(k, r) <
(
k − m

2

)
(Bm(k, r − 1)2 + Bm(k, r − 1)).

Proof. Fix m ≥ 1, m + 2 ≤ k ≤ 2m, and r ≥ 2. Now let N ∈ N and consider a coloring

χ of the interval [N]. Without loss of generality, call χ(1) the color red. Observe that

since k ≤ 2m, if:

1. there are at least k red elements in [N], and

2. among the gaps between consecutive red elements, some gap length ` appears at

least k − m times,

then χ cannot be a good coloring of [N]. Indeed, suppose that both these conditions

hold, and let {x j} be the red elements straddling the first k−m gaps of length `. Since the

gap of length ` appears k − m times, there are at least k − m + 1 elements among the x j

(this will happen when the gaps of length ` are all consecutive). If the set {x j} does not

comprise at least k elements, add red elements arbitrarily so that we have k elements.

In this case it is easy to see that {x j} is a red MAP of length k with gap size m: among

the k red elements in this sequence, the gap length ` appears at least k − m times, so of

the k − 1 total gaps, there can be at most m distinct gaps. That is, χ is a bad coloring.

Now suppose χ is a good coloring of [N]. Then the above two properties cannot

hold for any color, in particular not for red. Observe now that the gap lengths between

consecutive red elements can be at most Bm(k, r − 1) − 1, for by definiton there is no

coloring of [Bm(k, r − 1)] with r − 1 colors that avoids a MAP of length k and gap size

m. Thus the only possible gap lengths between red colors are {0, 1, . . . , Bm(k, r− 1)− 1},

and since χ is a good coloring, each of these can appear at most k−m−1 times between

red elements; in addition, there may be at most Bm(k, r − 1) − 1 elements of other colors

after the last red element. Since {0, 1, . . . , Bm(k, r − 1) − 1} has cardinality Bm(k, r − 1),

there can be at most (k − m − 1)Bm(k, r − 1) + 1 red elements.

Let B B Bm(k, r − 1). Summing the maximal possible red elements and the possible

gap lengths, along with the elements of other colors that may appear after the last red
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element, we get

N ≤ [(k − m − 1)B + 1] +

(k − m − 1)
B−1∑
i=0

i

 + [B − 1]

= [(k − m − 1)B + 1] +

[
(k − m − 1)

B(B − 1)
2

]
+ [B − 1]

=

(
k − m − 1

2

)
B2 +

(
k − m + 1

2

)
B

=

(
k − m

2

)
B2 +

(
k − m

2

)
B +

B − B2

2

<

(
k − m

2

)
(B2 + B)) − 1,

where
Bm(k, r − 1) − Bm(k, r − 1)2

2
< −1

since k ≥ m + 2 implies k ≥ 3, so Bm(k, r − 1) ≥ Bm(k, 1) = k ≥ 3.

Now we have shown that assuming χ is a good coloring of [N] implies that

N <

(
k − m

2

)
(Bm(k, r − 1)2 + Bm(k, r − 1)) − 1,

so that even adding 1 to the righthand side will force the coloring to be bad:

Bm(k, r) <
(
k − m

2

)
(Bm(k, r − 1)2 + Bm(k, r − 1)).

�

Corollary 1. For m + 2 ≤ k ≤ 2m,

Bm(k, r) ≤ k2r−1,

with equality iff r = 1.

Proof. Fix m ≥ 1 and m + 2 ≤ k ≤ 2m. Bm(k, 1) = k, so by the above

Bm(k, 2) < (k − m)(k2 + k) = k3 + k2 − mk2 − mk < k3.
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Now suppose Bm(k, r) < k2r−1 for some r ≥ 2. Then by the above proposition,

Bm(k, r + 1) < (k − m)
((

k2r−1
)2

+ k2r−1
)

= (k − m)
(
k2r+1−2 + k2r−1

)
= k2r+1−1 + k2r

− mk2r+1−2 − mk2r−1

< k2r+1−1 + k2r
− k2r+1−2

< k2r+1−1 + k2r
− k2r

= k2r+1−1,

so the result holds by induction. �

Proposition 4. For all r, we have the inequalities

w(3, r) = B1(3, r) ≤ B2(5, r),

w(3, r) = B1(3, r) ≤ B3(9, r),

and

w(4, r) = B1(4, r) ≤ B2(11, r).

Proof. We will prove these three inequalities in order, treating the consecutive dif-

ferences among MAP elements as words to facilitate the proof. That is, the MAP

{1, 3, 5, 6, 8} would correspond to the word 2212. For the first inequality, consider an

r-coloring of [B2(5, r)]. By definition, this coloring contains a monochromatic 5-term

MAP with gap size 2. Call the two gap lengths a and b. If any pair of these appears

in succession, that forms a monochromatic 3-term AP. Otherwise, up to symmetry, the

only possibility is that the sequence of gaps is abab, so that the first, third, and fifth

terms in the MAP form a 3-term AP. In either case, w(3, r) ≤ B2(5, r).

Now consider an r-coloring of [B3(9, r)]. Again by definition, this coloring contains

a monochromatic 9-term MAP with gap size 3; call the gap lengths a, b, and c. Without

loss of generality let the first two gaps be a and b (as above, no two can appear in

succession). Applying the rule that no two blocks of gaps with the same sum can appear

in succession (as in abccab, for a+b+c = c+a+b, the tree in Figure 2.1 shows the only

possible gap sequences that can occur. None has as many as 8 gaps, contradicting the
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ab

abaaba abc

abac

abaca abacb

abacab

abacaba

abacba abacbc

abacbab

abca

abcab abcac

abcaba

abcb

abcba

abcbab

abcbabc

Figure 2.1: Proof of the inequality that w(3, r) ≤ B3(9, r) for all r.

fact that there exists a monochromatic 9-term MAP. Thus, our r-coloring does indeed

contain a monochromatic 3-term AP.

Finally, let χ be an r-coloring of [B2(11, r)]; then χ necessarily contains a MAP of

length 11 and gap size 2 in some color, say red. Call the gap lengths a and b. Now

we have a gap sequence that looks like x1, x2, . . . , x10, where the x j are valued either

a or b. If, for any j, x j = x j+1 = x j+2, or x j + x j+1 = x j+2 + x j+3 = x j+4 + x j+5, or

similarly for nine gaps, then clearly we will have discovered a red 4-term AP. However,

it is easy to check (as in the second inequality) that there is no sequence of ten gaps that

can avoid such a configuration; the unique maximal configurations with nine members

are, lexicographically, aabbabbaa, aabbabbab, abaabaabb, babbabbaa, bbaabaabb,

and bbaabaaba. Thus χ contains a monochromatic AP of length 4, completing the

proof. �

Interestingly, after trying to extend the above ideas, I found paper by T. C. Brown

entitled “Is there a sequence on four symbols in which no two adjacent segments are

permutations of one another?” in the American Mathematical Monthly from 1971 [3].

Later, a paper appears by F. M. Dekking showing that there is a sequence on two

symbols with no four adjacent segments that are permutations of each other, and also

that there is a sequence on three symbols with no three adjacent segments that are per-

mutations of one another [6].

Finally, in 1992 Veikko Keränen answered Brown’s question in the affirmative [27],
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and so Proposition 4 above cannot be extended via the methods used in its proof. Now

we present our final upper bound on values of Bm(k, r), after a definition and a lemma.

Definition 1. A k-cube H is a set of integers of the form a + {0, d1}+ {0, d2}+ · · ·+ {0, dk}

with di , d j for i , j. H is said to be nondegenerate if |H| = 2k (this would not occur

if, for example, a + d1 + d2 = a + d3). Finally, we will call H proper if

d j >
∑
i< j

di.

Proposition 5 (Specialization of Szemerédi’s Cube Lemma). Among any r-coloring of

[n] there exists a monochromatic proper K-cube, where

K ≥ log log n − log log r − 1.

Proof. Let A0 ⊂ [n] be the largest monochromatic subset under our coloring, so that

|A0| ≥ n/r. We will define Ak+1 recursively as follows: among all the subsets of Ak,

choose the largest S ⊂ Ak such that S is symmetric with respect to reflection about some

a or a + 1/2, a ∈ [n], with a < S if S is symmetric about a. Define Ak+1 to be the first

half of S . Provided that |Ak| ≥ 2, it will always be possible to define Ak+1 nontrivially.

This process must stop; eventually some AK will have precisely one element, which

corresponds to a 2-cube in AK−1, further to a proper 3-cube in AK−2, and so on. We

would like to estimate K.

Observe that if [m] is r-colored and there are ` ≥ 2 red elements, we can consider

reflections about each element of m and also about the points between consecutive el-

ements. Since we care only about pairings of red elements across points of reflection,

there are only 2m − 3 nontrivial reflections: those about 3/2, 2, . . . ,m − 1/2. If we let

f (x) be the total number of pairings produced by reflection about x, then since each pair

of red elements contributes exactly 1 pairing,

2m−3∑
i=1

f (1 + i/2) =

(
`

2

)
.

In particular, there must be some reflection that results in at least(
`
2

)
2m − 3

>

(
`
2

)
2m
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pairings.

Since Ak lies within the first half of Ak−1, Ak is contained in an interval of length at

most bn/2kc, so there are less than n21−k nontrivial reflections of Ak, among which
(
|Ak |

2

)
pairings must occur. I claim now that as long as |Ak−1| ≥ 2,

|Ak| >
n

22k+k−1r2k −
1
rk .

Clearly this bound holds for A0. Suppose it holds for Ak and that |Ak| ≥ 2; then

|Ak+1| >

(
|Ak |

2

)
n21−k

>

(
1

n22−k

) (
n

22k+k−1r2k −
1
rk

) (
n

22k+k−1r2k −
1 + rk

rk

)
>

(
1

n22−k

) (
n2

(22k+k−1r2k)2
−

n(rk + 2)
rk22k+k−1r2k

)
=

(
1

n22−k

) (
n2

22k+1+2k−2r2k+1 −
n(rk + 2)

rk22k+k−1r2k

)
=

n
22k+1+kr2k+1 −

rk + 2
22k+1r2k+k

>
n

22k+1+kr2k+1 −
4rk

22k+1r2k+k

≥
n

22k+1+kr2k+1 −
1

r2k

≥
n

22k+1+kr2k+1 −
1

rk+1 .

Therefore, the result holds by induction, and to estimate K above we simply need to

determine how large k can be while still ensuring that |Ak| ≥ 2. By our bound above, we

require only that
n

22k+k−1r2k −
1
rk ≥ 1,

which will hold if
n

22k+k−1r2k ≥ 2,

or, equivalently, if n ≥ 22k+kr2k
. Since

n ≥ 22k+kr2k
⇐= n ≥ r2k+2

⇐= log logr n ≥ k + 2,

it is sufficient that k ≤ log logr n − 2. Since this inequality is sufficient to imply |Ak| ≥ 2,

and we can proceed one step in our construction beyond this point,

K ≥ log logr n − 1 = log log n − log log r − 1.
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�

Corollary 2. From the proof above we get the estimate

Bdlog ke(k, r) < 22k+kr2k
.

Of course, the most interesting goal would be to find bounds on the function B2(k, r),

as that is the most basic extension (in this direction) of the van der Waerden numbers.

2.1.2 Arithmetic Progressions in Arbitrary Sets

Another natural way to generalize van der Waerden’s theorem is to change the set

that is being partitioned, rather than changing the structure that is forbidden (as in the

case of multi-arithmetic progressions). In this section we will restrict ourselves to the

case of 2 colors, though the ideas here generalize to r colors. Define w∗(k) to be the

least integer such that there exists a set A ⊂ N with |A| = w∗(k) and with the property

that any 2-coloring of A contains a monochromatic k-term arithmetic progression (kAP

for brevity). Clearly w∗(k) ≤ w(k, 2) for all k; in fact, Ron Graham has asked whether

w(k, 2) − w∗(k)→ ∞.

Before we proceed, we need one more definition. Define the function f (s, t) (s < t)

to be the least integer such that there exists A ⊂ N with |A| = f (s, t) and with the prop-

erties that any 2-coloring of A contains a monochromatic s-term arithmetic progression,

and A contains no t-term arithmetic progression. The function f (s, t) was shown to exist

for all s < t by Joel Spencer.

Proposition 6. f (3, 4) = w∗(3) = w(3, 2) = 9.

We have the trivial inequalities w∗(3) ≤ w(3, 2) and w∗(3) ≤ f (3, 4), and it is well-

known that w(3, 2) = 9. Throughout this section, let S B {1, 3, 5, 9, 10, 15, 17, 19, 29};

this set demonstrates that f (3, 4) ≤ 9. To prove Proposition 6, then, it will suffice to

prove that w∗(3) > 8. The final steps of the proof require computer calculations, to

which we will apply the following lemma:

Lemma 1. For A ⊂ N with |A| = n, the number of 3-term arithmetic progressions in A

is less than or equal to the number of 3-term APs in [n].
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Proof. Let A = {x1, . . . , xn}, x1 < · · · < xn, and let P = {(xi, x j, xk) ∈ A3 : i < j <

k, x j − xi = xk − x j} be the set of all 3-term APs in A. Let Pd = {(xi, x j, xk) ∈ P :

min( j − i, k − j) = d}. The Pd clearly partition P. If we define Q and Qd analogously

for the set [n], it will suffice to show that |Pd| ≤ |Qd|. So fix d and define a function

f : Pd → Qd as follows. For (xi, x j, xk) ∈ Pd,

f ((xi, x j, xk)) =


(i, j, j + d) if ( j − i) = d ≤ (k − j),

( j − d, j, k) if (k − j) = d < ( j − i).

f is clearly well-defined. To see that f is injective, note that the only preimages of (i, j, k)

under f are (xi, x j, x`) for ` ≥ k and (xh, x j, xk) for h ≤ i. Clearly (xi, x j, x`) a 3-term AP

precludes (xi, x j, xm) from being a 3-term AP for all m , `. Thus the only difficulty is

if (xh, x j, xk) and (xi, x j, x`) are distinct 3-term APs (i.e., xh , xi). However this cannot

happen; it would imply that (xi, x j, xk) is a 3-term AP, a contradiction to xh , xi. Thus

we have shown that |Pd| ≤ |Qd| for arbitrary d; it follows that |P| ≤ |Q|. �

We can give a short proof that w∗(3) > 6 by hand.

Proposition 7. w∗(3) > 6.

Proof. We will show that for any 6 natural numbers x1 < · · · < x6, there is a 2-coloring

that avoids a monochromatic 3-term AP. Let x1 < · · · < x6 be arbitrary natural numbers,

and consider the colorings (where r and b represent red and blue, respectively) rrrbbb

and rrbbbr (that is, in the former coloring x1 is red, x2 is red, and so on). Suppose

both of these colorings result in a monochromatic 3-term AP. Then among the two pairs

{(x1, x2, x3), (x4, x5, x6)} and {(x1, x2, x6), (x3, x4, x5)}, one member of each pair must be in

arithmetic progression. Without loss of generality, we may assume that {x1, x2, x3} is in

progression. Thus {x1, x2, x6} cannot be, so {x3, x4, x5} must be. Note that this precludes

{x3, x4, x6} from being in progression, and likewise {x1, x2, x5} cannot be in progression,

so that the coloring rrbbrb avoids monochromatic 3-term APs. �

It is not too hard to show that w∗(3) > 7 by hand, though the proof is a lengthy case

analysis. We give only part of the proof here.

Proposition 8. w∗(3) > 7.
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Proof. Let x1 < · · · < x7 be arbitrary natural numbers, A = {x1, . . . , x7}. Suppose by way

of contradiction that A cannot be 2-colored to avoid monochromatic 3-term arithmetic

progressions. Note that if some xi is in at most one 3-term AP, then by Proposition 7

we can color the remaining six elements of A to avoid monochromatic 3-term APs, and

then color xi to achieve a coloring of A with no monochromatic 3-term APs. Now if

{x1, x2, x7} are in progression, then x1 cannot be involved in any other 3-term APs: if

x j > x2, then {x1, x j, xk} being in progression would imply that xk > x7, a contradiction.

Similarly, {x1, x6, x7} cannot be a 3-term AP. Therefore, without loss of generality we

may assume that neither {x1, x2, x7} nor {x1, x6, x7} are in arithmetic progression.

Since A cannot be 2-colored to avoid a monochromatic 3-term AP, we give in Table

2.1.2 a list of some colorings, each of which is associated to a list of 3-term APs, one

of which must occur among the xi for that coloring to contain a monochromatic 3-

term AP. The colorings are of the form used in the proof of Proposition 7, and each is

numbered for later reference. Before we begin the case analysis, suppose that {xi, x j, xk}

(i < j < k) is in arithmetic progression and observe that certain other triples cannot also

be in progression. None of {xi′ , x j, xk} (i , i′), {xi, x j′ , xk} ( j , j′) or {xi, x j, xk′} (k , k′)

can be in progression. Nor can {xi′ , x j′ , xk} for i′ < i and j′ > j or for i′ > i and j′ < j,

{xi′ , x j, xk′} for i′ < i and k′ < k or for i′ > i and k′ > k, or {xi, x j′ , xk′} for j′ < j and

k′ > k or for j′ > j and k′ < k. These facts will be used below.

Now we assume, for a later contradiction, that none of the colorings above is without

a monochromatic 3-term AP. Considering coloring 10, we have two cases by symmetry:

either {x1, x2, x6} is an AP, or {x3, x4, x5} is. First suppose {x1, x2, x6} is an AP. This pre-

cludes {x1, x2, x3}, {x1, x2, x4}, {x1, x2, x5}, {x1, x3, x4}, {x1, x3, x5}, {x1, x3, x6}, {x1, x4, x5},

{x1, x4, x6} and {x1, x5, x6} from being APs.

Now coloring 12, rbrrbrb, implies that either {x3, x4, x6} or {x2, x5, x7} are in arith-

metic progression. If {x3, x4, x6} is in progression, then coloring 11 implies that {x2, x6, x7}

is in progression; now colorings 1 and 2 imply that {x2, x3, x4} and {x2, x3, x5} are in pro-

gression, respectively, which is impossible. The other case (we are still assuming from

coloring 10 that {x1, x2, x6} is an AP) from coloring 12 is that {x2, x5, x7} is an AP. In this

case coloring 14 implies that {x3, x5, x6} is in progression, and coloring 17 implies that

{x4, x5, x6} is in progression, again a contradiction.
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Table 2.2: Colorings of A and associated progressions that must occur in A to force a
monochromatic 3-term AP

Coloring 3-term APs
1 rrrrbbb {x1, x2, x3} {x1, x2, x4} {x1, x3, x4} {x2, x3, x4} {x5, x6, x7}

2 rrrbrbb {x1, x2, x3} {x1, x2, x5} {x1, x3, x5} {x2, x3, x5} {x4, x6, x7}

3 rrrbbrb {x1, x2, x3} {x1, x2, x6} {x1, x3, x6} {x2, x3, x6} {x4, x5, x7}

4 rrrbbbr {x1, x2, x3} {x1, x3, x7} {x2, x3, x7} {x4, x5, x6}

5 rrbrrbb {x1, x2, x4} {x1, x2, x5} {x1, x4, x5} {x2, x4, x5} {x3, x6, x7}

6 rrbrbrb {x1, x2, x4} {x1, x2, x6} {x1, x4, x6} {x2, x4, x6} {x3, x5, x7}

7 rrbrbbr {x1, x2, x4} {x1, x4, x7} {x2, x4, x7} {x3, x5, x6}

8 rrbbrrb {x1, x2, x5} {x1, x2, x6} {x1, x5, x6} {x2, x5, x6} {x3, x4, x7}

9 rrbbrbr {x1, x2, x5} {x1, x5, x7} {x2, x5, x7} {x3, x4, x6}

10 rrbbbrr {x1, x2, x6} {x2, x6, x7} {x3, x4, x5}

11 rbrrrbb {x1, x3, x4} {x1, x3, x5} {x1, x4, x5} {x2, x6, x7} {x3, x4, x5}

12 rbrrbrb {x1, x3, x4} {x1, x3, x6} {x1, x4, x6} {x2, x5, x7} {x3, x4, x6}

13 rbrrbbr {x1, x3, x4} {x1, x3, x7} {x1, x4, x7} {x2, x5, x6} {x3, x4, x7}

14 rbrbrrb {x1, x3, x5} {x1, x3, x6} {x1, x5, x6} {x2, x4, x7} {x3, x5, x6}

15 rbrbrbr {x1, x3, x5} {x1, x3, x7} {x1, x5, x7} {x2, x4, x6} {x3, x5, x7}

16 rbrbbrr {x1, x3, x6} {x1, x3, x7} {x2, x4, x5} {x3, x6, x7}

17 rbbrrrb {x1, x4, x5} {x1, x4, x6} {x1, x5, x6} {x2, x3, x7} {x4, x5, x6}

Above we handled the case (concerning coloring 10) of {x1, x2, x6} or {x2, x6, x7}

being an AP; for the remaining case, we suppose neither of these is, and so {x3, x4, x5}

is an AP (because we are assuming coloring 10 is not without a monochromatic 3-term

AP. Since {x3, x4, x5} is an AP, none of {x1, x4, x5}, {x2, x4, x5}, {x3, x4, x6}, or {x3, x4, x7}

is. We omit the details of the case analysis, for they are longer but identical in kind to

the previous case.

Since in all cases we reach a contradiction, it must be that some coloring avoids a

monochromatic 3-term arithmetic progression, regardless of the original set A. �

In fact, by precisely the methods above (and a longer list of colorings), one can show

that:

Proposition 9. w∗(3) > 8.

This last result was achieved with the help of computer calculations. Proposition 9

directly implies Proposition 6.
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2.2 The Hales-Jewett Number HJ(3,2)

The Hales-Jewett Theorem [23] says that for any positive integers k and r there exists

n = HJ(k, r) such that whenever the set of length n words over a k-letter alphabet are

r-colored, there must exist a monochromatic line. Here perhaps a bit of explanation is

in order. A word over an alphabet (= set) A is a finite sequence in A, and the length of

the word is the number of terms in the sequence. For our purposes, the informal view

of a sequence as terms listed in order will do, so that, for example, 1323 is a length 4

word over the alphabet {1, 2, 3} (and also over the alphabet {1, 2, 3, 4, 5} for that matter).

A variable word over A is a word over A∪ {v} in which v occurs, where v is a “variable”

which is not in A. If w = w(v) is a variable word over A and a ∈ A, then w(a) is the word

in which all occurrences of v are replaced by a. Thus, for example, if w(v) = 1v3v, then

w(1) = 1131 and w(2) = 1232. A combinatorial line over A is {w(a) : a ∈ A} where

w(v) is a variable word over A. Again, if A = {1, 2, 3}, then {1131, 1232, 1333} is the

combinatorial line determined by w(v) = 1v3v.

A substantial amount of effort has been invested in finding the value of the smallest

n which “works” for particular instances of Schur’s Theorem, van der Waerden’s The-

orem, and Ramsey’s Theorem. For example, the smallest n guaranteeing a monochro-

matic length k arithmetic progression when [n] is 2-colored are respectively 9, 35, and

178 for k = 3, k = 4, and k = 5. See [20, Chapter 4] and [31] for substantial information

about known specific values of van der Waerden numbers, Schur numbers, and Ramsey

numbers.

The original proofs of these theorems produced exceedingly large upper bounds for

n (except for Schur’s Theorem, where the original proof shows that n = br!ec will

do). The easiest way to prove Ramsey’s Theorem and the Hales-Jewett theorem is to

prove the infinite versions. One then deduces the finite versions, but this method yields

no upper bounds at all. Twenty years ago there was a great deal of excitement when

Shelah showed [34] that there are upper bounds for the van der Waerden and Hales-

Jewett numbers that are primitive recursive. See [20] for a detailed discussion of the

Hales-Jewett theorem and also of the proof by Shelah.

Uniquely among the classical theorems mentioned above, no nontrivial values of

HJ(k, r) had been known. It’s clear that HJ(k, 1) = 1 for any k, and that HJ(2, r) = r
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is not hard to prove. (If w is a word of length l over the alphabet {1, 2} and ϕ(w) is the

number of 1’s occurring in w, then there is no monochromatic combinatorial line and

so HJ(2, r) ≥ r. If wi = ai,1ai,2 · · · ai,l where ai,t = 2 if t < i and ai,t = 1 if t ≥ i, then

whenever i , j, {wi,w j} is a combinatorial line, and so HJ(2, r) ≤ r.) The first nontrivial

value of HJ, then, is HJ(3, 2), which we show here, in Section 2, to be 4. In Section 3

we present an algorithm which we used to determine that HJ(3,2)=4 before the detailed

proof of Section 2 was found and present some lower bounds for other Hales-Jewett

numbers obtained using that algorithm.

2.2.1 HJ(3,2)=4

This section is devoted entirely to a proof of the following theorem.

Theorem 11. Let the length four words on the alphabet {1, 2, 3} be two colored. Then

there exists a monochromatic combinatorial line.

Proof. Suppose instead that we have a 2-coloring of the 4-letter words over {1, 2, 3}

with respect to which there is no monochromatic combinatorial line. Let A be the set

of words with the first color and let B be the set of words with the second color. Now

{1111, 2222, 3333} is a combinatorial line, so we may assume without loss of generality

that 1111 ∈ A, 2222 ∈ A, and 3333 ∈ B.

The proof now proceeds through four lemmas. In the proofs of these lemmas, we

shall follow the customary abuse of notation wherein we substitute “P ⇒ Q” for the

instance of modus ponens which should say “(P⇒ Q) and P, therefore Q”.

Lemma 2. If {2111, 1211} ⊆ A, then 2211 ∈ B.

Proof. Suppose instead that {2111, 1211, 2211} ⊆ A.

1111 ∈ A and 2211 ∈ A ⇒ 3311 ∈ B.
1211 ∈ A and 2211 ∈ A ⇒ 3211 ∈ B.
1111 ∈ A and 2111 ∈ A ⇒ 3111 ∈ B.

But {3311, 3211, 3111} is a combinatorial line. �

Lemma 3. It is not the case that {1112, 1121, 1211, 2111} ⊆ A.

Proof. Suppose that {1112, 1121, 1211, 2111} ⊆ A.
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1112 ∈ A and 2222 ∈ A ⇒ 3332 ∈ B.
3332 ∈ B and 3333 ∈ B ⇒ 3331 ∈ A.
3331 ∈ A and 1111 ∈ A ⇒ 2221 ∈ B.
1111 ∈ A and 1121 ∈ A ⇒ 1131 ∈ B.
1131 ∈ B and 3333 ∈ B ⇒ 2232 ∈ A.

Lemma 2 ⇒ 2211 ∈ B.
2221 ∈ B and 2211 ∈ B ⇒ 2231 ∈ A.
2111 ∈ A and 2222 ∈ A ⇒ 2333 ∈ B.
2232 ∈ A and 2231 ∈ A ⇒ 2233 ∈ B.
1211 ∈ A and 2222 ∈ A ⇒ 3233 ∈ B.
3233 ∈ B and 3333 ∈ B ⇒ 3133 ∈ A.
2333 ∈ B and 2233 ∈ B ⇒ 2133 ∈ A.
2233 ∈ B and 3333 ∈ B ⇒ 1133 ∈ A.

But {1133, 2133, 3133} is a combinatorial line. �

Lemma 4. It is not the case that some two of 1112, 1121, 1211, and 2111 are in A.

Proof. Suppose instead without loss of generality that {1211, 2111} ⊆ A. By Lemma 3

we can assume without loss of generality that 1112 ∈ B.

2222 ∈ A and 1211 ∈ A ⇒ 3233 ∈ B.
3333 ∈ B and 3233 ∈ B ⇒ 3133 ∈ A.
1111 ∈ A and 3133 ∈ A ⇒ 2122 ∈ B.
2122 ∈ B and 1112 ∈ B ⇒ 3132 ∈ A.
3132 ∈ A and 3133 ∈ A ⇒ 3131 ∈ B.
3131 ∈ B and 3333 ∈ B ⇒ 3232 ∈ A.
1111 ∈ A and 2111 ∈ A ⇒ 3111 ∈ B.
3232 ∈ A and 2222 ∈ A ⇒ 1212 ∈ B.
3111 ∈ B and 3333 ∈ B ⇒ 3222 ∈ A.
3232 ∈ A and 3222 ∈ A ⇒ 3212 ∈ B.
3111 ∈ B and 3212 ∈ B ⇒ 3313 ∈ A.
1212 ∈ B and 3212 ∈ B ⇒ 2212 ∈ A.

But {1111, 2212, 3313} is a combinatorial line. �

Lemma 5. {1112, 1121, 1211, 2111, 2221, 2212, 2122, 1222} ⊆ B.

Proof. Suppose not. We have not distinguished between 2 and 1 so we may assume

without loss of generality that 2111 ∈ A. We have that {1211, 1121, 1112} ⊆ B by

Lemma 4.



21

1111 ∈ A and 2111 ∈ A ⇒ 3111 ∈ B.
3111 ∈ B and 3333 ∈ B ⇒ 3222 ∈ A.
2111 ∈ A and 2222 ∈ A ⇒ 2333 ∈ B.
3222 ∈ A and 2222 ∈ A ⇒ 1222 ∈ B.
2333 ∈ B and 3333 ∈ B ⇒ 1333 ∈ A.
1222 ∈ B and 1211 ∈ B ⇒ 1233 ∈ A.
1233 ∈ A and 1333 ∈ A ⇒ 1133 ∈ B.
1133 ∈ B and 3333 ∈ B ⇒ 2233 ∈ A.
1222 ∈ B and 1112 ∈ B ⇒ 1332 ∈ A.
1332 ∈ A and 1333 ∈ A ⇒ 1331 ∈ B.
1331 ∈ B and 3333 ∈ B ⇒ 2332 ∈ A.
2332 ∈ A and 1332 ∈ A ⇒ 3332 ∈ B.
2233 ∈ A and 1233 ∈ A ⇒ 3233 ∈ B.
2332 ∈ A and 2222 ∈ A ⇒ 2112 ∈ B.
3233 ∈ B and 3333 ∈ B ⇒ 3133 ∈ A.
3133 ∈ A and 1111 ∈ A ⇒ 2122 ∈ B.
2233 ∈ A and 2222 ∈ A ⇒ 2211 ∈ B.
3332 ∈ B and 3333 ∈ B ⇒ 3331 ∈ A.
3331 ∈ A and 1111 ∈ A ⇒ 2221 ∈ B.
2122 ∈ B and 2112 ∈ B ⇒ 2132 ∈ A.
2221 ∈ B and 2211 ∈ B ⇒ 2231 ∈ A.
2221 ∈ B and 1211 ∈ B ⇒ 3231 ∈ A.
2132 ∈ A and 3133 ∈ A ⇒ 1131 ∈ B.
3231 ∈ A and 2231 ∈ A ⇒ 1231 ∈ B.

But {1131, 1231, 1331} is a combinatorial line. �

We are now ready to conclude the proof of Theorem 11.

We have by Lemma 5 that {1112, 1121, 1211, 2111, 2221, 2212, 2122, 1222} ⊆ B

and we have not distinguished between 1 and 2. (We distinguished between 1 and 2 in

the proof of Lemma 5, but that distinction has disappeared.) Since {3331, 3332, 3333} is

a combinatorial line, we may assume without loss of generality that 3331 ∈ A.

We have that all words with three 1’s and one 2 are in B and all words with three

2’s and one 1 are in B, so all words with two 3’s, one 1, and one 2 are in A. (To see for

example that 3132 ∈ A, use the fact that 2122 ∈ B and 1112 ∈ B.)
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3331 ∈ A and 3321 ∈ A ⇒ 3311 ∈ B.
3331 ∈ A and 2331 ∈ A ⇒ 1331 ∈ B.
1331 ∈ B and 3333 ∈ B ⇒ 2332 ∈ A.
3311 ∈ B and 3333 ∈ B ⇒ 3322 ∈ A.
2332 ∈ A and 2222 ∈ A ⇒ 2112 ∈ B.
3322 ∈ A and 2222 ∈ A ⇒ 1122 ∈ B.
2112 ∈ B and 2122 ∈ B ⇒ 2132 ∈ A.
1112 ∈ B and 1122 ∈ B ⇒ 1132 ∈ A.

But {1132, 2132, 3132} is a combinatorial line. �

2.2.2 An Algorithm

Another method of proving that HJ(3, 2) = 4 requires a computer (or some months

of free time), but is very elementary, and gives a reasonable idea for obtaining construc-

tive lower bounds on other Hales-Jewett numbers. Owing to the extremely large upper

bound, of course, it is possible that any constructive lower bound is still well short of

the mark.

The algorithm is quite simple (and can easily be generalized, but we will use k = 3

and r = 2 here for clarity). First, one enumerates and stores the 2-colorings of the length

1 words (here and below, over the alphabet {1, 2, 3}) that avoid a monochromatic line

(the “good” colorings); these are the 6 nonconstant colorings.

Now we make the simple observation that in any good 2-coloring of the length-2

words, each set of the form {1x, 2x, 3x} with x ∈ [3] must correspond to one of the 6

good colorings of [3]1, or else that set comprises a monochromatic line. Using this fact,

we can examine all of the possibly good colorings of the length 2 words by considering

63 possibilities instead of all 29 = 83 colorings. The good colorings are stored – it turns

out that there are 66 of them.

In any possible good 2-coloring of the words of length 3, each set of the form {11x,

12x, 13x, 21x, 22x, 23x, 31x, 32x, 33x} with x ∈ [3] must have one of the 66 colorings

mentioned above. In searching the colorings of the length 3 words, this lets us examine

just 663 possibilities instead of 227 = 5123. Of the 663 we examine, we find 1644 good

colorings, which are stored as before.

Repeating this process, in the 16443 possible good colorings of the length 4 words,

we find in each case a monochromatic line. Thus, HJ(3, 2) = 4. Note that in this last
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step, we have a search space of 16443 ≈ 232 instead of one with size 281.

This algorithm can be modified to produce lower bounds: for instance, though it’s

not practical to enumerate and store all of the good 2-colorings of [4]5, a list of some

known good colorings can still prove computationally useful. Using such a list, together

with a simple simulated annealing algorithm (see [29] for a description of simulated

annealing), we have easily obtained the bounds HJ(4, 2) > 6 and HJ(3, 3) > 6; the

colorings proving these lower bounds are given in Appendix A. Note that even if, for

example, HJ(3, 3) = 7, to prove this one would have to certify that each of the 337

potential 3-colorings of [3]7 contains a monochromatic line. This is a search space too

large for the methods of this section to approach.

2.2.3 Acknowledgement

This chapter is based on the paper “The first nontrivial Hales-Jewett number is four,”

written by the author together with Neil Hindman.



Chapter 3

Euclidean Ramsey Theory

3.1 Nondegenerate triangles in the plane

In 1973, Erdős, Graham, Montgomery, Rothschild, Spencer, and Straus published

the three seminal papers of Euclidean Ramsey theory ([8], [9], [10]). In the third of

these, they consider this question: if the points in E2 are partitioned into two sets – say,

red and blue – then which sets must occur monochromatically (that is, in one of the

parts), and which can be avoided?

More formally, for a finite set X ⊂ E2, let Cong(X) be the set of all subsets of E2

which are congruent to X under some Euclidean motion (including reflection). Fixing

a finite set X ⊂ E2, consider the set of all maps χ : E2 → {red, blue}. If in every case

there is some X′ in χ−1(red) or in χ−1(blue) with X′ ∈ Cong(X), we say that X cannot be

avoided by two colors – there is always a monochromatic copy of X, regardless of the

coloring χ. This notion extends in the obvious way to more than two colors.

It is easy to see that if X consists of two points, then we cannot avoid it with two

colors: let d be the distance between the two points, and try to 2-color the vertices of

any equilateral triangle of side d. In [10] the authors show that if X is an equilateral

triangle of side d (by a triangle, we mean the set of its vertices), then it can be avoided,

by coloring the plane with alternating horizontal red and blue strips of width
√

3d/2,

each half-open at the top. There are various triangles that are known to be impossible

to avoid with two colors; a list of some families of these is given in [10], and L. Shader

has shown in [36] that all right triangles also belong on this list.

24
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Conjecture 2. [10] For any non-equilateral triangle T , every 2-coloring of E2 contains

a monochromatic copy of T .

This is still open, and we make no direct progress toward Conjecture 2 here. Instead,

we note that in [36], as a lemma to the main result, we have:

Lemma 6. For any real number a and 2-coloring of the plane, there is a monochromatic

equilateral triangle of side ka, for some k ∈ {1, 3, 5, 7}.

As a special case of Theorem 9 in [8], we have

Theorem 12. If T is a set of three noncollinear points and χ is any 2-coloring of E2,

then χ contains a monochromatic congruent copy of T , 2T, or
√

3T (where kT is just

the triangle T scaled by a factor of k).

Here we present a similar result.

3.1.1 The main result

Theorem 13. If T is a set of three noncollinear points and χ is any 2-coloring of E2,

then χ contains a monochromatic translate of T , 2T, 3T, or 4T.

Proof. Consider the triangle 4T built from copies of T , as in Figure 3.1. Note that this

orientation was chosen to facilitate the proof, and below we will refer to the “top” vertex,

etc., casually; of course T need not actually be oriented this way.

Figure 3.1: The triangle 4T formed from T .

Suppose by way of contradiction that we can color the 15 vertices of this diagram

without producing a monochromatic T , 2T , 3T , or 4T . Then the outermost vertices

cannot be the same color (our two colors here will be black and white). Without loss of
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generality, color the top and leftmost vertices black, and the rightmost white. This leads

us to Figure 3.2, which includes vertex labels that we will use below.

A

C

B

E

F

G H

I

D

Figure 3.2: Coloring the outermost vertices.

Note that in Figure 3.2, vertex B must be white, otherwise vertices D and E would

both be forced to be white, producing a white 2T . Vertices A, B, and C cannot all be

white, because then F and G would be forced to be black, and it would be impossible to

color H. Note that this logic applies to any three consecutive vertices.

Thus, one of A and C is black; by symmetry, we may arbitrarily choose A. This

forces I to be white, leaving us at Figure 3.3.

X Y Z

Figure 3.3: After coloring some more vertices.

Now to avoid a monochromatic 3T , vertex X must be black and vertex Z must be

white. It is now impossible to color vertex Y without producing three consecutive like-

colored vertices, so the proof is complete. �

This leads to another result if we consider congruence instead of simply translation.

Corollary 3. If T is a set of three noncollinear points and χ is any 2-coloring of E2,

then χ contains a monochromatic congruent copy of T , 2T, or 3T.
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Proof. Fix χ and suppose there is no monochromatic congruent copy of T , 2T , or 3T .

Then if the triangular lattice from Theorem 13 is placed onto the plane in any position,

in any orientation, the outermost vertices will be monochromatic (otherwise that lattice

would be colored to avoid any monochromatic T , 2T , 3T , or 4T , a contradiction to

Theorem 13). This easily implies that the whole plane is monochromatic, a contradic-

tion. �

3.1.2 Conclusion

While the results above do not lead to any new forced monochromatic triangles

among 2-colorings, observe this theorem in [10]:

Theorem 14. Fix a 2-coloring of E2 and let T be a triangle with sides a, b, and c. Then

T occurs monochromatically if and only if some equilateral triangle with side a, b, or c

occurs monochromatically.

Conjecture 2 is therefore equivalent to:

Conjecture 3. Fix a 2-coloring of E2 and let T and T ′ be equilateral triangles with side

lengths d , d′, respectively. Then at least one of T , T ′ occurs monochromatically.

This is much stronger than any of the results above; in each of those conditional

results, a list of three or more similar triangles is given, one of which must occur

monochromatically. An intermediate problem would be to prove a conditional result

like the ones above with a list of just two similar triangles; as far as we know, this has

not been done even in the case of equilateral triangles.

3.2 Degenerate triangles in the plane

In Section 3.1 we discussed proper triangles in the plane; here we consider the case

of degenerate triangles – that is, sets of three collinear points. In this section, an (a, b, c)

triangle will refer to a triangle with side lengths a, b, and c (and as above, when we refer

to a triangle in the plane, we really mean the set of its vertices).

For any collinear set S of 3 points, it is known that with 16 colors one can avoid

a monochromatic copy of S in En for all n ([38]), but it is an open question if this is
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the best possible. Figure 3.4 shows that in the plane, it is possible to avoid the (a, a, 2a)

degenerate triangle with only 3 colors. This tiling extends to cover E2; each hexagon has

diameter 2a and all of the hexagons are half-open as shown for the uppermost hexagon

in Figure 3.4.

Figure 3.4: A sketch of the 3-coloring avoiding the (a, a, 2a) triangle.

Proposition 10. If χ is a 2-coloring of E2 that contains a monochromatic copy of the

(a, a, a) triangle, then for any b > 0, χ also contains a monochromatic copy of the

degenerate (a, b, a + b) triangle.

Proof. Let χ be a 2-coloring of E2 in the colors black and white, and suppose the three

vertices of an (a, a, a) triangle in the plane are monochromatic, as in Figure 3.5 (all acute

angles are π/3). Suppose by way of contradiction that we can avoid a monochromatic

(a, b, a+b) triangle. In the diagram, vertices A and B must then be colored white, forcing

vertex C to be colored black. Then vertex E must be colored white. Since both E and

B are white, it is impossible to color vertex D either black or white without producing a

monochromatic (a, b, a + b) triangle, thus completing the proof.

�

Proposition 11. If χ is a 2-coloring of E2, and for some a, b > 0, χ contains a monochro-

matic copy of the (a + b, a + b, a + b) triangle, χ also contains a monochromatic copy of

the degenerate (a, b, a + b) triangle.
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a b
A

B

C

D E

Figure 3.5: Sketch of the proof of Proposition 10.

Proof. Fix a, b > 0, and let χ be a 2-coloring of E2 in the colors black and white such

that there is a monochromatic (a+b, a+b, a+b) triangle, as in Figure 3.6 (again, all acute

angles are π/3). Suppose by way of contradiction that we can avoid a monochromatic

(a, b, a + b) triangle. In the diagram, vertices A, B and C must be colored white, forcing

vertex E to be colored black. Now, as in Proposition 10, it is impossible to color vertex

D without producing a monochromatic (a, b, a + b) triangle.

a bA

B

C

D E

Figure 3.6: Sketch of the proof of Proposition 11.

�

3.3 Acknowledgement

Sections 3.1 and 3.2 of this chapter are based on the paper “Monochromatic triangles

in E2,” written by the author.



Chapter 4

Other Topics

4.1 An Intersection Theorem about Domino Tilings

A typical problem in extremal set theory is to give conditions that a family of sets

must satisfy, and then ask what is the maximal size of a family of sets which can be

formed satisfying these conditions. One simple example is to insist that every two pairs

of sets in your family intersect at least ` times, or in other words the family of sets is

`-intersecting. One of the most celebrated results in extremal set theory looks at the

maximal size of an `-intersecting family.

Theorem 15 (Erdős-Ko-Rado [11]). Let F be an `-intersecting family of sets, with each

element Ai a k-element subset of {1, . . . , n}. Then for n ≥ (k − ` + 1)(` + 1)

|F| ≤

(
n − `
k − `

)
.

In the original statement of the proof this was shown to hold for n ≥ n0(k, `). Frankl

[15] established the above bound for ` ≥ 15 and then Wilson [42] established the bound

in general. Taking all k element sets containing {1, . . . , `} forms an `-intersecting family

of size
(

n−k
k−`

)
. Theorem 15 then says that this is essentially best possible, in other words

you cannot be more clever than doing the obvious thing.

This result has been generalized to other combinatorial objects which share a notion

of intersection. The type of objects that have previously been studied include permuta-

tions [7], set partitions [28], colored sets [2], arithmetic progressions [14], strings [16],

30
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and vector spaces [17]. In this note we will consider a new type of intersection problem,

namely the intersection of tilings.

A tiling consists of covering a board using tile pieces from a given set so that the

board is completely covered and no two tiles overlap (for more about tilings we rec-

ommend the excellent survey paper by Ardila and Stanley [1]). We say that two tilings

of the board intersect if there is a tile placed in the same position on both boards. For

example, Figure 4.1 shows two tilings of a 4×5 board using dominoes. The shaded tile

is placed the same way in both tilings so these intersect.

Figure 4.1: An example of intersecting tilings.

In this note we will find the maximal size of families of intersecting tilings for the

cases of tiling the 2×n strip (Section 4.1.1) and the 3×(2n) strip (Section 4.1.2) by using

dominoes.

4.1.1 Tilings of 2×n using dominoes

It is well known that the number of tilings of the 2×n strip using dominoes is F(n+1)

where F(n) are the well known Fibonacci numbers, F(1) = F(2) = 1 and F(n) =

F(n − 1) + F(n − 2) (this is sequence A000045 in the OEIS [35]).

Theorem 16. Let T be an intersecting family of tilings of the 2×n strip using dominoes.

Then |T| ≤ F(n).

Proof. We first note that by taking all the tilings of the 2×n strip that begin with a

vertical domino we have an intersecting family of size F(n). So it remains to show that

this cannot be improved upon.

Consider the graph which is formed by taking all possible tilings and putting an

edge between two tilings it they do not intersect. The problem of finding a maximal

intersecting family is equivalent to finding a maximal independent set in this graph. We

can split the vertices into two sets H and V. Where H is the F(n−1) tilings that start with
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two horizontal tiles and V is the F(n) tilings that start with a vertical tile. By definition,

all edges in the graph are between H and V (i.e., the graph is bipartite).

We claim that there is a matching between H and a subset of V. To see this, suppose

that we have a tiling T in H. Then we can decompose this tiling into a sequence of

blocks where a block consists of two horizontal tiles followed by any number of vertical

tiles. We now map T → S block by block using the rule shown in Figure 4.2. For any

· · · }
2k vertical

→ · · · }
k horizontal

· · · }
2k−1 vertical

→ · · · }
k horizontal

Figure 4.2: The rule for forming the matching between H and V.

T ∈ H the resulting S will start with a vertical tile and so is in V, further block by block

it can be seen that S and T have no common tile, so there is an edge between S and T .

Finally it is easy to check that this map is 1-to-1, so gives our desired matching.

Since there is a matching from every element of H to an element of V it follows that

for any subset Q of H that the number of elements in V adjacent to Q has size at least

|Q|. (This is the rarely used direction of Hall’s Marriage Theorem.) Now suppose that

T is an intersecting family and let Q = T ∩H and R = T ∩ V. Since the elements of R

cannot be adjacent to elements of Q the above comment implies that |R| ≤ |V| − |Q|. So

we have

|T| = |Q| + |R| ≤ |Q| + (|V| − |Q|) = |V| = F(n). �

4.1.2 Tilings of 3×(2n) using dominoes

We now turn to tilings of the 3×(2n) board. We first count the number of such tilings

(this has been done previously and is A001835 in the OEIS [35]). A commonly used

approach is to set up a system of linear recurrences and then solve the system, we will

do a variation where we count the number of weighted walks in a small graph.
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The basic idea is to break the 3×(2n) strip into n small blocks of size 3×2, and

consider how horizontal dominoes can intersect the break between consecutive blocks.

Since the area of each block is even, it follows that in the breaks we must have an even

number of horizontal dominoes. This gives the four possibilities shown in Figure 4.3,

the fourth of which cannot happen in a tiling of 3×(2n), we will refer to the remaining

possibilities, from left to right, as , and .

Figure 4.3: The different configuration of horizontal dominoes between blocks.

To count the total number of tilings we can take all possible configurations of hor-

izontal dominoes in the breaks and then count the ways to fill in the remaining untiled

portion of the strip. We can do this by using weighted walks in a small directed graph

where the vertex set is { , , } and the weight of an edge is the number of ways to fill in

the unused area of a block between the two column breaks indicated. For instance there

are 3 ways to fill in a 3×2 strip so there is a loop of weight 3 for the edge . Similarly,

edges , , , , and have weight 1 since there is only one way to fill in

the block, while and have weight 0 since there is no way to fill in the uncovered

area using dominoes. This gives us the following adjacency matrix for the graph.

A =


3 1 1

1 1 0

1 0 1


Since the left and right sides of the 3×(2n) board correspond to we need to find the

sum of the weight of walks of length n in the graph that start and end at . This is

equivalent to finding the (1, 1) entry of An. The eigenvalues of A are 2 +
√

3, 2−
√

3 and
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1, using these along with their eigenvectors to form projection matrices we have

An =
(
2 +
√

3
)n


3+
√

3
6

√
3

6

√
3

6
√

3
6

3−
√

3
12

3−
√

3
12

√
3

6
3−
√

3
12

3−
√

3
12

 +
(
2−
√

3
)n


3−
√

3
6 −

√
3

6 −
√

3
6

−
√

3
6

3+
√

3
12

3+
√

3
12

−
√

3
6

3+
√

3
12

3+
√

3
12


+ 1n


0 0 0

0 1
2 −1

2

0 −1
2

1
2

 .
Taking the sum of the (1, 1) entries we have established the following.

Proposition 12. It Tn is the number of tilings of 3×(2n) by dominoes then

Tn =
3 +
√

3
6

(
2 +
√

3
)n

+
3 −
√

3
6

(
2 −
√

3
)n
.

Looking at the possible forms of the 3×2 blocks we get nine possible shapes (note

that nine is also the sum of the entries of A). These are shown in Figure 4.4. The tiles

split into three groups, “blue” tiles with a single horizontal domino on the top, “red”

tiles with a single horizontal domino on the bottom and a universal tile. Since every 3×2

block has at least one horizontal domino then any 3×(2n) tiling which uses a universal

tile will intersect every other tiling, i.e., it will be universally intersecting. It turns out

that these are the only universally intersecting configurations.

universal

red red red red

blue blue blue blue

tower start middle end

tower start middle end

Figure 4.4: The possible 3×2 blocks.

We now count the number of tilings that do not have a universal tile. The previous

approach is easily adopted and the only change is to remove a single possibility between
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, namely the one with three horizontal dominoes. This gives the following matrix:

B =


2 1 1

1 1 0

1 0 1

 .
This matrix has eigenvalues 3, 1 and 0, so that for n ≥ 1 we have, similarly to before,

Bn = 3n


2
3

1
3

1
3

1
3

1
6

1
6

1
3

1
6

1
6

 + 1n


0 0 0

0 1
2 −1

2

0 −1
2

1
2

 .
Taking the sum of the (1, 1) entries we have the following.

Proposition 13. If S n is the number of tilings of 3×(2n) by dominoes which does not

have three horizontal dominoes in a column, then S n = 2·3n−1.

We are now ready to bound the size of a maximal intersecting family.

Theorem 17. Let T be an intersecting family of tilings of the 3×(2n) strip using domi-

noes. Then

|T| ≤
3 +
√

3
6

(
2 +
√

3
)n

+
3 −
√

3
6

(
2 −
√

3
)n
− 3n−1.

Proof. As in the 2×n case we form a graph where each vertex is a tile and two vertices

are connected if they do not intersect. Any tiling which contains the universal tile will

be an isolated vertex. The remaining tiles can be split into two groups, those that start

with a red tile and those that start with a blue tile. As before this is a bipartition of our

graph.

Claim. There is a perfect matching in the set of tilings which do not contain the univer-

sal tile.

Before we prove the claim let us show how this will give the statement of the the-

orem. In an intersecting family we can take any number of the isolated vertices and at

most one of the tilings in each edge of the perfect matching. There are Tn − S n isolated

vertices and 1
2S n edges in the perfect matching; it follows that an intersecting family has
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strip of
1 block

start of
strip

middle of
strip

end of
strip

start of
strip

otherwise not end
of strip

end of
strip

Figure 4.5: Rule for mapping in the 3×(2n) case.

at most Tn −
1
2S n edges. Now using the results from Propositions 12 and 13 the result

will follow.

To prove the claim we give a mapping between tilings that start with a blue tile to

tilings that start with a red tile. So let T be a tiling. We break T into (maximal) blue and

red strips. It suffices to give a mapping that takes a blue strip into a red strip of the same

size (and vice-versa) which does not intersect. Such a mapping is given in Figure 4.5. It

is easy to check that this mapping satisfies all the needed properties and concludes the

proof of the theorem. �

4.1.3 Concluding remarks

Tiling problems have been very popular (both in looking at existence and enumer-

ation of tilings). Looking for maximal intersecting family of tilings opens up an en-

tirely new avenue of investigation of tilings. In this note we have restricted ourselves to

domino tilings of the 2×n and 3×2n boards but one can more generally look at domino

tilings of k×n boards.

Besides looking at domino tilings one can consider tilings with squares and domi-

noes, or squares and “L”s [5], or tetris pieces, or polyominoes (see Golomb’s [18] excel-

lent book on the subject which also deals extensively with tiling problems), or hexagonal

animals, or three-dimensional tilings. For each problem one can also consider a variety

of different board configurations. The possibilities of different problems are limited only

by the imagination.
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Appendix A

Lower Bounds on Hales-Jewett

Numbers

A lower bound below will be in the form of an integer sequence, as in:

HJ(3, 2) > 2:

001010100

This gives a 2-coloring (in the colors 0 and 1) of the elements of {0, 1, 2}2 listed

in lexicographic order. That is, 00 is colored 0, 01 is colored 0, 02 is colored 1, 10

is colored 0, and so on. The claim is that this coloring contains no monochromatic

combinatorial lines (and of course it does not, as can be checked by hand).

Checking the examples below is best left to a computer.

HJ(3, 3) > 6:

120012020022121212010122010202011212121211010200020021021220

002212122020012201102021212221202021121121200200022122210211

110022212022220212100112122201201110220101010220012221112210

012121202220212120112020200120200011002121201210020011100001

212121112212210201101202010022101010020011022100220211121212

102010002221221120221011202202120022121100010220221211020101

020200001021211010120101221100200211201012122122100200110200

221210022010022121201202201011001002122110220011221012122100

221100010121020122210212022102201211102020202020211021220010

38



39

022221212110001100102110202002020201021210010110001110122210

112220101101211110002110211200201012012102121022212101212110

002100202112201110200001001022112100011112100110002101121002

211022221

HJ(4, 2) > 6:

001100101000110101100101000111100101111010010101110101000110

100000100110010110100101110010101001110010100110011111001011

000101010100110011100001101101101000011010101000011100100001

000101101011110110110110110110001000010110110010001111101101

101101011010001000100110100001010101111000111000101010000101

001111011011010010100101110100101100111011011001001000101001

101011001010001001000111101000011101001101010010001011000101

001101111110011111001110100110101110000110100011001011100001

011011001001101110011001001101000010011111010001110001000011

010000011101010101100111101111001011010010011011010110101011

101101011011001001100001011001010001101010011100011011000011

111001001001110000111110101111001010100101000100010110000110

100001100101011111011100001110100011100001101100110110000011

111000111010111011011001000111101011100001111001010010011101

001011000001010001111000001001101101001111011010101101110001

011110101011101010011101001011100100100001011010100101010111

111000101101001011001001001110101011111001000100010010110100

101101101010000100010110100000101011100100010110101010101110

100001010110010110010010110110011010010101101010100000111000

000101111101111000011000011110000011001101001001001111100101

001111100101100000010010011110000010010101011100110111000001

001101110100101011100101110100110010100110000110100101100011

100000010100100100010111010110011110111010001110010100100010

010110010101001100100111100010011010001011000010011100111100

101001001000100111000100110100100110000101011011110110001000



40

001010011110011101100001101001001101001010011010011110100111

011111001100011111001000000101100010100010010010001011000110

010100011010011111001010110101101101110100101010011111011001

010000011000001100011100001110100101100100100111010010001010

101100011100101100010010100101100100111001100101100110000110

010010111000000111010010001010100011110101111010010101110011

001011100101001000101101101110011101010101100111001110001001

011110101011010010111100110101110111100100101010100000011110

100010100101110101010101101100100101010000101011101000010101

101001010101010011000010100110111001010000100101101100110111

110100101010110110111010011101000010001110101011110101110100

110010100101001100011000001111001000011001001001101100111110

100001110110100101101010110100010110011010000100100101010110

100000101001100101100101001010011011010001101000001101100111

110101001000110100100110100100100110011011011010110001010101

110100101001101110010111110000101001011001011011001100011010

110101111100101110101010110100010110110100100101100000010110

101000010010100000110101010101111010001010111010011010010010

011111011001110010000111101110001011101101000010110101010001

101100011000010101110100101010110001011110101110111001011011

001001011000001100111110101101000100001010000100110110011100

101001001101101100111110001010100101001101000111110100101001

010110000111111001011000011101011010001001011000001111011000

000101100101100000111100101001111110101101101100101111000010

010001100111110000011100000100010110010000100100110100011100

011110110010101000100101110101100110100010000101110110111110

010010111010110100110010000110111000011101110011110001101110

100000111101110010111010101101001010010111011110110001010100

101100110101101010100011011101111100011111000100100001011110

100011001100100110000011100000011100101000010110101100111010

100000110101110011100001011011001010011010011011000111010100
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110010101011010100100101100100111010010101010011010100100110

101100010110010110000111110010001101010111001000001010111110

010100111010010110010010100100110110110000110100101001111110

101100011101110001110010100000100001111001010100110100110110

110110110100101100101110101110000101010010101101011100011100

101101001110010100011000010100010110100010100110000100111000

101101101100010100101100001010011100001110100111000110101110

101101111101101100101100100001110100110100101101001000111011

001000111101110101001110001101111000011111011100011111010010

001011000111100100111100100100101110001110001010111001101001

110101011100100001010111011100111110100000011110011100110101

011010101010100101110110111000110101100011011110100000111010

1000010110110110
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