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The standard view of cryptography is that secure systems should be built by implementing

known primitives whose theoretical security guarantees are well understood. In this work we

take the opposite approach, taking inspiration from existing systems and providing the theoretical

basis with which to understand their security goals. Our particular inspirations are modern secure

messaging apps (e.g. Signal, WhatsApp) which have deployed new techniques with the goal of

maintaining some security against attackers which sometimes gain temporary access to honest

users’ devices.

We propose that these security goals should be studied in a modular manner where

distinct cryptographic components are studied in isolation. Towards this we separately provide
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formal models for understanding the initial exchange of cryptographic secrets and their later

use for the exchange of messages in this setting. We provide provable secure constructions of

these separate components (often achieving better security than what is currently deployed by

messaging apps) and a composition result which generically proves security when these isolated

components are used together.
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Introduction

End-to-end encrypted communication is becoming a usable reality for the masses in

the form of secure messaging apps. End-to-end encryption provides a secure communication

channel directly between two communicating users so that they can be assured that a service

provider who is handling the transportation of messages between the two users can nonetheless

not learn anything about what they are communicating.

However, chat sessions can be extremely long-lived and their secrets are stored on end

user devices, so they are particularly vulnerable to having their cryptographic secrets exfiltrated

to an attacker by malware or physical access to the device. If a traditional encryption protocol is

used by the two communicating parties all security would now be lost. In a traditional protocol

the two users typically permanently share a secret key K which is used to encrypt and decrypt

messages. Given this permanent key an attacker would be able to read all past and future

messages and impersonate either communicating party to the other at any point in time.

The Signal protocol [54] by Open Whisper Systems tries to mitigate this threat by

continually updating the key used for encryption. Beyond its use in the Signal messaging app,

this protocol has been adopted by a number of other secure messaging apps. This includes being

used by default in WhatsApp and as part of secure messaging modes of Facebook Messenger,

Google Allo, and Skype. WhatsApp alone has 1 billion daily active users [67].

The prominence of these systems raises the questions: what security are they aiming

for, what security do they achieve, and could we do better? The answer to these questions

does not seem clear. Indeed, in their Systemization of Knowledge paper on secure messaging,

UDBFPGS [64] survey many of the systems that existed at the time and attempt to classify them
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in terms of security, noting that security claims in different places include “forward-secrecy,”

“backward-secrecy,” “self-healing” and “future secrecy,” and concluding that “The terms are

controversial and vague in the literature” [64, Section 2.D].

In this work we take inspiration from these existing messaging systems and provide the

theoretical basis with which to understand and answer these questions. We aim to be prescriptive,

rather than descriptive. We aim to define the best possible security in the settings we consider

and provide schemes which achieve it. While we are able to indicate where the existing deployed

solutions fall short of this best possible security, we do not attempt to precisely capture what

security is being achieved by them.

Security Goals.

At a high level, we can hope to achieve two sorts of security when a party’s secret state is

compromised. First we desire that past messages remain secure when this occurs. This is the

property often referred to as “forward-secrecy.” Second we desire that (as soon as possible) the

security of future messages is not damaged. This property is referred to as “backward-secrecy,”

“self-healing,” “future secrecy,” and “post-compromise security” among others. The precise

definitions of these high level goals will depend on the primitive being studied.

Out definitions aim to capture privacy and integrity of communication. Informally, the

former means that attackers should not be able to learn anything about what is being said

in the conversation. The latter means that attackers cannot modify or insert messages in the

conversation.

Modular Analysis.

In work done concurrently and independently to Chapter 1 of this dissertation, Cohn-

Gordon, Cremers, Dowling, Garratt and Stebila [29] give a formal analysis of the Signal protocol.

This analysis monolithically captures both the initial exchange of secrets between users to start

a conversation and their later update during the conversation. The formal model in which they

perform this analysis is extremely complex. At the same time it is somewhat unsatisfying because
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they intentionally leave aside some security properties such as authenticity (which would require

that an attacker cannot modify the conversation of two honest users) and do not model the actual

exchange of messages. These shortcomings were likely motivated by a desire to avoid adding

more complexity to their model.

Throughout this work we will continue to see that precise definitions capturing the threat

of users’ cryptographic secrets being exfiltrated repeatedly, but temporarily, are highly complex.

To help tame this complexity, an important thesis of this work is that these security goals should

be studied in a modular manner. Distinct cryptographic components are isolated and then studied

independently. Then general composition results are provided which show that when these

components are combined and used together, the overall system maintains the security of the

underlying parts.

This approach provides a number of useful benefits. As noted already, it helps to tame

complexity. The security of each component can first be understood in isolation without having

to reference other components. In particular, this allows us to separately determine what is

the best security we could hope for from each component. It also provides flexibility. If a

messaging protocol is analyzed as a single monolithic entity then changing any subcomponent

would require that the entire analysis be performed again. On the other hand, if the messaging

protocol had been originally analyzed in a modular manner then only the particular cryptographic

subcomponent which was modified needs to be studied again.

Cryptographic Components.

The primary division we make between cryptographic components of a messaging app

is to separate the initial exchange of cryptographic secrets (i.e. the initial key exchange) from

the later use of these secrets to exchange messages. For the former we must take into account

the interacting behavior of all users simultaneously, while for the latter we can focus on a single

messaging session between two users.

There are a variety of ways to divide the exchange of messages into multiple cryptographic
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components. In this work we will look at two different options in this space. One is a technique-

based approach in which we focus on what security can be achieved when using a particular

technique for updating keys during communication. The other is a more goal-based approach.

The technique we focus on is ratcheting, which separates the update of secret keys from

their use to encrypt communication. Borisov, Goldberg and Brewer (BGB) [22] introduced

ratcheting in their highly influential OTR (Off the Record) communication system. (They do

not call it ratcheting; this term originated later with Langley [47].) Ratcheting provides the

core technique of how the Signal protocol [54] updates its keys over time. We provide the first

definitions of ratcheting as an isolated cryptographic primitive. In particular we introduce the

notions of ratcheted key exchange and ratcheted encryption. We exemplify the modularity of

our definitions by showing that that secure ratcheted encryption can be generically obtained by

combining secure ratcheted key exchange and a secure encryption scheme.

In our goal-based approach we consider (bidirectional) cryptographic channels which

are the standard cryptographic models for bidirectional secure communication of messages. We

first understand and then achieve the best possible security of cryptographic channels against an

attacker that may arbitrarily and repeatedly learn the secret state of either communicating party.

Security Models.

In the security models throughout this work we typically think of the attacker as being

the service provider itself. Thus we provide the attacker with complete control of communication

between all of the honest users of the system. The attacker may arbitrarily read, block, modify,

or re-order the communication between users. It is additionally given the ability to compromise

the secret state of any user at any time. This leads to some inherent breaches of security because

it can use this secret state to impersonate the user. We ask that security be maintained for all

messages except those for which security is inherently breached.

There are numerous real world interpretations of who the attacker is that are captured by

our models. The attacker may be the service provider itself (perhaps motivated by bad intent or
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compelled into action by a government order). The attacker could be a malicious employee of

the service provider acting without authorization. Alternatively, the attacker may be a hacker

which has gained unauthorized access and control of the service provider’s servers. Beyond

this, it is well accepted practice in cryptography that we should assume attackers have as much

control and access as possible. Trying to more precisely capture the limited access of an attacker

can result in loss of security in practice if its capabilities have been underestimated.

Organization.

In Chapter 1 we propose the study of ratcheting as an isolated cryptographic primitive.

Our intent is to formalize and understand the simplest form of ratcheting that captures the essence

of the goal, which is one-sided ratcheting. In one-sided ratcheting we consider one-directional

communication from a sender (assumed vulnerable to state compromise) to a receiver (assumed

secure from state compromise). We provide a formal definition of security for one-sided ratcheted

key exchange and one-sided ratcheted encryption. We provide a proven-secure construction

of one-sided ratcheted key exchange (inspired by, but distinct from ratcheting techniques used

in practice) and a proof that composing any secure one-sided ratcheted key exchange with a

standard authenticated encryption scheme results in secure one-sided ratcheted encryption. The

material presented in this chapter originally appeared in [17].

Chapter 2 takes the opposite approach. Rather than focusing on the particular technique

of ratcheting we look at its goal, which is bidirectional messaging security against arbitrary and

repeated compromise of communicating parties’ states. We formalize the strongest possible

security against this threat and provide a construction along with a proof that it achieves this

security. Our construction makes use of new forms of asymmetric cryptographic primitives

(key-updatable public-key encryption and key-updatable digital signature schemes) for which

we provide definitions and constructions out of more standard cryptographic primitives. The

material presented in this chapter originally appeared in [44].

Chapter 3 studies the key exchange used to share initial cryptographic secrets between
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two users of a messaging app. Such a key exchange should be secure against state compromise

in isolation but also when used to initiate a messaging protocol which provides mitigations

against state compromise. In particular, if a messaging protocol is able to “heal” security after

one of the party’s cryptographic state has been revealed, then our key exchange should allow

it to “heal” security even if the reveal happened during the execution of the key exchange. We

provide an isolated definition for security of a key exchange protocol for a messaging app and

a protocol which we prove meets this definition. Then we prove a composition result stating

that a key exchange protocol which is secure according to our definition composes correctly

with any underlying messaging protocol (including those presented in the earlier chapters of

this dissertation and those of a number of related works [56, 35, 45, 2]). The material presented

in this chapter is part of the manuscript “Key Exchange for Messaging App” by Joseph Jaeger,

which has been submitted for publication.

6



Chapter 1

Ratcheted Encryption and Key Exchange

In this chapter, we aim to formalize the goals that ratcheting appears to be targeting. We

give definitions for ratcheted encryption and ratcheted key-exchange. We then give protocols

(based on ones in use but not identical to them) to provably achieve the goals.

This chapter aims to be selective rather than comprehensive. Our intent is to formalize

and understand the simplest form of ratcheting that captures the essence of the goal, which is

single, one-sided ratcheting. This (as we will see) is already complex enough.

Ratcheting.

The setting we consider is that sender Alice and receiver Bob hold keys Ks = (k, . . .) and

Kr = (k, . . .), respectively, k representing a shared symmetric key and the ellipses indicating there

may be more key information that may be party dependent. In practice, these keys are the result

of a session-key exchange protocol that is authenticated either via the parties’ certificates (TLS)

or out-of-band (secure messaging); however, ratcheting is about how these keys are used and

updated, not about how they are obtained, and so we will not be concerned with the distribution

method, instead viewing the initial keys as created and distributed by a trusted process.

In TLS, all data is secured under the shared key k with an authenticated encryption

scheme. Under ratcheting, the key is constantly changing. As per BGB [22] it works roughly

like this:

B→ A: gb1 ; A→ B: ga1 , E(k1,M1) ; B→ A: gb2 , E(k2,M2) ; . . . (1.1)

7



Here ai and bi are random exponents picked by A and B respectively; k1 = H(k,gb1a1), k2 =

H(k1,ga1b2), . . .; H is a hash function; E is an encryption function taking key and message

to return a ciphertext; and g is the generator of an underlying group. Each party deletes its

exponents and keys once they are no longer needed for encryption or decryption.

Contributions.

This chapter aims to lift ratcheting from a technique to a cryptographic primitive, with

a precise syntax and formally-defined security goals. Once this is done, we specify and prove

secure some protocols that are closely related to the in-use ones.

If ratcheting is to be a primitive, a syntax is the first requirement. As employed, the

ratcheting technique is used within a larger protocol, and one has to ask what it might mean

in isolation. To allow a modular treatment, we decouple the creation of keys from their use,

defining two primitives: ratcheted key exchange and ratcheted encryption. For each, we give

a syntax. While ratcheting in apps is typically per message, our model is general and flexible,

allowing the sender to ratchet the key at any time and encrypt as many messages as it likes under

a given key before ratcheting again.

Next we give formal, game-based definitions of security for both ratcheted key exchange

and ratcheted encryption. At the highest level, the requirement is that compromise (exposure

in our model) revealing a party’s current key and state should have only a local and temporary

effect on security: a small hiccup, not compromising prior communications and after whose

passage both privacy and integrity are somehow restored. This covers forward security (prior

keys or communications remain secure) and backward security (future keys and communications

remain secure). Amongst the issues in formalizing this is that following exposure there is some

(necessary) time lag before security is regained, and that privacy and integrity are related. For

ratcheted key exchange, un-exposed keys are required to be indistinguishable from random in

the spirit of [15] —rather than merely, say, hard to recover— to allow them to be later securely

used. For ratcheted encryption, the requirement is in the spirit of nonce-based authenticated
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encryption [57], so that authenticity in particular is provided.

The definitions are chosen to allow a modular approach to constructions. We exemplify

by showing how to build ratcheted encryption generically from ratcheted key-exchange and multi-

user-secure nonce-based encryption [18]. This allows us to focus on ratcheted key exchange.

We give a protocol for ratcheted key exchange that is based on DH key exchanges. The

core technique is the same as in [22] and the in-use protocols, but there are small but important

differences, including MAC-based authentication of the key-update values and the way keys

are derived. We prove that our protocol meets our definition of ratcheted key exchange under

the SCDH (Strong Computational Diffie-Hellman) assumption [1] in the random oracle model

(ROM) [14]. The proof is obtained in two steps. The first is a standard-model reduction to an

assumption we call ODHE (Oracle Diffie-Hellman with Exposures). The second is a validation

of ODHE under SCDH in the ROM.

Model and syntax.

Our syntax specifies a scheme RKE for ratcheted key exchange via three algorithms:

initial key generation RKE.IKg, sender key generation RKE.SKg and receiver key generation

RKE.RKg. See Fig. 1.3 for an illustration. The parties maintain output keys (representing the

keys they are producing for an overlying application like ratcheted encryption) and session keys

(local state for their internal use). At any time, the sender A can run RKE.SKg on its current

keys to get update information upd that it sends to the receiver, as well as updated keys for

itself. The receiver B correspondingly will run RKE.RKg on received update information and

its current keys to get updated keys, transmitting nothing. RKE.IKg provides initial keys for the

parties, what we called Ks and Kr above, that in particular contain an initial output key k (the

same for both parties) and initial session keys. A ratcheted encryption scheme RE maintains the

same three key-generation algorithms, now denoted RE.IKg, RE.SKg and RE.RKg, and adds an

encryption algorithm RE.Enc for the sender —in the nonce-based vein [57], taking a key, nonce,

message and header to deterministically return a ciphertext— and a corresponding decryption
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algorithm RE.Dec for the receiver. The key for encryption and decryption is what ratcheted key

exchange referred to as the output key.

Besides a natural correctness requirement, we have a robustness requirement: if the

receiver receives an update that it rejects, it maintains its state and will still accept a subsequent

correct update. This prevents a denial-of-service attack in which a single incorrect update sent to

the receiver results in all future communications being rejected.

Security.

In the spirit of BR [15] we give the adversary complete control of communication. Our

definition of security for ratcheted key exchange in Section 1.3.2 is via a game KIND. After

(trusted) initial key-generation, the game gives the adversary oracles to invoke either sender or

receiver key generation and also to expose sender keys (both output and session). Roughly the

requirement is that un-exposed keys be indistinguishable from random. The delicate issue is that

this is true only under some conditions. Thus, exposure in one session will compromise the next

session. Also, a post-expose active attack on the receiver (in which the adversary supplies the

update information) can result in continued violation of integrity. Our game makes the necessary

restrictions to capture these and other situations. For ratcheted encryption, the game RAE we

give in Section 1.4 captures ratcheted authenticated encryption with nonce-based security. The

additional oracles for the adversary are encryption and decryption. The requirement is that, for

un-exposed and properly restricted keys, the adversary cannot distinguish whether its encryption

and decryption oracles are real, or return random ciphertexts and ⊥ respectively.

Schemes.

Our ratcheted key exchange scheme in Section 1.3.3 is simple and efficient and uses

the same basic DH technique as ratcheting in OTR [22] or WhatsApp, but analysis is quite

involved. The sender’s initial key includes gb where b is part of the receiver’s initial key, these

quantities remaining static. Sender key generation algorithm RKE.SKg picks a random a and

sends the update upd consisting of ga together with a mac under the prior session key that is
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crucial to security. The output and next session key are derived via a hash function applied to

gab. Theorem 1 establishes that the scheme meets our stringent notion of security for ratcheted

key exchange. The proof uses a game sequence that includes a hybrid argument to reduce the

security of the ratcheted key exchange to our ODHE (Oracle Diffie-Hellman with Exposures)

assumption. The latter is an extension of the ODH assumption of [1] and, like the latter, can

be validated in the ROM under the SCDH assumption of [1] (which in turn is a variant of the

Gap-DH assumption of [53]). We show this in Section 1.5. Ultimately, this yields a proof of

security for our ratcheted key exchange protocol under the SCDH assumption in the ROM.

Our construction of a ratcheted encryption scheme in Section 1.4 is a generic combination

of any ratcheted key exchange scheme (meeting our definition of security) and any nonce-based

authenticated encryption scheme. Theorem 2 establishes that the scheme meets our notion of

security for ratcheted encryption. The analysis is facilitated by assuming multi-user security for

the base nonce-based encryption scheme as defined in [18], but a hybrid argument reduces this

to the standard single-user security defined in [57]. Encryption schemes meeting this notion are

readily available.

Setting and discussion.

There are many variants of ratcheting. What we treat is one-sided ratcheting. This means

one party (Alice) is a sender and the other (Bob) a receiver, rather than both playing both roles.

In our model, compromises (exposures) are allowed only on the sender, not on the receiver.

In particular the receiver has a static secret key whose compromise will immediately violate

privacy of our schemes, regardless of updates. From the application perspective, our model and

schemes are suitable for settings where the sender (for example a smartphone) is vulnerable to

compromise but the receiver (for example a server with hardware-protected storage) can keep

keys safely. In two-sided ratcheting, both the sender and the receiver may be compromised.

Another dimension is single (what we treat) versus double ratcheting. In the latter, keys are also

locally ratcheted via a forward-secure pseudorandom generator [20]. Conceptually, we decided
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to focus on the single, one-sided case to keep definitions (already quite complex) as simple

as possible while capturing the essence of the goal and method. But we note that what Signal

implements, and what is thus actually used, is double, two-sided ratcheting. Treating this does

not seem like a simple extension of what we do and is left as future work.

Secure Internet communication protocols (both TLS and messaging) start with a session-

key exchange that provides session keys, Ks for the sender and Kr for the receiver. These are

our initial keys, the starting points for ratcheting. These keys are not to be confused with higher-

level, long-lived signing or other keys that are certified either explicitly (TLS) or out-of-band

(messaging) and used for authentication in the session-key exchange.

Messaging sessions tend to be longer lived than typical TLS sessions, with conversations

that are on-going for months. This is part of why messaging security seeks, via ratcheting,

fine-grained forward and backward security. Still, exactly what threat ratcheting prevents in

practice needs careful consideration. If the threat is malware on a communicant’s phone that can

directly exfiltrate text of conversations, ratcheting will not help. Ratcheting will be of more help

when users delete old messages, when the malware is exfiltrating keys rather than text, and when

its presence on the phone is limited through software security.

Related work.

In concurrent and independent work, Cohn-Gordon, Cremers, Dowling, Garratt and

Stebila (CCDGS) [29] give a formal analysis of the Signal protocol. The protocol they analyze

includes ratcheting steps but stops at key distribution: unlike us, they do not consider, define

or achieve ratcheted encryption. They treat Signal as a multi-stage session-key exchange proto-

col [38] in the tradition of authenticated session-key exchange [15, 12], with multiple parties and

sessions. We instead consider ratcheted key exchange as a two-party protocol based on a trusted

initial key distribution. This isolates ratcheted key exchange from the session key exchange

used to produce the initial keys and allows a more modular treatment. They prove security

(like us, in the ROM) under the Gap-DH [53] assumption while we prove it under the weaker
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SCDH [1] assumption. Ultimately their work and ours have somewhat different goals. Theirs is

to analyze the particular Signal protocol. Ours is to isolate the core ratcheting method (as one

of the more novel elements of the protocol) and formalize primitives reflecting its goals in the

simplest possible way.

Cohn-Gordon, Cremers and Garratt (CCG) [28] study and compare different kinds of

post-compromise security in contexts including authenticated key exchange. They mention

ratcheting as a technique for maintaining security in the face of compromise.

Key-insulated cryptography [32, 33, 34] also targets forward and backward security

but in a model where there is a trusted helper and an assumed-secure channel from helper to

user that is employed to update keys. Implementing the secure channel is problematic due to

the exposures [7]. Ratcheting in contrast works in a model where all communication is under

adversary control.

1.1 Preliminaries

Notation and conventions.

Let N= {0,1,2, . . .} be the set of non-negative integers. Let ε denote the empty string. If

x ∈ {0,1}∗ is a string then |x| denotes its length, x[i] denotes its i-th bit, and x[i.. j] = x[i] . . .x[ j]

for 1 ≤ i ≤ j ≤ |x|. If mem is a table, we use mem[p] to denote the element of the table that

is indexed by p. By x‖y we denote a uniquely decodable concatenation of strings x and y (if

lengths of x and y are fixed then x‖y can be implemented using standard string concatenation). If

X is a finite set, we let x←$ X denote picking an element of X uniformly at random and assigning

it to x. We use a special symbol ⊥ to denote an empty table position, and we also return it as an

error code indicating an invalid input; we assume that adversaries never pass ⊥ as input to their

oracles.

Algorithms may be randomized unless otherwise indicated. Running time is worst case.

If A is an algorithm, we let y← A(x1, . . . ;r) denote running A with random coins r on inputs

x1, . . . and assigning the output to y. We let y←$ A(x1, . . .) be the result of picking r at random
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Game SUFCMAF
F

fk←${0,1}F.kl

win← false

FTag,Verify

Return win

Tag(m)

σ ← F.Ev(fk,m)

S← S∪{(m,σ)}
Return σ

Verify(m,σ)

σ ′← F.Ev(fk,m)

If (σ = σ ′) and ((m,σ) 6∈ S) then
win← true

Return (σ = σ ′)

Game MAEN
SE

b←{0,1} ; v← 0
b′←$NNew,Enc,Dec ; Return (b′ = b)

New

v← v+1 ; sk[v]←${0,1}SE.kl

Enc(i,n,m,h)
If not (1≤ i≤ v) then return ⊥
If (i,n) ∈U then return ⊥
c1← SE.Enc(sk[i],n,m,h)
c0←${0,1}SE.cl(|m|)

U ←U ∪{(i,n)} ; S← S∪{(i,n,cb,h)}
Return cb

Dec(i,n,c,h)
If not (1≤ i≤ v) then return ⊥
If (i,n,c,h) ∈ S then return ⊥
m← SE.Dec(sk[i],n,c,h)
If b = 1 then return m else return ⊥

Figure 1.1. Games defining strong unforgeability of function family F under chosen message
attack, and multi-user authenticated encryption security of SE.

and letting y← A(x1, . . . ;r). We let [A(x1, . . .)] denote the set of all possible outputs of A when

invoked with inputs x1, . . .. Adversaries are algorithms.

We use the code based game playing framework of [16]. (See Fig. 2.1 for an example.)

We let Pr[G] denote the probability that game G returns true. In code, uninitialized integers are

assumed to be initialized to 0, Booleans to false, strings to the empty string, sets to the empty set,

and tables are initially empty.

Function families.

A family of functions F specifies a deterministic algorithm F.Ev. Associated to F is a key

length F.kl ∈ N, an input set F.In, and an output length F.ol. Evaluation algorithm F.Ev takes

fk ∈ {0,1}F.kl and an input x ∈ F.In to return an output y ∈ {0,1}F.ol.
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Strong unforgeability under chosen message attack.

Consider game SUFCMA of Fig. 1.1, associated to a function family F and an adversary

F . In order to win the game, adversary F has to produce a valid tag σforge for any message mforge,

satisfying the following requirement. The requirement is that F did not previously receive σforge

as a result of calling its Tag oracle with mforge as input. The advantage of F in breaking the

SUFCMA security of F is defined as Advsufcma
F,F = Pr[SUFCMAF

F ]. If no adversaries can achieve

a high advantage in breaking the SUFCMA security of F while using only bounded resources,

we refer to F as a MAC algorithm and we refer to its key fk as a MAC key.

Symmetric encryption schemes.

A symmetric encryption scheme SE specifies deterministic algorithms SE.Enc and

SE.Dec. Associated to SE is a key length SE.kl∈N, a nonce space SE.NS, and a ciphertext length

function SE.cl : N→N. Encryption algorithm SE.Enc takes sk ∈ {0,1}SE.kl, a nonce n ∈ SE.NS,

a message m ∈ {0,1}∗ and a header h ∈ {0,1}∗ to return a ciphertext c ∈ {0,1}SE.cl(|m|). Decryp-

tion algorithm SE.Dec takes sk,n,c,h to return message m ∈ {0,1}∗∪{⊥}, where ⊥ denotes in-

correct decryption. Decryption correctness requires that SE.Dec(sk,n,SE.Enc(sk,n,m,h),h) =

m for all sk ∈ {0,1}SE.kl, all n ∈ SE.NS, all m ∈ {0,1}∗, and all h ∈ {0,1}∗. Nonce-based

symmetric encryption was introduced in [58], whereas [57] also considers it in the setting with

associated data. In this work we consider only nonce-based symmetric encryption schemes with

associated data; we omit repeating these qualifiers throughout the text, instead referring simply

to “symmetric encryption schemes”.

Multi-user authenticated encryption.

Consider game MAE of Fig. 1.1, associated to a symmetric encryption scheme SE and

an adversary N . It extends the definition of authenticated encryption with associated data for

nonce-based schemes [57] to the multi-user setting, first formalized in [18]. The adversary is

given access to oracles New,Enc and Dec. It can increase the number of users by calling

oracle New, which generates a new (secret) user key. For any of the user keys, the adversary can
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request encryptions of plaintext messages by calling oracle Enc and decryptions of ciphertexts

by calling oracle Dec. In the real world (when b = 1), oracles Enc and Dec provide correct

encryptions and decryptions. In the random world (when b = 0), oracle Enc returns uniformly

random ciphertexts and oracle Dec returns the incorrect decryption symbol ⊥. The goal of

the adversary is to distinguish between these two cases. In order to avoid trivial attacks, N

is not allowed to call Dec with ciphertexts that were returned by Enc. Likewise, we allow

N to call Enc only once for every unique user-nonce pair (i,n). This can be strengthened to

allow queries with repeated (i,n) and instead not allow queries with repeated (i,n,m,h), but the

stronger requirement is satisfied by fewer schemes. The advantage of N in breaking the MAE

security of SE is defined as Advmae
SE,N = 2Pr[MAEN

SE]−1.

1.2 Oracle Diffie-Hellman with Exposures

The Oracle Diffie-Hellman (ODH) assumption [1] in a cyclic group requires that it is

hard to distinguish between a random string and a hash function H applied to gxy, even given gx,

gy and an access to an oracle that returns H(Xy) for arbitrary X (excluding X = gx). We extend

this assumption for multiple queries, based on a fixed gy and arbitrarily many gx[0],gx[1], . . .. For

each index v we allow either to expose x[v], or to get a challenge value; the challenge value is

either a random string, or H applied to gx[v]·y. We also extend the hash function oracle to take a

broader class of inputs.

Oracle Diffie-Hellman with Exposures assumption.

Let G be a cyclic group of order p ∈ N, and let G∗ denote the set of its generators. Let H

be a function family such that H.In = {0,1}∗. Consider game ODHE of Fig. 1.2 associated to

G,H and an adversary O, where O is required to call oracle Up at least once prior to making

any oracle queries to Ch and Exp. The game starts by sampling a function key hk, a group

generator g and a secret exponent y. The adversary is given hk,g,gy and it has access to oracles

Up, Ch, Exp, Hash. Oracle Up generates a new challenge exponent x[v] and returns gx[v],
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Game ODHEO
G,H

b←${0,1} ; hk←${0,1}H.kl ; g←$G∗ ; y←$Zp ; v←−1
b′←$OUp,Ch,Exp,Hash(hk,g,gy) ; Return (b′ = b)

Up

op← ε ; v← v+1 ; x[v]←$Zp ; Return gx[v]

Ch(s)

If (op = “exp”) or ((v,s,gx[v]) ∈ Shash) then return ⊥
op← “ch” ; Sch← Sch∪{(v,s,gx[v])} ; e← gx[v]·y

If mem[v,s,e] =⊥ then mem[v,s,e]←${0,1}H.ol

r1← H.Ev(hk,v‖s‖e) ; r0←mem[v,s,e] ; Return rb

Exp

If op = “ch” then return ⊥
op← “exp” ; Return x[v]

Hash(i,s,X)

If (i,s,X) ∈ Sch then return ⊥
If i = v then Shash← Shash∪{(i,s,X)}
Return H.Ev(hk, i‖s‖Xy)

Figure 1.2. Game defining Oracle Diffie-Hellman with Exposures assumption for G,H.

where v is an integer counter that denotes the number of the current challenge exponent (indexed

from 0) and is incremented by 1 at the start of every call to oracle Up. Oracle Hash takes an

arbitrary integer i, an arbitrary string s and a group element X to return H.Ev(hk, i‖s‖Xy). For

each counter value v, the adversary can choose to either call oracle Exp to get the value of x[v] or

call oracle Ch with input s to get a challenge value that is generated as follows. In the real world

(when b = 1) oracle Ch returns H.Ev(hk,v‖s‖gx[v]·y) and in the random world (when b = 0) it

returns a uniformly random element from {0,1}H.ol. The goal of the adversary is to distinguish

between these two cases. Oracle Ch can be called multiple times per challenge exponent, and it

returns consistent outputs regardless of the challenge bit’s value. The advantage ofO in breaking

the ODHE security of G,H is defined as Advodhe
G,H,O = 2Pr[ODHEO

G,H]−1.

In order to avoid trivial attacks, O is not allowed to query oracle Hash on input (i,s,X)

if X = gx[i] and if oracle Ch was already called with input s when the counter value was v = i.

Note that adversary is allowed to win the game if it happens to guess a future challenge exponent
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x and query it to oracle Hash ahead of time; the corresponding triple (i,s,X) will not be added

to the set of inputs Shash that are not allowed to be made to oracle Ch. Finally, recall that the

string concatenation operator ‖ is defined to produce uniquely decodable strings, which helps to

avoid trivial string padding attacks.

Plausibility of the ODHE assumption.

We do not know of any group G and function family H that can be shown to achieve

ODHE in the standard model. The original ODH assumption of [1] was justified by a reduction

in the random oracle model to the Strong Computational Diffie-Hellman (SCDH) assumption.

The latter was defined in [1] and is a weaker version of the Gap Diffie-Hellman assumption

from [53]. In Section 1.5 we give a definition for the SCDH assumption and prove that it also

implies the ODHE assumption in the random oracle model.

We provide this result as a corollary of two lemmas. The lemmas use the Strong

Computational Diffie-Hellman with Exposures (SCDHE) assumption as an intermediate step,

where SCDHE is a novel assumption that extends SCDH to allow multiple challenge queries, and

to allow exposures. To formalize our result, we define the Oracle Diffie-Hellman with Exposures

in ROM (ODHER) assumption that is equivalent to the ODHE assumption in the random oracle

model.

The first lemma establishes that SCDHE implies ODHE in the random oracle model, by

a reduction from ODHER to SCDHE. The proof of this lemma emulates the ODH to SCDH

reduction of [1]. In their reduction, the SCDH adversary simulates the random oracle and the

hash oracle for the ODH adversary; it uses its own decisional-DH oracle to check whether the

ODH adversary feeds gxy for the challenge values of x and y, and to maintain consistency between

simulated oracle outputs. This consistency maintenance is the main source of complexity in our

reduction because —in addition to the oracles mentioned above— we must also ensure that the

simulated challenge oracle is consistent.

The second lemma is a standard model reduction from SCDHE to SCDH. This reduction
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is a standard “guess the index” reduction in which our SCDH adversary guesses which query

the SCDHE adversary will attack. The SCDH adversary replaces the answer to this query with

the challenge values it was given and replaces all other oracle queries with challenges that it has

generated itself. As usual, this results in a multiplicative loss of security, so the final theorem

(combining both lemmas) has a bound of the form Advodher
G,H,O ≤ qUp ·Advscdh

G,S +qHash/p, where

S is the SCDH adversary and qUp (resp. qHash) is the number of Up (resp. Hash) queries made

by ODHER adversary O.

Because of the multiplicative loss of security caused by the second lemma we examine

the possibility of using Diffie-Hellman self-reducibility techniques to obtain a tighter bound

on the reduction from SCDHE to SCDH. The possibility of exposures in SCDHE makes this

much more difficult than one might immediately realize. We present a reduction that succeeds

despite these difficulties by using significantly more complicated methods than in our first

example of this reduction. Specifically we build an SCDH adversary that makes guesses

about the future behavior of the SCDHE adversary it was given and “rewinds” this adversary

whenever its guess was incorrect. Thus we ultimately obtain the tighter bound of Advodher
G,H,O ≤

Advscdh
G,Su

+qUp ·2−u+qHash/p. Here Su is the SCDH adversary that is defined for any parameter

u ∈ N that bounds its worst case running time.

1.3 Ratcheted key exchange

Ratcheted key exchange allows users to agree on shared secret keys while providing very

strong security guarantees. In this work we consider a setting that encompasses two parties, and

we assume that only one of them sends key agreement messages. We call this party a sender,

and the other party a receiver. This model enables us to make the first steps towards capturing

the schemes that are used in the real world messaging applications. Future work could extend

our model to allow both parties to send key agreement messages, and to consider the group chat

setting where multiple users engage in shared conversations.
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Figure 1.3. The interaction between ratcheted key exchange algorithms.

1.3.1 Definition of ratcheted key exchange

Consider Fig. 1.3 for an overview of algorithms that constitute a racheted key exchange

scheme RKE, and the interaction between them. The algorithms are RKE.IKg, RKE.SKg and

RKE.RKg. We will first provide an informal description of their functionality, and then formalize

their syntax and correctness requirements.

Initial key generation algorithm RKE.IKg generates and distributes the following keys:

k,stks,stkr ,seks,sekr . Output key k is the initial shared secret key that can be used by both

parties for any purpose such as running a symmetric encryption scheme. Static keys stks and

stkr are long-term keys that will not get updated over time. It is assumed that stks is known to

all parties, whereas stkr contains potentially secret information and will be known only by the

receiver. Session keys seks and sekr contain secret information that is required for future key

exchanges, such as MAC keys (to ensure the authenticity of key exchange) and temporary secrets

(that could be used for the generation of the next output keys). As a result of running RKE.IKg,
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the sender gets stks,seks,ks and the receiver gets stks,stkr ,sekr ,kr , where ks = kr = k. We

use “s” and “r” as subscripts for output keys and session keys, to indicate that the particular key

is owned by the sender or by the receiver, respectively. Note that normally both parties will have

the same output key (i.e. ks = kr), but this might not be true if an attacker succeeds to tamper

with the protocol.

Next we define the sender’s and receiver’s key generation algorithms RKE.SKg and

RKE.RKg. These algorithms model the key ratcheting process that generates new session keys

and output keys while deleting the corresponding old keys.

Sender’s key generation algorithm RKE.SKg is run whenever the sender wants to produce

a new shared secret key. It takes the sender’s static key stks and the sender’s session key seks. It

returns an updated sender’s session key seks, a new output key ks, and update information upd.

The update information is used by the receiver to generate the same output key.

Receiver’s key generation algorithm RKE.RKg takes sender’s static key stks, receiver’s

static key stkr , receiver’s session key sekr , update information upd (received from the sender)

and the current shared output key kr . It returns receiver’s session key sekr , output key kr , and a

Boolean flag acc indicating whether the new keys were generated succesfully. Setting acc = false

will generally mean that the received update information was rejected; our correctness definition

will require that in such case the receiver’s output key kr and the receiver’s session key sekr

should remain unchanged. This requirement is the reason why RKE.RKg takes the old value of

kr as one of its inputs.

Ratcheted key exchange schemes.

A ratcheted key exchange scheme RKE specifies algorithms RKE.IKg, RKE.SKg and

RKE.RKg. Associated to RKE is an output key length RKE.kl ∈ N and sender’s key gener-

ation randomness space RKE.RS. Initial key generation algorithm RKE.IKg returns k,seks,

(stks,stkr ,sekr), where k ∈ {0,1}RKE.kl is an output key, seks is a sender’s session key, and

stks,stkr ,sekr are sender’s static key, receiver’s static key and receiver’s session key, respec-
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Game RKE-CORC
R

bad← false
(k,seks,(stks,stkr ,sekr))← R.IKg
ks← k ; kr ← k
CUp,RatRec ; Return (bad = false)

Game RE-CORC
R

bad← false
(k,seks,(stks,stkr ,sekr))← R.IKg
ks← k ; kr ← k
CUp,RatRec,Enc ; Return (bad = false)

Up

r←$ R.RS ; (seks,ks,upd)← R.SKg(stks,seks;r)
(sekr ,kr ,acc)←$ R.RKg(stks,stkr ,sekr ,upd,kr)
If not ((acc = true) and (ks = kr)) then bad← true

RatRec(upd)

(sek ′r ,k
′
r ,acc)←$ R.RKg(stks,stkr ,sekr ,upd,kr)

If (acc = false) and not ((k ′r = kr) and (sek ′r = sekr)) then bad← true

Enc(n,m,h)

c← R.Enc(ks,n,m,h) ; m′← R.Dec(kr ,n,c,h) ; If (m′ 6= m) then bad← true

Figure 1.4. Game RKE-COR defining correctness of ratcheted key exchange scheme R, and
game RE-COR defining correctness of ratcheted encryption scheme R. Oracles Up and RatRec
are used in both games, whereas oracle Enc is only used in game RE-COR.

tively. The sender’s and receiver’s output keys are initialized to ks = kr = k. Sender’s key

generation algorithm RKE.SKg takes stks,seks and randomness r ∈ RKE.RS to return a new

sender’s session key seks, a new sender’s output key ks ∈ {0,1}RKE.kl, and update information

upd. Receiver’s key generation algorithm RKE.RKg takes stks,stkr ,sekr ,upd and receiver’s

output key kr ∈ {0,1}RKE.kl to return a new receiver’s session key sekr , a new receiver’s output

key kr ∈ {0,1}RKE.kl, and a flag acc ∈ {true, false}.

Correctness of ratcheted key exchange.

Consider game RKE-COR of Fig. 1.4 associated to a ratcheted key exchange scheme R

and an adversary C, where C is provided with an access to oracles Up and RatRec.

Oracle Up runs algorithm R.SKg to generate a new sender’s output key ks along with

the corresponding update information upd; it then runs R.RKg with upd as input to generate a

new receiver’s output key kr . It is required that acc = true and ks = kr at the end of every Up

call. This means that if the receiver uses update information received from the sender (in the

correct order), it is guaranteed to successfully generate the same output keys as the sender.
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Oracle RatRec takes update information upd of adversary’s choice and attempts to

run R.RKg with upd (and current receiver’s keys) as input. The correctness requires that if

the receiver’s key update fails (meaning acc = false) then the receiver’s keys kr ,sekr remain

unchanged. This means that if receiver’s attempt to generate new keys is not successful (e.g. if

the update information is corrupted in transition), then the receiver’s key generation algorithm

should not corrupt the receiver’s current keys. This is a usability property that requires that it is

possible to recover from failures, meaning that the receiver can later re-run its key generation

algorithm with the correct update information to successfully produce its next pair of (session

and output) keys.

We consider an unbounded adversary and allow it to call its oracles in any order. The

advantage of C breaking the correctness of R is defined as Advrkecor
R,C = 1− Pr[RKE-CORC

R].

Correctness property requires that Advrkecor
R,C = 0 for all unbounded adversaries C. Note that our

definition of the correctness game with an unbounded adversary is equivalent to a more common

correctness definition that would instead explicitly quantify over all randomness choices of all

algorithms. We stress that our correctness definition does not require any security properties.

In particular, it does not require that the update information is authenticated because oracle

RatRec considers only the case when R.RKg sets acc = false.

Our definition requires perfect correctness. However, it can be relaxed by requiring that

adversary C can only make a bounded number of calls to its oracles, and further requiring that its

advantage of winning the game is negligible.

1.3.2 Security of ratcheted key exchange

Ratcheted key exchange attempts to provide strong security guarantees even in the

presence of an attacker that can steal the secrets stored by the sender. Specifically, we consider

an active attacker that is able to intercept and modify any update information sent from the

sender to the receiver. The goal is that the attacker cannot distinguish the produced output keys

from random strings, and cannot make the two parties agree on output keys that do not match.
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Furthermore, we desire certain stronger security properties to hold even if the attacker manages

to steal secrets stored by the sender, which we refer to as forward security and backward security.

Forward security requires that such an attacker cannot distinguish prior keys from random.

Backward security requires that the knowledge of sender’s secrets at the current time period can

not be used to distinguish keys generated (at some near point) in the future from random strings.

Recall that our model is intentionally one-sided; exposure of receiver’s secrets is not allowed. In

particular, compromise of all of the receiver’s secrets will permanently compromise security.

It is clear that if an attacker steals the secret information of the sender, then it can create

its own update information resulting in the receiver agreeing on a “secret” key that is known

by the attacker. It can be difficult to say what restrictions should be placed on the keys that the

attacker makes the receiver agree to. Is it a further breach of security if the attacker then later

causes the sender and the receiver to agree on the same secret key? What should happen if the

attacker later forwards update information that was generated by the sender to the receiver?

In our security model we choose to insist on two straightforward policies in this scenario.

The first is that whenever update information not generated by the sender is accepted by the

receiver, even full knowledge of the key that the receiver has generated should not leak any

information about other correctly generated keys. The second is that at any fixed point in time, if

update information generated by the sender is accepted by the receiver then the receiver should

agree with the sender on what the corresponding output key is, and the adversary should not be

able to distinguish the shared output key from random.

Key indistinguishability of ratcheted key exchange schemes.

Consider game KIND on the left side of Fig. 1.5 associated to a ratcheted key exchange

scheme RKE and an adversary D. The advantage of D in breaking the KIND security of RKE is

defined as Advkind
RKE,D = 2Pr[KINDD

RKE]−1.

The adversary is given the sender’s static key stks as well as access to oracles RatSend,

RatRec, Exp, ChSend, and ChRec. It can call oracle RatSend to receive update infor-
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mation upd from the sender, and it can call oracle RatRec to pass arbitrary update information

to the receiver. Oracle Exp returns the current secrets seks,ks possessed by the sender as well as

the random seed r that was used to create the most recent upd in RatSend. Note that according

to our notation convention from Section 1.1, integer variable r is assumed to be initialized to 0 at

the beginning of the security game; this value will be returned if adversary calls Exp prior to

RatSend.

The challenge oracles ChSend and ChRec provide the adversary with keys ks and kr

in the real world (when b = 1), or with uniformly random bit strings in the random world (when

b = 0). The goal of the adversary is to distinguish between these two worlds. To disallow trivial

attacks the game makes use of tables op and auth (initialized as empty) as well as a boolean

flag restricted (initialized as false). Specifically, op keeps track of the oracle calls made by the

adversary and is used to ensure that it can not trivially win the game by calling oracle Exp to

get secrets that were used for one of the challenge queries. Table auth keeps track of the update

information upd generated by RatSend so that we can set the flag restricted whenever the

adversary has taken advantage of an Exp query to send maliciouly generated upd to RatRec.

In this case we do not expect the receiver’s key kr to look random or match the sender’s key ks

so ChRec is “restricted” and will return kr in both the real and random worlds.

Authenticity of key exchange.

Our security definition implicitly requires the authenticity of key exchange. Specifically,

assume that an adversary can violate the authenticity in a non-trivial way, meaning without using

Exp oracle to acquire the relevant secrets. This means that the adversary can construct malicious

update information upd∗ that is accepted by the receiver, while not setting the restricted flag to

true. By making the receiver accept upd∗, the adversary achieves the situation when the sender

and the receiver produce different output keys ks 6= kr . Now adversary can call oracles ChSend

and ChRec to get both keys and compare them to win the game. In the real world (b = 1) the

returned keys will be different, whereas in the random world (b = 0) they will be the same. We
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formalize this attack in Section 1.6.

Allowing recovery from failures.

Consider a situation when an attacker steals all sender’s secrets, and hence has an ability

to impersonate the sender. It can drop all further packets sent by the sender and instead use the

exposed secrets to agree on its own shared secret keys with the receiver. In the security game this

corresponds to the case when the adversary calls Exp and then starts calling oracle RatRec

with maliciously generated update information upd. This sets the restricted flag to true, making

the ChRec oracle always return the real receiver’s key kr regardless of the value of game’s

challenge bit b. The design decision at this point is – do we want to allow the game to recover

from this state, meaning should the restricted flag be ever set back to false?

Our decision on this matter was determined by the two “policies” discussed above. As

long as the adversary keeps sending maliciously generated update information upd, the restricted

flag will remain true. In this case, the real receiver’s key kr returned from ChRec should be of

no help in distinguishing the real sender’s key ks from random, as desired from the first policy.

To match the second policy, the next time adversary forwards the upd generated by the sender

(i.e. upd = auth[ir ]) to RatRec, if upd is accepted by the receiver then the restricted flag is set

back to false. This makes the output of ChRec again depend on the challenge bit, thus requiring

kr to be equal to ks and indistinguishable from random.

Alternative treatment of restricted flag.

Our security definition of KIND can be strengthened by making it never reset the

restricted flag back to false. Instead, the game could require that if the adversary exposes

sender’s secrets and uses them to agree on its own shared output key with the receiver, then all

the communication between the sender and the receiver should be disrupted. Meaning that any

future attempt to simply forward sender’s update information upd to the receiver should result

in RatRec rejecting it. Otherwise adversary would be defined to win the game. This can be

formalized in a number of ways. Our construction of ratcheted key exchange from Section 1.3.3
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Game KINDD
RKE

b←${0,1} ; is← 0 ; ir ← 0
(k,seks,(stks,stkr ,sekr))←$ RKE.IKg
ks← k ; kr ← k
b′←$DRatSend,RatRec,Exp,ChSend,ChRec(stks)
Return (b′ = b)

RatSend

r←$ RKE.RS
(seks,ks,upd)← RKE.SKg(stks,seks;r)
auth[is]← upd ; is← is+1
Return upd

RatRec(upd)

z←$ RKE.RKg(stks,stkr ,sekr ,upd,kr)
(sekr ,kr ,acc)← z
If not acc then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then restricted← false
ir ← ir +1 ; Return true

Exp

If op[is] = “ch” then return ⊥
op[is]← “exp” ; Return (r,seks,ks)

ChSend

If op[is] = “exp” then return ⊥
op[is]← “ch”
If rkey[is] =⊥ then rkey[is]←${0,1}RKE.kl

If b = 1 then return ks else return rkey[is]

ChRec

If restricted then return kr
If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If rkey[ir ] =⊥ then rkey[ir ]←${0,1}RKE.kl

If b = 1 then return kr else return rkey[ir ]

Game RAEA
RE

b←${0,1} ; is← 0 ; ir ← 0
(k,seks,(stks,stkr ,sekr))←$ RE.IKg
ks← k ; kr ← k
b′←$ARatSend,RatRec,Exp,Enc,Dec(stks)
Return (b′ = b)

RatSend

r←$ RE.RS
(seks,ks,upd)← RE.SKg(stks,seks;r)
auth[is]← upd ; is← is+1
Return upd

RatRec(upd)

z←$ RE.RKg(stks,stkr ,sekr ,upd,kr)
(sekr ,kr ,acc)← z
If not acc then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then restricted← false
ir ← ir +1 ; Return true

Exp

If op[is] = “ch” then return ⊥
op[is]← “exp” ; Return (r,seks,ks)

Enc(n,m,h)

If op[is] = “exp” then return ⊥
op[is]← “ch”
If (is,n) ∈U then return ⊥
c1← RE.Enc(ks,n,m,h)
c0←${0,1}RE.cl(|m|) ; U ←U ∪{(is,n)}
S← S∪{(is,n,cb,h)}
Return cb

Dec(n,c,h)

If restricted then
Return RE.Dec(kr ,n,c,h)

If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If (ir ,n,c,h) ∈ S then return ⊥
m← RE.Dec(kr ,n,c,h)
If b = 1 then return m else return ⊥

Figure 1.5. Games defining key indistinguishability of ratcheted key exchange scheme RKE,
and authenticated encryption security of ratcheted encryption scheme RE.
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should be secure for a stronger definition like that, but would likely require stronger assumptions

to prove.

1.3.3 Construction of a ratcheted key exchange scheme

In this section we construct a ratcheted key exchange scheme, and discuss some design

considerations by presenting a number of attacks that our scheme manages to evade. In Sec-

tion 1.3.4 we will deduce a bound on the success of any adversary attacking the KIND security

of our scheme. The idea of our construction is as follows. We let the sender and the receiver per-

form the Diffie-Hellman key exchange. The receiver’s static key contains a secret DH exponent

stkr = y and the sender’s static key contains the corresponding public value stks = gy (working

in some cyclic group with generator g). In order to generate a new shared secret key, the sender

picks its own secret exponent x and computes the output key (roughly) as ks = H(stkx
s) = H(gxy),

where H is some hash function. The sender then sends update information containing gx to the

receiver, enabling the latter to compute the same output key. In order to ensure the security of the

key exchange, both parties use a shared MAC key, meaning the update information also includes

a tag of gx.

Note that the used MAC key should be regularly renewed in order to ensure that the

scheme provides backward security against exposures. As a result, the output of applying the

hash function on gxy is also used to derive a new MAC key. The initial key generation provides

both parties with a shared MAC key and a shared secret key that are sampled uniformly at

random. The formal definition of our key exchange scheme is as follows.

Ratcheted key exchange scheme RATCHET-KE.

Let G be a cyclic group of order p ∈ N, and let G∗ denote the set of its generators. Let

F be a function family such that F.In =G. Let H be a function family such that H.In = {0,1}∗

and H.ol > F.kl. We build a ratcheted key exchange scheme RKE = RATCHET-KE[G,F,H] as

defined in Fig. 1.6, with RKE.kl = H.ol−F.kl and RKE.RS = Zp.
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Algorithm RKE.IKg

k←${0,1}RKE.kl

fk←${0,1}F.kl

hk←${0,1}H.kl

g←$G∗ ; y←$Zp

stks← (hk,g,gy) ; stkr ← y
seks← (0, fk)
sekr ← (0, fk)
z← (k,seks,(stks,stkr ,sekr))
Return z

Algorithm RKE.SKg((hk,g,Y ),(is, fks);r)

x← r ; X ← gx ; σ ← F.Ev(fks,X)
s← H.Ev(hk, is ‖σ ‖X ‖Y x) ; ks← s[1 . . .RKE.kl]
fks← s[RKE.kl+1 . . .RKE.kl+F.kl]
Return ((is+1, fks),ks,(X ,σ))

Algorithm RKE.RKg((hk,g,Y ),y,(ir , fkr),(X ,σ),kr)

acc← (σ = F.Ev(fkr ,X))
If not acc then return ((ir , fkr),kr ,acc)
s← H.Ev(hk, ir ‖σ ‖X ‖Xy) ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl+1 . . .RKE.kl+F.kl]
Return ((ir +1, fkr),kr ,acc)

Figure 1.6. Ratcheted key exchange scheme RKE = RATCHET-KE[G,F,H].

Adversary D1(stks)

(hk,g,Y )← stks

x←$Zp ; RatRec(gx)
kr ←ChRec
k ′r ← H.Ev(hk,Y x)
If k ′r = kr then return 1
Else return 0

Adversary D2(stks)

(hk,g,Y )← stks

x←$Zp ; RatRec(gx)
kr ←ChRec
(r, fks,ks)←Exp
k ‖ fk← H.Ev(hk, fks ‖Y x)
If k = kr then return 1
Else return 0

Adversary D3(stks)

upd0←RatSend ; RatRec(upd0) ; ks←ChSend
upd1←RatSend ; RatRec(upd1)
(r, fks,ks)←Exp ; (X0,σ0)← upd0
σ ← F.Ev(fks,X0) ; upd2← (X0,σ)
RatRec(upd2) ; kr ←ChRec
If ks = kr then return 1 else return 0

Adversary D4(stks)

(r,seks,ks)←Exp
((i∗s , fk

∗
s),k

∗
s ,upd

∗)←$ RKE.SKg(stks,seks)
upd0←RatSend ; RatRec(upd∗)
upd1←RatSend ; (X ,σ)← upd1
σ∗← F.Ev(fk∗s ,X) ; upd∗← (X ,σ∗) ; RatRec(upd∗)
ks←ChSend ; kr ←ChRec
If ks = kr then return 1 else return 0

Figure 1.7. Attacks against insecure variants of RKE = RATCHET-KE[G,F,H].

Design considerations.

We will examine some of the design decisions of RKE by considering several ratcheted

key exchange schemes that are weakened versions of RKE, and corresponding adversaries that are

able to successfully attack these schemes. The first two will omit the use of a MAC and thus be

vulnerable to attacks where the adversary sends its own update information to RatRec without

having called Exp first (though the second will have to make an expose query afterwards). In

the latter two examples we consider variations of RKE that use fewer inputs to the hash function.
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Our adversaries against these schemes thereby justify the choices we made for the input to

the hash function. For the sake of compactness we omit showing that the constructed KIND

adversaries have access to oracles RatSend,RatRec,Exp,ChSend,ChRec, and we omit

showing that oracle calls return any output whenever this output is not used by the adversary.

Schemes without a MAC.

First let us consider changing RKE to not use its MAC F and instead simply use an

unauthenticated gx as its update information. For simplicity we will additionally assume that

the only input to H is a group element gxy. Consider adversary D1 shown in Fig. 1.7. It makes a

RatRec query with a gx of its own choice, then calls oracle ChRec and checks whether the

key it received was real or random by comparing it to H(hk,Y x). Referring to this weakened

scheme as RKE1, it is clear that Advkind
RKE1,D1

= 1−2−RKE.kl.

Besides using a MAC, another way to prevent the specific attack given above would

be to put a shared secret key fk into the hash function along with gxy for every update. Let

RKE2 denote a version of RKE that still does not use a MAC but updates its keys with the

hash function via k ‖ fk← H.Ev(hk, fk ‖gxy). An adversary like D1 will not work against RKE2

because computing the new value of k requires knowing the secret value fk. But there is still a

simple attack against RKE2. Consider adversary D2 shown in Fig. 1.7. It works in the same way

as D1 except it needs to make an expose query to obtain fks before it can compute k using the

hash function. One subtle point to notice is that it is important that D2 calls Exp after its call

to RatRec. Otherwise the restricted flag in KIND would have been set to true and ChRec

would always return the real key (instead of returning a randomly chosen key when the challenge

bit in KIND is set to 0). Having noticed this it is clear that Advkind
RKE2,D2

= 1−2−RKE.kl.

In Section 1.6 we give an attack against any ratcheted encryption scheme, showing that

if it is possible for an adversary to generate its own upd that the receiver will accept, than the

adversary can use this ability to successfully attack the ratcheted encryption scheme. This proves

that some sort of authentication is required for the update information if we want a scheme to be
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secure.

Authenticating the update information in the Double Ratchet algorithm.

The default version of the Double Ratchet algorithm [48, 36] — which is used in the

Signal protocol [54] — does not authenticate the update information. A single, one-sided version

of this algorithm would evolve its keys in a way that is vaguely similar to the RKE2 scheme

discussed above, so it would not meet our security definition. This does not immediately lead to

any real-world attacks, and could mean that our security definition is stronger than necessary.

Furthermore, [36] describes the header encryption variant of the Double Ratchet algorithm. A

single, one-sided version of this algorithm provides some form of authentication for update

information and might meet our security definition.

Necessity of inputs to H.

In the construction of RATCHET-KE, function H(hk, ·) takes a string w = i‖σi ‖gxi ‖gxiy

as input. The most straightforward part of w is gxiy, which provides unpredictability to ensure

that the generated keys are indistinguishable from uniformly random strings. String w also

includes the counter i, and the corresponding update information updi = (gxi,σi). The inclusion

of counter i in w ensures that an attacker cannot perform a “key-reuse” attack to make the receiver

generate an output key that was already used before; we provide an example of such attack

below. We also describe a “key-collision” attack against the KIND security of the scheme that is

prevented by including updi in w. Finally, note that our concatenation operator ‖ is defined to

produce uniquely decodable strings, so the mapping of (i,σi,gxi,gxiy) into string w is injective;

this helps to avoid attacks that take advantage of malleable encodings.

Key-reuse attack.

Game KIND makes sure that if challenge keys are acquired from the sender and the

receiver for the same value of i (i.e. is = ir), then these keys are consistent even if they are picked

randomly. Otherwise it would be trivial to attack any ratcheted key exchange scheme. However,

the game does not maintain such consistency between different values of i. Let RKE3 denote
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RKE if it was changed to use only gxy as input to the hash function. Consider the “key-reuse”

attack D3 shown in Fig. 1.7 that exploits the above as follows. Adversary D3 starts by calling

RatSend, RatRec and ChSend to get a sender’s challenge key ks. Note that if the challenge

bit is b = 1 in game KIND, then ks equals to H.Ev(hk,Y x) for some exponent x generated during

RatSend. Next, the adversary calls both RatSend and RatRec to ratchet the key forward,

in order to be able to make Exp queries. It calls Exp to get fks so that it can re-authenticate the

same value of X = gx that was used for the sender’s challenge query. Then it sends X and its

new MAC tag σ to the receiver, which sets the restricted flag true. The latter means that calling

ChRec results in getting the receiver’s real output key regardless of the challenge bit. If this key

is equal to the previously learned sender’s challenge key then it is highly likely that the challenge

bit b equals 1, otherwise it must be 0. This gives the advantage of Advkind
RKE3,D3

= 1−2−RKE.kl.

Key-collision attacks.

We now describe the final attack idea that does not work against our construction but

would have been possible if the update information upd = (gxi,σ) was not included in the

hash function. Consider changing RATCHET-KE[G, F, H] to have H(hk, ·) take inputs of the

form w = i‖gxiy. Call this scheme RKE4. This enables the following attack, as defined by the

adversary D4 in Fig. 1.7. Assume that an attacker compromises the sender’s keys ks and fks and

immediately uses the compromised authenticity to establish new keys k∗s and fk∗s , shared between

the attacker and the receiver. Now let upd = (X ,σ) be the next update information produced

by the sender. The attacker can construct malicious update information upd∗ = (X ,σ∗), where

σ∗ = F.Ev(fk∗s ,X), and send it to the receiver. The receiver would accept upd∗ and use the

output of H.Ev(hk, i‖Xy) as new key material, resulting in the same keys as those generated by

the sender. Now the the receiver and the sender share an output key, while the restricted flag is

set true, so checking whether the output of the two challenge oracles is the same yields a good

attack.

We will not give the exact advantage of D4. If σ∗ and σ happen to be exactly the same,
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then the restricted flag would be set back to false and the attack would fail because the two keys

received from the sender’s and the reciever’s challenge oracles would be the same regardless

of game’s challenge bit. But if σ∗ = σ was likely to occur then the ratcheted key exchange

scheme would be insecure for other reasons. One could formalize this by building a second

adversary against RKE4 to show that one of the two adversaries must have a high advantage. For

the purpose of this section we simply note that this event is extremely unlikely to occur for any

typical choice of hash function and MAC.

1.3.4 Security proof for our ratcheted key exchange scheme

In previous section we showed that several variations of our ratcheted key exchange

scheme RKE = RATCHET-KE[G, F, H] are insecure. In this section we will prove that our

scheme is secure. We now present our theorem bounding the advantage of an adversary breaking

the KIND-security of RKE by that of adversaries against the SUFCMA-security of F and the

ODHE-security of G,H.

Theorem 1. Let G be a cyclic group of order p ∈ N, and let G∗ denote the set of its generators.

Let F be a function family such that F.In =G. Let H be a function family such that H.In = {0,1}∗

and H.ol > F.kl. Let RKE = RATCHET-KE[G,F,H]. LetD be an adversary attacking the KIND-

security of RKE that makes qRatSend queries to its RatSend oracle, qRatRec queries to its

RatRec oracle, qExp queries to its Exp oracle, qChSend queries to its ChSend oracle, and

qChRec queries to its ChRec oracle. Then there is an adversary F attacking the SUFCMA-

security of F, and adversaries O1,O2 attacking the ODHE-security of G,H, such that

Advkind
RKE,D ≤ 2·(qRatSend+1) ·Advsufcma

F,F +2·qRatSend·Advodhe
G,H,O1

+2·Advodhe
G,H,O2

.

Adversary F makes at most qRatSend queries to its Tag oracle and qRatRec queries to its

Verify oracle. Adversary O1 makes at most qRatSend queries to its Up oracle, 2 queries to its

Ch oracle, qExp queries to its Exp oracle, and qRatSend+qRatRec−2 queries to its Hash

oracle. Adversary O2 makes at most qRatSend queries to its Up oracle, qRatSend+qRatRec
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queries to its Ch oracle,qExp queries to its Exp oracle, and qRatRec+ qExp queries to its

Hash oracle. Each of F , O1, O2 has a running time approximately that of D.

The proof requires careful attention to detail due to subtleties. The most natural proof

method may be to proceed one RatSend query at a time, first replacing the output of the hash

function with random bits (unless an expose happens) and then using the security of the MAC to

argue that the adversary cannot produce any modified update information that will be accepted by

the receiver without exposing. But there is a subtle flaw with this proof technique. The adversary

may attempt to create a forged upd before it has decided whether to expose. In this case we

need to check the validity of their forgery with a MAC key, before we know whether it should be

random or a valid output of the hash function.

To avoid this problem we first use a hybrid argument to show that no such forgery is

possible before replacing all non-exposed keys with random. We proceed one RatSend query

at a time, showing that we can temporarily replace the key with random when checking the sort

of attempted forgery described above. This then allows us to use the security of the MAC to

assume that the forgery attempt failed without us having to commit to a key to verify with. We

thus are able to show one step at a time that all such forgery attempts can be assumed to fail

without having to check.

Once this is done, we are never forced to use a key before the adversary has committed

to whether it will perform a relevant exposure of the secret state. As such we can safely delay

our decision of whether or not the key should be replaced by random values until it is known

whether an expose will happen. This allows us to use the ODHE security of H and G to argue

that we can replace all of the generated keys with randomness, only using H to generate the real

keys at the last moment whenever an expose query is made.

Theorem 1. Consider the sequence of games shown in Fig. 1.8. Lines not annotated with

comments are common to all games. G0,0 is identical to KINDD
RKE with the code of RKE

inserted. Additionally, a flag unchanged has been added. This flag keeps track of whether the
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most recent update information was passed unchanged from the sender to the receiver and thus

the keys kr and fkr should be indistinguishable from random to adversary D. In this case, the

adversary should not be able to create update information upd that is accepted by RatRec

unless it calls Exp or forwards along the upd generated by the sender. We prove this with a

hybrid argument over the games G0,0, . . . ,G0,qRatSend+1. Game G0, j assumes forgery attempts

fail for the first j keys, sets a bad flag if D is successful at forging against the ( j+1)-th key, and

performs normally for all following keys. Game G∗0, j is the same except it also acts as if D failed

to forge even when the bad flag is set. Thus, from the perpective of an adversary G∗0, j is simply

assumping that forgery attempts fail for the first j+1 keys, making it equivalent to G0, j+1. Thus

for all j ∈ {0, . . . ,qRatSend},

Pr[G0,0] = Pr[KINDD
RKE] and Pr[G∗0, j] = Pr[G0, j+1].

Furthermore, for all j ∈ {1, . . . ,qRatSend}, games G0, j and G∗0, j are identical until bad, so the

fundamental lemma of game playing [16] gives:

Pr[G0, j]−Pr[G∗0, j]≤ Pr[badG∗0, j ],

where Pr[badQ] denotes the probability of setting the bad flag in game Q.

We cannot directly bound Pr[badG∗0, j ] using the security of F because the key being used

for F is chosen as output from H instead of uniformly at random, consider the relationship

between games G∗0, j and I j (the latter also shown in Fig. 1.8). Game I j is identical to G∗0, j, except

that in I j the output of hash function H is replaced with a uniformly random string whenever

i+1 = j (thus the key used to check whether bad should be set when i = j is uniformly random).

Note that when j = 0 the games G∗0,0 and I0 are identical so Pr[badG∗0,0] = Pr[badI0 ]. For

other values of j we relate the probability that these games set bad to the advantage of the oracle

Diffie-Hellman adversary O1 that is defined in Fig. 1.10. Adversary O1 picks j′ at random and

then uses its oracles to simulate G∗0, j or I j. Then if the bad flag is set it sets a bit b′ equal to

1. This bit is ultimately returned by O. Thus the probability that O outputs 1 is exactly the

probability that the bad flag would be set in the game it is simulating.
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Games G0, j,G∗0, j,I j

b←${0,1} ; is← 0 ; ir ← 0 ; unchanged← true ; rand←${0,1}H.ol

ks←${0,1}RKE.kl ; kr ← ks ; fks←${0,1}F.kl ; fkr ← fks

hk←${0,1}H.kl ; g←$G∗ ; y←$Zp ; stks← (hk,g,gy)
b′←$DRatSend,RatRec,Exp,ChSend,ChRec(stks) ; Return (b′ = b)

RatSend

If op[is] =⊥ then op[is]← “ch”
x←$Zp ; σ ← F.Ev(fks,gx) ; upd← (gx,σ)
s← H.Ev(hk, is ‖σ ‖gx ‖gxy)
If is+1 = j then s← rand // I j

auth[is]← upd ; is← is+1 ; ks← s[1 . . .RKE.kl]
fks← s[RKE.kl+1 . . .RKE.kl+F.kl] ; Return upd

RatRec(upd)

(X ,σ)← upd
If unchanged and (op[ir ] 6= “exp”) and (upd 6= auth[ir ]) then

If ir < j then return false
If ir = j then

If σ 6= F.Ev(fkr ,X) then return false
bad← true
Return false // G∗0, j,I j

If σ 6= F.Ev(fkr ,X) then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then

unchanged← true ; restricted← false
Else

unchanged← false
s← H.Ev(hk, ir ‖σ ‖X ‖Xy)
If ir +1 = j then s← rand // I j

ir ← ir +1 ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl+1 . . .RKE.kl+F.kl] ; Return true

Exp

If op[is] = “ch” then return ⊥
op[is]← “exp” ; Return (x,(is, fks),ks)

ChSend

//Unchanged from KIND

ChRec

//Unchanged from KIND

Figure 1.8. Games G0, j,G∗0, j, I j for proof of Theorem 1.

Let bodhe denote the challenge bit in game ODHEO1
G,H, and let b′ denote the corresponding

guess made by the adversary O1. Let j′ be the value sampled in the first step of O1. For each
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Games G1–G2

b←${0,1} ; is← 0 ; ir ← 0 ; unchanged← true
ks[0]←${0,1}RKE.kl ; kr ← ks[0] ; fks[0]←${0,1}F.kl ; fkr ← fks[0]
hk←${0,1}H.kl ; g←$G∗ ; y←$Zp ; stks← (hk,g,gy)
b′←$DRatSend,RatRec,Exp,ChSend,ChRec(stks) ; Return (b′ = b)

RatSend

If op[is] =⊥ then op[is]← “ch”
x←$Zp ; σ ← F.Ev(fks[is],gx) ; upd← (gx,σ)
s← H.Ev(hk, is ‖σ ‖gx ‖gxy) // G1
s←${0,1}H.ol // G2
auth[is]← upd ; is← is+1 ; ks[is]← s[1 . . .RKE.kl]
fks[is]← s[RKE.kl+1 . . .RKE.kl+F.kl] ; Return upd

RatRec(upd)

(X ,σ)← upd
If unchanged and (op[ir ] 6= “exp”) and (upd 6= auth[ir ]) then

Return false
If unchanged then fkr ← fks[ir ]
If (σ 6= F.Ev(fkr ,X)) then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ]

unchanged← true ; restricted← false ; ir ← ir +1
Else

unchanged← false
s← H.Ev(hk, ir ‖σ ‖X ‖Xy)
ir ← ir +1 ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl+1 . . .RKE.kl+F.kl]

Return true

Exp

If op[is] = “ch” then return ⊥
op[is]← “exp” ; (X ,σ)← auth[is−1]
s← H.Ev(hk,(is−1)‖σ ‖X ‖Xy)

ks[is]← s[1 . . .RKE.kl]

fks[is]← s[RKE.kl+1 . . .RKE.kl+F.kl]

Return (x,(is, fks[is]),ks[is])

ChSend

If op[is] = “exp” then return ⊥
op[is]← “ch”
If rkey[is] =⊥ then rkey[is]←${0,1}RKE.kl

If b = 1 then return ks[is] else return rkey[is]

ChRec

If restricted then return kr
If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If rkey[ir ] =⊥ then rkey[ir ]←${0,1}RKE.kl

If unchanged then kr ← ks[ir ]
If b = 1 then return kr else return rkey[ir ]

Figure 1.9. Games G1,G2 for proof of Theorem 1.
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choice of j′, adversary O1 perfectly simulates the view of D in either G∗0, j′ or I j′ depending

on whether its Ch oracle is returning real output of the hash function or a random value. If D

performs an action that would prevent bad from being set (such as calling Exp when is = j′)

then O1 no longer perfectly simulates the view of D, but it does not matter for our analysis

because we already know bad (and thus b′) will not be set. So for all j ∈ {1, . . . ,qRatSend}, we

have

Pr[badG∗0, j ] = Pr[b′ = 1 |bodhe = 1, j′ = j ],

Pr[badI j ] = Pr[b′ = 1 |bodhe = 0, j′ = j ].

Combining the above for all values of j (using Pr[badG∗0,0] = Pr[badGis ]) gives

Advodhe
G,H,O1

= Pr[b′ = 1 |bodhe = 1 ]−Pr[b′ = 1 |bodhe = 0 ]

=
qRatSend

∑
j=1

Pr[ j = j′](Pr[badG∗0, j ]−Pr[badI j ]) =
qRatSend

∑
j=0

Pr[badG∗0, j ]−Pr[badI j ]

qRatSend
.

Note that we were able to change the starting index of j for that last summation because

Pr[badG∗0,0 ] = Pr[badI0], as we noted before.

To complete the hybrid argument part of the proof, we can finally bound the probability

that bad gets set true in I j. Doing so requires adversary D to successfully forge a MAC tag

for a uniformly random key, allowing us to reduce to the security of F. Formally, we use D

to construct an adversary F attacking the SUFCMA security of F. Adversary F (shown in

Fig. 1.11) simulates adversary D and guesses when it will first create a forgery. F simulates

game I j for adversary D until that point, and uses its own SUFCMA oracles to answer D’s

queries at the time when it expects the forgery. Similar to the earlier case when O1 simulated D,

adversary F may fail to simulate I j for adversary D when the latter performs certain actions that

preclude bad from being set. This does not affect our analysis because we only require that if

bad is set then F will return a successful forgery.
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Adversary OUp,Ch,Exp,Hash
1 (hk,g,Y )

j′←${1, . . . ,qRatSend} ; b←${0,1} ; b′← 0
is← 0 ; ir ← 0 ; unchanged← true
ks←${0,1}RKE.kl ; kr ← ks
fks←${0,1}F.kl ; fkr ← fks ; stks← (hk,g,Y )
DRatSendSim,RatRecSim,ExpSim,ChSendSim,ChRecSim(stks)
Return b′

RatRecSim(upd)

(X ,σ)← upd
forge← ((op[ir ] 6= “exp”)∧ (upd 6= auth[ir ]))
If unchanged and forge then

If ir < j′ then return false
If ir = j′ then

If σ 6= F.Ev(fkr ,X) then return false
bad← true ; b′← 1 ; Return false

If σ 6= F.Ev(fkr ,X) then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then

unchanged← true ; restricted← false
Else unchanged← false
If ir +1 6= j′ then s←Hash(ir ,σ ‖X ,X)
Else s←Ch(σ ‖X)
ir ← ir +1 ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl+1 . . .RKE.kl+F.kl]
Return true

ExpSim

If op[is] = “ch” then return ⊥
op[is]← “exp” ; x←Exp
Return (x,(is, fks),ks)

RatSendSim

If op[is] =⊥ then op[is]← “ch”
X ←Up ; σ ← F.Ev(fks,X)
upd← (X ,σ)
If is+1 6= j′ then

s←Hash(is,σ ‖X ,X)
Else

s←Ch(σ ‖X)
auth[is]← upd ; is← is+1
ks← s[1 . . .RKE.kl]
fks← s[RKE.kl+1 . . .RKE.kl+F.kl]
Return upd

ChSendSim

If op[is] = “exp” then return ⊥
op[is]← “ch”
If rkey[is] =⊥ then

rkey[is]←${0,1}RKE.kl

If b = 1 then return ks
Else return rkey[is]

ChRecSim

If restricted then return kr
If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If rkey[ir ] =⊥ then

rkey[ir ]←${0,1}RKE.kl

If b = 1 then return kr
Else return rkey[ir ]

Figure 1.10. Adversary O1 for proof of Theorem 1.

Thus for j ∈ {0, . . . ,qRatSend}, we have Pr[badI j ]≤ Pr[SUFCMAF
F | j′= j ] which gives

Advsufcma
F,F ≥ (1/(qRatRec+1))∑

qRatRec
j=0 Pr[badI j ].

The above work allows us to transition to game G0,qRatSend+1 as shown in the following

equations. From there we will move to games G1,G2 shown in Fig. 1.9. All of the summations
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Adversary FTag,Verify

j′←${0, . . . ,qRatSend} ; b←${0,1}
is← 0 ; ir ← 0 ; unchanged← true
rand←${0,1}H.ol ; ks←${0,1}RKE.kl ; kr ← ks
fks←${0,1}F.kl ; fkr ← fks ; hk←${0,1}H.kl

g←$G∗ ; y←$Zp ; stks← (hk,g,gy)
DRatSendSim,RatRecSim,ExpSim,ChSendSim,ChRecSim(stks)

RatRecSim(upd)

(X ,σ)← upd
forge← ((op[ir ] 6= “exp”)∧ (upd 6= auth[ir ]))
If unchanged and forge then

If ir < j′ then return false
If ir = j′ then

If not Verify(X ,σ) then return false
bad← true
Return false

If (ir = j′) then
If not Verify(X ,σ) then return false

Else
If σ 6= F.Ev(fkr ,X) then return false

If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then

unchanged← true ; restricted← false
Else

unchanged← false
s← H.Ev(hk, ir ‖σ ‖X ‖Xy)
If ir +1 = j then s← rand
ir ← ir +1 ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl+1 . . .RKE.kl+F.kl]
Return true

RatSendSim

If op[is] =⊥ then op[is]← “ch”
x←$Zp

If is = j′ then σ ←Tag(gx)
Else σ ← F.Ev(fks,gx)
s← H.Ev(hk, is ‖σ ‖gx ‖gxy)
If is+1 = j then s← rand
upd← (gx,σ) ; auth[is]← upd
is← is+1 ; ks← s[1 . . .RKE.kl]
fks← s[RKE.kl+1 . . .RKE.kl+F.kl]
Return upd

ExpSim

If op[is] = “ch” then return ⊥
op[is]← “exp”
Return (x,(is, fks),ks)

ChSendSim

If op[is] = “exp” then return ⊥
op[is]← “ch”
If rkey[is] =⊥ then

rkey[is]←${0,1}RKE.kl

If b = 1 then return ks
Else return rkey[is]

ChRecSim

If restricted then return kr
If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If rkey[ir ] =⊥ then

rkey[ir ]←${0,1}RKE.kl

If b = 1 then return kr
Else return rkey[ir ]

Figure 1.11. Adversary F for proof of Theorem 1.

below are from j = 0 to j = qRatSend.

Pr[KINDD
RKE] = Pr[G0,0] = Pr[G1,qRatSend

]+∑ j Pr[G0, j]−Pr[G∗0, j]

≤ Pr[G1,qRatSend
]+∑ j Pr[badG∗0, j ]

= Pr[G1,qRatSend
]+qRatSend ·Advodhe

G,H,O1
+∑ j Pr[badI j ]

≤ qRatSend ·Advodhe
G,H,O1

+(qRatSend+1) ·Advsufcma
F,F +Pr[G1,qRatSend

].
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Adversary OUp,Ch,Exp,Hash
2 (hk,g,Y )

b←${0,1} ; is← 0 ; ir ← 0 ; unchanged← true
ks[0]←${0,1}RKE.kl ; kr ← ks[0]
fks[0]←${0,1}F.kl ; fkr ← fks[0] ; hk←${0,1}H.kl

g←$G∗ ; y←$Zp ; stks← (hk,g,Y )
b′←$DRatSendSim,RatRecSim,ExpSim,ChSendSim,ChRecSim(stks)
If (b′ = b) then return 1 else return 0

RatSendSim

If op[is] =⊥ then
op[is]← “ch”
If is 6= 0 then
(X ,σ)← auth[is−1] ; s←Ch(σ ||X)
SaveKeys(is,s)

X ←Up ; σ ← F.Ev(fks[is],X) ; upd← (X ,σ)
auth[is]← upd ; is← is+1 ; Return upd

RatRecSim(upd)

(X ,σ)← upd
forge← ((op[ir ] 6= “exp”)∧ (upd 6= auth[ir ]))
If unchanged and forge then return false
If unchanged then fkr ← fks[ir ]
If (σ 6= F.Ev(fkr ,X)) then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ]

unchanged← true ; restricted← false ; ir ← ir +1
Else

unchanged← false ; s←Hash(ir ,σ ||X ,X)
ir ← ir +1 ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl+1 . . .RKE.kl+F.kl]

Return true

SaveKeys(i,s)

ks[i]← s[1 . . .RKE.kl]
fks[i]← s[RKE.kl+1 . . .RKE.kl+F.kl]

ExpSim

If op[is] = “ch” then return ⊥
If (op[is] =⊥) and (is 6= 0) then

x←Exp
(X ,σ)← auth[is−1]
s←Hash(is−1,σ ||X ,X)
SaveKeys(is,s)

op[is]← “exp”
Return (x,(is, fks[is]),ks[is])

ChSendSim

If op[is] = “exp” then return ⊥
If (op[is] =⊥) and (is 6= 0) then
(X ,σ)← auth[is−1]
s←Ch(σ ||X)
SaveKeys(is,s)

op[is]← “ch”
If rkey[is] =⊥ then

rkey[is]←${0,1}RKE.kl

If b = 1 then return ks[is]
Else return rkey[is]

ChRecSim

If restricted then return kr
If op[ir ] = “exp” then return ⊥
If (op[ir ] =⊥) and (ir 6= 0) then
(X ,σ)← auth[ir −1]
s←Ch(σ ||X)
SaveKeys(ir ,s)

op[ir ]← “ch”
If rkey[ir ] =⊥ then

rkey[ir ]←${0,1}RKE.kl

If unchanged then kr ← ks[ir ]
If b = 1 then return kr
Else return rkey[ir ]

Figure 1.12. Adversary O2 for proof of Theorem 1.

Game G1 is identical to G0,qRatSend+1, but has been rewritten to allow make the final game

transition of our proof easier to follow. The complicated, nested if-condition at the beginning

of RatRec has been simplified because ir < qRatSend+1 always holds when unchanged is

true. Additionally, when unchanged is true (and thus upd has been directly forwarded between

RatSend and RatRec without being modified) we delay setting kr , fkr until they are about
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to be used, at which point they are set to match the appropriate ks, fks that have been stored in a

table. We have Pr[G0,qRatSend+1] = Pr[G1].

Games G1 and G2 differ only in that, in G2, values of k0 and fks are chosen at random

instead of as the output of H (unless Exp is called in which case we reset them to the correct

output of H). We bound the difference between Pr[G1] and Pr[G2] by the advantage of the

Diffie-Hellman adversary O2 that is defined in Fig. 1.12.

Let bodhe denote the challenge bit in game ODHEO2
G,H, and let b′ denote the corresponding

guess made by the adversary O2. O2 uses its own oracle to simulate the view of D. When

bodhe = 1 it perfectly simulates the view of D in G1, and when bodhe = 0 it perfectly simulates

the view of G2. When D correctly guess the bit b then O2 assumes its challenge oracle was

returning real output from the hash function so it outputs b′ = 1. Otherwise it outputs b′ = 0.

Thus, Pr[G1] = Pr[b′ = 1 |bodhe = 1 ] and Pr[G2] = Pr[b′ = 1 |bodhe = 0 ] from which it follows

that

Advodhe
G,H,O2

= Pr[G1]−Pr[G2]. As a result of the above and our previous sequence of

inequalities, we get:

Pr[KINDD
RKE]≤ qRatSend ·Advodhe

G,H,O1
+(qRatSend+1) ·Advsufcma

F,F +Pr[G1]

= qRatSend ·Advodhe
G,H,O1

+(qRatSend+1) ·Advsufcma
F,F +Advodhe

G,H,O2
+Pr[G2].

Finally, Pr[G2] = 1/2 because the view of D is independent of b in G2. To see this, first note

that oracle ChSend returns uniformly random bits regardless of the challenge bit. So we only

need to verify that the ChRec returns the same random bits if its last if-statement is reached.

This could only fail to occur if ChRec was called when restricted and unchanged are both false.

However, flags restricted and unchanged can only be simultaneously false at the end of an oracle

call to RatRec if they were already both false at the time when this oracle was called. Thus no

call to RatRec can be the first to set them both to false.

This yields the claimed bound on the advantage of D. The bounds on the number of
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oracle queries made by the adversaries are obtained by examining their code.

1.4 Ratcheted encryption

In this section we define ratcheted encryption schemes, and show how to construct them

by composing ratcheted key exchange with symmetric encryption. This serves as a starting point

for discussing ratcheted encryption, and we also discuss possible extensions.

Ratcheted encryption schemes.

Our definition of ratcheted encryption extends the definition of ratcheted key exchange

by adding encryption and decryption algorithms. Ratcheted encryption schemes inherit the key

generation algorithms from ratcheted key exchange schemes, and use the resulting shared keys

as symmetric encryption keys. In line with our definition for ratcheted key exchange, we only

consider one-sided ratcheted encryption, meaning that the sender uses its key only for encryption,

and the receiver uses its key only for decryption.

A ratcheted encryption scheme RE specifies algorithms RE.IKg, RE.SKg, RE.RKg,

RE.Enc and RE.Dec, where RE.Enc and RE.Dec are deterministic. Associated to RE is a nonce

space RE.NS, sender’s key generation randomness space RE.RS, and a ciphertext length func-

tion RE.cl : N→ N. Initial key generation algorithm RE.IKg returns k,seks,(stks,stkr ,sekr),

where k is an encryption key, stks,seks are a sender’s static key and session key, and stkr ,sekr

are receiver’s static key and receiver’s session key, respectively. The sender’s and receiver’s

(symmetric) encryption keys are initialized to ks = kr = k. Sender’s key generation algorithm

RE.SKg takes stks,seks and randomness r ∈ RE.RS to return a new sender’s session key seks,

a new sender’s encryption key ks, and update information upd. Receiver’s key generation

algorithm RE.RKg takes stks,stkr ,sekr ,upd and receiver’s encryption key kr to return a new

receiver’s session key sekr , a new receiver’s encryption key kr , and a flag acc ∈ {true, false}.

Encryption algorithm RE.Enc takes ks, a nonce n ∈ RE.NS, a plaintext message m ∈ {0,1}∗
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and a header h ∈ {0,1}∗ to return a ciphertext c ∈ {0,1}RE.cl(|m|). Decryption algorithm RE.Dec

takes kr ,n,c,h to return m ∈ {0,1}∗∪{⊥}.

Correctness of ratcheted encryption.

Correctness of ratcheted encryption extends that of ratcheted key exchange. It requires

that messages encrypted using sender’s key should correctly decrypt using the corresponding

receiver’s key.

Consider game RE-COR of Fig. 1.4 associated to a ratcheted encryption scheme R

and an adversary C, where C is provided with an access to oracles Up, RatRec and Enc.

The advantage of C breaking the correctness of R is defined as Advrecor
R,C = 1−Pr[RE-CORC

R].

Correctness property requires that Advrecor
R,C = 0 for all unbounded adversaries C. Compared to

the correctness game for ratcheted key exchange, the new element is that adversary C also gets

access to an encryption oracle Enc, which can be queried to test the decryption correctness.

Ratcheted authenticated encryption.

Consider game RAE on the right side of Fig. 1.5 associated to a ratcheted encryption

scheme RE and an adversary A. It extends the security definition of ratcheted key exchange (as

defined in game KIND on the left side of Fig. 1.5) by replacing oracles ChSend and ChRec

with oracles Enc and Dec. Oracles RatSend, RatRec and Exp are the same in both

games. Oracles Enc and Dec are defined as follows. In the real world (when b = 1) oracle

Enc encrypts messages under the sender’s key, and oracle Dec decrypts ciphertexts under the

receiver’s key. In the random world (when b = 0) oracle Enc returns uniformly random strings,

and oracle Dec always returns an incorrect decryption symbol ⊥. The goal of the adversary is

to distinguish between the two cases. The advantage of A in breaking the RAE security of RE is

defined as Advrae
RE,A = 2Pr[RAEA

RE]−1.

We note that the adversary is only allowed to get a single encryption for each unique pair

of (is,n). This restriction stems from the fact that most known nonce-based encryption schemes

are not resistant to nonce-misuse. Our definition can be relaxed to only prevent queries where
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Algorithm RE.IKg

(k,seks,(stks,stkr ,sekr))←$ RKE.IKg
Return (k,seks,(stks,stkr ,sekr))

Algorithm RE.SKg(stks,seks;r)

(seks,ks,upd)← RKE.SKg(stks,seks;r)
Return (seks,ks,upd)

Algorithm RE.RKg(stks,stkr ,sekr ,upd,kr)

(sekr ,kr ,acc)←$ RKE.RKg(stks,stkr ,sekr ,upd,kr)
Return (sekr ,kr ,acc)

Algorithm RE.Enc(ks,n,m,h)

c← SE.Enc(ks,n,m,h)
Return c

Algorithm RE.Dec(kr ,n,c,h)

m← SE.Dec(kr ,n,c,h)
Return m

Figure 1.13. Ratcheted encryption scheme RE = RATCHET-ENC[RKE, SE].

(is,n,m) — or even (is,n,m,h) — are repeated, but it would increasingly limit the choice of the

underlying symmetric schemes that can be used for this purpose (fewer schemes would satisfy

stronger security definitions of multi-user authenticated encryption).

Revisiting the treatment of the restricted flag.

Similar to the definition of KIND, one could consider strengthening the definition of

RAE by never resetting the restricted flag back to false (as discussed in Section 1.3.2). There

would seem to be a more clear motivation to use the stronger definition in the case of encryption.

Namely, our current security definition allows adversary to compromise the sender, use the

exposed secrets to communicate with the receiver, and then restore the initial conversation

link between the sender and the receiver. This represents an ability to stealthily insert arbitrary

messages in the middle of someone’s conversation, without ultimately disrupting the conversation.

However, note that even a stronger definition (one that does not reset the restricted flag) appears

to allow such attack, because the adversary might be able to compromise the sender and insert

the messages before the next time the key ratcheting happens. The success of such attack would

depend on how often the keys are being ratcheted.

Ratcheted encryption scheme RATCHET-ENC.

We build a ratcheted encryption scheme by combining a ratcheted key exchange scheme

with a symmetric encryption scheme. In our composition the output keys of the ratcheted key
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exchange scheme are used as encryption keys for the symmetric encryption scheme.

Let RKE be a ratcheted key exchange scheme and SE be a symmetric encryption

scheme such that SE.kl = RKE.kl. From these two components we build a ratcheted encryp-

tion scheme RE = RATCHET-ENC[RKE,SE] as defined in Fig. 1.13, with RE.NS = SE.NS,

RE.RS = RKE.RS and RE.cl = SE.cl.

Security of ratcheted encryption scheme RATCHET-ENC.

The following says the security of encryption scheme RE = RATCHET-ENC[RKE,SE]

can be reduced to the KIND security of the ratcheted key exchange scheme RKE and MAE

security of the symmetric encryption scheme SE.

Theorem 2. Let RKE be a ratcheted key exchange scheme. Let SE be a symmetric encryption

scheme such that SE.kl = RKE.kl. Let RE = RATCHET-ENC[RKE,SE]. Let A be an adversary

attacking the RAE-security of RE that makes qRatSend queries to its RatSend oracle, qRatRec

queries to its RatRec oracle, qExp queries to its Exp oracle, qEnc queries to its Enc oracle,

and qDec queries to its Dec oracle. Then there is an adversary D attacking the KIND-security

of RKE and an adversary N attacking the MAE-security of SE such that

Advrae
RE,A ≤ 2 ·Advkind

RKE,D+Advmae
SE,N .

Adversary D makes at most qExp queries to its Exp oracle, qEnc queries to its ChSend oracle,

qDec queries to its ChRec oracle, and the same number of queries as A to oracles RatSend,

RatRec. Adversary N makes at most max(qRatSend,qRatRec) queries to its New oracle,

qEnc queries to its Enc oracle, and qDec queries to its Dec oracle. Each ofD,N has a running

time approximately that of A.

The proof is given below. It proceeds in two steps, first using the KIND-security of RKE

and then using the MAE-security of SE. Recall that our goal is to show that adversary A playing

RAE security game against RE is unable to distinguish between the real world (when oracles

Enc and Dec return real encryptions and decryptions) and the random world (when oracle Enc
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returns random strings, and oracle Dec returns incorrect decryption symbol). In the first step

of the proof, we use the KIND-security of ratcheted key exchange scheme RKE to switch from

using real keys to random keys when calling oracles Enc and Dec in the real world of the RAE

security game. We note that oracles RatSend,RatRec,Exp will still operate on the real keys

after the first step, and the adversary D against KIND-security of RKE is able to simulate them

using its own oracles. At this point, the keys used to answer queries to oracles Enc and Dec (in

the game derived from the initial RAE security game) are random and independent of the keys

used to answer queries to oracles RatSend,RatRec,Exp. Thus for the second step of the

proof, we can build an adversaryN against the MAE-security of SE that will generate its own set

of keys for ratcheted encryption scheme RE and use them to produce simulated answers for A’s

oracle queries to RatSend,RatRec,Exp. Adversary N will answer A’s oracle queries to

Enc,Dec using the oracles provided by the MAE game, and relay A’s output bit as the answer

for its own security game.

Theorem 2. Consider games G0,G1 of Fig. 1.14. Lines not annotated with comments are

common to both games. Game G0 is equivalent to RAEA
RE, so

Advrae
RE,A = 2Pr[G0]−1. (1.2)

Game G1 differs from game G0 by using uniformly random keys to answer Enc and Dec oracle

queries. Both games use real keys to answer Exp oracle queries.

First, we construct an adversary D against the KIND-security of RKE, as defined in

Fig. 1.15. Adversary D simulates adversary A as follows. A’s oracle queries to RatSend,

RatRec and Exp are directly answered by the corresponding D’s oracles (but D also does

some bookkeeping to maintain the states that are necessary for simulating other oracle queries).

D simulates A’s queries to Enc and Dec by calling it’s own oracles ChSend and ChRec

and using the received challenge keys to encrypt and decrypt the messages itself. Let b denote

the challenge bit in game KINDD
RKE, and let b′ denote the corresponding guess made by the

adversary D. We have Pr[G0] = Pr[b′ = 1 |b = 1 ] and Pr[G1] = Pr[b′ = 1 |b = 0 ]. It follows that
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Games G0–G1

(k,seks,(stks,stkr ,sekr))←$ RKE.IKg
b←${0,1} ; is← 0 ; ir ← 0 ; ks← k ; kr ← k
b′←$ARatSend,RatRec,Exp,Enc,Dec(stks) ; Return (b′ = b)

RatSend

r←$ RKE.RS ; (seks,ks,upd)← RKE.SKg(stks,seks;r)
auth[is]← upd ; is← is+1 ; Return upd

RatRec(upd)

(sekr ,kr ,acc)←$ RKE.RKg(stks,stkr ,sekr ,upd,kr)
If not acc then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then restricted← false
ir ← ir +1 ; Return true

Exp

If op[is] = “ch” then return ⊥
op[is]← “exp” ; Return (r,seks,ks)

Enc(n,m,h)

If op[is] = “exp” then return ⊥
op[is]← “ch”
If (is,n) ∈U then return ⊥
c1← SE.Enc(ks,n,m,h) // G0
If rkey[is] =⊥ then rkey[is]←${0,1}RKE.kl // G1
c1← SE.Enc(rkey[is],n,m,h) // G1

c0←${0,1}RE.cl(|m|) ; U ←U ∪{(is,n)}
S← S∪{(is,n,cb,h)} ; Return cb

Dec(n,c,h)

If restricted then return SE.Dec(kr ,n,c,h)
If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If (ir ,n,c,h) ∈ S then return ⊥
m← SE.Dec(kr ,n,c,h) // G0
If rkey[ir ] =⊥ then rkey[ir ]←${0,1}RKE.kl // G1
m← SE.Dec(rkey[ir ],n,c,h) // G1
If b = 1 then return m else return ⊥

Figure 1.14. Games G0,G1 for proof of Theorem 2.

Pr[G0]−Pr[G1] = Advkind
RKE,D. (1.3)

Next, we construct an adversary N against the MAE-security of SE, as defined in
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Adversary DRatSend,RatRec,Exp,ChSend,ChRec(stks)

b←${0,1} ; is← 0 ; ir ← 0
b′←$ARatSendSim,RatRecSim,ExpSim,EncSim,DecSim(stks)
If (b′ = b) then return 1 else return 0

EncSim(n,m,h)

If op[is] = “exp” then return ⊥
op[is]← “ch”
If (is,n) ∈U then return ⊥
ks←ChSend ; c1← SE.Enc(ks,n,m,h)
c0←${0,1}RE.cl(|m|) ; U ←U ∪{(is,n)}
S← S∪{(is,n,cb,h)} ; Return cb

DecSim(n,c,h)

If restricted then
kr ←ChRec ; Return SE.Dec(kr ,n,c,h)

If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If (ir ,n,c,h) ∈ S then return ⊥
kr ←ChRec ; m← SE.Dec(kr ,n,c,h)
If b = 1 then return m else return ⊥

RatSendSim

upd←RatSend
auth[is]← upd
is← is+1
Return upd

RatRecSim(upd)

success←RatRec(upd)
If success then

u0← (op[ir ] = “exp”)
u1← (upd = auth[ir ])
If u0 then restricted← true
If u1 then restricted← false
ir ← ir +1

Return success

ExpSim

If op[is] = “ch” then return ⊥
op[is]← “exp”
Return Exp

Figure 1.15. Adversary D for proof of Theorem 2.

Fig. 1.16. Adversary N generates its own keys for the ratcheted key exchange scheme RKE,

and uses them to answer A’s queries to oracles RatSend, RatRec and Exp (as well as A’s

queries to Dec in the case when restricted is true). Furthermore, A’s calls to Enc and Dec

are answered using the corresponding oracles that are provided to N in game MAE. We have

Pr[G1] = MAEN
SE, so

Advmae
SE,N = 2Pr[G1]−1. (1.4)

The theorem statement follows from equations (1.2)–(1.4).

Extensions.

We defined our encryption schemes to be one-sided in both communication (meaning

that the messages are assumed to be sent only in one direction, from the sender to the receiver),

and in security (only protecting against the exposure of the sender’s secrets). It would be useful

to consider two-sided communication (but still one-sided security). In our model the sender and
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Adversary NNew,Enc,Dec

(k,seks,(stks,stkr ,sekr))←$ RKE.IKg
v← 0 ; is← 0 ; ir ← 0 ; ks← k ; kr ← k
b′←$ARatSendSim,RatRecSim,ExpSim,EncSim,DecSim(stks)
Return b′

RatSendSim

r←$ RKE.RS ; z← RKE.SKg(stks,seks;r)
(seks,ks,upd)← z ; auth[is]← upd ; is← is+1
While v < is do
New ; v← v+1

Return upd

RatRecSim(upd)

(sekr ,kr ,acc)←$ RKE.RKg(stks,stkr ,sekr ,upd,kr)
If not acc then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then restricted← false
ir ← ir +1
While v < ir do
New ; v← v+1

Return true

ExpSim

If op[is] = “ch” then return ⊥
op[is]← “exp”
Return (r,seks,ks)

Enc(n,m,h)

If op[is] = “exp” then return ⊥
op[is]← “ch”
Return Enc(is,n,m,h)

Dec(n,c,h)

If restricted then
Return SE.Dec(kr ,n,c,h)

If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
Return Dec(ir ,n,c,h)

Figure 1.16. Adversary N for proof of Theorem 2.

the receiver already share the same key, but one would need to update the security game to allow

using either key for encryption and decryption.

An important goal in studying ratcheted encryption is to model the Double Ratchet

algorithm [48, 36] used in multiple real-world messaging applications, such as in WhatsApp [66]

and in the Secret Conversations mode of Facebook Messenger [37]. This work models the

asymmetric layer of key ratcheting, whereas the real-world applications also have a second layer

of key ratcheting that happens in a symmetric setting. In our model, this can be possibly achieved

by using the output keys of ratcheted key exchange to initialize a forward-secure symmetric

encryption scheme. We do not capture this possibility; both the syntax and the security definitions

would need to be significantly extended.
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1.5 Oracle Diffie-Hellman with Exposures in ROM

In this section we justify the plausibility of the Oracle Diffie-Hellman with Exposures

(ODHE) assumption that was introduced in Section 1.2. We used ODHE to prove the security of

our ratcheted key exchange scheme in Section 1.3.4. We now show that the ODHE assumption

reduces to the Strong Computational Diffie-Hellman (SCDH) assumption when the hash function

in the former is modeled as the random oracle.

We do the reduction in two steps. We introduce the Strong Computational Diffie-Hellman

with Exposures (SCDHE) assumption and use it as an intermediate assumption. In the first

step, we show that ODHE reduces to SCDHE when the hash function in ODHE is modeled as

the random oracle. In the second step, we show that SCDHE reduces to SCDH. We provide

two different reductions for the second step. Our first reduction uses a standard index guessing

proof and thus creates a factor q loss in the advantage. Our second reduction avoids this

multiplicative advantage loss by defining a “rewinding” adversary that uses the self-reducibility

of Diffie-Hellman problems.

We now define the necessary assumptions and state two alternative theorems as outlined

above.

Random Oracle Model.

In the first step of our reduction we will work in the random oracle model (ROM) [14],

modeling a hash function as the random oracle. The random oracle RO models a truly random

function and is defined as follows:

RO(z,κ)

If T [z,κ] =⊥ then T [z,κ]←${0,1}κ

Return T [z,κ]

It takes a string z ∈ {0,1}∗ and an output length κ ∈ N as input, to return an element from

{0,1}κ . We prove our claims for a hash function that simply evaluates the random oracle on its

inputs. We now extend the ODHE assumption from Section 1.2 to the random oracle model.
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Game ODHERO
G,H

b←${0,1} ; hk←${0,1}H.kl ; g←$G∗ ; y←$Zp ; v←−1
b′←$OUp,Ch,Exp,Hash,RO(hk,g,gy) ; Return (b′ = b)

Up

op← ε ; v← v+1 ; x[v]←$Zp ; Return gx[v]

Ch(s)

If (op = “exp”) or ((v,s,gx[v]) ∈ Shash) then return ⊥
op← “ch” ; Sch← Sch∪{(v,s,gx[v])} ; e← gx[v]·y

If mem[v,s,e] =⊥ then mem[v,s,e]←${0,1}H.ol

r1← H.EvRO(hk,v‖s‖e) ; r0←mem[v,s,e] ; Return rb

Exp

If op = “ch” then return ⊥
op← “exp” ; Return x[v]

Hash(i,s,X)

If (i,s,X) ∈ Sch then return ⊥
If i = v then Shash← Shash∪{(i,s,X)}
Return H.EvRO(hk, i‖s‖Xy)

RO(z,κ)
If T [z,κ] =⊥ then T [z,κ]←${0,1}κ

Return T [z,κ]

Figure 1.17. Game defining Oracle Diffie-Hellman with Exposures in ROM assumption for
G,H.

Oracle Diffie-Hellman with Exposures in ROM assumption.

Let G be a cyclic group of order p ∈ N, and let G∗ denote the set of its generators.

Let H be a function family such that H.In = {0,1}∗. Consider game ODHER of Fig. 1.17

associated to G,H and an adversary O, where O is required to call oracle Up at least once

prior to making any oracle queries to Ch and Exp. This game is similar to the game ODHE

from Section 1.2, except that it provides adversary O and hash function H with an access to the

random oracle RO. The advantage of O in breaking the ODHER security of G,H is defined as

Advodher
G,H,O = 2Pr[ODHERO

G,H]−1.
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Game SCDHS
G

g←$G∗ ; y←$Zp ; x←$Zp

Z←$SDH(g,gx,gy)

Return (Z = gxy)

DH(X ,Z)
Return (Xy = Z)

Game SCDHEB
G

g←$G∗ ; y←$Zp ; v←−1
( j,Z)←$BDH,Up,Exp(g,gy)

valid← (0≤ j≤ v) and (op[ j] 6= “exp”)
Return valid and (Z = gx[ j]·y)

DH(X ,Z)
Return (Xy = Z)

Up

v← v+1 ; x[v]←$Zp ; Return gx[v]

Exp

op[v]← “exp” ; Return x[v]

Figure 1.18. Games defining Strong Computational Diffie-Hellman assumption in group G, and
Strong Computational Diffie-Hellman with Exposures assumption in group G.

Strong Computational Diffie-Hellman assumption.

Let G be a cyclic group of order p ∈ N, and let G∗ denote the set of its generators.

Consider game SCDH of Fig. 1.18, associated to group G and to an adversary S. Adversary S

receives g,gx,gy as input, where g is a group generator and gx,gy are random group elements for

some secret values x,y. It is also provided with an oracle DH that takes arbitrary group elements

X ,Z and returns whether Xy = Z. The adversary wins the game if it can compute the value of gxy.

The advantage of S in breaking the SCDH security of G is defined as Advscdh
G,S = Pr[SCDHS

G].

The SCDH assumption was originally defined in [1].

Strong Computational Diffie-Hellman with Exposures assumption.

Let G be a cyclic group of order p ∈ N, and let G∗ denote the set of its generators.

Consider game SCDHE of Fig. 1.18, associated to group G and to an adversary B. Adversary B

receives g,gy as input, where g is a group generator and gy is a random group element for some

secret value y. It is also provided with oracles DH,Up,Exp defined as follows. The DH oracle

is identical to the one from the SCDH game; it takes arbitrary group elements X ,Z and returns

whether Xy = Z. The update oracle Up generates a new random group exponent x[v] and returns

gx[v], where v is a counter that enumerates all challenge exponents (indexed from 0). The expose
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oracle Exp returns x[v] (we do not require that B calls Up prior to its first call to Exp, meaning

that B is allowed to expose the unitialized value at the location−1 of map x). The adversary wins

the game if it returns a pair ( j,Z) such that Z = gx[ j]·y and x[ j] was not exposed. The advantage

of B in breaking the SCDHE security of G is defined as Advscdhe
G,B = Pr[SCDHEB

G].

Theorem statements.

We prove the following theorems. They relate the advantage of an adversary O against

the ODHER security of G,H —where H is instantiated by the random oracle— to the advantage

of an adversary S against the SCDH security in G. The second theorem achieves a better

upper-bound for the advantage ofO, but its proof is more involved and the constructed adversary

S has a worse running time.

We prove our claims for a function family H which is defined by H.EvRO(hk,s) =

RO(hk ‖s,H.ol) for some H.ol ∈ N. Note that the evaluation algorithm of a function family is

defined to be deterministic, whereas RO is a randomized procedure. For H to be well-defined,

one has to be careful when defining deterministic algorithms. For our purposes, a deterministic

algorithms is one that takes no random coins.

Theorem 3. Let G be a cyclic group of order p ∈ N, and let G∗ denote the set of its generators.

Let H be a function family defined by H.EvRO(hk,s) =RO(hk ‖s,H.ol) for some H.ol ∈ N. Let

O be an adversary attacking the ODHER-security of G,H that makes qUp queries to its Up

oracle, qCh queries to its Ch oracle, qHash queries to its Hash oracle, and qRO queries to its

RO oracle. Then there is an adversary S attacking the SCDH-security of G such that

Advodher
G,H,O ≤ qUp ·Advscdh

G,S +qHash/p.

Adversary S makes at most qRO · (qCh+qHash) queries to its DH oracle. Its running time is

approximately that of O plus extra terms that are dominated by qRO · (qCh+qHash).

To prove this theorem, Section 1.5.1 provides the following. First, it reduces ODHE

to SCDHE where the hash function in the former is modeled as the random oracle. Second, it
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reduces SCDHE to SCDH in the standard model.

Theorem 4. Let G be a cyclic group of order p ∈ N, and let G∗ denote the set of its generators.

Let H be a function family defined by H.EvRO(hk,s) =RO(hk ‖s,H.ol) for some H.ol ∈ N. Let

O be an adversary attacking the ODHER-security of G,H that makes qUp queries to its Up

oracle, qCh queries to its Ch oracle, qExp queries to its Exp oracle, qHash queries to its Hash

oracle, and qRO queries to its RO oracle. Let u ∈ N. Then there is an adversary Su attacking

the SCDH-security of G such that

Advodher
G,H,O ≤ Advscdh

G,Su
+qUp ·2−u +qHash/p.

Let q0 = qRO · (qCh+qHash) and q1 = 1+u ·qUp. Adversary Su makes at most q0 ·q1 queries

to its DH oracle. Its running time is approximately q1 times that of O plus extra terms that are

dominated by q0 ·q1.

In Section 1.5.2 we provide an alternative reduction from SCDHE to SCDH that is more

involved than the one in Section 1.5.1. The claims in Theorem 4 are implied by the random

oracle reduction from ODHE to SCDHE in Section 1.5.1, along with the improved reduction

from SCDHE to SCDH in Section 1.5.2.

1.5.1 ODHE reduction to SCDH in ROM

We now state and prove two lemmas that together imply the claim in Theorem 3. The

first lemma reduces from ODHE to SCDHE in ROM, by showing how to use any ODHER

adversary O to construct an SCDHE adversary B. Then the second lemma reduces from any

SCDHE adversary B to an adversary S against SCDH.

Reducing ODHE to SCDHE in ROM.

The first intermediate lemma is as follows.

Lemma 5. Let G be a cyclic group of order p∈N and let G∗ denote the set of its generators. Let

H be a function family defined by H.EvRO(hk,s) =RO(hk ‖s,H.ol) for some H.ol ∈ N. Let O
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be an adversary attacking the ODHER-security of G,H that makes qUp queries to its Up oracle,

qCh queries to its Ch oracle, qExp queries to its Exp oracle, qHash queries to its Hash oracle,

and qRO queries to its RO oracle. Then there is an adversary B attacking the SCDHE-security

of G such that

Advodher
G,H,O ≤ Advscdhe

G,B +qHash/p.

Adversary B makes at most qUp queries to its Up oracle, qExp queries to its Exp oracle, and

qRO · (qCh+qHash) queries to its DH oracle. Its running time is approximately that of O plus

extra terms that are dominated by qRO · (qCh+qHash).

This lemma captures the intuition that the only way for O to distinguish the output of the

hash function from random is if it was able to calculate gx[v]·y and query this value to its random

oracle. The qHash/p-term (erroneously omitted in earlier versions of this paper) bounds the

unlikely event that O makes a query of the form Hash(i,s,gx[i]·y) before x[i] was picked by the

game.

Lemma 5. Let ODHERO
G,H,b denote the game which proceeds as ODHERO

G,H with the challenge

bit hard-coded to b and then returns true iff b′ = 1, where b′ is the bit returned by O. A standard

conditioning argument gives that

Advodher
G,H,O = Pr[ODHERO

G,H,1]−Pr[ODHERO
G,H,0]. (1.5)

Consider games G0, G1, and G2 in Fig. 1.19. Lines annotated with game names in

comments are only in the indicated games; other lines are common to all games. The result will

follow by establishing the following claims.

(1) Pr[G0] = Pr[ODHERO
G,H,1]

(2) Pr[G0]−Pr[G1]≤ qHash/p

(3) Pr[G1]−Pr[G2]≤ Advscdhe
G,B (for B defined below)

(4) Pr[G2] = Pr[ODHERO
G,H,0]
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Games G0,G1,G2

hk←${0,1}H.kl ; g←$G∗ ; y←$Zp ; v←−1
b′←$OUp,Ch,Exp,Hash,RO(hk,g,gy)

Return (b′ = 1)

Up

op← ε ; v← v+1 ; x[v]←$Zp ; Return gx[v]

Ch(s)

If (op = “exp”) or ((v,s,gx[v]) ∈ Shash) then
Return ⊥

op← “ch” ; Sch← Sch∪{(v,s,gx[v])} ; e← gx[v]·y

If TCh[v,s,e] =⊥ then
TCh[v,s,e]←${0,1}H.ol

If TH [v,s,e] 6=⊥ then //(v,s,e) ∈ S′hash

bad0,1← true

TCh[v,s,e]← TH [v,s,e] // G0

If T [hk ‖v‖s‖e,H.ol] 6=⊥ then
bad1,2← true

TCh[v,s,e]← T [hk ‖v‖s‖e,H.ol] // G0,G1

r← TCh[v,s,e]
Return r

Exp

If op = “ch” then return ⊥
op← “exp” ; Return x[v]

Hash(i,s,X)

If (i,s,X) ∈ Sch then return ⊥
If i < v then S′hash← S′hash∪{(i,s,X)}
If i = v then Shash← Shash∪{(i,s,X)}
If TH [i,s,Xy] =⊥ then

TH [i,s,Xy]←${0,1}H.ol

If TCh[i,s,Xy] 6=⊥ then
bad0,1← true

TH [i,s,Xy]← TCh[i,s,Xy] // G0

If T [hk ‖ i‖s‖Xy,H.ol] 6=⊥ then
TH [i,s,Xy]← T [hk ‖ i‖s‖Xy,H.ol]

Return TH [i,s,Xy]

RO(z,κ)

If T [z,κ] =⊥ then
T [z,κ]←${0,1}κ

hk ′ ‖ i‖s‖e← z
If (hk ′,κ) = (hk,H.ol) then

If TCh[i,s,e] 6=⊥ then
bad1,2← true

T [z,κ]← TCh[i,s,e] // G0,G1

If TH [i,s,e] 6=⊥ then
T [z,κ]← TH [i,s,e]

Return T [z,κ]

Figure 1.19. Games G0,G1 for proof of Lemma 5.

The relevant calculation is as follows.

Advodher
G,H,O = Pr[ODHERO

G,H,1]−Pr[ODHERO
G,H,0]

= Pr[G0]−Pr[G2]

= (Pr[G0]−Pr[G1])+(Pr[G1]−Pr[G2])

≤ qHash/p+Advscdhe
G,B

Claim (1). We describe the process by which ODHERO
G,H,1 can be modified to obtain G0,

establishing their first claim. First, all uses of mem are erased because they are unused and the
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variable r1 is renamed to r. Additionally, for expositional purposes we introduced a set S′hash

which is used on the second line of Hash to track queries made with i < v.

The more interesting changes came in our modification of how the random oracle is

treated. In ODHERO
G,H,1 there are three ways the random oracle can be queried. The adversary

can query it directly via RO and the game will query it during executions of H.Ev in Ch and

Hash. In G0 separate random oracle tables (T , TCh, and TH respectively) are kept for for each

of these query types. To ensure this does not create inconsistency in the random oracle each time

one of these tables would be used we first check if a matching entry has been created in another

one of these tables . The value in the first table sampled for some entry gets propagated to the

corresponding entries of the other tables when needed. We have used highlighting to indicate

the start of the table management in each of these oracles. These changes were designed to leave

the game’s behavior unchanged so Pr[G0] = Pr[ODHERO
G,H,1] holds.

Claim (2). In transitioning from G0 to G2 we will be making TH and T independent from

TCh which results in a game identical to ODHERO
G,H,0. Towards that, the difference between G0

and G1 is that in G1 consistency between TCh and TH is no longer maintained. They are identical

until the flag bad0,1 is set true. By the fundamental lemma of game playing [16], we have

Pr[G0]−Pr[G1]≤ Pr[badG1
0,1],

where Pr[badG1
0,1] denotes the probability of setting bad0,1 true in game G0.

Consider the possibility of bad0,1 being set in Hash. For this to occur it must hold that

(i,s,X) 6∈ Sch and TCh[i,s,Xy] 6= ⊥ because of the earlier if statements. However, TCh[i,s,Xy]

can only be set after (i,s,X) was added to Sch in Ch. Thus bad0,1 being set in Hash is not

possible.

Now consider the possibility of bad0,1 being set in Ch. For this to occur it must hold

that (v,s,gx[v]) 6∈ Shash and TH [v,s,gx[v]·y] 6=⊥. The latter tells us that a query of (v,s,gx[v]·y) must

have previously made to Hash, while the former tells us that the query must have been made

58



Adversary BDH,Up,Exp(g,Y )

hk←${0,1}H.kl ; v←−1 ;
b′←$OUpSim,ChSim,ExpSim,HashSim,ROSim(hk,g,gy)

Return (⊥,⊥)
UpSim

op← ε ; v← v+1 ; Xcur ←Up ;

ChSim(s)
If (op = “exp”) or ((v,s,Xcur) ∈ Shash) then

Return ⊥
op← “ch” ; Sch← Sch∪{(v,s,Xcur)}
If TCh[v,s,Xcur ] =⊥ then

TCh[v,s,Xcur ]←${0,1}H.ol

For each (i′,s′,e) ∈ SRO do
If (i′,s′) = (v,s) and DH(Xcur ,e) then

abort(v,e)
r← TCh[v,s,Xcur ]

Return r

ExpSim

If op = “ch” then return ⊥
op← “exp” ; x←Exp ; Return x

HashSim(i,s,X)

If (i,s,X) ∈ Sch then return ⊥
If i = v then Shash← Shash∪{(i,s,X)}
SH ← SH ∪{(i,s,X)}
If TH [i,s,X ] =⊥

TH [i,s,X ]←${0,1}H.ol

For each (i′,s′,e) ∈ SRO do
If (i′,s′) = (i,s) and DH(X ,e) then

TH [i,s,X ]← T [hk ‖ i‖s‖e,H.ol]

Return TH [i,s,X ]

ROSim(z,κ)
If T [z,κ] =⊥ then

T [z,κ]←${0,1}κ

hk ′ ‖ i‖s‖e← z
If (hk ′,κ) = (hk,H.ol) then

SRO← SRO∪{(i,s,e)}
For each (i′,s′,X) ∈ Sch do

If (i′,s′) = (i,s) and DH(X ,e) then
abort(i,e)

For each ((i′,s′,X) ∈ SH do
If (i′,s′) = (i,s) and DH(X ,e) then

T [z,κ]← TH [i,s,X ]

Return T [z,κ]

Figure 1.20. Adversary B for proof of Lemma 5.

before v was incremented to its current value (i.e., (v,s,gx[v]) ∈ S′hash). Note then, that the query

was made before x[v] was sampled. For a query (i,s,X) made while i < v, the probability that

X = gx[i] is 1/p. A union bound over the queries to Hash gives the second claim.

Claim (3). Now consider games G1 and G2. In G2 consistency between T and TCh is no

longer maintained. They are identical until the flag bad1,2 is set true. By the fundamental lemma

of game playing, we have

Pr[G1]−Pr[G2]≤ Pr[badG2
1,2].

In order for the adversary O to set bad1,2 true in game G2 is has to call RO(hk ‖ i‖s‖e,H.ol)

and Ch(s) such that (v,s,gx[v]·y) = (i,s,e) where v represents the value of that variable when the
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call to Ch(s) is made. This means that adversary O must be able to compute e = gx[v]·y from

just X = gx[v] (returned by Up) and Y = gy (passed as input to O). This natural motivates using

a reduction to SCDHE.

Consider the adversary B shown in Fig. 1.20. The special pseudocode command

abort(v,e) tells B to immediate halt execution with output (v,e). It simulates oracles Up,

Exp for adversary O by using its own oracles with the same names. It simulates oracles Ch,

Hash, and RO by maintaining its own copies of tables TCh, TH , and T .

However, B does not know y so it cannot calculate Xy
cur or Xy to index into TCh and TH

the same way that G2 does. Instead it will index using Xcur in ChSim and X in HashSim. This

is consistent because exponentiation by y is a bijective, but causes difficulty for maintaining

consistency with T . For z = hk ‖ i‖s‖e it be able to verify if e = Xy for any (i,s,X) entry of

TCh or TH . This issue is resolved via the highlighted code. The set Sch is used together with

the new sets SH and SRO to track the non-⊥ entries of tables. When a check for consistency is

required B loops through the appropriate set and uses its DH oracle to check if relations of the

form (e = Xy) hold.

Finally, whenever bad1,2 would be set B aborts and outputs the gx[v]·y it has found. From

the preceding DH query we can verify that B will always wins when it aborts. Note the use of

op ensures the tuple it returns satisfies valid. Thus, we have that

Pr[badG2
1,2] = Pr[SCDHEB

G] = Advscdhe
G,B .

Note that for each pair of calls that O makes to RO and Ch (resp. RO and Hash), adversary

B will make at most one query to its DH oracle, during the later of the pair of calls. Therefor

adversary B makes at most qRO · (qCh+ qHash) queries to its DH oracle. The running time

of adversary B is roughly that of O, plus the extra computation that is required to evaluate the

qRO · (qCh+qHash) queries mentioned above. The other claims about the oracle queries made

by B are easily verified by examining its code.
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Claim (4). The proof concludes by verifying Pr[G2] = Pr[ODHERO
G,H,0]. Note that

in G2 the tables TH and T are kept consistent and so accurately model the random oracle in

ODHERO
G,H,0. Additionally, the use of table T exactly matches that of mem in ODHERO

G,H,0

because it is decoupled from these other tables.

Reducing SCDHE to SCDH.

The second intermediate lemma is as follows.

Lemma 6. Let G be a cyclic group of order p∈N, and let G∗ denote the set of its generators. Let

B be an adversary attacking the SCDHE-security of G that makes qDH queries to its DH oracle

and qUp queries to its Up oracle. Then there is an adversary S attacking the SCDH-security of

G such that

Advscdhe
G,B ≤ qUp ·Advscdh

G,S .

Adversary S makes at most qDH queries to its DH oracle and its running time is approximately

that of B.

Lemma 6. We build an adversary S attacking the SCDH-security of G as follows:

Adversary SDH(g,XS ,Y )
jS←${0, . . . ,qUp−1} ; v←−1
( j,Z)←$BDHSim,UpSim,ExpSim(g,Y )
Return Z

DHSim(X ,Z)
Return DH(X ,Z)

UpSim

v← v+1 ; x←$Zp ; X ← gx

If (v = jS) then X ← XS
Return X

ExpSim

If (v = jS) then return ⊥
Return x

Adversary S simulates game SCDHEG for adversary B, answering B’s calls to oracle DH using

its own DH oracle (it has the same functionality because S runs B with g,Y as input). Adversary

S chooses a random index jS between 0 and qUp−1, representing its guess of which index j

is going to be returned by adversary B. It then uses XS as the challenge value to answer B’s

call to oracle Up when v = jS . It samples its own challenge exponents for the rest of the Up

calls, meaning it is also able to answer B’s calls to Exp whenever v 6= jS . Adversary S is not
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able to properly simulate the expose oracle for B when v = jS , but this is not important for our

reduction because B could not have won by returning j = jS after making such Exp call (it

would set op[ jS ] = “exp” in game SCDHEG).

Let jB denote the index guessed by S in game SCDHS
G, and let jB denote the index

returned by B in game SCDHEB
G. For any j ∈ {0,1, . . . ,qUp−1} we have

Pr
[

SCDHS
G | jS = j

]
≥ Pr[SCDHEB

G∧ jB = j].

This is an inequality because it is possible that S wins in SCDHS
G by simulating B that does not

win in SCDHEB
G (e.g. this happens if B returns ( j,Z) after calling Exp when v = j). We get the

following:

Advscdh
G,S = Pr[SCDHS

G]

=
qUp−1

∑
j=0

Pr[SCDHS
G| jS = j] ·Pr[ jS = j]

≥
qUp−1

∑
j=0

Pr[SCDHEB
G∧ jB = j] · 1

qUp

=
1

qUp
·Pr[SCDHEB

G]

=
1

qUp
·Advscdhe

G,B

The claimed number of oracle queries and running time of S follows from its construction.

Theorem 3. This theorem is a direct consequence of Lemma 5 and Lemma 6.

1.5.2 SCDHE reduction to SCDH with rewinding

In previous section we provided a reduction from ODHE to SCDH in ROM, by combining

two intermediate lemmas – Lemma 5 and Lemma 6. The latter lemma reduced SCDHE to SCDH

and incurred a multiplicative loss in advantage. We now use the self-reducibility property of
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Diffie-Hellman to state and prove an alternative reduction from SCDHE to SCDH that avoids

such multiplicative loss. The new reduction is formalized as Lemma 7 below. Combining

Lemma 7 with Lemma 5 from the previous section will yield a more efficient overall reduction

from ODHE to SCDH in ROM, as stated in Theorem 4 of Section 1.5.

Outline of the new reduction.

Recall that the SCDH adversary S used for the proof of Lemma 6 attempts to simulate

the provided SCDHE adversary B. Both adversaries take a challenge value Y = gy as input for

some secret uniformly random exponent y. Adversary S tries to guess which of B’s queries

to its oracle Up —returning some group element X = gx— will be used for constructing B’s

output value Z = gxy. The SCDH adversary then uses the challenge value XS = gxS from its own

game as the output of the chosen Up query, and answers every other Up query by sampling a

uniformly random exponent x itself and returning X = gx.

The new SCDH adversary Su for the reduction in this section will instead re-randomize

its challenge value XSu = gxSu in order to answer Up queries for the simulated SCDHE adversary

B. To answer an oracle Up query, adversary Su will occasionally choose a uniformly random

exponent t and return a uniformly random-looking group element XSu · gt . If the SCDHE

adversary wins its game by returning Z = (XSu ·gt)y then the SCDH adversary can recover gxSuy

by computing Z ·Y−t .

However, if adversary Su generates its answer to Up query as above, then it cannot

answer B’s subsequent query to its Exp oracle, because Su does not know the corresponding

exponent xSu · t. To avoid this problem, adversary Su for every call to Up guesses whether or

not B will call Exp to recover the corresponding exponent. If adversary Su expects a call to

Exp, then it answers Up query using X = gx for a uniformly random exponent x; otherwise, it

answers Up query using XSu ·gt for a uniformly random exponent t as described above. If Su

determines that its guess was wrong, it “rewinds” adversary B back to the corresponding state

and attempts to guess again.
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Game SCDHEB
G

g←$G∗ ; y←$Zp ; v←−1
(proc,args,~k,done)←$B1(g,gy)

While not done do
If proc = “dh” then
(X ,Z)← args ; out←DH(X ,Z)

If proc = “up” then out←Up

If proc = “exp” then out←Exp

(proc,args,~k,done)←$B2(~k,out)
( j,Z)←~k
Return (0≤ j≤ v) and (op[ j] 6= “exp”) and (Z = gx[ j]·y)

DH(X ,Z)
Return (Xy = Z)

Up

v← v+1 ; x[v]←$Zp ; Return gx[v]

Exp

op[v] = “exp” ; Return x[v]

Figure 1.21. Game defining SCDHE assumption in group G. This non-black-box definition
extends that of Fig. 1.18 to require that adversary B = (B1,B2) halts after every oracle call.

Alternative definition of SCDHE.

We now redefine the SCDHE security in group G in a way that allows to “rewind” the

adversary playing in this game. Let G be a cyclic group of order p ∈ N, and let G∗ denote

the set of its generators. Consider game SCDHE of Fig. 1.21, associated to group G and to an

adversary B = (B1,B2). As opposed to the original definition from Fig. 1.18, now adversary

B must temporarily halt and output its state whenever it calls one of its oracles. Specifically,

adversary B is required to output a tuple (proc,args,~k,done) where proc is the name of the oracle

it wants to call, args is the argument string it wants to pass to that oracle,~k is the state of B, and

done is a boolean flag indicating whether B has finished playing the game (in which case~k will

be interpreted as its final output). The advantage of B in breaking the SCDHE security of G is

defined as Advscdhe
G,B = Pr[SCDHEB

G]. We emphasize that~k represents all of the state being stored

by B so “rewinding” B will simply consist of calling B again on a prior value of~k.
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Adversary SDH
u (g,XSu ,Y )

v←−1 ; bg← 1 ; (proc,args,~k,done)←$B1(g,Y )
While not done do

If proc = “dh” then
(X ,Z)← args ; out←DH(X ,Z)

If proc = “up” then
If (bg = 0) and (op[v] 6= “exp”) then Revert

maxErr← u ; lastSave←~k ; v← v+1
//label//
bg←${0,1} ; t[v]←$Zp ; out← Xbg

Su
·gt[v]

If proc = “exp” then
If (bg = 1) and (v 6=−1) then Revert
op[v]← “exp” ; out← t[v]

(proc,args,~k,done)←$B2(~k,out)
If (bg = 0) and (op[v] 6= “exp”) then Revert

( j,Z)←~k ; Return Z ·Y−t[ j]

Procedure Revert

maxErr←maxErr−1
If maxErr < 0 then abort
~k← lastSave
goto label

Figure 1.22. Adversary Su for proof of Lemma 7.

Reducing SCDHE to SCDH using rewinding.

The rewinding-based lemma is as follows.

Lemma 7. Let G be a cyclic group of order p ∈ N, and let G∗ denote the set of its generators.

Let B be an adversary attacking the SCDHE-security of G that makes qDH queries to its DH

oracle and qUp queries to its Up oracle. Let u ∈ N. Then there is an adversary Su attacking the

SCDH-security of G such that

Advscdhe
G,B ≤ Advscdh

G,Su
+qUp ·2−u.

Let q∗ = 1+u ·qUp. Adversary Su makes at most q∗ ·qDH queries to its DH oracle. Its running

time is approximately q∗ times that of B.

The expected number of oracle queries and running time of adversary Su are better

than the worst-case guarentees provided above. The expected number of oracle queries to DH

made by adversary Su is about twice that of B. The expected running time of adversary Su is

approximately twice that of B.

Lemma 7. We build an adversary Su attacking the SCDH-security in G, as defined in Fig. 1.22.
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We use abort as a shorthand for Su halting execution and returning an output value ( j,Z) that

guarantess that Su loses in game SCDHSu
G , for example (−1,g). As a part of adversary Su,

we define an auxiliary procedure Revert that contains the code for rewinding the simulated

adversary B. It holds no special meaning in our security proof; its only purpose is to avoid

writing duplicate code at every position that calls rewinding, essentially simplifying the definition

of Su.

Adversary Su simulates the SCDHEG game for adversary B, according to the definition

of SCDHE in Fig. 1.21. Every time adversary B makes a call to oracle Up, adversary Su samples

a random bit bg to determine how to answer this query. If bg = 1 then Up will return XSu ·gt[v] for

a uniformly random exponent t[v] ∈ Zp. If bg = 0 then Up will return just gt[v] for a uniformly

random exponent t[v] ∈ Zp. Furthermore, it is assumed that B will call oracle Exp prior to

making its next query to oracle Up if and only if bg = 0.

The goal here is that adversary Su must be capable of answering Exp query whenever

this query is made. Note that Su can only answer it if bg = 0, unless it can compute the discrete

logarithm of XSu in group G. On the other hand, for any challenge value returned by Up that

was not exposed, adversary Su must ensure that it was generated as XSu · gt[v] for a known

value t[v]. This guarantees that if B wins in game SCDHEB
G by returning some ( j,Z) such that

Z = Xy
Su
·gt[ j]·y, then adversary Su will always be able to compute Z ·Y−t[ j] = Xy

Su
to win in game

SCDHSu
G .

Every time adversary B makes a call to oracle Up, adversary Su checks whether its

previous guess about B’s behavior (as reflected by bg) was correct. If the guess was correct, then

Su saves B’s current state~k in variable lastSave and proceeds to make a new guess about B’s

future behavior. If the guess was wrong, then Su “rewinds” adversary B back to the state it had

during its previous call to oracle Up, by restoring B’s state from the current value of lastSave

and calling goto label to move the instruction pointer to //label//; adversary Su then makes a

new attempt to guess B’s behavior, sampling a random bit bg. We ensure that Su eventually halts

by allowing it to make at most maxErr wrong guesses in a row. If Su exceeds this number of
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Games G0–G1

g←$G∗ ; y←$Zp ; x←$Zp ; v←−1 ; bg← 1
(proc,args,~k,done)←$B1(g,gy)
While not done do

If proc = “dh” then
(X ,Z)← args ; out← (Xy = Z)

If proc = “up” then
If (bg = 0) and (op[v] 6= “exp”) then Revert

maxErr← u ; lastSave←~k ; v← v+1
//label//
bg←${0,1} ; t[v]←$Zp ; out← gx·bg ·gt[v]

If proc = “exp” then
If (bg = 1) and (v 6=−1) then Revert
op[v]← “exp” ; out← t[v]

(proc,args,~k,done)←$B2(~k,out)
If (bg = 0) and (op[v] 6= “exp”) then Revert

( j,Z)←~k
Return (Z ·g−t[ j]·y = gxy)

Procedure Revert

maxErr←maxErr−1
If maxErr < 0 then

badv← true
abort // G0

(v,~k)← lastSave
goto label

Figure 1.23. Games G0,G1 for proof of Lemma 7.

wrong guesses, it immediately calls abort to halt its execution.

We now analyze the success probability of adversary Su. Consider games G0,G1 of

Fig. 1.23. Lines not annotated with comments are common to both games. Game G0 is equivalent

to SCDHSu
G , with the code of S inserted, and simplified to reference gx instead of XSu . It follows

that

Pr[G0] = Pr[SCDHSu
G ]. (1.6)

Game G1 is equivalent to G0, except that it never calls abort. Let Pr[badG0] denote the probability

that a badv flag is set true in game G0 for some v ∈ {0,1, . . . ,qUp− 1}. Note that abort is

only called when this happens, and the two games are identical-until-bad. According to the
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fundamental lemma of game playing [16], we have

Pr[G1]≤ Pr[G0]+Pr[badG0]. (1.7)

Note that adversary B always gets uniformly random group elements in response to its

oracle Up queries, regardless of the value of bg. Meaning that regardless of the behavior of B

the probability that bg is chosen correctly at any point is exactly 1/2. It follows that the output

distribution of B induced in Pr[G1] is exactly that same as that induced in SCDHEB
G. It follows

that the condition Z ·g−t[ j]·y = gxy in game Pr[G1] will hold whenever ( j,Z) would have been a

correct answer in game SCDHE. This gives us

Pr[SCDHEB
G]≤ Pr[G1]. (1.8)

Finally, we now bound the probability that a bad flag is set in G0 by the following

inequalities.

Pr[badG0]≤
qUp−1

∑
v=0

Pr[badG0
v ]≤

qUp−1

∑
v=0

2−u = qUp ·2−u. (1.9)

The first inequality comes from a simple union bound. To see the second inequality note that

for any particular badv to be set true the guess bit bg must be incorrect u times in a row, which

happens with probability 2−u.

Finally, the theorem statement follows from Equations (1.6)–(1.9):

Pr[SCDHEB
G]≤ Pr[SCDHSu

G ]+qUp ·2−u.

The claimed number of oracle queries and the worst-case running time of Su follows from the

fact that Su will run B once, and depending on B’s behavior it will rewind B at most u · qUp

times. In the worst case, each rewinding will reset B back to the very beginning of its execution

and it would have to be run all over again.

Theorem 4. This theorem is a direct consequence of Lemma 5 and Lemma 7.
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Game UFORGEM
RKE

(k,seks,(stks,stkr ,sekr))←$ RKE.IKg

ks← k ; kr ← k ; upd←$MRatchet(stks)

(sekr ,kr ,acc)←$ RKE.RKg(stks,stkr ,sekr ,upd,kr)

Return acc

Ratchet

prev ← (r,seks,ks) ; r←$ RKE.RS

(seks,ks,upd)← RKE.SKg(stks,seks;r)
(sekr ,kr ,acc)←$ RKE.RKg(stks,stkr ,sekr ,upd,kr)

Return (prev ,upd)

Figure 1.24. Game defining update unforgeability of ratcheted key exchange scheme RKE.

1.6 Necessity of authenticaticating the update information

In this section we show that if an attacker can forge update information upd for a

ratcheted key exchange scheme, then it can be used to break the KIND security of this scheme.

Here, a forged update information is one that was not produced by the sender, but would still

be accepted by the receiver. This result could equivalently be stated as reducing the UFORGE

security (that we are about to formally define) of a ratcheted key exchange scheme to its KIND

security, meaning that UFORGE is a property that is a necessary condition for KIND security.

Update unforgeability.

Informally, a ratcheted key exchange scheme is secure against update forgeries if an

adversary, given access to several samples of update information and to all sender’s secrets

prior to the generation of these samples, cannot generate its own update information that will be

accepted by the receiver. Conversely, an adversary is good at update forgeries if it can do this.

Consider game UFORGE of Fig. 1.24, associated to a ratcheted key exchange scheme

RKE and an adversaryM. The advantage ofM at breaking the UFORGE security of RKE is

given by Advuforge
RKE,M = Pr[UFORGEM

RKE].

AdversaryM is given the sender’s static key and is provided with an access to an oracle

Ratchet that performs a ratcheted key update for both the sender and the receiver. Oracle
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Ratchet returns the sender’s secrets from before ratcheting the keys, along with the update

information upd that was used for ratcheting receiver’s key. AdversaryM can call its oracle an

arbitrary number of times, and its goal is to eventually generate its own update information upd

that is accepted by the receiver. Note that the first call to oracle Ratchet returns (r,seks,ks)

where r is not explicitly initialized; according to our notation conventions from Section 1.1, it is

implicitly assumed to be initialized with 0.

Breaking KIND using an update forgery.

We now show that any adversaryM that is successful at attacking the UFORGE security

of a ratcheted key exchange scheme RKE can be used to build an adversary D that is successful

at attacking the KIND security of RKE.

Theorem 8. Let RKE be a ratcheted key exchange scheme. LetM be an adversary attacking

the UFORGE-security of RKE that makes qRatchet queries to its Ratchet oracle. Then there

is an adversary D attacking the KIND-security of RKE such that

Advkind
RKE,D =

(
1
2
− 1

2RKE.kl+1

)
·Advuforge

RKE,M.

Adversary D makes at most qRatchet+1 queries to each of its RatSend, RatRec, and Exp

oracles. It makes one query to each of its ChSend and ChRec oracles. Its running time is

approximately that ofM.

The starting idea for the KIND adversary D is to cause the receiver to update its keys

with update information upd that was not generated by the sender. It does that by calling its

oracle RatRec on update information upd that it learns from UFORGE adversaryM. Then

(after another call to RatSend) oracles ChSend and ChRec will presumably return differing

keys in the “real world” (b = 1) and matching keys in the “random world” (b = 0). Comparing

these keys gives a straightforward attack. We note that this attack does not require D to call

Exp right before calling oracles RatSend, ChSend, and ChRec. Hence the restricted flag

is false at the time when these challenge oracles are called.
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Unfortunately we cannot prove that this attack —as outlined above— is successful for an

arbitrary RKE scheme. The difficulty stems from the fact that RKE will not necessarily generate

non-matching values in the “real world”. For “natural” ratcheted key exchange schemes it seems

highly unlikely that keys generated by the two challenge oracles in the “real world” would match.

However, rigorously proving this claim is hard.

We will augment the attack idea described above to call Exp with probability 1/2 prior

to calling oracles RatSend, ChSend, and ChRec. When Exp is called prior to this sequence

of calls, game KINDD
RKE sets restricted to true. Depending on whether Exp is called, adversary

D is also defined to flip its output bit.

In the “real world” (b = 1) of game KINDD
RKE, the output of the challenge oracles is

the same regardless of whether restricted is true. So when b = 1 the interaction of D with

its challenge oracles in game KINDD
RKE does not change depending on whether Exp was

called (which happens with probability 1/2), but its output bit is nonetheless flipped. In this

case adversary D will succeed to guess the challenge bit (meaning it will return b′ = 1) with

probability 1/2.

In constract, calling Exp in the “random world” (b = 0) of game KINDD
RKE results in

the challenge oracles returning outputs that have different equality patterns. If Exp was called,

then restricted is true and adversary will get different keys with high probability in the “random

world”, because ChSend returns a uniformly random key and ChRec returns a real key. If

Exp was not called, then restricted is false and adversary will always get same keys from the

challenge oracles in the “random world”. By flipping adversary’s output value in one of these

two cases, we get an adversary that guesses the correct challenge bit (meaning it returns b′ = 0)

with probability close to 1. This is sufficient to distinguish between the “real world” and the

“random world”.

Theorem 8. We build an adversary D attacking the KIND-security of RKE as follows:
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Adversary DRatSend,RatRec,Exp,ChSend,ChRec(stks)

upd←$MRatchetSim(stks) ; bD←${0,1}
If (bD = 1) then Exp

accD←RatRec(upd)

If not accD then return 1
RatSend ; ks←ChSend ; kr ←ChRec

If (ks = kr) then return bD else return 1−bD

RatchetSim

prev ←Exp

upd←RatSend

RatRec(upd)

Return (prev ,upd)

Adversary D first uses adversaryM to generate forged update information upd (the simulation

ofM’s oracle RatchetSim is straightforward). Then D samples a bit bD to decide whether it

should make a call to Exp before proceeding. It then calls RatRec with update information

upd to derive key kr (immediately returning 1 if this update fails), calls RatSend to derive

what would have been the “corresponding” key ks, and finally calls both challenge oracles to get

ks and kr . If ks = kr then D returns bD as its output, otherwise it returns 1−bD.

Consider game KINDD
RKE. Let b denote the challenge bit in this game. Let bD and accD

be the values computed by adversary D playing in this game. Then the following will hold:

Pr[KINDD
RKE |b = 1,bD = 1,accD ] = 1−Pr[KINDD

RKE |b = 1,bD = 0,accD ], (1.10)

Pr[KINDD
RKE |b = 0,bD = 1,accD ] = 1−2−RKE.kl, (1.11)

Pr[KINDD
RKE |b = 0,bD = 0,accD ] = 1. (1.12)

We now justify each of these equations. For this purpose, let ks and kr be the values computed

by adversary D playing in game KINDD
RKE.

To justify Equation (1.10), note that if b= 1 then the values of ks and kr that are compared

by D will both be generated by RKE in game KINDD
RKE, regardless of whether Exp has been

called. Thus the probability of ks and kr being equal does not depend on the bit bD. Assume that

b = 1 and accD = true. If bD = 1 then D returns 1 (the correct value of b) whenever ks = kr . If

bD = 0 then D returns 1 whenever ks 6= kr . This implies the stated equality.

When b = 0 and bD = 1, the value of ks will have been chosen uniformly at random,

but kr will have been generated by RKE because the restricted flag will be set to true. Thus the
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probability of them being equal is 2−RKE.kl. Assume that b = 0 and accD = true. If bD = 1 then

D returns 0 (the correct value of b) whenever ks 6= kr . This implies Equation (1.11).

When b = 0 and bD = 0, the restricted flag will be false, so game KINDD
RKE forces ks

and kr to be the same random value. Assume that b = 0 and accD = true. If bD = 0 then D

returns 0 (the correct value of b) whenever ks = kr . This implies Equation (1.12).

We now use Equations (1.10)–(1.12) to compute the conditional probability that D wins

in game KINDD
RKE, given that accD = true. The result is as follows:

Pr[KINDD
RKE |accD ] = ∑

c∈{0,1}
∑

d∈{0,1}
Pr[KINDD

RKE |b = c,bD = d,accD ] · 1
4

=
1
4
·
(

1+
(

1−2−RKE.kl
)
+1
)

=
1
4
·
(

3−2−RKE.kl
)
. (1.13)

Note that adversaryD setting accD = true while playing in game KINDD
RKE is equivalent

to adversaryM winning in game UFORGEM
RKE. It follows that

Pr[accD] = Advuforge
RKE,M. (1.14)

Furthermore, if accD = false then adversary D wins in game KINDD
RKE with probability 1/2

because (prior to halting) it only queries oracles RatSend, RatRec, Exp that behave inde-

pendently of the challenge bit in game KINDD
RKE. We have

Pr[KINDD
RKE |¬accD ] =

1
2
. (1.15)

Finally, we compute the advantage of adversary D from Equations (1.13)–(1.15) as
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follows:

Advkind
RKE,D = 2 ·Pr[KINDD

RKE]−1

= 2 ·Pr[KINDD
RKE |accD ] ·Pr[accD]

+2 ·Pr[KINDD
RKE |¬accD ] ·Pr[¬accD]−1

= 2 · 1
4
·
(

3−2−RKE.kl
)
·Advuforge

RKE,M+2 · 1
2
· (1−Advuforge

RKE,M)−1

=

(
1
2
− 1

2RKE.kl+1

)
·Advuforge

RKE,M.

The number of oracle queries and the running time that were claimed in the theorem statement

follow from the construction of adversary D.
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Chapter 2

Optimal Channel Security Against Fine-
Grained State Compromise

It is commonly agreed in the cryptography and security community that the Signal

protocol is secure. However, the protocol was designed without an explicitly defined security

notion. This raises the questions: what security does it achieve and could we do better?

In this chapter we study the latter question, aiming to understand the best possible security

of two-party communication in the face of state exfiltration. We formally define this notion of

security and design a scheme that provably achieves it.

Security against compromise.

When a party’s secret state is exposed we would like both that the security of past

messages and (as soon as possible) the security of future messages not be damaged. These notions

have been considered in a variety of contexts with differing terminology. The systemization of

knowledge paper on secure messaging [64] by Unger, Dechand, Bonneau, Fahl, Perl, Goldberg,

and Smith evaluates and systematizes a number of secure messaging systems. In it they describe

a variety of terms for these types of security including “forward secrecy,” “backwards secrecy,”

“self-healing,” and “future secrecy” and note that they are “controversial and vague.” Cohn-

Gordon, Cremers, and Garratt [28] study the future direction under the term of post-compromise

security and similarly discuss the terms “future secrecy,” “healing,” and “bootstrapping” and

note that they are “intuitive” but “not well-defined.” Our security notion intuitively captures any
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of these informal terms, but we avoid using any of them directly by aiming generically for the

best possible security against compromise.

Channels.

The standard model for studying secure two party communication is that of the (crypto-

graphic) channel. The first attempts to consider the secure channel as a cryptographic object were

made by Shoup [61] and Canetti [24]. It was then formalized by Canetti and Krawczyk [26] as a

modular way to combine a key exchange protocol with authenticated encryption, which covers

both privacy and integrity. Krawczyk [46] and Namprempre [51] study what are the necessary

and sufficient security notions to build a secure channel from these primitives.

Modern definitions of channels often draw from the game-based notion of security for

stateful authenticated-encryption as defined by Bellare, Kohno, and Namprempre [8]. We follow

this convention which assumes initial generation of keys is trusted. In addition to requiring

that a channel provides integrity and privacy of the encrypted data, we will require integrity for

associated data as introduced by Rogaway [57].

Recently Marson and Poettering [49] closed a gap in the modeling of two-party com-

munication by capturing the bidirectional nature of practical channels in their definitions. We

work with their notion of bidirectional channels because it closely models the behavior desired

in practice and the bidirectional nature of communication allows us to achieve a fine-grained

security against compromise.

Definitional contributions.

This chapter aims to specify and achieve the best possible security of a bidirectional

channel against state compromise. We provide a formal, game-based definition of security and

a construction that provably achieves it. We analyze our construction in a concrete security

framework [5] and give precise bounds on the advantage of an attacker.

To derive the best possible notion of security against state compromise we first specify

a basic input-output interface via a game that describes how the adversary interacts with the
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channel. This corresponds roughly to combining the integrity and confidentiality games of [49]

and adding an oracle that returns the secret state of a specified user to the adversary. Then

we specify several attacks that break the security of any channel. We define our final security

notion by minimally extending the initial interface game to disallow these unavoidable attacks

while allowing all other behaviors. Our security definition is consequently the best possible

with respect to the specified interface because our attacks rule out the possibility of any stronger

notion.

One security notion is an all-in-one notion in the style of [59] that simultaneously requires

integrity and privacy of the channel. It asks for the maximal possible security in the face of the

exposure of either party’s state. A surprising requirement of our definition is that given the state

of a user the adversary should not be able to decrypt ciphertexts sent by that user or send forged

ciphertexts to that user.

Protocols that update their keys.

The OTR (Off-the-Record) messaging protocol [22] is an important predecessor to Signal.

It has parties repeatedly exchange Diffie-Hellman elements to derive new keys. The Double

Ratchet Algorithm of Signal uses a similar Diffie-Hellman update mechanism and extends it by

using a symmetric key-derivation function to update keys when there is no Diffie-Hellman update

available. Both methods of updating keys are often referred to as ratcheting (a term introduced

by Langley [47]). While the Double Ratchet Algorithm was explicitly designed to achieve strong

notions of security against state compromise with respect to privacy, the designers explicitly

consider security against a passive eavesdropper [36]; authenticity in the face of compromise is

out of scope.

The first academic security analysis of Signal was due to Cohn-Gordan, Cremers, Dow-

ling, Garratt, and Stebila [29]. They only considered the security of the key exchange underlying

the Double Ratchet Algorithm and used a security definition explicitly tailored to understanding

its security instead of being widely applicable to any scheme.
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In Chapter 1 we sought to formally understand ratcheting as an independent primitive,

introducing the notions of (one-directional) ratcheted key exchange and ratcheted encryption. In

our model a compromise of the receiving party’s secrets permanently and irrevocably disrupts all

security, past and future. Further we strictly separate the exchange of key update information

from the exchange of messages. Such a model cannot capture a protocol like the Double Ratchet

Algorithm for which the two are inextricably combined. On the positive side, we did explicitly

model authenticity in the face of compromise.

In [43], Günther and Mazaheri study a key update mechanism introduced in TLS 1.3.

Their security definition treats update messages as being out-of-band and thus implicitly authen-

ticated. Their definition is clearly tailored to understand TLS 1.3 specifically.

Instead of analyzing an existing scheme, we strive to understand the best possible security

with respect to both privacy and authenticity in the face of state compromise. The techniques

we use to achieve this differ from those underlying the schemes discussed above, because all of

them rely on exchanging information to create a shared symmetric key that is ultimately used for

encryption. Our security notion is not achievable by a scheme of this form and instead requires

that asymmetric primitives be used throughout.

Consequently, our scheme is more computationally intensive than those mentioned above.

However, as a part of OTR or the Double Ratchet Algorithm, when users are actively sending

messages back and forth (the case where efficiency is most relevant), they will be performing

asymmetric Diffie-Hellman based key updates prior to most message encryptions. This indicates

that the overhead of extra computation with asymmetric techniques is not debilitating in our

motivating context of secure messaging. However, the asymmetric techniques we require are

likely less efficient than Diffie-Hellman computations so we do not currently know whether our

scheme meets realistic efficiency requirements.
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Our construction.

Our construction of a secure channel is given in Section 2.5.1. It shows how to generically

build the channel from a collision-resistant hash function, a public-key encryption scheme, and a

digital signature scheme. The latter two require new versions of the primitives that we describe

momentarily.

The hash function is used to store transcripts of the communication in the form of hashes

of all sent or received ciphertexts. These transcripts are included as part of every ciphertext

and a user will not accept a ciphertext with transcripts that do not match those it has stored

locally. Every ciphertext sent by a user is signed by their current digital signature signing key

and includes the verification key corresponding to their next signing key. Similarly a user will

include a new encryption key with every ciphertext they send. The sending user will use the

most recent encryption key they have received from the other user and the receiving user will

delete all decryption keys that are older than the one most recently used by the sender.

New notions of public-key encryption and digital signatures.

Our construction uses new forms of public-key encryption and digital signatures that

update their keys over time, which we define in Section 2.2. They both include extra algorithms

that allow the keys to be updated with respect to an arbitrary string. We refer to them as key-

updatable public-key encryption and key-updatable digital signature schemes. In our secure

channel construction a user updates their signing key and every decryption key they currently

have with their transcript every time they receive a ciphertext.

For public-key encryption we consider encryption with labels and require an IND-CCA

style security be maintained even if the adversary is given the decryption key as long as the

sequence of strings used to update it is not a prefix of the sequence of strings used to update the

encryption key before any challenge queries. We show that such a scheme is can be obtained

directly from hierarchical identity-based encryption [40].

For digital signatures, security requires that an adversary is unable to forge a signature
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even given the signing key as long as the sequence of strings used to update it is not a prefix

of the sequence of strings used to update the verification key. We additionally require that the

scheme has unique signatures (i.e. for any sequence of updates and any message an adversary can

only find one signature that will verify). We show how to construct this from a digital signature

scheme that is forward secure [9] and has unique signatures.

Related work.

Several works [39, 21] extended the definitions of channels to address the stream-based

interface provided by channels like TLS, SSH, and QUIC. Our primary motivation is to build a

channel for messaging where an atomic interface for messages is more appropriate.

Numerous areas of research within cryptography are motivated by the threat of key

compromise. These include key-insulated cryptography [32, 33, 34], secret sharing [60, 50, 63],

threshold cryptography [30], proactive cryptography [55], and forward security [42, 31]. Forward

security, in particular, was introduced in the context of key-exchange [42, 31] but has since been

considered for a variety of primitives including symmetric [19] and asymmetric encryption [25]

and digital signature schemes [9]. Green and Miers [41] propose using puncturable encryption

for forward secure asynchronous messaging.

In concurrent and independent work, Poettering and Rösler [56] extend the definitions of

ratcheted key exchange from [17] to be bidirectional. Their security definition is conceptually

similar to our definition for bidirectional channels because both works aim to achieve strong

notions of security against an adversary that can arbitrarily and repeatedly learn the secret state of

either communicating party. In constructing a secure ratcheted key exchange scheme they make

use of a key-updatable key encapsulation mechanism (KEM), a new primitive they introduce in

their work. The key-updatable nature of this is conceptually similar to that of the key-updatable

public-key encryption and digital signature schemes we introduce in our work. To construct such

a KEM they make use of hierarchical identity-based encryption in a manner similar to how we

construct key-updatable public-key encryption. The goal of their work differs from ours; they
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only consider security for the exchange of symmetric keys while we do so for the exchange of

messages.

2.1 Preliminaries

Notation and conventions.

Let N= {0,1,2, . . .} be the set of non-negative integers. Let ε denote the empty string.

If x ∈ {0,1}∗ is a string then |x| denotes its length. If X is a finite set, we let x←$ X denote

picking an element of X uniformly at random and assigning it to x. By (X)n we denote the n-ary

Cartesian product of X . We let x1← x2← ··· ← xn← v denote assigning the value v to each

variable xi for i = 1, . . . ,n.

If mem is a table, we use mem[p] to denote the element of the table that is indexed by

p. By mem[0, . . . ,∞]← v we denote initializing all elements of mem to v. For a,b ∈ N we let

v←mem[a, . . . ,b] denote setting v equal to the tuple obtained by removing all ⊥ elements from

(mem[a],mem[a+1], . . . ,mem[b]). It is the empty vector () if all of these table entries are ⊥ or

if a > b. A tuple~x = (x1, . . .) specifies a uniquely decodable concatenation of strings x1, . . . . We

say~xv~y if~x is a prefix of~y. More formally, (x1, . . . ,xn)v (y1, . . . ,ym) if n≤ m and xi = yi for

all i ∈ {1, . . . ,n}. If~x = (x1, . . . ,xn) is a vector and x ∈ {0,1}∗ then we define the concatenation

of~x and x to be~x‖x = (x1, . . . ,xn,x).

Algorithms may be randomized unless otherwise indicated. Running time is worst case.

If A is an algorithm, we let y← A(x1, . . . ;r) denote running A with random coins r on inputs

x1, . . . and assigning the output to y. Any state maintained by an algorithm will explicitly be

shown as input and output of that algorithm. We let y←$ A(x1, . . .) denote picking r at random

and letting y← A(x1, . . . ;r). We omit the semicolon when there are no inputs other than the

random coins. We let [A(x1, . . .)] denote the set of all possible outputs of A when invoked with

inputs x1, . . .. Adversaries are algorithms. The instruction abort(x1, . . .) is used to immediately

halt with output (x1, . . .).

We use a special symbol ⊥ 6∈ {0,1}∗ to denote an empty table position, and we also
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Game CRAH
H

hk←$ H.Kg

(m0,m1)←$AH(hk)

y0← H.Ev(hk,m0)

y1← H.Ev(hk,m1)

Return (m0 6= m1) and (y0 = y1)

Figure 2.1. Game defining collision-resistance of function family H.

return it as an error code indicating an invalid input. An algorithm may not accept ⊥ as input.

If xi =⊥ for some i when executing (y1, . . .)← A(x1 . . .) we assume that y j =⊥ for all j. We

assume that adversaries never pass ⊥ as input to their oracles.

We use the code based game playing framework of [16]. (See Fig. 2.1 for an example

of a game.) We let Pr[G] denote the probability that game G returns true. In code, tables are

initially empty. We adopt the convention that the running time of an adversary means the worst

case execution time of the adversary in the game that executes it, so that time for game setup

steps and time to compute answers to oracle queries is included.

Function families.

A family of functions H specifies algorithms H.Kg and H.Ev, where H.Ev is deterministic.

Key generation algorithm H.Kg returns a key hk, denoted by hk←$ H.Kg. Evaluation algorithm

H.Ev takes hk and an input x ∈ {0,1}∗ to return an output y, denoted by y← H.Ev(hk,x).

Collision-resistant functions.

Consider game CR of Fig. 2.1 associated to a function family H and an adversary AH.

The game samples a random key hk for function family H. In order to win the game, adversary

AH has to find two distinct messages m0,m1 such that H.Ev(hk,m0) = H.Ev(hk,m1). The

advantage of AH in breaking the CR security of H is defined as Advcr
H(AH) = Pr[CRAH

H ].

Digital signature schemes.

A digital signature scheme DS specifies algorithms DS.Kg, DS.Sign and DS.Vrfy, where

DS.Vrfy is deterministic. Associated to DS is a key generation randomness space DS.KgRS
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and signing algorithm’s randomness space DS.SignRS. Key generation algorithm DS.Kg takes

randomness z ∈ DS.KgRS to return a signing key sk and a verification key vk, denoted by

(sk,vk)← DS.Kg(z). Signing algorithm DS.Sign takes sk, a message m ∈ {0,1}∗ and random-

ness z ∈ DS.SignRS to return a signature σ , denoted by σ ← DS.Sign(sk,m;z). Verification

algorithm DS.Vrfy takes vk, σ , and m to return a decision t ∈ {true, false} regarding whether σ

is a valid signature of m under vk, denoted by t← DS.Vrfy(vk,σ ,m). The correctness condition

for DS requires that DS.Vrfy(vk,σ ,m) = true for all (sk,vk) ∈ [DS.Kg], all m ∈ {0,1}∗, and all

σ ∈ [DS.Sign(sk,m)].

We define the min-entropy of algorithm DS.Kg as H∞(DS.Kg), such that

2−H∞(DS.Kg) = max
vk∈{0,1}∗

Pr [vk∗ = vk : (sk∗,vk∗)←$ DS.Kg] .

The probability is defined over the random coins used for DS.Kg. Note that the min-entropy is

defined with respect to verification keys, regardless of the corresponding values of the secret

keys.

2.2 New asymmetric primitives

In this section we define key-updatable digital signatures and key-updatable public-key

encryption. Both allow their keys to be updated with arbitrary strings. While in general one

would prefer the size of keys, signatures, and ciphertexts to be constant, we will be willing to

accept schemes for which these grow linearly in the number of updates. As we will discuss later,

these are plausibly acceptable inefficiencies for our use cases.

We specify multi-user security definitions for both primitives, because it allows tighter

reductions when we construct a channel from these primitives. Single-user variants of these

definitions are obtained by only allowing the adversary to interact with one user and can be shown

to imply the multi-user versions by a standard hybrid argument. Starting with [4] constructions

have been given for a variety of primitives that allow multi-user security to be proven without
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Game DSCORRC
DS

~∆← () ; ν←$ DS.KgRS

(sk,vk)← DS.Kg(ν)

CUpd,Sign(ν)

Return bad

Upd(∆) // ∆ ∈ {0,1}∗

~∆←~∆‖∆

sk←$ DS.UpdSk(sk,∆)

Return sk

Sign(m) // m ∈ {0,1}∗

σ←$ DS.Sign(sk,m)

(vk∗, t)← DS.Vrfy(vk,σ ,m,~∆)

If not t then bad← true

Game PKECORRC
PKE

~∆← () ; ν←$ PKE.KgRS

(ek,dk)← PKE.Kg(ν)

CUpd,Enc(ν)

Return bad

Upd(∆) // ∆ ∈ {0,1}∗

~∆←~∆‖∆

dk←$ PKE.UpdDk(dk,∆)

Return dk

Enc(m, `) // m, ` ∈ {0,1}∗

(ek∗,c)←$ PKE.Enc(ek, `,m,~∆)

m′← PKE.Dec(dk, `,c)

If m′ 6=m then bad← true

Figure 2.2. Games defining correctness of key-updatable digital signature scheme DS and
correctness of key-updatable public-key encryption scheme PKE.

the factor q security loss introduced by a hybrid argument. If analogous constructions can be

found for our primitives then our results will give tight bounds on the security of our channel.

2.2.1 Key-updatable digital signature schemes

We start by formally defining the syntax and correctness of a key-updatable digital

signature scheme. Then we specify a security definition for it. We will briefly sketch how to

construct such a scheme, but leave the details to Section 2.8.

Syntax and correctness.

A key-updatable digital signature scheme is a digital signature scheme with additional

algorithms DS.UpdSk and DS.UpdVk, where DS.UpdVk is deterministic. Signing-key update

algorithm DS.UpdSk takes a signing key sk and a key update information ∆ ∈ {0,1}∗ to return

a new signing key sk, denoted by sk←$ DS.UpdSk(sk,∆). Verification-key update algorithm

DS.UpdVk takes a verification key vk and a key update information ∆ ∈ {0,1}∗ to return a new

verification key vk, denoted by vk← DS.UpdVk(vk,∆).

Let ~∆ = (∆1,∆2, . . . ,∆n). For compactness, we sometimes use the notation (vk, t)←
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Game UNIQBDS
DS

(Λ,m,σ1,σ2,~∆)←$BNewUser
DS

(sk,vk)← DS.Kg(z[Λ])
(vk∗, t1)← DS.Vrfy(vk,σ1,m,~∆)

(vk∗, t2)← DS.Vrfy(vk,σ2,m,~∆)

Return σ1 6= σ2 and t1 and t2

NewUser(Λ) // Λ ∈ {0,1}∗

If z[Λ] 6=⊥ then return ⊥
z[Λ]←$ DS.KgRS

Return z[Λ]

Figure 2.3. Game defining signature uniqueness of key-updatable digital signature scheme DS.

DS.Vrfy(vk,σ ,m,~∆) to denote updating the verification key via vk ← DS.UpdVk(vk,∆i) for

i = 1, . . . ,n and then evaluating t← DS.Vrfy(vk,σ ,m).

The key-update correctness condition requires that signatures must verify correctly as

long as the signing and the verification keys are both updated with the same sequence of key

update information ~∆ = (∆1,∆2, . . .). To formalize this, consider game DSCORR of Fig. 2.2,

associated to a key-updatable digital signature scheme DS and an adversary C. The advantage

of an adversary C against the correctness of DS is given by Advdscorr
DS (C) = Pr[DSCORRC

DS].

We require that Advdscorr
DS (C) = 0 for all (even unbounded) adversaries C. See Section 2.3 for

discussion on game-based definitions of correctness.

Signature uniqueness.

We will be interested in schemes for which there is only a single signature that will be

accepted for any message m and any sequence of updates~∆. Consider game UNIQ of Fig. 2.3,

associated to a key-updatable digital signature scheme DS and an adversary BDS. The adversary

BDS can call the oracle NewUser arbitrarily many times with a user identifier Λ and be given

the randomness used to generate the keys of Λ. The adversary ultimately outputs a user id Λ, a

message m, signatures σ1,σ2, and a key update vector~∆. It wins if the signatures are distinct

and both verify for m when the verification key of Λ is updated with~∆. The advantage of BDS in

breaking the UNIQ security of DS is defined as Advuniq
DS (BDS) = Pr[UNIQBDS

DS ].
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Game UFEXPADS
DS

out←$ANewUser,Upd,Sign,Exp
DS

(Λ,σ ,m,~∆)← out

forgery← (σ ,m,~∆)

trivial← (σ∗[Λ],m∗[Λ],~∆∗[Λ])

t1← (forgery = trivial)

t2← (~∆′[Λ]v~∆)

cheated← (t1 or t2)
vk← vk[Λ]

(vk,win)← DS.Vrfy(vk,σ ,m,~∆)

Return win and not cheated

NewUser(Λ) // Λ ∈ {0,1}∗

If sk[Λ] 6=⊥ then return ⊥
~∆s[Λ]← () ; ~∆∗[Λ]←⊥ ; ~∆′[Λ]←⊥
(sk[Λ],vk[Λ])←$ DS.Kg

Return vk[Λ]

Upd(Λ,∆) // Λ,∆ ∈ {0,1}∗

If sk[Λ] =⊥ then return ⊥
~∆s[Λ]←~∆s[Λ]‖∆

sk[Λ]←$ DS.UpdSk(sk[Λ],∆)

Return ⊥
Sign(Λ,m) // Λ,m ∈ {0,1}∗

If sk[Λ] =⊥ then return ⊥
If~∆∗[Λ] 6=⊥ then return ⊥
σ←$ DS.Sign(sk[Λ],m)

(σ∗[Λ],m∗[Λ],~∆∗[Λ])← (σ ,m,~∆s[Λ])

Return σ

Exp(Λ) // Λ ∈ {0,1}∗

If sk[Λ] =⊥ then return ⊥
If~∆′[Λ] =⊥ then~∆′[Λ]←~∆s[Λ]

Return sk[Λ]

Game INDEXPAPKE
PKE

b←${0,1}
b′←$ANewUser,UpdEk,UpdDk,Enc,Dec,Exp

PKE

Return b = b′

NewUser(Λ) // Λ ∈ {0,1}∗

If dk[Λ] 6=⊥ then return ⊥
~∆e[Λ]← () ; ~∆d [Λ]← ()
~∆′[Λ]←⊥ ; S[Λ]← /0
(ek[Λ],dk[Λ])←$ PKE.Kg

Return ek[Λ]

UpdEk(Λ,∆) // Λ,∆ ∈ {0,1}∗

If dk[Λ] =⊥ then return ⊥
ek[Λ]← PKE.UpdEk(ek[Λ],∆)
~∆e[Λ]←~∆e[Λ]‖∆

UpdDk(Λ,∆) // Λ,∆ ∈ {0,1}∗

If dk[Λ] =⊥ then return ⊥
dk[Λ]←$ PKE.UpdDk(dk[Λ],∆)
~∆d [Λ]←~∆d [Λ]‖∆

Enc(Λ,m0,m1, `) // Λ,m0,m1, ` ∈ {0,1}∗

If dk[Λ] =⊥ then return ⊥
If |m0| 6= |m1| then return ⊥
If~∆′[Λ]v~∆e[Λ] then return ⊥
c←$ PKE.Enc(ek[Λ], `,mb)

S[Λ]← S[Λ]∪{(~∆e[Λ],c, `)}
Return c

Dec(Λ,c, `) // Λ,c, ` ∈ {0,1}∗

If dk[Λ] =⊥ then return ⊥
If (~∆d [Λ],c, `) ∈ S[Λ] then return ⊥
m← PKE.Dec(dk[Λ], `,c)

Return m

Exp(Λ) // Λ ∈ {0,1}∗

If dk[Λ] =⊥ then return ⊥
If ∃(~∆,c, `) ∈ S[Λ] s.t. ~∆d [Λ]v~∆ then

Return ⊥
If~∆′[Λ] =⊥ then~∆′[Λ]←~∆d [Λ]

Return dk[Λ]

Figure 2.4. Games defining signature unforgeability under exposures of key-updatable digital
signature scheme DS, and ciphertext indistinguishability under exposures of key-updatable
public-key encryption scheme PKE.
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Signature unforgeability under exposures.

Our main security notion for signatures asks that the adversary not be able to create

signatures for any key update vector ~∆ unless it acquired a signing key for some key update

vector~∆′ that is a prefix of~∆. The adversary can query an oracle to receive a signature for one

message with respect to each user’s secret key, but it cannot claim this signature as a forgery.

Consider game UFEXP of Fig. 2.4, associated to a key-updatable digital signature scheme DS

and an adversary ADS.

The adversary ADS can call the oracle NewUser arbitrarily many times, once for each

user identifier Λ, and be given the verification key for that user. Then it can interact with user Λ

via three different oracles. Via calls to Upd with a string ∆ it requests that the signing key for

the specified user be updated with ∆. Via calls to Sign with message m it asks for a signature

of m using the signing key for the specified user. When it does so, ~∆∗[Λ] is used to store the

vector of strings the key was updated with, and no more signatures are allowed for user id Λ.1

Via calls to Exp it can ask to be given the current signing key of the specified user. When it does

so,~∆′[Λ] is used to store the vector of strings the key was updated with.

At the end of the game the adversary outputs a user id Λ, a signature σ , a message m,

and a key update vector~∆. The adversary has cheated if it previously received σ as the result

of calling Sign(Λ,m) and~∆ =~∆∗[Λ], or if it exposed the signing key of Λ and~∆′[Λ] is a prefix

of ~∆. It wins if it has not cheated and if σ verifies for m when the verification key of Λ is

updated with ~∆. The advantage of ADS in breaking the UFEXP security of DS is defined by

Advufexp
DS (ADS) = Pr[UFEXPADS

DS ].

Construction.

In Section 2.8 we use a forward-secure [9] key-evolving signature scheme with unique

signatures to construct a key-updatable signature scheme that is secure with respect to both of

1We are thus defining security for a one-time signature scheme, because a particular key will only be used for
one signature. This is all we require for our application, but the definition and construction we provide could easily
be extended to allow multiple signatures if desired.
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the above definitions. Roughly, a key-evolving signature scheme is like a key-updatable digital

signature scheme that can only update with ∆ = ε . In order to enable updates with respect

to arbitrary key update information, we sign each update string with the current key prior to

evolving the key, and then include these intermediate signatures with our final signature.

2.2.2 Key-updatable public-key encryption schemes

We start by formally defining the syntax and correctness of a key-updatable public-key

encryption. Then we specify a security definition for it. We will briefly sketch how to construct

such a scheme, but leave the details to Section 2.9. We consider public-key encryption with

labels as introduced by Shoup [62].

Syntax and correctness.

A key-updatable public-key encryption scheme PKE specifies algorithms PKE.Kg,

PKE.Enc, PKE.Dec, PKE.UpdEk, and PKE.UpdDk. Associated to PKE is a key generation

randomness space PKE.KgRS, encryption randomness space PKE.EncRS, and decryption-key

update randomness space PKE.UpdDkRS. Key generation algorithm PKE.Kg takes randomness

z ∈ PKE.KgRS to return an encryption key ek and a decryption key dk, denoted by (ek,dk)←

PKE.Kg(z). Encryption algorithm PKE.Enc takes ek, a label ` ∈ {0,1}∗, a message m ∈ {0,1}∗,

and randomness z ∈ PKE.EncRS to return a ciphertext c, denoted by c← PKE.Enc(ek, `,m;z).

Deterministic decryption algorithm PKE.Dec takes dk, `,c to return a message m ∈ {0,1}∗, de-

noted by m← PKE.Dec(dk, `,c). Deterministic encryption-key update algorithm PKE.UpdEk

takes an encryption key ek and key update information ∆∈ {0,1}∗ to return a new encryption key

ek, denoted by ek← PKE.UpdEk(ek,∆). Decryption-key update algorithm PKE.UpdDk takes a

decryption key dk, key update information ∆ ∈ {0,1}∗, and randomness z ∈ PKE.UpdDkRS to

return a new decryption key dk, denoted by dk← PKE.UpdDk(dk,∆;z).

Let ~∆ = (∆1,∆2, . . . ,∆n). For compactness, we sometimes use the notation (ek,c)←$

PKE.Enc(ek, `,m,~∆) to denote updating the key via ek← PKE.UpdEk(ek,∆i) for i = 1, . . . ,n

88



and then evaluating c←$ PKE.Enc(ek, `,m).

The correctness condition requires that ciphertexts decrypt correctly as long as the

encryption and decryption key are both updated with the same sequence of key update information

~∆ = (∆1,∆2, . . .). To formalize this, consider game PKECORR of Fig. 2.2, associated to a key-

updatable public-key encryption scheme PKE and an adversary C. The advantage of an adversary

C against the correctness of PKE is given by Advpkecorr
PKE (C) = Pr[PKECORRC

PKE]. Correctness

requires that Advpkecorr
PKE (C) = 0 for all (even computationally unbounded) adversaries C. See

Section 2.3 for discussion on game-based definitions of correctness.

We denote the min-entropy of algorithms PKE.Kg and PKE.Enc as H∞(PKE.Kg) and

H∞(PKE.Enc), respectively, which are defined as follows:

2−H∞(PKE.Kg) = max
ek

Pr [ek∗ = ek : (ek∗,dk∗)←$ PKE.Kg] ,

2−H∞(PKE.Enc) = max
ek,`,m,c

Pr [c∗ = c : c∗←$ PKE.Enc(ek, `,m)] .

The probability is defined over the random coins used by PKE.Kg and PKE.Enc, respectively.

Note that min-entropy of PKE.Kg does not depend on the output value dk∗.

Ciphertext indistinguishability under exposures.

Consider game INDEXP of Fig. 2.4, associated to a key-updatable public-key encryption

scheme PKE and an adversary APKE. Roughly, it requires that PKE maintain CCA security [6]

even if APKE is given the decryption key (as long as that decryption key is no longer able to

decrypt any challenge ciphertexts).

The adversary APKE can call the oracle NewUser arbitrarily many times with a user

identifier Λ and be given the encryption key of that user. Then it can interact with user Λ via

five oracles. Via calls to UpdEk or UpdDk with key update information ∆ it requests for the

corresponding key to be updated with that string. Variable ~∆e stores the sequence of update

information used to update the encryption key and~∆d the sequence of update information used
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to update the decryption key.

Via calls to Enc with messages m0,m1 and label ` it requests that one of these messages

be encrypted using the specified label (which message is encrypted depends on the secret bit

b). It will be given back the produced ciphertext. Set S is used to store the challenge ciphertext,

label, and current value of~∆e.

Via calls to Dec with ciphertext c and ` it requests that the ciphertext be decrypted

with the specified label. Adversary APKE is not allowed to make such a query with a pair (c, `)

obtained from a call to Enc if~∆d is the same as~∆e was at the time of encryption.

Via calls to Exp it asks to be given the current decryption key of the user. It may not do

so if~∆d is a prefix of any~∆e when a Enc query was made. Variable~∆′ is used to disallow future

calls to Enc of this form.

At the end of the game the adversary outputs a bit b′ representing its guess of the

secret bit b. The advantage of APKE in breaking the INDEXP security of PKE is defined as

Advindexp
PKE (APKE) = 2Pr[INDEXPAPKE

PKE ]−1.

Construction.

In Section 2.9 we use a hierarchical identity-based encryption (HIBE) scheme to construct

a secure key-updatable encryption scheme. Roughly, a HIBE assigns a decryption key to any

identity (vector of strings). A decryption key for an identity~I can be used to create decryption

keys for an identity of which ~I is a prefix. Security requires that the adversary be unable to

learn about encrypted messages encrypted to an identity~I even if given the decryption key for

many identities as long as none of them were prefixes of~I. To create a key-updatable encryption

scheme we treat the vector of key updates as an identity. The security of this scheme then follows

from the security of the underlying HIBE in a fairly straightforward manner.
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Figure 2.5. A basic interaction between bidirectional cryptographic channel algorithms.

2.3 Bidirectional cryptographic channels

In this section we formally define the syntax and correctness of bidirectional crypto-

graphic channels. Our notion of bidirectional channels will closely match that of Marson and

Poettering [49]. Compared to their definition, we allow the receiving algorithm to be randomized

and provide an alternative correctness condition. We argue that the new correctness condition is

more appropriate for our desired use case of secure messaging. Henceforth, we will omit the

adjective “bidirectional” and refer simply to channels.

Syntax of channel.

A channel provides a method for two users to exchange messages in an arbitrary order.

We will refer to the two users of a channel as the initiator I and the receiverR. There will be no

formal distinction between the two users, but when specifying attacks we follow the convention

of having I send a ciphertext first. We will use u as a variable to represent an arbitrary user and

u to represent the other user. More formally, when u ∈ {I,R} we let u denote the sole element

of {I,R}\{u}. Consider Fig. 2.5 for an overview of algorithms that constitute a channel Ch,
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and the interaction between them.

A channel Ch specifies algorithms Ch.Init, Ch.Send, and Ch.Recv. Initialization algo-

rithm Ch.Init returns initial states stI ∈ {0,1}∗ and stR ∈ {0,1}∗, where stI is I’s state and stR

isR’s state. We write (stI ,stR)←$ Ch.Init. Sending algorithm Ch.Send takes state stu ∈ {0,1}∗,

associated data ad ∈ {0,1}∗, and message m ∈ {0,1}∗ to return updated state stu ∈ {0,1}∗ and

a ciphertext c ∈ {0,1}∗. We write (stu,c)←$ Ch.Send(stu,ad,m). Receiving algorithm takes

state stu ∈ {0,1}∗, associated data ad ∈ {0,1}∗, and ciphertext c ∈ {0,1}∗ to return updated state

stu ∈ {0,1}∗∪{⊥} and message m ∈ {0,1}∗∪{⊥}. We write (stu,m)←$ Ch.Recv(stu,ad,c),

where m=⊥ represents a rejection of ciphertext c and stu =⊥ represents the channel being

permanently shut down from the perspective of u (recall our convention regarding ⊥ as input to

an algorithm). One notion of correctness we discuss will require that stu =⊥ whenever m=⊥.

The other will require that stu not be changed from its input value when m=⊥.

We let Ch.InitRS, Ch.SendRS, and Ch.RecvRS denote the sets of possible random coins

for Ch.Init, Ch.Send, and Ch.Recv, respectively. Note that for full generality we allow Ch.Recv

to be randomized. Prior work commonly requires this algorithm to be deterministic.

Correctness of channel.

In Fig. 2.6 we provide two games, defining two alternative correctness requirements for a

cryptographic channel. Lines labelled with the name of a game are included only in that game.

The games differ in whether the adversary is given access to an oracle Robust or to an oracle

Reject. Game CORR uses the former, whereas game CORR⊥ uses the latter. The advantage

of an adversary C against the correctness of channel Ch is given by Advcorr
Ch (C) = Pr[CORRC

Ch]

in one case, and Advcorr⊥
Ch (C) = Pr[CORR⊥C

Ch] in the other case. Correctness with respect to

either notion requires that the advantage is equal 0 for all (even computationally unbounded)

adversaries C.

Our use of games to define correctness conditions follows the work of Marson and

Poettering [49] and Bellare et. al. [17]. By considering unbounded adversaries and requiring
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Games CORRC
Ch,CORR⊥C

Ch

sI ← rI ← sR← rR← 0 ; ν←$ Ch.InitRS

(stI ,stR)← Ch.Init(ν)

CSend,Recv,Robust(ν) // CORRC
Ch

CSend,Recv,Reject(ν) // CORR⊥C
Ch

Return bad

Send(u,ad,m) // u ∈ {I,R},(ad,m) ∈ ({0,1}∗)2

su← su+1 ; z←$ Ch.SendRS ; (stu,c)← Ch.Send(stu,ad,m;z)
ctableu[su]← (c,ad) ; mtableu[su]←m ; Return z

Recv(u) // u ∈ {I,R}
If ctableu[ru+1] =⊥ then return ⊥
ru← ru+1 ; (c,ad)← ctableu[ru]
η←$ Ch.RecvRS ; (stu,m)← Ch.Recv(stu,ad,c;η)

If m 6= mtableu[ru] then bad← true

Return η

Robust(~k,ad,c) // (~k,ad,c) ∈ ({0,1}∗)3

(~k′,m)←$ Ch.Recv(~k,ad,c)
If m=⊥ and~k′ 6=~k then bad← true

Reject(~k,ad,c) // (~k,ad,c) ∈ ({0,1}∗)3

(~k′,m)←$ Ch.Recv(~k,ad,c)
If m=⊥ and~k′ 6=⊥ then bad← true

Figure 2.6. Games defining correctness of channel Ch. Lines labelled with the name of a game
are included only in that game.

an advantage of 0 we capture a typical information-theoretic perfect correctness requirement

without having to explicitly quantify over sequences of actions. In this work we require only

the perfect correctness because it is achieved by our scheme; however, it would be possible to

capture computational correctness by considering a restricted class of adversaries.

Both games require that ciphertexts sent by any user are always decrypted to the correct

message by the other user. This is modeled by providing adversary C with access to oracles

Send and Recv. We assume that messages from u to u are received in the same order they were

sent, and likewise that messages from u to u are also received in the correct order (regardless

Aof how they are interwoven on both sides, since ciphertexts are being sent in both directions).

The games differ in how the channel is required to behave in the case that a ciphertext is
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rejected. Game CORR (using oracle Robust) requires that the state of the user not be changed

so that the channel can continue to be used. Game CORR⊥ (using oracle Reject) requires that

the state of the user is set to ⊥. According to our conventions about the behavior of algorithms

given ⊥ as input (see Section 2.1), the channel will then refuse to perform any further actions

by setting all subsequent outputs to ⊥. We emphasize that the adversary specifies all inputs to

Ch.Recv when making calls to Robust and Reject, so the behavior of those oracles is not

related to the behavior of the other two oracles for which the game maintains the state of both

users.

Comparison of correctness notions.

The correctness required by CORR⊥ is identical to that of Marson and Poettering [49].

The CORR notion of correctness instead uses a form of robustness analogous to that of [17]. In

Section 2.7 we discuss how these correctness notions have different implications for the security

of the channel. It is trivial to convert a CORR-correct channel to a CORR⊥-correct channel

and vice versa. Thus we will, without loss of generality, only provide a scheme achieving

CORR-correctness.

2.4 Security notion for channels

In this section we will define what it means for a channel to be secure in the presence

of a strong attacker that can steal the secrets of either party in the communication. Our goal is

to give the strongest possible notion of security in this setting, encompassing both the privacy

of messages and the integrity of ciphertexts. We take a fine-grained look at what attacks are

possible and require that a channel be secure against all attacks that are not syntactically inherent

in the definition of a channel.

To introduce our security notion we will first describe a simple interface of how the

adversary is allowed to interact with the channel. Then we show attacks that would break the

security of any channel using this interface. Our final security notion will be created by adding
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Game INTERD
Ch

b←${0,1}
sI ← rI ← sR← rR← 0
(stI ,stR)←$ Ch.Init

(zI ,zR)←$ (Ch.SendRS)2

(ηI ,ηR)←$ (Ch.RecvRS)2

b′←$DSend,Recv,Exp

Return (b′ = b)

Send(u,m0,m1,ad)

// u ∈ {I,R},(m0,m1,ad) ∈ ({0,1}∗)3

If nextop 6= (u,“send”)
and nextop 6=⊥ then return ⊥

If |m0| 6= |m1| then return ⊥
(stu,c)← Ch.Send(stu,ad,mb;zu)
nextop←⊥
su← su+1 ; zu←$ Ch.SendRS

ctableu[su]← (c,ad)

Return c

Recv(u,c,ad)

// u ∈ {I,R},(c,ad) ∈ ({0,1}∗)2

If nextop 6= (u,“recv”)
and nextop 6=⊥ then return ⊥

(stu,m)← Ch.Recv(stu,ad,c;ηu)

nextop←⊥ ; ηu←$ Ch.RecvRS

If m 6=⊥ then ru← ru+1
If b = 0 and (c,ad) 6= ctableu[ru] then

Return m
Return ⊥
Exp(u, rand)

// u ∈ {I,R}, rand ∈ {ε,“send”,“recv”}
If nextop 6=⊥ then return ⊥
(z,η)← (ε,ε)

If rand = “send” then
nextop← (u,“send”) ; z← zu

Else if rand = “recv” then
nextop← (u,“recv”) ; η ← ηu

Return (stu,z,η)

Figure 2.7. Game defining interface between adversary D and channel Ch.

checks to the interface that prevents adversary from performing any sequence of actions that

leads to these unpreventable breaches of security. We introduce only the minimal necessary

restrictions preventing the attacks, making sure that we allow all adversaries that do not trivially

break the security as per above.

2.4.1 Channel interface game

Consider game INTER in Fig. 2.7. It defines the interface between an adversary D and a

channel Ch. A secret bit b is chosen at random and the adversary’s goal is to guess this bit given

access to a left-or-right sending oracle, real-or-⊥ receiving oracle, and an exposure oracle. The

sending oracle takes as input a user u ∈ {I,R}, two messages m0,m1 ∈ {0,1}∗, and associated

data ad. Then it returns the encryption of mb with ad by user u. The receiving oracle Recv

takes as input a user u, a ciphertext c, and associated data ad. It has user u decrypt this ciphertext

using ad, and proceeds as follows. If b = 0 holds (along with another condition we discuss
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momentarily) then it returns the valid decryption of this ciphertext; otherwise it returns ⊥. The

exposure oracle Exp takes as input a user u, and a flag rand. It returns user’s state stu, and it

might return random coins that will be used the next time this user runs algorithms Ch.Send or

Ch.Recv (depending on the value of rand, which we discuss below). The advantage of adversary

D against channel Ch is defined by Advinter
Ch (D) = 2Pr[INTERD

Ch]−1.

This interface gives the adversary full control over the communication between the two

users of the channel. It may modify, reorder, or block any communication as it sees fit. The

adversary is able to exfiltrate the secret state of either party at any time.

Let us consider the different cases of how a user’s secrets might be exposed. They could

be exposed while the user is in the middle of performing a Ch.Send operation, in the middle of

performing a Ch.Recv operation, or when the user is idle (i.e. not in the middle of performing

Ch.Send or Ch.Recv). In the last case we expect the adversary to learn the user’s state stu, but

nothing else. If the adversary is exposing the user during an operation, they would potentially

learn the state before the operation, any secrets computed during the operation, and the state

after the operation. We capture this by leaking the state from before the operation along with

the randomness that will be used when the adversary makes its next query to Send or Recv.

This allows the adversary to compute the next state as well. The three possible values of rand are

rand = “send” for the first possibility, rand = “recv” for the second possibility, and rand = ε for

the third. These exposures represent what the adversary is learning while a particular operation

is occurring, so we require (via nextop) that after such an exposure it immediately makes the

corresponding oracle query. Without the use of the exposure oracle the game specified by this

interface would essentially be equivalent to the combination of the integrity and confidentiality

security notions defined by Marson and Poettering [49] in the all-in-one definition style of

Rogaway and Shrimpton [59].

The interface game already includes some standard checks. First, we require that on

any query (u,m0,m1,ad) to Send the adversary must provide equal length messages. If the

adversary does not do so (i.e. |m0| 6= |m1|) then Send returns ⊥ immediately. This prevents
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the inherent attack where an adversary could distinguish between the two values of b by asking

for encryptions of different length messages and checking the length of the output ciphertext.

Adversary D1 in Fig. 2.8 does just that and would achieve Advinter
Ch (D1) > 1/2 against any

channel Ch if not for that check.

Second, we want to prevent Recv from decrypting ciphertexts that are simply forwarded

to it from Send. So for each user u we keep track of counters su and ru that track how many

messages that user has sent and received. Then at the end of a Send call to u the ciphertext-

associated data pair (c,ad) is stored in the table ctableu with index su. When Recv is called

for user u it will compare the pair (c,ad) against ctableu[ru] and if the pair matches return ⊥

regardless of the value of the secret bit. If we did not do this check then for any channel Ch the

adversary D2 shown in Fig. 2.8 would achieve Advinter
Ch (D2) = 1.

We now specify several efficient adversaries that will have high advantage for any choice

of Ch. For concreteness we always have our adversaries immediately start the actions required

to perform the attacks, but all of the attacks would still work if the adversary had performed a

number of unrelated procedure calls first. Associated data will never be important for our attacks

so we will always set it to ε . We will typically set m0 = 0 and m1 = 1. For the following we let

Ch be any channel and consider the adversaries shown in Fig. 2.8.

Trivial Forgery.

If the adversary exposes the secrets of u it will be able to forge a ciphertext that u would

accept at least until the future point in time when u has received the ciphertext that u creates

next. For a simple example of this consider the third adversary, D3. It exposes the secrets of

user I, then uses them to perform its own Ch.Send computation locally, and sends the resulting

ciphertext toR. Clearly this ciphertext will always decrypt to a non-⊥ value so the adversary

can trivially determine the value of b and achieve Advinter
Ch (D3) = 1.

After an adversary has done the above to trivially send a forgery to u it can easily

perform further attacks on both the integrity and authenticity of the channel. These are shown
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Adversary DSend,Recv,Exp
1

(~k,z,η)←Exp(I,ε)
n←maxc∈[Ch.Send(~k,ε,1)] |c|
m←${0,1}n+2

c← Send(I,m,1,ε)
If |c| ≤ n then return 1
Return 0

Adversary DSend,Recv,Exp
2

c← Send(I,1,1,ε)
m←Recv(R,c,ε)
If m=⊥ then return 1
Return 0

Adversary DSend,Recv,Exp
3

(~k,z,η)←Exp(I,ε)
(~k,c)←$ Ch.Send(~k,ε,1)
m←Recv(R,c,ε)
If m=⊥ then return 1
Return 0

Adversary DSend,Recv,Exp
3.1

(~k,z,η)←Exp(I,ε)
(~k,c)←$ Ch.Send(~k,ε,1)
m←Recv(R,c,ε)
(~k,c)←$ Ch.Send(~k,ε,1)
m←Recv(R,c,ε)
If m=⊥ then return 1
Return 0

Adversary DSend,Recv,Exp
3.2

(~k,z,η)←Exp(I,ε)
(~k,c)←$ Ch.Send(~k,ε,1)
m←Recv(R,c,ε)
c← Send(R,0,1,ε)
(~k,m)←$ Ch.Recv(~k,ε,c)
If m= 1 then return 1
Return 0

Adversary DSend,Recv,Exp
4

c← Send(I,0,1,ε)
(~k,z,η)←Exp(R,ε)
(~k,m)←$ Ch.Recv(~k,ε,c)
If m= 1 then return 1
Return 0

Adversary DSend,Recv,Exp
5

(~k,z,η)←Exp(R,ε)
c← Send(I,0,1,ε)
(~k,m)←$ Ch.Recv(~k,ε,c)
If m= 1 then return 1
Return 0

Adversary DSend,Recv,Exp
6

(~k,z,η)←Exp(I,“send”)
(~k,c)← Ch.Send(~k,ε,1;z)
c ′← Send(I,0,1,ε)
If c ′ = c then return 1
Return 0

Figure 2.8. Generic attacks against any channel Ch with interface INTER.

by adversaries D3.1 and D3.2. The first displays the fact that the attacker can easily send further

forgeries to u. The second displays the fact that the attacker can now easily decrypt any messages

sent by u. We have Advinter
Ch (D3.1) = 1 and Advinter

Ch (D3.2) = 1.

Trivial Challenges.

If the adversary exposes the secrets of u it will necessarily be able to decrypt any

ciphertexts already encrypted by u that have not already been received by u. Consider the

adversary D4. It determines what message was encrypted by user I by exposing the state ofR,

and uses that to run Ch.Recv. We have Advinter
Ch (D4) = 1.

Similarly, if the adversary exposes the secrets of u it will necessarily be able to decrypt

any future ciphertexts encrypted by u, until u receives the ciphertext that u creates next. Consider

the adversary D5. It is essentially the identical to adversary D4, except it reverses the order of

the calls made to Send and Exp. We have Advinter
Ch (D5) = 1.
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Exposing Randomness.

If an adversary exposes user u with rand = “send” then it is able to compute the next

state of u by running Ch.Send locally with the same randomness that u will use. So in this case

the security game must act as if the adversary exposed both the current and the next state. In

particular, the attacks above could only succeed until, first, the exposed user u updated its secrets

and, second, user u updates its secrets accordingly (which can happen after it receives the next

message from u). But if the randomness was exposed, then secrets would need to be updated at

least twice until the security is restored.

Exposing user u with rand = “send” additionally allows the attack shown in D6. The

adversary exposes the state and the sending randomness of I, encrypts 1 locally using these

exposed values of I, and then calls Send to get a challenge ciphertext sent by I. The adversary

compares whether the two ciphertexts are the same to determine the secret bit. We have

Advinter
Ch (D6) = 1. More broadly, if the adversary exposes the secrets of u with rand = “send” it

will always be able to tell what is the next message encrypted by u.

Exposing with rand = “recv” does not generically endow the adversary with the ability

to do any additional attacks.

2.4.2 Optimal security of a channel

Our full security game is obtained by adding a minimal amount of code to INTER to

disallow the generic attacks just discussed. Consider the game AEAC (authenticated encryption

against compromise) shown in Fig. 2.9. We define the advantage of an adversary D against

channel Ch by Advaeac
Ch (D) = 2Pr[AEACD

Ch]−1.

We now have a total of eight variables to control the behavior of the adversary and prevent

it from abusing trivial attacks. Some of the variables are summarized in Table 2.1. We have

already seen su, ru, nextop, and ctableu in INTER. The new variables we have added in AEAC

are tables forgeu and chu, number Xu ∈ N, and flag restrictedu ∈ {true, false}. We now discuss

the new variables.
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Game AEACD
Ch

b←${0,1} ; sI ← 0 ; rI ← 0 ; sR← 0 ; rR← 0 ; restrictedI ← false ; restrictedR← false

forgeI [0 . . .∞]← “nontrivial” ; forgeR[0 . . .∞]← “nontrivial” ; XI ← 0 ; XR← 0
(stI ,stR)←$ Ch.Init ; (zI ,zR)←$ (Ch.SendRS)2 ; (ηI ,ηR)←$ (Ch.RecvRS)2

b′←$DSend,Recv,Exp

Return (b′ = b)

Send(u,m0,m1,ad) // u ∈ {I,R},(m0,m1,ad) ∈ ({0,1}∗)3

If nextop 6= (u,“send”) and nextop 6=⊥ then return ⊥
If |m0| 6= |m1| then return ⊥
If (ru < Xu or restrictedu or chu[su+1] = “forbidden”) and m0 6=m1 then return ⊥
(stu,c)← Ch.Send(stu,ad,mb;zu)
nextop←⊥ ; su← su+1 ; zu←$ Ch.SendRS

If not restrictedu then ctableu[su]← (c,ad)

If m0 6= m1 then chu[su]← “done”
Return c

Recv(u,c,ad) // u ∈ {I,R},(c,ad) ∈ ({0,1}∗)2

If nextop 6= (u,“recv”) and nextop 6=⊥ then return ⊥
(stu,m)← Ch.Recv(stu,ad,c;ηu)

nextop←⊥ ; ηu←$ Ch.RecvRS

If m=⊥ then return ⊥
ru← ru+1
If forgeu[ru] = “trivial” and (c,ad) 6= ctableu[ru] then restrictedu← true

If restrictedu or (b = 0 and (c,ad) 6= ctableu[ru]) then return m
Return ⊥
Exp(u, rand) // u ∈ {I,R}, rand ∈ {ε,“send”,“recv”}
If nextop 6=⊥ then return ⊥
If restrictedu then return (stu,zu,ηu)

If ∃i ∈ (ru,su] s.t. chu[i] = “done” then return ⊥
forgeu[su+1]← “trivial” ; (z,η)← (ε,ε) ; Xu← su+1
If rand = “send” then

nextop← (u,“send”) ; z← zu ; Xu← su+2
forgeu[su+2]← “trivial” ; chu[su+1]← “forbidden”

Else if rand = “recv” then
nextop← (u,“recv”) ; η ← ηu

Return (stu,z,η)

Figure 2.9. Game defining AEAC security of channel Ch.

The table forgeu was added to prevent the type of attack shown in D3. When the

adversary calls Exp on user u we set forgeu to “trivial” for the indices of ciphertexts for which

this adversary is now necessarily able to create forgeries. If the adversary takes advantage of this
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Table 2.1. Table summarizing some important variables in game AEAC. A “−” indicates a way
in which the behavior of the adversary is being restricted. A “+” indicates a way in which the
behavior of the adversary is being enabled.

Variable Set to x when y occurs Effect
nextopu (u,“send”) when zu is exposed − u must send next

(u,“recv”) when ηu is exposed − u must receive next
forgeu “trivial” when u is exposed − forgeries to u set restrictedu

chu “done” when challenge from u − prevents an exposure of u
“forbidden” when zu is exposed − prevents a challenge from u

Xu when u is exposed − prevents challenges until ru = Xu
restrictedu true when trivial forger y to u − prevents challenges from u

+ (c,ad) from u not added to ctableu
± show decryption of (c,ad) sent to u
+ Exp calls to u always allowed and
will not change other variables

to send a ciphertext of its own creation to u then the flag restrictedu will be set, whose effect we

will describe momentarily.

The table chu is used to prevent the types of attacks shown by D4 and D6. Whenever the

adversary makes a valid challenge query2 to user u we set chu[su] to “done”. The game will not

allow the adversary to expose u’s secrets if there are any challenge queries for which u sent a

ciphertext that u has not received yet. This use of chu prevents an attack like D4. To prevent an

attack like D6, we set chu[su+1] to “forbidden” whenever the adversary exposes the state and

sending randomness of u. This disallows the adversary from doing a challenge query during its

next Send call to u (the call for which the adversary knows the corresponding randomness).

The number Xu prevents attacks like D5. When u is exposed Xu will be set to a number

that is 1 or 2 greater than the current number of ciphertexts u has sent (depending on the value of

rand) and challenge queries from u will not be allowed until it has received that many ciphertexts.

This ensures that the challenge queries from u are not issued with respect to exposed keys of u.3

Finally the flag restrictedu serves to both allow and disallow some attacks. The flag is

2We use the term challenge query to refer to a Send query for which m0 6=m1.
3The symbol X (chi) is meant to evoke the word “challenge” because it stores the next time the adversary may

make a challenge query.
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initialized to false. It is set to true when the adversary forges a ciphertext to u after exposing u.

Once u has received a different ciphertext than was sent by u there is no reason to think that u

should be able to decrypt ciphertexts sent by u or send its own ciphertexts to u. As such, if u is

restricted (i.e. restrictedu = true) we will not add its ciphertexts to ctableu, we will always show

the true output when u attempts to decrypt ciphertexts given to it by the adversary (even if they

were sent by u), and if the adversary asks to expose u we will return all of its secret state without

setting any of the other variables that would restrict the actions the adversary is allowed to take.

The above describes how restrictedu allows some attacks. Now we discuss how it

prevents attacks like D3.1 and D3.2. Once the adversary has sent its own ciphertext to u we must

assume that the adversary will be able to decrypt ciphertexts sent by u and able to send its own

ciphertexts to u that will decrypt to non-⊥ values. The adversary could simply have “replaced”

u with itself. To address this we prevent all challenge queries from u, and decryptions performed

by u are always given back to the adversary regardless of the secret bit.

Informal description of the security game.

In Section 2.4.3 we provide a thorough written description of our security model to

facilitate high-level understanding of it. For intricate security definitions like ours there is often

ambiguity or inconsistency in subtle corner cases of the definition when written out fully in text.

As such this description should merely be considered an informal aid while the pseudocode of

Fig. 2.9 is the actual definition.

Comparison to recent definitions.

The three recents works we studied while deciding how to write our security definition

were [29], [17], and [43]. Their settings were all distinct, but each presented security models

that involve different “stages” of keys. All three works made distinct decisions in how to address

challenges in different stages. In Section 2.6 we discuss these decisions, noting that they result

in qualitatively identical but quantitatively distinct definitions.
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2.4.3 Informal description of our security definition

We now attempt to provide an informal description of our security definition to facilitate

high-level understanding of it. The security experiment starts by choosing a challenge bit b.

The channel’s initialization algorithm Ch.Init is run to produce the initial state of users I and

R. Then the adversary is run and given the ability to ask either user to send a message or

receive a ciphertext, or to expose their state. The adversary is allowed to perform these actions

in essentially any order with a small restriction that we describe momentarily. Eventually the

adversary must halt and output a bit b′. If b′ = b, then the adversary is considered to have won,

otherwise it has lost.

We first describe sending of messages and receiving of ciphertexts, without reference

to the restrictions that will be placed on these operations after the exposure of a user’s secrets.

When the adversary asks user u to send a message, it will provide two messages m0 and m1 of

equal length, together with associated data ad. Then algorithm Ch.Send will be run on input

the state of u, mb, and ad. The resulting ciphertext will be returned to the adversary. When the

adversary asks user u to receive a ciphertext, it will provide the ciphertext c and associated data

ad. Then algorithm Ch.Recv will be run on input the state of u, c, and ad. The adversary gets

back ⊥ if the decryption of c with ad helps adversary to trivially win the game (i.e. it is identical

to the ciphertext sent by u, and only if the last ciphertext sent by u was already accepted by u).

If the decryption of the provided ciphertext failed, the adversary gets ⊥ as the result. Otherwise

the actual decryption will be returned if b = 0, and ⊥ will be returned if b = 1.

We proceed to describe the effect of exposing a user, which introduces the majority of the

complexity of our model. When exposing the current state of user u the adversary will provide

an additional string rand that can equal ε , “send”, or “recv”. The flag rand indicates whether

the adversary is exposing the state of the user while they are “at rest”, while they are sending

a message, or while they are receiving a ciphertext. In the latter two cases the adversary is

required to follow up with a valid request that the specified user performs the specified action,
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and the adversary will be proactively given back the randomness that will be used when this

action is performed. Additionally, the expose query to u is not allowed if it allows the adversary

to trivially win the game, which happens if u was asked to send a message to u (encrypting one

of two challenge plaintexts) that was not yet received by u.

After u’s state is exposed, the adversary cannot ask u to send one of two different

messages until u has received the next ciphertext that u sends. If u was exposed while they were

sending a message then this refers to the next ciphertext after the one that is about to be sent,

and the adversary is further not allowed to ask u to send one of two different messages for the

current sending operation. These are minimal necessary requirements that give user u a chance

to recover from exposure.

If the adversary exposes u and uses the exposed secrets to forge a ciphertext to u, then u

becomes “restricted,” which we will describe in the next paragraph. More precisely, the condition

is that the ciphertext that adversary sends to u is accepted after u has received the last ciphertext

that was sent by u (prior to u’s state getting exposed) but before u has received the next ciphertext

that u sends. If u is exposed while sending a message the next ciphertext just mentioned refers to

the next ciphertext after the one that is about to be sent.

When a user u is restricted a number of the statements we made above no longer hold.

When a restricted user is exposed, their current state, next randomness for sending, and next

randomness for receiving will be freely given to the adversary without placing any restrictions on

its future actions. Similarly, there is no longer any restriction on when u can be exposed (except

if u is not restricted then u cannot be exposed after u was exposed while performing an operation,

until u has finished performing the corresponding operation). The adversary is no longer allowed

to ask u to send one of two different messages. When u is asked to receive a ciphertext, the

adversary will only be given back ⊥ if the decryption failed, meaning the adversary always gets

back the actual output of Ch.Recv (no other conditions will trigger ⊥ to be returned). Finally, a

query asking u to accept a ciphertext no longer always returns ⊥ if this ciphertext was produced

by querying a restricted user u to send a message. Instead, if the previous message sent from u
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was accepted by u, then the above query returns the actual output of Ch.Recv if b = 0, and ⊥

otherwise.

This concludes the description of our security model. The above description already

contains some ambiguity we are aware of in situations where a user sends a ciphertext that

happens to be identical to a ciphertext it has already sent. We do not attempt to resolve this

ambiguity in text, but again refer the reader to our pseudocode for the precise definition.

2.5 Construction of a secure channel

2.5.1 Our construction

We are not aware of any secure channels that would meet (or could easily be modified to

meet) our security notion. The “closest” (for some unspecified, informal notion of distance) is

probably the Signal Double Ratchet Algorithm. However, it relies on symmetric authenticated

encryption for both privacy and integrity so it is inherently incapable of achieving our strong

notion of security. Later, we describe an attack against a variant of our proposed construction that

uses symmetric primitives to exhibit the sorts of attacks that are unavoidable when using them.

A straightforward variant of this attack would also apply against the Double Ratchet Algorithm.

In this section we construct our cryptographic channel and motivate our design decisions

by giving attacks against variants of the channel. In Section 2.5.2 we will prove its security by

reducing it to that of its underlying components.

The idea of our scheme is as follows. Both parties will keep track of a transcript of

the messages they have sent and received, τs and τr . These will be included as a part of every

ciphertext and verified before a ciphertext is accepted. On seeing a new ciphertext the appropriate

transcript is updated to be the hash of the ciphertext (note that the old transcript is part of this

ciphertext, so the transcript serves as a record of the entire conversation). Sending transcripts

(vector of τs) are stored until the other party has acknowledged receiving a more recent transcript.

For authenticity, every time a user sends a ciphertext they authenticate it with a digital
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signature and include in it the verification key for the signing key that they will use to sign the

next ciphertext they send. Any time a user receives a ciphertext they will use the new receiving

transcript produced to update their current signing key.

For privacy, messages will be encrypted using public-key encryption. With every cipher-

text the sender will include the encryption key for a new decryption key they have generated.

Decryption keys are stored until the other party has acknowledged receiving a more recent

encryption key. Any time a user receives a ciphertext they will use the new receiving transcript to

produced to update each of these keys. The encryption will use as a label all of the extra data that

will be included with the ciphertext (i.e. a sending counter, a receiving counter, an associated

data string, a new verification key, a new encryption key, a receiving transcript, and a sending

transcript). The formal definition of our channel is as follows.

Cryptographic channel SCH[DS,PKE,H].

Let DS be a key-updatable digital signature scheme, PKE be a key-updatable public-

key encryption scheme, and H be a family of functions. We build a cryptographic channel

SCh = SCH[DS,PKE,H] as defined in Fig. 2.10.

A user’s state stu, among other values, contains counters su,ru,racku . Here, su is the

number of messages that u sent to u, and ru is the number of messages they received back from

u. The counter racku stores the last value of ru in a ciphertext received by u (i.e. the index of

the last ciphertext that u believes u has received and acknowledged). This counter is used to

ensure that prior to running a signature verification algorithm, the vertification key vk is updated

with respect to the same transcripts as the signing key sk (at the time it was used to produce the

signature). Note that algorithm DS.Vrfy returns (vk′′, t) where t is the result of verifying that σ

is a valid signature for v with respect to verification key vk′′ (using the notation convention from

Section 2.2).
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Algorithm SCh.Init

(skI ,vkR)←$ DS.Kg ; (ekI ,dkR[0])←$ PKE.Kg

(skR,vkI)←$ DS.Kg ; (ekR,dkI [0])←$ PKE.Kg

hk←$ H.Kg ; τr ← ε ; τs[0]← ε ; s← r← rack ← 0
stI ← (s,r,rack ,skI ,vkI ,ekI ,dkI ,hk,τr ,τs)

stR← (s,r,rack ,skR,vkR,ekR,dkR,hk,τr ,τs)

Return (stI ,stR)

Algorithm SCh.Send(~k,ad,m)

(s,r,rack ,sk,vk,ek,dk,hk,τr ,τs)←~k ; s← s+1
(sk ′,vk ′)←$ DS.Kg ; (ek ′,dk[s])←$ PKE.Kg

`← (s,r,ad,vk ′,ek ′,τr ,τs[s−1])
(ek ′,c ′)←$ PKE.Enc(ek, `,m,τs[rack +1, . . . ,s−1])
v← (c ′, `) ; σ←$ DS.Sign(sk,v)
c← (σ ,v) ; τs[s]← H.Ev(hk,c)
~k← (s,r,rack ,sk ′,vk,ek,dk,hk,τr ,τs)

Return (~k,c)

Algorithm SCh.Recv(~k,ad,c)

(s,r,rack ,sk,vk,ek,dk,hk,τr ,τs)←~k
(σ ,v)← c ; (c ′, `)← v
(s′,r′,ad′,vk ′,ek ′,τ ′r ,τ

′
s)← `

If s′ 6= r+1 or τ ′r 6= τs[r′] or τ ′s 6= τr or ad 6= ad′ then return (~k,⊥)
(vk ′′, t)← DS.Vrfy(vk,σ ,v,τs[rack +1, . . . ,r′])
If not t then return (~k,⊥)
r← r+1 ; rack ← r′ ; m← PKE.Dec(dk[rack ], `,c ′)
τs[0, . . . ,rack−1]←⊥ ; dk[0, . . . ,rack−1]←⊥
τr ← H.Ev(hk,c) ; sk←$ DS.UpdSk(sk,τr)

For i ∈ [rack ,su] do dk[i]←$ PKE.UpdDk(dk[i],τr)
~k← (s,r,rack ,sk,vk ′,ek ′,dk,hk,τr ,τs)

Return (~k,m)

Figure 2.10. Construction of channel SCh = SCH[DS,PKE,H] from function family H, key-
updatable digital signature scheme DS, and key-updatable public-key encryption scheme PKE.

Inefficiencies of SCh.

A few aspects of SCh are less efficient than one would a priori hope. The state maintained

by a user u (specifically the tables dku and τs,u) is not constant in size, but instead grows linearly

with the number of ciphertexts that u sent to u without receiving a reply back. Additionally, when

DS is instantiated with the particular choice of DS that we define in Section 2.8 the length of the

ciphertext sent by a user u and the amount of state it stores will grow linearly in the number of
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ciphertexts that u has received since the last time they sent a ciphertext. Such inefficiencies would

be unacceptable for a protocol like TLS or SSH, but in our motivating context of messaging

is it plausible that they are acceptable. Each message is human generated and the state gets

“refreshed” regularly if the two users regularly reply to one another. One could additionally

consider designing an app to regularly send an empty message whose sole purpose is state

refreshing. We leave as interesting future work improving on the efficiency of our construction.

Design decisions.

We will now discuss attacks against different variants of SCh. This serves to motivate the

decisions made in its design and give intuition for why it achieves the desired security. Several

steps in the security proof of this construction can be understood by noting which of these attacks

are ruled out in the process.

The attacks are shown in Fig. 2.11 and Fig. 2.12. The first several attacks serve to

demonstrate that Ch.Send must use a sufficient amount of randomness (shown in Da, Db, Dc)

and that H needs to be collision resistant (shown in Db, Dc). The next attack shows why our

construction would be insecure if we did not use labels with PKE (shown in Dd). Then we

provide two attacks showing why the keys of DS and PKE need to be updated (shown in De,

D f ). Then we show an attack that arises if multiple valid signatures can be found for the same

string (shown in Dg). Finally, we conclude with attacks that would apply if we used symmetric

instead of asymmetric primitives to build SCh (shown in Dh, Di).

Scheme with insufficient sending entropy.

Any scheme whose sending algorithm has insufficient entropy will necessarily be insecure.

For simplicity let SCh1 be a variant of SCh such that SCh1.Send is deterministic (the details of

how we are making it deterministic do not matter). We can attack both the message privacy and

the integrity of such a scheme.

Consider the adversary Da. It exposes I, encrypts the message 1 locally, and then sends

a challenge query to I asking for the encryption of either 1 or 0. By comparing the ciphertext it
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Adversary DSend,Recv,Exp
a

(~k,z,η)←Exp(I,ε)
(~k,c)← SCh1.Send(~k,ε,1)
c ′← Send(I,0,1,ε)
If c = c ′ then return 1
Return 0

Adversary DSend,Recv,Exp
b

(~k,z,η)←Exp(I,ε)
(~k,c)←$ Ch.Send(~k,ε,1)
m←Recv(R,c,ε)
c← Send(I,1,1,ε)
c← Send(R,1,1,ε)
m←Recv(I,c,ε)
If m=⊥ then return 1
Return 0

Adversary DSend,Recv,Exp
c

(~k,z,η)←Exp(I,ε)
(~k,c)←$ Ch.Send(~k,ε,1)
m←Recv(R,c,ε)
c← Send(I,1,1,ε)
(~k,z,η)←Exp(R,ε)
(~k,c)←$ Ch.Send(~k,ε,1)
m←Recv(I,c,ε)
If m=⊥ then return 1 else return 0

Adversary DSend,Recv,Exp
d

(~k,z,η)←Exp(I,ε)
c← Send(I,0,1,ε)
(s,r,rack ,sk,vk,ek,dk,hk,τr ,τs)←
~k
(σ ,(c ′,(s,r,ad,vk ′,ek ′,τr ,τs)))← c

v← (c ′,(s,r,1128,vk ′,ek ′,τr ,τs))

σ←$ DS.Sign(sk,v)
m←Recv(R,(σ ,v),1128)

If m= 1 then return 1 else return 0

Figure 2.11. Attacks against variants of SCh.

produced to the one returned by Send it can determine which message was encrypted, learning

the secret bit. We have Advaeac
SCh1

(Da) = 1. This attack is fairly straightforward and will be ruled

out by the security of PKE in our proof without having to be addressed directly.

The attacks against integrity are more subtle. They are explicitly addressed in the first

game transition of our proof. Let Ch = SCh1 and consider adversaries Db and Dc. They both

start by doing the same sequence of operations: expose I, use its secret state to encrypt and

send message 1 toR, then ask I to produce an encryption of 1 forR (which will be the same

ciphertext as above, because SCh1.Send is deterministic). Now restrictedR = true because oracle

Recv was called on a trivially fogeable ciphertext that was not produced by oralce Send. But

R has received the exact same ciphertext that I sent. Different attacks are possible from this

point.

Adversary Db just asks R to send a message and forwards it along to I. Since R was
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restricted the ciphertext does not get added to ctableI so it can be used to discover the secret

bit. We have Advaeac
SCh1

(Db) = 1. Adversary Dc exposesR and uses the state it obtains to create

its own forgery to I. It then returns 1 or 0 depending on whether Recv returns the correct

decryption or ⊥. This attack succeeds because exposingR when it is restricted will not set any

of the variables that would typically prevent the adversary from winning by creating a forgery.

We have Advaeac
SCh1

(Dc) = 1. We have not shown it, but another message privacy attack at this

point (instead of proceeding as Db or Dc) could have asked for another challenge query from I,

exposedR, and used the exposed state to trivially determine which message was encrypted.

Scheme without collision-resistant hashing.

If it is easy to find collisions in H then we can attack the channel by causing both

parties to have matching transcripts despite having seen different sequences of ciphertexts. For

concreteness let SCh2 be a variant of our scheme using a hash function that outputs 0128 on all

inputs. Let Ch = SCh2 and again consider adversaries Db and Dc. We no longer expect the

ciphertexts that they produce locally to match the ciphertexts returned by I. However, they will

have the same hash value and thus produce the same transcript τr,R = 0128 = τs,I . Consequently,

R still updates its signing key in the same way regardless of whether it receives the ciphertext

produced by I or the ciphertext locally generated by adversary. So the messages subsequently

sent byR will still be accepted by I. We have Advaeac
SCh2

(Db) = 1 and Advaeac
SCh2

(Dc) = 1.

Scheme without PKE labels.

Let SCh3 be a variant of SCh that uses a public-key encryption scheme that does not

accept labels and consider adversary Dd . It exposes I and asks I for a challenge query. It then

uses the state it exposed to trivially modify the ciphertext sent from I (we chose to have it change

ad from ε to 1128) and sends it to R. Since the ciphertext sent to R has different associated

data than the one sent by I the adversary will be given the decryption of this ciphertext. But

without the use of labels this decryption by PKE is independent of the associated data and will

thus reveal the true decryption of the challenge ciphertext to I. We have Advaeac
SCh3

(Dd) = 1.
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Adversary DSend,Recv,Exp
e

(~k,z,η)←Exp(I,ε)
cI ← Send(I,1,1,ε)
(σ ,(c ′,(s,r,ad,vkI ,ekI ,τr ,τs)))← cI
(~k,c)←$ SCh4.Send(~k,ε,0)
m←Recv(R,c,ε)
(~k,z,η)←Exp(R,ε)
(s,r,rack ,sk,vk,ek,dk,hk,τr ,τs)←~k
τr ← H.Ev(hk,cI)
~k← (s,r,rack ,sk,vkI ,ekI ,dk,hk,τr ,τs)

(~k,c)←$ SCh4.Send(~k,ε,1)
m←Recv(I,c,ε)
If m=⊥ then return 1 else return 0

Adversary DSend,Recv,Exp
f

(~k,z,η)←Exp(I,ε)
(σ ,(c ′, `))← Send(I,0,1,ε)
(~k,c)←$ SCh5.Send(~k,ε,0)
m←Recv(R,c,ε)
(~k,z,η)←Exp(R,ε)
(s,r,rack ,sk,vk,ek,dk,hk,τr ,τs)←~k
m← PKE.Dec(dk[0], `,c ′)
If m= 1 then return 1 else return 0

Adversary DSend,Recv,Exp
g

(~k,z,η)←Exp(I,ε)
(σ ,v)← Send(I,0,1,ε)
(s,r,rack ,sk,vk,ek,dk,hk,τr ,τs)←~k
m←Recv(R,(σ ‖sk,v),ε)
If m= 1 then return 1
Return 0

Adversary DSend,Recv,Exp
h

(~k,z,η)←Exp(I,ε)
(s,r,rack ,sk,vk,ek,dk,hk,τr ,τs)←~k
~k← (s,r,rack ,vk,sk,ek,dk,hk,τr ,τs)

(~k,c)←$ SCh7.Send(~k,ε,0)
m←Recv(I,c,ε)
If m=⊥ then return 1
Return 0

Adversary DSend,Recv,Exp
i

(~k,z,η)←Exp(I,ε)
(σ ,(c ′, `))← Send(I,0,1,ε)
(s,r,rack ,sk,vk,ek,dk,hk,τr ,τs)←~k
m← PKE.Dec(ek, `,c ′)

If m= 1 then return 1
Return 0

Figure 2.12. Attacks against variants of SCh.

Schemes without updatable keys.

We will now show why it is necessary to define new forms of PKE and DS for our

construction.

Let SCh4 be a variant of SCh that uses a digital signature scheme that does not update

its keys. Consider adversary De. It exposes I, then queries Send for I to send a message to

R, but uses the exposed secrets to replace it with a locally produced ciphertext c. It calls Recv

for R with c, which sets restrictedR = true. Since the signing key is not updated in SCh4, the

adversary now exposesR to obtain a signing key whose signatures will be accepted by I . It uses

this to forge a ciphertext to I to learn the secret bit. We have Advaeac
SCh4

(De) = 1.

Let SCh5 be a variant of SCh that uses a public-key encryption scheme that does not
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update its keys. Consider adversary D f . It exposes I and uses this to send R a different

ciphertext than is sent by I (setting restrictedR = true). Since the decryption key is not updated,

the adversary now exposesR to obtain a decryption key that can be used to decrypt a challenge

ciphertext sent by I. We have Advaeac
SCh5

(D f ) = 1.

Scheme with non-unique signatures.

Let SCh6 be a variant of our scheme using a digital signature scheme that does not have

unique signatures. For concreteness, assume that σ ‖sk is a valid signature whenever σ is. Then

consider adversary Dg. It exposes I and has I send a challenge ciphertext. Then it modifies

the ciphertext by changing the signature and forwards this modified ciphertext on to R. The

adversary is given back the true decryption of this ciphertext (because it was changed) which

trivially reveals the secret bit of the game (here it is important that the signature is not part of the

label used for encryption/decryption). We have Advaeac
SCh6

(Dg) = 1.

Scheme with symmetric primitives.

Let SCh7 be a variant of our scheme that uses a MAC instead of a digital signature scheme

(e.g. vk = sk always, and vk is presumably no longer sent in the clear with the ciphertext).

Consider adversary Dh. It simply exposes I and then uses I’s vk to send a message to I. This

trivially allows it to determine the secret bit. Here we used that PKE will decrypt any ciphertext

to a non-⊥ value. We have Advaeac
SCh7

(Dh) = 1.

Similarly let SCh8 be a variant of our scheme that uses symmetric encryption instead of

public-key encryption (e.g. ek = dk always, and ek is presumably no longer sent in the clear

with the ciphertext). Adversary Di exposes user I and then uses the corresponding ek to decrypt

a challenge message encrypted by I. We have Advaeac
SCh8

(Di) = 1.

Stated broadly, a scheme that relies on symmetric primitives will not be secure because a

user will know sufficient information to send a ciphertext that they would themselves accept or

to read a message that they sent to the other user. Our security notion requires that this is not

possible.
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2.5.2 Security proof

The following theorem bounds the advantage of an adversary breaking the AEAC security

of SCh using the advantages of adversaries against the CR security of H, the UFEXP and UNIQ

security of DS, the INDEXP security of PKE, and the min-entropy of DS and PKE.

Theorem 9. Let DS be a key-updatable digital signature scheme, PKE be a key-updatable

public-key encryption scheme, and H be a family of functions. Let SCh = SCH[DS,PKE,H]. Let

D be an adversary making at most qSend queries to its Send oracle, qRecv queries to its Recv

oracle, and qExp queries to its Exp oracle. Then we can build adversaries AH, ADS, BDS, and

APKE such that

Advaeac
SCh (D)≤ 2 · (qSend ·2−µ +Advcr

H(AH)+Advufexp
DS (ADS)

+Advuniq
DS (BDS))+Advindexp

PKE (APKE)

where µ = H∞(DS.Kg)+H∞(PKE.Kg)+H∞(PKE.Enc). AdversaryADS makes at most qSend+

2 queries to its NewUser oracle, qSend queries to its Sign oracle, and qExp queries to its Exp

oracle. Adversary BDS makes at most qSend+ 2 queries to its NewUser oracle. Adversary

APKE makes at most qSend+2 queries to its NewUser oracle, qSend ∗ (qRecv+1) queries to

its UpdEk oracle, (qSend+1)∗qRecv queries to its UpdDk oracle, qSend queries to its Enc

oracle, qRecv queries to its Dec oracle, and qSend+2 queries to its Exp oracle. Adversaries

AH, ADS, BDS, and APKE all have runtime about that of D.

The proof broadly consists of two stages. The first stage of the proof (consisting of three

game transitions) argues that the adversary will not be able to forge a ciphertext to an unrestricted

user except by exposing the other user. This argument is justified by a reduction to an adversary

ADS against the security of the digital signature scheme. However, care must be taken in this

reduction to ensure that D cannot induce behavior in ADS that would result in ADS cheating in

the digital signature game. Addressing this possibility involves arguing that D cannot predict
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any output of Send (from whence the min-entropy term in the bound arises) and that it cannot

find any collisions in the hash function H.

Once this stage is complete the output of Recv no longer depends on the secret bit b,

so we move to using the security of PKE to argue that D cannot use Send to learn the value

of the secret bit. This is the second stage of the proof. But prior to this reduction we have to

make one last argument using the security of DS. Specifically we show that, given a ciphertext

(σ ,v), the adversary will not be able to find a new signature σ ′ such that (σ ′,v) will be accepted

by the receiver (otherwise since σ 6= σ ′, oracle Recv would return the true decryption of this

ciphertext which would be the same as the decryption of the original ciphertext and thus allow a

trivial attack). Having done this, the reduction to the security of PKE is follows.

Theorem 9. For the proof we use games G0, G1, G2, G3 defined in Fig. 2.13, games G4, G5

defined in Fig. 2.16, and the adversaries defined in Fig. 2.14, 2.15, 2.17, 2.18.

The theorem follows immediately from the following seven claims. The first four claims

correspond to the first stage of the proof as discussed in Section 2.5.2. The rest correspond to the

second stage. For compactness we will let q = qSend throughout the proof.

1. Pr[G0] = Pr[AEACD
SCh]

2. Pr[G0]−Pr[G1]≤ q ·2−µ

3. Pr[G1]−Pr[G2]≤ Advcr
H(AH)

4. Pr[G2]−Pr[G3]≤ Advufexp
DS (ADS)

5. Pr[G3] = Pr[G4]

6. Pr[G4]−Pr[G5]≤ Advuniq
DS (BDS)

7. Pr[G5]≤ Pr[INDEXPAPKE
PKE ]

Referring to the adversaries from Section 2.5.1 we can roughly think as follows. Claim 1 and

Claim 2 will rule out attacks like Da, Db, and Dc. Claim 4 will rule out attacks like De and Dh.

Claim 6 will rule out attacks like Dg. Claim 7 will rule out attacks like Dd , D f , and Di.
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Then the relevant calculation is as follows

Advaeac
SCh (D) =2Pr[AEACD

SCh]−1 = 2Pr[G0]−1

=2(Pr[G0]−Pr[G1]+Pr[G1]−Pr[G2]+Pr[G2]−Pr[G3]

+Pr[G3]−Pr[G4]+Pr[G4]−Pr[G5]+Pr[G5])−1

≤2(q ·2−µ +Advcr
H(AH)+Advufexp

DS (ADS)+0+Advuniq
DS (BDS))

+2Pr[INDEXPAPKE
PKE ]−1

=2(q ·2−µ +Advcr
H(AH)+Advufexp

DS (ADS)+Advuniq
DS (BDS))+Advindexp

PKE (APKE).

To prove the first four claims we need to consider the sequence of games shown in Fig. 2.13.

Lines of code annotated with comments are only in the specified games, all other code is common

to all game. We used boxes to emphasize the lines of code annotated with comments. We use

highlighting to emphasize the areas of new code.

The first three game transitions (from G0 to G3) will show that any ciphertext sent to u

by the adversary can be rejected unless either it equals a ciphertext created by u, u is already

restricted, or the adversary has exposed u to steal the corresponding signing key. As part of this

the transitions from G0 to G2 will show roughly that setting a restricted flag results in the two

users having differing transcripts.

Claim 1, Pr[G0] = Pr[AEACD
SCh].

Game G0 was created by hardcoding the code of SCh into AEACD, flipping the position

of the two if statements in Exp, and then adding some variables to help us transition to future

games, which we will describe momentarily. Rather than storing the state of each user as a tuple

we store the components of the state in separate variables with an underscript to denote which

user’s state they are from. None of these variables have any effect on the input-output behavior

of G0 so the first claim, Pr[G0] = Pr[AEACD
SCh] is immediate.
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Games G0,G1,G2,G3

1: b←${0,1} ; rrestI ← rrestR ← ∞

2: sI ← rI ← sR← rR← 0
3: restrictedI ← restrictedR← false
4: forgeI [0 . . .∞]← “nontrivial”
5: forgeR[0 . . .∞]← “nontrivial”
6: XI ←XR← 0 ; hk←$ H.Kg
7: (skI ,vkR)←$ DS.Kg ; (skR,vkI)←$ DS.Kg
8: (ekI ,dkR[0])←$ PKE.Kg ; (ekR,dkI [0])←$ PKE.Kg
9: τr,I [0]← τr,R[0]← τs,I [0]← τs,R[0]← ε

10: rackI ← rackR ← rsentI ← rsentR ← 0
11: unchangedI ← unchangedR← true
12: (zI ,zR)←$ (Ch.SendRS)2

13: (ηI ,ηR)←$ (Ch.RecvRS)2

14: b′←$DSend,Recv,Exp ; Return (b′ = b)

Send(u,m0,m1,ad)

15: If nextop 6∈ {(u,“sent”),⊥} then return ⊥
16: If |m0| 6= |m1| then return ⊥
17: t1← (ru <Xu) ; t2← restrictedu

18: t3← (chu[su+1] = “forbidden”)
19: If (t1 or t2 or t3) and m0 6=m1 then return ⊥
20: (z1,z2,z3,z4)← zu ; su← su+1
21: (sk,vk)←DS.Kg(z1)
22: (ek,dku[su])← PKE.Kg(z2)
23: `← (su,ru,ad,vk,ek,τr,u[ru],τs,u[su−1])
24: ~∆e← τs,u[racku +1, . . . ,su−1]
25: (ek′,c′)← PKE.Enc(eku, `,mb,~∆e;z3)
26: v← (c′, `)
27: σ ←DS.Sign(sku,v;z4) ; c← (σ ,v)
28: τs,u[su]←H.Ev(hk,c) ; sku← sk
29: rsentu ← ru ; nextop←⊥ ; zu←$ Ch.SendRS
30: sctableu[su]← (c,ad)
31: If unchangedu and τs,u[su] = τr,u[su] then
32: If rctableu[su] = (c,ad) then
33: badpred ← true

34: abort(false) // G1,G2,G3
35: Else
36: badcoll ← true
37: abort(false) // G2,G3
38: If not restrictedu then ctableu[su]← (c,ad)
39: If m0 6= m1 then chu[su]← “done”
40: Return c

Recv(u,c,ad)

41: If nextop 6∈ {(u,“recv”),⊥} then return ⊥
42: (η1,η2)← ηu ; nextop←⊥ ; ηu←$ Ch.RecvRS
43: (σ ,v)← c ; (c′, `)← v
44: (s′,r′,ad′,vk′,ek′,τ ′r ,τ

′
s)← `

45: ~∆← τs,u[racku +1, . . . ,r′]
46: (vk′′, t)←DS.Vrfy(vku,σ ,v,~∆)
47: t4← ((s′,τ ′r) 6= (ru+1,τs,u[r′]))
48: t5←

(
(τ ′s ,ad

′) 6= (τr,u[ru],ad))
)

49: If not t or t4 or t5 then return ⊥
50: ta← (forgeu[ru+1] 6= “trivial”)
51: tb← ((c,ad) 6= ctableu[ru+1])
52: If unchangedu and ta and tb then
53: badforge ← true

54: abort(false) // G3

55: ru← ru+1 ; racku ← r′

56: m← PKE.Dec(dku[racku ], `,c′)
57: τs,u[0, . . . ,racku −1]←⊥
58: dku[0, . . . ,racku −1]←⊥
59: τr,u[ru]←H.Ev(hk,c)
60: sku←DS.UpdSk(sku,τr,u[ru];η1)
61: vku← vk′ ; eku← ek′

62: For i ∈ [racku ,su] do
63: dku[i]← PKE.UpdDk(dku[i],τr,u[ru];η i

2)
64: rctableu[ru]← (c,ad)
65: If tb then unchangedu← false
66: If forgeu[ru] = “trivial” and tb then
67: restrictedu← true ; rrestu ←min{ru,rrestu }
68: If unchangedu and τr,u[rrestu ] = τs,u[rrestu ] 6=⊥ then
69: badcoll ← true
70: abort(false) // G2,G3
71: If restrictedu or (b = 0 and tb) then
72: Return m
73: Return ⊥

Exp(u, rand)

74: If nextop 6=⊥ then return ⊥
75: If not restrictedu and ∃i ∈ (ru,su] s.t. chu[i] = “done” then return ⊥
76: ~k← (su,ru,sku,vku,eku,dku,hk,τr,u[ru],τs,u)
77: If restrictedu then return (~k,zu,ηu)
78: forgeu[su+1]← “trivial” ; (z,η)← (ε,ε) ; Xu← su+1
79: If rand = “send” then
80: nextop← (u,“send”) ; z← zu
81: Xu← su+2 ; forgeu[su+2]← “trivial”
82: chu[su+1]← “forbidden”
83: Else if rand = “recv” then
84: nextop← (u,“recv”) ; η ← ηu

85: Return (~k,z,η)

Figure 2.13. Games G1, G2, and G3 for security proof. Lines commented with the names of
games are only included in those games. Highlighting indicates new code.
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Descriptions of games G1, G2, and G3.

Variables t1 through t5 and ~∆e are temporary variables which were added to make the

code more compact. Their uses are not highlighted.

Variables rsentu and rrestu store indices corresponding to information about the ciphertexts

that a user has received. In rsentu we store the last value of ru that was included in a ciphertext

sent by u (i.e. the index of the last ciphertext that u has told u they have received). This variable

has no effect on the code, but will be useful for reasoning about its behavior. In rrestu we store the

value held by ru when restrictedu was first set or ∞ if this has not occurred.

The flag unchangedu will be initialized to true and will be set false the first time that the

sequence of ciphertexts received by u differs from the sequence of ciphertext sent by u while

unrestricted (i.e. the first time its view is “changed” from the correct view output by u). Once u

is restricted ctable would not be set on line 38, so a the corresponding tb in Recv would have

to be false. This flag is not the exact opposite of restrictedu because restrictedu only gets set

to true if the changed ciphertext was sent after an exposure. However, it is useful to note that

restrictedu will always be false when unchangedu is true.

Table rctableu stores the sequence of ciphertexts that have been received and accepted

by u. Table sctableu stores the sequence of ciphertexts that have been sent by u. This differs

from the existing table ctableu because it continues to store these values even after restrictedu

has been set.

On every call to Recv, we use ~∆ as a temporary variable to store the sequence of

transcripts used to update the digital signature verification key.

We seek to argue that before the first time u’s view is changed, the adversary should not

be able to create any (c,ad) pairs that will be accepted by u unless the pair was output by u or

the adversary has done an appropriate exposure of u. This belief about (c,ad) pairs provided by

the adversary that should be rejected is encoded in the if statement in Recv on line 52 which

checks if unchangedu, forgeu[ru+1] 6= “trivial”, and (c,ad) 6= ctableu[ru+1]. Once we reach

G3 we will simply abort if this evaluates to true.
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The first two game transitions (to games G1 and G2) are used to rule out the possibility

that the other user is restricted, but has receiving transcripts which match the sending transcripts

of the current user. This possibility is captured by the if statements on lines 31 and 68. Were this

possible then forgeries would be possible because after the other user is restricted the adversary

can have their secrets exposed without setting the appropriate entry of forgeu to “trivial”. This

will be used again at the end of the proof because if this were possible it would also lead to an

attack against the security provide by the encryption scheme.

Claim 2, Pr[G0]−Pr[G1]≤ q ·2−µ .

To start this argument consider the flag badpred. Games G0 and G1 are identical until

badpred. So from the fundamental lemma of game playing [16] we have Pr[G0]− Pr[G1] ≤

Pr[G0 sets badpred]. To establish the second claim we need to show that Pr[G0 sets badpred]≤

q · 2−µ . This will hold because an adversary can only cause badpred to be set by predicting

the output of Ch.Send before it is generated (which requires predicting the output of DS.Kg,

PKE.Kg, and PKE.Enc).

This flag gets set in Send when unchangedu, τs,u[su] = τr,u[su], and rctableu[su] =

(c,ad) are all true. Note that because unchangedu is true, it must hold that restrictedu is false.

Thus an exposure of the randomness used by the Send operation would set nextop to (u,“send”)

and could thus only happen immediately before the Send operation (and after the Recv

operation during which rctableu[su] was set). This means the adversary must have predicted the

output of Send before making the call. By the properties of min-entropy, the probability this

happens from any individual Recv call is at most 2−µ and then by a union bound we get the

desired second claim.

Claim 3, Pr[G1]−Pr[G2]≤ Advcr
H(AH).

For the third claim note that games G1 and G2 are identical until badcoll so Pr[G1]−

Pr[G2]≤ Pr[G1 sets badcoll].

When this flag is set in Send it must hold that sctableu[su] 6= rctableu[su] yet τs,u[su] =
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Adversary AH(hk)

86: b←${0,1} ; rrestI ← rrestR ← ∞ ; sI ← rI ← sR← rR← 0 ; restrictedI ← restrictedR← false
87: forgeI [0 . . .∞]← forgeR[0 . . .∞]← “nontrivial” ; XI ←XR← 0
88: (skI ,vkR)←$ DS.Kg ; (skR,vkI)←$ DS.Kg
89: (ekI ,dkR[0])←$ PKE.Kg ; (ekR,dkI [0])←$ PKE.Kg
90: hk← hk ; τr,I [0]← τr,R[0]← τs,I [0]← τs,R[0]← ε

91: unchangedI ← unchangedR← true ; rackI ← rackR ← rsentI ← rsentR ← 0
92: (zI ,zR)←$ (Ch.SendRS)2 ; (ηI ,ηR)←$ (Ch.RecvRS)2

93: DSendSim,RecvSim,ExpSim ; Return (ε,ε)

SendSim(u,m0,m1,ad)

If nextop 6∈ {(u,“sent”),⊥} then return ⊥
94: If |m0| 6= |m1| then return ⊥
95: If (ru <Xu or restrictedu or chu[su+1] = “forbidden”) and m0 6=m1 then return ⊥
96: (z1,z2,z3,z4)← zu ; su← su+1 ; (sk,vk)←DS.Kg(z1) ; (ek,dku[su])← PKE.Kg(z2)
97: `← (su,ru,ad,vk,ek,τr,u[ru],τs,u[su−1]) ; ~∆e← τs,u[racku +1, . . . ,su−1]
98: (ek′,c′)← PKE.Enc(eku, `,mb,~∆e;z3) ; v← (c′, `) ; σ ←DS.Sign(sku,v;z4) ; c← (σ ,v)
99: τs,u[su]←H.Ev(hk,c) ; sku← sk ; rsentu ← ru ; nextop←⊥ ; zu←$ Ch.SendRS
100: sctableu[su]← (c,ad)
101: If unchangedu and τs,u[su] = τr,u[su] then
102: If rctableu[su] = (c,ad) then abort(ε,ε)
103: Else (c,ad)← sctableu[su] ; (c′,ad′)← rctableu[su] ; abort(c,c′)
104: If not restrictedu then ctableu[su]← (c,ad)
105: If m0 6= m1 then chu[su]← “done”
106: Return c

RecvSim(u,c,ad)

107: If nextop 6∈ {(u,“recv”),⊥} then return ⊥
108: (η1,η2)← ηu ; nextop←⊥ ; ηu←$ Ch.RecvRS ; (σ ,v)← c ; (c′, `)← v
109: (s′,r′,ad′,vk′,ek′,τ ′r ,τ

′
s)← ` ; ~∆← τs,u[racku +1, . . . ,r′] ; (vk′′, t)←DS.Vrfy(vku,σ ,v,~∆)

110: If not t or s′ 6= ru+1 or τ ′r 6= τs,u[r′] or τ ′s 6= τr,u[ru] or ad′ 6= ad then return ⊥
111: tb← ((c,ad) 6= ctableu[ru+1]) ; ru← ru+1 ; racku ← r′ ; m← PKE.Dec(dku[racku ], `,c′)
112: τs,u[0, . . . ,racku −1]←⊥ ; dku[0, . . . ,racku −1]←⊥ ; τr,u[ru]←H.Ev(hk,c)
113: sku←DS.UpdSk(sku,τr,u[ru];η1) ; vku← vk′ ; eku← ek′ ; rctableu[ru]← (c,ad)
114: For i ∈ [racku ,su] do dku[i]← PKE.UpdDk(dku[i],τr,u[ru];η i

2)
115: If tb then unchangedu← false
116: If forgeu[ru] = “trivial” and tb then restrictedu← true ; rrestu ←min{ru,rrestu }
117: If unchangedu and τr,u[rrestu ] = τs,u[rrestu ] 6=⊥ then
118: (c′,ad′)← rctableu[rrestu ] ; (c,ad)← sctableu[rrestu ] ; abort(c,c′)
119: If restrictedu or (b = 0 and tb) then return m
120: Return ⊥

ExpSim(u, rand)

// Identical to Exp in G1,G2

Figure 2.14. Adversary AH against collision resistance of H. Highlighting indicates the changes
from G1,G2.

τr,u[su]. So the corresponding ciphertexts must have formed a collision in H. (Note here

that ciphertexts include the associated date, so sctableu[rrestu ] 6= rctableu[rrestu ] implies the

corresponding ciphertexts are distinct.)

When want to argue that when this flag is set in Recv it must hold that rctableu[rrestu ] 6=

sctableu[rrestu ] even though τr,u[rrestu ] = τs,u[rrestu ] 6= ⊥. Not that because unchangedu is true,

restrictedu must be false. If τr,u[rrestu ] was set to a non-⊥ value first, then badcoll would have
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already been set true in Send when τs,u[rrestu ] was set. So suppose τs,u[rrestu ] was set first and

consider the first time it was set. The variable tb was true at this time so we had rctableu[rrestu ] =

(c,ad) 6= ctableu[rrestu ] = sctableu[rrestu ]. (The last equality held because restrictedu is still

false.) The same reasoning as the previous paragraph implies that the corresponding ciphertexts

must have formed a collision in H.

The adversary AH shown in Fig. 2.14 takes advantage of this to attack the collision-

resistance of H. It simulates the view of D and then (on line 103 or line 118) aborts and returns

the collision when badcoll would be set; otherwise it simply gives up and returns (ε,ε). The

highlighted code shows where the code ofAH differs from that of G1 and G2. The code hk← hk

is included just to make explicit that it uses the key to the hash function it was provided as input

rather than sampling a new key for itself. That AH perfectly simulates the view of D in G1 or G2

until badcoll is clear. From our above analysis we then have that AH succeeds in CR whenever

G1 would set badcoll so Pr[G1 sets badcoll]≤ Pr[CRAH
H ] = Advcr

H(AH) as desired.

Claim 4, Pr[G2]−Pr[G3]≤ Advufexp
DS (ADS).

Finally we can give our reduction to the security of DS to complete this stage of the

proof. Game G2 and G3 are identical until badforge , so Pr[G2]−Pr[G3] ≤ Pr[G2 sets badforge ].

The adversary ADS shown in Fig. 2.15 against the security of DS uses its oracles to simulate the

view of D and then (on line 174) aborts and returns the forgery if badforge would ever be set.

The highlighting shows where the code of ADS differs from that of games G2 and G3. Below we

verify that ADS correctly simulates the view of D in these games (until the time that it aborts).

Now consider a call to RecvSim(u, ·, ·) by D that results in ADS aborting. Note that

ADS uses user identifiers of the form Λ = (s,v) for the key created by user v with the s-th

ciphertext it sends. We seek to argue that ADS wins UFEXP whenever it aborts, so we need to

show that (1) vk[(ru,u)] 6=⊥, (2) win = true, and (3) cheated = false. Then because ADS aborts

whenever badforge would be set we get Pr[G2 sets badforge ]≤ Pr[UFEXPADS
DS ] = Advufexp

DS (ADS)

as desired.
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Adversary AUpd,Sign,Exp
DS

121: b←${0,1} ; rrestI ← rrestR ← ∞

122: sI ← rI ← sR← rR← 0
123: restrictedI ← restrictedR← false
124: forgeI [0 . . .∞]← “nontrivial”
125: forgeR[0 . . .∞]← “nontrivial”
126: XI ←XR← 0 ; hk←$ H.Kg
127: vkR←NewUser((sI ,I)) ; skI ←⊥
128: vkI ←NewUser((sR,R)) ; skR←⊥
129: (ekI ,dkR[0])←$ PKE.Kg ; (ekR,dkI [0])←$ PKE.Kg
130: τr,I [0]← τr,R[0]← τs,I [0]← τs,R[0]← ε

131: unchangedI ← unchangedR← true
132: rackI ← rackR ← rsentI ← rsentR ← 0
133: (zI ,zR)←$ (Ch.SendRS)2

134: (ηI ,ηR)←$ (Ch.RecvRS)2

135: DSendSim,RecvSim,ExpSim

136: Return (ε,ε,ε,(ε))

SendSim(u,m0,m1,ad)

137: If nextop 6∈ {(u,“sent”),⊥} then return ⊥
138: If |m0| 6= |m1| then return ⊥
139: t1← (ru <Xu) ; t2← restrictedu

140: t3← (chu[su+1] = “forbidden”)
141: If (t1 or t2 or t3) and m0 6=m1 then return ⊥
142: (z1,z2,z3,z4)← zu ; su← su+1
143: If nextop 6= (u,“sent”) then
144: vk←NewUser((su,u)) ; sk←⊥
145: Else (sk,vk)←DS.Kg(z1)
146: (ek,dku[su])← PKE.Kg(z2)
147: `← (su,ru,ad,vk,ek,τr,u[ru],τs,u[su−1])
148: ~∆e← τs,u[racku +1, . . . ,su−1]
149: (ek′,c′)← PKE.Enc(eku, `,mb,~∆e;z3)
150: v← (c′, `)
151: If sku =⊥ then σ ← Sign((su−1,u),v)
152: Else σ ←DS.Sign(sku,v;z4)
153: c← (σ ,v) ; τs,u[su]←H.Ev(hk,c) ; sku← sk
154: rsentu ← ru ; nextop←⊥ ; zu←$ Ch.SendRS
155: sctableu[su]← (c,ad)
156: If unchangedu and τs,u[su] = τr,u[su] then
157: abort(ε,ε,ε,(ε))
158: If not restrictedu then ctableu[su]← (c,ad)
159: If m0 6= m1 then chu[su]← “done”
160: Return c

RecvSim(u,c,ad)

161: If nextop 6∈ {(u,“recv”),⊥} then return ⊥
162: (η1,η2)← ηu ; nextop←⊥
163: ηu←$ Ch.RecvRS
164: (σ ,v)← c ; (c′, `)← v
165: (s′,r′,ad′,vk′,ek′,τ ′r ,τ

′
s)← `

166: ~∆← τs,u[racku +1, . . . ,r′]
167: (vk′′, t)←DS.Vrfy(vku,σ ,v,~∆)
168: t4← ((s′,τ ′r) 6= (ru+1,τs,u[r′]))
169: t5←

(
(τ ′s ,ad

′) 6= (τr,u[ru],ad))
)

170: If not t or t4 or t5 then return ⊥
171: ta← (forgeu[ru+1] 6= “trivial”)
172: tb← ((c,ad) 6= ctableu[ru+1])
173: If unchangedu and ta and tb then
174: abort((ru,u),σ ,v,~∆)
175: ru← ru+1 ; racku ← r′

176: m← PKE.Dec(dku[racku ], `,c′)
177: τs,u[0, . . . ,racku −1]←⊥
178: dku[0, . . . ,racku −1]←⊥
179: τr,u[ru]←H.Ev(hk,c)
180: If sku =⊥ then Upd((su,u),τr,u[ru])
181: Else sku←DS.UpdSk(sku,τr,u[ru];η1)
182: vku← vk′ ; eku← ek′

183: For i ∈ [racku ,su] do
184: dku[i]← PKE.UpdDk(dku[i],τr,u[ru];η i

1)
185: rctableu[ru]← (c,ad)
186: If tb then unchangedu← false
187: If forgeu[ru] = “trivial” and tb then
188: restrictedu← true ; rrestu ←min{ru,rrestu }
189: If unchangedu and τr,u[rrestu ] = τs,u[rrestu ] 6=⊥ then
190: abort(ε,ε,ε,(ε))
191: If restrictedu or (b = 0 and tb) then
192: Return m
193: Return ⊥

ExpSim(u, rand)

194: If nextop 6=⊥ then return ⊥
195: If not restrictedu and ∃i ∈ (ru,su] s.t. chu[i] = “done” then return ⊥
196: If sku =⊥ then sku←Exp((su,u))
197: ~k← (su,ru,sku,vku,eku,dku,hk,τr,u[ru],τs,u)
198: If restrictedu then return (~k,zu,ηu)
199: forgeu[su+1]← “trivial” ; (z,η)← (ε,ε) ; Xu← su+1
200: If rand = “send” then
201: nextop← (u,“send”) ; z← zu ; Xu← su+2 ; forgeu[su+2]← “trivial”
202: chu[su+1]← “forbidden”
203: Else if rand = “recv” then
204: nextop← (u,“recv”) ; η ← ηu

205: Return (~k,z,η)

Figure 2.15. Adversary ADS attacking DS. Highlighting indicates changes from G2,G3
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Successful aborts by ADS.

First note that unchangedu is true because of line 173, so vku must equal the verification

key that was part of the ciphertext sent by u when su was equal to the current value ru. This was

output by NewUser((su,u)) on line 144 unless it held that nextop = (u,“sent”). The only way

the latter can hold is if nextop was just set in ExpSim, but then forgeu[su+1] = forgeu[ru+1]

would have been set to “trivial” contradicting that ta holds in RecvSim. (Here note that su was

incremented at the start of the SendSim call, so su+2 during the exposure was equal to the

value of su+1 while sending.) So vku was output by NewUser((su,u)) and vk[(ru,u)] 6=⊥

in UFEXP. This is (1).

That win = true in UFEXP follows immediately from the above and the fact that t was

true in RecvSim (see line 170). This is (2).

We complete this argument by showing (3) that if cheated = true holds, then it must

hold that restrictedu is true and τr,u[rrestu ] = τs,u[rrestu ] which cannot be the case because of

lines 157 and 190 and the fact that unchangedu is true. If cheated is true then either (σ ,v,~∆) =

(σ∗[(ru,u)],m∗[(ru,u)],~∆∗[(ru,u)]) or~∆′[(ru,u)]v~∆ holds.

We start with the former case. The variables σ∗[(ru,u)], m∗[(ru,u)], and ~∆∗[(ru,u)]

would have been defined by the Sign call on line 151 when u was sending a ciphertext and su =

ru+1. Variables σ∗[(ru,u)] and m∗[(ru,u)] thus uniquely define the ciphertext and associated

data stored in sctableu[su] on line 155 (note that the ad component is uniquely defined because

it is included as part of the ciphertext). So these variables equaling the σ and v returned by

ADS when it aborts means that sctableu[ru+1] = (c,ad) 6= ctableu[ru+1] where the inequality

is from tb holding in RecvSim. This implies that restrictedu was true when sctableu[ru+ 1]

and ctableu[ru+1] were set on lines 155 and 158 (so, in particular, ctableu[ru+1] was not set).

We will show the following sequence of equalities holds τr,u[rrestu ] =~∆∗[(ru,u)][rrestu − rsentu ] =

~∆[rrestu − rsentu ] = τs,u[rrestu ], where~∆∗[(ru,u)] and~∆ are indexed starting from 1. The latter two

equalities are immediate from our assumption that~∆∗[(ru,u)] =~∆ and the way~∆ is defined on

line 166. Because u was restricted during the SendSim query that defined~∆∗[(ru,u)] it must
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have held that rrestu was less than or equal to the value of ru. It must also have held that rrestu was

strictly greater than rsentu because u was not restricted during their prior send operation (because

u received this prior ciphertext and unchangedu still holds). So during the receive operation that

set restrictedu and all other receive operations of u after they sent that prior ciphertext it could

not have held that sku 6=⊥ because that necessitates forgeu[ru+1] = “trivial”, contradicting our

assumption that ADS aborted. So line 180 will have resulted in~∆s[(ru,u)][1, . . . ,rrestu − rsentu ] =

τr,u[rsentu +1, . . . ,rrestu ]. Then the first equality follows because~∆∗[(ru,u)] is later set to equal

~∆s[(ru,u)] during the sending operation.

Consider the latter case that~∆′[(ru,u)]v~∆. Then~∆′[(ru,u)] 6=⊥ so the adversary must

have exposed u when su was equal to the current value of ru. By assumption forgeu[ru +

1] 6= “trivial” so this exposure must have been done when restrictedu was true. The same

arguments above apply to give that~∆s[(ru,u)][1, . . . ,rrestu −rsentu ] = τr,u[rsentu +1, . . . ,rrestu ]. Then

later during the exposure ~∆′[(ru,u)] is set to equal ~∆s[(ru,u)]. This results in the sequence of

equalities τr,u[rrestu ] =~∆′[(ru,u)][rrestu −rsentu ] =~∆[rrestu −rsentu ] = τs,u[rrestu ] from the assumption

that~∆′[(ru,u)]v~∆ and how~∆ is defined.

Now we show τr,u[rrestu ] = τs,u[rrestu ]. If~∆′u[ru]v~∆ holds, u must have been restricted

before~∆′u[ru] was set (because ta is true, so line 78 must not have been executed). Thus the upper

bound index used to set~∆′u[ru] was at least rrestu . The lower bound index was equal to racku +1;

from the argument about, rrestu is at least this large. So it must hold that τr,u[rrestu ] = τs,u[rrestu ].

Correct simulation by ADS.

The correctness of ADS follows from the fact that none of ADS’s oracles will abort early

and return ⊥. Recall again that ADS uses user identifiers of the form Λ = (su,u).

Queries to NewUser are made in SendSim only after su has been incremented, so

such queries will never be made for which sk[Λ] 6=⊥. For other oracles, note that sk[(i,v)] =⊥

will only hold if i > sv or if nextop = (v,“send”) when the i-th ciphertext was sent by user v.

The former case never occurs because oracle queries are only made with i = su or i = su−1.
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The latter case corresponds to D having exposed the randomness underlying this sending call,

so ADS simply samples the signature keys for itself. Then sku 6=⊥ so ADS will not make any

further oracle queries with Λ = (i,v).

The last possibility is ADS making a query Sign(Λ,m) when ~∆∗[Λ] 6= ⊥. As with

NewUser, queries to Sign are made in SendSim only after su has been incremented, so ADS

will never make two signing queries with the same Λ implying that this possibility will not occur.

Claim 5, Pr[G3] = Pr[G4].

To start the second stage of the proof consider games G4 and G5 shown in Fig. 2.16. We

claim that the input-output behavior of G4 is identical to G3. We made three types of changes

to G3 to create G4. First we generally cleaned things up by removing variables ~∆u, rctableu,

sctableu, and rsentu which had no effect on the code and by simplifying the code to just abort

when the if statements on lines 31, 52, or 68 evaluate to true, giving lines 222, 231, and 241.

Next, we added the lines 232 through 235 for the transition to game G5. Finally, we both replaced

unchangedu with (not restrictedu) and removed the unnecessary parts of the if statements on

lines 66 and 71 to obtain lines 240 and 242. These last changes require some justification.

First we claim that in G3 when unchangedu gets set false during a call to Recv,

restrictedu will get set true during the same call. The converse is clear, so this establishes

that they always have opposite truth values. The first time unchangedu is set it must hold

that (c,ad) 6= ctableu[ru] and that unchangedu was true at the beginning of the execution of

Recv. Then because the if statement on line 52 must have evaluated to false we have that

forgeu[ru] = “trivial” on line 66 so restrictedu will also be set.

For simplifying lines 66 and 71 note that if (c,ad) 6= ctableu[ru] then either restrictedu =

true already held at the beginning of this execution of Recv or the if statement on line 52 implies

that forgeu[ru+1] = “trivial” (before ru has been incremented) so restrictedu will be set. This

allows to simplify both if statements. Thus the fifth claim, Pr[G3] = Pr[G4], holds.
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Games G4,G5

206: b←${0,1} ; rrestI ← rrestR ← ∞ ; sI ← rI ← sR← rR← 0 ; restrictedI ← restrictedR← false
207: forgeI [0 . . .∞]← forgeR[0 . . .∞]← “nontrivial” ; XI ←XR← 0
208: (skI ,vkR)←$ DS.Kg ; (skR,vkI)←$ DS.Kg
209: (ekI ,dkR[0])←$ PKE.Kg ; (ekR,dkI [0])←$ PKE.Kg
210: hk←$ H.Kg ; τr,I [0]← τr,R[0]← τs,I [0]← τs,R[0]← ε ; rackI ← rackR ← 0
211: (zI ,zR)←$ (Ch.SendRS)2 ; (ηI ,ηR)←$ (Ch.RecvRS)2

212: b′←$DSend,Recv,Exp ; Return (b′ = b)

Send(u,m0,m1,ad)

213: If nextop 6= (u,“send”) and nextop 6=⊥ then return ⊥
214: If |m0| 6= |m1| then return ⊥
215: If (ru <Xu or restrictedu or chu[su+1] = “forbidden”) and m0 6=m1 then
216: Return ⊥
217: (z1,z2,z3,z4)← zu ; su← su+1 ; (sk,vk)←DS.Kg(z1) ; (ek,dku[su])← PKE.Kg(z2)
218: `← (su,ru,ad,vk,ek,τr,u[ru],τs,u[su−1])
219: (ek′,c′)← PKE.Enc(eku, `,mb,τs,u[racku +1, . . . ,su−1];z3)
220: v← (c′, `) ; σ ←DS.Sign(sku,v;z4) ; c← (σ ,v) ; τs,u[su]←H.Ev(hk,c) ; sku← sk
221: nextop←⊥ ; zu←$ Ch.SendRS
222: If not restrictedu and τs,u[su] = τr,u[su] then abort(false)
223: If not restrictedu then ctableu[su]← (c,ad)
224: If m0 6= m1 then chu[su]← “done”
225: Return c

Recv(u,c,ad)

226: If nextop 6= (u,“recv”) and nextop 6=⊥ then return ⊥
227: (η1,η2)← ηu ; nextop←⊥ ; ηu←$ Ch.RecvRS
228: (σ ,v)← c ; (c′, `)← v ; (s′,r′,ad′,vk′,ek′,τ ′r ,τ

′
s)← `

229: (vk′′, t)←DS.Vrfy(vku,σ ,v,τs [racku +1, . . . ,r′])
230: If not t or s′ 6= ru+1 or τ ′r 6= τs,u[r′] or τ ′s 6= τr,u[ru] or ad′ 6= ad then return ⊥
231: If not restrictedu and forgeu[ru+1] 6= “trivial” and (c,ad) 6= ctableu[ru+1] then abort(false)
232: ((σ ′,v′),ad)← ctableu[ru+1]
233: If not restrictedu and v = v′ and σ 6= σ ′ then
234: baduniq ← true
235: abort(false) // G5

236: ru← ru+1 ; racku ← r′ ; m← PKE.Dec(dku[racku ], `,c′)
237: τs,u[0, . . . ,racku −1]←⊥ ; dku[0, . . . ,racku −1]←⊥ ; τr,u[ru]←H.Ev(hk,c)
238: sku←DS.UpdSk(sku,τr,u[ru];η1) ; vku← vk′ ; eku← ek′

239: For i ∈ [racku ,su] do dku[i]← PKE.UpdDk(dku[i],τr,u[ru];η i
2)

240: If (c,ad) 6= ctableu[ru] then restrictedu← true ; rrestu ←min{ru,rrestu }
241: If not restrictedu and τr,u[rrestu ] = τs,u[rrestu ] 6=⊥ then abort(false)
242: If restrictedu then return m
243: Return ⊥

Exp(u, rand)

244: If nextop 6=⊥ then return ⊥
245: If not restrictedu and ∃i ∈ (ru,su] s.t. chu[i] = “done” then return ⊥
246: ~k← (su,ru,sku,vku,eku,dku,hk,τr,u[ru],τs,u)
247: If restrictedu then return (~k,zu,ηu)
248: forgeu[su+1]← “trivial” ; (z,η)← (ε,ε) ; Xu← su+1
249: If rand = “send” then
250: nextop← (u,“send”) ; z← zu
251: Xu← su+2 ; forgeu[su+2]← “trivial”
252: chu[su+1]← “forbidden”
253: Else if rand = “recv” then
254: nextop← (u,“recv”) ; η ← ηu

255: Return (~k,z,η)

Figure 2.16. Games G4 and G5 for security proof. Lines commented with the names of games
are only included in those games. Highighted codes indicates changes from G3.
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Adversary BNewUser
DS

256: b←${0,1} ; rrestI ← rrestR ← ∞ ; sI ← rI ← sR← rR← 0
257: restrictedI ← restrictedR← false
258: forgeI [0 . . .∞]← forgeR[0 . . .∞]← “nontrivial” ; XI ←XR← 0
259: z1,I ←NewUser((sI ,I)) ; z1,R←NewUser((sR,R))
260: (skI ,vkR)←DS.Kg(z1,I) ; (skR,vkI)←DS.Kg(z1,R)
261: (ekI ,dkR[0])←$ PKE.Kg ; (ekR,dkI [0])←$ PKE.Kg
262: hk←$ H.Kg ; τr,I [0]← τr,R[0]← τs,I [0]← τs,R[0]← ε ; rackI ← rackR ← 0
263: z1,I ←NewUser((sI ,I)) ; z1,R←NewUser((sR,R))
264: (z2,I ,z3,I ,z4,I)←$ PKE.KgRS×PKE.EncRS×DS.SignRS
265: (z2,R,z3,R,z4,R)←$ PKE.KgRS×PKE.EncRS×DS.SignRS
266: zI ← (z1,I ,z2,I ,z3,I ,z4,I) ; zR← (z1,R,z2,R,z3,R,z4,R)
267: (zI ,zR)←$ (Ch.SendRS)2 ; (ηI ,ηR)←$ (Ch.RecvRS)2

268: DSendSim,RecvSim,ExpSim ; Return (ε,ε,ε,ε,(ε))

SendSim(u,m0,m1,ad)

269: If nextop 6= (u,“send”) and nextop 6=⊥ then return ⊥
270: If |m0| 6= |m1| then return ⊥
271: If (ru <Xu or restrictedu or chu[su+1] = “forbidden”) and m0 6=m1 then
272: Return ⊥
273: (z1,z2,z3,z4)← zu ; su← su+1
274: (sk,vk)←DS.Kg(z1) ; (ek,dku[su])← PKE.Kg(z2)
275: `← (su,ru,ad,vk,ek,τr,u[ru],τs,u[su−1])
276: (ek′,c′)← PKE.Enc(eku, `,mb,τs,u[racku +1, . . . ,su−1];z3)
277: v← (c′, `) ; σ ←DS.Sign(sku,v;z4)
278: c← (σ ,v) ; τs,u[su]←H.Ev(hk,c) ; sku← sk ; nextop←⊥ ;
279: z1←NewUser((su,u)) ; (z2,z3,z4)←$ PKE.KgRS×PKE.EncRS×DS.SignRS
280: zu← (z1,z2,z3,z4)
281: If not restrictedu and τs,u[su] = τr,u[su] then abort(ε,ε,ε,ε,(ε))
282: If not restrictedu then ctableu[su]← (c,ad)
283: If m0 6= m1 then chu[su]← “done”
284: Return c

RecvSim(u,c,ad)

285: If nextop 6= (u,“recv”) and nextop 6=⊥ then return ⊥
286: (η1,η2)← ηu ; nextop←⊥ ; ηu←$ Ch.RecvRS
287: (σ ,v)← c ; (c′, `)← v ; (s′,r′,ad′,vk′,ek′,τ ′r ,τ

′
s)← `

288: (vk′′, t)←DS.Vrfy(vku,σ ,v,τs [racku +1, . . . ,r′])
289: If not t or s′ 6= ru+1 or τ ′r 6= τs,u[r′] or τ ′s 6= τr,u[ru] or ad′ 6= ad then return ⊥
290: If not restrictedu and forgeu[ru+1] 6= “trivial” and (c,ad) 6= ctableu[ru+1] then
291: Return abort(ε,ε,ε,ε,(ε))
292: ((σ ′,v′),ad)← ctableu[ru+1]
293: If not restrictedu and v = v′ and σ 6= σ ′ then abort((ru,u),v,σ ,σ ′,τs [0, . . . ,r′])
294: ru← ru+1 ; racku ← r′ ; m← PKE.Dec(dku[racku ], `,c′)
295: τs,u[0, . . . ,racku −1]←⊥ ; dku[0, . . . ,racku −1]←⊥ ; τr,u[ru]←H.Ev(hk,c)
296: sku←DS.UpdSk(sku,τr,u[ru];η1) ; vku← vk′ ; eku← ek′

297: For i ∈ [racku ,su] do dku[i]← PKE.UpdDk(dku[i],τr,u[ru];η i
2)

298: If (c,ad) 6= ctableu[ru] then restrictedu← true ; rrestu ←min{ru,rrestu }
299: If not restrictedu and τr,u[rrestu ] = τs,u[rrestu ] 6=⊥ then abort(ε,ε,ε,ε,(ε))
300: If restrictedu then return m
301: Return ⊥

ExpSim(u, rand)

// Identical to Exp in G4,G5

Figure 2.17. Adversary BDS attacking DS. Highlighting indicates changes from G4,G5.
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Claim 6, Pr[G4]−Pr[G5]≤ Advuniq
DS (BDS).

Games G4 and G5 are identical until baduniq so the fundamental lemma of game playing

gives Pr[G4]− Pr[G5] ≤ Pr[G4 sets baduniq]. Because baduniq only gets set if D has found a

signature σ ′ 6= σ which verifies correctly for v this can be transformed immediately to an attack

on the UNIQ security of DS. This is shown by the adversary BDS in Fig. 2.17. It simulates

the view of D by using NewUser to create the randomness used for digital signature key

generation and computing everything else for itself. On line 293 it aborts and returns the

signature collision found by D whenever baduniq would be set in G4. It is clear that BDS

correctly simulates the view of D and we will momentarily justify that it wins whenever it aborts,

so Pr[G4 sets baduniq] = Pr[UNIQBDS
DS ] = Advuniq

BDS
(DS).

From line 293 we know that restrictedu = false when ADS aborts, so vku is the same

verification key used by UNIQ. Since ctableu[ru+1] was not ⊥, we know restrictedu was false

when this ciphertext was sent. This ensures that the sequence of strings used to update the signing

key before this ciphertext was sent is the same sequence just used for verification.

Claim 7, Pr[G5]≤ Pr[INDEXPAPKE
PKE ].

At last we can reduce directly to the security of the public key encryption scheme PKE.

To do so we build an adversary against its security which simulates the view of D and forwards

all of D’s valid challenge queries to its own encryption oracle. Here we use the phrase “valid

challenge query” to refer to calls that D makes to Send for which m0 6=m1 and G5 would not

return ⊥. Then the adversary will output D’s guess at the secret bit as its own (except when D

causes an early abort, in which case the adversary simply returns 1). Such an adversary APKE is

shown in Fig. 2.18.

The adversary APKE keeps track of the different keys it requests from INDEXP by

labelling them with tuples of the form Λ = (s,u), where u is the user who creates the key pair

while sending a message and s was the value of su at that time. When D makes expose queries,

APKE makes calls to its Exp oracle as necessary to expose the correct state. Whenever a new
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Adversary ANewUser,UpdEk,UpdDk,Enc,Dec,Exp
PKE

302: rrestI ← rrestR ← ∞ ; sI ← rI ← sR← rR← 0 ; restrictedI ← restrictedR← false
303: forgeI [0 . . .∞]← forgeR[0 . . .∞]← “nontrivial” ; XI ←XR← 0
304: (skI ,vkR)←$ DS.Kg ; (skR,vkI)←$ DS.Kg ; ekI ←NewUser((sR,R)) ; ekR←NewUser((sI ,I))
305: hk←$ H.Kg ; τr,I [0]← τr,R[0]← τs,I [0]← τs,R[0]← ε ; rackI ← rackR ← 0
306: (zI ,zR)←$ (Ch.SendRS)2 ; (ηI ,ηR)←$ (Ch.RecvRS)2

307: b′←$DSendSim,RecvSim,ExpSim ; Return b′

SendSim(u,m0,m1,ad)

308: If nextop 6= (u,“send”) and nextop 6=⊥ then return ⊥
309: If |m0| 6= |m1| then return ⊥
310: If (ru <Xu or restrictedu or chu[su+1] = “forbidden”) and m0 6=m1 then
311: Return ⊥
312: (z1,z2,z3,z4)← zu ; su← su+1 ; (sk,vk)←DS.Kg(z1)
313: If nextop 6= (u,“send”) and not restrictedu then ek←NewUser((su,u)) else (ek,dku[su])← PKE.Kg(z2)
314: `← (su,ru,ad,vk,ek,τr,u[ru],τs,u[su−1]) ; ~∆e← τs,u[racku +1, . . . ,su−1]
315: If m0 6=m1 then c′←Enc((ru,u),m0,m1, `) else (ek′,c′)← PKE.Enc(eku, `,m1,~∆e;z3)
316: v← (c′, `) ; σ ←DS.Sign(sku,v;z4) ; c← (σ ,v) ; τs,u[su]←H.Ev(hk,c) ; sku← sk
317: If ru ≥Xu and not restrictedu then UpdEk((ru,u),τs,u[su])
318: nextop←⊥ ; zu←$ Ch.SendRS
319: If not restrictedu and τs,u[su] = τr,u[su] then abort(1)
320: If not restrictedu then ctableu[su]← (c,ad)
321: If m0 6= m1 then chu[su]← “done”
322: Return c

RecvSim(u,c,ad)

323: If nextop 6= (u,“recv”) and nextop 6=⊥ then return ⊥
324: (η1,η2)← ηu ; nextop←⊥ ; ηu←$ Ch.RecvRS
325: (σ ,v)← c ; (c′, `)← v ; (s′,r′,ad′,vk′,ek′,τ ′r ,τ

′
s)← `

326: (vk′′, t)←DS.Vrfy(vku,σ ,v,τs [racku +1, . . . ,r′])
327: If not t or s′ 6= ru+1 or τ ′r 6= τs,u[r′] or τ ′s 6= τr,u[ru] or ad′ 6= ad then return ⊥
328: If not restrictedu and forgeu[ru+1] 6= “trivial” and (c,ad) 6= ctableu[ru+1] then abort(1)
329: ((σ ′,v′),ad)← ctableu[ru+1]
330: If not restrictedu and v = v′ and σ 6= σ ′ then abort(1)
331: ru← ru+1 ; racku ← r′ ;
332: If dku[racku ] =⊥ then m←Dec((racku ,u),c′, `) else m← PKE.Dec(dku[racku ], `,c′)
333: τs,u[0, . . . ,racku −1]←⊥ ; dku[0, . . . ,racku −1]←⊥ ; τr,u[ru]←H.Ev(hk,c)
334: sku←DS.UpdSk(sku,τr,u[ru];η1) ; vku← vk′ ; eku← ek′

335: If ru ≥Xu and not restrictedu then for i ∈ [racku +1,su] do UpdEk((ru,u),τs,u[i])
336: For i ∈ [racku ,su] if dku[i] =⊥ do UpdDk((i,u),τr,u[ru]) else dku[i]← PKE.UpdDk(dku[i],τr,u[ru];η i

2)
337: If (c,ad) 6= ctableu[ru] then restrictedu← true ; rrestu ←min{ru,rrestu }
338: If not restrictedu and τr,u[rrestu ] = τs,u[rrestu ] 6=⊥ then abort(1)
339: If restrictedu then return m
340: Return ⊥

ExpSim(u, rand)

341: If nextop 6=⊥ then return ⊥
342: If not restrictedu and ∃i ∈ (ru,su] s.t. chu[i] = “done” then
343: Return ⊥
344: For i ∈ [racku ,su] if dku[i] =⊥ then dku[i]←Exp((i,u))
345: ~k← (su,ru,sku,vku,eku,dku,hk,τr,u[ru],τs,u)
346: If restrictedu then return (~k,zu,ηu)
347: forgeu[su+1]← “trivial” ; (z,η)← (ε,ε) ; Xu← su+1
348: If rand = “send” then
349: nextop← (u,“send”) ; z← zu ; Xu← su+2
350: forgeu[su+2]← “trivial” ; chu[su+1]← “forbidden”
351: Else if rand = “recv” then
352: nextop← (u,“recv”) ; η ← ηu

353: Return (~k,z,η)

Figure 2.18. Adversary APKE attacking PKE. Highlighting indicates changes from G4,G5.

128



PKE key pair should be created, APKE does so via a NewUser query unless the randomness

for that key generation has been exposed, in which case it just generates the key pair by itself

with said exposed randomness. WheneverAPKE needs the encryption of a message or decryption

of a ciphertext, it will forward this on to the corresponding oracle in INDEXP except when it

already has necessary information to perform this operation for itself.

Below we verify that adversary APKE correctly simulates the view of D with the underly-

ing bit of INDEXP playing the role of its secret bit. This gives Pr[G5]≤ Pr[INDEXPAPKE
PKE ], as

desired.

Efficiency.

We have shown the stated bound on the advantage of D. The bounds on the number of

oracle queries made by the adversaries and their runtimes can be verified by examining their

code.

Correct simulation by APKE.

We verify that none of the oracles called by APKE will abort early and return ⊥, except

possibly Dec. We will argue that APKE doesn’t require the output of Dec to be non-⊥ in the

cases when it returns ⊥. Recall that APKE uses user identifiers of the form Λ = (s,u) for the

key-pair created by u when sending their s-th ciphertext.

Queries to NewUser are made in SendSim only after su has been updated, so (since

su is strictly increasing) such queries will never be made with dk[Λ] 6= ⊥. For other oracles,

note that dk[(s,v)] = ⊥ will only hold if (i) s > sv or (ii) (nextop = (v,“send”) or restrictedv)

was true when the s-th ciphertext was sent by v (this condition corresponding whenAPKE simply

samples the corresponding keys for itself). For purposes of analysis we can divide the oracle

queries into two groups.

The first group is Dec, UpdDk, and Exp. For this group the oracle queries with

Λ = (s,v) are only made for s≤ su so condition (i) will not hold. If condition (ii) held, then on

line 313 dku[s] would have been set to a non-⊥ value so the checks before these three oracle
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queries would prevent the queries from being made. Note here that line 333 can set entries of

dku back to ⊥, but only for entries with indices less than racku and these oracle queries are only

made for indices at least as large as racku (which is a strictly increasing value).

The second group of oracles is Enc and UpdEk. Note that the latter can be called

both by SendSim and by RecvSim. All of these queries are done with Λ = (ru,u) and only

if ru ≥Xu and restrictedu = false. (In the case of Enc this is ensured by the fact that m0 6=m1

and line 310 must have evaluated to false.) That restrictedu = false ensures that ru ≤ su, so

condition (i) cannot hold. For the latter condition note that nextop can only be set to (u,“send”)

in Exp. But this would have set Xu such that ru ≥Xu would be false. If restrictedu held when

the ru-th ciphertext was sent by u, then restrictedu would have been set when u received the

corresponding ciphertext. So condition (ii) also cannot hold.

So none of the oracles will abort early due to checks involving dk. It remains to

individually analyze the possibilities of Enc, Dec, or Exp aborting early for other reasons.

It will never be the case that |m0| 6= |m1| in Enc because that would have resulted in

SendSim aborting early. So consider the possibility that a call to Enc is made when~∆′[(ru,u)]v

~∆e[(ru,u)]. Note that~∆e[(ru,u)] = τs,u[racku +1, . . . ,su−1] and~∆′[(ru.u)] = τr,u[racku +1, . . . , j]

for some j. The value of~∆′[(ru,u)] must have been set by a call to Exp by ExpSim when ru

was equal to j. If restrictedu did not hold at the time, then Xu would have been set to a value

greater than ru so this Enc query would not be made. Also, restrictedu cannot hold when the

Enc query is made. This implies that restrictedu did not hold when the last ciphertext received

by u was sent by u. Thus, racku < rrestu ≤ j. Then ~∆′[(ru,u)] v~∆e[(ru,u)] would imply that

τs,u[rrestu ] = τr,u[rrestu ] which is impossible. If τr,u[rrestu ] was the first of these set to a non-⊥

value, then when τs,u[rrestu ] was set it would have caused APKE to abort on line 319. If τs,u[rrestu ]

was set first, then when τr,u[rrestu ] was set it would have caused APKE to abort on line 338.

Consider the possibility that a call to Dec is made when (~∆d[(racku ,u)],c′, `) is in the set

S[(racku ,u)]. Then there was a prior query of the form Enc((racku ,u), ·, ·, `) which returned c′. By

logic we have used previously (using lines 315 and 310), restrictedu = false must have held at the
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time. Then ctableu[ru] was set on line 320. If restrictedu = false and (c,ad) = ctableu[ru], then

restrictedu will still be false at the end of RecvSim, so ⊥ will be returned to D no matter what

Dec outputs. If restrictedu = false and (c,ad) 6= ctableu[ru], then from line 330 we can see that

v 6= v′ which is a contradiction because both are equal to (c′, `). So suppose that restrictedu holds.

Note that~∆d[(racku ,u)] = τr,u[ j, . . . ,ru−1] where j is one more than the value ru held when the

the call NewUser((racku ,u)) was made. Furthermore,~∆d[(racku ,u)] = τs,u[ j, . . . ,ru−1] because

it is equal to the value~∆e[(racku ,u)] held during the relevant Enc query. For Dec to have been

queried it must hold that dku[racku ] =⊥, so restrictedu did not hold when NewUser((racku ,u))

was queried. This means rrestu ∈ [ j, . . . ,ru− 1] so we have τr,u[rrestu ] = τs,u[rrestu ]. This is

impossible by the same reasoning used in the prior paragraph.

Consider the possibility that a call to Exp is made when ∃(~∆,c, `) ∈ S[(i,u)] such that

~∆d[(i,u)]v~∆. Note that~∆ is equal to the value of~∆e[(i,u)] during some previous Enc query.

By prior logic, restrictedu = false must have held at the time. Suppose restrictedu = false. By

342, it must hold that chu[ j] 6= “done” for all j ∈ (ru,su] and note that chu[s] = “done”. Let s

denote the value of su when the relevant Enc query was made. Note that s≤ su because su never

decreases and s > ru because |~∆d[(i,u)]| ≤ |~∆e[(i,u)]|. This is a contradiction. So suppose that

restrictedu holds. Note that~∆d[(i,u)] = τr,u[ j, . . . ,ru] where j is one more than the value ru held

when the the call NewUser((racku ,u)) was made. Furthermore,~∆d[(racku ,u)] = τs,u[ j, . . . ,ru]

because it is equal to the prefix of~∆e[(i,u)] held during the relevant Enc query. For Dec to have

been queried it must hold that dku[i] =⊥, so restrictedu did not hold when NewUser((i,u))

was queried. This means rrestu ∈ [ j, . . . ,ru] so we have τr,u[rrestu ] = τs,u[rrestu ]. This is impossible

by the same reasoning used two paragraphs prior.

2.6 Comparison to recent definitions

Three recents works we studied while deciding how to write our security definition were

the works of CCDGS [29], BCJNS [17], and GM [43]. While they all ultimately were interested
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in different settings (and CCDGS did not even model any form of encryption) they all share the

commonality of modeling security in a setting where there are different “stages” of keys. All

three works made distinct decisions in how to address challenges in different stages, so its worth

discussing the repercussions of these different decisions.

In BCJNS and GM a stage corresponds to a counter i representing how many times the

relevant key has been updated. In CCDGS a stage corresponds to a tuple (u, j, i) corresponding

to user u in step i of its j-th protocol execution. In our work a stage could correspond to a tuple

(u,O,s,r) corresponding to a query to user u ∈ {I,R} with oracle O ∈ {Send,Recv} when

su = s and ru = r.

CCDGS chose to only allow the adversary to make a challenge query in a single stage

for which there is a single corresponding bit that it must guess. BCJNS also has only a single

challenge bit, but allows the adversary to make challenge queries in arbitrarily many stages all of

which share that bit. GM also allows challenge queries in arbitrarily many stages, but samples a

separate challenge bit for each stage. At the end of the game the adversary outputs both a bit

and the index of the stage for which it is trying to guess the bit. BCJNS thus needed to keep

track throughout of whether an adversary has “cheated” by doing something it is not allowed

to which would tell it was the secret bit was. CCDGS and GM only need to perform this check

for the particular stage for which the adversary attempts to guess the bit. This check is still

somewhat global because actions in other stages may affect whether the adversary has cheated

for the challenge stage. We will refer to these different styles of definitional choices as CCDGS,

BCJNS, or GM security and discuss them broadly without regard to how stages are defined or

what the underlying game is.

Qualitatively these three definitional choices result in equivalent definitions. BCJNS

security and GM security can both easily be shown to imply CCDGS security. In the other

direction, a hybrid argument can be used to show that CCDGS security implies BCJNS security

and an index guessing proof can be used to show that it implies GM security. However, both of

these proof techniques introduce a factor q loss of security (where q is the maximum number of
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stages an adversary ever interacts with) so CCDGS security appears to be quantitively weaker

than the other two. BCJNS and GM security appear to be quantitatively incomparable; the

only way we are aware of to show that one implies the other is to use CCDGS security as an

intermediate step which introduces a factor q loss of security in both directions.

BCJNS security challenges the adversary to learn one bit corresponding exactly to which

of two possible “worlds” it exists in. GM security instead challenges the adversary to learn one

bit about the exponential number of “worlds” it may exist in (though, to be clear, it can choose to

cheat to learn all of the bits of information about which “world” it is in other than the one bit it

attempts to guess). BCJNS show that their style of definition allows tight security reductions

from multi-user security assumptions about the underlying primitives. GM did not aim to give

tight security notions, but it is likely that tight reductions could be given from a variant multi-user

style assumption in which the game samples an independent challenge bit for every user and the

adversary wins if it can guess the bit corresponding to a single user. We are not aware of any

works that use such a multi-user definition directly and do not know if techniques used to tightly

prove security for standard multi-user definition would extend to such a definition.

This multi-user style definition is similar to multi-instance style definitions as introduced

by [13] which sample an independent bit for each user and require the adversary guess the xor of

all the challenge bits. They give away the underlying challenge bit when the secrets of a user are

exposed, so considering adversaries who expose all users except one gives a notion essentially

equivalent to the multi-user notion sketched above.

When considering the above, we ultimately decided to follow a BCJNS style of security

definition and provide tight reductions from the standard multi-user security of underlying

primitives.
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2.7 Security implications of correctness notions

The correctness of a channel will have security implications outside of the scope of

what we capture in our coming formalism. We suggest that CORR correctness may be a more

appropriate notion of correctness in the secure messaging setting, but also note some plausible

scenarios that could be applicable in the secure messaging setting for which CORR⊥ is more

appropriate.

Recall that the correctness required by CORR⊥ is identical to that of Marson and

Poettering [49]4 and is the standard notion for channels. It follows a common convention that

a user will permanently refuse to send or receive future ciphertexts once they have received

an invalid ciphertext. In practice this then requires that the connection be re-established for

communication to continue. In secure messaging, securely re-establishing a connection is

typically quite costly because it requires out-of-band human interaction. The CORR notion of

correctness instead uses a form of robustness (analogous to that of [17]) to avoid that requirement.

Thus this correctness prevents a denial-of-service attack by which an adversary without any

secret knowledge can send a single incorrect ciphertext to either party to kill the communication

channel.

Against a stronger adversary the correctness required by CORR⊥ prevents a worse attack.

Suppose an attacker can compromise the state of user u. Then it can impersonate u and send

messages to u. Under CORR⊥ correctness the next time u attempts to send a message to u if the

attacker cannot block this communication then this will permanently kill the channel and the

users will know something has gone wrong. Under CORR correctness, this extra communication

would simply be silently dropped. The users would need to communicate out-of-band to realize

something had gone wrong (perhaps when u notices that u has stopped replying to any of its

messages). For this reason an application using CORR correct should likely warn the user when

4This holds when requiring perfect security, which both works do. The two notions would be distinct if we
considered computational correctness.
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it silently drops a message.

If the attacker even more powerful and able to block the outgoing communication sent by

u from reaching u then the distinction between the two notions goes away. The users have to

again fall back on out-of-band communication of the compromised status when u realizes that u

is not receiving its messages.

The specification of the Double Ratchet Algorithm states “If an exception is raised (e.g.

message authentication failure) then the message is discarded and changes to the state object are

discarded.” [36, Section 3.5]. This indicates that it would satisfy CORR. However, the Double

Ratchet Algorithm was clearly designed to achieve a stricter notion of correctness because it

intentionally accepts ciphertexts in any order. This goes against the standard security requirement

that ciphertexts should only be accepted in the order they were sent, so we intentionally do not

provide a correctness notion that captures this.

2.8 Construction of key-updatable digital signatures

In this section we formally specify the construction of a key-updatable digital signature

scheme that we sketched in Section 2.2.1. For this purpose we use a key-evolving digital

signature scheme.

Key-evolving digital signature schemes.

A key-evolving digital signature scheme is a digital signature scheme with an additional

algorithm DS.Up and with a modified verification algorithm DS.Vrfy. Update algorithm DS.Up

takes a signing key sk to return an updated signing key, denoted by sk←$ DS.Up(sk). Modified

verification algorithm DS.Vrfy takes verification key vk, signature σ , message m, and time

period n ∈ N to return a decision t ∈ {true, false} regarding whether σ is a valid signature of m

under vk for the n-th secret key, denoted by t← DS.Vrfy(vk,σ ,m,n).

Correctness is defined by game DSCORR2 in Fig. 2.19. For adversary C we define

Advdscorr2
DS (C) = Pr[DSCORR2CDS] and require that Advdscorr2

DS (C) = 0 for all (even unbounded)
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Game DSCORR2CDS

ν←$ DS.KgRS ; n← 1
(sk,vk)← DS.Kg(ν)

CUp,Sign(ν)

Return bad

Up()

n← n+1
sk←$ DS.Up(sk)

Return sk

Sign(m) // m ∈ {0,1}∗

σ←$ DS.Sign(sk,m)

t← DS.Vrfy(vk,σ ,m,n)
If not t then bad← true

Game FSUNIQBKE
DS

z←$ DS.KgRS

(sk,vk)← DS.Kg(z)
(m,σ1,σ2,n)←$BKE(z)
t1← DS.Vrfy(vk,σ1,m,n)
t2← DS.Vrfy(vk,σ2,m,n)
Return t1 and t2 and σ1 6= σ2

Game FSUFAKE
DS

S← /0 ; i← 1
(sk,vk)←$ DS.Kg

(σ ,m,n)←$AUp,Sign,Exp
KE (vk)

t1← ((σ ,m,n) ∈ S)
t2← exposed and (n∗ ≤ n)
cheated← (t1 or t2)
win← DS.Vrfy(vk,σ ,m,n)
Return win and not cheated

Up()

i← i+1
sk←$ DS.Up(sk)

Return ⊥
Sign(m) // m ∈ {0,1}∗

σ←$ DS.Sign(sk,m)

S← S∪{(σ ,m, i)}
Return σ

Exp()

n∗← i ; exposed← true

Return sk

Figure 2.19. Games defining correctness, uniqueness, and forward security of key-evolving
digital signature scheme DS.

adversaries.

Forward-secure signatures.

Forward security of a key-evolving digital signature scheme asks that, even if the key is

exposed in some time period n∗, it should be computationally hard to forge a valid signature for

any prior time period n < n∗. Our definition follows that of [10]. Formally, consider game FSUF

shown in Fig. 2.19, associated to a key-evolving digital signature scheme DS and an adversary

AKE. The game generates a digital signature key pair for the initial time period i = 1 and runs the

adversary with the verification key as input. The goal of the adversary is to forge a signature for

an arbitrary time period n. The adversary is provided with access to oracles Up, Sign and Exp.

Oracle Up is used to advance into the next time period, incrementing its index i and updating
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Algorithm DSKU.Kg

(skKE,vkKE)←$ DSKE.Kg

Σ[1, . . . ,∞]← ε ; ~∆[1, . . . ,∞]← ε

sk← (skKE,1,Σ) ; vk← (vkKE,1,~∆)
Return (sk,vk)

Algorithm DSKU.Vrfy(vk,σ ,m)

(vkKE, imax,~∆)← vk

(σm, i,Σ)← σ

If i 6= imax then return false

t← DSKE.Vrfy(vkKE,σm,1‖m, i)
For j = 1, . . . ,(i−1) do

t← t and DSKE.Vrfy(vkKE,Σ[ j],0‖~∆[ j], j)
Return t

Algorithm DSKU.Sign(sk,m)

(skKE, i,Σ)← sk

σm←$ DSKE.Sign(skKE,1‖m)

σ ← (σm, i,Σ)
Return σ

Algorithm DSKU.UpdSk(sk,∆)

(skKE, i,Σ)← sk

Σ[i]←$ DSKE.Sign(skKE,0‖∆)

skKE←$ DSKE.Up(skKE)

sk← (skKE, i+1,Σ)
Return sk

Algorithm DSKU.UpdVk(vk,∆)

(vkKE, i,~∆)← vk ; ~∆[i]← ∆

vk← (vkKE, i+1,~∆)
Return vk

Figure 2.20. Key-updatable digital signature scheme DSKU = DS-CONS[DSKE].

the secret key of the scheme accordingly. Oracle Sign uses the current signing key to return

a signature σ for an arbitrary message m (for current time period i); note that adversary is not

allowed to win the game by returning (σ ,m, i) as its forgery. Finally, oracle Exp exposes the

current signing key. Without loss of generality, the adversary can only call this oracle once.

If the exposure happened in time period n∗, then the adversary is only considered to win the

game if it returns a forgery for some time period n < n∗, meaning it cannot use the exposed

key to trivially win the game. The advantage of AKE in breaking the FSUF security of DS is

Advfsuf
DS (AKE) = Pr[FSUFAKE

DS ].

Signature uniqueness.

Uniqueness of a key-evolving digital signature scheme requires that an adversary cannot

find two distinct signatures that verify for the same message and the same round n. Consider

the game FSUNIQ shown in Fig. 2.19, associated to a key-evolving signature scheme DS

and an adversary BKE. The advantage of BKE in breaking the FSUNIQ security of DS is

Advfsuniq
DS (BKE) = Pr[FSUNIQBKE

DS ].
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Key-updatable digital signature scheme DS-CONS[DSKE].

Let DSKE be a key-evolving digital signature scheme. We build a key-updatable digital

signature scheme DSKU = DS-CONS[DSKE] as defined in Fig. 2.20, where DSKU.KgRS =

DSKE.KgRS and DSKU.SignRS = DSKE.SignRS.

The key-updatable digital signature scheme DSKU utilizes a key-evolving signature

scheme DSKE in the following way. The signing key sk of DSKU consists of the correspond-

ing signing key skKE of DSKE, along with an empty list Σ. In order to update the signing

key sk of DSKU with a sequence of labels ∆1,∆2, . . . ,∆q, the scheme consecutively signs

σ j←$ DSKE.Sign(skKE,0‖∆ j) with the underlying signing key skKE of DSKE and updates skKE

using algorithm DSKE.Up, for each j = 1, . . . ,q. The resulting signing key sk of scheme DSKU

is defined to contain the derived signing key skKE of scheme DSKE along with the produced

signatures Σ = (σ1,σ2, . . .) as per above.

The verification key vk of DSKU initially contains the corresponding verification key

vkKE of scheme DSKE, along with an empty list ~∆. To update vk with ∆, the key update ∆ is

appended to~∆.

The signature of a message m for key sk = (skKE,Σ) is defined as (σm,Σ) for σm←$

DSKE.Sign(skKE,1‖m). Let Σ = (σ1,σ2, . . .σκ−1) and let ~∆ = (∆1,∆2, . . . ,∆κ−1) for some κ .

To verify the DSKU signature (σm,Σ) against message m for verification key vk = (vkKE,~∆),

one has to check that σi is a valid DSKE signature for message ∆i for time period i, for each

i = 1, . . . ,κ−1, and that σm is a valid signature for m in time period κ .

Security of DS-CONS[DSKE].

Consider DSKU = DS-CONS[DSKE] for any key-evolving digital signature scheme DSKE.

We claim that for any adversary attacking UNIQ (signature uniqueness) or UFEXP (unforgeabil-

ity under exposures) of DSKU, there is an adversary that breaks FSUNIQ (signature uniqueness)

or FSUF (forward security) of DSKE, respectively, using roughly the same number of oracle

queries and with roughly the same time efficiency.
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Theorem 10. Let DSKU = DS-CONS[DSKE] where DSKE be a key-evolving digital signature

scheme. Let BDS be an adversary making at most 1 query to its NewUser oracle. Then we can

build adversary BKE such that

Advuniq
DSKU

(BDS)≤ Advfsuniq
DSKE

(BKE). (2.1)

The runtime of BKE is about that of BDS.

Theorem 11. Let DSKE be a key-evolving digital signature scheme. Additionally, let DSKU =

DS-CONS[DSKE]. Let ADS be an adversary making at most 1 query to its NewUser oracle,

qUpd queries to its Upd oracle, 1 query to its Sign oracle, and 1 queries to its Exp oracle.

Then we can build adversary AKE such that

Advufexp
DSKU

(ADS)≤ Advfsuf
DSKE

(AKE). (2.2)

AdversaryAKE makes at most qUpd queries to its Up oracle, qUpd+1 queries to its Sign oracle,

and 1 query to its Exp oracle. The runtime of AKE is about that of ADS.

For simplicity, our theorems are given for single-user security (only one query to

NewUser). A standard argument implies that our theorems extend to the multi-user secu-

rity in a straightforward way with the same advantage bounds (using multi-user security of the

underlying key-evolving digital signature scheme). Furthermore, since we consider only a single

user, we can assume without loss of generality that adversary ADS in Theorem 11 makes only

one query to oracle Sign.

The formal proofs of the above theorems are straightforward, so we omit them. For

Theorem 10 note that a signature from DSKU essentially just consists of a sequence of signatures

from DSKE, specifically a signature Σ[i] for each ∆i and a final σm for the actual message. If the

two DSKU signatures are distinct either they differ in σm or in some Σ[i]. Wherever they differ

we immediately have two different DSKE signatures that verify for the same string. The proof is

straightforward, so we omit it.

To prove Theorem 11, note that adversary AKE (playing game FSUF) can perfectly
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simulate game UFEXP for adversary ADS, answering the Upd, Sign, Exp oracle queries of

the latter using the oracles Up, Sign, Exp of the former, respectively. As with our description

above, whenever ADS successfully forges on DSKU we immediately get a forgery on DSKE by

considering these sub-signatures.

2.9 Construction of key-updatable public-key encryption

In this section we more formally specify the construction of a key-updatable public-key

encryption scheme that we sketched in Section 2.2.2.

Hierarchical identity based encryption.

In a hierarchical identity based encryption scheme, or HIBE [40], there are decryption

keys (referred to as identity keys) associated with identities which are tuples of strings. Every

user of the scheme can choose to encrypt to any identity knowing only that identity and some

public parameters. Then anybody with an identity key for that identity can decrypt the ciphertext.

Furthermore, the hierarchical part of HIBE means that any user with an identity key K for identity

~I can delegate a sub-key for any identity~I′ such that~I is a prefix of~I′ (i.e. ~I v~I′).

More formally, HIBE scheme HIBE specifies algorithms HIBE.Set, HIBE.Del, HIBE.Enc,

and HIBE.Dec. Setup algorithm HIBE.Set returns the public parameters pp and identity key K

for the identity ~I = (). We write (pp,K)←$ HIBE.Set. Delegation algorithm HIBE.Del takes

as input identity key K for the identity ~I and string I ∈ {0,1}∗ to return identity key K′ for

identity ~I ‖ I . We write K′←$ HIBE.Del(K, I). Encryption algorithm HIBE.Enc takes as input

public parameters pp, identity ~I, label `, and message m to produce ciphertext c. We write

c←$ HIBE.Enc(pp,~I, `,m). Decryption algorithm HIBE.Dec takes as input identity key K, label

`, and ciphertext c to produce message m ∈ {0,1}∗. We write m← HIBE.Dec(K, `,c). We let

HIBE.EncRS denote the denote the set from which HIBE.Enc draws its random coins.

We denote the min-entropy of algorithms HIBE.Set and HIBE.Enc by H∞(HIBE.Set) and
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Game HIBECORRC
HIBE

(pp,K)←$ HIBE.Set ; ~I← ()

CDelegate,Enc(pp,K)

Return bad

Delegate(I) // I ∈ {0,1}∗

K←$ HIBE.Del(K, I) ; ~I←~I ‖ I
Return K

Enc(`,m) // `,m ∈ {0,1}∗

c←$ HIBE.Enc(pp,~I, `,m)

m′← HIBE.Dec(K, `,c)

If m′ 6=m then bad← true

Figure 2.21. Games defining correctness of hierarchical public-key encryption scheme HIBE.

H∞(HIBE.Enc), respectively, defined as follows:

2−H∞(HIBE.Set) = max
pp

Pr [pp∗ = pp : (pp∗,K∗)←$ HIBE.Set] ,

2−H∞(HIBE.Enc) = max
pp,~I,`,m,c

Pr
[
c∗ = c : c∗←$ HIBE.Enc(pp,~I, `,m)

]
.

The probability is defined over the random coins used by HIBE.Set and HIBE.Enc, respectively.

Note that min-entropy of HIBE.Set does not depend on the output value K∗.

Correctness.

Correctness requires that if a message m is encrypted to identity~I and K is an identity

key for that identity then K will decrypt the ciphertext properly. This is formalized by the

game HIBECORR shown in Fig. 2.21. In it the adversary is given the public parameters pp

and identity key K. It can make calls to Delegate with a string I to ask for K to be updated

to the identity~I =~I ‖ I . It will be given the new K. Finally it can query a label ` and message

m to Enc. The message and label are then encrypted to the current identity~I. The produced

ciphertext is immediately decrypted by the corresponding identity key K. If the decryption does

not return the message that was encrypted then bad is set true. The adversary wins if it can cause

bad to be set true.
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Game HIBECCAAHIBE
HIBE

b←${0,1} ; S← /0 ; SI ← /0
(pp,K[0])←$ HIBE.Set ; idtable[0]← ()

b′←$AEnc,Dec,Delegate,Exp
HIBE (pp)

Return (b = b′)

Enc(~I,m0,m1, `) //~I ∈ ({0,1}∗)∗, m0,m1, `∈{0,1}∗

If |m0| 6= |m1| then return ⊥
If ∃~I′ ∈ SI s.t. ~I′ v~I then return ⊥
c←$ HIBE.Enc(pp,~I, `,mb)

S← S∪{(~I,c, `)}
Return c

Dec(ϒ,c, `) // ϒ,c, ` ∈ {0,1}∗

If K[ϒ] =⊥ then return ⊥
v← (idtable[ϒ],c, `)
If ∃(~I′,c ′, `′) ∈ S s.t. (~I′,c ′, `′) = v then return ⊥
m← HIBE.Dec(K[ϒ], `,c)

Return m

Delegate(ϒ,ϒ′, I) // ϒ,ϒ′, I ∈ {0,1}∗

If K[ϒ] =⊥ then return ⊥
If K[ϒ′] 6=⊥ then return ⊥
K[ϒ′]←$ HIBE.Del(K[ϒ], I)

idtable[ϒ′]← idtable[ϒ]‖ I
Return ⊥
Exp(ϒ) // ϒ ∈ {0,1}∗

If K[ϒ] =⊥ then return ⊥
If ∃(~I,c, `) ∈ S s.t. idtable[ϒ]v~I then

Return ⊥
SI ← SI ∪{idtable[ϒ]}
Return K[ϒ]

Figure 2.22. Games defining CCA security of hierarchical public-key encryption scheme HIBE.

Algorithm PKE.Kg

(pp,K)←$ HIBE.Set ; ek← (pp,())

Return (ek,K)

Algorithm PKE.Enc(ek, `,m)

(pp,~I)← ek ; c←$ HIBE.Enc(pp,~I, `,m)

Return c

Algorithm PKE.UpdEk(ek,∆)

(pp,~I)← ek ; ek← (pp,~I ‖∆)

Return ek

Algorithm PKE.Dec(dk, `,c)

m← HIBE.Dec(dk, `,c)

Return (dk,m)

Algorithm PKE.UpdDk(dk,∆)

dk←$ HIBE.Del(dk,∆)

Return dk

Figure 2.23. Key-updatable public-key encryption scheme PKE = PKE-CONS[HIBE].

The advantage of adversary C is defined by Advhibecorr
HIBE (C) = Pr[HIBECORRC

HIBE]. Per-

fect correctness requires that Advhibecorr
HIBE (C) = 0 for all (even unbounded) adversaries.

IND-CCA security of HIBE.

For security we will require that CCA security hold even when the adversary is given

identity keys for arbitrarily many identities, as long as none of these identities are prefixes of
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any identities it made a challenge query to. Security is formally defined by the game HIBECCA

shown in Fig. 2.22.

In this game an adversaryAHIBE is given the public parameters pp and then has access to

five oracles. The initial identity key with identity () is stored in K[0]. The adversary can ask for a

sub-key to be delegated from an existing identity key K[ϒ] with identity~I by calling Delegate

with ϒ, an unused key identifier ϒ′, and a string I . This oracle will create a new identity key

K[ϒ′] with identity~I ‖ I . The adversary can ask for the encryption of a challenge message using

Enc to any identity~I by calling it with input~I, m0, m1, and ` as long as no identity keys have

been exposed for an identity that is a prefix of~I. The adversary can ask Dec for the decryption

of any (c, `) pair by any existing identity key K[ϒ] as long as the pair was not the output of a

prior encryption query to the identity of K[ϒ]. Finally, the adversary can use Exp to ask for the

value of any identity key K[ϒ] (which is associated with some identity~I) as long as it has not

asked a challenge encryption query to an identity which~I is a prefix of. The goal of the adversary

is to guess the secret bit corresponding to which message Enc encrypts.

Adversary AEnc,Dec,Delegate,Exp
HIBE (pp)

b′←$BNewUserS,UpdEkS,UpdDkS,EncS,DecS,ExpS
PKE

Return b′

NewUserS(Λ)

~∆e[Λ]← () ; ~∆d [Λ]← ()
~∆′[Λ]←⊥ ; S[Λ]← /0
ek[Λ]← (pp,~∆e[Λ])

Return ek[Λ]

UpdEkS(Λ,∆)

~∆e[Λ]←~∆e[Λ]‖∆

UpdDkS(Λ,∆)

l← |~∆d [Λ]| ; Delegate(l, l +1,∆)
~∆d [Λ]←~∆d [Λ]‖∆

EncS(Λ,m0,m1, `)

If |m0| 6= |m1| then return ⊥
If~∆′[Λ]v~∆e[Λ] then return ⊥
c←Enc(~∆e[Λ],m0,m1, `)

S[Λ]← S[Λ]∪{(~∆e[Λ],c, `)}
Return c

DecS(Λ,c, `)

If (~∆d [Λ],c, `) ∈ S[Λ] then return ⊥
m←Dec(|~∆d [Λ]|,c, `)
Return m

ExpS(Λ)

If ∃(~∆,c, `) ∈ S[Λ] s.t. ~∆d [Λ]v~∆ then return
⊥
If~∆′[Λ] =⊥ then~∆′[Λ]←~∆d [Λ]

Return Exp(|~∆d [Λ]|)

Figure 2.24. Adversary AHIBE used for proof of Theorem 12.
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To keep track of the various things AHIBE is not allowed to do the game keeps a table

idtable which maps key identifiers to the identity of that key, set S which stores all of the tuples

(~I,c, `) where (c, `) was the output of an encryption query to identity~I, and set SI which stores

the identities of all keys that have been exposed. The advantage of adversary AHIBE is defined

by Advhibecca
HIBE (AHIBE) = 2Pr[HIBECCAAHIBE

HIBE ]−1.

Key-updatable public-key encryption scheme PKE-CONS[HIBE].

Let HIBE be a hierarchical identity based encryption scheme. We build a key-updatable

public-key encryption scheme PKE-CONS[HIBE] as defined in Fig. 2.23. It essentially cor-

responds to using the HIBE directly by setting ek = (pp,~I) and dk = K. It is clear that

H∞(PKE.Kg) = H∞(HIBE.Set) and H∞(PKE.Enc) = H∞(HIBE.Enc).

The following theorem bounds the advantage of an adversary performing an attack against

PKE-CONS[HIBE] by the advantage of a similarly efficient adversary in attacking the security of

HIBE. The theorem is relatively straightforward because the security of a key-updatable public

key encryption scheme is essentially a special case of HIBE security.

Theorem 12. Let HIBE be a hierarchical identity based encryption scheme and let PKE denote

PKE-CONS[HIBE]. Let APKE be an adversary making at most 1 query to its NewUser oracle,

qUpdEk queries to its UpdEk oracle, qUpdDk queries to its UpdDk oracle, qEnc queries to its

Enc oracle, qDec queries to its Dec oracle, and qExp queries to its Exp oracle. Then we can

build adversary AHIBE against the security of HIBE such that

Advindexp
PKE (APKE)≤ Advhibecca

HIBE (AHIBE). (2.3)

AdversaryAHIBE makes at most qEnc queries to its Enc oracle, qDec queries to its Dec oracle,

qUpdDk queries to its Delegate oracle, and qExp queries to its Exp oracle. The running time

of AHIBE is about that of APKE.

For simplicity we show that single-user security of PKE (i.e. APKE makes at most 1

query to is NewUser oracle) is obtained from the single-user security of HIBE. This tight
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reduction between two single-user security notions can be generically transformed into a tight

reduction between the corresponding multi-user notions.

Theorem 12. Because APKE makes at most one query to NewUser, we will without loss of

generality consider the adversary an BPKE which makes its first query to NewUser and makes

all queries with a single, fixed value of Λ because there must exist such an adversary with

efficiency about that of APKE which satisfies Advindexp
PKE (APKE)≤ Advindexp

PKE (BPKE).

Now consider the adversary AHIBE shown in Fig. 2.24. It simulates the view of APKE

in the obvious way using its HIBECCA oracles. Its code was obtained by plugging the code of

PKE into INDEXP and then, where appropriate, replacing executing algorithms of HIBE with

oracle queries by AHIBE and removing code which is irrelevant for BPKE.

The underlying secret bit of HIBECCA plays the role of the secret bit in INDEXP. We

need to argue that the simulated view of APKE is identical to its view in INDEXP. This would

be immediate to verify if the various oracles in HIBECCA always returned their intended value;

however, sometimes the abort early, returning ⊥. We will analyze the possible ways of this

occurring individually.

For all of the oracles in HIBECCA other than have checks about whether entries of

K[ϒ] have or have not been initialized yet. Note that AHIBE uses the lengths of~∆d[Λ]. This is

incremented by 1 with each UpdDkS query. Based on this we can verify that these checks will

never cause the oracles of HIBECCA to abort early when called by AHIBE.

Adversary AHIBE will never query Enc with m0 and m1 of different length, so the

corresponding check in Enc will never cause it to abort early.

The remaining checks we must analyze are those that depend on the sets S and SI . Note

that for any ~I ∈ SI it will hold that ~∆′[Λ] v~I. Similarly for any (~I,c, `) ∈ S it will hold that

(~I,c, `)S[Λ]. From this it is clear that the checks AHIBE performs before making oracle queries

will prevent any of its oracles from returning ⊥ because of the checks depending on these sets.

Hence it is clear that AHIBE correctly guesses the secret bit whenever BPKE would guess
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its secret bit, so Advindexp
PKE (BPKE)≤ Advhibecca

HIBE (AHIBE), completing the proof.
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Chapter 3

Key Exchange for Messaging Apps

In this work we study key exchange protocols used to initiate sessions in end-to-end

encrypted messaging apps, aiming to provide a security definition which is efficiently achievable

yet strong enough to maintain security when composed with arbitrary messaging protocols.

Why key exchange?

A key observation motivating the design of Signal is that users often use messaging apps

over long periods of time during which all of their cryptographic secrets will be stored on their

personal devices and possibly vulnerable to being leaked by malware or attackers having physical

access to their device. Signal attempts to address this issue by updating cryptographic secrets

over time. That way communication which occurs before or after the device compromise may

still be secured.

The first academic analysis of Signal was done by Cohn-Gordan, Cremers, Dowling,

Garratt, and Stebila [29] who studied the entirety of its key exchange. This includes the initial

exchange of keys to start a conversation and the later continuous updates of keys over time during

a conversation.

In Chapter 1 we proposed that this problem should be studied in a more modular fashion

— separating the initial exchange of cryptographic secrets from the later use during which

these secrets are updated. In both previous chapters we (and others in a number of followup

works [56, 35, 45, 2]) focus on the post-key exchange use of the secrets. The initial exchange of
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secrets is abstracted away as an “initialization” algorithm which outputs the initial states of two

parties in a trusted manner. These works leave unspecified how this initialization can be done

in practice by two parties communicating over an untrusted channel. Our works aims to bridge

that gap by defining and analyzing a key exchange model appropriate for this setting. One of the

primary contributions of our work is a composition result showing that key exchanges secure in

our model compose correctly with using the keys for the messaging protocols described in these

numerous prior works. Below we specify a number of important aspects of this setting which

differ from traditional key exchange models.

We refer to the setting as “offline server-aided public and private key exchange” using “key

fingerprints” to provide authenticity and achieving strong security against “state compromise”.

Let us dig into what is mean by each part of this phrase.

Offline server-aided.

In traditional key exchange both parties are assumed to be online during the execution,

so they can directly exchange messages with each other. This does not capture the reality of

messaging applications where a user may wish to send an initial message to their friend even

though their friend is not on their phone at the moment. What happens in practice is that

messaging app provider makes available a server. All users of the app register some information

(e.g. public keys) with the server. Then later when a user wants to initiate a new chatting session

with their friend they talk to the server. The server provides them the necessary information to

finish their half of the key exchange and thereby encrypt messages to their friend. Later when

the friend is online they can interact with the server to finalize the key exchange - obtaining the

keys they need to receive the already sent messages from the user and send messages back.

Note that multiple users may try to initiate sessions with the friend between when they

register and are next online again. The registration should then allow the server to start multiple

key exchanges on their behalf. Optimally we would prefer that a constant amount of state on the

server allowed for an arbitrary number of key exchanges; however, it seems unlikely that this
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would be possible without knowing the structure of the keys being exchanged so in the generic

scheme we define the state is linear in the number of key exchanges that can be started.

Our formalism considers a key exchange which consists of multiple stages: a registration

phase, a request phase, and a finalization phase.

Public and private key exchange.

Typically key exchange definitions deal with exchange of a single symmetric key which

will be shared between the two communicating parties. However, the keys required for our setting

tend to be more structured than that. As an example, the keys used by the Signal messaging

protocol (in addition to a shared symmetric key) consist of Diffie-Hellman pairs. For each pair

one of the two users will hold the secret value while the other user holds only the public value.

The initial key exchange of Signal must also exchange the appropriate Diffie-Hellman values.

One could use a typical key exchange and then derive the Diffie-Hellman values from the

produced key, but then both parties will know the secret part of the pair. This would potentially

weaken the security guarantees provided by the messaging protocol when using these values.

Our formalism captures the exchange of more structured keys. This requires care in

defining our security notions for key exchange. As an example, key indistinguishability notions

in the vein of Bellare-Rogaway models will not be applicable because the public parts of the

keys exchanged will make the secret parts no longer indistinguishable from random.

Key fingerprinting.

An important notion in key exchange security is that of authentication. Users want to

be assured that they exchanged keys with the person they intended to. In TLS, for example,

these sorts of guarantees are provided by the use of certificates. In messaging applications the

more typical technique is to use “key fingerprints”. This consists of both users’ devices being

made to compare some short string. Authenticity of the key exchange is assured as long as these

string match. This comparison may be done by sharing the string out-of-band over some trusted

medium (e.g. reading the string out over a telephone or scanning a QR code on one person’s
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device with the other person’s device). To match this, our formalism includes a model of key

fingerprinting to allow authenticity. This is related to Vaudenay’s model of achieving authenticity

based on “Short Authenticated Strings” [65].

Security against state compromise.

In modeling key exchange it is common to account for the fact that some users’ secret

state may be compromised by the adversary, allowing them to attack key exchange sessions those

users are involved in. Security definitions then typically require that the key exchange sessions

of all other users are still secure. Additionally, they may require forward security, i.e., that all

sessions prior to the state compromise remained secure.

In our setting we can improve on this default in two directions. The first is to provide

post-compromise security. In our formalism we allow a user to repeatedly refresh their state by

interacting with the server to re-register what information is stored there. The desired guarantee

is that a theft of state between two refreshes only compromises the security of key exchanges

initiated between these refreshes.

Towards the second direction of improvement, note that the key exchange we study

provides keys to a messaging protocol which itself may provide security against state compromise.

The latter is typically provided by the messaging protocol continuously updating its secrets over

time. We take care in defining our model so that state compromise during the key exchange

corresponds directly to a compromise of the initial state in the later messaging protocol. Thus

whatever mechanisms are used by the messaging protocol to mitigate against state compromise

can serve to mitigate against compromises that happened during the key exchange. Some of

the issues we identify while proving this may serve to provide guidance for how future security

definitions for messaging protocols should be written.

Key exchange composability.

There are several ways the composability of a key exchange protocol may be proven.

A first approach is to simply define its security in a simulation based framework such as UC
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security [24, 27] for which a generic composition result has already been proven. However, these

frameworks typically place very stringent restrictions which make achieving security difficult and

moreover the generic composition results typically apply specifically to achieving other security

notions in the same framework. A second approach would be to directly prove composition

for a specific underlying goal such as the work of Canetti and Krawczyk [26] which showed a

composition result specifically for building secure channel.

While our OKE security definition is simulation based in nature, this work is perhaps

most spiritually similar to that of Brzuska, Fischlin, Warinschi, and Williams [23]. In that work

they provide an abstract framework of game-based definitions for symmetric key protocols

and what it means to compose a key exchange protocol with a symmetric key protocol. Then

they prove that any key exchange protocol meeting a Bellare-Rogaway style security definition

maintains security when composed with a symmetric key protocol. Our work mirrors this. First

we provide a framework of game-based security definitions for messaging protocols which

provide resilience against state compromise and define what it means to compose an OKE

protocol with such a messaging protocol. Then we introduce a simulation based security notion

for OKE and show that secure OKE protocols compose correctly with messaging protocols. Our

use of a simulation style comes not from an aesthetic preference, but instead from the fact that

there doesn’t appear to be any way to modify a Bellare-Rogaway style indistinguishability notion

to fit our setting.

Other related work.

Cohn-Gordon, Cremers and Garratt [28] studied post-compromise security for authenti-

cated key exchange. However their setting is distinct from ours. Most importantly they achieve

post-compromise security for repeated key exchanges between the same conversation partners

by storing state between them; our post-compromise security is between sessions with different

partners.

Shoup [61] introduced a simulation style security notion which is claimed (but not proven)
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to have good composability properties.

3.1 Notation and conventions

We use the code-based game playing framework of [16]. By Pr[G] we denote the event

that the execution of game G results in the game returning true. “Require bool” is shorthand for

the pseudocode “If not bool then return ⊥”.

A list T is an ordered list of entries. Object x can be added to T via T.add(x). The

first element added to T is T [1], the second is T [2], etc. We sometimes interpret T as the set

{T [i] : T [i] 6=⊥}. For example the intersection of this set and a set X is denoted T ∩X . The

code “For x ∈ T ” traverses T in FIFO order. T.pop() removes and returns the last element added

to the list. We use similar notation for a table T . The operation T [i]← x denotes storing x in T

at location i where i may be an arbitrary string.

If X is a finite set, we let x←$ X denote picking an element of X uniformly at random and

assigning it to x. Algorithms may be randomized unless otherwise indicated. If A is an algorithm,

we let y←$ A(x1, . . .) denote running A with fresh random coins and assigning its output to y.

Variable on the left sign of an assignment are notated by · when their value will not be used. For

example (x, ·)← y denotes parsing y as a tuple and assigning x to the first value in the tuple. The

other value is ignored.

3.2 Messaging Security

Our goal is to understand how to design key exchange protocols which compose correctly

with messaging protocols that provide some sort of security against exposure of their secrets.

Such messaging protocols have been studied in a number of recent works [17, 56, 44, 35, 45, 2].

Each of these has their own specific definition of what a messaging protocol is and what security

is expected of it.

It is infeasible to try to analyze key exchanges protocols with respect to each of these
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individually. Instead we introduce a general framework of definitions. This framework captures a

minimal specification of what a messaging scheme and corresponding notion of security against

state exposure look like. This general framework captures all of these existing schemes and

security definitions (up to some small modification we will discuss later). Additionally, the

framework should serve to capture definitions used by any future additions to this line of work.

The generality of the framework is obtained by making it as sparse as possible; it assumes

only the minimal structure of messaging schemes and security definitions to allow our analysis.

Of messaging schemes we assume only that they include an “initialization” algorithm which

produces state for two parties. Of the security definitions we assume that they are game-based

and that one of the oracles via which the attacker can interact with the messaging scheme is an

exposure oracle Exp which returns the current secret state of one of the two parties.

Messaging scheme.

We assume the bare minimum syntax for a messaging protocol. They consider communi-

cation between two parties: an initiator I and a responderR. Formally a messaging scheme Π

is a collection of algorithms, one of which is an initialization algorithm Π.Init which produces

initial keys for two communicating parties. This has the form (`,~kI ,~kR)←$ Π.Init. Here ` is

information about the initial keys which is not presumed to be secret (e.g. public keys),~kI is the

initial state created for the party I, and~kR is the initial state created for the partyR.

A messaging scheme will typically also specify a “sending” algorithm and a “receiving”

algorithm. These algorithms use the states of the parties to send information between them. In

the process they potentially update these states. For our purposes we do not need to know the

specifics of the syntax of these algorithms.

It will later be convenient to limit our attention to initialization algorithm which are

splittable. A splittable initialization algorithm is specified by algorithms Π.KgI and Π.KgR

together with keyspace {0,1}Π.k. The algorithms allow I andR to separately generate their own

pairs of public and secret keys. A shared secret key is sampled from {0,1}Π.k. The splittable
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Π.Init algorithm behaves as follows. We typically think of kR as having been sampled byR.

Π.Init

(pkI ,skI)←$ Π.KgI ; (pkR,skR)←$ Π.KgR ; kR←${0,1}Π.k

`← (pkI ,pkR) ;~kI ← (`,skI ,kR) ;~kR← (`,skR,kR)

Return (`,~kI ,~kR)

Our notion of splittable initialization algorithms is a special case of the notion as defined

by Durak and Vaudenay [35] which does not assume that all of ` and kR are given to both parties.

State exposure games.

The security notions of a messaging scheme Π are captured by security games which

allow the attacker to interact with Π. Consider the game GG
Π,b shown below. It is parameterized

by a game specification G, a messaging scheme Π, and a bit b that the attacker attempts to guess.

In it, Π.Init is run to produce initial states for I andR. The adversary A is given the leakage `

together with access to oracles O and Exp. Finally the attacker outputs a bit b′ representing its

guess of b. The advantage of A is then defined by AdvGΠ(A) = Pr[GG
Π,1]−Pr[GG

Π,0].

Game GG
Π,b(A)

(`,~k[I],~k[R]])←$ Π.Kg

σG←$G.Start(b)
b′←$AO,Exp(`)

If G.Pred(T) then b′← 0
Return (b′ = 1)

Exp(lab)

T.add(Exp, lab,~k[lab])

Return~k[lab]

O(x)

(y,~k[I],~k[R],σG)←$GΠ(σG ,x,~k[I],~k[R])
T.add(O,x,y)
Return y

The exposure oracle Exp allows the attacker to obtain the current secret state of either of

the parties. The oracle O captures any other ways that the attacker may be allowed to interact

with the scheme Π. (To capture the security games of most of the previous works we are

interested in, one simply has O multiplex all of the additional oracles the adversary would have

154



been given access to.) Note that interacting with Π can result in the state of the parties being

updated over time.

The variable T is a transcript used for tracking the oracle queries of the adversary. Each

time an oracle query is made it stores which oracle, what the input to the oracle was, and what

value was returned to A.

To prevent trivial attacks security games typically need to place some restrictions on the

behavior of A. For example in an encryption context an attacker that exposes the state ofR can

necessarily decrypt the next messageR would receive, so A should be prevented from trivially

using this ability to learn the bit b. These restrictions are facilitated by the predicate G.Pred(T).

The predicate checks the final transcript to see if A disobeyed the restrictions; if so the predicate

returns true which sets b′ to 0 regardless of what A actually output. We sometimes refer to this

as rejecting the transcript. In our example, G.Pred(T) could return true if the transcript shows

that a state ofR was exposed which would allow A to decrypt a message whose value depended

on b.

Guidance for future security definition.

We identify two aspects of our security definition which are essential to our work and

should be captured in all future security games for messaging protocol. These are that attention

should be restricted to splittable initialization algorithms and that the public components of

these algorithms should be provided to the adversary at the start of the game. Of the various

security definitions we considered [17, 56, 44, 35, 45, 2] only Durak and Vaudenay [35] restricted

attention to splittable initialization algorithms. Additionally they and Bellare, et. al. [17] were

the only ones to reveal the public components to the attacker. However it seems to be the case

that all of the schemes happen to have splittable initialization algorithms and would provide

security if the initial public components were leaked so our later composition result can still be

thought to apply to them.

A further idea we note later in Section 3.3.2 is that it is not possible to provide generic
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composition results for OKE protocols based on key-encapsulation methods (KEMs) for generic

state exposures games as we have defined them. To allow more efficient protocols based on

KEMs future security definitions for messaging protocols may consider additionally allowing

the adversary to arbitrarily choose kR if it exposes the initial state of either user.

3.3 Key exchange

Exchange of private and public keys.

Most existing work on key exchange is concerned solely with the exchange of a shared

secret symmetric key. For this work we need to understand how to define security for a key

exchange that shares asymmetric keys. In particular, we want a key exchange that instantiates

running a splittable initialization algorithm and then giving~kI to one party and~kR to the other

while leaking nothing beyond `.

Server-aided offline key-exchange.

The setting of server-aided offline key-exchange (OKE for short) involves a single server

S and any number of users.

An OKE protocol KE specifies the following subprotocols. Here the notation (ya,yb)←$

P(xa : xb) indicates an interaction between two parties with local inputs xa and xb that produces

local outputs ya and yb. Sometimes state variables will appear as both input and output of a

protocol, this represents the state being updated during the execution of the protocol. When the

server interacts with a user u it is always given u as input. This is intended to model the server

having first authenticated the identity of the user before initiation of this protocol.

• KE.SKg: The server key generation algorithm which produces the initial state of S via

stS←$ KE.SKg.

• KE.PKg: The party key generation algorithm which produces the initial state of party u via

stu←$ KE.PKg(u).

• KE.Reg: The registration protocol in which a user u initially provides information about
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itself to the server S. We write (stu,stS)←$ KE.Reg(stu : (stS ,u)). A user may later

re-register (by running this protocol again) to update the information stored by the server.

• KE.Req: The requesting protocol in which a (session of a) user u requests a connection to

another user v . The session finishes its role in the key exchange and outputs the keys it has

derived. We write ((stu,~ku),stS)←$ KE.Req((stu,v) : (stS ,u)). If something goes wrong,

u rejects by setting~ku =⊥.

• KE.Fin: The finalization protocol in which a (session of a) user v completes a key exchange

with u. We write ((stv ,~kv),stS)←$ KE.Fin((stv ,u) : (stS ,v)). If something goes wrong, v

rejects by setting~kv =⊥.

We think of KE.Reg as corresponding to user I running Π.KgI to generate pairs of public

and secrets keys (pkI ,skI). Then we think of KE.Req as another userR receiving pkI , running

Π.KgR to generate pairs of public and secrets keys (pkR,skR), and sampling kR from {0,1}Π.k.

Then finally KE.Fin corresponds to I receiving pkR and kR. For notational simplicity we denote

the algorithms that KE tries to emulate by KE.Init, KE.KgI , KE.KgR, and {0,1}KE.k.

Canonical form of OKE.

For defining our security models we will notationally simplify things by only considering

KE protocols that fall within a particular canonical form, represented via pseudocode in Fig. 3.1.

This essentially corresponds to assuming that each of the protocols above uses the minimal

required amount of interaction. We will assume that registration consists of the user sending a

message (KE.UReg) to the server with no response back required (KE.SReg). We assume the

requesting protocol consists of the server sending a single message to the user (KE.SReq1) and

the user sending a single message back (KE.UReq) to be processed by the server (KE.SReq2).

The user will then wait for a fingerprint comparison to decide if it will accept the session.

Finalization will consist of the server sending a single message (KE.SFin) to the user (KE.UFin).

Then the user waits for a fingerprint comparison to decide if it will accept the session. It is

assumed that KE.UReq and KE.UFin output fp =⊥ if and only if they output~k =⊥.
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KE.Reg(stu : (stS ,u))
(stu,m)←$ KE.UReg(stu)

u sends m to S
u returns~ku
stS←$ KE.SReg(stS ,m,u)

S returns stS

KE.Req((stv ,u) : (stS ,v))
v sends u to S
(stS ,m)←$ KE.SReq1(stS ,v ,u)

S sends m to v

(stv ,m,~kv , fp)
←$ KE.UReq(stv ,m)

v sends m to S
If~kv =⊥ then u returns (stv ,⊥)
Else (while server proceeds)
v waits for fp comparison
If matches returns (stv ,~kv)
Otherwise returns (stv ,⊥)

stS←$ KE.SReq2(stS ,m,v ,u)

S returns stS

KE.Fin((stu,v) : (stS ,u))
u sends v to S
(stS ,m)←$ KE.SFin(stS ,u,v)

S sends m to u

S returns stS
(stu,~ku, fp)←$ KE.UFin(stu,m)

If~ku =⊥ then u returns (stu,⊥)
Else
u waits for fp comparison
If matches returns (stu,~ku)
Otherwise returns (stu,⊥)

Figure 3.1. Canonical form of key exchange protocol.

3.3.1 Adversary Model

We now describe our adversary model. We start with an abstract textual description of

how an attacker may interact with an OKE protocol. Then for different security notions we will

fix concrete pseudocode instantiating these interactions. Recall that we think of the attacker as

controlling the server S. This puts the attacker in complete control of all communication with

the different users. During this communication their behavior may arbitrarily diverge from the

correct execution of the server as specified by KE. In typically key exchange fashion the attacker

is also in charge of deciding which users attempt to exchange keys with which other users and at

what time.
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Notation.

Users of the key exchange will be identified by names u ∈ {0,1}∗. The server should

store state stS and a user u will store state stu. Session i of user u will store session specific

state sstiu. Each user may have an arbitrary number of sessions denoted by identifiers i ∈ {0,1}∗.

Sessions are created by a user each time it participates in a KE.Req or KE.Fin protocol. Note

that i will be an administrative label used by the security model, but unknown to the protocol.

For session i of user u the model will store state in the variable sstiu. It will store the following

values indexable by dot notation. For example, the sess stored by u’s session i is the variable

sstiu.sess. We sometimes refer to u’s session i as the session (u, i).

• id = u: the name of the session owner

• sess = i: the session identifier

• pid: the name of the intended partner user of this session

• psess: the session identifier of the partner session

• status ∈ {waiting,accepted, rejected}: the status of the session, waiting when waiting for a

fingerprint comparison, accepted or rejected when the session is finished

• fing: the fingerprint to be compared with that of the partner session

• keys: the keys produced by this session

• role ∈ {I,R}: the role of the session which is set to R in the KE.Req protocol or I in

KE.Fin

Interacting with OKE.

Recall that in our model the server is the adversary. As such, none of the server algorithms

will be run by the game. All messages that would be sent to the server are given to the adversary

and all messages that would be expected from the server are specified by the adversary. The

adversary may, of course, choose to locally run some of the correct server algorithms while

interacting with the users.

159



After initialization the adversary is given access to several oracles which allow it to

interact with the key exchange protocol. In particular, there are oracles capturing the three ways

that a user might interact with the server (registration, requesting, and finishing), an oracle for

making two sessions do a fingerprint comparison, and two oracles for learning local or session

state of users. We now describe them one at a time.

• Reg: The adversary specifies a user u to register (or re-register) with the server. The

registration messages is given to the adversary.

• Req: The adversary creates a new session i for user u by sending it the server message

from a request protocol execution. The specified session must not already exist. The

session either rejects or has set a fingerprint and is waiting for a comparison to complete

its exchange. The session’s response message and fingerprint are given to the adversary.

• Fin: The adversary creates a new session i for user u by sending it the server message

from a finalize protocol execution. The user must be registered and the specified session

must not already exist. The session either rejects or has set a fingerprint and is waiting for

a comparison to complete its exchange. The session’s fingerprint it given to the adversary.

• Fing: The adversary causes user u’s session i and user v’s session j to perform a fingerprint

comparison. Both specified sessions must be waiting for a fingerprint comparison. If it

succeeds they both accept and are set to be each other’s partners. Otherwise they will both

reject.

• Corrupt: The adversary corrupts user u and is given its current local state.

• Reveal: The adversary reveals the secret state of user u’s session i.

Pseudocode for these different methods of interaction is given in Fig. 3.2 The fingerprints being

returned to the adversary represents the fact that we do not want to place restrictions on how

fingerprints are actually compared. For example, users can safely compare them by publicly

posting them on their respective social media profiles.
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Reg(u)

(stu,m)←$ KE.UReg(stu)

T.add(Reg,u,m)

Return m

Fin(u, i,m,v)

(stu,~ku, fp)←$ KE.UFin(stu,m)

sstiu.keys←~ku
sstiu.fing← fp

sstiu.role←I
sstiu.pid← v

If~ku =⊥ then
sstiu.status← rejected

Else
sstiu.status← waiting

T.add(Fin,(u, i,m,v), fp)

Return fp

Req(u, i,m,v)

(stu,m
′,~ku, fp)

←$ KE.UReq(stu,m)

sstiu.keys←~ku
sstiu.fing← fp

sstiu.role←R
sstiu.pid← v

If~ku =⊥ then
sstiu.status← rejected

Else
sstiu.status← waiting

T.add(Req,(u, i,m,v),(m′, fp))

Return (m′, fp)

Corrupt(u)

T.add(Corrupt,u,stu)

Return stu

Reveal(u, i)

T.add(Reveal,(u, i),sstiu.keys)

Return sstiu.keys

Figure 3.2. Oracles specifying how the attacker can interact with OKE protocol KE.

Composed security.

The ultimate goal of an OKE scheme KE is to be able to securely initiate the keys of a

messaging scheme Π that it is composed with. Recall that in Section 3.2 the security of Π is

measured by GG
Π,b instantiated with a particular game specification G. To understand the security

of KE and Π together we then define a security game Goke-G
Π,KE,P,b which maps G to a multi-user

variant of GG
Π,b in which keys are shared between users via KE instead of just handed out after an

execution of Π.Init. This game is shown in Fig. 3.3 with additional oracles from Fig. 3.2. The

advantage of an attack A playing this game is defined by Advoke-G
Π,KE,P(A) = Pr[Goke-G

Π,KE,P,1(A)]−

Pr[Goke-G
Π,KE,P,0(A)].

At a high level, the security notion works as follows. The adversary works as the server

for KE interacting with any number of users as discussed above. Then any time two sessions

accept, the attacker can start interacting with them in the way proscribed by G. The same secret

bit b is shared across all pairs of sessions that have accepted (and not used anywhere else). The
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Game Goke-G
Π,KE,P,b(A)

For u ∈ {0,1}∗ do
stu←$ KE.PKg(u)

b′←$AK,Exp,O

For lab ∈ U do
If G.Pred(T[lab])

b′← 0
If V(T) then b′← 0
Return (b′ = 1)

Exp(u, i)

Require sstiu.status = accepted

lab∗← (u, i)

If lab∗ 6∈ U
lab∗← (sstiu.pid,sstiu.pid)

T[lab∗].add(Exp,(u, i),~k[(u, i)])
Return~k[(u, i)]

O(x,u, i)
Require (u, i) ∈ U
lab← (u, i)

lab′← (sstiu.pid,sstiu.psess)

in← σG [lab],~k[lab],~k[lab′],x
(σG [lab],~k[lab],~k[lab′],y)
←$GΠ(in)

T[lab].add(O,x,y)
Return y

Fing(u, i,v , j)

If sstiu.fing = sstjv .fing then
sstiu.status← accepted ; sstjv .status← accepted

sstiu.psess← j ; sstjv .psess← i
~k[(u, i)]← sstiu.keys ;~k[(v , j)]← sstjv .keys

If sstiu.role = I then lab∗← (u, i)

Else lab∗← (v , j)

U ← U ∪{lab∗} ; σG [lab∗]←$G.Start(b) ; t← I(T,u, i,v , j)
For (w,k) ∈ t do T[lab∗].add(Exp,sstk

w.role,~k[(w,k)])
Else
sstiu.status← rejected ; sstjv .status← rejected

T.add(Fing,(u, i,v , j),ε) ; Return ε

Figure 3.3. Security game measuring the security of a messaging scheme Π when its keys
are produced by OKE protocol KE. For compactness we define K = Reg,Req,Fin,Fing,
Corrupt,Reveal.

attacker’s goal is then to guess this secret bit.

Explanation of security game.

Note that the security game is parameterized by parameter P . The parameter specifies

a tuple of two algorithms (I,V). The former is used to precisely capture the mapping of when

corruption/reveals of state used by the key exchange correspond to exposures of the initial keys
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of the messaging protocol. The latter is used to place restrictions on what sequences of queries

are allowed from the attacker. The extent to which KE achieves things like forward security or

post-compromise security depend on the choice of these algorithms. Additionally, the restrictions

of V are used to prevent sequences of queries that do not make sense. We will discuss them in

more detail momentarily while discussing the behavior of the game.

In the game, we first initialize the state stu of all users u ∈ {0,1}∗. In pseudocode this is

written as an infinite loop. The formal interpretation of this is that each stu will be lazily sampled.

For any user u, immediately before the first time stu would be used we sample it. Then the

adversary A is run with access to eight oracles. The first six of these correspond to interacting

with the key exchange protocol in the manner discussed while the last two are how the adversary

interacts with the underlying messaging protocol after users have generated keys.

Oracles Reg, Req, Fin, Corrupt, and Reveal are defined as specified in Fig. 3.2.

A transcript T is used to keep track of all of the adversaries interaction with the key exchange

protocol. The details of Fing are a bit more complicated because its details capture the link

between KE and Π. The oracle takes as input sessions (u, i) and (v , j). The fingerprints of these

sessions are compared. If they match, then we set up any “instance” of GG
Π,b for the keys they

generated to be used in. Otherwise these sessions reject (by updating their statuses to rejected).

Let’s walk through the behavior of Fing when the fingerprints match. First we do some

bookkeeping updates of sstiu and sstjv by setting their statuses to accepted and setting them as

each others partner. Next we need to prepare for their keys to be used by Π. The important

variables used by GG
Π,b were a transcript T, game state σG , and keys~k[I] and~k[R]. We create

these now, separating them from other instances of the game by labelling them with the sessions

that use them. For the keys this is straightforward because they can just be labelled by the session

that created them. For the other variables we adopt the convention that they will be labelled

by whichever user is I which is achieved via the label variable lab∗ (which we store in a set U

to track each game instance). The final interesting detail here is how we (possibly) add initial

exposures to the transcript T[lab∗]. This is done via the algorithm I. It is told the global transcript
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T and which sessions are now being linked. Based on this it decides if A has done corruptions

or reveals breaching the security of these current sessions. It outputs this decision in a list t

which we then iterate over to add the corresponding exposures to T[lab∗]. It is required that

I(T,u, i,v , j)⊆ {(u, i),(v , j)} always.

After sessions have been accepted they can then be interacted with via the oracles Exp

and O which just mirror the corresponding oracles from GG
Π,b. All instances of this game were

initiated with the same secret bit b. The goal ofA is then to guess this bit. Its guess is overwritten

if it made a disallowed sequence of queries. Whether this occurred is captured by checking each

T[lab∗] with G.Pred and the key exchange transcript with V.

We require as a minimum that V enforce the following restrictions.

1. A user must be registered before being interacted with in any manner.

2. Request and finalize cannot be performed by sessions that have already been created.

3. Sessions must be created and not have rejected before being used in a fingerprint compari-

son. A single session cannot perform fingerprint comparisons twice.

4. Sessions which compare fingerprints must have the correct values for pid. A session cannot

compare fingerprints with itself.

5. A session can only be revealed if it has already been created and it has not accepted or

rejected. (After an accepting fingerprint comparison the session state stored by the key

exchange protocol is given away to the messaging protocol and no longer stored. After a

rejecting fingerprint comparison the session state should be deleted.)

It is important that each of these can easily be verified given only the transcripts of queries made.

We refer to the V which enforces these restrictions and nothing more as V∗. Note that placing

addition restrictions would correspond to weakening the security definition. We define V∗ more

formally in Section 3.7.
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Security in the face of compromise.

As mentioned earlier, the particular choice of I and V determines what level of security

KE is providing against the exposure of its secrets. At an informal level, there are three types of

this security that an OKE protocol might achieve. These are “normal” forward security, forward

security with respect to Reg, and post-compromise security with respect to Reg. The first of

these means that corrupting a user will not breach security of any of its sessions that have already

been created. The second means that corrupting a user after a registration will not breach security

of any sessions that were created before the registration. The third of these means that corrupting

a user will not breach security of any sessions created after the next registration. A final related

notion we will informally call “security againstR compromise” requires that corrupting a user

does not breach security of any of its sessions which have the roleR.

The I algorithm which capture all of these simultaneously could behave as follows. First,

it checks the transcript to determine the role of (u, i) and (v , j) by seeing whether they were

created by Req or Fin query. Then it traverses the transcript in order, checking each Corrupt

and Reveal. On a corruption of u the session (u, i) is added to t if: its role is notR (security

againstR compromise), the most recent Reg(u) query is same as the Reg(u) query preceding

the creation of (u, i) (forward and post-compromise security with respect to Reg), and the

session had not already been created at the time of the corruption (normal forward security). On

a reveal of the session (u, i) it is always added to t. The session (v , j) is treated analogously. We

refer to the I which behaves in this manner as I∗. We define I∗ more formally in Section 3.7.

Not achieving all of these notions of security would be formalized by loosening the

restrictions of which corruptions add sessions to t. Alternatively if a particular KE is weak to

certain types of attacks this could be formalized by using V to disallow sequences of queries

corresponding to those attacks.
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Fingerprint usage in practice.

In this security definition we require that all users check fingerprints and, moreover, that

they do so before commencing in using the messaging protocol. This, of course, is unrealistic.

Actual users quite often do not check fingerprints and the whole point of the key exchange

being offline is so that communicating users do not have to both be available at the same time to

complete a key exchange. How, then, can our security notion be said to imply anything about the

real world usage of the key exchange and messaging protocol?

We argue that it actually still implies quite a bit which we explain via several examples

varying in how trusted the service provider is. A key observation is that when the fingerprints of

two sessions are equal, it does not matter if the comparison is ever actually done. A failure in

the fingerprint comparison tells the users that something has gone wrong and they should stop

use of this sessions, but a successful comparison just tells them to continue on using the protocol

as they’ve already been doing.

As a first example, suppose that a user trusts the service provider to follow the actual

protocol specification in its behavior. This would correspond to an “honest-but-curious” adversary

which could be formalized to require that all messages sent by the adversary be generate by

honest executions of the server’s algorithms. In this case, fingerprints are always equal so the

above observation applies.

A less trustworthy service provider might be willing to diverge from the protocol as long

as they cannot be detected doing so by the users. Certainly service providers have economic

incentives not to be caught attacking their users. Such undetectable adversaries could be

formalized in the style of algorithm substitution attacks [11] by requiring that an honest user

cannot distinguish between interacting with an honest behaving server and the attacker. Since

fingerprint mismatches never occur during honest execution an attacker which causes them would

be detectable. But then fingerprints are again always equal so the above observation applies.

Of course, the above assumptions break down when the attacker is thought of not as the

actual service provider, but as some malicious party which has broken into their systems and
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taken control of the servers. Then the incentive to be undetectable may not be as strong.1 In

this case security is still assured for all sessions that have matching fingerprints (whether or not

the users actual do the comparison). Security is not assured otherwise, but no security can be

provided for sessions that run with mismatched fingerprints. Note that a malicious server can

trivially run a man-in-the-middle attack against sessions that do not compare fingerprints. 2

Ideal model caveat.

There is a small issue in the above formalism when capturing a multi-user version of

GG if the later was defined in an ideal model (e.g. the random oracle model [14]). In GG this

can be captured by O emulating a random oracle for queries of the form x = (Ro,z). However,

then each messaging session in Goke-G would have access to its own random oracle which is

independent from all of the other random oracle. The standard way of capturing the random

oracle model would instead have the same random oracle shared between all users. We omit the

details of formalization, but this issue can be generically solved using standard domain separation

technique so the shared random oracle “acts” like a separate random oracle for each session.

3.3.2 Stand-alone security of OKE

Our ultimate goal is to find OKE protocols and messaging protocols which are secure

when used together in the sense just described. Towards this, one could directly analyze

any particular pair of KE and Π with respect each desired security specification G. However,

considering a number of Π and G have already been proposed, this would be rather inefficient.

Instead it is much preferable to follow the standard of modular analysis and define a notion of

what it means for an OKE protocol to be secure in isolation. We will do so now, taking care

to choose the definition to allow a composition result implying that security of a messaging
1Though they likely still have some incentive to be undetectable so the service provider doesn’t notice they have

been breached.
2On close observation, one might be worried by the fact that in our security game the adversary cannot cause

these sessions with mismatched fingerprints to run the messaging protocol at all. Hypothetically, an attacker might
somehow be able to exploit observing these mismatched session to attack other session. However, these attacks
actually are captured in our security by considering an attacker who doesn’t call Fing for sessions with mismatched
fingerprints but instead uses Reveal and emulates the behavior of the messaging protocol with the revealed keys.
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protocol is maintained when used with a secure OKE protocol. That way security of a combined

KE and Π can be assured by isolated analysis of each component separately.

Simulation-based security.

One’s first instinct may be to write a security definition inspired by the original Bellare-

Rogaway security definition for key exchange [15]. This style of definition is used quite regularly

in the analysis of key exchange protocols and a strong composition result has already been

proven [23].

Unfortunately, a typical Bellare-Rogaway style indistinguishability definition would

be too strong for our purposes. Such definitions require that the keys generated by a pair of

users during a key exchange are indistinguishable from fresh random keys. However, the most

efficienct protocols for our setting will leak ` which is assumed to not break the security of the

underlying messaging protocol. Because ` is typically correlated with the keys established this

means an attacker would be able to trivially distinguish between the generated keys and fresh

random keys simply by checking whether they are consistent with `. Moreover, it is unclear how

one would write such a definition to capture the intuition that a compromise of a party during key

exchange corresponds only to an exposure of initial state used during the key exchange protocol.

To resolve this we use a simulation style definition. In such a definition we consider two

“worlds” that an attacker might be in: a “real world” where it actually interacting with the key

exchange protocol and an “ideal” world where it is interacting with a simulator. The goal of the

attacker is to distinguish between the two. Security requires that for every attacker there exists a

simulator such that the attacker cannot distinguish between a real key exchange and a simulation

of it by the simulator given only `.

Security definition.

Our notion of security is captured by the game Goke
KE,P,S,b(A). This game is parameterized

by parameter P = (I,V), a simulator S, and a bit b. The goal of A is to guess the bit b, so its

advantage with respect to S is defined by Advoke
KE,P,S(A) = Pr[Goke

KE,P,S,1(A)]−Pr[Goke
KE,P,S,0(A)].
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Because we are working in a concrete security setting there is no precise definition of security.

Informally, KE is secure if for all efficient A there exists an efficient S such that Advoke
KE,P,S(A)

is small. We think of b = 1 as the real world and b = 0 as the ideal world and describe each of

these separately.

Real world.

Fig. 3.4 shows pseudocode for a real-world interaction of an adversary with a key

exchange protocol. Oracles Reg1, Req1, Fin1, Corrupt1, and Reveal1 are omitted from

the figure and instead defined to be equal to the corresponding oracles specified for Goke-G in

Fig. 3.2. First Init1 is run to generate stu for each u. Note this matches how game Goke-G began;

the infinite pseudocode loop should be interpreted in the same way. Then A is given access to

six oracles with which to interact with KE. All of them are identical to the oracles previously

introduced for the composed security game except for Fing1. Because we are studying KE in

isolation this oracle no longer needs to prepare variables for use interacting with a messaging

protocol Π. Instead if the fingerprints of the specified sessions match, the keys they derived are

simply returned to the attacker. Note that these keys are not added to the transcript so that it

mirrors the transcript from the composed game. The crux of the power of the security definition

come from restrictions placed on how S is allowed to emulate this output in the ideal world.

Following all this interaction the adversary outputs a guess of the secret bit. As in the

composed game, if the adversary has made invalid oracle queries the algorithm V can cause this

guess to be overwritten.

Ideal world.

The ideal world is defined by the oracles shown in Fig. 3.5. It is defined with respect

to a simulator S which attempts to simulate the output of the oracles from the real world given

access to O = IReg,IReq,IFin,IReveal which are defined in Fig. 3.6. The behavior of this

is relatively straightforward in oracles Reg0, Req0, Fin0, Corrupt0, and Reveal0. In each

the simulator is told what query was just made by A and is given its current state. Based on this
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Goke
KE,P,S,b(A)

Initb

b′←$ARegb,Reqb,Finb,Fingb,Corruptb,Revealb

If V(T) then b′← 0
Return (b′ = 1)

Init1

For u ∈ {0,1}∗ do stu←$ KE.PKg(u)

Fing1(u, i,v , j)

If sstiu.fing = sstjv .fing then
sstiu.status← accepted

sstjv .status← accepted

sstiu.psess← j

sstjv .psess← i

z← (sstiu.keys,sstjv .keys)

Else
sstiu.status← rejected

sstjv .status← rejected

z← (⊥,⊥)
T.add(Fing,(u, i,v , j),ε)

Return z

Figure 3.4. Real world in OKE security model. Some oracles are omitted because they are
identical to previously specified oracles.

is specifies what the output of the oracle will be while potentially updating its state. The other

oracle are more complicated and require understanding the role that O is playing.

The oracles O and IFing can be thought of as an idealized key exchange being run by a

trusted party which only leaks the public components of the exchanged keys. “Sessions” in this

idealized key exchange are identified by labels (lab) controlled by the simulator. The session

state of session lab is stored in mst[lab] and the keys it derives are stored in~k[lab]. The values

in mst are largely administrative values used by the “Require” statements at the beginning of

oracles which prevent sessions from being used in invalid ways. Each of the oracles can be

thought of as an “ideal” mirror to the corresponding protocols of KE. These oracle are similar in

spirit to (and were inspired by) the oracles InitS, InitP, and InitK used in the definition of

symmetric key protocols given by Brzuska, et. al. [23].

An ideal key exchange between lab1 and lab2 would consist of the following operations:

IReg(lab1) ; IReq(lab1, lab2) ; IFin(lab1, lab2) ; IFing(lab1, lab2). With IReg the session

lab1 creates its half of the keys corresponding to a key exchange. The public part of its keys

leak. We can roughly think of this as corresponding to a user registering with the server in the

real world. Then with IReq the session lab2 is partnered with lab1. It creates its own half of the
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Corrupt0(u)

(σ ,stu)←$ SO(σ ,Corrupt,u)

T.add(Corrupt,u,stu)

Return stu

Reveal0(u, i)

(σ ,~k)←$ SO(σ ,Reveal,u, i)

T.add(Reveal,(u, i),~k)
Return~k

Init0

σ←$ S(Init)

Reg0(u)

(σ ,m)←$ SO(σ ,Reg,u) ; T.add(Reg,u,m) ; Return m

Req0(u, i,m,v)

(σ ,m′, fp)←$ SO(σ ,Req,u, i,m,v)

T.add(Req,(u, i,m,v),(m′, fp)) ; Return (m′, fp)

Fin0(u, i,m,v)

(σ , fp)←$ SO(σ ,Fin,u, i,m,v)

T.add(Fin,(u, i,m,v), fp) ; Return fp

Fing0(u, i,v , j)

(σ ,y, lab1, lab2)←$ SO(σ ,Fing,u, i,v , j) ; t← I(T,u, i,v , j)
t ′← []

For lab ∈ X do
If lab = lab1 then t ′.add((u, i))

If lab = lab2 then t ′.add((v , j))

If y and t = t ′ then
(~kI ,~kR)← IFing(lab1, lab2) ; z← (~kI ,~kR)

Else z← (⊥,⊥)
T.add(Fing,(u, i,v , j),ε) ; Return z

Figure 3.5. Ideal world in OKE security model. For compactness we let O = IReg,IReq,
IFin,IReveal.

keys corresponding to a key exchange and is given lab1’s half. The public part of lab2’s keys

leak. This corresponds to the requesting protocol being run by the friend of that user. With

IFin the session lab1 completes its side of the key exchange by receiving the half of its keys

that were generated by lab1. This corresponds to the first user running the finalization protocol.

Finally with IFing both entities accept their exchange. This corresponds to a correct fingerprint

comparison being performed.

The goal of the simulator is to emulate key exchange messages to make it look like

sessions exchanged keys which match those produced by this ideal key exchange. The way it is

171



bound to matching the ideal key exchange is by oracle Fing1. In this oracle, rather than directly

choosing the values returned to the adversary the simulator is required to choose sessions from

the ideal key exchange whose keys will be returned.

Recall that a real world adversary can choose to learn the secret state of a particular user

or session via Corrupt0 or Reveal0. For the simulator to be able to simulate this properly it

must be able to compromise the secrets of the ideal key exchange. This is done via the exposure

oracle IReveal which gives back all of the keys of a specified label and uses the table X to

keep track of the fact that this has occurred. The intention is that a “well-behaved” simulator will

not have exposed the labels it chooses for IFing unless the adversary A (via a Corrupt or

Reveal) has compromised state that would allow it to know the keys derived by the exchange.

This restriction is ensured in Fing0. If the lab’s chosen by S were not exposed identically to

how they should have been according to I then IFing is prevented from running.

Shadow keys.

In the above discussion we didn’t address the fact that two copies of all keys are being

stored. We refer to the second copy (indicated with a prime symbol) as the “shadow” keys. The

shadow keys are identical to the real keys, except they store k′R instead of kR. This key is given

back to the simulator each time IReq is called. If IReveal is queried on a session then its

shadow keys are returned. During IFing, shadow keys are returned if either session has revealed.

Otherwise, shadow keys are never used.

Shadow keys were introduced specifically to allow security against the following attack,

while still enabling our composition result. Suppose the attacker honestly behaves as the server

during a registration for u and then a request query for v trying to connect to u. Assuming a

protocol which does leak the public keys, the simulator will already be “committed” to a choice

of lab1 for (u, i) and lab2 for (v , j) which match the public keys leaked by the messages it has

sent already. Because no secret state has been compromised at this point, the simulator should

not have exposed either of these labels. Thus it does not know anything about kR. But at this
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IReg(lab)

Require mst[lab].status =⊥
(pkI ,skI)←$ Π.KgI ;~k[lab]← ((pkI ,⊥),skI ,⊥)
~k′[lab]← ((pkI ,⊥),skI ,⊥) ; mst[lab].status← created

mst[lab].role←I ; Return pkI

IReq(lab1, lab2)

Require mst[lab1].status = created

Require mst[lab2].status =⊥
((pkI , ·), ·, ·)←~k[lab1] ; (pkR,skR)←$ Π.KgR
kR←${0,1}Π.k ; k ′R←${0,1}Π.k ; `← (pkI ,pkR)
~k[lab2]← (`,skR,kR) ;~k′[lab2]← (`,skR,k

′
R)

mst[lab2].status← waiting ; mst[lab2].role←R
mst[lab2].pid← lab1 ; Return (pkR,k

′
R)

IFin(lab1, lab2)

Require mst[lab1].status = created

Require mst[lab2].status 6∈ {⊥,created}
((pkI , ·),skI , ·)←~k[lab1] ; ((·,pkR), ·,kR)←~k[lab2]

((·, ·), ·,k ′R)←~k′[lab2] ;~k[lab1]← ((pkI ,pkR),skI ,kR)
~k′[lab1]← ((pkI ,pkR),skI ,k

′
R)

mst[lab1].status← waiting ; mst[lab1].pid← lab2 ; Return ε

IReveal(lab)

Require mst[lab].status 6∈ {⊥,accepted}
X .add(lab) ; Return~k′[lab]

IFing(lab1, lab2)

Require mst[lab1].status = waiting

Require mst[lab2].status = waiting

Require mst[lab1].pid = lab2

Require mst[lab2].pid = lab1

mst[lab1].status← accepted ; mst[lab2].status← accepted

If {lab1, lab2}∩X 6= /0 then return (~k′[lab1],~k′[lab2])

Return (~k[lab1],~k[lab2])

Figure 3.6. Oracles of an ideal key exchange.

point the simulator (in Req0) has sent a message which u should be able to “decrypt” to receive

kR. In particular, if the attacker now reveals (v , j) it will receive kR. Then if it corrupts u the

simulator needs to be able to produce a stu which will correctly “decrypt” the message to kR.

Thus (in the absence shadow keys) security against such an attack would likely require

some form of non-committing encryption [3, 52]. Nielson [52] showed that non-interactive
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non-committing encryption is not possible even in non-programmable random oracle model. It

is possible in the programmable random oracle model, but we would prefer to avoid our security

definition requiring idealized model because there is no reason to believe that idealized models

are required for security in the combined security game which is our ultimate goal.

A similar issue arises in the composition result proven by Brzuska, et. al. [23]; however,

they are able to use a very different method of resolving it. In particular, the protocol being

composed with the key exchange is not thought of as providing any security in the face of

state compromise. The Bellare-Rogaway style security definition is not required to provide

any guarantees about generated keys whose values are exposed, but still suffices for composed

security because in the combined security game the attacker is allowed to arbitrarily choose the

keys that will be used by any session which has been exposed. We cannot use such a technique

because our primary motivation is providing continued security even when keys are exposed and

the existing security games we are composing with do not provide the attacker with the capability

to choose keys [17, 56, 44, 35, 45, 2]. It may be worth considering incorporating such an ability

into the security definitions of messaging protocol because this ability would have allowed us

to use a key encapsulation method in our coming construction instead of being forced to use

full public key encryption. In the simulation style key exchange notion with strong adaptive

corruptions of Shoup [61] a similar issue is resolved by disallowing the analogous sequence of

oracle queries by the attacker.

3.4 Generic Construction

In this section we present our construction which generically provides a secure OKE

scheme for any splittable initialization algorithm. Because we assume nothing of the initialization

algorithm we are fairly constrained in what we can do to exchange the public keys. Consequently

our construction has some inefficiencies which are likely inherent when working generically. We

leave improving on this for specific distributions of public keys to future work.
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Our generic construction GKE is as follow. Let splittable initialization algorithm GKE.Init

(specified by GKE.KgI , GKE.KgR, and {0,1}GKE.k) be fixed. Let PKE be a public key encryption

scheme and n ∈ N.3 Let GKE.SKg initializes stS as an empty table and GKE.PKg(u) initializes

stu as a tuple of four empty tables. The rest of GKE’s algorithms are as follows.

GKE.UReg(st)

For l = 1, . . . ,n do
(pk[l],sk[l])←$ GKE.KgI
(ek[l],dk[l])←$ PKE.Kg

Return ((pk,sk,ek,dk),(pk,ek))

GKE.SReg(stS ,m,u)

stS [u]← (m,0)
Return stS

For registration a user u runs GKE.KgI and PKE.Kg a total of n times to create lists of the

corresponding keys. The list of public keys (pk and ek) are sent to the server which stores them.

On a request by v for u to the server simply sends the next (pk,ek) in the list to v . Then v runs

GKE.KgR to obtain its key pair and uses ek to encrypt the kR it samples. Then it sends pkR

and the ciphertext to the server which stores them until u requests a finalization with v . The

fingerprint it simply set to be the hash of the sequence of messages seen by the users during the

exchange.

GKE.SReq1(stS ,v ,u)

((pk,ek), l)← stS [u]

If l > n then return (stS ,⊥)
stS [u]← ((pk,ek), l)
Return (stS ,(pk[l],ek[l], l +1))

GKE.UReq(st,m)

If m=⊥ then
Return (st,⊥,⊥,⊥)

(pk,ek, l)←m

(pkR,skR)←$ GKE.KgR
kR←${0,1}GKE.k

~k← ((pk,pkR),skR,kR)

c←$ PKE.Enc(ek,kR)

fp← H(pk ‖ek ‖pkR ‖c ‖ l)
Return (st,(pkR,c, l),~k, fp)

GKE.SReq2(stS ,m,v ,u)

stS [u,v ].add(m)

Return stS

GKE.SFin(stS ,u,v)

m← stS [u,v ].pop()

Return (stS ,m)

GKE.UFin(st,m)

(pkR,c, l)←m

(pk,sk,ek,dk)← st

If pk[l] =⊥ then return (st,⊥,⊥)
kR← PKE.Dec(dk[l],c)
~k← ((pk[l],pkR),sk[l],kR)
(pk,ek)← (pk[l],ek[l])
fp← H(pk ‖ek ‖pkR ‖c ‖ l)
(pk[l],sk[l],ek[l],dk[l])
← (⊥,⊥,⊥,⊥)

st← (pk,sk,ek,dk)
Return (st,~k, fp)

3We write GKE[PKE,n] when we want to make these parameters explicit.
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Security of GKE.

We claim that GKE meets our desired notion of security. Recall (I∗,V∗) defined earlier

in Section 3.3.1. We claim security with respect to P = (I∗,V∗). In particular the advantage,

Advoke
GKE,P,S(A), of any efficient A is small when using the simulator specified in Appendix 3.6.

For space reasons we will not provide a full proof of security, but instead sketch the high level

intuition for why our simulation works.

The simulator uses the ideal key exchange to simulate messages in an intuitively straight-

forward way (care was required to precisely figure out the low level details of how it works).

Whenever S needs to know a public key it obtains this by making the appropriate call to IReg

or IReq except in Req if u was given an a message which does not correspond to anything it

should have been given in a key exchange with v . In this case it simply generates pkR, skR,

and kR locally. Encryption keys are generated on registration. The ciphertext produced during a

request are simulated by encrypting the shadow key k′R.

Taken independently, it clear that the marginal distributions of the output of S for Reg,

Req, and Fin are correct. The crux of the proof lies in arguing about the keys returned by Fing,

Corrupt, and Reveal. First note that collision resistance of H ensures that two fingerprints

match only if their two sessions had the same view of an interaction, which is what S checks for

fingerprints. Moreover the entropy of PKE ensure that no ek or c will ever be produce twice, so

at most two sessions can match in this manner. From this is it easy to verify that all keys output

by Fing will have the correct distribution with the possible exception of kR which requires

further analysis.

For a given ciphertext c, suppose the attacker does not make a corruption queries to learn

dk. In this case CPA security of PKE guarantees that A cannot learn anything about what key

was encrypted in c. If A did make such a corruption query then it can decrypt the ciphertext,

but then it just sees the same k′R which will later be returned by Fing (because S will query

IReveal during that corruption). The attacker could also learn about k′R via a Reveal query,

but in this case S will query IReveal so again k′R would be the key output by Fing.
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Lastly we need to verify the output of Reveal and Corrupt. For Reveal note that

σ [u, i] will always already contain the correct pkI , pkR, and kR for that session (the last of

these being the shadow key). Thus the simulator only needs to learn sk from IReveal. Similar

reasoning gives that in Corrupt the simulator only needs to use IReveal to learn sk and only

for those l for which pk[l] has not already been erased.

This constitutes the main ideas of the proof. Formalizing it is a matter of careful

bookkeeping to capture these arguments precisely.

3.5 Composition

Our motivation in designing our stand alone security definition for an OKE was to care-

fully define it so that it was efficiently achievable yet strong enough to imply secure composition

with any messaging protocol. We address the latter point in this section.

Theorem 13 (Informal). Assume P is “well behaved.” Suppose KE is secure with respect to

Goke
KE,P and Π is secure with respect to GG

Π. Then they are secure with respect to Goke-G
Π,KE,P .

What it means for means for P to be “well behaved” is specified in the formal theorem

statement in Section 15 based on definitions in Section 3.7.

We dedicate the rest of this section to sketching how this result is proven. First we

introduce a multi-user variant of our generic state exposure game which can be proven to be

implied by the single user variant.

Multi-user messaging security.

The multi-user state exposure game Gmu-G
Π,b is defined in Fig. 3.7. The advantage of

adversary A is defined by Advmu-G
Π (A) = Pr[Gmu-G

Π,1 (A)]−Pr[Gmu-G
Π,0 (A)].

This game can be understood as having taken the game Goke-G
Π,KE,P and changed the oracles

for interacting with KE into oracles for the “ideal key exchange” of Goke. In particular, IReg,

IReq, IFin, and IReveal are defined to be equal to those oracles as specified in Fig. 3.6.

Oracle IFing has been modified.
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Game Gmu-G
Π,b (A)

b′←$AO,IFing,O,Exp

For lab ∈ U do
If G.Pred(T[lab])

b′← 0
Return (b′ = 1)

Exp(lab)

Require mst[lab].status

= accepted

lab∗← lab

If lab∗ 6∈ U
lab∗←mst[lab].pid

r←mst[lab].role

T[lab∗].add(Exp,r,~k[lab])

Return~k[lab]

O(x, lab)

Require lab ∈ U
lab′←mst[lab].pid

in← σG [lab],~k[lab],~k[lab′],x
(σG [lab],~k[lab],~k[lab′],y)
←$GΠ(in)

T[lab].add(O,x,y)
Return y

IFing(lab1, lab2)

Require mst[lab1].status = waiting

Require mst[lab2].status = waiting

Require mst[lab1].pid = lab2

Require mst[lab2].pid = lab1

mst[lab1].status← accepted ; mst[lab2].status← accepted

If mst[lab1].role = I then lab∗← lab1

Else lab∗← lab2

U ← U ∪{lab∗} ; σG [lab∗]←$G.Start(b)
If {lab1, lab2}∩X 6= /0 then
(~k[lab1],~k[lab2])← (~k′[lab1],~k′[lab2])

For lab ∈ X ∩{lab1, lab2} do
T[lab∗].add(Exp,mst[lab].role,~k[lab])

Return ε

Figure 3.7. State exposure game with ideal key exchange. For compactness we let O =
IReg,IReq,IFin,IReveal.

The following lemma is a key step in our composition proof.

Lemma 14 (Informal). Suppose Π is secure with respect to GG
Π. Then Π is secure with respect

to Gmu-G
Π .

The proof of this lemma uses a combination of standard hybrid and index-guessing

proofs. The hybrid argument is used to create an adversary B which makes at most one Fing

query and achieves advantage Advmu-G
Π (B)≥ 1/qFing ·Advmu-G

Π (A) where qIFing is the number
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of IFing oracle queries made by A. It runs A, forwarding on all oracle queries it makes, with

the following exceptions. At the beginning B picks an index i ∈ [qFing] at random. For all

Fing queries before the i-th B instead exposes the specified sessions and emulates queries to

Exp and O with these sessions using secret bit 0. For all Fing queries after the i-th it behaves

analogously except with secret bit 1. Only for the i-th query does it actually forward on the

fingerprint. It outputs whatever bit A does.

Then we use an index-guessing argument to reduce from B to a single-user adversary C.

This adversary just guesses ahead of time which two sessions B will call Fing for and which of

the two (if either) will be revealed first. In simulates the oracles for these sessions with its own

oracles and information. If it guessed incorrectly it outputs b′ = 0, otherwise it outputs whatever

B does. Standard analysis gives AdvGΠ(C)≥ 1/(3qIRegqIReq) ·Advmu-G
Π (B).

Rest of the proof.

The rest of the proof of Theorem 13 is to show that Goke
KE,P security can be used to reduce

Goke-G
Π,KE,P security to Gmu-G

Π security. Let AKE,Π be an adversary against the combined security

game. Then we construct an adversary AKE as follows. First it samples a secret bit bΠ. Then it

forward on all key exchange queries to its own oracles. When a successful fingerprint comparison

is done, AKE then uses the keys it is given back to simulate Exp and O for AKE,Π using bΠ.

Finally it outputs 1 if AKE,Π correctly guesses bΠ and 0 otherwise.

We let S be a simulator for this new adversary which we use to build a multi-user

adversary AΠ. It runs AKE,Π and simulates all of its key exchange queries using S while

forwarding on all of S’s queries to the ideal key exchange. Queries to Exp and O are forwarded

on, replacing (u, i) identifiers with the labels chosen by S. Then the difference between AΠ’s

advantage and AKE,Π’s is exactly the advantage of AKE which must be small from the assumed

security of KE. Applying Lemma 14 finishes the proof.
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3.6 Simulator Pseudocode

SO(σ ,Reg,u)

(·, ·, ·, t)← σ [u] ; t← t +1
For l = 1, . . . ,n do

pk[l]←$ IReg((u, t, l))
(ek[l],dk[l])←$ PKE.Kg

σ [u]← (pk,ek,dk, t)
Return (σ ,(pk,ek))

SO(σ ,Req,u, i,m,v)

If m=⊥ then return (σ ,⊥,⊥)
(pk,ek,dk, t)← σ [v ]

(pk,ek, l)←m

If (pk,ek) = (pk[l],ek[l])
(pkR,k

′
R)

← IReq((v , t, l),(u, i))
σ [u, i].lab← (u, i)

σ [u, i].pid← (v , t, l)
skR←⊥

Else
(pkR,skR)←$ KE.KgR
k ′R←${0,1}KE.k

~k← ((pk,pkR),skR,k
′
R)

c←$ PKE.Enc(ek,k ′R)

z← pk ‖ek ‖pkR ‖c ‖ l
fp← H(z)
σ [u, i].keys←~k
σ [u, i].fing← z
σ [u,pk,ek,pkR,c, l]← i

Return (σ ,(pkR,c, l), fp)

SO(σ ,Fin,u, i,m,v)

(pk,c, l)←m

(pk,ek,dk, t)← σ [u]

If pk[l] =⊥ then return (σ ,⊥)
j← σ [v ,pk[l],ek[l],pk,c, l]
If σ [v , j].lab 6=⊥
IFin((u, t, l),(v , j))
σ [u, i].lab← (u, t, l)
σ [u, i].pid← (v , j)

skI ←⊥
Else
((·, ·),skI , ·)← IReveal((u, t, l))

kR← PKE.Dec(dk[l],c)
~k← ((pk[l],pk),skI ,kR)

z← pk[l]‖ek[l]‖pk ‖c ‖ l
fp← H(z)
(pk[l],ek[l],dk[l])← (⊥,⊥,⊥)
σ [u]← (pk,ek,dk, t)
σ [u, i].keys←~k
σ [u, i].fing← z
Return (σ , fp)
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SO(σ ,Fing,u, i,v , j)

If σ [u, i].fing = σ [v , j].fing

y← true ; lab1← σ [u, i].lab ; lab2← σ [v , j].lab

If ⊥ ∈ {lab1, lab2} then y← false

If σ [u, i].pid 6= lab2 or σ [v , j].pid 6= lab1 then y← false

Else (y, lab1, lab2)← (false,⊥,⊥)
Return (σ ,y, lab1, lab2)

SO(σ ,Corrupt,u)

(pk,ek,dk, t)← σ [u]

For l s.t. pk[l] 6=⊥ do ((·, ·),sk[l], ·)← IReveal((u, t, l))
Return (σ ,(pk,sk,ek,dk))

SO(σ ,Reveal,u, i)

((pkI ,pkR),sk,kR)← σ [u, i].keys

If σ [u, i].lab 6=⊥ then
((·, ·),sk, ·)← IReveal(σ [u, i].lab)

σ [u, i].keys← ((pkI ,pkR),sk,kR)

Return (σ ,σ [u, i].keys)

3.7 Formalization of Parameters

In this section we more formally define the parameters V∗ and I∗ with respect to which

we claim security.

Minimum V.

In Section 3.3.1 we defined V∗ as enforcing the following minimal restrictions.

1. A user must be registered before being interacted with in any manner.

2. Request and finalize cannot be performed by sessions that have already been created.

3. Sessions must be created and not have rejected before being used in a fingerprint compari-

son. A single session cannot perform fingerprint comparisons twice.

4. Sessions which compare fingerprints must have the correct values for pid. A session cannot

compare fingerprints with itself.
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5. A session can only be revealed if it has already been created and it has not accepted or

rejected. (After an accepting fingerprint comparison the session state stored by the key

exchange protocol is given away to the messaging protocol and no longer stored. After a

rejecting fingerprint comparison the session state should be deleted.)

We give the formal definition of V∗ by providing concrete pseudocode for computing it in Fig. 3.8.

To simplify notation we temporarily changed our convention of what “Require bool” means.

In particular in V∗ we use it as shorthand for the pseudocode “If not bool then reject← true”.

Three useful properties of V∗ are that it is monotonic and efficiently computable in an online

manner.

We say a V is monotonic if the following for all T and T′. If T is a prefix of T′ and

V(T) = true, then V(T′) = true. Additionally, V(T) = false if T is the empty transcript.

We say a V is efficiently computable in an online manner if V is efficiently computable and

V(T) does not depend on the output value of the last element of T. More formally, there exists an

efficient V(·, ·, ·) such that V(T,O,x) returns true if and only if computing T.add(O,x,y) ; V(T)

would return true for all y.

These properties allow us to restrict attention to adversaries that never produce transcripts

for which V∗(T) = true because an adversary can check beforehand and refrain from making

any queries which would cause this. In Theorem 15 we show composability only for V with

these properties.

Maximal I∗.

In Section 3.3.1 we sketched the following algorithm for I∗.

• First, it checks the transcript to determine the role of (u, i) and (v , j) by seeing whether

they were created by Req or Fin query.

• Then it traverses the transcript in order while checking each Corrupt and Reveal.

• On a corruption of u the session (u, i) is added to t if its role is not R, the most recent
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V∗(T)
reject← false

For (Proc,x,y) ∈ T
Proc(x,y)

Return reject

Reg(u,m)

regu← true

Fin((u, i,m,v), fp)

Require regu
Require sstiu.status =⊥
sstiu.fing← fp

sstiu.pid← v

If fp =⊥ then
sstiu.status← rejected

Else
sstiu.status← waiting

Req((u, i,m,v),(m′, fp))

Require regu
Require sstiu.status =⊥
sstiu.fing← fp

sstiu.pid← v

If fp =⊥ then
sstiu.status← rejected

Else
sstiu.status← waiting

Corrupt(u,stu)

Require regu

Reveal((u, i),sstiu.keys)

Require regu
Require sstiu.status = waiting

Fing((u, i,v , j),ε)

Require regu
Require sstiu.status = waiting

Require sstjv .status = waiting

Require sstiu.pid = v

Require sstjv .pid = u

Require (u, i) 6= (v , j)

If sstiu.fing = sstjv .fing then
sstiu.status← accepted ; sstjv .status← accepted

Else
sstiu.status← rejected ; sstjv .status← rejected

Figure 3.8. Pseudocode formalizing the minimal V.

Reg(u) query is same as the Reg(u) query preceding the creation of (u, i), and the

session had not already been created at the time of the corruption.

• On a reveal of the session (u, i) it is always added to t.

• The session (v , j) is treated analogously during this traversal.

In Fig. 3.9 we provide precise pseudocode for I∗. It traverses the transcript three times. In the

first traversal it figures out the role of both sessions as well as the time of creation. In the second
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I∗(T,u, i,v , j)
For l = 1, . . . , |T| do
(Proc,x,y)← T[l]
If Proc=Req and x = (u, i, ·, ·)
sstiu.role←R ; sstiu.time← l

If Proc=Req and x = (v , j, ·, ·)
sstjv .role←R ; sstjv .time← l

If Proc= Fin and x = (u, i, ·, ·)
sstiu.role←I ; sstiu.time← l

If Proc= Fin and x = (v , j, ·, ·)
sstjv .role←I ; sstjv .time← l

For l = 1, . . . , |T| do
(Proc,x,y)← T[l]
If Proc=Reg and x = u and l < sstiu.time

sstiu.prev← l
If Proc=Reg and x = v and l < sstjv .time

sstjv .prev← l
For l = 1, . . . , |T| do
(Proc,x,y)← T[l]
If Proc=Corrupt and x = u

If sstiu.role 6=R and sstiu.prev < l < sstiu.time

t.add(u, i)

If Proc=Corrupt and x = v

If sstjv .role 6=R and sstjv .prev < l < sstjv .time

t.add(v , j)

If Proc=Reveal and x = (u, i)

t.add(u, i)

If Proc=Reveal and x = (v , j)

t.add(v , j)

Return t

Figure 3.9. Pseudocode formalizing the maximal I.

traversal it determines the time of the preceding Reg for each session. Then in the third session

it uses the stated logic to determine when to add sessions to t.

3.8 Composition proof

In this section we formalize and prove Theorem 13. This theorem shows that if a

messaging scheme Π and OKE protocol KE are individually secure, then they are secure when
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used in combination. The following theorem formalizes this intuition.

Theorem 15. Let KE be an OKE protocol and Π be a messaging scheme. Let G be fixed. Let

P = (I,V) for some V which is monotonic and efficiently computable in an online manner. Let

AΠ,KE be an adversary making at most q oracle queries and S be a clean simulator. Then we

can construct adversaries AKE and AΠ for which the following inequality holds.

Advoke-G
Π,KE,P(AΠ,KE)≤ Advoke

KE,P,S(AKE)+3q3AdvGΠ(AΠ)

Adversaries AKE and AΠ are comparably efficient to AΠ,KE and S.

We say a simulator is clean if the number of IReg (resp. IReq) queries it makes never

exceeds the number of times it is run with input Reg (resp. Req). For non-clean simulators the

same proof works by replacing 3q3 in the above bound with 3qFing ·qIReg ·qIReq where qFing

is an upper bound on the number of queries AΠ,KE makes to Fing and qIReg (resp. qIReq) is an

upper bound on the number of oracle queries that S makes to IReg (resp. IReq).

As mentioned in Section 3.5, it is useful to first provide a lemma showing that security

with respect to our multi-user state exposure game is implied by security with respect to the

single user variant. The following lemma implies this and is a formalization of the informally

stated Lemma 14.

Lemma 16. Let Π be a messaging scheme. Fix G and let A be an adversary making at most qX

oracle queries to each of its oracles X. Then we can construct C such that

Advmu-G
Π (A)≤ 3qIFing ·qIReg ·qIReqAdvGΠ(C).

Adversary C is comparably efficient to A.

Proof. To start the proof we reduce to the case that the adversary only ever makes one Fing

query via a standard hybrid argument. From there we provide our reduction to GG . This latter
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Adversary BO,IFing,O,Exp

q←$ [qIFing] ; ctr←−1
b′←$AOS,OS,ExpS

For lab ∈ U do
If G.Pred(T[lab])

b′← 0
Return (b′ = 1)

ExpS(lab)

lab∗← lab

If lab∗ 6∈ U
lab∗←mst[lab].pid

If ctr[lab∗] = q
Return Exp(lab)

r←mst[lab].role

T[lab∗].add(Exp,r,~k[lab])

Return~k[lab]

OS(x, lab)

If ctr[lab] = q
Return O(x, lab)

lab′←mst[lab].pid

in← σG [lab],~k[lab],~k[lab′],x
(σG [lab],~k[lab],~k[lab′],y)←$GΠ(in)

T[lab].add(O,x,y)
Return y

IFingS(lab1, lab2)

If mst[lab1].role = I then lab∗← lab1 else lab∗← lab2

ctr← ctr+1 ; ctr[lab∗]← ctr

If i = q then IFing(lab1, lab2) ; Return ε

Else if i > q then σG [lab∗]←$G.Start(0)
Else σG [lab∗]←$G.Start(1)
U ← U ∪{lab∗}
~k′[lab1]← IReveal(lab1) ;~k′[lab2]← IReveal(lab2)

If {lab1, lab2}∩X 6= /0 then
(~k[lab1],~k[lab2])← (~k′[lab1],~k′[lab2])

Else
k←${0,1}Π.k

(`,sk,k ′)←~k′[lab1] ;~k[lab1]← (`,sk,k)

(`,sk,k ′)←~k′[lab2] ;~k[lab2]← (`,sk,k)

For lab ∈ X ∩{lab1, lab2} do
T[lab∗].add(Exp,mst[lab].role,~k[lab])

Return ε

Figure 3.10. Adversary for proof of Lemma 16 making at most one query to IFing. Oracles
OS are described in the text.

reduction requires the adversary to guess beforehand which labels will be used in the Fing query

and whether either of their secrets will be revealed.

We assume without loss of generality that A never makes a query which triggers any of

the “Require” statements. Our first adversary B is shown in Fig. 3.10. For the oracles of the ideal
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key exchange (OS) other than IFing we assume that A1 simply forwards the queries on to its

own ideal key exchange oracles. While doing so it keeps track of the values of all values stored

in mst and X (which is clearly straightforward to do). The other oracles are simulated as shown

in the figure by IFingS, ExpS, and OS.

Adversary B starts by sampling q at random from [qFing]. The q-th query to IFingS

will be forwarded on to B’s own oracles while all other queries will be simulated locally by B.

It uses the counter ctr to keep track of this. When ctr[lab∗]> q the state σG [lab∗] it initialized

with G.Start(0) while G.Start(1) is used if ctr[lab∗]< q.

Let Pr[Bb
x ] denote the probability that Gmu-G(B) returns true conditioned on B having

sampled q = x and the underlying bit of Gmu-G being b. Thus Advmu-G
Π (B) = Ex(Pr[B1

x ])−

Ex(Pr[B0
x ]). We make the following three claims.

1. Pr[B1
qIFing−1] = Pr[Gmu-G

Π,1 (A)]

2. Pr[B0
0] = Pr[Gmu-G

Π,0 (A)]

3. Pr[B1
x ] = Pr[B0

x+1] for all x

For claim (1) note that when q = qIFing−1 it will never hold that ctr[lab∗]> q. This and b = 1

implies that G.Start(1) was used to initiate all of the game states A interacts with as in Gmu-G
Π,1 .

For claim (2) note that when q = 0 it will never hold that ctr[lab∗]< q. This and b = 0 implies

that G.Start(0) was used to initiate all of the game statesA interacts with as in Gmu-G
Π,0 . For claim

(3) note that in both of these cases, G.Start(0) is being used when ctr[lab∗]≤ x and G.Start(1)

is being used otherwise.
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The claims give use the following.

Advmu-G
Π (A) = Pr[B1

qIFing−1]−Pr[B0
0]

= Pr[B1
qIFing−1]−Pr[B0

0]+
qIFing−2

∑
x=0

(Pr[B1
x ]−Pr[B0

x+1])

=
qIFing−1

∑
x=0

(Pr[B1
x ]−Pr[B0

x ]) = qIFing ·Advmu-G
Π (B)

Next we provide our reduction to GG security for any B playing Gmu-G and making at

most one IFing query. We assume without loss of generality that labels queried to IReg have

the form (I, i) for i ∈ [qIReg] and that labels queries as the second input to IReq have the form

(R, j) for j ∈ [qIReq]. We assume B never makes queries which trigger “Require” statements

(allowing us to omit “Require” statements from our code and assume that O and Exp are only

appropriately called with the labels queried to IFing).

Our adversary C is shown in Fig. 3.11 and starts by guessing indices i and j corresponding

to what labels will later be queries to IFing. If it guessed incorrectly it will output b′ = 0. It

uses its own game to simulate oracles for which these labels are queried. For all other labels it

will simulate the ideal key exchange locally.

It additionally guesses a value d ∈ {0,1,2}. This is a guess whether (R, j) will be

queried to IReveal first (d = 2), (I, i) will be queried to IReveal first (d = 1), or neither will

be queried (d = 0). In the last case it simulated the shadow key returned by IReq when queried

for (R, j) by picking it at random. In the other cases it exposes the appropriate user in its own

game and returns the obtained key as the shadow key. Note that guessing which user is revealed

first is necessary so that C’s transcript of exposes matches the one that would be induced for

B in IFing. If C guessed the incorrect d then it simply outputs b′ = 0 (using the pseudocode

abort(0)).

When C correctly guesses i, j, and d it perfectly simulates the view of B playing Gmu-G
Π,b

when it is playing GG
Π,b so it outputs b′ = 1 with the same probability as A. Moreover its
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transcript T perfectly matches T[lab∗], so this b′ is overwritten to 0 with the same probability. Its

probability of guessing these values correctly is independent of b because the checks whether

the guesses were correct occur before OS is ever queried. Thus the probability it did not

guess these values incorrectly has probability at least 1/(3 · qIReg · qIReq) so Advmu-G
Π (B) ≤

(3 ·qIReg ·qIReq)AdvGΠ(C). The lemma follows by combining our individual results.

3.8.1 Proof of Theorem 15

We start our proof by constructing an adversary AKE against the security of KE. It will

emulate the view of AΠ,KE using its own oracles to emulate the key exchange. For when two

session perform a successful fingerprint comparison the keys are returned to AKE which uses

them to simulate an instance interacting with Π using G using a secret bit dΠ. If AΠ,KE correctly

guesses this bit, AKE outputs 1. Otherwise it outputs 0.

Adversary AKE is formally defined by the pseudocode in Fig. 3.12 and Fig. 3.13.

Highlighting is used to indicate where we have changed the code of oracles from those in

Goke-G . Most importantly, we check before each key exchange query whether it will make

V(T) = true in which case we abort immediately. Additionally, for technical reasons that will

become apparent later, in FingS we check if the keys produced were ⊥ rather than comparing

fingerprints. This is equivalent. If the fingerprints are not equal the returned keys will be ⊥. If

the fingerprints are equal then the keys cannot be ⊥ (because this would imply that the sessions

do not have status waiting). This would have caused V to reject the transcript from our minimal

assumptions on V.

We note that the view of AΠ,KE when run by AKE (when the secret bit of Goke is 1) is

identical to its view in Goke-G with secret bit dΠ (with the exception that we abort early when we

already know V(T) would become true). The oracles it is given access to are identical between

the two games. Additionally note that V(T) will never hold in Goke
KE,P,S,1. Thus we can verify that

AKE outputs 1 exactly when b′ = b would hold at the end of Goke-G
Π,KE,P,b(AΠ,KE). Thus, standard
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Adversary CO,Exp(`)

i←$ [qIReg] ; j←$ [qIReq]

d←${0,1,2}
xp← true

(pk(I,i),pk(R, j))← `

b′←$BOS,OS,ExpS

Return b′

OS(x, lab)

Return O(x)

ExpS(lab)

If lab = (I, i)
Return Exp(I)

Return Exp(R)

IFingS(lab1, lab2)

If {lab1, lab2} 6= {(I, i),(R, j)} then abort(0)
If {lab1, lab2}∩X = /0 and d 6= 0 then abort(0)
Return ε

IRegS(lab)

If lab = (I, i) then (pkI ,skI)← (pk(I,i),�)
Else (pkI ,skI)←$ Π.KgI
~k[lab]← ((pkI ,⊥),skI ,⊥)
~k′[lab]← ((pkI ,⊥),skI ,⊥)
Return pkI

IReqS(lab1, lab2)

If lab2 = (R, j) and lab1 6= (I, i) then
abort(0)

If lab2 = (R, j) then
(pkR,skR)← (pk(R, j),�)
If d = 0 then kR←� ; k ′R←${0,1}Π.k

If d = 1 then
If k∗ =⊥ then (·,sk(I,i),k

∗)←Exp(I)
kR←${0,1}Π.k ; k ′R← k∗

If d = 2 then
kR←${0,1}Π.k ; (·,sk(R, j),k

′
R) ←

Exp(R)
Else
(pkR,skR)←$ Π.KgR
kR←${0,1}Π.k ; k ′R←${0,1}Π.k

((pkI , ·), ·, ·)←~k[lab1] ; `← (pkI ,pkR)
~k[lab2]← (`,skR,kR)
~k′[lab2]← (`,skR,k

′
R)

Return (pkR,k
′
R)

IFinS(lab1, lab2)

//Unchanged from IFin in Gmu-G

IRevealS(lab)

If lab ∈ {(I, i),(R, j)} and d = 0 then
abort(0)

If lab = (I, i) and d = 2 and xp then
abort(0)

If lab = (R, j) and d = 1 and xp then
abort(0)

If lab = (I, i) then
If xp then

xp← false

If k∗ =⊥ then (·,sk(I,i),k
∗)←Exp(I)

Else (·,sk(I,i), ·)←Exp(I)
If lab = (R, j) then

If xp then xp← false

Else (·,sk(R, j), ·)←Exp(R)
(`,sk,k)←~k′[lab]

If sk = � then~k′[lab]← (`,sk lab,k)

X .add(lab) ; Return~k′[lab]

Figure 3.11. Single user adversary for proof of Lemma 16. For compactness we let OS =
IRegS,IReqS,IFinS,IRevealS,IFingS.
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AReg,Req,Fin,Fing,Corrupt,Reveal
KE

dΠ←${0,1}
b′←$AKS,ExpS,OS

Π,KE

For lab ∈ U do
If G.Pred(T[lab])

b′← 0
If b′ = dΠ then return 1
Return 0

OS(x,u, i)
//Identical to O in Goke-G

ExpS(u, i)

//Identical to Exp in Goke-G

FingS(u, i,v , j)

If V(T,Fing,(u, i,v , j))
If dΠ = 1 then abort(0)
Else abort(1)

(~k1,~k2)← Fing(u, i,v , j)

If (~k1,~k2) 6= (⊥,⊥) then
sstiu.status← accepted ; sstjv .status← accepted

sstiu.psess← j ; sstjv .psess← i

(~k[(u, i)],~k[(v , j)])← (~k1,~k2)

If sstiu.role = I then lab∗← (u, i)

Else lab∗← (v , j)

U ← U ∪{lab∗} ; σG [lab∗]←$G.Start(dΠ) ; t← I(T,u, i,v , j)
For (w,k) ∈ t do T[lab∗].add(Exp,sstk

w.role,~k[(w,k)])
Else
sstiu.status← rejected ; sstjv .status← rejected

T.add(Fing,(u, i,v , j),ε) ; Return ε

Figure 3.12. AdversaryAKE for proof of Theorem 15. For compactness we defineKS=RegS,
ReqS,FinS,FingS,CorruptS,RevealS.

probability rewriting gives Advoke-G
Π,KE,P(AΠ,KE) = 2Pr[Goke

KE,P,S,1(AKE)]−1.

Next we introduce adversary AΠ against the security of Π. Specifically it is playing

Gmu-G
Π,b (A). It simulates the key exchange queries of AΠ,KE by running S with access to its own

ideal key exchange oracles. Then any queries to O or Exp by AΠ,KE are forwarded to its own

oracles. The goal of AΠ is that the view of AΠ matches what it would see in Goke
KE,P,S,0 when run

by AKE with the secret bit AΠ is trying to guess playing the role of dΠ.

The adversary is formally given in Fig. 3.14 and Fig. ??. We have used highlighting to

indicate where we have made changes from existing oracles. In particular, the IFing which AΠ

has access to does not return keys (unlike the one used in Goke
KE,P,S,0). Instead AΠ simply queries
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RegS(u)

If V(T,Req,u)

If dΠ = 1 then abort(0)
Else abort(1)

m←Reg(u)

T.add(Reg,u,m)

Return m

FinS(u, i,m,v)

If V(T,Fin,(u, i,m,v))

If dΠ = 1 then abort(0)
Else abort(1)

fp← Fin(u, i,m,v)

sstiu.fing← fp

sstiu.role←I
sstiu.pid← v

If fp =⊥ then
sstiu.status← rejected

Else
sstiu.status← waiting

T.add(Fin,(u, i,m,v), fp)

Return fp

ReqS(u, i,m,v)

If V(T,Req,(u, i,m,v))

If dΠ = 1 then abort(0)
Else abort(1)

(m′, fp)←Req(u, i,m,v)

sstiu.fing← fp

sstiu.role←R
sstiu.pid← v

If fp =⊥ then
sstiu.status← rejected

Else
sstiu.status← waiting

T.add(Req,(u, i,m,v),(m′, fp))

Return (m′, fp)

CorruptS(u)

If V(T,Corrupt,u)

If dΠ = 1 then abort(0)
Else abort(1)

stu←Corrupt(u)

T.add(Corrupt,u,stu)

Return stu

RevealS(u, i)

If V(T,Reveal,(u, i))

If dΠ = 1 then abort(0)
Else abort(1)

sstiu.keys←Reveal(u, i)

T.add(Reveal,(u, i),sstiu.keys)

Return sstiu.keys

Figure 3.13. Additional oracles as simulated by AKE.

IFing and remembers the association between sessions and labels that it will need to access

these keys in future queries to O or Exp.

Now the claim that we need to justify to complete our proof is that Advmu-G
Π (AΠ) =

2Pr[Goke
KE,P,S,0(AKE)]−1 which will follow by showing that arguing that AΠ achieves its goal.
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Adversary AO,IFing,O,Exp
Π

σ←$ S(Init)

b′←$AKS,ExpS,OS
Π,KE

If V(T) then b′← 0
Return b′

OS(x,u, i)
Return O(z, lab[(u, i)])

ExpS(u, i)

Return Exp(lab[(u, i)])

FingS(u, i,v , j)

(σ ,y, lab1, lab2)←$ SO(σ ,Fing,u, i,v , j)

t← I(T,u, i,v , j) ; t ′← []

For lab ∈ X do
If lab = lab1 then t ′.add((u, i))

If lab = lab2 then t ′.add((v , j))

If y and t = t ′ then
x← IFing(lab1, lab2)

If x 6=⊥ then (lab[(u, i)], lab[(v , j)])← (lab1, lab2)

T.add(Fing,(u, i,v , j),ε) ; Return ε

RegS,ReqS,FinS,CorruptS,RevealS

//Identical to corresponding oracle in Goke
KE,P,S,0

Figure 3.14. Adversary AΠ for proof of Theorem 15. For compactness we define KS=RegS,
ReqS,FinS,FingS,CorruptS,RevealS. Additionally, we define O = IReg,IReq,
IFin,IReveal.

This allows us to compute the following.

Advoke-G
Π,KE,P(AΠ,KE) = 2Pr[Goke

KE,P,S,1(AKE)]−1

= 2(Advoke
KE,P,S(AKE)+Pr[Goke

KE,P,S,0(AKE)])−1

= 2Advoke
KE,P,S(AKE)+(2Pr[Goke

KE,P,S,0(AKE)]−1)

= 2Advoke
KE,P,S(AKE)+Advmu-G

Π (AΠ)

The final theorem would then follow by applying Lemma 16.

We complete the proof by arguing that the view of AΠ matches what it would see in

Goke
KE,P,S,0 when run by AKE with the secret bit AΠ is trying to guess playing the role of dΠ. In

the latter case AKE will abort early as soon as V(T) would hold instead of waiting to check it

at the end, but clearly this does not effect the probabilities involved. Other than that the key
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exchange oracle simulations (other than that of Fing) essentially just give AΠ,KE direct access

to the corresponding oracle. Since AΠ leaves these unchanged from Goke
KE,P,S,0, this simulation is

clearly correct.

Now we consider whether fingerprinting correctly links the key exchange oracles with

the messaging oracles. Suppose the keys returned to AKE would be ⊥ in its FingS (causing it

not to store them and make them available via the messaging oracles). Then in Fing0 either

y = false or t 6= t ′ or one of IFing’s “Require” statements was triggered. In any of these cases

AΠ would not save the labels for the session so they would be similarly be inaccessible through

the messaging oracles. In the other case, AKE’s computation of lab∗ mirrors that of AΠ’s oracle

IFing (because sstiu.role computed by AKE matches mst[lab[(u, i)]].role computed by IFing)

so they will be similarly accessible in the same manner through the messaging oracles. Note,

moreover that the requirement t = t ′ implies that the T[lab∗] computed by AKE matches the one

computed in IFing. Since AKE outputs 1 whenever AΠ,KE has correctly guessed dΠ the claim

mentioned earlier holds, completing the proof.

3.9 Security of GKE

In this section we formalize and prove the security of GKE. This is captured by the

following theorem which reduces its security to that of PKE and H.

Theorem 17. Let GKE = GKE[PKE,n] where PKE is a public key encryption scheme, n ∈ N,

and GKE.Init is a splittable initialization algorithm. Let P = (I∗,V∗). Let S be the simulator

specified in Appendix 3.6 andA be an adversary making at most qX queries to each of its oracles

X. Then we can construct adversaries P andH satisfying

Advoke
GKE,P,S(A)≤ 2q ·Advind-cpa

PKE (P)+Advcr
H(H)+nq22−H∞(PKE).

Here q is the sum of all of the qX’s. These adversaries are comparably efficient to A.
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The rest of this section proves this result. We start with a useful lemma and then proceed

to the main body of the proof.

Public Key Encryption Entropy.

In the theorem above we use the min-entropy of the public key encryption scheme

PKE. We first define the min-entropy of algorithms PKE.Kg and PKE.Enc as H∞(PKE.Kg) and

H∞(PKE.Enc), such that

2−H∞(PKE.Kg) = max
ek∈{0,1}∗

Pr[ek∗ = ek : (ek, ·)←$ PKE.Kg]

2−H∞(PKE.Enc) = max
c,ek,m∈{0,1}∗

Pr[c∗ = c : c←$ PKE.Enc(ek,m)].

Note that the entropy of key generation only depends on ek, not dk. Then we define H∞(PKE)

to be the minimum of H∞(PKE.Kg) and H∞(PKE.Enc). We note that the entropy of PKE can be

augmented by adding additionally random bit to ek and c which are ignored by all algorithms.

Public Key Encryption Lemma.

We start our proof by introducing a new security definition for public key encryption. We

do not expect this definition to be of independent interest, but instead introduce it for the sake of

modularity and understandability of our ultimate proof. In particular it precisely captures the

use-case of the public key encryption scheme that is required to prove security of our proposed

key exchange protocol.

Consider the game Gmu−pke
PKE,κ,b shown in Fig. 3.15. It is parameterized by a public key

encryption scheme PKE, key length κ ∈ N, and bit b which the adversary attempts to guess. The

advantage of an adversary A is defined by Advmu-pke
PKE,κ (A) = Pr[Gmu-pke

PKE,κ,1(A)]−Pr[Gmu-pke
PKE,κ,0(A)].

In this game, the adversary may interact with an arbitrary number of users i by calling

New with input i. When it does so it receives back the encryption key of i. Once i is created

it may request as many new ciphertexts as it wishes from that user by calling Enc(i, j). The

ciphertext will encrypt k1
i, j which was just sampled uniformly at random.
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Game Gmu-pke
PKE,κ,b(A)

b′←$ANew,Enc,Show,Chal,Key

Return (b′ = 1)

New(i)
Require (New, i) 6∈ S
(eki,dki)←$ PKE.Kg

S.add(New, i)
Return eki

Enc(i, j)
Require (New, i) ∈ S
Require (Enc,(i, j)) 6∈ S
k1

i, j←${0,1}κ

ci, j←$ PKE.Enc(eki,k1
i, j)

S.add(Enc,(i, j))
Return ci, j

Show(i)
Require (New, i) ∈ S
Require ∀ j,(Chal,(i, j)) 6∈ S
S.add(Show, i)
Return dki

Chal(i, j)
Require (Enc,(i, j)) ∈ S
Require ∀ j′,(Chal,(i, j′)) 6∈ S
Require (Show, i) 6∈ S
Require (Key,(i, j) 6∈ S
k0

i, j←${0,1}κ

S.add(Chal,(i, j))
Return kb

i, j

Key(i, j)
Require (Enc,(i, j)) ∈ S
Require (Chal,(i, j)) 6∈ S
S.add(Key,(i, j))
Return k1

i, j

Figure 3.15. Security game for public key encryption.

Then the attacker can call either Show(i), Chal(i, j), or Key. But for a particular

i it may only may call Chal for a single value of j and may not call either of the other two

oracles if it does so. In Show, the decryption key dki is returned to A while in Key the key

k1
i, j is returned to A. Either of these allow the adversary to learn what was encrypted in ci, j but

intuitively do not help it guess b because its view only depend on the secret bit when it makes

queries to Chal this oracle either returns k1
i, j or a fresh random key k0

i, j depending on the value

of the secret bit. Note that “Require” statements are used to capture the various restrictions we

stated on the behavior of A.

The following lemma exhibits that security with respect to this security notion is implied

by security with respect to standard semantic security of a public key encryption scheme. To

prove this lemma we first use a hybrid argument to reduce to bounding the security of an

adversary making only one query to New. We can assume such an adversary never queries

Show which allows us to apply the security of PKE to replace the encryption of k1 with the
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Adversary BNew,Enc,Show,Chal,Key

i∗←$ [qNew]

b′←$ANewS,EncS,ShowS,ChalS,KeyS

Return b′

NewS(i)
If i = i∗

eki←New(i)
Else
(eki,dki)←$ PKE.Kg

Return eki

EncS(i, j)
If i = i∗

ci, j←Enc(i, j)
Else

k1
i, j←${0,1}κ

ci, j←$ PKE.Enc(eki,k1
i, j)

Return ci, j

ShowS(i)
If i = i∗

dki← Show(i)
Return dki

ChalS(i, j)
If i = i∗

k←Chal(i, j)
Else if i > i∗

k←${0,1}κ

Else if i < i∗

k← k1
i, j

Return k

KeyS(i, j)
If i = i∗

k1
i, j←Key(i, j)

Return k1
i, j

Figure 3.16. Adversary B used for proof of Lemma 18. For compactness, “Require” statements
are omitted.

encryption of 0κ which makes the adversaries view independent of the bit it is trying to guess.

Lemma 18. Let PKE be a public key encryption scheme for messages of length κ ∈N. Let A be

an adversary making at most q queries to its New oracle. Then we can create adversary P for

which the following holds.

Advmu-pke
PKE,κ (A)≤ 2q ·Advind-cpa

PKE (P)

Adversary P is comparably efficient to A.

Proof. Without loss of generality we can assume that A never makes queries which would

trigger a “Require” statement and only makes queries with i ∈ [q]. We start our proof with a

multi-user to single user hybrid argument so that we only need to consider adversaries which

only make a single to Enc.
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Adversary PLR(ek)

dpke←${0,1}
b′←$ANewS,EncS,ShowS,ChalS,KeyS

If b′ = d then return 1
Else return 0

NewS(i)
Return ek

EncS(i, j)
k1

i, j←${0,1}κ

ci, j← LR(0κ ,k1
i, j)

Return ci, j

ShowS(i, j)
Return �
ChalS(i)
k0

i, j←${0,1}∗
Return kd

i, j

KeyS(i, j)
Return k1

i, j

Figure 3.17. Adversary P used for proof of Lemma 18. For compactness, “Require” statements
are omitted.

Consider the adversary B shown in Fig. 3.16. It starts by sampling a random i∗ ∈ [q]. All

queries made for i = i∗ are simply forwarded to B’s own oracles. It simulates the responses to all

other queries locally. When i > i∗ it returns a random key in ChalS (emulating k0
i, j) and when

i < i∗ it return k1
i, j.

Let Pr[Bb
i ] denote the probability that B outputs b′ = 1 conditioned on it having sampled

i∗ = i and the underlying bit in Gmu-pke is b. Thus Advmu-pke
PKE,κ (B) = Ei(Pr[B1

i ])−Ei(Pr[B0
i ]). We

make the following three claims.

1. Pr[B1
q−1] = Pr[Gmu-pke

PKE,κ,1(A)]

2. Pr[B0
0] = Pr[Gmu-pke

PKE,κ,0(A)]

3. Pr[B1
x ] = Pr[B0

x+1] for all x

For claim (1) note that when i∗ = q−1 it will never hold that i > i∗. This and b = 1 implies k1
i, j

is always being returned to A by ChalS as in Gmu-pke
PKE,κ,1. For claim (2) note that when i∗ = 0 it

will never hold that i < i∗. This and b = 0 implies a fresh random key is always being returned to

A by ChalS as in Gmu-pke
PKE,κ,0. For claim (3) note that in both of these cases k1

i, j is being returned

to A by ChalS when i≤ x and otherwise a fresh random key is being returned.
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The claims give us the following.

Advmu-pke
PKE,κ (A) = Pr[B1

q−1]−Pr[B0
0]

= Pr[B1
q−1]−Pr[B0

0]+
q−2

∑
x=0

(Pr[B1
x ]−Pr[B0

x+1])

=
q−1

∑
x=0

(Pr[B1
x ]−Pr[B0

x ]) = q ·Advmu-pke
PKE,κ (B)

Note that because B only ever makes one New query, if it ever calls Show then it can

no longer call Chal and its view is independent of the bit it is trying to guess. So we can without

loss of generality assume that it never does so. Let G′b be defined identically to Gmu-pke
PKE,κ,1(B)

except Enc is redefined as follows.

Enc(i, j)

Require (New, i) ∈ S

Require (Enc,(i, j)) 6∈ S

k1
i, j←${0,1}κ

ci, j←$ PKE.Enc(eki,0κ)

S.add(Enc,(i, j))

Return ci, j

The only difference is that 0κ is encrypted instead of k1
i, j. Because the ciphertext is now

independent of k1
i, j, we can see that Pr[G′1]−Pr[G′0] = 0. Then we construct adversary P as

shown in Fig. 3.17. It samples its own bit d and simulates the view of B using its LR oracle to

encrypt either k1
i, j or 0κ then guesses 1 if B correctly guesses d. Standard conditional probability

calculation then give that Advmu-pke
PKE,κ (B) = 2 ·Advind-cpa

PKE (P). The lemma follows by combining

our individual results.
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3.9.1 Proof of Theorem 17

Our proof will consist of a sequence of game transitions bridging the gap between

games Goke
KE,P,S,1 and Goke

KE,P,S,0. In particular we define game Gx for x ∈ {1, . . . ,4} each of the

form specified below which differ only in the definition of the oracles. Throughout we use

our observation from Section 3.7 that V∗ is monotonic and efficiently computable in an online

manner so we can assume that A never makes oracle queries which would cause V∗ to reject the

produced transcript.

Gx

σ←$ S(Init)

b′←$ARegx,Reqx,Finx,Fingx,Corruptx,Revealx

If V(T) then b′← 0
Return (b′ = 1)

Of these games we will prove the following results.

1. Pr[G0] = Pr[Goke
KE,P,S,0]

2. Pr[G1]−Pr[G0]≤ 2q ·Advind-cpa
PKE (P)

3. Pr[G2] = Pr[G1]

4. Pr[G3]−Pr[G2]≤ nq2 ·2−H∞(PKE)

5. Pr[G4]−Pr[G3]≤ Advcr
H(H)

6. Pr[Goke
KE,P,S,1] = Pr[G4]
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The final claim is then obtained by the following calculation.

Advoke
KE,P,S(A) = Pr[Goke

KE,P,S,1]−Pr[Goke
KE,P,S,0]

= Pr[G4]−Pr[G0]

=
4

∑
x=1

Pr[Gx]−Pr[Gx−1]

≤ 2q ·Advind-cpa
PKE (P)+nq2 ·2−H∞(PKE)+Advcr

H(H)

The brunt of the proof consists of the three arguments in Claims (2), (4), and (5). In Claim

(4) we use the security of PKE to argue that A cannot tell the shadow key is being encrypted

instead of the real key. In Claim (4) we use the entropy of PKE to argue that two sessions will

only have the same view of the transcript of their respective conversations if A was, in fact,

forwarding the messages between them honestly. Finally, in Claim (5) collision resistance of

H is used to argue that S’s use of the transcript for fingerprint comparisons is indistinguishable

from the actual protocols use of the hash of the transcript. The rest of the claims follow from the

fact that the various intermediate games were created from each other by making transforms to

the pseudocode which we can argue do not change the behavior of the game.

Claim 1, Pr[G0] = Pr[Goke
KE,P,S,0].

Game G0 is defined by the oracles in Figures 3.18 and 3.19. Note that the boxed code is

not included in G0. This game was created by hardcoding the pseudocode of S into Goke and then

making a series of pseudocode modifications. One major modification was to substitute the code

of the ideal key exchange oracles in wherever S made queries to them and to replace the tables

~k[] and~k′[] with tables pkI [], pkR[], sk[], kR[], and k′R[] that store each of their subcomponents.

Then, the table kR[] for non-shadow keys was eliminated. These keys were only used when

returned by Fing so their sampling was deferred until they were needed there (right above the

boxed code of G1).
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Reg(u)

(·, ·, ·, t)← σ [u] ; t← t +1
For l = 1, . . . ,n do
(pkI ,skI)←$ KE.KgI
pkI [(u, t, l)]← pkI ; sk[(u, t, l)]← skI
pk[l]← pkI ; (ek[l],dk[l])←$ PKE.Kg

σ [u]← (pk,ek,dk, t) ; T.add(Reg,u,(pk,ek))
Return (pk,ek)

Req(u, i,m,v)

(pk,ek,dk, t)← σ [v ] ; (pk,ek, l)←m

If (pk,ek) = (pk[l],ek[l])
(pkR,skR)←$ KE.KgR ; k ′R←${0,1}KE.k

(pkI [(u, i)],pkR[(u, i)])← (pk,pkR)

sk[(u, i)]← skR ; k ′R[(u, i)]← k ′R
σ [u, i].lab← (u, i) ; σ [u, i].pid← (v , t, l) ; skR←⊥
~k← ((pk,pkR),skR,k

′
R) ; c←$ PKE.Enc(ek,k ′R)

Else
(pkR,skR)←$ KE.KgR ; k ′R←${0,1}KE.k

~k← ((pk,pkR),skR,k
′
R) ; c←$ PKE.Enc(ek,k ′R)

z← pk ‖ek ‖pkR ‖c ‖ l ; fp← H(z)
σ [u, i].keys←~k ; σ [u, i].fing← z
σ [u,pk,ek,pkR,c, l]← i ; m′← (pkR,c, l)
T.add(Req,(u, i,m,v),(m′, fp)) ; Return (m′, fp)

Fin(u, i,m,v)

(pk,c, l)←m ; (pk,ek,dk, t)← σ [u] ; fp←⊥
If pk[l] 6=⊥ then
j← σ [v ,pk[l],ek[l],pk,c, l]
If σ [v , j].lab 6=⊥
pkR[(u, t, l)]← pkR[(v , j)]

k ′R[(u, t, l)]← k ′R[(v , j)]

σ [u, i].lab← (u, t, l)
σ [u, i].pid← (v , j) ; skI ←⊥

Else
X .add((u, t, l)) ; skI ← sk[(u, t, l)]

kR← PKE.Dec(dk[l],c)
~k← ((pk[l],pk),skI ,kR)

z← pk[l]‖ek[l]‖pk ‖c ‖ l ; fp← H(z)
(pk[l],ek[l],dk[l])← (⊥,⊥,⊥)
σ [u]← (pk,ek,dk, t) ; σ [u, i].keys←~k ; σ [u, i].fing← z

T.add(Fin,(u, i,m,v), fp) ; Return fp

Figure 3.18. Oracles shared by G0 and G1.
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Fing(u, i,v , j)

If σ [u, i].fing = σ [v , j].fing

y← true ; lab1← σ [u, i].lab ; lab2← σ [v , j].lab

If ⊥ ∈ {lab1, lab2} then y← false

If σ [u, i].pid 6= lab2 or σ [v , j].pid 6= lab1 then y← false

Else (y, lab1, lab2)← (false,⊥,⊥)
t← I(T,u, i,v , j) ; t ′← []

For lab ∈ X do
If lab = lab1 then t ′.add((u, i))

If lab = lab2 then t ′.add((v , j))

If y and t = t ′ then
If {lab1, lab2}∩X 6= /0 then (k1,k2)← (k ′R[lab1],k

′
R[lab2])

Else
kR←${0,1}KE.k ; (k1,k2)← (kR,kR)

(k1,k2)← (k ′R[lab1],k
′
R[lab2])

~k1← ((pkI [lab1],pkR[lab1]),sk[lab1],k1)
~k2← ((pkI [lab2],pkR[lab2]),sk[lab2],k2)

z← (~k1,~k2)

Else z← (⊥,⊥)
T.add(Fing,(u, i,v , j),ε) ; Return z

Corrupt(u)

(pk,ek,dk, t)← σ [u]

For l s.t. pk[l] 6=⊥ do X .add((u, t, l)) ; sk[l]← sk[(u, t, l)]
stu← (pk,sk,ek,dk)
T.add(Corrupt,u,stu)

Return stu

Reveal(u, i)

((pkI ,pkR),sk,kR)← σ [u, i].keys

If σ [u, i].lab 6=⊥ then
X .add(σ [u, i].lab) ; sk← sk[σ [u, i].lab]

σ [u, i].keys← ((pkI ,pkR),sk,kR)

T.add(Reveal,(u, i),σ [u, i].keys)

Return σ [u, i].keys

Figure 3.19. Oracles shared by G0 and G1. Boxed code is only included in G1.

The claim follows from observing that the pseudocode modifications do not modify the

behavior of the game. The interested reader is referred to Section 3.9.2 where we walk through

this in detail via three additional intermediate games.
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PNew,Enc,Show,Chal,Key
mu

σ←$ S(Init)

b′←$ARegS,ReqS,FinS,FingS,CorruptS,RevealS

If V(T) then b′← 0
Return b′

ReqS(u, i,m,v)

(pk,ek,dk, t)← σ [v ] ; (pk,ek, l)←m

If (pk,ek) = (pk[l],ek[l])
(pkR,skR)←$ KE.KgR
(pkI [(u, i)],pkR[(u, i)])← (pk,pkR)

sk[(u, i)]← skR
σ [u, i].lab← (u, i)

σ [u, i].pid← (v , t, l) ; skR←⊥
~k← ((pk,pkR),skR,�)
c←Enc((v , t, l),(u, i))

Else
(pkR,skR)←$ KE.KgR ; k ′R←${0,1}KE.k

~k← ((pk,pkR),skR,k
′
R)

c←$ PKE.Enc(ek,k ′R)

z← pk ‖ek ‖pkR ‖c ‖ l ; fp← H(z)
σ [u, i].keys←~k ; σ [u, i].fing← z
σ [u,pk,ek,pkR,c, l]← i ; m′← (pkR,c, l)
T.add(Req,(u, i,m,v),(m′, fp))

Return (m′, fp)

RegS(u)

(·, ·, ·, t)← σ [u] ; t← t +1
For l = 1, . . . ,n do
(pkI ,skI)←$ KE.KgI
pkI [(u, t, l)]← pkI
sk[(u, t, l)]← skI ; pk[l]← pkI
ek[l]←New((u, t, l)) ; dk[l]←�

σ [u]← (pk,ek,dk, t)
T.add(Reg,u,(pk,ek))
Return (pk,ek)

FinS(u, i,m,v)

(pk,c, l)←m ; (pk,ek,dk, t)← σ [u]

fp←⊥
If pk[l] 6=⊥ then
j← σ [v ,pk[l],ek[l],pk,c, l]
If σ [v , j].lab 6=⊥
pkR[(u, t, l)]← pkR[(v , j)]

σ [u, i].lab← (u, t, l)
σ [u, i].pid← (v , j) ; skI ←⊥

Else
X .add((u, t, l)) ; skI ← sk[(u, t, l)]
dk[l]← Show((u, t, l))

If dk[l] 6=⊥ then kR← PKE.Dec(dk[l],c)
Else kR←� ; c[(u, i)]← c
~k← ((pk[l],pk),skI ,kR)

z← pk[l]‖ek[l]‖pk ‖c ‖ l
fp← H(z)
(pk[l],ek[l],dk[l])← (⊥,⊥,⊥)
σ [u]← (pk,ek,dk, t)
σ [u, i].keys←~k ; σ [u, i].fing← z

T.add(Fin,(u, i,m,v), fp) ; Return fp

Figure 3.20. Reduction to security of PKE.

Claim 2, Pr[G1]−Pr[G0]≤ 2q ·Advind-cpa
PKE (P).

Game G1 is also defined by the oracles in Figures 3.18 and 3.19. Note that it does

include the boxed code. Thus games G0 and G1 differ only in the box code in Fing. In G0 fresh

random keys are returned by unexposed sessions. In G1 the shadows keys (which were previously

encrypted in Req) are returned instead. This difference corresponds naturally to the behavior

of Chal in Gmu-pke which returns a fresh random key if b = 0 and a previously encrypted key
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FingS(u, i,v , j)

If σ [u, i].fing = σ [v , j].fing

y← true ; lab1← σ [u, i].lab ; lab2← σ [v , j].lab

If ⊥ ∈ {lab1, lab2} then y← false

If σ [u, i].pid 6= lab2 or σ [v , j].pid 6= lab1 then y← false

Else (y, lab1, lab2)← (false,⊥,⊥)
t← I(T,u, i,v , j) ; t ′← []

For lab ∈ X do
If lab = lab1 then t ′.add((u, i))

If lab = lab2 then t ′.add((v , j))

If y and t = t ′ then
If {lab1, lab2}∩X 6= /0

If |lab1|= 3 then kR←Key(lab1, lab2)

Else kR←Key(lab2, lab1)

Else
If |lab1|= 3 then kR←Chal(lab1, lab2)

Else kR←Chal(lab2, lab1)
~k1← ((pkI [lab1],pkR[lab1]),sk[lab1],kR)
~k2← ((pkI [lab2],pkR[lab2]),sk[lab2],kR)

z← (~k1,~k2)

Else z← (⊥,⊥)
T.add(Fing,(u, i,v , j),ε) ; Return z

CorruptS(u)

(pk,ek,dk, t)← σ [u]

For l s.t. pk[l] 6=⊥ do
X .add((u, t, l)) ; sk[l]← sk[(u, t, l)] ; dk[l]← Show((u, t, l))

stu← (pk,sk,ek,dk)
T.add(Corrupt,u,stu)

Return stu

RevealS(u, i)

((pkI ,pkR),sk,kR)← σ [u, i].keys

If σ [u, i].lab 6=⊥ then
X .add(σ [u, i].lab) ; sk← sk[σ [u, i].lab]

If kR = � and |σ [(u, i)].lab|= 2 then
kR←Key(σ [(u, i)].pid,(u, i))

If kR = � and |σ [(u, i)].lab| 6= 2 then
dk← Show(σ [(u, i)].lab) ; kR← PKE.Dec(dk,c[(u, i)])

σ [u, i].keys← ((pkI ,pkR),sk,kR)

T.add(Reveal,(u, i),σ [u, i].keys)

Return σ [u, i].keys

Figure 3.21. Additional oracles of reduction to security of PKE.
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if b = 1.4 As such we will reduce the difference between G0 and G1 to the advantage of an

adversary Pmu playing Gmu-pke. The claim then follows by applying Lemma 18 to the adversary.

Consider the adversary Pmu shown in Figures 3.20 and 3.21. It runs A with simulated

oracles. These oracles were created by making small modifications to replace code of G0 and G1

with calls to the oracles of Pmu. We use highlighting to indicate where these changes were made.

In RegS, instead of sampling new keys for PKE locally, Pmu uses its New oracle to do

so. Because it does not know the corresponding decryption key at this time, it instead stores � as

a placeholder value.

In ReqS the sampling and encryption of the shadow key k′R is replaced with a query

to Enc for the matching encryption key. Since Pmu does not know k′R, it instead stores � as a

placeholder. Note that these replacements are only done in the first branch of the if statement.

In the second branch, σ [u, i].lab and σ [u, i].pid are not initialized so it is not possible to cause

Fing to return keys for this session. Thus Pmu can simply generate k′R locally in this case.

In FinS, if it is not possible to cause Fing to return keys for this session Show is used

to learn the corresponding decryption key. If the decryption key is known then Pmu can decrypt

the ciphertext to learn what key (u, i) just received. Otherwise it stores the ciphertext and uses �

as a placeholder value for the key.

Simulating the other three oracles requires some care to make sure the placeholder � is

replaced whenever the value it replaced would be returned to the adversary. This is done with

Key in FingS and RevealS and with Show in CorruptS and RevealS. The various

checks involving the length of lab1 are used to make sure that the inputs to Key or Chal are in

the same order as they were to Enc. The second case in RevealS uses decryption to recover

kR, because the key of that user was obtained by decrypting the ciphertext it received and is thus

not necessarily equal to any keys that Key would return.

If the labels were unexposed in FingS then Chal is used to produce the key that will

be returned. This matches G0 by returning a fresh random key if b = 0 and G1 by returning a

4This natural correspondence is, of course, unsurprising since Gmu-pke was defined specifically for this purpose.
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previously encrypted key if b = 1.

We note that the various “Require” statements of Pmu’s oracles are never triggered. It

never queries New with the same input twice because t and l always change for a user u. It

never queries Enc twice with the same input because V∗ prevents A from calling ReqS twice

with the same session and always calls it with an input for which the appropriate New query

was made because before it is called we have pk[l] 6= ⊥. It never calls Chal and (Show or

Key) for contradicting inputs because the latter oracles are only queried when a session is either

exposed or unable to make FingS return keys. It never queries Show without first making

the appropriate New query because Show is only ever queries after a check that pk[l] 6=⊥. It

never queries Chal without first making the appropriate Enc query because keys will only ever

be returned in FingS for “matching” labels which requires one of them to have been created

when the appropriate Enc was made. It never queries Chal for the same i twice because V∗

prevents the same session from being queried to FingS twice. It never queries Key without

first making the appropriate Enc query because keys will only ever be returned in FingS for

“matching” labels which requires one of them to have been created when the appropriate Enc

was made and because the only way for kR to equal � in RevealS is if it was set to that in

ReqS or FinS both of which could only occur if the appropriate Enc query was made.

Consequently we have Pr[G1]−Pr[G0] = Advmu-pke
PKE,κ (Pmu) where κ is the length of keys

used by GKE. Claim (2) then follows by applying Lemma 18 to create P , noting that Pmu makes

at most qReg queries to its New oracle.

Claim 3, Pr[G2] = Pr[G1].

Game G2 is defined by the oracles in Figures 3.22 and 3.23. Note that the boxed code is

included in G2. This game was created by making a number of changes to the pseudocode of G1.

First we note that the shadow keys are the only keys used now, so we notationally simplify

by getting rid of the prime and referring to them simply as the keys. In Req the only code in the

else branch is also run in the other branch so we move that code out of the conditional.
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Reg(u)

(·, ·, ·, t)← σ [u] ; t← t +1
For l = 1, . . . ,n do
(pkI ,skI)←$ KE.KgI
pkI [(u, t, l)]← pkI ; sk[(u, t, l)]← skI
pk[l]← pkI ; (ek[l],dk[l])←$ PKE.Kg

σ [u]← (pk,ek,dk, t) ; T.add(Reg,u,(pk,ek))
Return (pk,ek)

Req(u, i,m,v)

(pk,ek,dk, t)← σ [v ] ; (pk,ek, l)←m

(pkR,skR)←$ KE.KgR ; kR←${0,1}KE.k

(pkI [(u, i)],pkR[(u, i)])← (pk,pkR)

sk[(u, i)]← skR ; kR[(u, i)]← kR
If (pk,ek) = (pk[l],ek[l])

σ [u, i].lab← (u, i) ; σ [u, i].pid← (v , t, l)
~k← ((pk,pkR),skR,kR) ; c←$ PKE.Enc(ek,kR)

z← pk ‖ek ‖pkR ‖c ‖ l ; fp← H(z)
σ [u, i].keys←~k ; σ [u, i].fing← z
σ [u,pk,ek,pkR,c, l]← i ; m′← (pkR,c, l)
T.add(Req,(u, i,m,v),(m′, fp)) ; Return (m′, fp)

Fin(u, i,m,v)

(pk,c, l)←m ; (pk,ek,dk, t)← σ [u] ; fp←⊥
If pk[l] 6=⊥ then
j← σ [v ,pk[l],ek[l],pk,c, l]
If σ [v , j].lab 6=⊥

σ [u, i].lab← (u, t, l) ; σ [u, i].pid← (v , j)

Else X .add((u, t, l))
pkR[(u, t, l)]← pk

kR← PKE.Dec(dk[l],c)
kR[(u, t, l)]← kR
skI ← sk[(u, t, l)]
~k← ((pk[l],pk),skI ,kR)

z← pk[l]‖ek[l]‖pk ‖c ‖ l ; fp← H(z)
(pk[l],ek[l],dk[l])← (⊥,⊥,⊥)
σ [u]← (pk,ek,dk, t) ; σ [u, i].keys←~k ; σ [u, i].fing← z

T.add(Fin,(u, i,m,v), fp) ; Return fp

Figure 3.22. Oracles shared by G2 and G3.

We rewrite Fin so that pkR[(v , j)] and k′R[(v , j)] are no longer used to set pkR[(u, t, l)]

and k′R[(u, t, l)]. This assignment only occurs when σ [v , j].lab 6= ⊥ (and thus j 6= ⊥) so the
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Fing(u, i,v , j)

If σ [u, i].fing = σ [v , j].fing

y← true ; lab1← σ [u, i].lab ; lab2← σ [v , j].lab

If ⊥ ∈ {lab1, lab2} or σ [u, i].pid 6= lab2 or σ [v , j].pid 6= lab1

bad2← true ; y← false

Else (y, lab1, lab2)← (false,⊥,⊥)
t← I(T,u, i,v , j) ; t ′← []

For lab ∈ X do
If lab = lab1 then t ′.add((u, i))

If lab = lab2 then t ′.add((v , j))

If y then
z← (σ [u, i].keys,σ [v , j].keys)

If t 6= t ′ then bad1← true ; z← (⊥,⊥)
Else z← (⊥,⊥)
T.add(Fing,(u, i,v , j),ε) ; Return z

Corrupt(u)

(pk,ek,dk, t)← σ [u]

For l s.t. pk[l] 6=⊥ do X .add((u, t, l)) ; sk[l]← sk[(u, t, l)]
stu← (pk,sk,ek,dk)
T.add(Corrupt,u,stu)

Return stu

Reveal(u, i)

If σ [u, i].lab 6=⊥ then X .add(σ [u, i].lab)

T.add(Reveal,(u, i),σ [u, i].keys)

Return σ [u, i].keys

Figure 3.23. Oracles shared by G2 and G3. Boxed code is only included in G2.

session (v , j) must have been created in Req. Then because j = σ [v ,pk[l],ek[l],pk,c, l], it

must hold that pkR[(v , j)] = pk[l] and that c is an encryption of k′R[(v , j)] under ek[l]. So we

can directly set pkR[(u, t, l)] to pk[l] and k′R[(u, t, l)] to the decryption of c using dk[l].

Then we note that pkI [], pkR[], and kR[] are only ever accessed (in Fing and Fing)

after checks requiring that the appropriate σ [].lab is not ⊥. As such, we can arbitrarily set

entries of these tables when σ [].lab is ⊥. In particular, we use this justification to move their

assignments out of the conditionals in Req and Fin.5 Similarly sk[[]x] when x is a 2-tuple will

only ever be accessed (in Reveal and Fing) after checks requiring σ [].lab is not ⊥ so we can

5In Fin, when j =⊥ this just results in unnecessary statements storing ⊥ in these tables.
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move its assignment out of the conditional in Req.

In Req we get rid of the assignment skR←⊥. This is only ever used (via~k) to decide

what is stored in σ [u, i].keys which, in turn, is only ever accessed in Reveal. Therein, if

σ [u, i].lab 6=⊥ (which is the case whenever skR←⊥) this component of σ [u, i].keys is anyways

overwritten. By a similar logic, we can always set skI ← sk[(u, t, l)] in Fin.

Having done so, we get eliminate the overwriting of part of σ [u, i].keys in Reveal

because it will already store the value it would be overwritten to. Additionally, we can rewrite

Fing to use σ [].keys instead of the tables pkI [], pkR[], sk[], and kR[]. For a session created in

Req it is clear this has the correct values because it is set to store exactly the same values just

stored in those tables. A similar observation holds in Fin only requiring noting additionally that

pk[l] necessarily matches the value stored in pkI [] during Reg.

The final modification is that we can simplify Fing and rewrite the logic to include the

flags bad1 and bad2.

The claim follows from our arguments that the pseudocode modifications do not modify

the behavior of the game.

Claim 4, Pr[G3]−Pr[G2]≤ nq2 ·2−H∞(PKE).

Game G3 is again defined by the oracles in Figures 3.22 and 3.23, but it does not contain

the boxed code. Note that games G3 and G2 are identical-until-bad. Thus by the fundamental

lemma of game playing [16] we have Pr[G3]−Pr[G2]≤ Pr[G2 sets bad]. For ease of discussion

in the pseudocode we write the bad flag as two separate flags, bad1 and bad2. We overload

notation and let badx denote the event that G2 sets badx and ¬bad denote its negation. We will

use that Pr[bad] = Pr[bad2]+Pr[bad1∧¬bad2].

We start by analyzing Pr[bad2]. The flag bad2 is set if two sessions have matching

fingerprints and either undefined labels or labels that don’t match each other’s partner identifiers.

The analysis of this requires considering a number of cases. In our arguments below we implicitly

make use of the fact that V∗ disallows fingerprint queries in which (u, i) = (v , j) or in which
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either session’s fingerprint is ⊥.

We will we show if bad2 is set then one of four events (that we call E1, . . . ,E4). These

events are that the same c was produced in two different Req queries (E1), the same ek[l] was

sampled with the same l in two different Reg queries (E2), A predicted a c during a Fin query

that was later produced by a Req query (E3), or A predicted a ek[l] during a Req query that

was later produced by a Req query (E4). By using the union bound we can get the following

bounds.

Pr[E1]≤
(

qReq

2

)
·2−H∞(PKE.Enc)

Pr[E2]≤ n ·
(

qReg

2

)
·2−H∞(PKE.Kg)

Pr[E3]≤ qFin ·qReq ·2−H∞(PKE.Enc)

Pr[E4]≤ qReq ·qReg ·2−H∞(PKE.Kg)

Then we have the following bound.

Pr[bad2]≤ Pr[E1∨E2∨E3∨E4]

≤ Pr[E1]+Pr[E2]+Pr[E3]+Pr[E4]

≤ nq2 ·2−H∞(PKE)

The last line follows from simple calculations.

First suppose that sessions (u, i) and (v , j) were both initiated in Req. Then for them to

have the same fingerprint σ [].fing they must have both happened to create the same ciphertext

c. Similarly suppose that sessions (u, i) and (v , j) were both initiated in Fin. Then for them to

have the same fingerprints they must have both happened to sample the same encryption key ek

during Req. From the entropy of PKE.Kg we can bound the probability of this by
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Now we only need to worry about the case that one of the sessions, say (u,sess), was

created in Fing and the other, (v , j), was created in Req. Suppose (u, i) was created first. Then

its fingerprint contains some ciphertext c provided for the adversary. If the fingerprint of (v , j

matches then it later produces the same ciphertext which A predicted. Thus we only need to

concentrate on the case that (v , j) was created first.

Suppose σ [v , j].lab = ⊥. Then there must have been a Req(u) query before the

Fin(u, i, ·,v) query (otherwise the check (pk,ek) = (pk[l],ek[l]) would have held in Fin).

This means that the ek provided by A was a prediction of an encryption key later sampled in

Req.

Suppose σ [(v , j)].lab 6=⊥ and σ [u, i].lab =⊥. Then in Fin it held that σ [v , j′].lab =⊥.

We use a prime to note that this value j′ is not necessarily equal to j. In particular, if it was then

this label could not have been ⊥. So the only way for this to hold is if σ [v ,pk,ek,pkR,c, l] was

overwritten since the time that j was stored in it. This requires a c collision to have occurred.

Now we can assume both labels are non-⊥ and only need to worry about whether they

match the appropriate partner identifiers. We continue to use our earlier analysis to assume that

(v , j) was created first.

Suppose σ [u, i].lab 6= σ [v , j].pid. Mirroring our analysis from just a moment ago the only

way for this to occur is if the table entry σ [v ,pk,ek,pkR,c, l] checked in Fin was overwritten

between when (v , j) and (u, i) were created which requires a collision in what ciphertexts were

sampled in Req.

Suppose σ [v , j].lab 6= σ [u, i].pid. In this case it must hold that σ [v , j].lab = (u, t, l) and

σ [u, i].pid = (u, t ′, l) for some t < t ′. Thus the same ek[l] was resampled across different calls to

Reg. This completes our analysis of bad2.

Now we analyze the flag bad1 (in particular showing Pr[bad1∧¬bad2] = 0). It is set if

the sequences of exposures induced by the oracles queries of A (according to I) does not match

the sequence of components added to X (in Fin, Corrupt, and Reveal) for two matching

sessions (by which we mean two sessions with the same fingerprint and whose partner identifiers
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equal each others non-⊥ labels).

Note that elements can be added to X in Fin, Corrupt, and Reveal while I∗ will

only add sessions to its output for the latter queries. However, (u, t, l) is only added to X in Fin

when the corresponding label is not changed from ⊥ setting bad1 would only occur if bad2 was

already set so we only need to consider the other oracles.

Every query to Reveal with input (u, i) or (v , j) would result in I∗ adding the session

to its output. Since ¬bad2 implies the sessions under consideration have non-⊥ labels, the

analogous additions are performed by X .

For Corrupt, the corresponding session would be added to the output of I∗ if “its role

is not R, the most recent Reg(u) query is same as the Reg(u) query preceding the creation

of (u, i), and the session had not already been created at the time of the corruption.” The first

condition is matched by X because it only adds 3-tuples in Corrupt and sessions with role

R correspond to 2-tuples in X . The second condition is matched by X because the value of t

increments in each Req query. The third condition is matched by X because pk[l] will is set to

⊥ in the Fin query creating the corresponding session.

Claim 5, Pr[G3]−Pr[G4]≤ Advcr
H(H).

Game G4 is defined to use the same code as G3 except for Req and Fin which are

redefined in Fig. 3.24. These oracle are identical to those of G3 except that the highlighted code

has replaced the code commented out on the line above. Consequently in G4, the variables

σ [].fing store the hash of what they did in G3. Note that values of these variables are only

referenced during the comparison at the beginning of Fing. Thus these behavior of these games

can only differ if different inputs to H are found which have the same hash. This admits a

straightforward reduction to the collision resistance of H.

Let H behave as follows. It runs G3. Then every time Fing is called it checks if

σ [u, i].fing and σ [v , j].fing are different, yet hash to the same value. If so it outputs these two

strings. Clearly Pr[G3]−Pr[G4]≤ Advcr
H(H).
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Req(u, i,m,v)

(pk,ek,dk, t)← σ [v ] ; (pk,ek, l)←m

(pkR,skR)←$ KE.KgR ; kR←${0,1}KE.k

(pkI [(u, i)],pkR[(u, i)])← (pk,pkR)

sk[(u, i)]← skR ; kR[(u, i)]← kR
If (pk,ek) = (pk[l],ek[l])

σ [u, i].lab← (u, i) ; σ [u, i].pid← (v , t, l)
~k← ((pk,pkR),skR,kR) ; c←$ PKE.Enc(ek,kR)

//z← pk ‖ek ‖pkR ‖c ‖ l ; fp← H(z)
z← H(pk ‖ek ‖pkR ‖c ‖ l) ; fp← z)
σ [u, i].keys←~k ; σ [u, i].fing← z
σ [u,pk,ek,pkR,c, l]← i ; m′← (pkR,c, l)
T.add(Req,(u, i,m,v),(m′, fp)) ; Return (m′, fp)

Fin(u, i,m,v)

(pk,c, l)←m ; (pk,ek,dk, t)← σ [u] ; fp←⊥
If pk[l] 6=⊥ then
j← σ [v ,pk[l],ek[l],pk,c, l]
If σ [v , j].lab 6=⊥

σ [u, i].lab← (u, t, l) ; σ [u, i].pid← (v , j)

Else X .add((u, t, l))
pkR[(u, t, l)]← pk

kR← PKE.Dec(dk[l],c)
kR[(u, t, l)]← kR
skI ← sk[(u, t, l)]
~k← ((pk[l],pk),skI ,kR)

//z← pk[l]‖ek[l]‖pk ‖c ‖ l ; fp← H(z)
z← H(pk[l]‖ek[l]‖pk ‖c ‖ l) ; fp← z
(pk[l],ek[l],dk[l])← (⊥,⊥,⊥)
σ [u]← (pk,ek,dk, t) ; σ [u, i].keys←~k ; σ [u, i].fing← z

T.add(Fin,(u, i,m,v), fp) ; Return fp

Figure 3.24. Oracles of G4.

Claim 6, Pr[Goke
KE,P,S,1] = Pr[G4].

While perhaps not easy to verify, we claim that Goke
KE,P,S,1 and G4 are equivalent. This can

be verified by plugging the code of KE into Goke and making various pseudocode changes to the

obtained game and game G4 until they are clearly equivalent. The details of this are somewhat

tedious, so we refer the interested reader to Section 3.9.3 where we walk through this in detail.
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3.9.2 More proof details (Claim 1)

Game H0.

We start our analysis by considering the oracles shown in Figures 3.25, 3.26, and 3.27.

The first two of these were obtained by naively plugging the code of S into game Goke
KE,P,S,0.

The latter was obtained by making two simplifications to the code of of the ideal key exchange

oracles. First we remove the “Require” statements from the beginning of each oracle since S will

never cause them to be triggered. Then we remove all references to the variable mst which was

only ever referenced for use with the “Require” statements.

To prove that these modifications do not change the behavior of Goke
KE,P,S,0 we need only

justify our claim that the simulator never triggers the “Require” statements. Most of these require

statements deal with the values of mst[·].status. The variable will always have values⊥, created,

waiting, and accepted and can only hold those values in that order (with the possible exception

of created if the label was first used as the second input to IReq).

Oracle IReg is only ever queries in Reg with tuples of the form (u, t, l). Because t

is stored per user and incremented each time Reg is queried, we can verify that the require

statement of IReg is never triggered.

Oracle IReq is only ever queried in Req with tuples of the form (v , t, l) and (u, i). The

fact that pk[l] = pk 6=⊥ held on the line before the call means that these table entries must have

been created in Reg and not yet erased in Fin, so mst[(v , t, l)].status= created. The restrictions

of V∗ require that this was the first oracle query to session (u, i), so mst[(v , t, l)].status =⊥.

Oracle IFin is only ever queries in Fin with tuples of the form (u, t, l) and (v , j). Because

pk[l] 6=⊥ before the query we can verify mst[(u, t, l)].status = created. Because σ [(v , j)] 6=⊥

before the query, this must have been set in Req after a query to IReq. This would have set

mst[(v , j)].status to waiting, so it must now be either waiting or accepted.

Oracle Reveal is queried in Fin, Corrupt, and Reveal. In Fin and Corrupt

this query is only made when pk[l] 6=⊥ holds so we can verify mst[(u, t, l)].status = created.
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In Reveal this query is only made when σ [u, i].lab 6= ⊥. The value is only ever set after a

IReq or IFin query, so mst[σ [u, i].lab].status was set to waiting and cannot be ⊥. Further-

more mst[σ [u, i].lab].status could only be set to accepted by IFing which is called by Fing.

However, V∗ disallows queries to Reveal after queries to Fing so this is not possible.

Oracle IFing is queried jn Fing. This query is only made when σ [u, i].lab and

σ [v , j].lab are not ⊥, thus both statuses must have been set to waiting. Because V∗ disal-

lows multiple queries to Fing for the same session they must still be waiting at the time of

this query. That mst[lab1].pid = lab2 and mst[lab2].pid = lab1 hold follows from the fact that

σ [u, i].pid = lab2 and σ [v , j].pid = lab1 held in Fing. Here note that σ [·, ·].lab is set after queries

to IReq or IFin to exactly match how mst[·].pid was set.

Game H1.

The oracles of game H1 are defined in Figures 3.28 and 3.29. This game was obtained by

plugging the code of H0’s ideal key exchange in wherever they were called. Everywhere this

occurred is indicated by highlighting in H1.

Game H2.

The oracles of game H2 are defined in Figures 3.30 and 3.31. These oracles were obtained

by introducing tables pkI [], pkR[], sk[], kR[], and k′R[] to replace~k[] and~k′[]. In particular~k[]

always stores tuples of the form ((pkI ,pkR),sk,kR) and~k′[] always stores tuples of the form

((pkI ,pkR),sk,k
′
R) which only ever differs from~k[] in the last value. So we have separates

these variables out into five separate tables. Highlighting indicates everywhere this occurred.

We made one additional small change in Req. The table entry pkI [(u, i)] is set to pk

instead of pkI [v , t, l]. To note that this does not change anything simply observer that pk equals

pk[l] which will have been set the same value as pkI [v , t, l] in the early query Reg(v).

Game G0.

The oracles of game G0 are defined in Figures 3.18 and 3.19. These oracles were obtained

by making small changes to those of H2. We indicate where these changes will occur using
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Reg(u)

(·, ·, ·, t)← σ [u] ; t← t +1
For l = 1, . . . ,n do

pk[l]←$ IReg((u, t, l)) ; (ek[l],dk[l])←$ PKE.Kg

σ [u]← (pk,ek,dk, t) ; T.add(Reg,u,(pk,ek))
Return (pk,ek)

Req(u, i,m,v)

(pk,ek,dk, t)← σ [v ] ; (pk,ek, l)←m

If (pk,ek) = (pk[l],ek[l])
(pkR,k

′
R)← IReq((v , t, l),(u, i))

σ [u, i].lab← (u, i) ; σ [u, i].pid← (v , t, l) ; skR←⊥
Else
(pkR,skR)←$ KE.KgR ; k ′R←${0,1}KE.k

~k← ((pk,pkR),skR,k
′
R) ; c←$ PKE.Enc(ek,k ′R)

z← pk ‖ek ‖pkR ‖c ‖ l ; fp← H(z)
σ [u, i].keys←~k ; σ [u, i].fing← z
σ [u,pk,ek,pkR,c, l]← i

m′← (pkR,c, l)
T.add(Req,(u, i,m,v),(m′, fp)) ; Return (m′, fp)

Fin(u, i,m,v)

(pk,c, l)←m ; (pk,ek,dk, t)← σ [u] ; fp←⊥
If pk[l] 6=⊥ then
j← σ [v ,pk[l],ek[l],pk,c, l]
If σ [v , j].lab 6=⊥
IFin((u, t, l),(v , j)) ; σ [u, i].lab← (u, t, l)
σ [u, i].pid← (v , j) ; skI ←⊥

Else
(·,skI , ·)← IReveal((u, t, l))

kR← PKE.Dec(dk[l],c)
~k← ((pk[l],pk),skI ,kR)

z← pk[l]‖ek[l]‖pk ‖c ‖ l ; fp← H(z)
(pk[l],ek[l],dk[l])← (⊥,⊥,⊥)
σ [u]← (pk,ek,dk, t) ; σ [u, i].keys←~k ; σ [u, i].fing← z

T.add(Fin,(u, i,m,v), fp) ; Return fp

Figure 3.25. Oracles of game H0.

boxes in H2.

First in Req we will move the code setting~k and c up to be included in each branch of

the if statement separately. Clearly this does not change the behavior of the oracles.

Next we note that values of kR[] are only ever affect the view of the adversary when
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Fing(u, i,v , j)

If σ [u, i].fing = σ [v , j].fing

y← true ; lab1← σ [u, i].lab ; lab2← σ [v , j].lab

If ⊥ ∈ {lab1, lab2} then y← false

If σ [u, i].pid 6= lab2 or σ [v , j].pid 6= lab1 then y← false

Else (y, lab1, lab2)← (false,⊥,⊥)
t← I(T,u, i,v , j) ; t ′← []

For lab ∈ X do
If lab = lab1 then t ′.add((u, i))

If lab = lab2 then t ′.add((v , j))

If y and t = t ′ then
(~kI ,~kR)← IFing(lab1, lab2) ; z← (~kI ,~kR)

Else z← (⊥,⊥)
T.add(Fing,(u, i,v , j),ε) ; Return z

Corrupt(u)

(pk,ek,dk, t)← σ [u]

For l s.t. pk[l] 6=⊥ do ((·, ·),sk[l], ·)← IReveal((u, t, l))
stu← (pk,sk,ek,dk)
T.add(Corrupt,u,stu)

Return stu

Reveal(u, i)

((pkI ,pkR),sk,kR)← σ [u, i].keys

If σ [u, i].lab 6=⊥ then
((·, ·),sk, ·)← IReveal(σ [u, i].lab)

σ [u, i].keys← ((pkI ,pkR),sk,kR)

T.add(Reveal,(u, i),σ [u, i].keys)

Return σ [u, i].keys

Figure 3.26. Oracles of game H0.

being returned in Fing. So in G0 we defer sampling these values until they are needed in Fing.

The same value will be used for kR[lab1] and kR[lab2] there. This is the correct behavior which

mirrors that of H2. The oracle Fing will only return keys when σ [u, i].pid = σ [v , j].lab and

σ [v , j].pid = σ [u, i].lab. This is only possible if one of the sessions was created by a Fin query

which would have set kR[lab1] and kR[lab2] to have the same value.

218



IReg(lab)

(pkI ,skI)←$ KE.KgI ;~k[lab]← ((pkI ,⊥),skI ,⊥)
~k′[lab]← ((pkI ,⊥),skI ,⊥) ; Return pkI

IReq(lab1, lab2)

((pkI , ·), ·, ·)←~k[lab1] ; (pkR,skR)←$ KE.KgR
kR←${0,1}KE.k ; k ′R←${0,1}KE.k ; `← (pkI ,pkR)
~k[lab2]← (`,skR,kR) ;~k′[lab2]← (`,skR,k

′
R)

Return (pkR,k
′
R)

IFin(lab1, lab2)

((pkI , ·),skI , ·)←~k[lab1] ; ((·,pkR), ·,kR)←~k[lab2]

((·, ·), ·,k ′R)←~k′[lab2] ;~k[lab1]← ((pkI ,pkR),skI ,kR)
~k′[lab1]← ((pkI ,pkR),skI ,k

′
R) ; Return ε

IReveal(lab)

X .add(lab) ; Return~k′[lab]

IFing(lab1, lab2)

If {lab1, lab2}∩X 6= /0 then return (~k′[lab1],~k′[lab2])

Return (~k[lab1],~k[lab2])

Figure 3.27. Oracles of game H0.

3.9.3 More proof details (Claim 6)

In this subsection we provide all of the details necessary to verify our claim that

Pr[Goke
KE,P,S,1] = Pr[G4]. To start, we have reprodued game G4 (originally defined across Fig. 3.22,

Fig. 3.23, and Fig. 3.24) in Fig. 3.32 and Fig. 3.33. We will iteratively make a number of

pseudocode on this game. We use highlighting to indicate where the first changes will occur.

Game F0.

The oracles of game F0 are defined in Fig. 3.34 and Fig. 3.35. This game was obtained

by making a number of simplifications to game G4. First we consider Fing. Note that the two if

statements which set bad flags are now dead code. Working backwards from there, we can note

that all references to labels, t, and t ′ are dead code. Thus we can see that Fing in F0 is just a

simplified version of this oracle which removes dead code.

Once this is simplified, we note that values stored in X are no longer referenced so we
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Reg(u)

(·, ·, ·, t)← σ [u] ; t← t +1
For l = 1, . . . ,n do
(pkI ,skI)←$ KE.KgI ;~k[(u, t, l)]← ((pkI ,⊥),skI ,⊥)
~k′[(u, t, l)]← ((pkI ,⊥),skI ,⊥) ; pk[l]← pkI
(ek[l],dk[l])←$ PKE.Kg

σ [u]← (pk,ek,dk, t) ; T.add(Reg,u,(pk,ek))
Return (pk,ek)

Req(u, i,m,v)

(pk,ek,dk, t)← σ [v ] ; (pk,ek, l)←m

If (pk,ek) = (pk[l],ek[l])
((pkI , ·), ·, ·)←~k[(v , t, l)] ; (pkR,skR)←$ KE.KgR
kR←${0,1}KE.k ; k ′R←${0,1}KE.k ; `← (pkI ,pkR)
~k[(u, i)]← (`,skR,kR) ;~k′[(u, i)]← (`,skR,k

′
R)

σ [u, i].lab← (u, i) ; σ [u, i].pid← (v , t, l) ; skR←⊥
Else
(pkR,skR)←$ KE.KgR ; k ′R←${0,1}KE.k

~k← ((pk,pkR),skR,k
′
R) ; c←$ PKE.Enc(ek,k ′R)

z← pk ‖ek ‖pkR ‖c ‖ l ; fp← H(z)
σ [u, i].keys←~k ; σ [u, i].fing← z
σ [u,pk,ek,pkR,c, l]← i ; m′← (pkR,c, l)
T.add(Req,(u, i,m,v),(m′, fp)) ; Return (m′, fp)

Fin(u, i,m,v)

(pk,c, l)←m ; (pk,ek,dk, t)← σ [u] ; fp←⊥
If pk[l] 6=⊥ then
j← σ [v ,pk[l],ek[l],pk,c, l]
If σ [v , j].lab 6=⊥
((pkI , ·),skI , ·)←~k[(u, t, l)]
((·,pkR), ·,kR)←~k[(v , j)]
((·, ·), ·,k ′R)←~k′[(v , j)]
~k[(u, t, l)]← ((pkI ,pkR),skI ,kR)
~k′[(u, t, l)]← ((pkI ,pkR),skI ,k

′
R)

σ [u, i].lab← (u, t, l) ; σ [u, i].pid← (v , j) ; skI ←⊥
Else
X .add((u, t, l)) ; (·,skI , ·)←~k′[(u, t, l)]

kR← PKE.Dec(dk[l],c) ;~k← ((pk[l],pk),skI ,kR)

z← pk[l]‖ek[l]‖pk ‖c ‖ l ; fp← H(z)
(pk[l],ek[l],dk[l])← (⊥,⊥,⊥)
σ [u]← (pk,ek,dk, t) ; σ [u, i].keys←~k ; σ [u, i].fing← z

T.add(Fin,(u, i,m,v), fp) ; Return fp

Figure 3.28. Oracles of game H1. Highlighting indicates changes from H0.
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Fing(u, i,v , j)

If σ [u, i].fing = σ [v , j].fing

y← true ; lab1← σ [u, i].lab ; lab2← σ [v , j].lab

If ⊥ ∈ {lab1, lab2} then y← false

If σ [u, i].pid 6= lab2 or σ [v , j].pid 6= lab1 then y← false

Else (y, lab1, lab2)← (false,⊥,⊥)
t← I(T,u, i,v , j) ; t ′← []

For lab ∈ X do
If lab = lab1 then t ′.add((u, i))

If lab = lab2 then t ′.add((v , j))

If y and t = t ′ then
If {lab1, lab2}∩X 6= /0 then z← (~k′[lab1],~k′[lab2])

Else z← (~k[lab1],~k[lab2])

Else z← (⊥,⊥)
T.add(Fing,(u, i,v , j),ε) ; Return z

Corrupt(u)

(pk,ek,dk, t)← σ [u]

For l s.t. pk[l] 6=⊥ do
X .add((u, t, l)) ; ((·, ·),sk[l], ·)←~k′[(u, t, l)]

stu← (pk,sk,ek,dk)
T.add(Corrupt,u,stu)

Return stu

Reveal(u, i)

((pkI ,pkR),sk,kR)← σ [u, i].keys

If σ [u, i].lab 6=⊥ then
X .add(σ [u, i].lab) ; ((·, ·),sk, ·)←~k′[σ [u, i].lab]

σ [u, i].keys← ((pkI ,pkR),sk,kR)

T.add(Reveal,(u, i),σ [u, i].keys)

Return σ [u, i].keys

Figure 3.29. Oracles of game H1. Highlighting indicates changes from H0.

can remove the code in Fin, Corrupt, and Reveal which modifies it. This gives us the

Reveal given in F0.

Next we note that σ [].pid is assigned, but never referenced, so we can remove the

assignments to it in Req and Fin. Similarly σ [].lab when storing a 3-tuple (as assigned by Fin)

is never reference because the only time that σ [].lab is referenced at all is in Fin where it could

only be a 2-tuple or ⊥. So we can remove the assignment to it in Fin. But this makes the if

statement checking of σ [].lab in Fin dead code so we can remove it and the assignments to
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Reg(u)

(·, ·, ·, t)← σ [u] ; t← t +1
For l = 1, . . . ,n do
(pkI ,skI)←$ KE.KgI
pkI [(u, t, l)]← pkI ; sk[(u, t, l)]← skI
pk[l]← pkI ; (ek[l],dk[l])←$ PKE.Kg

σ [u]← (pk,ek,dk, t) ; T.add(Reg,u,(pk,ek))
Return (pk,ek)

Req(u, i,m,v)

(pk,ek,dk, t)← σ [v ] ; (pk,ek, l)←m

If (pk,ek) = (pk[l],ek[l])
(pkR,skR)←$ KE.KgR ; kR←${0,1}KE.k ; k ′R←${0,1}KE.k

(pkI [(u, i)],pkR[(u, i)])← (pk,pkR)

sk[(u, i)]← skR ; kR[(u, i)]← kR ; k ′R[(u, i)]← k ′R
σ [u, i].lab← (u, i) ; σ [u, i].pid← (v , t, l) ; skR←⊥

Else
(pkR,skR)←$ KE.KgR ; k ′R←${0,1}KE.k

~k← ((pk,pkR),skR,k
′
R) ; c←$ PKE.Enc(ek,k ′R)

z← pk ‖ek ‖pkR ‖c ‖ l ; fp← H(z)
σ [u, i].keys←~k ; σ [u, i].fing← z
σ [u,pk,ek,pkR,c, l]← i ; m′← (pkR,c, l)
T.add(Req,(u, i,m,v),(m′, fp)) ; Return (m′, fp)

Fin(u, i,m,v)

(pk,c, l)←m ; (pk,ek,dk, t)← σ [u] ; fp←⊥
If pk[l] 6=⊥ then
j← σ [v ,pk[l],ek[l],pk,c, l]
If σ [v , j].lab 6=⊥
pkR[(u, t, l)]← pkR[(v , j)]

kR[(u, t, l)]← kR[(v , j)]

k ′R[(u, t, l)]← k ′R[(v , j)]

σ [u, i].lab← (u, t, l) ; σ [u, i].pid← (v , j) ; skI ←⊥
Else
X .add((u, t, l)) ; skI ← sk[(u, t, l)]

kR← PKE.Dec(dk[l],c)
~k← ((pk[l],pk),skI ,kR)

z← pk[l]‖ek[l]‖pk ‖c ‖ l ; fp← H(z)
(pk[l],ek[l],dk[l])← (⊥,⊥,⊥)
σ [u]← (pk,ek,dk, t) ; σ [u, i].keys←~k ; σ [u, i].fing← z

T.add(Fin,(u, i,m,v), fp) ; Return fp

Figure 3.30. Oracles of game H2. Highlighting indicates changes from H1. Boxes indicated
where code will change to become G0.
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Fing(u, i,v , j)

If σ [u, i].fing = σ [v , j].fing

y← true ; lab1← σ [u, i].lab ; lab2← σ [v , j].lab

If ⊥ ∈ {lab1, lab2} then y← false

If σ [u, i].pid 6= lab2 or σ [v , j].pid 6= lab1 then y← false

Else (y, lab1, lab2)← (false,⊥,⊥)
t← I(T,u, i,v , j) ; t ′← []

For lab ∈ X do
If lab = lab1 then t ′.add((u, i))

If lab = lab2 then t ′.add((v , j))

If y and t = t ′ then
If {lab1, lab2}∩X 6= /0 then
(k1,k2)← (k ′R[lab1],k

′
R[lab2])

Else (k1,k2)← (kR[lab1],kR[lab2])
~k1← ((pkI [lab1],pkR[lab1]),sk[lab1],k1)
~k2← ((pkI [lab2],pkR[lab2]),sk[lab2],k2)

z← (~k1,~k2)

Else z← (⊥,⊥)
T.add(Fing,(u, i,v , j),ε) ; Return z

Corrupt(u)

(pk,ek,dk, t)← σ [u]

For l s.t. pk[l] 6=⊥ do X .add((u, t, l)) ; sk[l]← sk[(u, t, l)]
stu← (pk,sk,ek,dk)
T.add(Corrupt,u,stu)

Return stu

Reveal(u, i)

((pkI ,pkR),sk,kR)← σ [u, i].keys

If σ [u, i].lab 6=⊥ then
X .add(σ [u, i].lab) ; sk← sk[σ [u, i].lab]

σ [u, i].keys← ((pkI ,pkR),sk,kR)

T.add(Reveal,(u, i),σ [u, i].keys)

Return σ [u, i].keys

Figure 3.31. Oracles of game H2. Highlighting indicates changes from H1. Boxes indicated
where code will change to become G0.

σ [].lab in Req as well. This makes the assignment of j in Fin and an if statement in Req dead

code. Removing that if statement gets rid of the need to parse σ [v ] at the beginning of Req.

Removing the assignment to j in Fin removes the need for the table it is assigned from, so we

can get rid of the assignment to that table in Req.
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Reg(u)

(·, ·, ·, t)← σ [u] ; t← t +1
For l = 1, . . . ,n do
(pkI ,skI)←$ KE.KgI
pkI [(u, t, l)]← pkI ; sk[(u, t, l)]← skI
pk[l]← pkI ; (ek[l],dk[l])←$ PKE.Kg

σ [u]← (pk,ek,dk, t) ; T.add(Reg,u,(pk,ek))
Return (pk,ek)

Req(u, i,m,v)

(pk,ek,dk, t)← σ [v ] ; (pk,ek, l)←m

(pkR,skR)←$ KE.KgR ; kR←${0,1}KE.k

(pkI [(u, i)],pkR[(u, i)])← (pk,pkR)

sk[(u, i)]← skR ; kR[(u, i)]← kR
If (pk,ek) = (pk[l],ek[l])

σ [u, i].lab← (u, i) ; σ [u, i].pid← (v , t, l)
~k← ((pk,pkR),skR,kR) ; c←$ PKE.Enc(ek,kR)

z← H(pk ‖ek ‖pkR ‖c ‖ l) ; fp← z)
σ [u, i].keys←~k ; σ [u, i].fing← z
σ [u,pk,ek,pkR,c, l]← i ; m′← (pkR,c, l)
T.add(Req,(u, i,m,v),(m′, fp)) ; Return (m′, fp)

Fin(u, i,m,v)

(pk,c, l)←m ; (pk,ek,dk, t)← σ [u] ; fp←⊥
If pk[l] 6=⊥ then
j← σ [v ,pk[l],ek[l],pk,c, l]
If σ [v , j].lab 6=⊥

σ [u, i].lab← (u, t, l) ; σ [u, i].pid← (v , j)

Else X .add((u, t, l))
pkR[(u, t, l)]← pk

kR← PKE.Dec(dk[l],c)
kR[(u, t, l)]← kR
skI ← sk[(u, t, l)]
~k← ((pk[l],pk),skI ,kR)

z← H(pk[l]‖ek[l]‖pk ‖c ‖ l) ; fp← z
(pk[l],ek[l],dk[l])← (⊥,⊥,⊥)
σ [u]← (pk,ek,dk, t) ; σ [u, i].keys←~k ; σ [u, i].fing← z

T.add(Fin,(u, i,m,v), fp) ; Return fp

Figure 3.32. Reproduction of oracles of G4. Highlighting indicates where code will change to
become F0.

Next note that pkI [], pkR[], and kR[] are assigned to in Reg, Req, and Fin but never

referenced. Thus we can get rid of these assignments. Similarly sk[x] when x is a 2-tuple is
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Fing(u, i,v , j)

If σ [u, i].fing = σ [v , j].fing

y← true ; lab1← σ [u, i].lab ; lab2← σ [v , j].lab

If ⊥ ∈ {lab1, lab2} or σ [u, i].pid 6= lab2 or σ [v , j].pid 6= lab1

bad2← true

Else (y, lab1, lab2)← (false,⊥,⊥)
t← I(T,u, i,v , j) ; t ′← []

For lab ∈ X do
If lab = lab1 then t ′.add((u, i))

If lab = lab2 then t ′.add((v , j))

If y then
z← (σ [u, i].keys,σ [v , j].keys)

If t 6= t ′ then bad1← true

Else z← (⊥,⊥)
T.add(Fing,(u, i,v , j),ε) ; Return z

Corrupt(u)

(pk,ek,dk, t)← σ [u]

For l s.t. pk[l] 6=⊥ do X .add((u, t, l)) ; sk[l]← sk[(u, t, l)]
stu← (pk,sk,ek,dk)
T.add(Corrupt,u,stu)

Return stu

Reveal(u, i)

If σ [u, i].lab 6=⊥ then X .add(σ [u, i].lab)

T.add(Reveal,(u, i),σ [u, i].keys)

Return σ [u, i].keys

Figure 3.33. Oracles of game G4. Highlighting indicates where code will change to become F0.

assigned in Req, but never referenced so we can remove this.

We can simplify the ends of Req and Fin to get rid of the intermediate value z being

used to store fingerprints.

Finally we make some additions. Where these have occurred is indicated by boxes in F0.

We have added an additional table sk to the state σ [u] for each u. Each sk[l] always stores the

secret key corresponding to pk[l], but never has any effect on output provided to the adversary.

To avoid a notational conflict, we have renamed the temporary sk in Corrupt to sk′.
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Reg(u)

(·, ·, ·, ·, t)← σ [u] ; t← t +1
For l = 1, . . . ,n do
(pkI ,skI)←$ KE.KgI
sk[l]← skI
sk[(u, t, l)]← skI
pk[l]← pkI ; (ek[l],dk[l])←$ PKE.Kg

σ [u]← (pk,sk,ek,dk, t) ; T.add(Reg,u,(pk,ek))
Return (pk,ek)

Req(u, i,m,v)

(pk,ek, l)←m

(pkR,skR)←$ KE.KgR ; kR←${0,1}KE.k

~k← ((pk,pkR),skR,kR) ; c←$ PKE.Enc(ek,kR)

fp← H(pk ‖ek ‖pkR ‖c ‖ l)
σ [u, i].keys←~k ; σ [u, i].fing← fp

m′← (pkR,c, l)
T.add(Req,(u, i,m,v),(m′, fp)) ; Return (m′, fp)

Fin(u, i,m,v)

(pk,c, l)←m ; (pk,sk,ek,dk, t)← σ [u] ; fp←⊥
If pk[l] 6=⊥ then
kR← PKE.Dec(dk[l],c)
skI ← sk[(u, t, l)]
~k← ((pk[l],pk),skI ,kR)

fp← H(pk[l]‖ek[l]‖pk ‖c ‖ l)
(pk[l],sk[l],ek[l],dk[l])← (⊥,⊥,⊥,⊥)
σ [u]← (pk,sk,ek,dk, t)
σ [u, i].keys←~k ; σ [u, i].fing← fp

T.add(Fin,(u, i,m,v), fp) ; Return fp

Figure 3.34. Oracles of game F0. Boxes indicates changes from G4. Highlighting indicates
where code will change to become F1.

Game F1.

The oracles of game F1 are defined in Fig. 3.36 and Fig. 3.36. This game was obtained

from F0 by making two simplifications. First notice that in F0, the entry sk[(u, t, l)] is only ever

accessed (in Fin and Corrupt) with the value of t currently stored in σ [u]. Because of this,

when it is accessed it is always equal to sk[l] as stored in the same σ [u]. So we get rid of all

references to sk[] and use sk[l] instead where needed.
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Fing(u, i,v , j)

If σ [u, i].fing = σ [v , j].fing then
z← (σ [u, i].keys,σ [v , j].keys)

Else z← (⊥,⊥)
T.add(Fing,(u, i,v , j),ε) ; Return z

Corrupt(u)

(pk,sk,ek,dk, t)← σ [u]

For l s.t. pk[l] 6=⊥ do sk′[l]← sk[(u, t, l)]
stu← (pk,sk′,ek,dk)
T.add(Corrupt,u,stu)

Return stu

Reveal(u, i)

T.add(Reveal,(u, i),σ [u, i].keys)

Return σ [u, i].keys

Figure 3.35. Oracles of game F0. Boxes indicates changes from G4. Highlighting indicates
where code will change to become F1.

Having done this, t is no longer needed in σ [u] so we stop using it. It appeared in Reg,

Fin, and Corrupt when it was being read from or written into σ [u]. Additionally it was

incremented in Reg. Without t there is not longer a need for the initial parsing of σ [u] in Reg.

Games F2 and F3.

We consider our final two games together (and backwards). Game F3 is shown in Fig. 3.38

and was obtained by plugging the code of KE into Goke
KE,P,S,1. We use highlighting to indicate

everywhere this occurred. Oracles Corrupt and Reveal are omitted, but are unchanged from

Goke
KE,P,S,1 and identical to those shown in Fig. 3.37 for F2.

We describe the changes that were made to F3 to create game F2. We use We uses boxes

in F3 to show where these changes occur. In game F3 the role, status, pid, and psess entries of

sst are only ever written to, never read. So we can eliminate them from Fin, Req, and Fing.

Additionally, some assignments in Req and Fin were simplified or removed because they were

either superfluous or just required some simple renaming of variables.

To finish this section we argue that games F1 and F2 equivalent. The primary observation

towards this is that values stored in σ [u] or σu, i (in F1) can be exactly identified with values
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Reg(u)

For l = 1, . . . ,n do
(pkI ,skI)←$ KE.KgI
sk[l]← skI
pk[l]← pkI ; (ek[l],dk[l])←$ PKE.Kg

σ [u]← (pk,sk,ek,dk)
T.add(Reg,u,(pk,ek))
Return (pk,ek)

Fin(u, i,m,v)

(pk,c, l)←m ; (pk,sk,ek,dk)← σ [u]

fp←⊥
If pk[l] 6=⊥ then
kR← PKE.Dec(dk[l],c)
skI ← sk[l]
~k← ((pk[l],pk),skI ,kR)

fp← H(pk[l]‖ek[l]‖pk ‖c ‖ l)
(pk[l],sk[l],ek[l],dk[l])← (⊥,⊥,⊥,⊥)
σ [u]← (pk,sk,ek,dk)
σ [u, i].keys←~k ; σ [u, i].fing← fp

T.add(Fin,(u, i,m,v), fp) ; Return fp

Req(u, i,m,v)

(pk,ek, l)←m

(pkR,skR)←$ KE.KgR ; kR←${0,1}KE.k

~k← ((pk,pkR),skR,kR)

c←$ PKE.Enc(ek,kR)

fp← H(pk ‖ek ‖pkR ‖c ‖ l)
σ [u, i].keys←~k ; σ [u, i].fing← fp

m′← (pkR,c, l)
T.add(Req,(u, i,m,v),(m′, fp))

Return (m′, fp)

Fing(u, i,v , j)

If σ [u, i].fing = σ [v , j].fing then
z← (σ [u, i].keys,σ [v , j].keys)

Else z← (⊥,⊥)
T.add(Fing,(u, i,v , j),ε) ; Return z

Corrupt(u)

(pk,sk,ek,dk)← σ [u]

For l s.t. pk[l] 6=⊥ do sk′[l]← sk[l]
stu← (pk,sk′,ek,dk)
T.add(Corrupt,u,stu)

Return stu

Reveal(u, i)

T.add(Reveal,(u, i),σ [u, i].keys)

Return σ [u, i].keys

Figure 3.36. Oracles of game F1. Highlighting indicates where code will change to become F1.

stored in stu of sstiu (in F2). We have used highlighting in F1 to indicate where these variable

occur. It may seem like there are some differences in Corrupt, but note that the temporary

table sk′ in F1 is in fact being set to be exactly equivalent to the sk stored in σ [u].

One this is identified the oracles Reg, Req, Fing, and Reveal in F2 are obtained

by simple rewriting of the corresponding oracles in F1. Oracle Fin similarly requires simple

rewriting. The primary difference is that the setting of σ [(u, i)].keys and σ [(u, i)].fing are implicit

in F1 because they are never explicitly set. In F2 the corresponding sstiu variables are explicitly

set to ⊥. Additionally there was some unnoteworthy changing of names of temporary variables

between the two. Oracle Corrupt is again simple rewriting by making use of our observation
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Reg(u)

For l = 1, . . . ,n do
(pk[l],sk[l])←$ KE.KgI
(ek[l],dk[l])←$ PKE.Kg

(stu,m)← ((pk,sk,ek,dk),(pk,ek))
T.add(Reg,u,m)

Return m

Req(u, i,m,v)

(pk,ek, l)←m

(pkR,skR)←$ KE.KgR
kR←${0,1}KE.k

~k← ((pk,pkR),skR,kR)

c←$ PKE.Enc(ek,kR)

fp← H(pk ‖ek ‖pkR ‖c ‖ l)
m′← (pkR,c, l)
sstiu.keys←~k
sstiu.fing← fp

T.add(Req,(u, i,m,v),(m′, fp))

Return (m′, fp)

Corrupt(u)

T.add(Corrupt,u,stu)

Return stu

Reveal(u, i)

T.add(Reveal,(u, i),sstiu.keys)

Return sstiu.keys

Fin(u, i,m,v)

(pkR,c, l)←m

(pk,sk,ek,dk)← stu
If pk[l] =⊥ then
(~k, fp)← (⊥,⊥)

Else
kR← PKE.Dec(dk[l],c)
~k← ((pk[l],pkR),sk[l],kR)
(pk,ek)← (pk[l],ek[l])
fp← H(pk ‖ek ‖pkR ‖c ‖ l)
(pk[l],sk[l],ek[l],dk[l])← (⊥,⊥,⊥,⊥)
stu← (pk,sk,ek,dk)

sstiu.keys←~k
sstiu.fing← fp

T.add(Fin,(u, i,m,v), fp)

Return fp

Fing(u, i,v , j)

If sstiu.fing = sstjv .fing then
z← (sstiu.keys,sstjv .keys)

Else
z← (⊥,⊥)

T.add(Fing,(u, i,v , j),ε)

Return z

Figure 3.37. Oracles of game F2.

that the temporary sk′ in F1 is being set equal to the already existing sk.
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Req(u, i,m,v)

(pk,ek, l)←m

(pkR,skR)←$ KE.KgR
kR←${0,1}KE.k

~k← ((pk,pkR),skR,kR)

c←$ PKE.Enc(ek,kR)

fp← H(pk ‖ek ‖pkR ‖c ‖ l)
(stu,m

′,~ku, fp)← (stu,(pkR,c, l),~k, fp)
sstiu.keys←~ku
sstiu.fing← fp

sstiu.role←R
sstiu.pid← v

If~ku =⊥ then
sstiu.status← rejected

Else
sstiu.status← waiting

T.add(Req,(u, i,m,v),(m′, fp))

Return (m′, fp)

Fing(u, i,v , j)

If sstiu.fing = sstjv .fing then
sstiu.status← accepted

sstjv .status← accepted

sstiu.psess← j ; sstjv .psess← i

z← (sstiu.keys,sstjv .keys)

Else
sstiu.status← rejected

sstjv .status← rejected

z← (⊥,⊥)
T.add(Fing,(u, i,v , j),ε)

Return z

Reg(u)

For l = 1, . . . ,n do
(pk[l],sk[l])←$ KE.KgI
(ek[l],dk[l])←$ PKE.Kg

(stu,m)← ((pk,sk,ek,dk),(pk,ek))
T.add(Reg,u,m)

Return m

Fin(u, i,m,v)

st← stu
(pkR,c, l)←m

(pk,sk,ek,dk)← st

If pk[l] =⊥ then
(stu,~ku, fp)← (st,⊥,⊥)

Else
kR← PKE.Dec(dk[l],c)
~k← ((pk[l],pkR),sk[l],kR)
(pk,ek)← (pk[l],ek[l])
fp← H(pk ‖ek ‖pkR ‖c ‖ l)
(pk[l],sk[l],ek[l],dk[l])← (⊥,⊥,⊥,⊥)
st← (pk,sk,ek,dk)
(stu,~ku, fp)← (st,~k, fp)

sstiu.keys←~ku
sstiu.fing← fp

sstiu.role←I
sstiu.pid← v

If~ku =⊥ then
sstiu.status← rejected

Else
sstiu.status← waiting

T.add(Fin,(u, i,m,v), fp)

Return fp

Figure 3.38. Oracles of game F3. Highlighting indicates where KE was plugged into Goke
KE,P,S,1.

Boxes indicate differences from F2.
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