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ABSTRACT OF THE DISSERTATION

Role of DNA Methylation and TET2 Loss in Myelodysplastic Syndrome
Pathobiology and Azacitidine Response

by

Brian Matthew Reilly

Doctor of Philosophy in Biomedical Sciences

University of California San Diego, 2019

Professor Rafael Bejar, Chair

Myelodysplastic syndromes (MDS) are hematologic malignancies 

characterized by impaired differentiation of hematopoietic stem and progenitor 

cells (HSPC) causing peripheral blood cytopenias and an increased propensity for 

developing acute myeloid leukemia. MDS arises as a consequence of genetic and/

or epigenetic lesions in HSPCs. Dysfunctional epigenetic regulation is a hallmark 

of MDS, where a majority of MDS patients harbor mutations in genes regulating 
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DNA methylation (5mC) or chromatin modification. Aberrant 5mC patterns are 

common in MDS and may correlate with disease progression. 

Disease progression in MDS is highly variable, making prognostication 

critical for decisions on treatment options and intensity. In Chapter 2 we 

interrogated 5mC patterns at ~500,000 CpGs across the genome in 141 MDS 

patient tumor samples and applied an unsupervised classification to define 5mC 

sub-types of MDS. We identified five patient clusters with distinct 5mC patterns, 

and these groups were enriched for distinct patterns of genetic lesions related to 

prognostic risk. The 5mC sub-types displayed differences in survival that were 

independent of all known prognostic variables, including genetics. Differentially 

methylated genes between clusters included those with known prognostic impact, 

as well as novel gene associations which were validated in external MDS cohorts. 

Our findings highlight the importance of 5mC in disease progression and its utility 

as a prognostic biomarker.

DNA methyltransferase inhibitors, such as 5-Azacitidine (5-Aza), are the 

only therapy approved for treating higher-risk MDS, yet only half of patients 

respond to therapy. Mutations in the 5mC regulator, TET2, are associated with 

increased response rates, however the mechanisms involved are unknown.

In Chapter 3 we modeled TET2 loss in isogenic erythroleukemia cell lines and 

studied differences in 5mC, 5-hydroxymethylcytosine (5hmC), and gene 

expression during 5-Aza exposure. We show that TET2 loss particularly influences

5mC and 5hmC patterns at erythroid gene enhancers, and is associated with 
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down-regulation of gene expression. 5-Aza disproportionately induces expression 

of erythroid genes in TET2KO cells through 5mC reduction at erythroid enhancers.

This work highlights the role of 5mC and 5hmC changes at enhancers in altering 

differentiation-associated gene expression signatures, and sheds light on how 5-

Aza may be more effective in patients harboring TET2 mutations.
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Chapter 1:  Introduction
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1.1 Normal Hematopoiesis

Hematopoiesis is the process whereby a hematopoietic stem cell (HSC) in 

the bone marrow differentiates into the wide array of functional cell types which 

make up the blood and immune system. Starting with the early histopathologists 

studying leukemia, there there has existed an idea that there was a “stem cell”  

which gave rise to both the red and white cells of the blood (Pappenheim 1896; 

Folia haematol (Leipz) 1907). In the many years since this idea was suggested, 

many studies lead to the synthesis of a hierarchical model of hematopoiesis where

HSCs differentiate step-wise into further and further differentiated precursors with 

varying self-renewal potential before finally differentiating into the terminally 

differentiated functional cells of the blood (Akashi et al. 2000; Kondo, Weissman, 

and Akashi 1997). As shown in Figure 1.1 this process involves HSCs (short and 

long-term HSCs which can self-renew) differentiating into multipotent progenitors 

(MPP) which retain multilineage differentiation potential but lose self-renewal 

capacity, followed by differentiation into the lineage restricted progenitors: the 

common myeloid progenitors (CMP) which go on to form all of the myeloid lineage 

cells, and the common lymphoid progenitors (CLP) which form the lymphoid 

lineage cells of the blood. This model originally synthesized from experiments 

based on cell surface markers and assays of clonogenic and differentiation 

potential, has been refined over the years as newer technologies have allowed 

greater specificity. First, the discovery of a lymphoid precursor cell which retained 

some capacity to generate cells of the granulocytic/monocytic lineage, prompting 
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the coining of a new class of multipotent progenitor, the lymphoid-primed 

multipotent progenitor (LMPP) (Adolfsson et al. 2005). Single-cell transplantation 

studies later demonstrated that HSCs (cells which retain self-renewing capacity) 

can be biased in terms of their ability to recapitulate all of the cells of the bone 

marrow (Yamamoto et al. 2013), the first indication that lineage commitment may 

bypass the MPP and CMP/CLP steps of the hierarchical model of differentiation. 

Finally, cutting edge studies using high-throughput single-cell gene expression 

coupled with cell-marker analysis have indicated that differentiation likely exists on

a continuum in single-cells (Velten et al. 2017). In this model, individual HSCs can 

acquire lineage biases without passing through discrete hierarchically organized 

progenitor populations historically associated with that lineage (e.g. MPP → CMP 

→ MEP → erythrocyte). Furthermore, HSCs can be primed for multiple different 

lineages at once, and depending on external stimuli and stochastic processes, 

become further committed along a particular lineage to produce differentiated 

cells. This model explains many of the earlier findings in which individual HSCs 

and further differentiated progenitors didn’t behave according to the hierarchical 

model, and serves as the most modern understanding of the process of 

hematopoiesis. The hierarchical model remains a fairly accurate simplified model 

of hematopoiesis with the caveat that there is not likely to be true isolated 

committed progenitor populations (CMP, CLP, LMPP), but rather heterogeneous 

collections of lineage biased HSCs which have some probability for differentiation 
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along multiple lineages that narrow as differentiation progresses (Laurenti and 

Göttgens 2018). 

Figure 1.1 The hierarchical model of hematopoiesis. This simplified diagram shows the 
pathway for hematopoietic stem cell (HSC) to differentiate to produce all of the mature cells of the 
blood and immune system. LT-HSCs can sustain hematopoiesis for an individual’s lifetime, 
whereas ST-HSCs are short-lived but can self-renew and can produce all mature cell types. More 
differentiated progenitors (MPP, CMP, LMPP, etc.) are incapable of self-renewal. LT-, ST-HSC; 
long-term- and short-term hematopoietic stem-cell; MPP, multipotent progenitor; CMP, common 
myeloid progenitor; LMPP, lymphoid-primed multipotent progenitor; MEP, megakaryocyte-erythroid 
progenitor; GMP, granulocyte-monocyte progenitor; CLP, common lymphoid progenitor.

1.2 DNA Methylation

DNA methylation (DNAm) is one of the main forms of epigenetic regulation, 

which in the most general sense is the mechanism by which an individual’s 

genome which is static across all cells, is able to produce the wide diversity of 

different cell type phenotypes that make up an organism (Waddington 1942). DNA 

methylation typically refers to an additional methyl group on the fifth position of 
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cytosine nucleotides in DNA, known as 5-methylcytosine (5mC). 5mC is a stable, 

heritable, epigenetic mark which is critically important in the maintenance of 

cellular identity and differentiation of stem cells (Smith and Meissner 2013). 5mC 

typically occurs in the context of CpG di-nucleotides which are symmetrical on 

either strand of DNA, and due to this symmetry, 5mC marks can be maintained 

after DNA replication, making them heritable (Ramsahoye et al. 2000; Ziller et al. 

2011). Non-CpG methylation, referring to 5mC occurring outside the context of a 

CpG dinucleotide, is a rare form of 5mC which is less well understood (Ziller et al. 

2011). 

5mC has a complex role in the regulation of gene expression, where 5mC 

may serve different purposes in different contexts. Of the ~28 million CpGs in the 

human genome, the majority (60-80%) are constitutively methylated, while the less

than 10% of CpGs occurring in CpG dense regions known as CpG islands (CGI’s) 

and are typically resistant methylation (Saxonov, Berg, and Brutlag 2006; Smith 

and Meissner 2013). Thus, the majority of CpGs in the genome are static across 

tissues and throughout life, only changing in localized contexts as different cellular 

processes must be activated or repressed for cellular differentiation or in response

to external factors (Smith and Meissner 2013). While the majority of CpGs are 

static, the non-static CpGs play a critical role in gene regulation. Generally when 

5mC is located at non-CGI gene promoters it is associated with repression of 

transcription, while when located within gene bodies, it is associated with 

activation of transcription (Schultz et al. 2015a; Yang et al. 2014; Roadmap 
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Epigenomics Consortium et al. 2015). 5mC can also regulate gene expression by 

altering the binding of transcription factors or transcriptional insulator proteins 

(Hark et al. 2000; P.-Y. Chen et al. 2011; Prendergast and Ziff 1991). 

Transcriptional enhancers are regions of DNA/chromatin which are located distal 

to a gene transcription start site (TSS) which, through DNA/chromatin looping are 

able to enhance gene expression from a distance (Shlyueva, Stampfel, and Stark 

2014). The role of 5mC at enhancers is less well established, however several 

studies have reported that hypomethylated enhancers induce higher 

transcriptional activity, indicating that maintenance of low methylation at enhancers

is important for at least some genes (Lister et al. 2009; Schmidl et al. 2009; 

Andersson et al. 2014). 

DNA methylation is a major determinant of cellular identity and cell fate 

during differentiation. This fact is especially clear in hematopoietic differentiation, 

where 5mC protects HSCs from premature differentiation (Álvarez-Errico et al. 2015;

Bröske et al. 2009). 5mC is also a determining factor in commitment of HSCs to a 

lymphoid vs. myeloid cell fate and differentiated cell identity (Álvarez-Errico et al. 

2015; Trowbridge et al. 2009). Notably differentiation-associated 5mC differences in 

both hematopoietic as well as other tissues seems to be particularly enriched at 

cis-acting transcriptional enhancers as opposed to gene promoters or gene bodies

(Farlik et al. 2016; Sheaffer et al. 2014a).
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1.3 Regulation of 5mC

The methyl group of 5mC is added to cytosines by several members of the 

DNA methyltransferase (DNMT) gene family (DNMT1, DNMT3A, DNMT3B), which

each have unique roles in regulation of 5mC. DNMT1 is known as the 

“maintenance” methyltransferase, as it recognizes and binds to hemi-methylated 

CpGs (CpGs which are methylated on only one strand of DNA) with higher affinity, 

and catalyzes the addition of a methyl group to the cytosine of the unmethylated 

DNA strand (Hermann, Goyal, and Jeltsch 2004). In this way, DNMT1 is 

responsible for maintenance of epigenetic identity during cellular division, for 

without DNMT1 maintenance of 5mC, it would become successively diluted with 

increasing cellular divisions. DNMT3A and DNMT3B are known as de novo 

methyltransferases, as they can catalyze the addition of new methyl groups to 

cytosine in the absence of hemi-methylated DNA (Okano et al. 1999). De novo 

DNMTs are therefore especially important during cellular differentiation which 

requires new methylation marks for the establishment of new cell lineages from 

stem cells such as HSCs. In fact, DNMT1, 3A, and 3B are all indispensible for 

normal mammalian development (Okano et al. 1999; Li, Bestor, and Jaenisch 

1992).

DNA methylation can be removed by both passive and active mechanisms. 

Passive loss of 5mC occurs when DNMT1 levels are insufficient to maintain all 

hemi-methylated CpGs during successive rounds of DNA replication. Mechanisms 

for the active removal of 5mC have been postulated to exist for many years 
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(Mayer et al. 2000) and have only recently been elucidated with the discovery of 

the function of the tet methylcytosine dioxygenase enzymes (TET 1, 2, and 3). 

TET proteins can catalyze the oxidation of 5mC to 5-hydroxymethylcytosine 

(5hmC) (Tahiliani et al. 2009a; Ito et al. 2010a) and to further oxidized derivatives, 

5-formylcytosine (5fC) and 5-carboxycytosine (5caC) (Ito et al. 2011; He et al. 

2011a). 5caC and 5fC are both recognized and excised by thymine-DNA 

glycosylase (TDG) creating abasic sites which are restored with unmodified 

cytosines through base excision repair (BER) (Maiti and Drohat 2011a; Weber et 

al. 2016), thus completing the active demethylation pathway. Recent work 

indicates that TET proteins and 5hmC likely have functions outside the 

demethylation pathway, which will be enumerated in a section below.

1.4 Myelodysplastic Syndromes

Myelodysplastic syndromes (MDS) in the simplest terms are a group of 

disorders in which hematopoietic stem and progenitor cells (HSPC) are unable to 

properly differentiate to form functional mature hematopoietic cells, often 

accompanied by an accumulation of immature and dysfunctional HSPCs in the 

bone marrow (Figure 1.2). The disorder is associated with clonal hematopoiesis 

and an increased risk of transformation to acute myeloid leukemia (AML) (Tefferi 

and Vardiman 2009; Adès, Itzykson, and Fenaux 2014). Patients with MDS typically 

exhibit a hypercellular bone marrow with dysplasias (abnormal cell morphology) 

and an excess of immature cells (blasts), as well as peripheral blood cytopenias in

one or more hematopoietic lineages (Vardiman et al. 2009). MDS is a disease of 
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aging, with a median age at diagnosis of 65-70 years and increasing incidence 

with age (Adès, Itzykson, and Fenaux 2014). 

Figure 1.2 Normal and malignant myelopoiesis in MDS during disease progression. Normal 
myelopoiesis produces sufficient quantity of functional mature blood lineages, while in MDS, 
genetic and epigenetic lesions lead to an accumulation of immature progenitor (HSC and CMP) 
cells and uni- or multi- lineage cytopenias in the peripheral blood that worsen as the disease 
progresses towards high-risk disease or secondary AML. Adapted from Shastri A., Will B., Steidl U.,
Verma A. Blood. 2017.

1.5 Molecular Basis of MDS

The majority MDS cases occur without a known cause, while a minority of 

patients may acquire MDS secondary to exposure to chemotherapeutic agents or 

environmental exposures, and there is some evidence for an autoimmune 

component to the disorder (Adès, Itzykson, and Fenaux 2014). The molecular basis 

for MDS is complex, but there is now strong evidence that cytogenetic and genetic

lesions are at the heart of the disorder (Ogawa 2019). While roughly half of MDS 

patients exhibit clear cytogenetic alterations, virtually all patients harbor somatic 
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mutations, and the number of somatic mutations increases with disease 

progression (Low-risk < high-risk < secondary-AML) (Ogawa 2019).  A key finding 

from genetic studies of MDS was the high frequency of somatic mutations in 

genes involved in epigenetic regulation (DNMT3A, TET2, ASXL1, EZH2)  (Bejar et

al. 2011; Haferlach et al. 2014). This finding helped explain other studies which 

found MDS and AML patients had a deregulated epigenome, and also provides a 

plausible explanation for the efficacy of DNA methyltransferase inhibitors in 

treating the disorder. Notably, recent work has shown that some healthy 

individuals exhibit clonal hematopoiesis with mutations in epigenetic regulators, 

and these patients are at an increased risk of developing myeloid malignancies 

(Jaiswal et al. 2014; Kwok et al. 2015). This finding suggests that epigenetic 

regulator mutations are likely an initiating event on the path towards myeloid 

malignancy that may take many years to present (Sperling, Gibson, and Ebert 

2017).

1.6 Prognostication in MDS

The clinical course of MDS is highly variable. While some patients may 

survive on supportive care (blood transfusions and hematopoietic growth factors) 

alone for the remainder of their lives, other patients may rapidly progress and die 

within one year (Greenberg et al. 2012). For this reason, identifying subsets of 

patients who may require more aggressive treatments is paramount (Platzbecker 

2019). The most current guidelines for prognostication in MDS are laid out in the 

Revised International Prognostic Scoring System for myelodysplastic syndromes 

10



(IPSS-R) (Greenberg et al. 2012), which scores patients on a variety of prognostic 

factors including degree of cytopenias, percentage of bone marrow blasts, as well 

as the presence of cytogenetic abnormalities present in bone marrow disease 

cells. Adverse cytogenetic risk abnormalities include deletions of chromosome 7 

and chromosome 3 abnormalities, as well as complex karyotype. Certain 

cytogenetic changes such as loss of the Y chromosome or long (q) arm of 11 

confer no added risk, however in general the greater the number of cytogenetic 

abnormalities the higher the disease risk.  

While the IPSS-R remains the gold-standard for prognostication in MDS, in 

the years since its publishing a number of groups have studied the value of 

somatic genetics as a means of refining the risk groups laid out in the IPSS-R, and

these are increasingly being incorporated into clinical decision making 

(Platzbecker 2019; Bejar et al. 2011; Haferlach et al. 2014). Bejar et al. were the 

first to demonstrate that the presence or absence of specific somatic mutations as 

well as the number of mutations were predictive of survival even among patients 

with identical IPSS risk scores (Bejar et al. 2011). Later studies have refined these 

observations as well as identified new relationships between somatic genetics and

survival after HSC transplantation (Haferlach et al. 2014; Bejar, Stevenson, et al. 

2014). 

Given the high frequency of epigenetic regulator mutations in MDS, 

alterations in 5mC have also been studied for their value as prognostic 

biomarkers. Jiang et al. Were the first to show that the degree of aberrant 
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hypermethylation at the FZD9 locus, among others, was predictive of IPSS risk 

scores, and correlated with overall survival in a cohort of 184 patients (Ying Jiang 

et al. 2009). Other studies using higher-throughput methods used unsupervised 

classification approaches to identify 5mC subtypes in AML, and discovered that 

while several of these subtypes corresponded to known genetic or cytogenetic risk

groups, multiple subtypes were novel and independently associated with survival 

(Figueroa, Lugthart, et al. 2010a). No such study has yet been performed in MDS, 

until now with the work we lay out in Chapter 2.

1.7 Treatment of MDS

The therapeutic strategy in MDS is largely guided by prognostic risk 

(Platzbecker 2019). Many low risk patients will die of causes other than MDS, so 

often these patients will receive supportive care alone. With higher risk patients 

the goal is always to modify the course of the disease, avoid progression to acute 

myeloid leukemia and to prolong survival (Adès, Itzykson, and Fenaux 2014; 

Platzbecker 2019). The only curative treatment for MDS is hematopoietic stem-cell 

transplantation, however transplantation is not available for the majority MDS 

patients due to the advanced age and likely comorbidities present in the patient 

population (Witte et al. 2017; Platzbecker 2019). For many low-risk patients, 

erythropoiesis-stimulating agents are effective, however resistance can build over 

time at which point these patients will require more intensive treatments as for 

higher-risk patients. Patients with isolated deletion within the q arm of 

chromosome 5 benefit from lenalidomide treatment which achieves transfusion 

12



independence in two-thirds of patients, however resistance can also arise with this

drug (Giagounidis et al. 2012).  

In most higher-risk patients who are not eligible for HSC transplant, DNA 

methyltransferase inhibitors (DNMTIs) such as azacitidine and decitabine are the 

first-line therapy choice as they confer a survival advantage, delay the time to 

transformation to AML, and help some patients achieve red blood cell transfusion 

independence (Fenaux et al. 2009; Adès, Itzykson, and Fenaux 2014). Responses to 

DNMTIs are delayed in many patients, with a median time to response of 2-3 

months, while some patients first response may be as long as 6 months after the 

start of treatment (Silverman et al. 2011). DNMTIs remain the most effective 

treatment for higher-risk patients, however less than 50% of patients respond to 

therapy, and there are no reliable predictors of response (Fenaux and Ades 2009; 

Bejar, Lord, et al. 2014b). Due to the delayed response times, many 

nonresponding patients lose precious time during treatment while their disease 

may progress and while they could otherwise be pursuing alternative or 

experimental therapies. For the above reasons, biomarkers of response to 

DNMTIs are sorely needed. 

1.8 DNA Methyltransferase Inhibitors

DNMTIs are cytosine nucleotide analogs initially developed as traditional 

cytotoxic chemotherapeutics in the 1960s (Sorm et al. 1964). It wasn’t until 1980 

that they were discovered to induce cellular differentiation in vitro as well as DNA 

hypomethylation (Jones and Taylor 1980). The mechanism by which DNMTIs 

13



inhibit DNA methylation is now known to be through the irreversible inhibition of 

DNA methyltransferase enzymes (DNMT1, DNMT3A, and DNMT3B). DNMTIs 

must be incorporated into DNA during DNA replication in order to act as a 

substrate for DNMTs leading to irreversible covalent binding and subsequent 

proteasomal degradation (Santi, Norment, and Garrett 1984). In the absence of 

sufficient DNMT enzymes, passive DNA demethylation occurs during subsequent 

cell divisions (Stresemann and Lyko 2008). DNMTIs require active cell cycling to 

be incorporated into DNA, yet they also cause DNA damage themselves by 

forming a covalent bond between enzymes and DNA, therefore dosage 

optimization was critical in finding a balance between inhibiting DNA methylation 

and stopping cell cycling. For this reason, current dosage schedules typically call 

for 5 to 7 sequential days of low-dose DNMTI infusion in MDS patients (Jabbour et

al. 2017).

DNMTIs were first applied in MDS due to their known role in inducing 

cellular differentiation, as well as the knowledge that MDS patients exhibit aberrant

hypermethylation of tumor suppressor gene promoters(Mund, Brueckner, and Lyko

2006). In theory DNMTIs were thought to exert their efficacy through 

demethylation of aberrantly methylated tumor suppressor genes, and studies have

shown that this does indeed occur during treatment (Stresemann and Lyko 2008), 

however there may be other mechanisms which contribute to response to these 

agents. 
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As mentioned above, the main challenge with DNMTIs is predicting which 

patients will respond to therapy. A number of studies have examined dynamic DNA

methylation changes at different time-points during treatment in the hopes of 

identifying a signal associated with treatment response at an earlier time-point 

(Welch et al. 2016a; Merlevede et al. 2016; Meldi et al. 2015; Shen et al. 2010a). 

One question at the forefront of the quandary was whether nonresponding patients

were resistant to therapy due to accelerated drug metabolism and/or incomplete 

inhibition of DNA methylation. From studies by Welch et al. we now know that both

responding and nonresponding patients display similar levels of demethylation at 

an acute time point after treatment (24hrs after final dose), so response is not 

dictated by the amount of demethylation after treatment. We also now know that 

the amount of demethylation at the promoters of tumor suppressor genes (Shen et

al. 2010a), as well as genome wide (Merlevede et al. 2016), after 4 to 6 monthly 

cycles of treatment does indeed correlate with treatment response, with 

nonresponding patients exhibiting no change or gains in 5mC, and responding 

patients displaying profound hypomethylation. These studies together suggest that

the rate of remethylation may be an important governing factor in determining 

treatment response. 

Finally, a number of studies have examined genetic predictors of response. 

Varying degrees of association have been observed between mutations in several 

genes and response, however the only mutation to be validated as a predictor of 

response in multiple studies were those in TET2 (Bejar, Lord, et al. 2014b; Traina 
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et al. 2014; Itzykson et al. 2011). Unfortunately, mutation in TET2 is an imperfect 

predictor, as it is one of the most frequently mutated genes in MDS and is often 

comutated with a variety of genes which likely affect its ability to confer sensitivity 

to DNMTIs. For example Bejar et al observed that TET2 mutant patients who did 

not harbor a mutation in ASXL1 were more likely to respond than those who did. A 

better understanding of the processes which confer sensitivity to DNMTIs in TET2 

mutant MDS is needed.

1.9 TET2 in MDS

TET2 is one of the most frequently mutated genes in MDS and other 

myeloid malignancies, and has been extensively studied in this context in recent 

years (Ogawa 2019; Bejar 2017). The vast majority of TET2 mutations in MDS and

other hematologic malignancies are inactivating mutations which inhibit or abolish 

its catalytic activity leading to globally reduced 5hmC (Ko et al. 2010). down-

regulation of TET proteins also appears common in hematologic malignancy, as 

tumor cells from MDS and AML patients wild-type for TET proteins may also 

exhibit global reduction in 5hmC content (Ko et al. 2010). TET2 inactivation in 

myeloid malignancies and animal models was shown to bias hematopoiesis in 

favor of myeloid differentiation at the expense of other lineages, and also 

enhanced HSC expansion and repopulating capacity (Delhommeau et al. 2009; Ko

et al. 2011). In the absence of other cooperating mutations, TET2 inactivation 

rarely induces frank leukemias or MDS in animal models, which supports its role 

16



as an early or initiating lesion in the disorder (Kasper Dindler Rasmussen and 

Helin 2016). 

Previously, we highlighted the role of 5mC in differentiation, however 5hmC 

and active demethylation appear equally important in this process. TET2 loss  

appears to induce differentiation defects in a variety of stem cells including and 

especially in hematopoietic tissues (Orlanski et al. 2016; Hon et al. 2014; Moran-

Crusio et al. 2011). The differentiation defects have been linked to aberrant 

hypermethylation of lineage-specific enhancer and other regulatory elements, 

which provides a plausible connection to the efficacy of DNMTI-induced 

hypomethylation in the TET2-mutant context (Yamazaki et al. 2015; Kasper D 

Rasmussen et al. 2015; Hon et al. 2014). 

The specific role of TET2 inactivation in the context of DNMTI treatment 

response is relatively unknown. In competetive bone marrow transplantation 

experiments in mice, Tet2-null cells displayed significantly decreased peripheral 

blood chimerism after DNMTI treatment, while Tet2-wild-type cells showed no 

significant change (Bejar, Lord, et al. 2014b). In two studies which examined 

disease cell clonal dynamics of MDS and CMML patients during DNMTI treatment 

it was shown that while certain disease clones can be cleared by DNMTIs during 

treatment response, founding clones, and particularly those carrying mutations in 

epigenetic regulators like TET2 did not show any major differences in clone size 

during treatment response (recovery from peripheral blood cytopenias), suggestive
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of an epigenetic mechanism of response (Merlevede et al. 2016; Unnikrishnan et 

al. 2017a). 

1.10 Summary and Rationale:

MDS is highly heterogeneous both in terms of disease presentation as well 

as disease progression and outcome. Genetic studies in MDS have improved our 

understanding of the pathophysiology of the disease as well as improved outcome 

prediction and helped resolve some of the heterogeneity of these disorders. 5mC 

patterns may integrate cues not only from genetic lesions, but also from the 

microenvironment, the differentiation states of cells, and age-related changes, 

making 5mC an attractive biomarker in MDS. Given the above reasons as well as 

the important role of DNA methylation in MDS pathobiology, in Chapter 2 we 

hypothesized that examining MDS patient DNA methylomes in an unsupervised 

manner may improve our understanding of MDS pathobiology and further resolve 

some of the remaining heterogeneity in these disorders. 

DNMTIs are the first-line treatment of higher-risk MDS patients, yet less 

than 50% of patients will respond to therapy, and responses can take as long as 6 

months to become apparent, during which time a non-responding patient will suffer

adverse affects and increased risks associated with treatment. It is of dire 

importance that we gain a better understanding of the mechanisms of response to 

DNMTIs in MDS. Previous work studying the role of 5mC in treatment response 

has highlighted the importance of rate of 5mC recovery as an important factor 

governing treatment responses. Previous work in our lab discovered that TET2-
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mutant MDS patients were at an increased likelihood of responding to DNMTIs, 

yet this relationship was complicated by the patterns of comutations in these 

patients. Hypermethylation of lineage-specific enhancers leading to differentiation 

alterations in the hematopoietic system have been observed in TET2-mutant 

animal models and MDS patient samples. Given the role of TET2 in regulating 

5mC and 5hmC and the importance of 5mC dynamics in determining DNMTI 

responses, in Chapter 3 we hypothesized that dynamic 5mC, 5hmC, and 

expression changes during treatment may reveal important pathways governing 

response, and we study this in carefully modeled isogenic cell lines to isolate the 

effects driven by TET2 loss.  
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Chapter 2:   DNA Methylation Identifies Genetically and  
Prognostically Distinct Subtypes of MDS 
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2.1 Abstract

Recurrent mutations implicate several epigenetic regulators in the early 

molecular pathobiology of myelodysplastic syndromes (MDS). We hypothesized 

that MDS subtypes defined by DNA methylation (DNAm) patterns could enhance 

our understanding of MDS disease biology and identify patients with convergent 

epigenetic profiles. Bisulfite padlock probe sequencing (BSPP) was used to 

measure DNAm of ~500,000 unique CpGs covering 140,749 non-overlapping 

regulatory regions across the genome in bone marrow DNA samples from 141 

patients with MDS. Application of a non-negative matrix factorization (NMF) based 

decomposition of DNAm profiles identified five consensus clusters described by 

five NMF components as the most stable grouping solution. Each of the five NMF 

components identified by this approach correlated with specific genetic 

abnormalities and categorized patients into five distinct methylation clusters, each 

largely defined by a single NMF component. Methylation clusters displayed unique

differentially methylated regulatory loci enriched for active and bivalent promoters 

and enhancers. Two clusters were enriched for samples with complex karyotypes 

although only one had an increased number of TP53 mutations. Each of the three 

most frequently mutated splicing factors, SF3B1, U2AF1, and SRSF2, was 

enriched in different clusters. Mutations of ASXL1, EZH2 and RUNX1 were co-

enriched in the SRSF2 containing cluster. In multivariate analysis, methylation 

cluster membership remained independently associated with overall survival. 

Targeted DNAm profiles identify clinically relevant subtypes of MDS not otherwise 
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distinguished by mutations or clinical features. Patients with diverse genetic 

lesions can converge on common DNAm states with shared pathogenic 

mechanisms and clinical outcomes.

2.2 Introduction

Myelodysplastic syndromes (MDS) are a group of diverse hematologic 

malignancies caused by accumulation of somatic driver mutations in clonally 

expanded hematopoietic stem and progenitor cells (HSPCs) (Bejar et al. 2011; 

Haferlach et al. 2014; Papaemmanuil et al. 2013).The progeny of these cells 

demonstrate impaired myeloid differentiation, resulting in peripheral blood 

cytopenias, progressive bone marrow failure and potential progression to acute 

myeloid leukemia (AML). Genetic lesions are identified in the vast majority of 

patients with MDS, however, no single mutation profile describes the typical MDS 

patient (Woll et al. 2014; Walter et al. 2013). Instead, a wide variety of mutation 

profiles appear capable of generating morphologic and clinical features typical of 

MDS (Cazzola, Della Porta, and Malcovati 2013) . Epigenetic marks, such as DNA

methylation (DNAm), are critical for mammalian development and are frequently 

implicated in oncogenesis (Gu et al. 2018; Westers et al. 2012; Klutstein et al. 

2016). Somatic mutations in epigenetic regulators are prevalent in more than half 

of all MDS cases and include genes involved in maintenance of DNAm (e.g., 

TET2 and DNMT3A) (Walter et al. 2011; Abdel-Wahab et al. 2009) and histone 

modification (e.g., ASXL1 and EZH2) (Gelsi-Boyer et al. 2009; Nikoloski et al. 

2010). Epigenetic mutations frequently occur early in MDS pathogenesis (Corces-
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Zimmerman et al. 2014; Malcovati et al. 2017) and aberrant DNAm has been 

associated with progression to AML (Ying Jiang et al. 2009; Figueroa et al. 2009; 

Spencer et al. 2017).  MDS patients without mutations in epigenetic regulators can

show alterations in their epigenome suggesting a convergent pathogenic 

mechanism (J. P. J. Issa 2013; Ko et al. 2010). Finally, DNA methyltransferase 

inhibitors are standard of care treatments for certain MDS subtypes as their effects

can improve hematopoiesis and prolong overall survival (OS), with associated 

changes in DNAm and gene expression in responding patients (Fenaux et al. 

2009; Lübbert et al. 2011; Tsai et al. 2012; Merlevede et al. 2016; Meldi et al. 2015; Shen 

et al. 2010b).  As DNAm patterns may be influenced by microenvironmental cues 

and genetic perturbations, we hypothesized that convergent oncogenic states 

defined by DNAm may represent a useful tool to understand the different 

pathobiological mechanisms active in MDS.

Prior studies have attributed altered gene expression to DNA promoter 

hypomethylation in MDS, (Shen et al. 2010b; Fandy et al. 2009; Grövdal et al. 2014)

and more recently, to aberrant methylation at more distal regulatory regions such 

as enhancers (Meldi et al. 2015; Hasegawa et al. 2017; Kasper D Rasmussen et 

al. 2015; Yamazaki et al. 2015; Yang et al. 2014).  Methylation assays that 

interrogate genomic regions beyond promoters may better inform which regulatory

regions possess biologic importance in the development and progression of MDS. 

Since the functional relevance of methylation in these regions is not well 

understood, computational methods that agnostically evaluate DNAm datasets 
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may better classify MDS patients without bias. To characterize biologically relevant

features of the MDS methylome, we utilized a targeted bisulfite padlock probe 

(BSPP) sequencing method that captures specific non-overlapping regulatory 

regions, including differentially methylated regions (DMRs) related to genes 

involved in pluripotency, differentiation and cancer, (Irizarry et al. 2009; Doi et al. 

2009; Lister et al. 2009; Figueroa, Lugthart, et al. 2010b) all known promoters for 

human NCBI Reference Sequence genes as well as all microRNA genes, CTCF 

binding sites and DNase I hypersensitive regions (Diep et al. 2012; Deng et al. 

2009).  We employed a computational approach called OncoGenic Positioning 

System (Onco-GPS) that uses non-negative matric factorization (NMF) to 

decompose a high dimensional methylation matrix into components which serve 

as inputs for consensus clustering, resulting in classification of patients by shared 

methylation signatures (Kim et al. 2017).  One advantage of this approach over 

standard clustering of raw methylation values is that standard hierarchical 

clustering may disproportionately weight the influence of CpG dense regions with 

highly correlated methylation levels such as CpG islands (CGIs), whereas NMF 

first summarizes highly correlated parts of the data (such as CpGs in CGIs) into 

components. This gives equal weighting for regions of lower CpG density, such as 

enhancers, that may have comparable biologic importance. 

Here, we report an epigenomic analysis using the BSPP methylation 

platform and Onco-GPS computational approach of 141 genetically characterized 

MDS patient samples (Bejar et al. 2011; Bejar, Levine, and Ebert 2011). We 
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identify distinct methylation states enriched for specific patterns of somatic 

mutations, cytogenetic abnormalities and clinical outcomes including differences in

OS. Our findings suggest that DNAm signatures, similar to genetic mutations and 

gene expression profiles, may refine our ability to classify and predict clinical 

outcomes in MDS.

2.3 Results

Patient Demographics and Clinical Features

Of the 154 patient samples selected for methylation profiling, 10 were 

removed due to insufficient coverage and 3 were removed after being identified as

extreme outliers, leaving 141 samples in the final cohort. Demographic and clinical

information is provided in Table 2.1 and Supplementary Table 2.1. The median age

was 72 years with 103 (73%) males. 48 patients (34%) were known to 

subsequently receive hypomethylating agent (HMA) therapy. HMA-treated patients

had higher IPSS-R risk, higher bone marrow blast percentages, and lower 

hemoglobin levels. Demographic characteristics of the final cohort were similar to 

those in previously published studies from which most of these samples were 

selected (Bejar et al. 2011; Bejar, Levine, and Ebert 2011). 

25



Table 2.1 Patient characteristics.
N (%)

Number of Cases 141
Gender
    Male 103 (73)
    Female 38 (27)
Age at Diagnosis
    < 70 years 55 (39)
    >= 70 years 86 (61)
FAB
    RA 47 (33)
    RARS 27 (19)
    RAEB 48 (34)
    RAEBT 5 (4)
    RCUD/MD 4 (3)
    CMML 7 (5)
    Other 3 (2)
IPSS-R*

    Very Low 23 (21)
    Low 31 (28)
    Intermediate 20 (18)
    High 24 (21)
    Very High 14 (13)
Cytogenetics†

    Normal 89 (63)
    Abnormal, Not Complex 41 (29)
    Complex 11 (8)
Blood Counts
    WBC (x109/L), median (range) 3.7 (0.9–95.2)

    ANC (x109/L), median (range) 1.6 (0.1–28)
    Hgb (g/dL), median (range) 9.7 (5.8–15.2)
    Platelet (x109/L), median 
(range)

102 (6–987)

    BM Blast (%), median (range)‡ 1 (0–28)
Treatment during follow-up
    Azacitidine 28 (20)
    Decitabine§ 20 (14)
*29 patients were missing data for one or more variables in the 
IPSS-R and could not be classified. †Several patients had 
incomplete cytogenetic information so we stratified them into 
known groups.‡20 patients had missing data for BM Blast %, 
these patients were excluded from survival modeling.§One DAC 
treated patient stopped treatment after one cycle.

Identification of Genetically Distinct DNA Methylation Subtypes of MDS
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We employed the unsupervised Onco-GPS clustering approach to identify 

coherent subgroups defined by DNAm profiles (schema shown in Supplementary 

Figure 2.1). Repeated NMF decompositions with random seeding found the 

greatest stability with five NMF components, indicated by a peak in the cophenetic 

correlation coefficient (Supplementary Figure 2.2 A). Consensus clustering of 

patients by the amplitudes of these five NMF components resulted in stable 

clustering solutions (as indicated by the cophenetic correlation) for four and five 

patient clusters, however, only the five cluster solution provided the most distinct 

clusters as measured by the average silhouette width (Supplementary Figure 2.2 

C-F).  Subdivisions of less than five clusters yielded groups comprised of patient 

samples with heterogeneous component amplitudes (Supplementary Figure 2.2 G-

H). The five cluster solution yielded clusters comprised of samples with high 

amplitudes for a single component, where each cluster was largely defined by a 

separate component (Figures 2.1 A-B and Supplementary Figure 2.2). For 

example, patient samples in Cluster A were significantly associated with 

component 1, but not with any other component. For comparison, we also 

performed consensus clustering of raw methylation data for the most variably 

methylated CpG tiles and observed that five clusters again provided a similarly 

stable solution as indicated by the delta-area plot which shows the change in the 

area under the cumulative distribution function (Supplementary Figures 2.3).
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Figure 2.1  Onco-GPS computational clustering approach identified five NMF components 
which clustered into five patient groups with distinct DNA methylation states. A) NMF 
cmoponent amplitudes (rows) are plotted for each patient (columns), by methylation cluster 
membership. B) A 2-dimensional projection of each patient’s NMF component amplitudes where 
each point is a single patient colored by cluster membership. C) Five methylation clusters 
categorize patients (columns) with distinct genetic and cytogenetic abnormalities (rows). D) Odds 
ratio of enrichment for patients with particular genetic lesions within each methylation cluster. 
Significantly enriched lesions (FDR <0.1) are highlighted in color. 
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Methylation Clusters are Enriched for Distinct Patterns of Genetic Lesions

Each of the five methylation clusters were significantly enriched for specific 

genetic and cytogenetic lesions (Figure 2.1C-D and Supplementary Table 2.2). 

Cytogenetic abnormalities were unequally distributed across clusters, with 

abnormal and complex karyotype patients enriched in Clusters A and B and 

depleted in Clusters C through E (Cluster A: complex OR 9.3, FDR<0.1; Cluster B:

abnormal OR 7.6, FDR<0.01). Alterations of chromosome 7 (OR 9.4, FDR<0.1) 

and del(5q) (OR 7.0, FDR<0.1) were enriched in Cluster B. Total mutation burden 

was lowest in Cluster A, with a mean of 0.8 mutations per patient compared to a 

mean of 1.5-2 mutations per patient for Clusters B through E (Figure 2.1D). 

Mutations known to convey adverse risk occurred more frequently in Clusters B 

and C. Cluster B had significant enrichment of mutations in TP53 (OR 9.4, 

FDR<0.05) and U2AF1 (OR 6.4, FDR<0.01). Cluster C showed enrichment of 

mutations in EZH2 (OR 20.4, FDR<0.01), ASXL1 (OR 5.8, FDR<0.01), and 

RUNX1 (OR 5.0, FDR<0.05). The splicing factors were mutually exclusive and 

found in different clusters, with U2AF1 mutations enriched in Cluster B (OR 6.4, 

FDR<0.01), SRSF2 mutations enriched to a less than significant level in Cluster C 

(OR 3.2, FDR>0.1) and SF3B1 mutations enriched in Cluster E (OR 4.4, 

FDR<0.05). TET2 mutated patients were present in several clusters but uniquely 

enriched in Cluster D (OR 3.2, FDR<0.1). 

Methylation Components Correlate with Specific Genetic Lesions
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The enrichment of specific mutations within each methylation cluster 

appeared to be driven by the association of these mutations with the single NMF 

component that primarily defined each cluster (Figure 2.2). For example, while 

samples with mutations in ASXL1 and RUNX1 were enriched in Cluster C (defined

primarily by NMF component 3), samples assigned to other clusters with mutations

in these same genes also possessed higher NMF component 3 scores (Figure 

2.2B). TET2 mutant samples associated strongly with NMF component 4 and were

enriched in Cluster D, although TET2 mutant samples assigned to Clusters A, B, 

C, and E also had higher component 4 scores than their wild-type counterparts. 

Using an information coefficient-based permutation test, we found unique 

associations between NMF components and genetic lesions (Figure 2.2). The 

most significant component-mutation associations were for Component 3-ASXL1 

(IC 0.417, p<0.001), Component 3-RUNX1 (IC 0.351, p<0.001), Component 3-

EZH2 (IC 0.311, p<0.001), and Component 4-TET2 (IC 0.394, p<0.001). The most

prevalent splicing factor mutations were each associated with different NMF 

components (Component 3-SRSF2, IC 0.232, p≤0.01; Component 4-SRSF2, IC 

0.262, p≤0.01; Component 2-U2AF1, IC 0.257, p≤0.01; Component 5-SF3B1, IC 

0.211, p=0.02). 

30



Figure 2.2  Individual NMF component amplitudes correlate with specific genetic lesions. 
Each NMF component is associeated with specific genetic lesions, and these genetic profiles are 
unique for each individual component (with the exception of SRSF2 mutations which were 
associated with both components 3 and 4). A) patient samples (columns) are plotted in order of 
their component amplitudes (first row, blue=low, red=high) with cluster membership (second row, 
colored tiles) and presence of specific genetic mutations (black/white tiles). (IC = Information 
coefficient; p-values and False Discovery Rates are based on 100,000 permutations). B) Example 
of how Components 3 and 4 are associated with genetic lesions even in clusters which are more 
closely associated with different components. Boxplots for component scores are plotted by cluster 
for patients with or without the specific lesion for the 3 most highly associated lesions. (ns, not 
significant; *, p<0.05; **, p<0.01)

Clinical and Prognostic Significance of Epigenetic Clusters

Small differences in clinical features were observed between methylation 

clusters (Figure 2.3A) including platelet and neutrophil counts. In addition, the 

median age among Cluster A patients was significantly lower at 63 years 

compared to a median of 72 years for Clusters B through E (p=0.01). HMA-treated

patients were distributed across all clusters with no enrichment by response status

(Supplementary Figure 2.4). OS curves for patients in each cluster identified two 
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major patterns with those in Clusters B and C displaying inferior OS compared to 

patients in Clusters A, D, and E (Figure 2.3B). We combined clusters with similar 

median OS into "High" (Clusters B and C) and "Low" (Clusters A, D and E) cluster 

risk groups. In univariate analysis, High and Low cluster risk groups had 

statistically significant differences in OS (HR, 1.95; 95% CI,1.24–3.08; p<0.01) 

(Table 2.2, Supplementary Table 2.3). By a multivariate analysis that assessed 

known prognostic variables in the IPSS-R, DNAm cluster risk group was the most 

statistically significant single predictor of OS (HR, 2.02; 95% CI 1.25–3.27 ; 

p<0.01) (Table 2.2). In a second multivariate model which also considered somatic

mutations, DNAm cluster risk group remained a significant predictor for OS (HR, 

1.6; 95% CI 0.95–2.71 ; p=0.08) (Table 2.2). Notably, methylation cluster risk 

group was a stronger predictor of OS in IPSS-R lower vs. higher risk patients and 

retained prognostic value in HMA treated patients (Supplementary Figures 2.5). A 

subset of patients without known prognostic mutations could also be stratified by 

methylation cluster risk groups, which indicates that the prognostic value of 

methylation clusters is not fully driven by the differential enrichments of prognosis-

associated somatic mutations across clusters (Supplementary Figure 2.6) (Bejar et

al. 2011; Haferlach et al. 2014; Thol et al. 2012). 

32



Figure 2.3  Methylation cluster display differences in clinical features and overall survival. 
A) Median with ranges (25th to 75th percentiles) are shown for patient age, absolute neutrophil 
count (ANC), absolute monocyte count, hemoglobin, platelet count and bone marrow blast 
percentage. Variables with significant pairwise comparisons between clusters by Wilcoxon rank-
sum test are indicated. (*, p<0.05; **, p<0.01) B) Kaplan-Meier (KM) curves stratified by 
methylation cluster are shown for all patients with available survival data (top left). KM curves for 
combined cluster risk groups are shown, where the “High-Risk” patients are those in Clusters B 
and C, and the “Low-Risk” patients are those in Clusters A, D, and E (top right). KM curves for 
patients with Intermediate, High, or Very High IPSS-R risk are stratified by cluster risk groups 
(bottom left), and KM curves for patients with Low or Very low IPSS-R risk are stratified by cluster 
risk groups (bottom right).
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Table 2.2. Methylation cluster risk membership retains prognostic significance by 
multivariate analysis

Model 1: Clinical Features and Cluster Risk Retained by Multivariable Analysis
Univariable  Multivariable   

N (%) HR [95% CI] P-value HR [95% CI] P-value
Cluster Risk Group   

High vs. Low 52 (48) 1.95 [1.24-3.08] 0.003 2.02 [1.25-3.27] 0.004
Clinical Features

Karyotype 0.13
    Abnormal (Not Complex) vs. Normal 33 (31) 1.35 [0.82-2.24] 0.24 1.43 [0.85-2.39] 0.174
    Complex vs. Normal 9 (8) 2.20 [0.93-5.20] 0.071 2.79 [1.15-6.75] 0.023
Bone Marrow Blasts (%) 0.014
    5 - 10 vs. < 5 23 (21) 2.14 [1.22-3.77] 0.008 2.18 [1.23-3.86] 0.007
    11 - 30 vs. < 5 23 (21) 1.77 [1.01-3.09] 0.046 1.40 [0.79-2.49] 0.252

Model 2: Clinical Features, Somatic Mutations, and Cluster Risk Retained by Multivariable Analysis
Univariable  Multivariable   

N (%) HR [95% CI] P-value HR [95% CI] P-value
Cluster Risk Group   

High vs. Low 52 (48) 1.95 [1.24-3.08] 0.003 1.60 [0.95-2.71] 0.076
Clinical Features

Karyotype 0.13
    Abnormal (Not Complex) vs. Normal 33 (31) 1.35 [0.82-2.24] 0.24 1.30 [0.75-2.28] 0.353
    Complex vs. Normal 9 (8) 2.20 [0.93-5.20] 0.071 2.91 [1.16-7.28] 0.022
Bone Marrow Blasts (%) 0.014
    5 - 10 vs. < 5 23 (21) 2.14 [1.22-3.77] 0.008 2.08 [1.16-3.73] 0.014
    11 - 30 vs. < 5 23 (21) 1.77 [1.01-3.09] 0.046 1.55 [0.85-2.83] 0.15

Somatic Mutations
RUNX1 mutated vs. not mutated 19 (18) 2.12 [1.22-3.68] 0.008 1.97 [1.07-3.64] 0.031
EZH2 mutated vs. not mutated 9 (8) 2.91 [1.37-6.18] 0.005 2.19 [0.91-5.24] 0.079
TP53 mutated vs. not mutated 9 (8) 3.16 [1.41-7.08] 0.005 2.40 [0.96-6.01] 0.062

*P-values for individual categories within variables were calculated using the Wald test. P-values for full variables 
correspond to a log-rank test. Multivariable models were constructed by optimizing the AIC which is why some 
multivariable p-values are less than 0.05.

DMRs Between Methylation Clusters Are Enriched for Distinct HSPC Genetic

Regulatory Features

While the five methylation clusters were defined using a subset of the most 

variably methylated regions, we identified genome-wide methylation patterns 

associated with each cluster. Cluster-specific differentially methylated regions 

(DMRs) were extracted by comparing members of each cluster with non-members 

at all CpG tiles with sufficient coverage (Figures 2.4, Supplementary Figure 2.7). 
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DMRs specific to Cluster B and Cluster D were almost entirely hypermethylated, 

where DMRs specific to Cluster C and Cluster E were primarily hypomethylated. 

Cluster A-specific DMRs were both hypermethylated and hypomethylated. We 

then examined DMRs associated with specific genetic subgroups of patients. In 

general, comparison of mutated vs. wild type patients within a single cluster 

yielded only a small amount of differential methylation. However, comparing 

patients with shared mutations across different clusters identified much larger 

differences (Supplementary Figure 2.7). For example, there were few DMRs when 

comparing all TET2-mutated patients to TET2-wild type patients (11 

hypermethylated- and 10 hypo-methylated DMRs). This is illustrated in differential 

methylation volcano plots comparing all patients with specific gene mutations  to 

wild-type patients (Supplementary Figure 2.8A). Differential methylation becomes 

more pronounced when comparing those with a sole gene mutation versus without

the mutation, such as patients with only TET2 mutations versus TET2-wild type 

patients (Supplementary Figure 2.8B). However, DMR differences between TET2 

mutants with different cluster membership were significantly larger than those 

between TET2 mutants and non-mutants within the same cluster (Figure 2.7), 

suggesting that TET2 non-mutants in the same cluster had converged to a 

comparable epigenetic state. 

To determine if cluster-specific DMRs occurred more frequently at specific 

types of genomic regulatory regions, we measured overlap between DMRs and 

regulatory regions defined in the Roadmap Consortium 15-state chromatin state 
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model for human mobilized CD34+ cells and calculated enrichment of DMRs in 

each type of chromatin state (Figure 2.4) (Roadmap Epigenomics Consortium et 

al. 2015).  Cluster A DMRs were specifically enriched in regions flanking the 

transcription start site of genes that are actively transcribed in CD34+ cells, with a 

trend towards hypermethylation. Clusters C and D DMRs were both highly 

enriched in states predicted to act as enhancers, with opposing trends in 

methylation. Clusters B and E DMRs were highly enriched for states predicted to 

be bivalent promoters and bivalent enhancers. 

Figure 2.4  Cluster-specific differentially methylated regions are enriched for distinct 
regulatory chromatin states in reference CD34+ cell epigenome. Cluster-specific DMRs display 
distinct enrichment and patterns of differential methylation at epigenetic regulatory segments in a 
reference hematopoietic stem cell (HSC) as defined by the chromHMM 15-state genome 
segmentation model created from integrated epigenetic datasets (Roadmap Consortium). Clusters 
with significant positive enrichment of DMRs within a given segment are highlighted in light yellow. 
(TSS = transcription start site; Enh = Enhancer; Transcr. = Transcribed; Darker colored bars = 
hypermethylated DMRs; lighter colored bars = hypomethylated DMRs; gray bars = expected counts
which is defined as (number of cluster-specific DMRs) x ((number of CpG-tiles within the given 
genome segment) / (all CpG tiles covered))

NMF Component Amplitudes for CpG’s Correlate with Distinct Reference 

HSPC Genetic Regulatory Features 
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We also measured the association of each NMF component with chromatin 

states defined in reference CD34+ cells. As each CpG tile is assigned an amplitude

for each NMF component we can calculate the strength of association by 

comparing the component amplitudes of CpGs falling within a given chromatin 

state to those falling outside a given state. We calculated the information 

coefficient between each NMF component and each state as a measure of the 

association strength (where IC=1 is the strongest positive association and IC=-1 

the strongest negative association).  We observed that each component was 

associated with unique chromatin states, and the pattern and strength of 

association was in some cases different than that of the cluster-specific DMRs 

(Supplementary Figure 2.9). The top scoring CpG tiles for component 3, which is 

highly associated with Cluster C, were specifically enriched for polycomb 

repressed states. Notably, Cluster C was specifically enriched for patients carrying

mutations in genes associated with polycomb regulation (EZH2, ASXL1, SRSF2) 

and component 3 was highly associated with mutation of these genes independent

of cluster membership. Component 2 CpG tiles were highly and specifically 

associated with bivalent chromatin states. Component 3 CpG tiles were 

associated with promoter and gene flanking states. Component 4 CpG tiles were 

specifically associated with enhancer states coinciding with findings for Cluster 4 

specific DMRs.

Differentially Methylated Genes are Enriched in Distinct Pathways
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We next performed Gene Ontology (GO) term enrichment analysis of 

cluster-specific differentially methylated genes (DMGs) and identified enrichment 

for many ontologies related to T-cell activation and differentiation for Cluster A 

DMGs (Figure 2.5). Cluster B was solely enriched for biological processes related 

to cell-cell adhesion, largely driven by a region of differential methylation centered 

on the protocadherin gamma gene cluster. Cluster D DMGs were enriched for 

genes involved in neutrophil mediated immunity. The most differentially methylated

gene between clusters was WT1, which was hypermethylated in Cluster B and 

hypomethylated in Cluster E (Figure 2.5A-B). The majority of DMRs within WT1 

were located in a downstream regulatory region that had high levels of H3K27ac, 

H3K4me1, and H3K4me3 signal in reference HSPC data, which are considered 

activating histone marks (Shlyueva, Stampfel, and Stark 2014).  Patients in our 

study who had above average methylation in the 2500bp region downstream of 

the WT1 TSS had significantly shorter OS (Figure 2.5C). We then examined WT1 

gene expression and survival data from the Gerstung et al. study of MDS patients 

and found that patients with above average expression of WT1 had significantly 

shorter OS (Figure 2.5D) (Gerstung et al. 2015).  We examined the relationship 

between methylation and expression of WT1 from an external cohort of 200 

patients with AML published by The Cancer Genome Atlas (TCGA) Research 

Network (The Cancer Genome Atlas Research Network 2013) and found a 

positive correlation between hypermethylation and increased gene expression at 

CpG loci that overlapped with our study suggesting an association between 
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methylation at these sites and gene expression (Supplementary Figure 2.10). The 

next most differentially methylated gene was CD93, which was hypermethylated at

a regulatory region surrounding the TSS in our prognostically lower risk Clusters A,

D, and E. We observed a trend for improved survival in patients with above 

average methylation of this regulatory region while gene expression data from 

Gerstung et al. identified a novel and significant association between survival and 

CD93 expression (Supplementary Figure 2.11). We observed a strong negative 

correlation between CD93 expression and DNAm in the TCGA cohort 

(Supplementary Figure 2.12), implying that adverse risk clusters B and C with 

lower average methylation may have had higher expression that correlates with 

the survival results observed in the Gerstung et al. data. 
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Figure 2.5  Cluster-specific differentially methylated genes are enriched in distinct pathways
and may contribute to prognostic differences between clusters. A) Gene enrichment for 
DMRs (y-axis = -log10(p-value) from hypergeometric test of enrichment for DMRs present within a 
gene +/- 1kb, relative to all CpG-tiles within gene; x-axis = mean methylation difference of DMRs 
within gene +/- 1kb) B) Heatmap of average methylation for the most highly differentially 
methylated genes for each set of cluster-specific DMRs (Top; samples in columns, genes in rows). 
WT1 was the most highly differentially methylated gene for both Clusters B and E. Heatmap of the 
average methylation of genes in significantly enriched biological process gene ontologies from 
gene ontology enrichment analysis of cluster-specific DMGs (Bottom; samples in columns, genes 
in rows; biological process ontology indicated by left panel of heatmap). C) methylation of cluster-
specific differentially methylated CpG tiles within the WT1 gene (2nd panel). Grey points represent 
the average methylation of patients in clusters A, C, and D which all had similar levels of 
methylation at these loci. Reduced Representation Bisulfite Sequencing (RRBS) methylation as 
well as H3K27ac, H3K4me3, and H3K4me1 Chip-seq signal tracks correspond to a reference 
dataset of GM-CSF mobilized CD34+ cells from a healthy male donor (3rd through 6th panels; 
Roadmap Consortium epigenome E051). Gene model track (top panel) correspond to isoforms of 
WT1 found in RefSeq with their corresponding Ensembl ID’s. D) Kaplan-Meier curves for the 
Gerstung et al. 2015 cohort stratified by average WT1 expression (left) and for the present study 
stratified by average WT1 regulatory region methylation (region +/-2500bp from TSS) (right).
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2.4  Discussion and Conclusions

In this study, we applied a computational clustering approach based solely 

on the DNAm profiles of 141 bone marrow DNA samples from patients with MDS 

to identify subgroups with different DNAm states defined at key regulatory regions 

of the genome. Using this agnostic approach, five methylation subtypes were 

described that possess unique patterns of enrichment for genetic lesions, 

differences in regulatory element methylation, and associations with survival that 

are independent of prognostic clinical variables and somatic mutations. Our results

demonstrate that somatic genetics are insufficient to predict the methylation state 

for a given patient with MDS, and that DNAm profiles may supplement prognostic 

information in the context of known molecular and clinical variables.

A key conclusion of our study is that in MDS, various mutational profiles can

share a common DNA methylation state even if these states are enriched for 

specific mutated genes. Somatic mutations alone are not sole determinants of 

DNAm which may be integrating additional cues from elements like the 

microenvironment, differentiation state of cells, or age-related changes. This could 

reflect preferential selection for mutations in a given pre-existing epigenetic state 

or shared mechanisms engaged by distinct lesions that converge on common 

epigenetic profiles. For example, we observed that mutually exclusive mutations in

EZH2 and SRSF2 were both enriched in Cluster C, consistent with studies 

suggesting these mutations share pathogenic mechanisms (Meggendorfer et al. 

2012; Papaemmanuil et al. 2013).  We also observed that patients with TET2 
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mutations were distributed to Clusters B, C, and E but enriched only in Cluster D. 

In differential methylation analysis comparing TET2 mutants and non-mutants 

within a single cluster, we found few differences with no strong trends in 

methylation. In contrast, when we compared TET2 mutants within a single cluster 

to TET2 mutants in other clusters, we observed differences in methylation that 

were consistent with the global differences between clusters, suggesting that 

TET2 mutant patients can diverge to different epigenetic states, potentially driven 

by patterns of co-incident mutations or other factors, thus suggesting that DNAm 

differences cannot be attributed simply to particular mutations or cytogenetic 

abnormalities. Mutations in U2AF1, SRSF2, and SF3B1 are known to occur in a 

mutually exclusive manner possibly because they are generally not tolerated as 

co-incident lesions or because they may share a common pathogenic mechanism 

(S. C.-W. Lee et al. 2016, 2018).  In our study, mutations of each of these genes 

were enriched in separate epigenetic clusters and associated with distinct NMF 

components, indicating that these mutations drive distinct oncogenic states and 

likely engage unique pathogenic mechanisms. 

Another important finding in our study was the enrichment of cluster-specific

differentially methylated regions located at distal regulatory regions of the HSC 

epigenome. Much of the previous work on DNAm in MDS has focused on CpG-

rich promoter regions or LINE elements (Römermann et al. 2008; Zhao et al. 2014; 

Garcia-Manero et al. 2011; Qin et al. 2011).  While we identified DNAm differences at 

promoters, there were an equal or greater number of differences at non-promoter 
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regions of the genome. Notably, the TET2 mutated samples enriched in Cluster D 

had the greatest representation of DMRs at enhancer regions as did the loci that 

defined Component 4. These observations are consistent with the putative role of 

TET2 in maintaining the methylation state at enhancer regions (Hon et al. 2014; 

Kasper Dindler Rasmussen and Helin 2016; Yamazaki et al. 2015; Kasper D 

Rasmussen et al. 2015)  and may help explain why a number of studies in AML 

and MDS have struggled to find clear relationships between TET2 mutations and 

DNAm (Yamazaki et al. 2012; Pérez et al. 2012; Figueroa, Abdel-Wahab, et al. 2010; 

Yamazaki et al. 2015; Meldi et al. 2015; Ko et al. 2010).  Consideration of the 

underlying oncogenic state may resolve the relative impact of mutations like those 

in TET2 whose effects may vary in different contexts. Our data suggest that the 

lack of a relationship between DNAm and TET2 mutations may be partially 

explained by the presence of a subset of TET2 wild-type patients displaying an 

enhancer hypermethylation phenotype and TET2 mutant patients often harbor co-

mutations that may also strongly impact their global methylation patterns (e.g., 

mutations in ASXL1, RUNX1, or EZH2). Overall, our differential methylation 

analysis demonstrates that the differences in methylation between genetic 

subgroups were vastly overshadowed by differences driven by methylation cluster 

membership.

We did not observe significant differences in cytopenias or bone marrow 

blast percentages across clusters. Yet, when examining clinical outcomes, we 

discovered that DNAm clusters had two distinct patterns of prognostic risk. While 
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these OS differences are modest and require independent validation, cluster 

groups retain their prognostic significance even when accounting for somatic 

mutations and clinical factors included in the IPSS-R. This suggests that additional

prognostic information may be integrated by convergent epigenetic states 

influenced by, but not exclusive to, somatic mutations. In support of this idea, we 

showed that even among the subset of patients lacking mutations in genes with 

known prognostic impact, DNAm cluster risk groups could stratify patients by OS. 

Additionally, we identified several genes with significant differential methylation 

between clusters, including WT1, which may contribute to the prognostic 

associations we identified. This is consistent with prior work that has associated 

WT1 expression with poor prognosis in MDS and AML (Cilloni et al. 2003; 

Niavarani et al. 2016; Kobayashi et al. 2016; Yanan Jiang et al. 2018).  More novel

was the association between shorter OS and CD93 hypomethylation in our cohort 

and overexpression in an external MDS cohort, as CD93 is a transmembrane 

receptor implicated in the pathogenesis of several malignancies (Olsen et al. 2015;

Lugano et al. 2018; Langenkamp et al. 2015).  Its role in myeloid malignancies is 

relatively unknown, however, it was shown to be essential to the oncogenic 

potential of non-quiescent leukemia stem cells in MLL rearranged AML, therefore 

this gene may warrant further investigation in MDS (Iwasaki et al. 2015). 

Finally, our findings are consistent with those of Shiozawa et al, which 

identified two major subtypes of MDS with differences in genetic lesions and time 

to transformation to AML using an analogous unsupervised classification approach
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on gene-expression data from primary MDS CD34+ cells (Shiozawa et al. 2017).  

Although a different genomic analysis was utilized on a more purified cell 

population, their study similarly concluded that somatic genetics were insufficient 

to define clinically relevant disease characteristics in MDS. In the two groups 

defined in their study, mutations in TET2 and SF3B1 were enriched in, but not 

unique to, the subgroup with longer time to AML transformation, while 

abnormalities in chromosome 7 and mutations in RUNX1 and TP53, among 

others, were more frequent in the subgroup with shorter time to AML 

transformation. These findings are consistent with the genetic abnormalities 

enriched in the two cluster risk groups defined by our study, where mutations in 

TET2 and SF3B1 were solely enriched in our low-risk clusters D and E, while 

chromosome 7 abnormalities and TP53 and RUNX1 mutations were enriched only

in our high-risk clusters B and C. 

A potential limitation of our study is that while samples were collected from 

treatment-naïve MDS patients, only a subset of patients were known to have later 

received HMA therapy. Although HMA-treated patients were distributed across all 

methylation clusters, there was no signal associated with eventual response. 

Larger methylation profiling studies of MDS patients with known treatment 

outcomes are ongoing and may increase our ability to incorporate predictive 

epigenetic and genetic biomarkers into clinical practice.

In conclusion, we demonstrate that using novel computational methods to 

agnostically classify primary MDS patients by their DNAm patterns can identify 
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subtypes of MDS characterized by distinct patterns of genetic lesions, regulatory 

region methylation, and prognostic risk. Our results highlight the importance of 

DNAm in MDS disease biology as a convergent oncogenic phenotype and support

future studies investigating DNAm profiles as clinically relevant biomarkers.

2.5  Materials and Methods

Patients and Samples

A total of 154 patients with treatment-naïve MDS were considered for this 

study. Samples and data from 140 patients were obtained and processed as 

previously described (Bejar et al. 2011; Bejar, Levine, and Ebert 2011; Steensma 

et al. 2009; Bejar, Lord, et al. 2014b).  Samples and data from an additional 14 

patients were included from the University of California San Diego (UCSD) Moores

Cancer Center. All samples were collected with patient consent under protocols 

approved by Institutional Review Boards and in accordance with the Declaration of

Helsinki. Clinical data to determine the Revised International Prognostic Scoring 

System (IPSS-R) score was available at the time of sample collection (Greenberg 

et al. 2012). 

DNA Mutation Analysis

Genomic DNA samples were isolated from bone marrow aspirate 

mononuclear cells and most were genetically characterized in previous studies.  

Samples collected at U.C. San Diego were genetically characterized by targeted 

capture of DNA and sequenced on the Illumina platform. Using the Burrows 

Wheeler Aligner (BWA v0.7.12) MEM modules for paired end reads, sequenced 
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reads were aligned against the reference genome (hg19). Duplicate reads were 

flagged and removed using Picard tools (V1.91). GATK v3.2 was used for base 

recalibration prior to variant calling, and also for local realignments for 

insertion/deletions using the reference variant databases. Somatic variants were 

called using LoFreq v2.1.1 for all variants at >=1% variant frequency. Additional 

variant filtering after variant calling are used with the following parameters: VF 

(variant frequency) <0.05, read depth at variant site <20, GQ and/or QUAL scores 

<30, IndelRepeatFilter >8. Filtered called variants were first annotated using 

ANNOVAR (February 2016). Variant located outside corresponding protein coding 

region or splice site, synonymous variants that were not predicted to alter splicing 

were filtered out. To remove common polymorphisms, variants with population 

frequencies of at least 1% in either 1000 genomes (October 2014) or ExAC (v.3.1) 

were also filtered out. Of the remaining variants, potential functional impact was 

assessed using SIFT (v.5.1.0), Polyphen2 (v2.2.2), and mutation assessor. 

Variants predicted to alter splicing were assessed as described in Jian et al., 

(2014).  Variants were assessed if they have been previously identified in various 

databases including looked up in COSMIC (V77) and cBioPortal, as well as 

ClinVar. All candidate somatic variants were manually reviewed in the Integrated 

Genome Viewer for accuracy.

Generation of BSPP methylomes 

BSPP libraries were generated and sequenced using a standard 150bp 

paired-end read protocol on Illumina HiSeq 2500. Sequencing reads were 
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trimmed, processed and aligned as previously described (Diep et al. 2012; Deng 

et al. 2009).  Briefly, adapter content, biased read positions and poor quality bases

were removed from bisulfite-converted sequencing reads (trim-galore version 

0.4.0) and reads were aligned to the hg19 reference genome. For alignment of 

bisulfite converted sequencing reads, all cytosines were converted to thymines, 

and for the reverse-complement strand, all guanines to adenines, so that reads 

could be mapped to a three-letter genome. Reads were mapped to both the 

Watson and Crick strands of the bisulfite-converted hg19 genome (Burroughs-

Wheeler algorithm mem version 0.7.12 with options ‘-B2 -c1000’). Alignments with 

mapping-quality scores <5 were discarded and only the alignment with the highest

mapping quality score was kept for each read. Overlapping paired-end reads were

clipped (BamUtil clipOverlap function) and encoded read sequences were 

replaced by the original read sequences in the final BAM alignment files which 

were used for quantifying the methylation levels of CpGs.  CpGs with ≥10x and 

<500x read coverage were included and summarized into 25bp tiles by the 

coverage-weighted average of CpGs within the 25bp region. Filtering and quality 

control analysis yielded 141 samples covering 246,088 25bp tiles for our final 

cohort.

DNA Methylation Quality Control

Sample methylation files were filtered to exclude CpG tiles located on the X 

and Y chromosomes, as well as mitochondrial DNA. Methylation files for all 

samples were combined into a single matrix for QC and subsequent analyses. 
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Methylation percentage for each CpG cytosine was quantified as the number of 

reads in which that cytosine was methylated divided by the total number of reads 

covering that position. Samples with missing data for >15% of CpG tiles that were 

covered by >80% of all samples were removed, and CpG tiles that were missing in

>5% of the remaining samples were excluded from downstream analyses (sample 

n=144 after filtering). We employed an iterative process for missing value 

imputation and outlier identification by principal component analysis (adapted from

(Hannum et al. 2013)), where missing data were imputed using K-nearest 

neighbors (R package ‘impute’) then the first two principal components were 

computed for the completed matrix (R package ‘pcaMethods’).  The first principal 

component score for each sample was converted into a Z-score by subtracting the

population mean and dividing by the population standard deviation. This Z-score 

was converted to a False Discovery Rate using the gaussian cumulative 

distribution function (R ‘pnorm’ function) and the Benjamini-Hochberg procedure 

(Benjamini and Hochberg Yosef 1995) and samples with an FDR <=0.2 were 

removed. This procedure was repeated (starting at imputation) until there were no 

more outlier samples, yielding the final cohort of n=141 samples covering 246,088 

25bp tiles.

Identification of Epigenetic Subtypes by Onco-GPS

Using the Onco-GPS computation clustering framework (https://github.com/

UCSD-CCAL/onco-gps-paper-analysis), NMF was performed on the 3% most 

variably methylated CpG tiles (n=7382) to decompose these methylation data into 
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a smaller matrix of NMF components that served as inputs for consensus 

clustering (Brunet et al. 2004; Kim et al. 2017).  NMF is a feature extraction 

algorithm that combines similar attributes (in this case methylation values at 

collections of CpG loci) into summary components which represent cohesive 

properties of the data (in this case localized methylation differences among 

patients), thus reducing redundancy while maintaining interpretability. The number 

of NMF components and consensus clusters was selected based on the 

cophenetic correlation coefficient peak and visual inspection of the clustering 

result after evaluating different numbers of clusters (Supplementary Figure 2.2). 

We observed a peak in the CCC for Kc=5 NMF components after repeating the 

NMF decomposition 100 times for each K in the range of 2 to 8 (Supplementary 

Figure 2.2). Using the H-matrix from the Kc=5 NMF decomposition, we performed 

consensus hierarchical clustering repeated 1000 times by randomly sampling with 

replacement 80% of the samples for each round of clustering, using one minus the

information coefficient as distance metric and Ward’s linkage. A 2-dimensional 

representation of the 5-dimensional NMF H-matrix values for each sample was 

generated, with samples regionally designated by their cluster membership using 

the Onco-GPS functions ‘GPSmap’ and ‘set_sample_phenotypes’. Since the CCC 

was higher with Kc=2 components, we also evaluated this solution but found that 

the while the clustering was stable, it did not give us enough resolution to identify 

genetically homogeneous groups, therefore we carried forward our 5 component 
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solution.  Unsupervised and consensus hierarchical clustering were also 

performed on the 3% most variably methylated CpG tiles for comparison.

Differential Methylation Analysis and Genomic Annotation

Differential methylation analyses were performed on 25bp CpG tiles with 

≥10x and <500x coverage in >60% of samples in each comparison group, with a 

minimum of 3 samples per group (R package ‘MethylSig’ version 0.4.4). 

Differentially methylated CpG tiles were defined as those with FDR corrected p-

value <0.05 and a mean methylation difference >20% between comparison groups

unless otherwise specified.

Analysis of Gerstung et al. Gene Expression Microarray Data

Gene expression datasets (Affymetrix GeneChip Human Genome U133 

Plus 2.0 arrays) and metadata were downloaded from NCBI GEO with accession 

number GSE58831. Probe intensity values were normalized using the ‘gcrma’ R 

package from Bioconductor and normalized probe intensities were averaged for 

genes with more than one probe. Comparison groups for survival analysis in the 

Gerstung et al. data were defined based upon the average expression of the given

genes (Gerstung et al. 2015). (46) 

Analysis of TCGA LAML RNA-seq and Illumina 450k methylation Data

Pre-processed level 3 RNA-seq and Illumina 450k methylation array data 

were downloaded from the The Cancer Genome Atlas data portal 

(https://portal.gdc.cancer.gov). See figure legends for supplemental figures S14 

and S16 for specific analyses performed.
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Statistics

Differences in Kaplan Meier survival curves were assessed using the log-

rank test. Univariate and multivariate models of OS were constructed using Cox 

proportional hazards regression. Variables with univariate p-values <0.2 were 

evaluated for inclusion in the final multivariable model and the final model was 

constructed using a forward and backward stepwise procedure optimized by the 

Aikake Information Criterion (AIC). Variables with multiple categories (such as 

IPSS-R categories) were assessed for inclusion in the final multivariable model 

based on the full variable. An FDR corrected Fisher's Exact test was used for all 

tests of enrichment including genetic lesions in specific clusters, DMRs within 

RefSeq genes and chromatin state segments, and gene ontology (GO) terms. GO 

term enrichment analysis was performed with R package “clusterProfiler” version 

3.6.0. Associations between NMF component amplitudes and specific genetic 

lesions were tested via the information coefficient and an empirical permutation 

test (n=100,000 permutations per comparison) to determine statistical significance 

of the association (Kim et al. 2016). 

Data Sharing Statement

The processed methylation data files have been deposited to the NCBI 

Gene Expression Omnibus under the accession GSE129828.
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Supplementary Table 2.1  Patient characteristics stratified by treatment group.
Untreated Treated Combined P value

Number of cases, N (%) 93 (66) 48 (34) 141
Sex (male/female), N 72/21 31/17 103/73 0.11
Age (y), median (range) 72.3 (48-96.6) 71.0 (47-87) 72 (47-96.6) 0.32
FAB, N (%)
     RA 40 (43) 7 (15) 47 (33) <0.01
     RARS 18 (22) 9 (19) 27 (19) 1
     RAEB/RAEBT 35 (38) 18 (38) 53 (38) 1
     RCUD/MD 0 (0) 4 (8) 4 (3) 0.01
     CMML 0 (0) 7 (15) 7 (5) <0.01
     Other 0 (0) 3 (6) 3 (2) 0.04

Cytogenetics*, N (%)
     Normal 66 (71) 23 (48) 89 (63) 0.01
     Abnormal, not complex 20 (22) 16 (33) 41 (29) 0.19
     Complex 7 (7) 4 (8) 11 (8) 1
Blood Counts, median (range)
    WBC (x109/L) 4.1(0.9–63) 3.1 (0.9–95.2) 3.7 (0.9–95.2) 0.94
    ANC (x109/L) 2.1 (0.2–28) 1.0 (0.1–21.9) 1.6 (0.1–28) 0.4
    Hgb (g/dL) 9.9 (6.9–15.2) 9.2 (5.8–13.4) 9.7 (5.8–15.2) 0.05
    Platelet (x109/L) 108 (11–987) 99 (6–902) 102 (6–987) 0.14
    BM Blast (%)† 0 (0–28) 6 (1–37) 1 (0–37) 0.01

IPSS-R‡, N (%)
     Very Low 22 (24) 1 (2) 23 (16) <0.01
     Low 27 (29) 4 (8) 31 (22) <0.01
     Intermediate 13 (14) 7 (15) 20 (14) 1
     High 16 (17) 8 (17) 24 (17) 1
     Very High 8 (9) 6 (13) 14 (10) 0.55
Treatment, N (%)
     Azacitidine − 20 (42) − −

     Decitabine§ − 28 (58) − –
*5 patients in the treatment group had incomplete cytogenetic information. † 20 patients were missing data for bone 
marrow blast % (all in treatment group) and were excluded from survival modeling. ‡ 29 patients were missing data (7 
from the untreated group, 22 from the treated group) for one or more variables in the IPSS-R and could not be 
classified.§ One patient stopped treatment after 1 cycle of decitabine
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Supplementary Table 2.2  Enrichment odds ratios for specific genetic abnormalities within 
epigenetically defined clusters.

Cluster A Cluster B Cluster C Cluster D Cluster E

TET2 0.2 (0.0-1.5) 0.3 (0.1-0.9) 1.8 (0.8-4.1) 3.2 (1.4-7.5) * 2.1 (0.99-4.5)

ASXL1 0 (0-0) 1.0 (0.4-2.4) 5.8 (2.4-14) *** 1.2 (0.5-2.9) 0.8 (0.4-1.9)

DNMT3A 1.7 (0.3-8.3) 1.3 (0.4-4.2) 0.29 (0.0-2.3) 1.7 (0.5-5.5) 2.0 (0.7-5.8)

ETV6 5.4 (0.9-31.2) 1.7 (0.3-9.0) 0.8 (0.1-7.2) 0.9 (0.1-7.4) 0.6 (0.1-4.9)

EZH2 1.1 (0.1-9.0) 0 (0-0) 20.4 (5.1-82) *** 0.5 (0.1-3.7) 0.3 (0.0-2.4)

NRAS 0 (0-0) 1.7 (0.3-9.0) 4.0 (0.9-19.1) 2.1 (0.4-11.7) 0 (0-0)

RUNX1 0 (0-0) 1.9 (0.7-5.1) 5.0 (1.9-13.2) ** 0.7 (0.2-2.7) 0.5 (0.1-1.7)

SF3B1 0.3 (0.0-2.3) 1.0 (0.4-2.5) 0.6 (0.2-1.8) 1.0 (0.4-2.8) 4.4 (2.0-9.7) **

SRSF2 0 (0-0) 0.4 (0.1-1.6) 3.2 (1.2-8.4) 2.6 (1.0-7.1) 1.2 (0.5-3.4)

TP53 1.5 (0.2-13.1) 9.4 (2.2-40) ** 0 (0-0) 0 (0-0) 1.0 (0.2-5.0)

U2AF1 0 (0-0) 6.4 (2.4-17.3) *** 2.4 (0.8-6.8) 0.2 (0.0-1.9) 0.4 (0.1-1.6)

Abnormal Karyotype 4.2 (1.2-14.7) 6.7 (2.9-15.5) *** 0.3 (0.1-0.97) 0.7 (0.3-1.8) 0.6 (0.3-1.4)

Complex Karyotype 9.3 (2.2-38.5) * 3.7 (1.1-13.1) 0 (0-0) 0.5 (0.1-4.1) 0.3 (0.0-2.7)

-7/del(7q) 0 (0-0) 7.6 (1.7-33.8) * 0 (0-0) 0.7 (0.1-6.2) 1.2 (0.2-6.0)

del(5q) 3.3 (0.6-17.5) 7.0 (1.9-26.5) * 0 (0-0) 0 (0-0) 0.9 (0.2-4.2)

Trisomy 8 1.5 (0.2-13.1) 1.2 (0.2-5.9) 2.6 (0.6-11.3) 0.6 (0.1-5.3) 1.0 (0.2-5.0)

Fisher’s exact test FDR corrected p-value for enrichment or depletion in each cluster:  
* FDR < 0.1; ** FDR < 0.05, *** FDR<0.01
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Supplementary Table 2.3 Univariate Cox proportional hazards regression on clinical and 
genetic features

N (%) HR [95% CI] p-value
Cluster Risk Group   
High vs. Low 52 (48) 1.95 [1.24-3.08] 0.004
Clinical Features
Age, >= 70 vs. Age < 70 68 (63) 1.29 [0.81-2.04] 0.285
Sex, M vs. F 79 (73) 1.21 [0.72-2.04] 0.463
IPSS-R  0.062
    Very-High vs. Very-Low 14 (13) 3.15 [1.40-7.08] 0.005
    High vs. Very-Low 24 (22) 1.83 [0.89-3.79] 0.102
    Intermediate vs. Very-Low 18 (17) 1.70 [0.81-3.59] 0.163
    Low vs. Very-Low 31 (29) 1.36 [0.69-2.67] 0.371
Karyotype 0.13
    Abnormal (Not Complex) vs. Normal 33 (31) 1.35 [0.82-2.24] 0.24
    Complex vs. Normal 9 (8) 2.20 [0.93-5.20] 0.071
Bone Marrow Blasts (%) 0.014
    11 - 30 vs. < 5 23 (21) 1.77 [1.01-3.09] 0.046
    5 - 10 vs. < 5 23 (21) 2.14 [1.22-3.77] 0.008
Hemoglobin (g/dL) 0.125
    < 8.0 vs. >= 12 15 (14) 1.03 [0.39-2.71] 0.958
    >= 8.0 - 9.9 vs. >= 12 46 (43) 2.03 [0.93-4.41] 0.075
    >= 10.0 - 11.9 vs. >= 12 34 (31) 1.42 [0.64-3.13] 0.387
Platelets (x10^9/L) 0.03
    < 50 vs. >= 450 30 (28) 3.03 [1.15-8.00] 0.025
    >= 50 - 99  vs. >= 450 22 (20) 1.65 [0.60-4.56] 0.335
    >= 100 - 149  vs. >= 450 14 (13) 1.44 [0.48-4.31] 0.514
    >= 150 - 449  vs. >= 450 33 (31) 1.38 [0.52-3.64] 0.52
Absolute Neutrophil Count (x10^9/L) 0.737
    < 0.5 vs. >= 10 10 (9) 0.65 [0.19-2.22] 0.49
    0.5 - 1.79 vs. >= 10 46 (43) 0.56 [0.20-1.59] 0.278
    1.8 - 9.99 vs. >= 10 47 (44) 0.58 [0.21-1.65] 0.31
Somatic Mutations (Mutated vs. Non-mutated)
TET2 34 (31) 0.71 [0.43-1.16] 0.171
ASXL1 30 (28) 1.75 [1.06-2.88] 0.028
SF3B1 27 (25) 0.95 [0.58-1.57] 0.855
RUNX1 19 (18) 2.12 [1.22-3.68] 0.008
SRSF2 18 (17) 1.08 [0.61-1.90] 0.792
U2AF1 15 (14) 1.17 [0.63-2.19] 0.618
DNMT3A 13 (12) 1.00 [0.50-2.00] 0.991
EZH2 9 (8) 2.91 [1.37-6.18] 0.005
TP53 9 (8) 3.16 [1.41-7.08] 0.005
ETV6 5 (5) 2.29 [0.83-6.36] 0.111
NRAS 5 (5) 1.12 [0.41-3.07] 0.827
CBL 3 (3) 1.74 [0.42-7.13] 0.442
IDH2 2 (2) 1.46 [0.36-5.97] 0.601
KRAS 2 (2) 2.04 [0.50-8.38] 0.321
NPM1 4 (4) 0.95 [0.30-3.03] 0.933
*P-values for individual categories within variables were calculated using the Wald test. P-
values for full variables correspond to a log-rank test.
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Supplementary Figure 2.1 Study design and findings overview.
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Supplementary Figure 2.2 Data-driven selection of the number of NMF components and 
methylation clusters. A) cophenetic correlation coefficient (measure of numerical stability of 
clustering result) for different  numbers of NMF components. B) Cophenetic correlation coefficient 
for number of clusters after consensus clustering. C) Average silhouette width (measure of cluster 
cohesion and separation from neighboring clusters) for different numbers of consensus clusters. D-
F) Silhouette width values for individual samples in clustering solutions with 4-6 consensus 
clusters. G-I) clustering heatmaps for the K=5 NMF component solution with 4-6 consensus 
clusters.  
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Supplementary Figure 2.3 Consensus clustering of raw methylation data is in agreement 
with a five cluster solution. The top 3% most variable CpG tiles were clustered using hierarchical
clustering and Ward’s agglomeration method, repeated 1,000 times with subsampling of 80% of 
CpG tiles to provide a measure of clustering stability. A) The Consensus CDF and B) Delta Area 
plots indicated a clustering solution close to 5 clusters was most stable, with greater than five 
clusters providing very little increase in the area under the CDF curve. D-F) This can also be seen 
in the consensus matrix heatmaps.
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Supplementary Figure 2.4 Hypomethylating agent treatment response status and genetic 
abnormalities of the five DNA methylation clusters identified. Clusters are the same as shown 
in Figure 2.1C with the addition of the bar at the top indicating treatment response status. 48 
patients received at least one cycle of HMA therapy, one patient stopped after one cycle, leaving 47
with treatment response outcomes. 
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Supplementary Figure 2.5 Survival of patients by methylation cluster risk group for each 
IPSS-R category. Including the HMA-treated patients, we stratified patients by their cluster risk 
group (high risk vs. low risk) for each IPSS-R category, and a significant difference in survival was 
seen between cluster risk groups among patients classified as very low risk by the IPSS-R. A 
similar although non-significant trend was seen in all other IPSS-R risk categories.
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Supplementary Figure 2.6 Methylation cluster risk group informs prognostic risk even in 
patients lacking any known prognosis associated somatic mutations. Survival of patients 
lacking somatic mutations in genes associated with prognosis in MDS (TP53, ASXL1, RUNX1, 
U2AF1, CBL, EZH2, SF3B1, SRSF2 and IDH2), stratified by A) IPSS-R category, B) Epigenetic 
cluster risk group. C) IPSS-R Low and very low risk patients and D) IPSS-R intermediate, high, and
very high patients stratified by methylation cluster risk group.
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Supplementary Figure 2.7 Global differences in differential methylation by cluster and for 
select genes. 
(A/B) Pairwise differential methylation heatmap between clusters reveals that Cluster A is most 
dissimilar compared with other clusters. (C/D) Global differential methylation patterns for Cluster-
specific DMRs (top), comparisons across clusters within TET2 mutant/non-mutant groups where 
indicated (middle, 3 panels), comparisons based on presence/absence of indicated somatic 
mutations. DMRs in (A) and (C) defined with a P-value cutoff of 0.05 and methylation difference of 
>20%; DMRs in (B) and (D) defined with a Q-value cutoff (FDR-corrected, more stringent) of 0.05 
and methylation difference >20%. Notice that the number and direction of cluster-specific 
differentially methylated regions is fairly similar when limiting comparisons to TET2 mutant patients 
belonging to different clusters, indicating that cluster-membership is the major driver of methylation 
differences as opposed to mutations in TET2.
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Supplementary Figure 2.8 Differentially methylated CpG-tiles between groups of patients 
based on presence or absence of somatic mutations. A) Volcano plots for comparisons 
between ALL patients harboring a somatic mutation in the indicated gene vs. patients that are wild-
type for that gene. B) Volcano plots for comparisons between patients whose ONLY detected 
mutation is in the indicated gene vs. patients who are wild-type for that gene. Note: only genes with
>3 patients in each group were selected for comparison.
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Supplementary Figure 2.9 Individual NMF component amplitudes are associated with 
distinct regulatory chromatin states in reference CD34+ cell epigenome. NMF component 
amplitudes show distinct patterns of association with epigenetic regulatory segments in a reference
hematopoietic stem cell (HSC) as defined by the chromHMM 15-state genome segmentation model
created from integrated epigenetic datasets (Roadmap Consortium). NMF component associations 
with given genome segments as represented by the information coefficient value on the x axis (the 
most strongly positively and negatively associated components are colored for each regulatory 
segment; i.e. two colored bars per segment).(TSS = transcription start site; Enh = Enhancer; 
Transcr. = Transcribed)
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Supplementary Figure 2.10 Correlating WT1 methylation and expression using TCGA LAML 
cohort data. Note: only CpGs with coverage in both TCGA and our data are shown. A) (top) 
transcript model plot of the WT1 gene zoomed in to focus on CpGs with large differences in our 
cohort; (middle-top) mean % methylation of patients in DNAm cluster groups for CpGs overlapping 
the region; (middle-middle) mean % methylation of patients in TCGA LAML cohort for each CpG 
loci overlapping region; (middle-bottom) difference in % methylation between highest expressing 
and lowest expressing quartiles of TCGA patients for WT1; (bottom) correlation between WT1 
expression and % methylation across all TCGA patients with paired RNAseq expression and 
Illumina 450k methylation datasets for each CpG overlapping region. B) Mean % methylation of all 
CpGs located in red-highlighted region in (A) vs. log2 WT1 expression in RPKM for each TCGA 
patient (each point represents one patient). Spearman correlation of the % methylation vs. 
expression and significance of correlation indicated in plot.
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Supplementary Figure 2.11 Survival by CD93 methylation (this study) and expression 
(Gerstung et al. cohort). A) methylation of cluster-specific differentially methylated CpG tiles 
within the CD93 gene with loess smoothened linear model (top panel). H3K27ac, H3K4me3, and 
H3K4me1 Chip-seq signal tracks correspond to a reference dataset of GM-CSF mobilized CD34+ 
cells from a healthy male donor (2nd through 4th panels; Roadmap consortium, epigenome E051). 
Gene model track correspond to isoforms of CD93 found in UCSC knownGene table for hg19 
(bottom panel). B) Kaplan-Meier curves for the present study stratified by average CD93 regulatory
region (+/-2500bp from TSS) DNA methylation (left) and for the Gerstung et al. 2015 cohort 
stratified by average CD93 expression (right).
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Supplementary Figure 2.12 Correlating CD93 methylation and expression using TCGA LAML
cohort data.  Note: only CpGs with coverage in both TCGA and our data are shown. A) (top) 
transcript model plot of the CD93 gene zoomed in to focus on CpGs that are covered in both our 
cohort and the TCGA LAML cohort; (middle-top) mean % methylation of patients in DNAm cluster 
groups for CpGs overlapping the region; (middle-middle) mean % methylation of patients in TCGA 
LAML cohort for each CpG loci overlapping region; (middle-bottom) difference in % methylation 
between highest expressing and lowest expressing quartiles of TCGA patients for CD93; (bottom) 
correlation between CD93 expression and % methylation across all TCGA patients with paired 
RNAseq expression and Illumina 450k methylation datasets for each CpG overlapping region. B) 
Mean % methylation of all (3) CpGs located in region in (A) vs. log2 CD93 expression in RPKM for 
each TCGA patient (each point represents one patient). Spearman correlation of the % methylation
vs. expression and significance of correlation indicated in plot.
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Chapter 3: TET2 Dependent Effects of 5-Azacitidine on 
   Gene Expression and DNA methylation Dynamics
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3.1  Abstract

Myelodysplastic syndromes (MDS) are a group of myeloid malignancies 

characterized by clonally impaired hematopoiesis and an increased propensity for 

the development of acute myeloid leukemia (AML). DNA methyltransferase 

inhibitors (DNMTIs) like 5-Azacitidine (5-Aza) are the only drugs approved for the 

treatment of higher-risk MDS, however less than 50% of patients respond, and 

there no reliable predictors of response. Somatic mutations in the DNA methylation

regulating gene tet-methylcytosine dioxygenase 2 (TET2) have been shown to be 

associated with response to DNMTIs in some patients, however the mechanisms 

responsible for this association remain unknown. Using bisulfite padlock probes, 

mRNA sequencing, and hydroxymethylcytosine pull-down sequencing, we show 

that TET2 loss particularly influences DNA methylation (5mC) and 

hydroxymethylation (5hmC) patterns at erythroid gene enhancers, and is 

associated with down-regulation of erythroid  gene expression in the human 

erythroleukemia cell line TF-1. We go on to show that 5-Aza disproportionately 

induces expression of these down regulated genes in TET2KO cells and we show 

that this effect may be related to 5mC changes at erythroid gene enhancers after 

5-Aza exposure. This work highlights the role of 5mC and 5hmC changes at distal 

regulatory elements in altering the expression of differentiation-associated gene 

signatures, and sheds light on how 5-Aza may be more effective in patients 

harboring TET2 mutations.
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3.2  Introduction

DNA methyltransferase inhibitors (DNMTIs) such as azacitidine (5-Aza) are 

the only class of drugs approved for the treatment of higher-risk myelodysplastic 

syndromes (MDS), and are increasingly gaining use in other cancers as 

monotherapy (J.-P. J. Issa et al. 2005; Kantarjian et al. 2012; Stahl et al. 2018), as 

well as in combination with other epigenetic drugs (Azad et al. 2017; Connolly et 

al. 2017; Juergens et al. 2011).  DNMTIs are cytosine analogs that become 

incorporated into DNA where they serve as substrates for and covalently trap DNA

methyltransferase enzymes (DNMTs), leading to their proteasomal degradation 

and causing global hypomethylation of the genome as cells divide (J. P. J. Issa 

and Kantarjian 2009). Despite wider usage of these drugs, overall response rates 

are poor, with less than 50% of MDS patients experiencing a clinical benefit, while 

the mechanisms which sensitize patients to these drugs remain elusive (Garcia-

Manero 2008; Fenaux and Ades 2009). Previous work in our laboratory and others

identified TET2 mutation as a biomarker of response in MDS patients (Bejar, Lord, 

et al. 2014b; Itzykson et al. 2011), where mutant patients were almost twice as 

likely to respond as their non-mutant counterparts, however the mechanisms 

behind this relationship remain unknown. 

TET2 is a member of the tet methylcytosine dioxygenase enzyme family 

which catalyze the conversion of 5-methylcytosine (5mC) to 5-

hydroxymethylcytosine (5hmC) and is one of the most frequently mutated genes in

MDS(Tahiliani et al. 2009b; Bejar et al. 2011; Haferlach et al. 2014; Ito et al. 
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2010b). Tet proteins are the only known pathway for active demethylation of 5mC 

through further oxidation of 5hmC into 5-carboxycytosine which is recognizable by 

thymine-DNA glycosylase which remove and replace it with unmethylated 

cytosine(He et al. 2011b; Maiti and Drohat 2011b). Tet proteins serve diverse roles 

but are especially important in maintaining low methylation levels at transcriptional 

enhancers in hematopoietic cells (Kasper D Rasmussen et al. 2015), a finding 

corroborated by TET2-mutated patients exhibiting a hypermethylation phenotype 

at enhancers (Yamazaki et al. 2015).  Methylation at enhancer elements is 

extremely dynamic during cellular differentiation (Schultz et al. 2015b; Rönnerblad 

et al. 2014), and it appears that tet proteins are essential for certain types of 

differentiation to occur properly (Sheaffer et al. 2014b; Hon et al. 2014). 

There is some debate regarding the precise mechanisms leading to patient 

responses to DNMTIs, but at least in the context of TET2 mutant cases, the 

response does not appear to be driven by changes in the clonal burden of tumor, 

but rather via epigenetic induction of differentiation (Merlevede et al. 2016; 

Unnikrishnan et al. 2017b). The dynamics of DNA methylation during DNMTI 

treatment have been a subject of intense study as groups look for DNAm-based 

biomarkers of response to DNMTIs. Notably, both responding and non-responding 

patients exhibit similar levels of demethylation immediately following DNMTI 

treatment (Welch et al. 2016b), however only patients who respond exhibit long-

term demethylation after several cycles (months) of therapy (Shen et al. 2010b; 
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Merlevede et al. 2016), suggesting that the rate of remethylation in these patients 

may be a significant factor determining response.

We hypothesized that the baseline as well as the kinetics of DNA 

methylation changes during 5-Aza treatment may be relevant for the increased 

response rates in TET2-mutant MDS patients, therefore we set out to determine 

the specific DNAm changes and the accompanying biological pathways affected 

during 5-Aza treatment. To accomplish this we employed CRISPR/Cas9-mediated 

inactivation of TET2 and next-gen sequencing approaches to study 5mC, 5hmC 

and gene expression dynamics during 5-Aza exposure and recovery in a TF-1 

erythroleukemia cell line model. We identified an altered sensitivity and length of 

recovery after 5-Aza exposure as well as differences in demethylation and 

remethylation rate in TET2KO cells. We go on to show that erythroid differentiation

related signatures are down-regulated in TET2KO, how these processes are 

disproportionately effected in KO cells upon 5-Aza treatment, and how it relates to 

5hmC and 5mC changes particularly at enhancers. Our findings highlight the 

subtleties of the relationship between DNA methylation deregulation and 

differentiation defects in TET2KO cells, and shed light on why TET2KO patients 

may benefit more from DNMTI therapy. 

3.3  Results

Targeting the TET2 catalytic domain with CRISPR/Cas9 effectively abolishes 

TET2 expression and function in TF-1 cells. 
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As a model for studying the role of TET2 in response to 5-Aza we selected 

the TF-1 erythroleukemia cell line. TF-1 makes a suitable model due to its growth 

factor dependence and sensitivity to differentiating agents, as well as its lack of 

mutations in genes recurrently mutated in MDS (Barretina et al. 2012). We used 

paired CRISPR Cas9 guide-RNAs (gRNA) to target the key catalytic residues of 

the TET2 dioxygenase domain in TF-1 cells with the goal of deleting a ~1.2kb 

region of exon 11. To control for any potential off-target DNA damage we used 

separate gRNA sequences for each replicate as shown in Figure 3.1. After 

isolating single-cell colonies and PCR screening potential TET2KO clones, we 

identified one clone from each pair of CRISPR gRNAs that had bi-allelic 

inactivation of the TET2 catalytic domain. Notably, after PCR screening ~100 

clones per gRNA pair, we never observed a clone with a bi-allelic 1.2kb deletion, 

likely due to the statistical improbability of this occurring in a single cell as 

mentioned in (Canver et al. 2014). Nonetheless, we validated at the protein level 

that there was no full-length TET2 protein present in either of our TET2KO TF-1 

clones (Figure 3.1B). We observed some clone-specific differences in normal 

growth patterns as might be expected from the initial clonal variability of the bulk 

cell population (Figure 3.1C). To confirm that the catalytic function of TET2 had 

been impacted we performed 5hmC DNA immunoblot, however we did not have 

the sensitivity to detect significant differences in 5hmC content at baseline 

(Supplementary Figure 3.1). In order to enhance the 5hmC signal in our clones we

took advantage of the recent findings that TET protein function can be enhanced 
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by increased L-ascorbic acid (L-AA) concentration (Agathocleous et al. 2017; 

Cimmino et al. 2017).  L-AA treatment increased 5hmC content >2 fold in TET2 

WT clones, while TET2KO clones had a more modest ~1.2 fold increase.  Finally, 

to more sensitively detect changes in 5hmC and to determine which genomic 

regions were effected, we performed 5-hydroxymethylation pull-down followed by 

next-generation sequencing (HMCP-seq). The majority of 5hmC enriched regions 

(~51,000) were shared between TET2KO and WT cells. Of the 2,381 differentially 

hydroxymethylated regions (DHMR) shown in Figure 3.1D (unadjusted p<0.05) 

1,861 (78%) had increased 5hmC in TET2WT, while 520 were increased in 

TET2KO.  When examining only the most significantly different DHMRs (FDR < 

0.1) 319/328 (97%) had increased 5hmC signal in TET2WT. Notably, the DHMR 

peaks were enriched for regions of active transcription and active enhancers and 

promoters in a reference hematopoietic stem cell epigenome (Figure 3.1F).  

Combined these results indicate that at baseline TET2 may not be the primary 

regulator of 5hmC in TF-1 cells, but its loss of function leads to reduced 5hmC 

signal at enhancer regions and impairs 5hmC deposition upon L-AA stimulation, 

which is in agreement with the known roles of TET2 (Kasper Dindler Rasmussen 

and Helin 2016; Kasper D Rasmussen et al. 2015; Hon et al. 2014; Yamazaki et al.

2015).
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Figure 3.1 CRISPR/Cas9 mediated loss of TET2 alters growth and hydroxymethylation 
patterns in TF1.  A) Paired CRISPR sgRNA design targeted key catalytic residues of TET2. Two 
independently derived TF1 clones with bi-allelic inactivating deletions were characterized. B) 
Western blot confirms loss of full-length TET2 protein. C) Growth curves for TF1 clones display 
differences in normal growth patterns for TET2 knockout. D) 5-hmC pull down and sequencing 
(HMCP) peak heatmaps and mean normalized counts profile for differentialy hydroxymethylated 
regions (DHMR). E) Differential 5hmC peak enrichment volcano plot TET2KO vs. WT. F) Number of
DHMR (TET2KO v. WT) observed vs. expected overlapping regulatory chromatin states in 
reference CD34+ HSC epigenome (from reference epigenome E051 of Roadmap Epigenomics 
Consortium)
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TET2KO and WT TF-1 exhibit differential sensitivity and remethylation 

kinetics after 5-Aza exposure.

To investigate the effects of 5-Aza in our cell lines we first had to determine 

the minimal dose that inhibited DNA methyltransferases (DNMTs) while 

maintaining high cellular viability to avoid convolution of DNAm differences due to 

clonal shifts versus true DNAm changes induced by 5-Aza. We observed that 

multiple lower intensity treatments of 5-Aza lead to prolonged down-regulation of 

DNMT1, while maintaining high cellular viability (Supplementary Figure 3.2), and 

settled on an optimal dosing regimen of 200nM 5-Aza every 24hrs for 3 days. With

a 3 day dosage regimen we observed modest but significant increase in sensitivity

to 5-Aza by TET2KO TF-1 cells (Figure 3.1A). Acute DNAm changes induced by 5-

Aza are known to correlate with the population doubling time (PDT) in cancer cell 

lines (Yang et al. 2014), therefore we monitored the PDT after 5-Aza exposure as 

a surrogate measure of DNAm recovery.  Notably, TET2KO clones had a 

significant increase in PDT compared with WT clones, however the length of time 

to recovery of normal PDT was similar between the two (~12 days) (Figure 3.2B). 

Interestingly, the time to recovery for the leukemia TF-1 cell line is much shorter 

than that of colon cancer cell lines reported in (Yang et al. 2014). After determining

the optimal dosage regimen and time points for DNAm changes after 5-Aza, we 

used Bisulfite Padlock Probe sequencing (BSPP) to measure DNA methylation 

and RNAseq to measure gene expression dynamics during treatment and 

recovery from 5-Aza treatment (Figure 3.2C). Surprisingly, at baseline (pre-
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treatment) there were almost an equal number of hyper and hypo-methylated 

CpGs when comparing TET2WT and KO (12,310 hyper- and 10,246 hypo-

methylated) (Figure 3.2D).  As expected, after 5-Aza exposure there was a global 

trend for hypomethylation in both genotypes. We next defined a set of CpGs 

termed “dynamic CpGs” for each genotype which had the largest differences in 

methylation between treatment time points (posterior probability >0.90 that 

difference was >20%) to focus on the most relevant %mC changes during 

treatment. Of the 621,000 CpGs covered in all samples in our dataset, only 9,787 

met the dynamic CpG criteria, and the mean change in methylation for these 

CpGs was 31% in WT and 27% in KO (Figure 3.2E). Only 1,098 of the dynamic 

CpGs were shared between genotypes, while the majority were unique (WT 4,998;

KO 3,691) (Figure 3.2F). Finally, when examining the global remethylation kinetics,

TET2KO dynamic CpGs were both demethylated to a lesser extent and also 

remethylated at a lower speed than WT dynamic CpGs (Figure 3.2G). 
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Figure 3.2 Differential response to 5-Aza exposure in TET2KO and WT TF-1. A) IC50 curve for
3x once daily dose of 5-Aza. B) Population doubling time changes after 5-Aza or vehicle exposure. 
C) Baseline DNA methylation differences between TET2KO vs. WT TF-1 prior to 5-Aza exposure. 
D) Schematic of 5-Aza exposure experiment and data generated at each time point. E) Global 
patterns of DNAm for (left) all CpGs covered and (middle) "Dynamic" CpGs that were significantly 
changed during treatment (posterior probability of >20% difference at FDR < 0.1 for comparisons 
shown in schematic at right ). F) Venn diagram showing amount of overlap for Dynamic CpGs in 
TET2 KO vs. WT. G) Time profiles for dynamic CpGs reveal differences in remethylation rate for 
TET2KO vs. WT dynamic CpGs.
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Dynamic CpG loci exhibit different patterns and proportions of 

remethylation kinetics

To investigate different patterns of remethylation kinetics we sought to 

categorize CpGs based on the speed and extent with which they recovered their 

initial methylation value. Rather than try to define a host of arbitrary thresholds to 

determine categories, we instead employed an unsupervised hierarchical 

clustering of methylation values z-scored across time for each CpG locus in each 

genotype to define groups of loci with similar time-profiles in an unbiased manner. 

To decide at what level to cut the clustering tree, we examined the range of K=2 to

K=9 potential clusters and calculated the mean silhouette width for each potential 

clustering solution, whereby the higher the mean silhouette width, the better the 

solution is able to separate loci into well-defined clusters (Rousseeuw 1987).  We 

observed a peak in the mean silhouette width for K=4 clusters of CpG time-

profiles, and upon visual inspection of the different results we decided that 4 

clusters captured the majority of the variability in time profiles without over-fitting 

the results (Supplementary Figure 3.3). The four remethylation patterns identified 

included three groups of CpGs that were significantly demethylated, with varying 

speeds/levels of methylation recovery (fast, intermediate, and slow recovery), as 

well as one group of CpGs that actually gained methylation after 5-Aza exposure 

and fully recovered by day 12 (Figure 3.3A-B). Interestingly, when we explored 

how well these four clusters reflected differences in the amount of recovery of 

methylation patterns by the ‘recovery ratio’ (Figure 3.3D), we observed that the 
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clusters were perfectly separated based on their recovery ratio. We examined the 

quantity and relative proportion of dynamic CpGs belonging to each cluster and 

observed that TET2KO dynamic CpGs had a smaller proportion of CpGs assigned

to the rapid-recovery cluster (KO, n=1,467 (30.6%); WT, n=2,546 (41.7%) and a 

much larger proportion of CpGs assigned to the slow-recovery cluster (KO, 

n=1,111 (23.2.6%); WT, n=804 (13.2%)), in agreement with our previous finding 

that TET2KO dynamic CpGs displayed slower global remethylation kinetics. 

Finally, to correlate these categories of dynamic CpGs, we determined the amount

of overlap of each clusters CpGs with regulatory chromatin states defined in a 

reference CD34+ hematopoietic stem cell epigenome (Figure 3.3D). In both 

genotypes we observed striking enrichment for dynamic CpGs located in regions 

of active transcription as well as in active enhancers. Notably, there was a trend 

for actively transcribed regions as well as gene-body enhancers to be more rapidly

remethylated (enrichment: rapid > intermediate > slow recovery), while the trend 

was in reverse for non-gene-body enhancers and transcribed regions at gene 3’ or

5’ (slow > intermediate > rapid recovery). The one region where the trends were 

not identical between genotypes was for enhancers not located in gene bodies, 

where the highest enrichment was in the slow-recovery cluster for TET2KO, while 

for WT the highest enrichment was for intermediate-recovery CpGs, but the 

differences in enrichment weren’t significant (p = 0.23). 
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Figure 3.3:  Hierarchical clustering of time-scaled CpG methylation values resulted in four 
major clusters characterized by differences in remethylation rates. A) Time profile of dynamic 
CpG loci for each cluster. Each colored line represents a single CpG locus; black solid line 
represents mean  of all loci in cluster; dashed black lines represent mean +/- 1 standard deviation; 
boxplots show summary statistics for WT and TET2KO. B) Heatmap of dynamic CpG mean 
methylation values for each genotype stratified by whether the locus was a shared dynamic CpG or
unique to either genotype. C) Proportion of dynamic CpGs belonging to each cluster. D) (top) 
schematic of the 'recovery ratio' which is plotted in histogram below, colored by cluster.  Clusters 
were perfectly separated based on the recovery ratio statistic. E) Odds ratio of enrichment of 
dynamic CpGs for regulatory chromatin states defined in a reference normal CD34+ HSPC 
epigenome (Roadmap Epigenomics, E051).

Dynamic gene expression changes before and after 5-Aza exposure reveal 

alterations in differentiation-associated gene signatures

To investigate differential gene regulation between genotypes, as well as 

the pathways effected by 5-Aza exposure, we performed RNAseq on the same 

days as methylation profiling as indicated in Figure 3.2C.  We first determined 

differentially expressed genes at baseline (Day 0, pre-treatment) and identified 
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414 down- and 404 up-regulated genes between TET2KO and WT.  We performed

gene-set enrichment analysis (GSEA) (Subramanian et al. 2005) to determine 

differentially regulated pathways between TET2KO and WT and observed highly 

significant enrichment of ‘hallmark heme metabolism’ (down-regulated in KO 

relative to WT) and ‘hallmark epithelial mesenchymal transition (EMT)’ (up-

regulated in KO relative to WT) gene sets (Figure 3.5A,C), along with others. Next 

we determined differentially expressed genes between 5-Aza and vehicle (DMSO) 

treated conditions on days 4 (24hrs after final 5-Aza) and 12 (8 days after final 

dose).  On day 4 we observed widespread changes in transcription, with 2,912 

genes differentially expressed in TET2KO and 2,518 in WT, with the majority of 

genes exhibiting the same behavior in both conditions (shared: 1,011 down, 854 

up; KO unique: 432 down, 634 up; WT unique: 370 down, 270 up) (Figure 3.4B). 

By Day 12 the widespread transcriptional changes induced by 5-Aza were almost 

completely normalized, with only 25 genes differentially expressed in either 

genotype compared with vehicle (shared: 8 up; KO unique: 5 up; WT unique: 9 up,

3 down). As might be expected of a DNA damaging agent like 5-Aza, gene sets 

involved in DNA damage response, cell cycle, and growth/metabolism were all 

down-regulated, while inflammation and apoptosis gene sets were up-regulated on

Day 4 for both WT and KO. By day 12 many of the same gene sets were still 

enriched, indicating that although many genes were no longer ‘significantly’ 

differentially expressed, there were likely still large numbers of small-magnitude 

changes that had not fully recovered. Notably, the heme metabolism erythroid 
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differentiation gene set was the most significantly up-regulated gene set in both 

genotypes on day 4, and in the case of WT cells, its enrichment grew more 

significant by day 12.  When we examined the expression patterns of genes in the 

heme metabolism gene set over time, it was clear that the TET2WT cells gained 

progressively higher expression from day 0 through day 12, while the TET2KO 

cells peaked on day 4 before trending downwards by day 12. To investigate this 

trend in more detail we examined our integrated genomic datasets at the key 

erythroid differentiation marker gene, erythrocyte anion exchanger, band 3 

(SLC4A1). In a genome browser track of the gene (Figure 3.4H) we observed that 

there was a differentially hydroxymethylated region within the enhancer/promoter 

region of the gene, and directly overlapping this region were dynamic CpGs which 

had opposing patterns of remethylation kinetics in TET2KO and WT, where WT 

lost methylation and did not recover, while the KO rapidly recovered its original 

methylation.  When we correlated the methylation of this locus with expression 

patterns it was clear that 5-Aza treatment was able to induce expression of this 

gene in WT but to a much lesser extent in KO.  
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Figure 3.4: Gene expression changes after 5-Aza treatment reveal differences in erythroid 
gene signatures. A) Differential expression between TET2KO and WT at baseline. B) Differential 
expression after 5-Aza exposure in TET2KO and WT.  C) Gene Set Enrichment Analaysis (GSEA) 
for baseline gene expression differences (KO vs. WT). D) GSEA plot for the most significantly 
enriched gene set in (C): Heme metabolism genes. E-F) GSEA results for comparisons of mock vs.
5-Aza treated TF1 on Day 4 and Day 12 after treatment. G) Heatmap displaying genes in the 
Hallmark Heme Metabolism gene set which were differentially expressed between TET2 KO and 
WT TF1 at any time point. H) Genome browser track highlighting 5mC and 5hmC differences 
centered in the SLC4A1 promoter/enhancer region.  Enhancer annotation derived from 
GeneHancer Regulatory Interactions (double elite) table on UCSC genome browser. DHMR = 
Differentially Hydroxymethylated Region (as determined by differential peak enrichment analysis). 
I) Scatterplot displaying the relationship between % 5mC of the highlighted region in (I) and gene 
expression over time in TET2KO and WT TF1. Line arrows in plot indicate directionality of time 
(Day 0→ Day 4→ Day 12).
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TET2KO cells are not blocked from differentiation in the presence of EPO, 

but 5-Aza enhances differentiation capacity

To determine whether the differences in expression of erythroid 

differentiation genes were at levels relevant for impacting the differentiation 

capacity of these cells we measured Glycophorin-A (GPA) cell surface expression 

by flow-cytometry as a surrogate for differentiation along the erythroid lineage 

during Aza exposure and erythropoietin (EPO) induced differentiation (Figure 3.5). 

As expected, TET2WT cells had higher GPA expression at baseline, and 5-Aza 

exposure increased expression to a similar degree in both genotypes (~3-4fold). 

We also observed a trend for increased GPA expression over time, albeit to a 

lesser degree, in the WT vehicle treated condition, potentially due to spontaneous 

differentiation or due to vehicle exposure, however in TET2KO cells we did not see

any significant increases in GPA expression in the same conditions. In agreement 

with our previous RNAseq results, the KO cells displayed peak GPA expression on

day 4, while the TET2WT cells steadily increased over time, even through day 20. 

When we calculated the fold-change in GPA expression for 5-Aza vs. vehicle 

treated conditions, it was apparent that TET2KO condition had significantly greater

relative GPA induction (Figure 3.5B).  Finally, we took advantage of the ability of 

TF-1 cells to differentiate along the erythroid lineage when exposed to 

erythropoietin to assess how TET2 loss and 5-Aza exposure would impact 

differentiation (Figure 3.5C). There were wide variations in the relative amounts of 

differentiation among clones from both genotypes, but in general, all clones 
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retained the ability to differentiate. 5-Aza exposure in WT and to a lesser extent 

KO clones increased the clones capacity for differentiation as can be seen through

relative increases in GPA expression as well as reddening of the cell pellets which 

is indicative of higher hemoglobin expression. 
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Figure 3.5 Expression of the erythroid cell surface protein Glycophorin-A (GPA) is 
differentially induced in KO v. WT after 5-Aza but not during erythroid differentiation. A) 
Percentage of GPA-positive cells over time after 5-Aza or vehicle exposure as measured by flow 
cytometry. Drug/vehicle was added on Days 1-3 as in previous experiments. B) Fold-change in 
cell-surface GPA expression over time after 5-Aza vs. vehicle exposure. C) Erythroid differentiation 
induction by recombinant erythropoietin as measured by GPA flow cytometry (left). Red 
pigmentation of cell pellets is indicative of the amount of hemoglobin expression (right).
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3.4  Discussion and Conclusions

DNA methyltransferase inhibitors such as 5-azacitidine are increasingly 

used alone and in combination with other therapies in treatment regimens for a 

variety of cancers, yet the mechanisms predicting therapeutic response to these 

agents remains elusive. We have previously shown in MDS patients, that the 

presence of a TET2 mutation in patient tumors was predictive of patient responses

to DNMTIs, and in the present study we attempt to better understand the 

mechanisms behind that association.  We applied a number of pharmacological 

and high throughput sequencing approaches to establish the effects of TET2 loss 

in a TF-1 leukemia cell line models, and we studied how this loss may impact 

responses to the DNA methyltransferase inhibitor azacitidine. We identified a 

number of processes which were differentially effected in TET2KO cells, including 

altered sensitivity and recovery after 5-Aza exposure, as well as down-regulation 

of typical erythroid differentiation processes, and we showed how these relate to 

DNAm and 5hmC alterations in these cell lines. Our results highlight the impact of 

TET2 loss on the DNA methylation kinetics of differentiation-associated genes and

their enhancers, and how 5-Azacitidine can target these regions to improve 

baseline differentiation capacity. 

We observed key differences in the pharmacological and epigenetic 

responses to 5-Aza between TET2KO vs WT TF-1. Notably, both genotypes had 

similar dose-response curves but KO cells had significantly increased population 
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doubling time after 5-Aza. We also observed that TET2KO cells had globally 

reduced demethylation and recovery extent.  The reduced DNAm demethylation in

KO is likely related to the lengthening of population doubling time, as passive 

demethylation by 5-Aza is dependent on DNA replication and cell division, and 

therefore because there are fewer cell divisions in TET2KO after 5-Aza, there is 

less demethylation as well. Interestingly we did observe up-regulation of gene sets

involved in DNA damage response (hallmark p53 pathway, hallmark UV response 

down) in TET2KO at baseline. Several recent studies have shown that TET2 and 

5hmC play essential roles in genome stability, and deficiencies of TET enzymes 

and 5hmC lead to defects in chromosome segregation and DNA damage 

responses (Y. W. Zhang et al. 2017; L.-L. Chen et al. 2018; Kafer et al. 2016). 

Together, these data may suggest that TET2KO cells are deficient in DNA damage

responses and are likely less capable of coping with the added DNA damage 

induced by 5-Aza exposure, thus more profound stalling of cell cycle and less 

passive DNA demethylation occurs. This mechanism also helps explain findings 

from our previous study showing that 5-Aza treatment significantly decreased 

peripheral blood chimerism after competitive bone marrow transplantation in Tet2-

null but not WT cells (Bejar, Lord, et al. 2014b).

A notable finding of our study was our characterization of the time-scale of 

dynamic changes in DNAm and gene expression after Aza exposure. Notably, 

while we observed relatively rapid recovery of transcriptional changes induced by 

5-Aza with less than 1% of day 4 DEGs present on day 12, many of the DNA 
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methylation changes observed on day 4 were not fully recovered by day 12. This 

fact is relevant in terms of the role of Aza as a differentiating agent because recent

work has shown that DNAm changes, especially at bivalent promoters, even in the

absence of gene expression changes can impact the later differentiation ability of 

stem cells (Verma et al. 2018).  We determined there were four major patterns of 

remethylation and observed differences in the proportion of loci falling in each 

pattern, where TET2KO exhibited a significantly higher proportion of slow-

remethylating and significantly lower proportion of rapid-remethylating CpGs. We 

observed enrichment for regions of active gene-transcription and active enhancers

when calculating the overlap of CpGs from each dynamic cluster in relation to 

reference HSPC chromatin states.  Interestingly, actively transcribed regions as 

well as gene-body enhancers showed a positive trend in enrichment, with the 

highest enrichment for rapid-recovery CpGs and lowest for slow-recovery CpGs. 

DNAm in gene-bodies is known to positively correlate with gene expression, and 

our findings confirm these observations, while also demonstrating that gene-body 

enhancers exhibit similar behavior (Neri et al. 2017; Yang et al. 2014). 

Interestingly, active enhancers located outside of gene bodies displayed the 

opposite trend, where they were more strongly enriched in the intermediate- and 

slow-recovery than the rapid-recovery clusters. This finding is interesting in that it 

suggests that the long-term DNAm changes induced by 5-Aza occur somewhat 

selectively at enhancers while minimally impacting other, more rapidly recovered 

cellular processes.
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A key finding of our study was the influence of TET2 loss on differentiation-

associated gene expression signatures in TF-1 cells, and how these signatures 

are disproportionately influenced by 5-Aza exposure in KO compared to WT cells. 

Erythroleukemic TF-1 cells retain the ability to differentiate along the erythroid 

lineage in response to a variety of stimuli, and even in the absence of 

differentiation inducing agents, some population of cells (~5%) constantly 

undergoes spontaneous differentiation (Kitamura et al. 1989; Losman et al. 2013; 

Wang et al. 2013). At baseline, the most differentially enriched gene sets between 

TET2KO and WT TF-1 were those associated with heme metabolism (down-

regulated), and epithelial mesenchymal transition (EMT) (up-regulated). The 

combination and direction of these two gene sets in particular are interesting, as 

both are involved in opposing directions of differentiation, with heme metabolism 

involving the terminal differentiation of erythroblasts, and EMT which has been 

described as a reversal of epithelial differentiation (T. Chen et al. 2017). Notably, 

both KO and WT 5-Aza treated cells had significant up-regulation of heme 

metabolism genes relative to vehicle on days 4 and 12 after Aza exposure, 

however WT had much higher expression of these genes than KO on all days 

(Figure 4G). At least some of this discrepancy in erythroid gene expression 

between genotypes is likely due to loss of hydroxymethylation at differentiation-

associated enhancers in KO condition leading to differences in remethylation 

kinetics as we showed for the erythrocyte anion exchanger, Band 3 (SLC4A1). 

When we examined Glycophorin-A (GPA) protein expression as a measure of 
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erythroid differentiation during 5-Aza exposure, we observed that a substantial 

amount of vehicle-treated WT cells became GPA-positive over time, while virtually 

no KO cells did. This may have been due to vehicle inducing differentiation or due 

to spontaneous differentiation over time, however in either case it shows how KO 

cells are less sensitive to weak differentiation signals. When examining the fold-

change in GPA expression compared to vehicle-treated cells, 5-Aza treated KO 

cells had significantly higher induction of GPA relative to WT. Notably, both 

TET2KO and WT TF-1 retained erythroid differentiation capacity when exposed to 

a strong differentiation stimulus, such as erythropoietin.  All of these results 

suggest that DNA methylation and hydroxymethylation changes induced by TET2 

loss shift TF-1 cells towards a more undifferentiated state (high EMT, low heme 

metabolism genes), making them relatively less sensitive to weak differentiation 

signals (such as 5-Aza or vehicle exposure) when compared to wild-type. However

these DNAm and hmC changes make TET2KO cells more targetable by 5-Aza as 

shown by the fold induction in differentiation genes being much greater in KO vs 

WT. Our results are in accord with studies demonstrating how TET2 loss can 

impair differentiation of stem cells (Madzo et al. 2014; Hon et al. 2014; Verma et 

al. 2018) as well as studies showing that reduction of 2-hydroxyglutarate (which 

inhibits TET2) can improve erythroid differentiation (Losman et al. 2013; Wang et 

al. 2013).  

A potential limitation of our study is that we base our conclusions upon a 

relatively small number of single-cell derived TF-1 clones which are likely to have 
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high clonal variation. However, given the relatively large effect sizes we observed 

and consistency across time for each genotype in these highly variable clones, it 

may also strengthen the credibility of our results that we were able to establish 

these findings in the presence of such variability. Another unexpected and 

potential limitation is that our drug vehicle, DMSO, appeared able to induce 

differentiation-associated markers in wild-type cells over time, even at the 

exceedingly low concentrations (~2 ppm) used in these experiments. While this 

was not desirable for our experiment, it actually helped us better understand the 

differences in differentiation capacity between WT and KO cells. 

In conclusion, we demonstrate that CRISPR/Cas-mediated TET2 

inactivation in erythroleukemia cell lines pushed cells towards a more 

undifferentiated state which lengthened their recovery times after 5-Aza exposure, 

as well as disproportionately induced erythroid differentiation signatures after 

treatment. We also showed that these changes likely have to do with 5hmC and 

5mC dynamics at erythroid enhancers, which correlated with gene expression. 

Overall our study helps shed light on the relationship between TET2 mutation and 

increased sensitivity to 5-Aza in MDS patients, and provides several insights on 

potential mechanisms which should be further studied.  

3.5  Materials and Methods

Cell culture
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The human GM-CSF cytokine dependent erythroleukemia cell line TF-1 

(ATCC CRL-2003) were maintained in RPMI-1640 medium (Life Technologies) 

supplemented with 10% fetal bovine serum (Omega Scientific) and 1% 

penicillin/streptomycin/L-glutamine (Thermo Fisher cat #10378016).  Cells were 

maintained  at a density between 5x104 and 5x105 viable cells/mL and passaged 

every 2-3 days. Cell viability was assessed by Trypan Blue exclusion.

TET2 gene editing with CRISPR/Cas9

CRISPR single-guide RNAs (sgRNA) were designed with CHOPCHOP 

(chopchop.cbu.uib.no) and then cloned into px458 vector (addgene, 48138) 

following the protocol in Ran et al (Ran et al. 2013; Labun et al. 2016). We 

followed the approach of Bauer et al. using 2 CRISPR sgRNAs to delete the 

dioxygenase active site residues of TET2 following the design in Figure 3.1A 

(Bauer, Canver, and Orkin 2015) 2ug of px458 vectors with incorporated sgRNAs 

or unmodified px458 (for wild-type controls) were nucleofected into parental TF-1 

cells with the Lonza Nucleofector Kit V following the manufacturer protocol. 

Nucleofected TF-1 were allowed to grow undisturbed for 24hrs before sorting live 

GFP-positive cells using a BioRad S3 Cell Sorter. Bulk GFP-positive sorted cell 

populations were allowed to grow undisturbed for 3 days before isolating single-

cell clones by limiting dilution into 96-well plates. Single-cell clones were screened 

for inactivating out-of-frame indels/deletions by PCR followed by Sanger 

sequencing, and later by immunoblotting for TET2 protein and 5-

hydroxymethylcytosine. CRISPR sgRNA sequences are as shown in Figure 3.1A. 
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Western blotting

Cell density was calculated before 10 million cells were lysed directly in 

500uL 2x Laemmli sample buffer (Bio-rad) freshly prepared with 2.5% B-

mercaptoethanol. Lysates were then sonicated at 75% amplitude for 15 seconds to

shear DNA and then boiled at 95C for 5 minutes. 20UL of whole cell lysates were 

separated by 7.5% Tris-Glycine (Bio-rad miniprotean TGX) SDS-PAGE and 

proteins were transferred onto PVDF membranes. Immunodetection of proteins 

was carried out in TBST (20mM Tris-Hcl, 500mM NaCl, 0.05% Tween-20, pH 7.5) 

supplemented with 5% non-fat milk and anti-TET2 (CST-18950), anti-DNMT1 

(Abcam ab92314), anti-Lamin-B1 (proteintech 12987-1-AP), or anti-β-actin 

(Biolegend poly6221), followed by incubation with HRP-conjugated secondary 

antibodies. 

L-ascorbic acid (L-AA) treatment and 5hmC DNA immunoblotting

First LAA exposure dose was titrated to a level that minimized cell death 

24hrs after exposure. Cells were treated with a minimally cytotoxic dose of 100uM 

LAA and genomic DNA was extracted 24hrs after exposure for dot blot analaysis. 

5-hydroxymethylcytosine DNA immunoblotting was carried out as described 

previously.(M. Lee et al. 2017) Briefly, DNA was denatured and spotted in 2-fold 

serial dilutions on a nitrocellulose membrane in a Bio-Dot apparatus. A synthetic 

oligonucleotide containing a known quantity of 5hmC was used as standard. 

Immunodetection of 5hmC was carried out using anti-5hmC antibody at 1:5000 

dilution (Active Motif) followed by incubation with 1:10,000 dilution of HRP-
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conjugated secondary antibody and visualization with West-Q Picu Dura ECL 

Solution (GenDEPOT). 5hmC dot blot signal was quantified using imageJ. A 

standard curve was constructed as in Ko et al. and the linear portion of the curve 

was used to calculate the moles of 5hmC per sample shown in Supplementary 

Figure 3.1 (Ko et al. 2010)

Drug treatment and viability assays

Viability of cultures that were treated with varying concentrations and 

dosing schedules of 5-Aza were assessed via CellTiter Blue viability assay 

following manufacturers protocol.  Briefly, cells were seeded at 2,000 cells per well

in 96-well culture plates with final volume of 100uL culture media 24 hours prior to 

addition of first drug dose. Viability was assessed 24hrs after each final treatment 

(48,72, or 96hrs for the 3 treatment schedules tested).  IC50 curves were modeled

using the four parameter log-logistic regression model using the R package ‘drc’. 

Differences in IC50 curves between TET2-WT and TET2-KO cell lines were tested

via one-way ANOVA (R ‘anova’ function).  After dose-optimization, the final 

experiment from which genomic analyses were obtained was performed as 

follows: TF1 cell lines were seeded at a density of 100,000 cells/mL on Day 0 and 

allowed to equilibrate overnight. Freshly prepared 5-Aza or vehicle (DMSO) was 

added to cultures every 24hrs for a total of three doses of 200nM starting on Day 

1.  Media was replaced on Day 2 and Day 4, and every 2-3 days following until 

Day 12.

Induction of erythroid differentiation of TF-1 cells
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Erythroid differentiation induction was carried out as described (Losman et 

al. 2013). Briefly, TF1 cells growing in GM-CSF containing medium were spun 

down and washed three times in fresh media lacking GM-CSF before being 

seeded at a density of 200,000 cells/mL in 20mL media lacking GM-CSF. After 

24hrs of culture in these cytokine poor conditions, recombinant human 

erythropoietin (Epogen, Epoeitin alfa, Amgen) was added directly to cultures to a 

final concentration of 2U/mL.  Fresh media with 2U/mL erythropoietin was added 

four days later and flow cytometry assessment of differentiation was performed 8 

days after the first erythropoietin addition. 

Flow cytometry

FACS sorting of GFP-positive px458 transfected cells was performed using 

the Bio-Rad S3 Cell Sorter. During 5-Aza treatment and erythroid differentiation 

experiments, cells were stained with various combinations of monoclonal 

antibodies to erythroid differentiation markers including PE-Cy5 conjugated anti-

CD235AB (Biolegend cat. # 306605), FITC conjugated anti-CD71 (Biolegend cat. 

# 334104), and FITC conjugated anti-CD233 (Miltenyi Biotec cat. # 130-119-818) 

to measure erythroid differentiation by flow cytometry on an Attune NxT Acoustic 

Focusing Flow Cytometer (ThermoFisher). Data were analyzed in R 3.4 and the 

Bioconductor ‘FlowCore’ package.

Bisulfite Padlock Probe library construction and sequencing analysis

BSPP libraries were constructed as previously described, and sequenced 

using a standard 150bp paired-end sequencing protocol on the Illumina NovaSeq 
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(Diep et al. 2012). Sequencing reads were trimmed for low quality bases and 

adapter content using TrimGalore v0.4.0 and cutadapt v.1.18 before alignment to a

3-letter (bisulfite converted) version of the hg19 reference genome as previously 

described (Guo et al. 2017). Briefly, for alignment, trimmed reads were encoded 

such that all cytosines converted to thymines and for the reverse complement 

strand, all guanines to adenines, so that the reads could align to the three-letter 

genome. Reads were then mapped separately to both the Watson and Crick 

strands of the bisulfite-converted hg19 genome using BWA mem v.0.7.12 (options:

‘-B2 -c1000’). Alignment with mapping quality scores below 5 were discarded and 

for reads which mapped to more than one position, and only the highest quality 

mapping was kept for each read. Overlapping paired-end reads were clipped with 

BamUtil clipOverlap function. Encoded read sequences were replaced by the 

original read sequences in the final BAM alignment files which were then used for 

extracting methylation levels for CpGs.

DNA methylation 

Statistical analyses of BSPP methylation data

Differential methylation between different time points and conditions were 

performed using the R package ‘DSS’ version 2.26.0. Differentially methylated 

CpGs were determined using the ‘callDML’ function of DSS with a posterior 

probability threshold of 0.90 or greater that the absolute methylation difference 

was greater than 20% (e.g. 90% chance the difference is 20% or greater).  DNAm 

time-profile clustering was performed as follows: First ‘dynamic CpGs’ were 
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identified by determining CpGs with differential methylation between any of the 

three time points (Day 0 v. 4; Day 0 v. 12; Day 4 v. 12). This yielded a set of 

dynamic CpGs for each genotype (KO and WT) which had some amount of 

overlap but were largely unique to each genotype.  Next, the mean methylation 

value for each dynamic CpG locus was converted to a Z-score across the three 

time points (Days 0, 4, 12) for each genotype. Next, we combined the Z-scaled 

methylation values for both KO and WT and performed hierarchical clustering with 

euclidean distance and Ward’s agglomeration method. To determine the optimal 

number of clusters for downstream analysis we examined the methylation time 

profiles for a range of K’s, and settled on the K=4 cluster solution because it 

captured the major patterns of remethylation and statistically it produced the most 

compact clustering solution as indicated by the mean cluster silhouette width 

statistic. 

RNAseq library preparation and analysis

Total RNA was isolated from cell lines using the Machery-Nagel Nucleospin 

RNA kit according to manufacturer instructions. RNA sequencing libraries were 

constructed using the Illumina TruSeq stranded mRNA kit and sequenced on an 

Illumina NovaSeq by NovoGene Inc. Fastq files were trimmed to remove polyA 

signals and adapter content using cutadapt and quality checked using FastQC. 

Reads were aligned to the hg19 genome using STAR v2.6.1d and GENCODE v19.

Reads mapping to repetitive elements were removed. Transcript counts were 

summarized using featureCounts v1.6.2 and differential gene expression was 
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calculated using the R package ‘DESeq2’. The threshold for determining 

differential expression was an adjusted p-value (FDR corrected) < 0.10. 

Normalized TPM values were calculated from DESeq2 normalized counts and 

transcript lengths from GENCODE v19.  Gene set enrichment analysis (GSEA) 

were performed using the GSEA pre-ranked algorithm using the DESeq2 

differential expression Wald statistic as the ranking metric. GSEA was carried out 

in R using the ‘clusterProfiler’ package (Yu et al. 2012)

5-hydroxymethylcytosine pull-down (HMCP) sequencing with reference 

exogenous genome spike-in normalization

We employed the HMCP with reference exogenous genome (ChIP-Rx) 

method of Orlando et al. for quantitative normalization of HMCP signal according 

to an exogenous spike-in genome (Orlando et al. 2014). As exogenous control we 

used the DNA isolated from phage T4gt, which carries mutations in both -agt and -

bgt glycosyltransferases and thus the vast majority of cytosines are only 

hydroxymethylated without glycosylation (Weigele and Raleigh 2016). HMCP was 

carried out using the 5-hydroxymethylcytosine pull-down assay (Cambridge 

Epigenetix) according to manufacturer instructions with slight modifications. Briefly,

exogenous phage T4gt DNA was spiked into the TF1 cell DNA at a 1:50,000 ratio 

before shearing with a Covaris E220 to an average length of 150 bp. Sheared 

DNA samples were end-repaired and adapter ligated with barcoded Illumina 

TruSeq adapters. Libraries were denatured and a new copy strand was 

synthesized.  DNA fragments containing 5hmC were pulled down using a two step 
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process where 5hmC were first glycosylated with T4BGT (Thermofisher) using 

UDP-6-azide-glucose, followed by labeling with PEG (polyethylene glycol)-biotin 

via copper-free CLICK chemistry. The biotin-containing DNA was then pulled down

and purified using streptavidin magnetic beads. Finally, purified libraries were PCR

amplified with Kapa real-time library amplification kit, and sequenced using single-

end 50bp protocol on the Illumina NovaSeq.

Sequencing reads from HMCP were aligned to a combined genome of hg19

and the T4 phage genome (Genbank: AF158101.6) using a 2-step mapping 

procedure where raw reads were first mapped with BWA mem v0.7.15 (options: -M

-t 8 ) and then any unaligned reads were trimmed for low quality base calls and 

adapter content with Trim-galore v0.4.3 (options: –paired –length 35 –stringency 3 

–three_prime_clip_R1 1 –three_prime_clip_R2 1) before realignment using BWA-

mem with more stringent mapping parameters (options: -M -t 8 -B 6). Reads 

aligning to ENCODE Blacklisted regions or random chromosomes, as well as any 

reads which mapped to both the T4 and hg19 genomes were removed. 

Normalization was performed based on a scaling factor for each sample which 

was calculated as in Orlando et al. with the modification that T4 phage genomic 

reads were calculated instead of Drosophila genomic reads. 5hmC peak calling 

was performed using MACS2 v.2.1.1 (options: callpeak -t IPbam -c INPUTbam -f 

BAMPE -n Name -g hs -q 0.01 --keep-dup all --nomodel --broad) and differential 

peak enrichment was calculated using MEDIPS v.1.34.0 and edgeR v3.24.3 

(MEDIPS.meth function with options: p.adj=TRUE, diff.method=’edgeR’, 
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CNV=FALSE, MeDIP=FALSE, minRowSum=1, quantile=FALSE, TMM=FALSE ) 

on the normalized read counts within peaks.

Statistical Analyses

All statistical analyses were performed in R v.3.4.4.
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Supplementary Figure 3.1 L-ascorbic acid (L-AA) exposure enhances 5hmC accummulation 
to a greater extent in TET2-WT TF1 cells. Cells were treated with 100uM L-AA or vehicle 24hrs 
before DNA isolation. A) 5hmC dot blot for L-AA treated or untreated Cells. B) Standard curve of 
5hmC densitometric signal vs. pmol (calculated from 5hmC standard with known 5hmC amount). 
C) Quantification of dot blot signal for TET2-WT and KO cells +/- L-AA.
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Supplementary Figure 3.2 Optimizing 5-Aza dosage regimen in wild-type TF1. A) Dose-
response curve of wild-type TF1 cell viability for three different lengths of 5-Aza treatments (1 dose 
per day for a total length of treatment between 1 and 3 days). Points represent replicates per 
condition, shaded region corresponds to 95% confidence band estimated by 4 parameter logistic 
regression model (EC50 and slope as parameter and lower bounded at zero; modeled with 
R package "drc"). B) Dose-response of DNMT1 down-regulation 24 hours after the indicated 5-Aza
dose. C) Timecourse of DNMT1 down-regulation following the indicated dosage schedules
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Supplemental Figure 3.3: Potential clustering solutions for defining groups of dynamic 
methylation clusters. Line plots in grid: each colored line represents a single CpG locus over time
after 5-Aza treatment. Black line indicates mean value for that cluster group. Dotted black line 
indicates mean +/- 1 standard deviation. From left to right: clustering solutions with K=2 to K=9 
clusters (derived from cutting the hierarchical cluster tree at different levels); top to bottom: the 
patterns of methylation in each cluster for that cluster solution.  Mean silhouette width plot shows 
the mean silhouette width of all clusters for each individual clustering solution. K=4 clusters 
produced the most well-defined clusters as indicated by the peak in silhouette width.

108



Supplementary Figure 3.4 Flow cytometry staining of Glycophorin-A  in cells exposed to 5-
Aza or Vehicle over time.  Threshold for positivity determined from erythropoietin induced 
erythroid differentiation samples shown in Figure 5C. Numbers correspond to percent of cells in the
population which were above the positivity threshold for vehicle and 5-Aza treated conditions.
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Chapter 4:  Discussion and Future Directions
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4.1 Summary

A better understanding of the role of DNA methylation and the mechanisms 

of its dysregulation in cancer is critical for the development of new therapies, 

predicting responses to current treatments, and improving outcome prediction in 

heterogeneous diseases like MDS. In this dissertation I focused on two major 

topics involving DNA methylation: 1) its role in MDS pathobiology and outcome 

prediction, and 2) the role of inactivation of the DNAm regulator TET2 in treatment 

response to DNA methyltransferase inhibitor therapy.

In Chapter 2, I demonstrated how DNAm can be used to resolve some of 

the clinical and genetic heterogeneity in MDS to improve outcome prediction and 

enhance our understanding of MDS pathophysiology. I showed that an unbiased 

unsupervised analysis of DNAm patterns was able to identify groups of MDS 

patients that displayed distinct differences in their DNA methylomes, patterns and 

enrichment of genetic lesions, and had significant differences in their overall 

survival. I showed that the differences in outcome among clusters was not 

explained by any known prognosis-associated variable, indicating that DNAm 

plays an important and independent role in disease progression. Furthermore, by 

looking for differences between DNAm-based patient groups I identified that 

differences were enriched at genes known to be associated with prognosis, such 

as WT1, and also identified novel prognosis-associated genes, such as CD93,  

which were validated in external cohorts of MDS patients to be associated with 

outcome. Our findings confirm the important role of DNAm changes in these 
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disorders and highlight the heterogeneity in DNAm patterns among patients with 

shared somatic mutations. 

In Chapter 3, I used a variety of high-throughput genomic approaches to 

investigate the impact of TET2 loss in isogenic cell line models of myeloid 

malignancy, as well as to study how TET2 loss may impact molecular responses 

to DNMTI treatment and recovery in these models. I first established and validated

two independent isogenic TET2-inactivated TF-1 erythroleukemic cell lines 

(TET2KO). I used these novel cell lines to confirm previous findings that TET2 loss

induced focal loss of 5hmC and that this loss was highly enriched for enhancer 

elements in reference hematopoietic stem cell data sets. I demonstrated that at 

baseline, TET2KO cells exhibited a global reduction in differentiation-associated 

gene signatures and up-regulation of signatures related to stemness. When 

comparing responses to azacitidine (5-Aza), I showed that TET2KO TF-1 cells had

altered sensitivity and lengthened recovery times after azacitidine (5-Aza) 

exposure, and that KO cells had a disproportionate induction of differentiation-

associated genes compared with WT. I also showed how differences in gene 

expression of differentiation-associated genes such as erythrocyte anion 

exchanger, band 3 (SLC4A1), could be tied to differences in 5hmC and 5mC 

dynamics after 5-Aza exposure at a key SLC4A1 transcriptional enhancer.  In 

aggregate our study indicates that the alterations in 5mC and 5hmC at 

differentiation-associated gene enhancers in TET2KO cells pushes them towards 
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a less differentiated state, and that 5-Aza treatment can specifically target these 

alterations to normalize differentiation-associated gene signatures.

4.2 Implications and Future Perspectives

Molecular Sub-types of MDS

The five DNAm-based subgroups of MDS patients we identified in Chapter 

2 appear to correlate well with recent work from other groups studying the 

molecular basis of MDS. While we are the first to report a large-scale 

unsupervised classification of MDS epigenomes, similar approaches have been 

applied to gene expression in large MDS cohorts. Shiozawa et al performed an 

unsupervised classification of MDS based on gene-expression signatures from 

CD34+ HSPCs from 100 patients and identified two major groups that were 

distinct in terms of their expression and genetic profiles as well as in terms of their 

time to progression to AML (Shiozawa et al. 2017). The two groups identified in 

that study displayed similar patterns of enrichment for mutations that were seen in 

the DNAm cluster risk groups in our study. For instance Shiozawa et al. identified 

that mutations in EZH2, RUNX1, U2AF1, TP53 were enriched in the poor-

prognostic risk group, while mutations in SF3B1 and TET2 were enriched in the 

favorable risk subgroup. This corresponds well to our findings, where only TET2 

and SF3B1 mutations were enriched in the “low-risk” DNAm clusters while the 

“high-risk” clusters had enrichment for the same mutations mentioned in the high-

risk group of Shiozawa et al. Similarly, in an as yet unpublished study utilizing 
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Illumina 450k methylation arrays to study DNAm in 320 patients with MDS 

(Morimoto et al. 2018), Morimoto et al identified five DNAm clusters whose 

patterns of somatic mutations were remarkably similar to our own, with four out of 

the five clusters identified having identical enrichment of somatic mutations to 

those seen in our study clusters B, C, D, and E. Although Morimoto et al did not 

correlate their clusters with survival, they did report IPSS-R risk categories which 

showed the same trends in disease risk as with our DNAm cluster-risk groups. 

Both of the studies mentioned above, as well as our own, identified subgroups 

based on different inputs (gene expression, promoter-focused CpG methylation, 

non-promoter-focused CpG methylation (BSPP)), but all three identified similar 

trends in terms of the proportions and types of genetic abnormalities present in 

these subgroups. Perhaps it should be expected that higher-risk genetic 

abnormalities would be accompanied by activation of different gene expression 

pathways and epigenetic changes, however an interesting question arising from 

this finding is whether one is a consequence of the other (e.g. altered epigenome 

causing altered gene expression, or vice versa), and how these changes correlate 

with the differentiation state of the cell populations used to generate the data. 

Future studies using single-cell approaches could be fruitful for determining the 

contributions of different cell types to the signatures observed in each of the 

molecular subgroups identified in these studies.

Epigenetic Heterogeneity in TET2-Mutant MDS 
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One unexpected finding of our studies in Chapter 2 was the lack of a 

differential DNAm signature associated with TET2 mutation. We observed only 21 

total differentially methylated CpGs out of ~300,000 when comparing TET2-mutant

vs. wild-type patients, and zero differences when comparing subsets of mutant vs. 

wild-type within each cluster as well. Given the known effects of TET2 loss in 

model organisms and several studies of chronic myelo-monocytic leukemia 

patients which reported DNA hypermethylation in TET2-mutant cases, we thought 

we might find a similar phenotype in our patients (Meldi et al. 2015; Yamazaki et 

al. 2015). Interestingly, in the study initially identifying the relationship between 

TET2 mutation and impaired hydroxymethylation in myeloid malignancies, there 

was a fairly large proportion of MDS cases that had global loss of 5hmC even in 

the absence of TET2 mutation, which suggests that there may be alternative 

mechanisms in MDS which phenocopy TET2 loss (Ko et al. 2010). In our study we

did observe that Cluster D, which was enriched for TET2-mutant patients, 

displayed 5mC changes similar to those seen in CMML and mouse models of 

TET2 loss, and notably, this cluster had a lower co-mutation burden compared 

with TET2-mutants in other clusters. There is some evidence in the literature that 

TET2-mutation in cooperation with co-mutations such as NRAS, DNMT3A, and 

others, can influence 5mC patterns, and in some contexts counteract the changes 

associated with TET2 mutation alone (Muto et al. 2013; X. Zhang et al. 2016; 

Kunimoto et al. 2018). It is therefore likely that the highly co-mutated TET2 

mutants were diluting the global signal associated with TET2 mutation across all 
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clusters in our cohort.  It is plausible that the Cluster-D patients were in earlier 

stages of their disease where TET2 mutation may still have a large influence on 

the epigenome, while patients in Clusters B and C were in later disease stages 

where cooperating lesions lead to further remodeling of the epigenome.

In future work studying the role of TET2 in the disease course of MDS, it 

may be enlightening to study 5hmC and 5mC patterns in mutant and wild type 

patients as the disease progresses. One possible experiment to answer the 

question of where and when 5hmC/5mC alterations were most significant would 

be to identify patients who have clonal hematopoiesis, and determine their 5mC 

and 5hmC profiles at multiple time points as their disease progresses. Most 

patients with clonal hematopoiesis never develop myeloid malignancy, so a 

retrospective study of patients who progressed from clonal hematopoiesis to MDS 

or AML, would be most appropriate.  It would be interesting to observe how 5mC 

and 5hmC patterns evolve as patients acquire further co-mutations. The sequence

of genetic vs. epigenetic changes would also be interesting, as it is known that the 

epigenome changes with age, and epigenome changes could very well precede 

genetic changes. Since the majority of patients with clonal hematopoiesis 

harboring mutations in DNMT3A and TET2 never progress to frank malignancy, 

one can imagine a scenario where an early mutation in these genes leads to 5mC 

alterations accumulating over time, which may set the stage for when a second 

mutation strikes to produce pre-malignancy.  If we understood and were able to 

predict which epigenetic changes were associated with progression, we may be 
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able to target these pre-malignant 5mC changes using DNA methyltransferase 

inhibitors to actually prevent progression to malignancy. Further research is 

certainly warranted into the time-course of epigenetic changes in clonal 

hematopoiesis and MDS because inactivation of epigenetic regulating genes 

appear to be the initiators of these disorders, and disease prevention could be 

much more effective than treatment at more advanced stages.

Role of CD93 in MDS

A novel finding of our work in Chapter 2 was the discovery of the 

association of CD93 methylation and expression with overall survival in our study 

as well as in a validation study (Gerstung et al. 2015). Notably we were able to 

relate methylation to expression by validating the relationships in publicly available

datasets of both methylation and expression in the same samples which were 

derived from AML tumors in The Cancer Genome Atlas LAML study cohort. Now 

that we have identified the relevance of CD93 in MDS outcome, it begs the 

question of what role it is playing in the disease. CD93, also known as the 

complement component 1 subcomponent Q receptor 1 (C1qR), is reportedly 

expressed on myeloid lineage cells including granulocytes, monocytes, and 

platelets, and also on hematopoietic stem and progenitor cells (both CD34+ and 

CD34- progenitors), as well as in endothelial cells (Kao et al. 2012). CD93 has 

been reported to have functions in enhancing phagocytosis (Tenner 1998), 

promoting angiogenesis (Langenkamp et al. 2015; Lugano et al. 2018), and is 

associated with inflammatory diseases such as rheumatoid arthritis and various 
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allergies (Sigari et al. 2016). Perhaps most relevant to MDS, CD93 reportedly 

marks a subset of non-quiescent leukemia stem cells in MLL-rearranged AML and 

suppresses expression of the tumor suppressor CDKN2B  (Iwasaki et al. 2015).  

Because CD93 is expressed on immature CD34+ and CD34- progenitors, we 

wondered if its association with outcome may be because it is a surrogate marker 

of the percentage of bone marrow blasts, which is a known predictor of outcome in

MDS, however we did not observe a correlation between % blasts and CD93 

expression.  It is possible that similar to AML, MDS patients with high CD93 have 

higher amounts of non-quiescent HSPCs which produce larger amounts of 

immature cells, enhancing their disease risk, however that was not seen in the 

bone marrow blast counts in these patients. It is also possible that the role of 

CD93 in inflammation may be relevant, as autoimmunity is increasingly becoming 

recognized as a significant contributor to MDS pathobiology (Wolach and Stone 

2016). Finally, it could very well be that differences in expression within the 

mononuclear cell compartment are due to different proportions of cells 

differentiating along the granulocytic-monocytic lineages which have high CD93 

expression. It may be that these cells have a block in differentiation along this 

lineage and immature cells along this lineage are contributing to disease risk in 

some manner. This question could be addressed simply by performing flow-

cytometric sorting of hematopoietic cell populations while simultaneously staining 

for cell-surface CD93 expression. One could determine the proportion of cells 

falling into each hematopoietic compartment and then quantify the amount of 
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CD93 positive cells falling into each of those compartments to determine which 

population was contributing the most to the CD93 signal in the bone marrow.  

There remain more questions unanswered than answered by our discovery, 

however CD93 may be an exciting new target to study for novel therapies and 

biomarkers in MDS.

Role of TET2 in Response to Azacitidine 

In chapter 3 we explored how TET2 loss may sensitize MDS patients 

towards DNA methyltransferase inhibitors like azacitidine (5-Aza), and our cell line 

studies provided several insights into potential mechanisms. One of the key 

findings of this work was that TET2KO cells down-regulate erythroid differentiation 

gene expression signatures at baseline, and 5-Aza treatment can selectively and 

disproportionately induce these genes to correct the baseline down-regulation. It is

also important to note that even though the TET2KO cells down-regulated 

erythroid differentiation signatures at baseline, upon erythroid differentiation 

induction with a strong inducing agent, erythropoietin, TET2KO cells had no 

significant loss of differentiation capacity compared with WT cells, indicating that 

the effects of TET2 loss on differentiation are subtle. This is somewhat in line with 

mouse models of TET2 inactivation which reported subtle changes, such as 

myeloid biased differentiation and expansion of HSC populations, but never 

complete loss of differentiation capacity and outright malignancy (Moran-Crusio et 

al. 2011).  
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As mentioned in previous chapters, TET2 mutation is an imperfect predictor

of response to 5-Aza due to co-mutations which can have a negative impact on 

association with response (Bejar, Lord, et al. 2014a). Co-mutations can strongly 

influence the epigenetic and differentiation phenotype initiated by TET2 loss as 

has been shown in animal models, and correlated with our results (for DNAm 

patterns) in Chapter 2 (Kunimoto et al. 2018; X. Zhang et al. 2016). We have 

shown a plausible mechanism whereby TET2 inactivation leads to down-regulation

of differentiation-associated gene expression which can be targeted by 5-Aza, 

however the majority of TET2-mutated patients have co-mutations in a variety of 

other genes, and it remains to be seen how co-mutations impact the signatures we

observed in our study.  A particularly interesting co-mutation to study in future 

experiments would be TET2 co-mutated with ASXL1, which was shown to predict 

resistance to 5-Aza in MDS patients. It would be interesting to observe how 

ASXL1 impacted the DNA methylome, particularly at enhancers which we showed 

to be important for gene expression changes after 5-Aza. In Chapter 2 we showed 

that patients co-mutated for ASXL1 and TET2 were much more likely to be 

enriched in Cluster C, which had global hypomethylation compared to other 

clusters, and differential methylation changes were enriched at enhancer regions. 

It may be that ASXL1 mutations remove the enhancer hypermethylation 

phenotype associated with TET2 loss, thus making these patients resistant to 5-

Aza therapy. This hypothesis could be further tested in studies of 5mC profiles in 

patients treated with 5-Aza and comparing the long term 5mC changes at 
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enhancers in TET2-alone vs. TET2 and ASXL1 co-mutant, which are both quite 

frequent in MDS patient populations. In general, if we can better understand the 

5mC signatures that occur in responding patients before and after treatment, it 

may be easier to discover a signature that can be used as a biomarker capable of 

predicting response even in patients with diverse co-mutations. With the work in 

Chapter 2 we provide some insights into where these 5mC alterations are likely to 

occur, namely within enhancers of differentiation-associated genes. It is also quite 

possible that mechanisms other than 5mC and 5hmC alterations contribute to 

responses in a subset of patients, such as the amount of drug actually reaching 

the disease cells after metabolism, and it may be effective to have multiple 

predictors of response built into a single model capable of higher accuracy 

predictions.

An interesting question we were unable to answer with the studies in 

Chapter 3 was what role the population doubling time lengthening in TET2KO cells

after 5-Aza exposure may have in response.  Several studies of MDS patient 

clonal dynamics during 5-Aza treatment report that TET2 mutant clones remain a 

proportional contributor to the bone marrow HSPC population during response to 

therapy, so we know that response is not driven by cytotoxic sensitivity to AZA. 

What remains to be seen is what proportion of mature blood cells arise from the 

TET2 mutant vs. wild-type HSPCs. It is possible that 5-Aza disproportionately 

slows TET2 mutant clone expansion in the bone marrow, allowing wild-type 

HSPCs to repopulate the bone marrow with differentiating progenitors that would 

121



otherwise be crowded out by dysplastic TET2 mutant progenitors, leading to 

enhanced response in patients harboring TET2 mutation. This could also 

potentially simultaneously explain why TET2 mutant clones are resistance to 

cytotoxic effects of 5-Aza, which requires active cell cycling for its maximal toxic 

effects. These questions could potentially be addressed in patient samples by 

performing targeted sequencing of HSPCs from bone marrow samples as well as 

mature cells in the peripheral blood in a time-series during treatment, and 

calculating the contribution of TET2 mutated clones to the mature blood cell 

population during a response to 5-Aza. If the TET2 mutant clone in HSPCs 

remains constant, but blood counts increase and have a lower proportion of TET2 

mutant allele burden, then we could conclude that the association with response is

driven by the delayed or slowed expansion of mutant HSPCs in the bone marrow 

as opposed to differentiation induction of the mutant clone. 

A major limitation of our studies in Chapter 3 on 5mC and expression 

dynamics during 5-Aza treatment is that our methylation profiling technique, BSPP,

did not have sufficient coverage of all erythroid-differentiation gene enhancers to 

make definitive conclusions regarding differences in 5mC dynamics at these 

regions. Future studies on this topic should be performed using targeted methods 

that specifically target differentiation-associated enhancers or more 

comprehensive methods like whole-genome bisulfite sequencing, so that we may 

achieve a more accurate understanding of the dynamic 5mC changes at these 
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locations during treatment and how they may relate to differentiation and treatment

response.  
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