
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Portable, Efficient, and Practical Library-Level Choreographic Programming

Permalink
https://escholarship.org/uc/item/7kf0p65k

Author
Kashiwa, Shun

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7kf0p65k
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

PORTABLE, EFFICIENT, AND PRACTICAL LIBRARY-LEVEL
CHOREOGRAPHIC PROGRAMMING

A dissertation submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE AND ENGINEERING

by

Shun Kashiwa

June 2024

The Dissertation of Shun Kashiwa
is approved:

Professor Lindsey Kuper, Chair

Professor Owen Arden

Professor Daniel Fremont

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Shun Kashiwa

2024

Table of Contents

List of Figures v

Abstract vii

Acknowledgments ix

1 Introduction 1

2 Background 5
2.1 The Elements of Choreographic Programming 5
2.2 CP implemented as a Library . 9

3 Endpoint Projection as Dependency Injection 14
3.1 Choreographies as Host-Language Programs 15

3.1.1 Located Values . 16
3.1.2 Choreographies . 16

3.2 Endpoint Projection as Injecting Dependencies 18

4 Efficient Conditionals with Choreographic Enclaves 20
4.1 The Two-Buyer Protocol . 22
4.2 The Enclave Operator . 24

5 ChoRus 27
5.1 EPP-as-DI in ChoRus . 27

5.1.1 Locations . 27
5.1.2 Located Values . 28
5.1.3 Choreography Trait . 29
5.1.4 ChoreoOp Trait . 29
5.1.5 Transport . 30
5.1.6 Endpoint Projection . 30

5.2 Advanced Features . 31

iii

5.2.1 Location Sets . 31
5.2.2 Located Input/Output . 32

6 Choreography.ts 35
6.1 Unique Features of TypeScript . 35

6.1.1 String Literal Types . 36
6.1.2 Union Types . 36
6.1.3 Generic Constraints . 37

6.2 Design and Implementation of Choreography.ts 38
6.2.1 Locations . 38
6.2.2 Located Values . 38
6.2.3 Choreography and Dependencies 39
6.2.4 Transport . 40
6.2.5 Endpoint Projection . 42
6.2.6 ESLint Plugin . 44

7 Evaluation 48
7.1 Case Study 1: Replicated Key-Value Store 49
7.2 Case Study 2: Multiplayer Tic-Tac-Toe 50
7.3 Performance . 53

7.3.1 Microbenchmarks . 53
7.3.2 Key-Value Store Benchmark . 55

8 Conclusion 56

Bibliography 58

iv

List of Figures

2.1 The bookseller protocol implemented as individual node-local programs 6

2.2 The bookseller protocol implemented in the Choral choreographic language 7

2.3 The bookseller protocol implemented in Haskell using HasChor [22] . . . 10

3.1 The interface provided by the host-language library for expressing chore-

ographies. 15

3.2 Bookseller Choreography . 17

3.3 Endpoint Projection as Injecting Dependencies 18

4.1 A naive version of the two-buyer protocol with bcast 23

4.2 Sequence diagrams of the two-buyer protocol with and without enclave . 24

4.3 A more efficient version of the two-buyer protocol using an enclave . . . 26

5.1 The ChoreoOp trait (excerpt). 30

5.2 The epp_and_run method of the Projector struct. 31

5.3 Invalid use of location Carol in AliceBobChoreography. 32

v

5.4 The password authentication choreography (a), along with node-local

code to invoke it on the client (b) and server (c). 34

6.1 Located values in Choreography.ts . 39

6.2 Choreography type definitions in Choreography.ts 40

6.3 Two-buyer Protocol in Choreography.ts 41

6.4 Transport Layer in Choreography.ts . 42

6.5 The password authentication choreography (a), along with node-local

code to invoke it on the client (b) and server (c). 45

6.6 ESLint Plugin showing errors for misused choreographic operators . . . 47

7.1 Comparison of the flow of control between the handwritten and choreo-

graphic KVS . 51

7.2 Diff between the local Rust and distributed ChoRus implementations of

the tic-tac-toe game . 52

7.3 Benchmark Results . 54

vi

Abstract

Portable, Efficient, and Practical Library-Level Choreographic Programming

by

Shun Kashiwa

Choreographic programming (CP) is an emerging paradigm for programming distributed

applications that run on multiple nodes. In CP, instead of implementing individual pro-

grams for each node, the programmer writes one, unified program, called a choreography,

that is then transformed to individual programs for each node via a compilation step

called endpoint projection (EPP). While CP languages have existed for over a decade,

library-level CP — in which choreographies are expressed as programs in an existing

host language, and choreographic language constructs and endpoint projection are pro-

vided entirely by a host-language library — is in its infancy. Library-level CP has the

potential to improve the accessibility and practicality of CP by meeting programmers

where they are, in their programming language of choice, with access to that language’s

ecosystem, however, the existing implementation approaches have portability, efficiency,

and practicality drawbacks that hinder its adoption.

This thesis aims to advance the state of the art of library-level CP by proposing

new implementation techniques: endpoint projection as dependency injection (EPP-as-

DI), and choreographic enclaves. EPP-as-DI is a language-agnostic technique for imple-

menting EPP at the library level. Unlike existing library-level approaches, EPP-as-DI

asks little from the host language — support for higher-order functions is all that is

vii

required — making it usable in a wide variety of host languages. Choreographic en-

claves are a language feature that lets the programmer define sub-choreographies within

a larger choreography. Within an enclave, “knowledge of choice” is propagated only

among the enclave participants, enabling the seamless use of the host language’s con-

ditional constructs while addressing the efficiency limitations of existing library-level

implementations of choreographic conditionals. This thesis presents ChoRus and Chore-

ography.ts, two library-level CP implementations for Rust and TypeScript, respectively,

that use EPP-as-DI and choreographic enclaves. We discuss how EPP-as-DI and chore-

ographic enclaves are implemented in these two languages, and evaluate the usability

and performance through two case studies and performance benchmarks.

viii

Acknowledgments

I would like to express my sincere gratitude to my advisor, Professor Lindsey Kuper, for

her guidance, support, and encouragement throughout my master’s study and research.

This work started as my personal hack project to kill time during the spring break, but

her enthusiasm and encouragement turned it into a research project. I am grateful for

her patience, understanding, and mentorship.

I would like to thank Professor Owen Arden and Professor Daniel Fremont for

serving on my thesis committee and providing valuable feedback on my research.

I extend my appreciation to the CASL lab at UC Santa Cruz for providing

a supportive and collaborative environment for my research. Special thanks to Gan

Shen, who kindly invited me to join his HasChor project and cultivated my interest in

choreographic programming.

Last but not least, I would like to thank my friends and family for their un-

wavering support and encouragement throughout my academic journey.

ix

Chapter 1

Introduction

In a distributed system, a collection of independent nodes communicate with

each other by sending and receiving messages. Programmers must ensure that nodes’ lo-

cal behaviors — sending and receiving messages, and taking internal actions — together

amount to the desired global behavior of the entire system.

As a very simple example, consider a distributed protocol involving nodes Al-

ice and Bob, in which Alice sends a greeting to Bob and Bob responds. In traditional

distributed programming (assuming the existence of send and receive functions that

implement message transport), Alice might run a node-local program send("Hello!",

Bob); receive(Bob). Meanwhile, Bob would run his own node-local program receive(Alice);

send("Hi!", Alice). Alice and Bob depend on each other to faithfully follow the pro-

tocol: if either of them forgets to call send, for instance, then their counterpart will

wait forever to receive a message (or time out and report an error). This approach is

1

prone to bugs, including deadlocks.

The emerging paradigm of choreographic programming [4, 19] offers a way to

rule out this class of bugs. Instead of programming individual nodes, the choreographic

programmer writes a single program, called a choreography, that expresses the behavior

of the entire system from an objective, third-party point of view. For example, the above

protocol might be written as the choreography Alice("Hello") ~> Bob; Bob("Hi")

~> Alice. The ~> operator denotes communication between a sender and a receiver

[22, 4]. Choreographies are transformed into collections of node-local programs via a

compilation step called endpoint projection (EPP) [20, 2, 3].

In the last ten years, several choreographic programming (CP) languages have

been proposed [4, 19, 9, 8, 11, 13]. However, library-level CP — in which choreographies

are expressed as programs in an existing host language, and choreographic operators

and EPP are provided entirely by a host-language library — is just beginning to emerge.

Library-level CP has the potential to improve the accessibility and practicality

of CP by meeting programmers where they are — in their programming language of

choice, with access to that language’s ecosystem. A library-level implementation of

choreographic programming in a given host language enjoys the usual advantages of

embedded DSLs [16]: it is installable just like any host-language library, compilable

just like any host-language program, and works with any host-language-specific tools

for development, debugging, and deployment. Library-level CP also aids the integration

of choreographic components into larger, non-choreographic systems, without the need

to change languages. Library-level CP fits especially nicely into workflows that port a

2

non-distributed program — say, a turn-based game in which players sit next to each

other at the same machine — to a distributed implementation in which the players

interact over a network. With CP, we start and end the process with one program, and

— with library-level CP — one language.

Given these advantages, how can we realize library-level CP? So far, the only

library-level CP implementation is the HasChor framework [22], which implements sup-

port for CP as a domain-specific language embedded in Haskell. The HasChor frame-

work represents the current state of the art of library-level CP, but its implementation

is quite Haskell-specific and not directly portable. Given the appeal of library-level CP,

it makes sense to ask: what is the minimal set of host-language features needed for a

viable implementation of library-level CP? In other words, can we “desugar” HasChor?

This thesis proposes new implementation techniques for library-level CP. We

make the following specific contributions:

• We propose endpoint projection as dependency injection (EPP-as-DI), a novel

and language-agnostic implementation technique for library-level CP (Chapter 3).

Unlike the HasChor implementation approach, EPP-as-DI asks little from the host

language: support for higher-order functions is all that is required. As such, the

EPP-as-DI approach is straightforward to use in a wide variety of host languages.

• We propose a novel design and implementation technique for implementing effi-

cient conditionals in library-level CP: choreographic enclaves (Chapter 4). Using

enclaves, a programmer can sidestep the bandwidth inefficiency of a naive imple-

3

mentation of choreographic conditionals, while still making seamless use of the

host language’s conditional constructs.

• We present ChoRus and Choreography.ts, two choreographic programming li-

braries for Rust and TypeScript, respectively, implemented using our proposed

techniques (Chapter 5, Chapter 6). We discuss how we implemented EPP-as-DI

and choreographic enclaves in the two languages, taking advantage of their unique

features, and how we integrated the libraries into the languages’ ecosystems.

• Using ChoRus as a model implementation of our proposed techniques, we empir-

ically evaluate the usability and performance of ChoRus compared to traditional

distributed programming in Rust (Chapter 7).

4

Chapter 2

Background

In this chapter, we provide a brief introduction to choreographic programming

and its library-level implementation. In Section 2.1, we identify the key elements of

choreographic programming using an example implemented in the standalone CP lan-

guage Choral [12]. Then, in Section 2.2, we give an overview of library-level CP using the

HasChor framework [22], and we discuss the strengths and limitations of library-level

CP as it stands today.

2.1 The Elements of Choreographic Programming

To illustrate the key concepts of CP, let us consider a well-known example

from the literature: the “bookseller” protocol [2, 3, 15, 23]. This protocol describes the

interactions between a bookseller and a potential book buyer. First, the buyer sends

the name of a book they wish to purchase to the seller. In response, the seller looks

5

up the catalog and sends back the price of the book to the buyer, who then checks

whether the price is within their budget. If the buyer has the means to purchase the

book, they notify the seller and obtain an estimated delivery date. Alternatively, if the

book’s cost exceeds their budget, they communicate to the seller their decision not to

proceed with the purchase. Figure 2.1 shows how this protocol might be implemented

in a traditional (non-choreographic) fashion as two individual programs, running on

the buyer and seller’s distinct nodes. We use Python in Figure 2.1 as a representative

mainstream programming language. We assume that the send and receive functions

are provided by some library that implements network communication between nodes.

1 def buyer():
2 title = input()
3 send(title, "seller")
4 price = receive("seller")
5 decision = price <= budget
6 if decision:
7 send(True, "seller")
8 delivery = receive("seller")
9 else:

10 send(False, "seller")

1 def seller():
2 title = receive("buyer")
3 price = catalog.get_price(title)
4 send(price, "buyer")
5 decision = receive("buyer")
6 if decision:
7 delivery = catalog.get_delivery(title)
8 send(delivery_date, "buyer")

Figure 2.1: The bookseller protocol implemented as individual node-local programs

Even for simple protocols like the bookseller protocol, it is easy to introduce

bugs. For example, the programmer might forget to send the decision to the seller, in

which case the seller will wait indefinitely for the buyer’s response, causing a deadlock.

6

1 String@Buyer title_buyer = UI@Buyer.input();
2 String@Seller title_seller = c.<String>com(title_buyer);
3 Integer@Buyer price = c.<Integer>com(catalog.quote(title_seller));
4 boolean@Buyer decision = price <= budget;
5 if(decision) {
6 c.<EnumBoolean>select(EnumBoolean@Buyer.True);
7 String@Seller delivery = catalog.get_delivery(title_seller);
8 String@Buyer delivery2 = c.<String>com(delivery);
9 } else {

10 c.<EnumBoolean>select(EnumBoolean@Buyer.False);
11 }

Figure 2.2: The bookseller protocol implemented in the Choral choreographic language

The programmer might also use different encodings for the delivery date in the buyer

and seller programs, in which case the buyer will not be able to parse the delivery date

sent by the seller, causing a type error.

Choreographic programming addresses these problems by letting the program-

mer implement a protocol as a single, unified program, called a choreography. Figure 2.2

shows an implementation of the bookseller protocol as a choreography in Choral [11], a

standalone CP language. Taking Figure 2.2’s implementation of the bookseller protocol

as an example, let us consider four key elements of CP:

• Located data and computation. The bookseller protocol involves two loca-

tions, Buyer and Seller, and data and computation reside at one of these loca-

tions. On line 1 of Figure 2.2, the call to the function input happens at the buyer,

as indicated by the @Buyer annotation on the function call. Likewise, the value

returned by input is located at the buyer, which we see in its type, String@Buyer.

Choral’s type system ensures that data at one location cannot be accessed at a

7

different location without explicit communication.1

• A unified language construct for communication. Choreographies replace

explicit calls to send and receive with a single language construct representing

communication between a sender and a receiver. In the bookseller protocol, the

buyer sends the title of the book to the seller (and the seller receives it) on line

2 of Figure 2.2, using the com method. Here, c is a channel object that defines

how two locations communicate and com takes a string located at the buyer and

returns a string located at the seller. Additional calls to com on lines 3 and 8

express communications from the seller to the buyer.

• Propagation of “knowledge of choice”. On line 4 of Figure 2.2, the buyer

checks whether the price of the book is within their budget, and depending on

the decision, the choreography takes different branches. Conditionals in choreo-

graphic programming are challenging because of the problem known as “knowledge

of choice” [5]. When the branches of a conditional expression encode different

communication patterns, all affected locations must be notified of the outcome

of evaluating the conditional. In Choral, the select method is used to express

selections, which indicates that the choreography has taken a particular branch

and propagated the information to relevant locations. On line 6, the buyer uses

select to send True to the seller if the price is within the budget; otherwise, the

buyer sends False to the seller on line 10. The seller will receive True or False
1While choreographic languages often represent locations at the type level, the notion of located data

and computation is always present in choreographic programming, whether or not locations are made
explicit in a type system like Choral’s.

8

and take the appropriate branch.

• Endpoint projection. By itself, a choreography is useful as a global specification

of the behavior of a protocol. If we wish to have a runnable implementation,

however, we need a way to perform endpoint projection (EPP).2 EPP transforms

a choreography into an individual program for each target node. For the bookseller

protocol, the Choral compiler carries out EPP and generates Java programs similar

to those in Figure 2.1.

So far, we have been using Choral to illustrate the key concepts of CP. Choral

exemplifies language-level CP, where choreographies are programs in a standalone lan-

guage with their own syntax, type system, compiler, and so on. Nearly all existing

choreographic programming languages are implemented as standalone languages. Let

us now turn our attention to library-level CP, where CP is implemented as a library in

an existing general-purpose programming language.

2.2 CP implemented as a Library

As discussed in Chapter 1, the only existing library-level CP implementation

is the HasChor framework [22]. It implements CP as a Haskell library, and it represents

the current state of the art of library-level CP. Figure 2.3 shows an implementation of

the bookseller protocol as a Haskell program using HasChor.
2Unlike in the literature on multiparty session types [15], in which endpoint projection refers to

projecting a global type to a collection of local types, in choreographic programming we are concerned
with projecting a global program (that is, a choreography) to a collection of local programs.

9

1 bookseller :: Choreo IO (Maybe Day @ "buyer")
2 bookseller = do
3 title' <- (buyer, title) ~> seller
4 price <- seller `locally` \un -> return (priceOf (un title'))
5 price' <- (seller, price) ~> buyer
6 decision <- buyer `locally` \un -> return (un price' <= budget)
7

8 cond (buyer, decision) \case
9 True -> do

10 date <- seller `locally` \un -> return (deliveryDate (un title'))
11 date' <- (seller, date) ~> buyer
12 buyer `locally` \un -> return $ Just (un date')
13 False -> do
14 buyer `locally` _ -> return Nothing

Figure 2.3: The bookseller protocol implemented in Haskell using HasChor [22]

With HasChor, choreographies are written as computations that run in the

Choreo monad provided by the library. The bookseller choreography’s type signature

on line 1 of Figure 2.3 shows that it returns a value of type Maybe Day at the "buyer"

location. In general, HasChor supports located values of type a @ l, implemented using

GHC Haskell’s support for type-level symbols.

The (~>) operator, seen on lines 3, 5, and 11 of Figure 2.3, implements com-

munication between a sender and a receiver and is HasChor’s counterpart of the com

method in Choral. The locally operator, on lines 4, 6, 10, 12, and 14 of Figure 2.3, im-

plements local computation at a particular node — for instance, looking up the book’s

price on the seller’s node (line 4), and computing whether the book is in budget on the

buyer’s node (line 6). A located value of type a @ l may be “unwrapped” and used

at the specified location l using the special un function passed to locally. Finally,

the cond operator on line 8 of Figure 2.3 implements a choreographic conditional ex-

pression. Unlike with the Choral bookseller implementation in Figure 2.2, the HasChor

10

programmer does not need to use anything like select to solve the knowledge-of-choice

problem. Instead, in HasChor, cond automatically inserts the necessary communication

to propagate knowledge of choice. While this design choice saves the programmer the

tedium of writing calls to select, it has unfortunate consequences for efficiency, as we

will discuss in Chapter 4.

To run Choreo computations, the HasChor framework provides a runChoreography

function that performs endpoint projection. Given a choreography of Choreo type (such

as bookseller) and a location name (such as "buyer"), runChoreography acts some-

thing like a just-in-time compiler: it dynamically generates (and runs) a node-local

program at the specified location, by dynamically interpreting the choreography. This

approach to library-level EPP is possible because HasChor implements Choreo as a

freer monad [17], whose operations can be given different semantics depending on the

location at which they are run. For instance, in HasChor the ~> operator is interpreted

as send for the sender, receive for the receiver, and as a no-op for other participants

in a choreography.

Library-level CP has the usual advantages of embedding a DSL in an existing

host language, including ability to piggyback on the host language’s ecosystem and

tooling, a gentle learning curve for host-language users, and seamless integration with

existing host-language code. HasChor enjoys all of these advantages. It is therefore

tempting to directly port the HasChor library to lots of languages in which programmers

might benefit from CP. A world with PyChor, JSChor, JavaChor and RustChor libraries

would surely make CP more practical and accessible than it is today. Unfortunately,

11

this “port HasChor to your favorite language” plan has some flaws:

• Tight coupling with Haskell and monads. HasChor’s monadic implementation

approach relies on Haskell-specific language features. While these implementation

choices are appropriate (and elegant) in the context of Haskell, doing the same in

other languages without proper support for monads (e.g., the do-notation) would

hurt the ergonomics of the library. To make choreographic programming more

widely accessible, a more general approach to implementing library-level CP is

called for.

• Inefficient conditionals. HasChor’s implementation of conditionals in choreogra-

phies involves broadcasting the value of the condition expression to all nodes

participating in the choreography, even those nodes that are not involved in the

execution of the conditional. Implementing conditionals efficiently is a particular

challenge for library-level CP: while standalone choreographic languages can stat-

ically analyze choreographies to insert only the minimum ammount of inter-node

communication needed, such an analysis would be difficult (if not impossible) to

accomplish in HasChor, given its implementation approach that relies on dynamic

interpretation of free monads. Therefore, HasChor’s implementation of condition-

als is unlikely to scale well to systems with large numbers of nodes, or those where

network bandwidth is a bottleneck.

• Lack of support for located arguments and return values. One of the biggest ad-

vantages of library-level CP is that it can easily be integrated with existing host-

12

language code. However, HasChor does not support providing located arguments

to choreographies or returning located values from choreographies. This limitation

makes it difficult to use HasChor as part of a larger application.

In summary, HasChor aims to make CP easy to use, and it succeeds at that goal —

provided that the user is a Haskell programmer. But the HasChor design does not

make CP easy to implement in one’s language of choice, and it suffers from efficiency

and practicality drawbacks. Our aim in the rest of this study is to democratize the im-

plementation of library-level choreographic programming while improving its efficiency

and practicality.

13

Chapter 3

Endpoint Projection as

Dependency Injection

A central concept of CP is that a single choreography exhibits different behav-

iors depending on the location to which it is projected. Each local computation may or

may not be executed, and each communication becomes a send, a receive, or a no-op.

Allowing a caller (in this case, endpoint projection) to modify the behavior of the callee

(in this case, a choreography) is a common pattern in software engineering to improve

code reusability and testability. One technique to achieve this is through dependency

injection (DI) [10]. In DI, the callee receives its dependencies from the caller, who can

alter the callee’s behavior by providing different dependencies.

In this section, we present endpoint projection as dependency injection (EPP-

as-DI), a new technique for implementing library-level choreographic programming. The

14

a : Type
l : Location

a@ l = Local a+Remote (Located Values)
Unwrap l = a@ l → a (Unwrap)
Choreo a = Ops → a (Choreography)

Ops = Locally×Comm×Bcast (Choreographic Operators)
Locally = ∀a. (l : Location) → (Unwrap l → a) → a@ l (Local Computation)
Comm = ∀a. (s r : Location) → a@s → a@ r (Communication)
Bcast = ∀a. (l : Location) → a@ l → a (Broadcast)

Figure 3.1: The interface provided by the host-language library for expressing chore-
ographies.

key idea of EPP-as-DI is that we can implement CP by representing a choreography

as a host-language function that takes choreographic operators as arguments. Then,

endpoint projection can change the behavior of the choreography by injecting specialized

implementations of the choreographic operators, depending on the projection target.

This technique can be used in any host language that supports higher-order functions,

enabling the straightforward implementation of choreographic programming libraries in

a wide variety of languages. We introduce a simple host language as a stand-in for an

arbitrary host language in Section 3.1, then show how EPP-as-DI is implemented in

Section 3.2.

3.1 Choreographies as Host-Language Programs

To introduce EPP-as-DI, we assume a simple ML-like host language that sup-

ports higher-order functions. For ease of exposition in this section, our host language

15

is typed; however, types are not essential to implement EPP-as-DI. Choreographies are

expressed as host-language functions using the interface presented in Figure 3.1, which

we now describe.

3.1.1 Located Values

We assume a set of Locations with decidable equality and write them as l. A

located value, written a@ l, is a value of type a at location l. A located value can either

be a Local a, meaning the value is at the current location, or a Remote, meaning the

value is at some remote location. We maintain the invariant that, when doing endpoint

projection for l, a @ l is always a Local. To use a located value at l, it needs to be

unwrapped first. Since it does not make sense to unwrap a remote value, we provide

an Unwrap l function that can only unwrap values at l. Given a value of type a @ l,

Unwrap l produces a value of type a.

3.1.2 Choreographies

A choreography Choreo a is a function that takes a set of choreographic oper-

ators Ops as dependencies and returns some result of type a. The host-language library

interface provides three choreographic operators that are sufficient to realize the key

elements of CP described in Section 2.1. We will use lower-case locally, comm, and bcast

as the names of operators that have types Locally, Comm, and Bcast, respectively:

• locally performs a local computation: it takes a location and a function and runs

the function locally at the location.

16

bookseller : Choreo (Option Date@buyer)
bookseller(locally,comm,bcast) =

let titlebuyer = locally(buyer,λ(un) → input()) in
let titleseller = comm(buyer,seller, titlebuyer) in
let priceseller = locally(seller,λ(un) → catalog.get_price(un(titleseller))) in
let pricebuyer = comm(seller,buyer,priceseller) in
let decisionbuyer = locally(buyer,λ(un) → un(pricebuyer) ≤ budget) in
let decision = bcast(buyer,decisionbuyer) in
if decision then

let deliveryseller = locally(seller,λ(un) → catalog.get_delivery(un(titleseller))) in
let deliverybuyer = comm(seller,buyer,deliveryseller) in
locally(buyer,λ(un) → Some(un(deliverybuyer)))

else
locally(buyer,λ(un) → None)

Figure 3.2: Bookseller Choreography

• comm communicates a value between two locations: it takes a sender and a receiver

location, a value at the sender, and returns the same value at the receiver.

• bcast broadcasts a value to the group of locations involved in the interaction: it

takes a sender location, a value at the sender, and returns a value at all locations.

Note that, for the sake of simplicity, the host language of Figure 3.3 is dependent-

typed to encode the constraints on the locations at the type level, such as Unwrap l and

a @ s. In practice, we can encode the same constraints without dependent types using

generics and something comparable to singleton types. In Chapter 5 and Chapter 6, we

show how to implement EPP-as-DI in Rust and TypeScript, respectively, which do not

support dependent types.

We can write choreographies as functions of type Choreo a by using the pro-

17

epp : Choreo a → [Location] → Location → a

epp(c, ls, l) =
let unwrap(v) = if let Local(a) = v then a else error(“impossible”) in
let locally(l′,f) = if l == l′ then Local(f(unwrap)) else Remote in
let comm(s,r,a) =

if l == s then send(unwrap(a), r);Remote else if l == r then Local(recv(s)) else Remote in
let bcast(s,a) = if l == s then ∀r ∈ ls.send(unwrap(a), r);unwrap(a) else recv(s) in
c(locally,comm,bcast)

Figure 3.3: Endpoint Projection as Injecting Dependencies

vided choreographic operators in the body of the function. To illustrate, Figure 3.2

shows the bookseller protocol implemented in our notional host language using the API

of Figure 3.1. We assume that the host language supports standard language constructs

such as let ... in and if ... then ... else. The bookseller choreography uses bcast to

propagate knowledge of choice and implement conditionals. When the buyer makes a

decision (decisionbuyer), it is broadcasted to all locations (decision). Since all locations

have the same data, it is safe to use the control-flow constructs of the host language,

such as if, to implement conditionals in choreographies.

3.2 Endpoint Projection as Injecting Dependencies

Since a choreography is a function that takes choreographic operators as de-

pendencies, we can determine the meaning of these operators by injecting specialized

implementations of them, leading to the definition of endpoint projection as a host-

language function epp, shown in Figure 3.3. We assume the existence of send and

recv functions in the host language that implement message transport, for instance, by

18

calling into a host-language networking library. epp takes a choreography c, a list of

locations participating in the choreography ls, and a target location l, then projects the

choreography to a node-local program for the target location. Inside epp, we construct

the three choreographic operators from the viewpoint of l and supply them to c:

• For operator locally(l′,f), if l is the same as l′, we perform the local computation

f ; otherwise, no action is taken.

• For operator comm(s,r,a), if l is the same as the sender location s, we perform a

send of a to the receiver; or if l is the same as the receiver location r, we perform

a recv from the sender; otherwise, no action is taken.

• For operator bcast(s,a), if l is the same as the sender location s, we perform a

series of sends of a to all the locations participating in the interaction; otherwise,

no action is taken.

We implemented two library-level choreographic programming libraries using

EPP-as-DI: ChoRus for Rust and Choreography.ts for TypeScript. Implementing a CP

library in a real-world host language requires additional considerations, such as type-

level encoding of located values, ergonomics of the user-facing API, and integration

with the host language’s ecosystem. We describe their design and implementation in

Chapter 5 and Chapter 6.

19

Chapter 4

Efficient Conditionals with

Choreographic Enclaves

As discussed in Section 2.1, implementing conditionals in choreographic pro-

gramming is challenging because of the “knowledge of choice” problem [5]. A CP lan-

guage must ensure — either statically or dynamically — that choreographies propagate

knowledge of the outcome of evaluating a conditional expression to all locations that are

affected by the choice. If CP is implemented as a standalone language, then the com-

piler can perform static analysis to check this property, and a choreography that fails

to propagate knowledge of choice is deemed unprojectable. Standalone CP languages

can even support choreography amendment [7, 18, 1, 6], a procedure that determines

if a choreography is unprojectable as-is and then automatically inserts the minimum

necessary communication to make it projectable.

20

Without access to the full AST of programs in the CP language, however,

static analysis becomes infeasible. In particular, with both the EPP-as-DI approach

of Chapter 3 and HasChor’s freer-monad-based approach, it is not trivial to perform

static analysis on choreographies to determine how knowledge of choice needs to be

propagated. With static analysis off the table as an option, the propagation of knowledge

of choice needs to be handled some other way. In Chapter 3, we solved the problem

in a naive way by implementing conditionals with broadcast, which ensures that all

locations receive the knowledge of choice, whether they are affected by the choice or

not. HasChor’s cond operator internally uses broadcast as well. Not only does this

naive approach introduce unnecessary communication, it may cause an undesired leak

of information to locations that should not have it.

Alternatively, we could do without static analysis another way: by requiring

the programmer to provide annotations to convey their intent. In fact, in the absence of

choreography amendment, this is the typical approach even in standalone CP languages:

the programmer must annotate the branches of a conditional with selection annotations

that indicate to the compiler that knowledge of choice must be propagated, as we see

in the Choral code in Figure 2.2 that uses the select method. Yet the approach of

adding selection annotations is somewhat unsatisfying because we must add annotations

to make our code correct (that is, projectable). If we must annotate our code for the

benefit of the compiler, it would be preferable if we could begin with a choreography

that is correct, but inefficient, and then add annotations to make it efficient.

21

In this section, we address this design challenge with choreographic enclaves1, a

novel CP language feature. Enclaves are sub-choreographies that execute at a specified

subset of the locations involved in a larger choreography. One may broadcast within

an enclave, just like in any other choreography, but the broadcast will only go to those

locations that are in the specified subset. Enclaves allow finer control over the prop-

agation of knowledge of choice, enabling an efficient implementation of conditionals in

library-level CP without static analysis.

In Section 4.1, we present a variant of the bookseller protocol to motivate

the need for fine-grained control over the propagation of knowledge of choice. Then,

in Section 4.2 we introduce choreographic enclaves. We define an enclave operator

and present its type signature and implementation, and we show how to implement

the two-buyer protocol with enclave and compare it with the naive approach and the

selection-annotation approach.

4.1 The Two-Buyer Protocol

To illustrate the problem of inefficient conditionals, let us consider a variant of

the bookseller protocol: the two-buyer protocol [15, 13]. In this protocol, there are two

buyers who wish to collectively buy a book from the seller. First, buyer1 sends the title

to the seller, and the seller sends the price to both buyers. Then, buyer2 tells buyer1 how

much they can contribute, and buyer1 decides whether to buy the book by comparing
1Choreographic enclaves bear no direct relation to secure enclaves like Intel’s SGX technology, despite

both concepts involving the concealment of information within a smaller component of the overall
system.

22

two_buyer : Choreo (Option Date@buyer1)
two_buyer(locally,comm,bcast) =

let titlebuyer1 = locally(buyer1,λ(un) → input()) in
let titleseller = comm(buyer1,seller, titlebuyer1) in
let priceseller = locally(seller,λ(un) → catalog.get_price(un(titleseller))) in
let pricebuyer1 = comm(seller,buyer1,priceseller) in
let pricebuyer2 = comm(seller,buyer2,priceseller) in
let contribution = comm(buyer2,buyer1,buyer2_budget) in
let decisionbuyer1 = locally(buyer1,λ(un) → un(pricebuyer1) ≤ buyer1_budget+ contribution) in
let decision = bcast(buyer1,decisionbuyer1) in
if decision then

let deliveryseller = locally(seller,λ(un) → catalog.get_delivery(un(titleseller))) in
let deliverybuyer1 = comm(seller,buyer1,deliveryseller) in
locally(buyer1,λ(un) → Some(un(deliverybuyer1)))

else
locally(buyer1,λ(un) → None)

Figure 4.1: A naive version of the two-buyer protocol with bcast

the price with the buyers’ combined budget. If buyer1 decides to buy the book, they

send their intent to buy to the seller, and the seller sends the delivery date to buyer1.

Otherwise, buyer1 tells the seller that they will not buy the book.

Using the bcast choreographic operator that we introduced in Section 3.1,

we can implement the two-buyer protocol in our notional host language, as shown in

Figure 4.1. Figure 4.2a shows a sequence diagram of the execution of the protocol. After

buyer1 makes a decision, to perform the conditional, it broadcasts the decision to all

locations, i.e., the seller and buyer2. It is important that the seller receives the decision

because the seller needs to know whether to send a delivery date to buyer1, but buyer2

does not need to receive the decision, as its subsequent behavior does not depend on it.

23

(a) Using broadcast naively

(b) With enclave

Figure 4.2: Sequence diagrams of the two-buyer protocol with and without enclave

Nonetheless, because of the broadcast, buyer2 receives the decision, causing unnecessary

communication between buyer1 and buyer2, shown in red in Figure 4.2a. While this

communication does not affect the correctness of the choreography, it is inefficient and

can be problematic in more complex choreographies with many participants. Moreover,

it leaks information about choice, which can be a security concern. For example, buyer2

might infer the budget of buyer1 by observing the decision, and this type of information

leakage might be undesirable in some applications.

4.2 The Enclave Operator

To prevent unnecessary communication, we introduce the enclave choreographic

operator. The enclave operator executes a sub-choreography at a specified set of loca-

24

tions. Inside the sub-choreography, the broadcast operator sends data only to locations

in the specified set. This allows us to perform conditionals without sending data to

unaffected locations.

We modify the interface of our host-language library from Figure 3.1 to add

support for an enclave operator with the type Enclave, specified below:

Choreo a = Ops → a (Choreography)

Ops = Locally×Comm×Bcast×Enclave (Choreographic Operators)

Enclave = ∀a, l. [Location] → Choreo a@ l → a@ l (Enclave)

The first argument to enclave is a list of locations where the sub-choreography is to

be executed, and the second argument is the sub-choreography. It returns the result of

running the sub-choreography. To implement endpoint projection for enclave, we update

the definition of epp from Figure 3.3 as follows:

epp : Choreo a → [Location] → Location → a

epp(c, ls, l) =

...

let enclave(ls′, c′) = if l ∈ ls′ then epp(c′, ls′, l) else Remote in

c(locally,comm,bcast,enclave)

The enclave operator recursively calls the sub-choreography by calling epp with the

sub-choreography and the list of locations where the sub-choreography is executed if

the projection target is one of the specified locations. The behavior of bcast inside the

25

two_buyer : Choreo (Option Date@buyer1)
two_buyer(locally,comm,bcast,enclave) =

...

let decisionbuyer1 = locally(buyer1,λ(un) → un(pricebuyer1) ≤ buyer1_budget+ contribution) in
let c(locally,comm,bcast,enclave) =

let decision = bcast(buyer1,decisionbuyer1) in
if decision then

let deliveryseller = locally(seller,λ(un) → catalog.get_delivery(un(titleseller))) in
let deliverybuyer1 = comm(seller,buyer1,deliveryseller) in
locally(buyer1,λ(un) → Some(un(deliverybuyer1)))

else
locally(buyer1,λ(un) → None)

in
enclave([buyer1,seller], c)

Figure 4.3: A more efficient version of the two-buyer protocol using an enclave

sub-choreography depends on the ls′ argument to the recursive call to epp, so bcast inside

the sub-choreography will only send data to the specified locations. Using enclave, we

can rewrite the last part of the two-buyer protocol, as shown in Figure 4.3. After buyer1

makes a decision, we define a sub-choreography c that uses bcast to perform conditionals.

Then, we call the sub-choreography at buyer1 and seller using enclave. Because the sub-

choreography is not executed at buyer2, bcast does not send the decision to buyer2, as

shown in Figure 4.2b.

While we have shown how to implement endpoint projection for enclave using

the EPP-as-DI technique, the use of choreographic enclaves is orthogonal to the use of

EPP-as-DI. For instance, one could extend HasChor with an enclave operator without

departing from HasChor’s freer-monad-based implementation of EPP.

26

Chapter 5

ChoRus

This chapter presents ChoRus, a choreographic programming library for Rust.

ChoRus is implemented using EPP-as-DI, supports choreographic enclaves, and has

other features that make it a practical choice for distributed programming in Rust. We

describe how we encode EPP-as-DI in Rust Section 5.1, and give a brief tour of ChoRus

features Section 5.2. The code shown in this section is simplified for presentational pur-

poses. ChoRus is open source, and its implementation, case studies and benchmarking

code, and documentation are available at https://github.com/lsd-ucsc/ChoRus.

5.1 EPP-as-DI in ChoRus

5.1.1 Locations

ChoRus represents each location at which node-local code runs as a distinct

type. In Rust, we can create a new type by defining a struct. Locations must be

27

https://github.com/lsd-ucsc/ChoRus

comparable for equality to perform endpoint projection. To that end, ChoRus defines

the ChoreographyLocation trait, which all location types must implement:

trait ChoreographyLocation: Copy {

fn name() -> &'static str;

}

The name method returns the string representation of the location, which is used to

compare locations for equality. Thanks to Rust’s macro system, ChoreographyLocation

can be derived automatically. For example, the following code defines a location named

Alice:

#[derive(ChoreographyLocation)]

struct Alice;

5.1.2 Located Values

Located values are values that reside at a specific location. ChoRus defines

the Located<V, L1> struct to represent a located value of type V at location L1:

struct Located<V, L1: ChoreographyLocation> {

value: Option<V>,

phantom: PhantomData<L1>,

}

The value field holds a value of type Option<V>; it is Some if the current

projection target is L1 and None otherwise. We use std::marker::PhantomData to

indicate to the compiler that the L1 parameter is not used at run time.

28

5.1.3 Choreography Trait

In Chapter 3, we represented choreographies as functions. To provide a more

ergonomic API, ChoRus represents choreographies as structs that implement the Choreography

trait. The Choreography trait is defined as follows:

trait Choreography<R = ()> {

fn run(self, op: &impl ChoreoOp) -> R;

}

The R type parameter represents the return type of the choreography. The

run method takes a reference to an object that implements the ChoreoOp trait, which

provides the choreographic operators.

5.1.4 ChoreoOp Trait

ChoRus supports the four choreographic operators locally, comm, broadcast,

and enclave, as described in Chapter 3 and Chapter 4.

Figure 5.1 shows an excerpt of the ChoreoOp trait that implements the locally

operator. The locally method takes a location location and a function computation

and returns a Located value. The computation function takes an argument of type

Unwrapper<L1>, which it can use to unwrap located values at location L1. Other chore-

ographic operators are defined similarly as methods of the ChoreoOp trait.

29

trait ChoreoOp {
fn locally<V, L1: ChoreographyLocation>(

&self,
location: L1,
computation: impl Fn(Unwrapper<L1>) -> V,

) -> Located<V, L1>;
// ...

}

Figure 5.1: The ChoreoOp trait (excerpt).

5.1.5 Transport

The Transport trait represents the message transport layer. Users can imple-

ment the Transport trait by providing the send and receive methods. ChoRus has

two built-in transport implementations: LocalTransport and HttpTransport. The

LocalTransport implementation models each location as a thread and uses an inter-

thread channel to send messages. The HttpTransport implementation uses HTTP to

send messages.

5.1.6 Endpoint Projection

ChoRus provides the Projector struct to perform endpoint projection and

execute choreographies. First, users construct a Projector by passing the projection

target and the transport. Then, they can call the epp_and_run method to perform

endpoint projection and execute the choreography. The epp_and_run method takes a

choreography, defines EppOp — an object that implements ChoreoOp for the projection

target — and calls the run method of the choreography with it. Figure 5.2 shows an

excerpt of the epp_and_run method and the implementation of locally.

30

impl<...> Projector<...> {
pub fn epp_and_run<...>(&'a self, choreo: C) -> V {

struct EppOp<...> {...}
impl<...> ChoreoOp for EppOp<...>
{

fn locally<V, L1: ChoreographyLocation>(
&self,
location: L1,
computation: impl Fn(Unwrapper<L1>) -> V,

) -> Located<V, L1> {
if L1::name() == Target::name() {

let value = computation(Unwrapper::new());
Located::local(value)

} else {
Located::remote()

}
}
// ...

}
choreo.run(&EppOp {...})

}
}

Figure 5.2: The epp_and_run method of the Projector struct.

5.2 Advanced Features

ChoRus supports all the features supported by HasChor [22], such as swappable

transport backends, higher-order choreographies, and location polymorphism. In this

section, we present two new features of ChoRus: location sets and located input/output.

5.2.1 Location Sets

In ChoRus, the set of locations at which a choreography runs is represented at

the type level. We call this type the location set of the choreography. Each choreography

has an associated type L that represents its location set. ChoreoOp is parametrized by

the location set of the choreography and prevents users from using locations that are not

in the location set. For example, Figure 5.3 defines a choreography AliceBobChoreography

31

struct AliceBobChoreography;
impl Choreography for AliceBobChoreography {

type L = LocationSet!(Alice, Bob);
fn run(self, op: &impl ChoreoOp<Self::L>) {

op.locally(Carol, |_| println!("Hello from Carol!"));
}

}

Figure 5.3: Invalid use of location Carol in AliceBobChoreography.

that runs on locations Alice and Bob. LocationSet! is a macro that constructs a spe-

cial location set type. Inside the run method, we can only use locations Alice and

Bob. If we try to use location Carol, the Rust compiler will report an error. Location

sets are especially useful when defining choreographic enclaves, as they prevent us from

accidentally using locations outside the enclave.

5.2.2 Located Input/Output

When a choreography is used as part of a larger program, it is often useful to

be able to pass located values to and from the choreography. For example, consider a

simple password authentication protocol between a client and a server. The client reads

a password from the user and sends it to the server. The server checks the password and

sends the result back to the client. The client then prints the result. The inputs to this

choreography are (1) the typed password on the client, and (2) the correct password

on the server, and the output is the result of the authentication on the client. Morally,

these are all located values; for example, when running the choreography on the client,

we do not have access to the correct password on the server. However, from outside

the choreography, we do not have a way to talk about their locations. To solve this

32

problem, ChoRus provides a located input/output feature that provides a convenient

and type-safe way to handle located values.

Projector plays an important role in the located input/output feature. Projector

is parameterized by the projection target and can construct (1) local located values at

the projection target, and (2) remote located values at other locations. It can also

unwrap located values at the projection target, but not at other locations.

Figure 5.4 shows the password authentication choreography and code to exe-

cute the choreography as the client and as the server. When running the choreography as

the client, we use an instance of Projector that is parameterized by the client location.

We provide the password attempt as a local located value and the correct password as a

remote located value on the server. Conversely, when running the choreography as the

server, we provide the password attempt as a remote value and the correct password as

a local value. The result can only be unwrapped at the client location using the unwrap

method of Projector.

33

struct PasswordAuthChoreography {
attempt_password: Located<String, Client>,
correct_password: Located<String, Server>,

}
impl Choreography<Located<bool, Client>> for PasswordAuthChoreography {

type L = LocationSet!(Client, Server);
fn run(self, op: &impl ChoreoOp<Self::L>) -> Located<bool, Client> {

let password = op.comm(Client, Server, &self.attempt_password);
let result = op.locally(Server, |un| {

un.unwrap(&password) == un.unwrap(&self.correct_password)
});
op.comm(Server, Client, &result)

}
}

(a) Password authentication choreography

let result = client_projector.epp_and_run(PasswordAuthChoreography {
attempt_password: client_projector.local("1234".to_string()),
correct_password: client_projector.remote(Server),

});
println!("Result: {}", client_projector.unwrap(result));

(b) Client code

server_projector.epp_and_run(PasswordAuthChoreography {
attempt_password: server_projector.remote(Client),
correct_password: server_projector.local("password".to_string()),

});

(c) Server code

Figure 5.4: The password authentication choreography (a), along with node-local code
to invoke it on the client (b) and server (c).

34

Chapter 6

Choreography.ts

EPP-as-DI is a general technique that can be applied to any programming lan-

guage that supports higher-order functions. In this chapter, we present Choreography.ts,

a choreographic programming library for TypeScript. TypeScript is a statically typed

language that builds on JavaScript by adding static type definitions, enabling better

tooling and error-checking capabilities. It has unique type system features that make it

an interesting case study for implementing EPP-as-DI. The source code for Choreogra-

phy.ts is available on GitHub at https://github.com/shumbo/choreography-ts.

6.1 Unique Features of TypeScript

When implementing an embedded DSL, the host language’s features play a

significant role in its design and implementation. TypeScript has several unique features

that are useful for implementing EPP-as-DI. We discuss some of these features in this

35

https://github.com/shumbo/choreography-ts

section.

6.1.1 String Literal Types

TypeScript has a feature called string literal types that allows developers to

define types that accept only specific string values. For example, the following code

defines a type Hello that can only be "hello":

type Hello = "hello";

A variable of type Hello can only be assigned the value "hello". Assigning

any other value will result in a type error.

let hello: Hello = "hello"; // OK

let world: Hello = "world"; // Type error

String literal types are useful to constrain the string values that a variable can

take. Choreography.ts uses string literal types to represent locations and location sets.

6.1.2 Union Types

TypeScript has a feature called union types that allows developers to define

types that can be one of several possible types. For example, the following code defines

a type Direction that can be either "left" or "right":

type Direction = "left" | "right";

left and right are string literal types, and Direction is a union type that

can be either "left" or "right". A variable of type Direction can be assigned either

"left" or "right".

36

let left: Direction = "left"; // OK

let right: Direction = "right"; // OK

let up: Direction = "up"; // Type error

Union types can naturally represent a set of types. Choreography.ts uses union

types to represent a set of locations that a choreography can use.

6.1.3 Generic Constraints

TypeScript has a feature called generic constraints that allows developers to

define constraints on generic type parameters. For example, the following code defines

a function direction_id that takes a direction and returns the same direction:

function direction_id<T extends Direction>(d : T): T {

return d;

}

direction_id is a generic function that takes a type parameter T that extends

the Direction type. It takes a value of type T and returns the same value. The type

parameter T is constrained to be a subtype of Direction, which means that it can

only be either "left" or "right". This ensures that the function only accepts valid

directions and we can use the type parameter T to encode additional constraints. We

will use generic constraints to ensure that choreographic operators can only use the

correct locations.

let left: "left" = direction_id("left"); // OK

let right: "right" = direction_id("right"); // OK

37

let err = direction_id("top"); // Type error

let mismatch: "left" = direction_id("right"); // Type error

Now that we have discussed some of the unique features of TypeScript, we can

proceed to the design and implementation of Choreography.ts.

6.2 Design and Implementation of Choreography.ts

6.2.1 Locations

Choreography.ts uses string literal types and their unions to represent locations

and location sets. A location is defined as a string literal type. For example, type Alice

= "Alice"; defines a location Alice. A location set is defined as a union of location

types. For example, type L = "Alice" | "Bob"; defines a location set L that can be

either Alice or Bob.

6.2.2 Located Values

Located values are implemented in a similar way to ChoRus. Figure 6.1 shows

the implementation of located values in Choreography.ts. A located value is a generic

class that takes a type parameter T and a location type parameter L1. It has a protected

field value of type T and an optional field phantom of type L1. The phantom field is

there to prevent illegal assignments of located values to different locations. For example,

a located value of type Located<number, "Alice"> cannot be assigned to a variable of

type Located<number, "Bob">.

38

class Located<T, L1 extends string> {
protected value: T;
protected phantom?: L1;

}

Figure 6.1: Located values in Choreography.ts

6.2.3 Choreography and Dependencies

Figure 6.2 shows the type definitions for choreography and choreographic op-

erators. A choreography is a function of type Choreography. It takes three type param-

eters: L is a location set, Args and Return are arrays of located values at some location

in L. The function takes an object of type Dependencies that provides choreographic

operators and a set of arguments of type Args. It returns a promise of an array of

located values of type Return.

The definitions of choreographic operators, locally, comm, enclave, and broadcast

are similar to those in ChoRus, with minor differences. For syntax, we use generic con-

straints to ensure that choreographic operators can only use the correct locations. For

example, the locally operator has a type parameter L1 that extends the location set

L. This ensures that the location passed to the locally operator is a valid location

in the choreography. Another difference is that the choreographic operators are asyn-

chronous functions that return promises. Since JavaScript is typically executed in a

single-threaded environment, most blocking operations, such as IO, are implemented

as asynchronous functions that return promises. For this reason, choreographies and

choreographic operators in Choreography.ts are designed to work with promises. In

most cases, users can use the await keyword to wait for promises to resolve and write

39

type Choreography<
L extends Location,
Args extends Located<any, L>[] = [],
Return extends Located<any, L>[] = []

> = (deps: Dependencies<L>, args: Args) => Promise<Return>;
type Dependencies<L extends Location> = {

locally: Locally<L>;
comm: Comm<L>;
broadcast: Broadcast<L>;
enclave: Enclave<L>;

};
type Locally<L extends Location> = <L1 extends L, T>(

location: L1,
callback: (unwrap: Unwrap<L1>) => T | Promise<T>

) => Promise<Located<T, L1>>;
type Unwrap<L1 extends Location> = <T>(located: Located<T, L1>) => T;
type Comm<L extends Location> = <L1 extends L, L2 extends L, T>(

sender: L1,
receiver: L2,
value: Located<T, L1>

) => Promise<Located<T, L2>>;
type Enclave<L extends Location> = <

LL extends L,
Args extends Located<any, LL>[],
Return extends Located<any, LL>[]

>(locations: LL[], choreography: Choreography<LL, Args, Return>, args: Args) =>
Promise<Return>;

type Broadcast<L extends Location> =
<L1 extends L, T>(sender: L1, value: Located<T, L1>) => Promise<T>;

Figure 6.2: Choreography type definitions in Choreography.ts

asynchronous code in a synchronous style. Figure 6.3 shows an example of a two-buyer

protocol implemented in Choreography.ts.

6.2.4 Transport

Similar to ChoRus, Choreography.ts provides a transport layer that allows

locations to communicate with each other. Figure 6.4 shows the type definitions for

the transport layer in Choreography.ts. The Parcel type represents a message that is

sent between locations. It contains the sender and receiver locations and the message

40

1 const bookseller: Choreography<L> = async ({ locally, comm, broadcast, enclave }) => {
2 const title_at_buyer1 = await locally("buyer1", async () => {
3 return await rl.question("Book name?");
4 });
5 const title_at_seller = await comm("buyer1", "seller", title_at_buyer1);
6 const price_at_seller = await locally(
7 "seller",
8 (unwrap) => lookup(unwrap(title_at_seller)).price
9);

10 const price = await broadcast("seller", price_at_seller);
11 const contrib_at_buyer2 = await locally("buyer2", async () => {
12 return await rl
13 .question("How much do you want to contribute for the purchase?")
14 .then((x) => parseInt(x));
15 });
16 const contrib_at_buyer1 = await comm("buyer2", "buyer1", contrib_at_buyer2);
17 await enclave(
18 ["buyer1", "seller"],
19 async ({ locally, broadcast, comm }) => {
20 const decision_at_buyer1 = await locally("buyer1", async (unwrap) => {
21 const contrib = await rl
22 .question("How much do you want to contribute for the purchase?")
23 .then((n) => parseInt(n));
24 return contrib + unwrap(contrib_at_buyer1) >= price;
25 });
26 const decision = await broadcast("buyer1", decision_at_buyer1);
27 if (decision) {
28 const delivery_date_at_seller = await locally(
29 "seller",
30 (unwrap) => lookup(unwrap(title_at_seller)).delivery_date
31);
32 const delivery_date_at_buyer1 = await comm(
33 "seller",
34 "buyer1",
35 delivery_date_at_seller
36);
37 await locally("buyer1", (unwrap) => {
38 console.log(
39 `the book will be delivered on ${unwrap(delivery_date_at_buyer1)}`
40);
41 });
42 }
43 return [];
44 },
45 []
46);
47 return [];
48 };

Figure 6.3: Two-buyer Protocol in Choreography.ts

41

type Parcel<L extends Location> = {
from: L;
to: L;
data: any;

}
abstract class Transport<L extends Location, L1 extends L> {

public abstract send(parcel: Parcel<L>): Promise<void>;
public abstract subscribe(cb: (p: Parcel<L>) => void): Subscription;
private phantom?: L1;

}

Figure 6.4: Transport Layer in Choreography.ts

data. The Transport class is responsible for sending and receiving messages. The send

method sends a parcel to the receiver location. The subscribe method registers a

callback function that is called when a parcel is received.

Choreography.ts comes with three built-in transport implementations: LocalTransport,

which runs all locations concurrently in the same process; ExpressTransport, which

uses the Express.js framework [14] to send messages over HTTP; and SocketIOTransport,

which uses the Socket.IO library [21] to send messages over WebSockets. Users can also

implement their own transport layer by extending the Transport class and implement-

ing the send and subscribe methods.

6.2.5 Endpoint Projection

Endpoint projection is accomplished by constructing a Dependencies object

that provides choreographic operators for the projection target and calls the choreogra-

phy function with it. Choreography.ts provides the Projector class that works similarly

to the ChoRus projector but with some differences to better fit TypeScript.

First, because it is easy to work with anonymous functions in TypeScript,

42

the epp method on the Projector class takes a choreography and a projection target

and returns a new function that takes the arguments of the choreography and returns

a promise of the return values. This allows users to potentially reuse the projected

choreography multiple times with different arguments.

Second, Choreography.ts takes advantage of TypeScript’s type-level program-

ming abilities to provide precise type checking for located arguments and return values.

When projecting a choreography with located inputs and outputs, the epp method in-

fers the types of arguments and returns values based on the current projection target.

Concretely, if a located argument or return value is projected to the same location, the

type of the argument or return value is inferred as a normal value. If a located argument

or return value is projected to a different location, the type of the argument or return

value is inferred as undefined. This allows TypeScript to catch type errors when users

don’t correctly supply the arguments or handle the return values.

Figure 6.5 shows the same password authentication choreography from Sec-

tion 5.2.2 implemented in Choreography.ts. The argument of the choreography is

of type [Located<string, "client">, Located<string, "server">]: an attempt

password from the client and the correct password from the server. The return value

of the choreography is of type [Located<boolean, "client">]: a boolean value indi-

cating whether the password is correct. To perform endpoint projection, we instantiate

a Projector class with a transport and a location. In Figure 6.5b and Figure 6.5c, we

assume that clientTransport and serverTransport are instances of the Transport

class for the client and server locations, respectively. We create two instances of the

43

Projector class, one for the client and one for the server, and call the epp method with

the password authentication choreography. The epp method returns a function that

would behave as the client or server endpoint. In other words, the epp method returns

a partial application of the choreography with the concrete choreographic operators for

the projection target.

Notice that the type of the projected function is inferred based on the pro-

jection target. The client endpoint takes an attempt password and undefined as a

placeholder for the correct password and returns a boolean value. The server endpoint

takes undefined as a placeholder for the attempt password and the correct password

and returns undefined. The library automatically wraps/unwraps located values based

on the projection target, so users don’t have to worry about the details of located values.

While the code in Figure 6.5 shows the types of the projected functions, users can omit

the types and let TypeScript infer them.

6.2.6 ESLint Plugin

Unlike standalone choreographic programming languages, library-level chore-

ographic programming requires users to follow certain conventions to ensure that the

code is correct. The dynamic nature of JavaScript makes it vulnerable to certain types

of errors that are difficult to catch with static analysis. To help users write correct chore-

ographies, Choreography.ts comes with an ESLint plugin that enforces best practices

for choreographic programming.

For example, one common mistake in Choreography.ts is using choreographic

44

const passwordAuthChoreography: Choreography<
L,
[Located<string, "client">, Located<string, "server">],
[Located<boolean, "client">]

> = async ({ locally, comm }, [attempt_password, correct_password]) => {
const password = await comm("client", "server", attempt_password);
const result_at_server = await locally(

"server",
(unwrap) => unwrap(password) === unwrap(correct_password)

);
const result_at_client = await comm("server", "client", result_at_server);
return [result_at_client];

};

(a) Password authentication choreography

const clientProjector = new Projector(clientTransport, "client");
const client: (args: [string, undefined]) => Promise<[boolean]> =

clientProjector.epp(passwordAuthChoreography);
const [result] = await client(["attempt_password", undefined]);
console.log("result:", result);

(b) Client code

const serverProjector = new Projector(serverTransport, "server");
const server: (args: [undefined, string]) => Promise<[undefined]> =

serverProjector.epp(passwordAuthChoreography);
await server([undefined, "correct_password"]);

(c) Server code

Figure 6.5: The password authentication choreography (a), along with node-local code
to invoke it on the client (b) and server (c).

45

operators of outer choreographies in a sub-choreography. For example, suppose that the

user forgets to receive choreographic operators in the definition of the sub-choreography

on line 19 of Figure 6.3. We can still access locally, comm, and broadcast in the

sub-choreography because the same operators for the outer choreography (defined on

line 1) are in scope. However, they have different types because the sub-choreography

cannot use buyer2 which is not part of the enclave. This can lead to misuse of locations

and possibly deadlocks. The ESLint plugin can catch this error by checking that the

choreographic operators in the sub-choreography are received as arguments. When

integrated with an IDE, the ESLint plugin can provide real-time feedback to users as

they write choreographies. Figure 6.6 shows the ESLint plugin in action, highlighting

the error in the sub-choreography in VSCode. The ESLint plugin can fix some of the

errors automatically. In this case, by right-clicking on the error and selecting “Fix”, the

plugin can automatically add the missing choreographic operators as arguments to the

sub-choreography and resolve the error.

The ESLint plugin has two more rules: one that checks that all locations in

an enclave are used and one that checks that choreographic operators are not renamed

to the other checks would function properly.

When implementing choreographic programming at the library level, it is often

difficult to prevent all illegal programs only with the type system. Linters can help users

write correct choreographies by enforcing conventions and best practices, and I believe

that they can play an important role in improving the safety and correctness of library-

level choreographic programming.

46

Figure 6.6: ESLint Plugin showing errors for misused choreographic operators

47

Chapter 7

Evaluation

In this chapter, we assess the utility and practicality of library-level CP with

EPP-as-DI and the Enclave operator. We use ChoRus as a model implementation of

library-level CP and evaluate it through two case studies and performance benchmark-

ing. First, to demonstrate that ChoRus indeed brings the advantages of CP to Rust,

we present a case study involving a key-value store (Section 7.1). In this case study, we

implement a simple replicated key-value store as a choreography and as a traditional

Rust program. We compare these two implementations and highlight how choreogra-

phy helps to track the flow of data and control. Next, to illustrate that library-level CP

enables code reuse, we conduct a second case study: a multiplayer tic-tac-toe game (Sec-

tion 7.2). We begin by showing the code for a tic-tac-toe game that runs locally, then

we use ChoRus to modify the program to run across multiple computers over a network

with minimal changes. We observe that library-level CP allows a substantial portion of

48

the local code to be reused for the distributed implementation. Finally, we measure the

performance overhead incurred by using ChoRus (Section 7.3). Through benchmarking,

we show that ChoRus introduces very minimal overhead, making it sufficiently practical

for use.

7.1 Case Study 1: Replicated Key-Value Store

To demonstrate how ChoRus helps developers to implement distributed sys-

tems, we consider a simple replicated key-value store. Our key-value store supports two

operations: get and put. The get operation takes a key and returns the value associ-

ated with the key. The put operation takes a key and a value, and associates the key

with the value. Our system consists of three nodes: Client, Primary, and Backup. The

Client node takes a request from the user and sends the request to the Primary node.

The Primary node checks the type of the request. If the request is a get request, it

looks up the requested key in its local state and returns the response to the client. If the

request is a put request, it forwards the request to the backup node. The backup node

updates its local state and returns the response to the Primary node. Once Primary

receives the response from Backup, it applies the update to its local state and returns

the response to the client.

While the protocol is simple, implementing it is error-prone. Figure 7.1a shows

the implementation of the protocol without using choreographic programming. The code

defines three functions for each node. The highlight and arrows show the flow of data

49

between the nodes. Because sends and receives are interleaved, it is difficult to track

the flow of data and control.

Figure 7.1b shows the implementation of the same protocol as a choreography

in ChoRus. The choreography communicates the request from Client to Primary

using comm. Then, it uses the enclave operator to call the DoBackup sub-choreography

at Primary and Backup. The sub-choreography branches on the type of the request,

and if the request is put, it forwards the request to the backup node. After the sub-

choreography returns, the primary node processes the request and returns the response

to the client. The choreographic version is easier to understand because both data and

control naturally flow from top to bottom.

While we could implement the KVS protocol as a choreography in HasChor,

the naive implementation of conditionals in HasChor would present a problem. When

we branch on the type of the request on the primary node, it broadcasts the type,

and in HasChor, this broadcast would also go to the client, leaking an implementation

detail. By using enclaves, we can implement the protocol in a more efficient (and secure)

manner.

7.2 Case Study 2: Multiplayer Tic-Tac-Toe

An advantage of library-level choreographic programming is that it allows de-

velopers to reuse existing code. This is especially useful for implementing a distributed

version of an existing local program. In this case study, we implement a distributed ver-

50

(a) Handwritten Rust KVS
(b) Choreographic ChoRus KVS

Figure 7.1: Comparison of the flow of control between the handwritten and choreo-
graphic KVS

sion of a tic-tac-toe game using ChoRus. We start with a local implementation of the

game where two players play on the same computer. Then, we use ChoRus to port the

local implementation to a distributed version, which lets the players play on different

computers over the network, with minimal changes to the code. Finally, we compare

the ChoRus implementation with a handwritten distributed version of the game.

Let us start with the local implementation of the game. The left side of

Figure 7.2 shows the structure of the main game loop written in Rust. We omit the

definitions of the structs and traits that capture the core logic of the game, such as

board, brain_for_x, and brain_for_o. The game starts with an empty board. Then,

the game enters a loop in which the two players take turns to make a move. After each

move, we check the status of the board, and if the game is over, we break out of the

loop. Finally, we print the result of the game.

Because ChoRus is a library, we can reuse the existing local Rust code to im-

plement the distributed version of the game. The right side of Figure 7.2 shows the

51

1 1let mut board = Board::new(); let mut board = Board::new();
2 2loop { loop {

3 3 board = brain_for_x.think(&board); board = op.broadcast(
4 PlayerX,
5 op.locally(PlayerX, |un| un.unwrap(&self.brain_for_x).think(&board)),
6);

4 7 if !board.check().is_in_progress() { if !board.check().is_in_progress() {
5 8break; break;
6 9 } }

7 10 board = brain_for_o.think(&board); board = op.broadcast(
11 PlayerO,
12 op.locally(PlayerO, |un| un.unwrap(&self.brain_for_o).think(&board)),
13);

8 14 if !board.check().is_in_progress() { if !board.check().is_in_progress() {
9 15break; break;
10 16 } }
11 17} }

Figure 7.2: Diff between the local Rust and distributed ChoRus implementations of the
tic-tac-toe game

distributed implementation of the game written as a choreography in ChoRus. For

brevity, we only show the run method of the choreography. Just like its local counter-

part, the choreography starts with an empty board. Then, the choreography enters a

loop in which the two players make a local move and broadcast the new board. After

each move, we check the status of the board, and if the game is over, we break out of

the loop. Finally, we print the result of the game from the perspective of each player.

As highlighted in Figure 7.2, changing the local implementation to the dis-

tributed implementation requires minimal changes to the code. All game logic and

control flow are reused, and the only changes are the addition of the locally and

broadcast operators to specify the location of data and computation. This is a signif-

icant advantage of library-level CP as opposed to a standalone CP language, because

it allows developers to reuse existing code for local computation and focus on the dis-

tributed aspects of the program.

52

7.3 Performance

To employ CP in production, the performance overhead of using CP must be

acceptable. Performance is a particular concern for library-level CP, which involves

carrying out EPP at runtime. In this section, we measure the performance overhead

of using ChoRus compared to traditional distributed programming in Rust. We focus

on the overhead of running a choreography with EPP-as-DI. We conducted two experi-

ments. First, we performed microbenchmarking to measure the overhead of EPP-as-DI

in isolation. Second, we measured and compared the performance of the two versions

of the key-value store from Section 7.1. All experiments in this section were performed

on a MacBook Pro 2020 with an Apple M1 chip, 16 GB of RAM, and macOS Sonoma

14.0.

7.3.1 Microbenchmarks

With microbenchmarking, we measured the performance overhead of using two

of the choreographic operators in ChoRus: locally and comm.

To measure the overhead of the locally operator, we implemented a simple

counter program as a handwritten Rust program and as a ChoRus choreography. The

program initializes a counter and repeatedly increments it a given number of times.

The ChoRus version is written as a choreography that runs only at one location and

uses the locally operator to perform initialization and increments. We use endpoint

projection to execute the choreography. We measured the runtime of the two versions

53

2000 4000 6000 8000 10000
Number of iterations

2

4

6

8

10

Ti
m

e
(µ

s)

Choreographic
Handwritten

(a) locally

2000 4000 6000 8000 10000
Number of iterations

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(m

s)

Choreographic
Handwritten

(b) comm

Choreographic Handwritten

100

200

300

400

500

Ti
m

e
(m

s)

(c) KVS Benchmark Results

Figure 7.3: Benchmark Results

of the program with different numbers of iterations. Figure 7.3a shows the result of the

microbenchmark. There is a small, constant overhead of using ChoRus. Because the

overhead does not grow with the number of iterations, the overhead is likely due to the

cost of endpoint projection, and there is no observable overhead of using the locally

operator.

We also measured the performance of the comm operator. We implemented

a simple protocol that moves data from one location to another as a handwritten

Rust program and as a ChoRus choreography. In both the handwritten Rust and the

ChoRus versions, to isolate the performance overhead of using EPP, we used ChoRus’

LocalTransport message transport layer to send data between the two locations. Fig-

ure 7.3b shows the result. The message passing is dominating the running time in both

versions, and the overhead of endpoint projection is not observable. The ChoRus version

performed slightly worse for larger iterations, with a difference of <0.5 ms.

54

7.3.2 Key-Value Store Benchmark

We also benchmarked the two versions of the key-value store from Section 7.1

to measure the system-level performance overhead of using ChoRus . We generated 100

random requests of 50% get and 50% put requests. We measured the runtime of the two

versions of the program. We used HttpTransport for communication between nodes

in both versions. Figure 7.3c shows a violin plot of 100 runs of the benchmark. The

median runtime of the choreographic version was 225.09 ms, while the median runtime

of the handwritten version was 224.93 ms. Even though the nodes are running on the

same computer, the running time is dominated by the network latency, and we did not

observe significant overhead of using ChoRus.

55

Chapter 8

Conclusion

This thesis has presented two implementation techniques to advance the state

of the art of library-level choreographic programming: endpoint projection as depen-

dency injection (EPP-as-DI) and choreographic enclaves. EPP-as-DI is a language-

agnostic technique for implementing endpoint projection at the library level, requiring

only support for higher-order functions from the host language. EPP-as-DI can serve

as a foundation for library-level choreographic programming in a wide variety of host

languages. Choreographic enclaves are a language feature that lets the programmer

execute sub-choreographies within a larger choreography only among a subset of loca-

tions. Because enclaves narrow the scope of broadcast to only their participants, they

give the programmer fine-grained control over the “knowledge of choice” in a choreog-

raphy, eliminating unnecessary communication while still allowing the use of the host

language’s conditional constructs.

56

We also presented ChoRus and Choreography.ts, two library-level choreographic

programming implementations for Rust and TypeScript, respectively, that use EPP-as-

DI and choreographic enclaves. We discussed how we implemented EPP-as-DI and

choreographic enclaves in these two languages. We also evaluated the usability and per-

formance of ChoRus compared to traditional distributed programming in Rust through

two case studies and performance benchmarks.

Although ChoRus and Choreography.ts are the first steps toward a more ac-

cessible and practical choreographic programming experience, there is still much work

to be done. Our evaluation shows that ChoRus can be used to implement a distributed

key-value store and tik-tac-toe game, but the scale of these case studies is limited.

Evaluation of library-level choreographic programming in larger systems is needed to

understand the full potential and limitations of our proposed techniques. Moreover, the

presented libraries do not have correctness guarantees, such as deadlock freedom, that

are typically associated with choreographic programming. Future work should explore

how to provide such guarantees in a library-level choreographic programming setting,

both from a theoretical and practical perspective.

57

Bibliography

[1] Samik Basu and Tevfik Bultan. Automated choreography repair. In Perdita Stevens
and Andrzej Wąsowski, editors, Fundamental Approaches to Software Engineering,
pages 13–30, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[2] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-
centred programming for web services. In Rocco De Nicola, editor, Programming
Languages and Systems, pages 2–17, Berlin, Heidelberg, 2007. Springer Berlin Hei-
delberg.

[3] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-
centered programming for web services. ACM Trans. Program. Lang. Syst., 34(2),
June 2012.

[4] Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: Multiparty
asynchronous global programming. In Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’13, page 263–274, New York, NY, USA, 2013. Association for Computing Machin-
ery.

[5] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global
types and multi-party sessions. In Roberto Bruni and Juergen Dingel, editors,
Formal Techniques for Distributed Systems, pages 1–28, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[6] Luís Cruz-Filipe and Fabrizio Montesi. Now It Compiles! Certified Automatic Re-
pair of Uncompilable Protocols. In Adam Naumowicz and René Thiemann, editors,
14th International Conference on Interactive Theorem Proving (ITP 2023), volume
268 of Leibniz International Proceedings in Informatics (LIPIcs), pages 11:1–11:19,
Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[7] Luís Cruz-Filipe and Fabrizio Montesi. A core model for choreographic program-
ming. Theoretical Computer Science, 802:38–66, 2020.

[8] Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Ja-
copo Mauro. Dynamic Choreographies: Theory And Implementation. Logical Meth-
ods in Computer Science, Volume 13, Issue 2, April 2017.

58

[9] Mila Dalla Preda, Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro, and Maurizio
Gabbrielli. Aiocj: A choreographic framework for safe adaptive distributed applica-
tions. In Software Language Engineering: 7th International Conference, SLE 2014,
Västerås, Sweden, September 15-16, 2014. Proceedings 7, pages 161–170. Springer,
2014.

[10] Martin Fowler. Inversion of control containers and the dependency injection pat-
tern, Jan 2004.

[11] Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. Object-oriented chore-
ographic programming, 2020.

[12] Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. Choral: Object-
oriented choreographic programming. ACM Trans. Program. Lang. Syst., 46(1),
jan 2024.

[13] Andrew K Hirsch and Deepak Garg. Pirouette: higher-order typed functional
choreographies. Proceedings of the ACM on Programming Languages, 6(POPL):1–
27, 2022.

[14] TJ Holowaychuk. Express. https://expressjs.com, 2010. Accessed: 2024-05-23.

[15] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous
session types. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’08, page 273–284, New
York, NY, USA, 2008. Association for Computing Machinery.

[16] Paul Hudak. Building domain-specific embedded languages. ACM Comput. Surv.,
28(4es):196–es, dec 1996.

[17] Oleg Kiselyov and Hiromi Ishii. Freer monads, more extensible effects. In Proceed-
ings of the 2015 ACM SIGPLAN Symposium on Haskell, Haskell ’15, page 94–105,
New York, NY, USA, 2015. Association for Computing Machinery.

[18] Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro. Amending choreographies.
In António Ravara and Josep Silva, editors, Proceedings 9th International Workshop
on Automated Specification and Verification of Web Systems, WWV 2013, Florence,
Italy, 6th June 2013, volume 123 of EPTCS, pages 34–48, 2013.

[19] Fabrizio Montesi. Choreographic Programming. Ph.D. thesis, IT Uni-
versity of Copenhagen, 2013. https://www.fabriziomontesi.com/files/
choreographic-programming.pdf.

[20] Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. Towards the theoreti-
cal foundation of choreography. In Proceedings of the 16th International Conference
on World Wide Web, WWW ’07, page 973–982, New York, NY, USA, 2007. Asso-
ciation for Computing Machinery.

59

https://expressjs.com
https://www.fabriziomontesi.com/files/choreographic-programming.pdf
https://www.fabriziomontesi.com/files/choreographic-programming.pdf

[21] Guillermo Rauch. Socket.io. https://socket.io, 2010. Accessed: 2024-05-23.

[22] Gan Shen, Shun Kashiwa, and Lindsey Kuper. HasChor: Functional Choreographic
Programming for All. Proc. ACM Program. Lang., 7(ICFP), August 2023.

[23] The World Wide Web Consortium. Web services choreography description lan-
guage: Primer, 2006.

60

https://socket.io

	List of Figures
	Abstract
	Acknowledgments
	Introduction
	Background
	The Elements of Choreographic Programming
	CP implemented as a Library

	Endpoint Projection as Dependency Injection
	Choreographies as Host-Language Programs
	Located Values
	Choreographies

	Endpoint Projection as Injecting Dependencies

	Efficient Conditionals with Choreographic Enclaves
	The Two-Buyer Protocol
	The Enclave Operator

	ChoRus
	EPP-as-DI in ChoRus
	Locations
	Located Values
	Choreography Trait
	ChoreoOp Trait
	Transport
	Endpoint Projection

	Advanced Features
	Location Sets
	Located Input/Output

	Choreography.ts
	Unique Features of TypeScript
	String Literal Types
	Union Types
	Generic Constraints

	Design and Implementation of Choreography.ts
	Locations
	Located Values
	Choreography and Dependencies
	Transport
	Endpoint Projection
	ESLint Plugin

	Evaluation
	Case Study 1: Replicated Key-Value Store
	Case Study 2: Multiplayer Tic-Tac-Toe
	Performance
	Microbenchmarks
	Key-Value Store Benchmark

	Conclusion
	Bibliography

