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The effects of aerodynamic model assumptions on the optimal wing-kinematics for hovering micro-
air-vehicles are determined. Specific kinematic functions for the wing motion are specified and the 
parameters of these functions are considered as the design variables for the optimization problem. 
Four aerodynamic models having different levels of fidelity that capture various physical aspects of 
hovering aerodynamics are considered to assess the effects of these different aspects on the optimal 
wing kinematics. These physical aspects include the leading edge vortex, rotational lift, non-circulatory 
contributions, and flow unsteadiness. Conventional models for pitching wings are not adequate as they 
predict considerably high rotational lift and too little power requirements, which makes the optimizer, 
unrealistically, leans toward almost pure rotational motion with little flapping. In addition, quasi-
steady modeling overestimates the generated lift and, as such, leads to a more optimal, but unrealistic, 
performance. Therefore efficient unsteady modeling is essential in design optimization of flapping-wing 
micro-air-vehicles.

© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

The stringent weight and power constraints, imposed by design 
specifications of micro-air-vehicles (MAVs), present the need for 
optimal design and performance. As such, there is a strong interest 
in determining optimal wing shapes, wing flapping kinematics, and 
actuation mechanisms. This work is concerned with optimization 
of the flapping kinematics. These kinematics are usually described 
by three Euler angles relating the wing axes x, y, and z to the 
body axes X , Y and Z , namely, the back and forth flapping an-
gle ϕ , the plunging angle ϑ , and the pitching angle η. Taha et 
al. [22] identified two common frameworks within which optimal 
time variations of these Euler angles are sought. In the first frame-
work, specific patterns along with associated parametrization for 
the kinematic functions are sought to achieve high control au-
thority for the MAV, see Schenato et al. [20], Doman et al. [9], 
and Oppenheimer et al. [17]. One exception is the work of Taha 
et al. [23] who used the calculus of variations to analytically de-
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termine the maximum acceleration that a flapping MAV can ever 
attain from the hovering position using a horizontal stroke plane. 
In the second framework, the wing kinematics are optimized from 
the aerodynamic performance point of view. The present work lies 
within the latter framework.

Berman and Wang [3] considered the optimization of the wing 
Euler angles with respect to the body for hovering insects, namely, 
the hawk moth, bumble bee, and fruit fly. They proposed spe-
cific functional forms and kinematic parametrization (11 param-
eters) for the three Euler angles that sweep a very wide family 
of functions. They used the quasi-steady aerodynamic model de-
veloped by Pesavento and Wang [18] and Andersen et al. [1,2]. 
This model accounts for the translatory (leading edge vortex), ro-
tational, viscous, and added mass effects. Berman and Wang used 
both gradient-based and global optimization techniques to min-
imize the average required power (aerodynamic + inertial) un-
der the lift constraint that lift is equal weight. Kurdi et al. [16]
considered the same problem of wing kinematics optimization to 
minimize the required hovering power. They used the quasi-steady 
aerodynamic model of Pesavento and Wang [18] and Andersen et 
al. [1,2]. However, they adopted a different approach for optimiza-
tion of the shapes of the kinematic functions. They used 30 design 
variables for each Euler angle to specify the magnitudes of each 
angle at specific instants during the flapping cycle. Spline interpo-
lation was then performed to obtain differentiable functions. Kurdi 
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Nomenclature

A Aspect ratio
c Chord length
CL Lift coefficient
C D Drag coefficient
CDf Skin friction drag contribution
dLEV Two-dimensional translational drag force
dNC Two-dimensional non-circulatory drag force
f Flapping frequency
L Total lift force
� Two-dimensional lift force
LLEV Total translational lift force
�LEV Two-dimensional translational lift force
LNC Total non-circulatory lift force
�NC Two-dimensional non-circulatory lift force
LROT Total rotational lift force
mapp Apparent mass of the two-dimensional strip
NNC Two-dimensional non-circulatory normal force

Pareo Total aerodynamic power
Paero,LEV Aerodynamic power due to translational effects
Pinertial Inertial power
Pmech Required mechanical power
PNC Non-circulatory aerodynamic power
U Forward free-stream velocity
W (s) Wagner function
x, y, z Local coordinate fixed on wing axes
X, Y , Z Global coordinate fixed on body
α Angle of attach
η Pinching angle
ϑ Plunging angle
�QS Quasi-steady circulation
�η Phase angle between flapping and pitching
ρ Density of the air
ϕ Back and forth flapping angle
et al. used gradient-based algorithms for their optimization prob-
lem. They also determined the effect of the levels of elastic storage 
and cost to dissipate negative power on the optimization problem. 
The elastic storage was modeled as a fraction of the inertial power 
and the remaining inertial power was modeled as a dissipation 
cost.

Stanford and Beran [21] performed a gradient-based optimiza-
tion of flapping-wing active-shape-morphing in forward flight. 
They performed a sensitivity analysis using the three-dimensional 
unsteady vortex-lattice method to obtain the gradient of their ob-
jective function with respect to the design variables. Their objec-
tive was to maximize the aerodynamic efficiency under lift and 
thrust constraints. They represented the wing morphing along with 
the flapping motions by a finite series of spatial and temporal 
functions. The spatial functions are the first twisting and bend-
ing modes of the wing. As for the design variables, they adopted 
two techniques. The first technique assumes harmonic functions 
for the time variation of the generalized coordinates and, as such, 
the design variables were the amplitudes and phase shifts of the 
generalized coordinates. The second technique is similar to that 
of Kurdi et al. [16], in which the time variations of the kine-
matic functions were approximated by cubic splines and the am-
plitudes of the generalized coordinates at specific control points 
represented the design variables. Ghommem et al. [14] adopted 
the same approaches using global and hybrid (global and gradient-
based) optimization techniques.

All of the efforts on the aerodynamic optimization of flapping 
wing kinematics discussed above have adopted finite-dimensional 
optimization. Taha et al. [24] were the first to formulate the prob-
lem as an infinite dimensional one; i.e., a calculus of variations 
problem. They used a quasi-steady aerodynamic model accounting 
for the leading edge vortex effect and showed that the triangular 
waveform along with a piece-wise constant pitch angle resulted in 
hovering with minimum power.

The problem of wing-kinematic optimization for hovering MAVs 
is considered. Following Ellington [10] and Weis-Fogh [31], a hor-
izontal stroke plane (ϑ = 0) is assumed. The shape of the kine-
matic functions proposed by Berman and Wang [3] for the two 
Euler angles ϕ and η is adopted with the same parametrization. 
The parameters in these kinematic functions are considered as the 
design variables for the optimization problem. The performance in-
dex to be minimized is the hovering aerodynamic power. The main 
contribution of this work is to determine the effects of the aerody-
namic model on the optimal wing kinematics. First, a quasi-steady 
Fig. 1. A schematic of the insect.

representation of the dominant leading-edge vortex effect is used. 
Second, the rotational lift is added. Third, the non-circulatory con-
tributions are added. Finally, a full unsteady model that accounts 
for all of these aspects in the unsteady representation developed 
by Taha et al. [25] is used. As such, the specific impact of each 
aerodynamic effect on the optimal wing-kinematics is assessed. 
This study also serves as an anti-optimization tool for the aero-
dynamic modeling of flapping flight. That is, since the optimizer 
usually seeks the flaws in the used model, the optimizer would tell 
about any un-clear/un-expected flaws in a specific aerodynamic 
model of flapping flight.

2. Kinematic model

In this work, the optimization of the wing kinematics is con-
sidered through optimizing the waveforms of two Euler angles; 
the flapping (azimuth) angle ϕ and the pitching angle η. Fig. 1
shows a schematic diagram for a hovering micro-air-vehicle. The 
kinematic functions and parametrization proposed by Berman and 
Wang [3] are used. As such, the azimuthal angle (ϕ) and pitching 
angle (η) are written as:

ϕ(t) = ϕm

sin−1 K
sin−1[K sin(2π f t)]

η(t) = ηm

tanh Cη
tanh[Cη sin(2π f t + �η)] + η0 (1)

where, ϕm and ηm are the amplitudes of the flapping and pitch-
ing angles, respectively, K and Cη are controlling parameters for 
the flapping and pitching angle, respectively, f is the flapping 
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Fig. 2. Variations of the shapes of the flapping and pitching angles as K varies from 0 to 1 and Cη varies from 0 to ∞, respectively.
frequency, �η is the phase angle between flapping and pitching, 
and η0 is the mean pitching angle. Fig. 2 shows the variations of 
the shapes of the flapping and pitching angles as K varies from 
0 to 1 and Cη varies from 0 to ∞, respectively. The waveform 
of ϕ(t) approaches a sinusoidal waveform as K → 0 and a tri-
angular waveform as K → 1. As for the pitching waveform, η(t)
approaches a sinusoidal waveform as Cη → 0 and a step function 
as Cη → ∞ [3]. These seven parameters for the kinematic func-
tions are considered as the design variables for the optimization 
problem.

3. Aerodynamic models

For several decades, insect flight has been considered impossi-
ble from the classical aerodynamics point of view. Biologists who 
initiated the interest in analyzing insect flight were able to calcu-
late the required lift coefficient to support an insect’s weight. The 
calculated lift coefficients are considerably higher than those seen 
in classical aerodynamics at the low Reynold’s numbers of interest. 
Therefore, almost all of the early trials (e.g., [6,7]) invoked un-
conventional lift mechanisms. Dickinson et al. [8] presented three 
unconventional mechanisms for lift generation that are exploited 
by insect flight, namely, the leading edge vortex (LEV) effects, the 
rotational effects, and the wake capture effects.

3.1. Quasi-steady models

3.1.1. Translation (leading edge vortex effect)
The LEV contribution to lift is the dominant one in insect flight. 

The LEV augments the circulation in the flow and, as such, in-
creases the generated lift force. It should be noted that this process 
is similar to what happens in a dynamic stall situation where a 
rapid change in the angle of attack leads to the creation of a LEV 
that enhances the lift at the beginning. However, the generated 
LEV in dynamic stall is unstable. That is, it sheds with the flow af-
ter a while and causing a large pitching down moment followed 
by a complete flow separation when the vortex leaves the wing 
trailing edge. Luckily, for flapping flight, similar to highly swept 
and delta wings and propeller and helicopter blades, the LEV has 
stable characteristics; i.e., it remains attached to the wing surface. 
Using flow visualization, Ellington et al. [12] and Van den Berg 
and Ellington [28,29] have shown that the stability characteristics 
of the LEV in insect flight is due to a spanwise flow because of 
the spanwise pressure gradient due to the rotational motion of the 
wing about the fulcrum. It is the same stabilizing mechanism in 
propeller and helicopter blades.
In this subsection, the dominant contribution of the aerody-
namics of hovering insects is considered; that is, the LEV effect. 
The lift force on a translational wing is expressed as:

�LE V = 1

2
ρU 2cCL (2)

where ρ is the air density, c is the chord length, CL is the lift co-
efficient, and U is the forward free-stream velocity. Since pitching 
plane flapping is considered in this work, U = rϕ̇ , and the angle of 
attack α is related to the pitching angle via

α(t) =
{

η, ϕ̇ > 0
π − η, ϕ̇ < 0

The lift coefficient due to a stabilized LEV is given in [30] as

CL = A sin 2α (3)

where, according to Taha et al. [25], A = CLα
2 and

CLα = πA

1 +
√

(πA
a0

)2 + 1
(4)

where a0 is the lift curve slope of the two-dimensional airfoil sec-
tion (taken here to be 2π ), A is the aspect ratio of one wing 
A= R2

S , R is the wing length and S is the wing area. As such, the 
total translational lift force is written as:

LLEV = 1

2
ρ AI21ϕ̇

2 sin 2α (5)

where, Imn = 2 
∫ R

0 rmcn(r)dr
The drag coefficient due to a stabilized LEV is written as C D =

CL tanα [19]. Then, a skin friction drag contribution, C D f , should 
be added, which yields

C D = 2A sin2 α + C D f (6)

Thus, the translational drag force is written as:

dLEV = 1

2
ρU 2c(2Asin2α + C D f ) (7)

Then, the aerodynamic power due to translational effects (LEV and 
skin friction) only is calculated as:

Paero,LEV = 2

R∫
0

dLEV |U |dr = 1

2
ρ I31 |ϕ̇| ϕ̇2(2Asin2α + C D f ) (8)
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3.1.2. Rotational lift
In this model, the effects of wing rotation (pitching) are 

included. According to the potential flow theory, a pitching 
airfoil creates a rotational circulation that is given by �rot =
πc2α̇( 3

4 − x̂0) [13], where x̂0 is the chord-normalized distance from 
the leading edge to the hinge axis. Since a horizontal stroke plane 
is considered, this circulation induces additional lift on the flap-
ping wing. Therefore, the rotational lift force is written as:

LROT =
R∫

0

2ρUπc2α̇(
3

4
− x̂0))dr = πρ I12(

3

4
− x̂0)ϕ̇α̇ (9)

Because potential flow theory is considered to model the contribu-
tion of wing rotation, there is no resulting drag force. As such, the 
aerodynamic power can be calculated from Eq. (8) when both LEV 
and rotational effects are considered.

3.1.3. Non-circulatory loads
In this subsection, the non-circulatory (added mass) contribu-

tions are accounted for. Although the non-circulatory loads are 
unsteady loads, they are included here in the quasi-steady section 
because they are represented by algebraic expressions in terms 
of the instantaneous wing speed and acceleration. So, there are 
no flow dynamics needed to determine such loads. It is assumed 
that only accelerations perpendicular to the wing chord (plunging-
like) generate non-circulatory normal forces. The acceleration of 
the hinge point, normal to the wing chord, induced by the flap-
ping motion, is written as

ay(r, t) = r[−ϕ̈(t) sinη(t) − ϕ̇(t)η̇(t) cosη(t)] (10)

Then, the produced non-circulatory normal force is written as [4]

NNC(r, t) = −mapp(r)ay(r, t) (11)

where mapp(r) = π
4 ρc2(r) is the apparent mass of the two-

dimensional strip. As such, the non-circulatory incremental lift and 
drag forces are calculated as

�NC = NNC cosη = πρc2

4
[rϕ̈ sinη + rϕ̇η̇ cosη] cosη

dNC = NNC sinηsign(ϕ̇)

= πρc2

4
[rϕ̈ sinη + rϕ̇η̇ cosη] sinηsign(ϕ̇) (12)

Thus, non-circulatory lift can be calculated as:

LNC = π

4
ρ I12(ϕ̈ sinη + ϕ̇η̇ cosη) cosη (13)

The non-circulatory power requirement includes two contribu-
tions; a translatory component and a rotational component. These 
two components are given by:

PNC = 2

R∫
0

dNC|U |dr + 2

R∫
0

Iaη̈η̇dr (14)

where Ia = 1
128 πρc4 is the added inertia. Thus, the integrated non-

circulatory power requirements are written as

PNC = 1

128
πρ I04η̈η̇ + π

4
ρ I22(ϕ̇ϕ̈ sinη + ϕ̇2η̇ cosη) sinη (15)
3.2. Full unsteady aerodynamic model

In this model, a full unsteady representation of the aerody-
namic lift that accounts for all of the previous physical aspects in 
an unsteady fashion is used. Taha et al. [26,25] developed an aero-
dynamic model that captures the nonconventional lift mechanism 
(due to LEV) in an unsteady formulation. It also captures the ro-
tational lift in the same way. Finally, the non-circulatory loads can 
be added to the obtained circulatory part. This model is based on 
the two-state approximation to the Wagner function, by Jones [15], 
of the form

W (s) = 1 − A1e−b1s − A2e−b2s (16)

where s is the non-dimensional time. Taha et al. [25] obtained the 
aerodynamic response (lift) due to any arbitrary varying aerody-
namic input using Duhamel’s superposition principle. They showed 
that the appropriate aerodynamic input that should be used in 
Duhamel’s principle is the quasi-steady circulation. As such, they 
provided a means to account for nonconventional lift mechanisms 
(arbitrary lift curves) in an unsteady fashion.

Taha et al. [25] modelled the total lift on the two-dimensional 
airfoil section as

� = �NC + ρU (t)[�QS(t)W (0) −
t∫

0

�QS(τ )
dW (t − τ )

dτ
dτ ] (17)

where, �QS is the quasi-steady circulation that is written as

�QS = 1

2
UcCL(α) + πc2α̇(

3

4
− x̂0)

where CL(α) = A sin 2α for a stabilized LEV. Through some math-
ematical manipulation, they showed that

� = �NC + ρU (r, t)[(1 − A1 − A2)�QS(r, t) + x1(r, t) + x2(r, t)]
(18)

where, xi(r, t) are aerodynamic internal states whose dynamics are 
described by

ẋi(r, t) = 2bi U (r, t)

c
(−xi(r, t) + Ai�QS(r, t))

where, according to Jones [15], the values of the coefficients A1, 
A2, b1 and b2 are, respectively, equal to 0.165, 0.335, 0.0455 and 
0.3.

According to the above model, if 50 spanwise stations are used, 
a total of 100 aerodynamic states would be required. To be more 
suitable for optimization and sensitivity analyses, Taha et al. [25]
proposed a fourth order model that still captures the same physi-
cal aspects (LEV, unsteadiness, and rotational contributions). They 
developed this model by exploiting the knowledge of the span-
wise distributions of all the lift contributors in the integration of 
Eq. (18) over the wing. This dictates the separation of the trans-
lational term from the rotational one because the two terms have 
different spanwise distributions: r2c(r) for the translational term 
versus rc2(r) for the rotational term. As such, the total lift on the 
wing is written as L = LNC + Ltrans + Lrot where

LNC(t) = π

4
ρ I12 [ϕ̈(t) sinη(t) + ϕ̇(t)η̇(t) cosη(t)] cosη(t)

Ltrans(t) = 1

2
ρ I21|ϕ̇(t)| [(1 − A1 − A2) ϕ̇(t)CL(η(t)) + x1(t)

+ x2(t)] (19)

and

Lrot(t) = ρ I12(
3 − x̂0)ϕ̇(t) [(1 − A1 − A2) η̇(t) + x3(t) + x4(t)]

4
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and the state equations for the four states are given by

ẋi(t) = 2b jr|ϕ̇(t)|
c

[−xi(t) + A jϕ̇(t)CL,s(η(t))
]
, j = i = 1,2

ẋi(t) = 2b jr|ϕ̇(t)|
c

[−xi(t) + A jη̇(t)
]
, j = i − 2 = 1,2 (20)

where r and c are taken at a certain reference section and CL,s is 
quasi-steady lift coefficient. In this study, the section at r = r2 =

I21
2S R is used as a reference section.

As for the drag force, it is calculated as D = (LNC + Ltrans) tanα+
D f , where D f is the skin friction drag. Thus, the total aerodynamic 
power is calculated as:

Pareo =
(

I31

I21
Ltrans + I22

I12
LNC

)
tanα + 1

2
ρ I31C D f |ϕ̇| ϕ̇2

+ 1

16
πρ I04(μ1 f + μ2 |η̇|)η̇2 (21)

It should be noted that the selected aerodynamic model is 
a reduced-order one that captures the large-scale quantities (loads) 
with a good accuracy, as shown by the comparisons with Navier–
Stokes solutions presented in Ref. [25]. This is quite suitable for an 
efficient solution to the optimization problem. However, it would 
be quite interesting to investigate the vortex structure generated 
by the optimum kinematics.

4. Power optimization

The total mechanical power required to ensure the desired 
kinematics comprises aerodynamic and inertial contributions. The 
first component has been presented in the previous section in each 
aerodynamic model. The inertial power is given by

Pinertia(t) = 2Izϕ̈ϕ̇ + 2I yη̈η̇ (22)

where Iz and I y are the moments of inertia about the z axis and y
axis, respectively. Kurdi et al. [16] represented all the combinations 
of the required mechanical power as follows:

Pmech =
{−α|Pmech| + β(1 − α)|Pmech|, Pmech < 0

Pmech, Pmech ≥ 0
(23)

where α and β represent the percentages of the elastic storage and 
the cost to dissipate negative power, respectively. For α = 1, the 
system is assumed to have 100% elastic storage. On the other hand, 
α = 0 indicates that the system has no elastic storage and β comes 
to play a role. For β = 0, there will be no cost to dissipate negative 
power, while β = 1 indicates that 100% cost is paid to dissipate 
negative power. Weis-Fogh [31] concluded that insects must have 
elastic storage, otherwise they will not be able to metabolically 
sustain flight. Also, it is quite practical to design a MAV with an 
elastic storage (a spring element in the stroke plane). As such α is 
set to 1 in this work (i.e., 100% elastic storage is considered).

The optimization problem is then stated as follows

min
χ

p̄∗mech = 1

MT

T∫
0

Pmech(t)dt subject to

L̄∗ = 1

MT

T∫
0

L(t)dt ≥ g and χLB < χ < χUB

where M is the mass of the vehicle, g is the gravitational accel-
eration and the vector χ of design variables includes the seven 
kinematic parameters χ = [ϕm, K, f, ηm, Cη, �η, η0]T and χLB and 
χUB are its lower and upper bounds, respectively.
Fig. 3. Optimal kinematic functions using the LEV contribution only.

The hawkmoth is considered as a case study in this work. Its 
morphological parameters, as provided by Ellington [11], are given 
by

R = 51.9 mm, c = 18.26 mm and S = 947.8 mm2

For the wing shape, elliptic chord-distributions are assumed on the 
form

c(r) = 4c̄

π

√
1 − r2

R2
(24)

where, c̄ is the mean chord length of the wing. The friction drag 
coefficient C D f of the hawkmoth is assumed to be 0.07 [3].

5. Results and discussion

Fig. 3 shows the optimal wing kinematics using the quasi-
steady representation of the LEV only. The optimal kinematics 
asymptotically reach the results obtained by Taha et al. [24] us-
ing calculus of variations; a triangular waveform for the back and 
forth flapping angle along with piece-wise constant variation for 
the pitching angle. Moreover, the value of the constant angle of at-

tack η0 is the one that minimizes C2
D

C3
L

as shown in Fig. 4. This result 
is also consistent with the analytical result of Taha et al. [24].

Fig. 5 shows the optimal kinematics obtained by using the LEV 
and rotational models described before. The optimizer is totally de-
pendent on the rotational motion as a cheap source of producing 
lift. This is concluded from the 7◦ flapping amplitude and the 180◦
pitching amplitude. Moreover, during the translational phase, the 
angle of attack is almost zero which can be found form the expres-
sion of angle of attack α and Fig. 5(b). The optimizer required this 
translational motion just to attain some forward speed because the 
rotational lift is proportional to U . After attaining an appropriate 
U , the wing flips instantaneously with a very large pitching an-
gular velocity to achieve the required lift. These conclusions are 
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Fig. 4. Performance index C2
D/C3

L versus the angle of attack.

Fig. 5. Optimal kinematic functions using the LEV and rotational contributions with-
out considering the viscous effect.

supported by Fig. 6, which shows the LEV and rotational contribu-
tions of the lift and power variations over the flapping cycle. The 
zero rotational contribution to the required power and the zero 
LEV contribution to the generated lift are clear in Fig. 6.

The common assumption of neglecting the rotational drag con-
tribution may be justifiable relative to the translational one. How-
ever, this is the reason that the optimizer finds the rotational mo-
tion as a Utopian choice; producing lift at no cost. So, the optimal 
kinematics is pure rotation without a considerable translation. This 
is what is usually referred to as anti-optimization; that is by per-
forming optimization, one is able to discover the flaws in the used 
aerodynamic model as the optimizer usually points to the weak-
nesses in the adopted model. To prevent that, the rotational vis-
cous friction model proposed by Berman and Wang [3] is adopted. 
As such, the viscous torque is written as

τ f = − 1
πρairc4(r)

[
μ1 f + μ2|η̇|]η̇ (25)
16
Fig. 6. Optimal kinematic functions using the LEV and rotational contributions with-
out considering the viscosity.

Fig. 7. Optimal kinematic functions using the LEV and rotational contributions.
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Fig. 8. Optimal kinematic functions using the LEV and rotational contributions.

where, μ1 and μ2 are dimensionless coefficients related to the vis-
cosity of the fluid and f is the flapping frequency. Berman and 
Wang recommended a value of 0.2 for both of them. Thus, the 
aerodynamic power required to overcome the viscous rotational 
damping is given by

PROT = −2

R∫
0

τ f η̇dr = 1

16
πρ I04(μ1 f + μ2 |η̇|)η̇2 (26)

Incorporating these viscous effects into the model for rotational 
contributions, more reasonable kinematics are obtained. In com-
parison with the results of the LEV only, the parameters controlling 
the shapes of the kinematic functions show a significant change. 
The value of K changes from its maximum value (unity) to zero 
and that of Cη changes from ∞ to zero, leading to smoother func-
tions, as shown in Fig. 7. However, because the adopted model for 
rotational effects did not induce any drag force and, consequently, 
power consumption other than the rotational viscous power in 
Eq. (26), the optimizer is still leaning and depending on rotational 
motion as shown in Figs. 7 and 8. This is because the rotational 
motion creates lift with very low power consumption in compar-
ison to the translational motion. As such, the optimum flapping 
Fig. 9. Optimal kinematic functions using full quasi-steady representation: LEV, ro-
tational, and non-circulatory contributions.

amplitude ϕm decreases considerably from 52.8◦ to 19.5◦ and the 
pitching amplitude increases from 13.4◦ to 29.1◦ , as shown in Ta-
ble 1. As a result, hovering is achieved with much less power; the 
optimum mass-normalized power is reduced from 19.52 W/kg to 
3.22 W/kg.

Adding the non-circulatory components does not lead to a con-
siderable change in the optimal kinematics, as shown in Figs. 9 and 
10. This result is intuitively expected because the non-circulatory 
(added mass) components are considered like inertial loads which, 
in the optimization problem at hand, do not contribute to the av-
eraged power consumption. 100% elastic storage is assumed.

Using the full unsteady model results in some deviation for the 
optimal flapping kinematics and power consumption, as shown in 
Fig. 11. It is important to note that the unsteady effects lead to an 
optimum mass-normalized power of 6.31 W/kg versus 3.06 W/kg
for the full quasi-steady model. This result indicates that opti-
mization of flapping kinematics using quasi-steady aerodynamics 
may lead to less conservative results. This is because quasi-steady 
models over-estimate the produced lift forces, while the unsteady 
counterparts capture the lift deficiency [4,5], e.g., the Theodorsen 
function (the lift deficiency factor) [27]. Taha et al. [26] showed 
that hovering insects operate in the frequency range of maximum 
Table 1
Optimal parameters for the kinematic functions describing the wing motion and the corresponding minimum average aerodynamic power ( P̄∗

mech).

Parameters LEV LEV and inviscid rotation LEV and viscous rotation Full quasi-steady Full unsteady

f (Hz) 46.07 35.31 50.00 50.00 50.00
ϕm

◦ 52.82 7.08 19.54 18.99 25.48
ηm

◦ 13.41 179.97 29.07 29.16 35.87
η0

◦ −0.13 0.0011 0.0031 −0.25 −0.15
K 0.99 0.051 0.01 0.01 0.01
Cη 20.00 10.00 0.0096 0.0090 0.0080
�η

◦ 90.00 38.52 8.85 8.079 12.64

P̄∗
mech(W/kg) 19.52 0.037 3.22 3.06 6.32
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Fig. 10. Optimal kinematic functions using full quasi-steady representation: LEV, ro-
tational, and non-circulatory contributions.

phase shift of the Theodorsen function. Hence, they showed that 
the unsteady aerodynamics of hovering insects result in a mag-
nitude drop of 0.64–0.75 in the generated lift from the quasi-
steady calculations. As such, the kinematics obtained by quasi-
steady models is not sufficient to produce the required lift when 
used in an unsteady model. Hence, optimization using unsteady 
models requires more flapping than their quasi-steady counter-
parts to satisfy the same lift equality constraint. This is shown 
in Table 1 as the flapping amplitude increases from 18.9◦ to 
25.5◦ and the pitching amplitude increases from 29.2◦ to 35.9◦
when comparing the full quasi-steady results to the full unsteady 
ones.
Fig. 11. Optimal kinematic functions using full unsteady model.

6. Sensitivity analysis

In this section, a sensitivity analysis for the variations of the 
cost function (normalized power P∗) and the lift constraint with 
all of the seven design variables is performed. Figs. 12–18 show 
the variations of P∗ and L∗ with each of design variables where 
the other design variables are held constant at the optimal values. 
As expected, the lift constraint is active.

Fig. 12 shows typical monotonic cubic and quadratic behaviors 
for power and lift variations with frequency. The optimum value 
was determined to satisfy the lift constraint. Similar behaviors are 
noted in the cases of flapping and pitching amplitudes, as shown 
in Figs. 13 and 14, respectively. A different behavior is observed for 
P∗ and L∗ with the mean pitching angle η0, as shown in Fig. 15. 
Fig. 12. Variations of the normalized power and the lift-to-weight ratio with the flapping frequency where the other design variables are set to their optimal values, using 
full unsteady representations as shown in Table 1. The red point represents the optimum points. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)
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Fig. 13. Variations of the normalized power and the lift-to-weight ratio with the flapping amplitude where the other design variables are set to their optimal values, using 
full unsteady representations as shown in Table 1. The red point represents the optimum points. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

Fig. 14. Variations of the normalized power and the lift-to-weight ratio with the pitching amplitude where the other design variables are set to their optimal values, using 
full unsteady representations as shown in Table 1. The red point represents the optimum points. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

Fig. 15. Variations of the normalized power and the lift-to-weight ratio with the mean pitch angle where the other design variables are set to their optimal values, using full 
unsteady representations as shown in Table 1. The red point represents the optimum points. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
The optimizer could find a local minimum for the required aero-
dynamic power around almost zero mean pitching angle, at which 
the other parameters (e.g., frequency and motion amplitudes) are 
set to satisfy the lift constraint. As for K (control parameter of 
the flapping motion), there are two values to satisfy the lift con-
straint, as shown in Fig. 16. The optimizer converged to the lower 
value because of the corresponding lower power. In fact, the lower 
K -value is selected for all of the four cases including rotational 
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Fig. 16. Variations of the normalized power and the lift-to-weight ratio with the control parameter for flapping motion K where the other design variables are set to their 
optimal values, using full unsteady representations as shown in Table 1. The red point represents the optimum points. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 17. Variations of the normalized power and the lift-to-weight ratio with the control parameter for pitching motion Cη where the other design variables are set to their 
optimal values, using full unsteady representations as shown in Table 1. The red point represents the optimum points. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 18. Variations of the normalized power and the lift-to-weight ratio with the flapping-pitching phase angle where the other design variables are set to their optimal 
values, using full unsteady representations as shown in Table 1. The red point represents the optimum points. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
contributions, as shown in Table 1. Luckily, the optimizer could 
find another local minimum for P∗ at the boundary of Cη-variation 
(zero), as shown in Fig. 17. Similar to the K -case, the smooth vari-
ations are preferred by the optimizer for their considerably lower 
required aerodynamic power. Finally, the optimum phase angle is 
determined to satisfy the lift constraint, despite of the local min-
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imum around 0◦ , as shown in Fig. 18. In summary, two types of 
optimal values are found. The first set includes the mean pitch an-
gle η0 and the control parameter for pitch motion Cη . Clear local 
power minima are found with these design variables. The other 
design variables (frequency, amplitudes, and phase shift) are then 
set to satisfy the lift constraint.

7. Conclusion

Optimization of wing-kinematics for hovering micro-air-vehicles 
is considered by projecting the problem down to a finite dimen-
sional space of design variables. These design variables represent 
the parameters for some specific kinematic functions. Four aero-
dynamic models having different levels of fidelity and captured 
physical aspects were used to assess the effects of the aerody-
namic model on the optimal wing kinematics. Each model has an 
additive physical aspect that was not included in the previous one 
to specifically assess the effect of this added aspect on the op-
timization problem. These physical aspects are the leading edge 
vortex, the rotational lift, the non-circulatory contributions, and 
the unsteadiness.

The quasi-steady representation for the leading edge vortex 
yielded a triangular waveform for the back and forth flapping an-
gle and piece-wise constant pitching angle; the same result ob-
tained in a previous effort using calculus of variations. Incorpo-
rating a potential flow model to the rotational contributions re-
sulted in total dependence on rotational motions as a source of 
lift; 7◦ flapping amplitude versus the 180◦ pitching amplitude. 
Adding viscous rotational power, more reasonable kinematics were 
obtained. However, the optimizer remained dependent on the ro-
tational motion. This is because the rotational motion creates lift 
with very little power consumption in comparison to the trans-
lational motion. As such, the optimum normalized power was re-
duced from 19.52 W/kg to 3.22 W/kg. Adding the non-circulatory 
components, along with the assumption of 100% elastic storage, 
does not lead to a considerable change in the optimal kinematics. 
Finally, using the full unsteady model resulted in higher values for 
the minimum required mechanical power. That is, optimization of 
flapping kinematics using quasi-steady aerodynamics lead to less 
conservative results.
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