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ABSTRACT OF THE DISSERTATION

Adaptive Learning in Later Life

By

Priyam Das

Doctor of Philosophy in Cognitive Sciences

University of California, Irvine, 2024

Professor Mark Steyvers, Chair

As people age, they can expect some of their memory to fail or to become slower while

doing mental calculations. However, it is an oversimplification to describe cognitive aging

as only cognitive deterioration. This dissertation explores various ways that adult learners

can adapt to cognitive changes brought by aging. In chapter 1, we find that older adults

are worse than younger adults at a planning task because they use suboptimal planning

strategies. Once we teach older adults the optimal strategy, there are no longer differences

in performance between the two age groups. In chapter 2, we show how extra practice can

help older adults increase their ability to match or exceed the performance of a younger adult

on various cognitive tasks. In chapters 3 and 4, we investigate how older adults allocate their

effort towards learning new technologies depending on ease of use and the amount of time

needed to learn. We found that older adults can learn a complex virtual machine as well

as younger adults and that older adults are as willing as younger adults to expend effort

towards learning difficult machines. However, we also found that older adults will conserve

their effort and choose easier machines when we manipulated the amount of time they have

to learn. Altogether, these results support the notion of older adults as adaptive learners and

help provide a more nuanced view of cognitive aging, one where older adults are sometimes

capable of excelling on cognitive tasks.
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INTRODUCTION

Humans have an incredible capacity to learn and they engage in learning all throughout their

lives. From the baby learning about herself and her environment, to the child learning his

letters and numbers, to the young adult learning to participate in society, to the older adult

learning to adapt to a changed environment – people are continuously learning. At different

points in life, people can choose to learn different things, and they learn them in different

ways. In particular, adults who are 60 years and older learn differently from adults who are

in their 20s and 30s. These differences partly attributed to changes in cognitive processing,

changes which naturally accompany healthy aging.

Aging Effects on Learning & Decision Making

Learning is supported by various cognitive processes, many of which decline with age. As

people grow older, the speed at which they are able to process information becomes slower

and their ability to keep multiple pieces of information in their working memory starts to fail,

which in turn affects problem solving and decision making (Salthouse, 1996, 2010; Murman,

2015). Cognitive control, which refers to the ability to focus on relevant information during

learning while ignoring irrelevant or outdated information, has also been well documented

to decline with age (Kramer, Hahn, & Gopher, 1999; Kray & Lindenberger, 2000; Kray &

Ferdinand, 2014). Deficits in cognitive control are apparent when older adults are slower to
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switch between different tasks compared to younger adults or make more errors on a new

task due to applying a strategy which worked well on a previous task.

Another notable age-related change in learning behaviors is the preference for using prior

knowledge to solve problems over learning about new information or options. This is often

referred to as the explore-exploit tradeoff, where exploring refers to investigating new, poten-

tially risky, options while exploiting refers to choosing what you already know as a safe bet.

Older adults are more likely to exploit known options compared to younger adults (Queen,

Hess, Ennis, Dowd, & Grühn, 2012; Mata, Wilke, & Czienskowski, 2013; Wiegand, Seidel, &

Wolfe, 2019; Spreng & Turner, 2021). Declines in cognitive control may be driving this shift

from exploration to exploitation since cognitive control is required to switch from the cur-

rent, known, option to a new option (Mata & von Helversen, 2015; Spreng & Turner, 2021).

However, another explanation for this shift may depend on perceptions of time. Socioemo-

tional selectivity theory (SST) states that older adults have a bias for maintaining positive

experiences in the present moment due to considerations of their lifespan (Carstensen, 2006;

Löckenhoff, 2011; Carstensen, 2021). Though usually used to explain social situations such

as an older adult preferring to spend time with close friends over making new friends, SST

can be applied more broadly to older adults’ non-exploratory behavior (Spreng & Turner,

2021). Staying with and exploiting known options is more likely to bring a positive outcome

compared to risky new options, especially if the known option has produced positive out-

comes before. Thus, time perception is important to consider along with declines in cognitive

control when trying to understand older adults’ reluctance to learn new information.

Learning efficient decision making strategies is critical for handling all of life’s decisions both

big and small. When deciding between the organic bananas or the regular bananas at the

supermarket, you might only focus on one feature, the price, in order to make the decision.

However, when deciding between different mortgage loans, you might compare them based

on multiple features such as the monthly payment, the interest rate, and the length of the
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loan, before making your decision. These are just a couple examples of different decision

making strategies. In studies of decision making, older adults show a strong preference for

simpler strategies even when those strategies are not best suited for the task (Mata, Schooler,

& Rieskamp, 2007; Mata, von Helversen, & Rieskamp, 2010; Lemaire, 2010). This preference

for simpler strategies leads to poorer performance on some decision making tasks compared

to young adults who engage in more cognitively effortful strategies (Lemaire, 2010; Worthy

& Maddox, 2012; Hinault & Lemaire, 2020). Rather than laziness, the reason for preferring

cognitively easier strategies appears related to declines in cognitive control which promote a

reliance on habitual, tried-and-true strategies (Blanco et al., 2016; Bolenz, Kool, Reiter, &

Eppinger, 2019).

An Optimistic Outlook for the Aging Mind

Although results such as cognitive deficits and poor decision making outcomes dominate

much of the aging literature and conjure a bleak outlook for cognitive abilities during old

age, there is a growing body of results which paint older adults as adaptive learners. While

it appears that older adults perform poorly compared to younger adults, these age differ-

ences can disappear with minor task modifications or consideration of older adults’ cognitive

resources. In this next section, I discuss how additional practice and resource-rational ap-

proaches shine a different light on older adults’ behaviors during learning.

When older adults can do a task as well as younger adults, this is referred to as age equiva-

lence. Simply practicing more on a task is one way that older adults can reach age equivalent

performance with younger adults. For example, in task switching experiments, older adults

show larger switch costs, or have more difficulties switching to a new task, compared to

younger adults. However, these switch costs are reduced and can become age equivalent

after a few additional sessions of practice (Kramer et al., 1999; Buchler, Hoyer, & Cerella,
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2008; Karbach & Kray, 2009). Some other tasks in which older adults can reach age equiva-

lence after extra practice are collaborative, visual discrimination, and implicit learning tasks,

to name a few (Derksen et al., 2015; Ratcliff, Thapar, & McKoon, 2006; Myers & Conner,

1992). These studies show that for some tasks, older adults learn slower and thus require

more time than younger adults to become proficient.

When older adults are unable to match the performance of younger adults, their behavior

might be explained by resource-rationality (Griffiths, Lieder, & Goodman, 2015; Lieder &

Griffiths, 2020). Under resource-rationality, older adults act in a way that is optimal for

them given their limited cognitive resources. This explanation accounts for situations in

which older adults demonstrate that they are capable of using the same cognitively effortful

decision making strategies as younger adults, even if they use such strategies less frequently

(e.g. Worthy & Maddox, 2012; Blanco et al., 2016; Devine et al., 2021). Because older adults

have less cognitive resources on average compared to younger adults, they are more selective

in expending their cognitive effort. For tasks requiring cognitive control, one hypothesis is

that all individuals have a “sweet spot” in which they are engaging in the right amount of

control given the constraints of the task and their own cognitive limitations (Ruel, Devine,

& Eppinger, 2021). When more cognitive control is required to perform better at the task,

if the individual does not consider the increase in performance to be worth the increase

in control, then they will maintain their current effort levels and appear to be performing

suboptimally.

Dissertation Overview

My dissertation work adopts this optimistic outlook on learning in later life. In chapter 1,

I investigate whether older adults struggle with planning due to their choice of planning

strategies, much like they do in decision making tasks. I use recently developed methods for
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visualizing and categorizing people’s planning strategies and find that older adults use the

optimal strategy much less frequently than younger adults. Since older adults seem unaware

of the optimal strategy, I introduce a cognitive tutor to teach older adults the optimal

planning strategy and this enables them to reach age equivalence with younger adults on

the planning task. This chapter is based off of the conference paper “Remediating Cognitive

Decline with Cognitive Tutors” which is included in the non-archival proceedings for the

Fourth Multidisciplinary Conference on Reinforcement Learning and Decision Making. The

work in this chapter builds off of ideas from my co-authored journal publications, “Rational

use of cognitive resources in human planning” and “Leveraging Artificial Intelligence to

Improve People’s Planning Strategies”, but is a completely separate project from those two

publications since this work focuses on the effects of age.

In chapter 2, I present evidence that additional practice helps older adults get closer to

reaching age equivalence with younger adults on tasks that engage a variety of cognitive

processes. I come to this conclusion from a secondary analysis of a large scale data set of

thousands of users of a popular online brain training website. Additionally, I present a new

method of quantifying the benefits of additional practice at an individual, rather than a

group, level. This chapter appears in this dissertation exactly as it was published, with the

same title, in the journal Collabra: Psychology.

Chapters 3 and 4 dig deeper into older adults’ preferences for exploiting known options and

conserving cognitive effort during learning. In chapter 3, I introduce a new task that lets us

observe how people invest effort during learning. This task asks people to learn how to use

a complex machine and gives people the option to choose between different models of the

machine which vary in their ease of use. I find that both older adults and younger adults are

not only equally capable of learning to use the hardest version of the machine but that both

groups prefer this machine over easier options. In chapter 4, I investigate on how people’s

time perception affects their preference for using the different types of machines and whether
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older adults optimally conserve their effort to learn a new machine when time is short. I

find that younger adults are more strongly affected by the experimental manipulation of

time and that older adults seem to conserve their efforts regardless of how much time they

actually have to learn.

Finally, I close with a discussion of what my findings mean for the optimistic outlook on

cognitive aging and some suggestions for future research.
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Chapter 1

Cognitive Tutors Help Older Adults

Plan Effectively

1.1 Introduction

Planning is an essential skill for achieving goals. However, planning can be very difficult for

people to do well, particularly when there are many possible paths towards the goal. Then

planning becomes more like a decision making problem as people evaluate the pros and cons

of each path before making a choice about how to proceed. Unfortunately, both planning

and decision making get harder for people as they get older.

Previous studies have found that older adults have trouble formulating plans and in some

cases, executing them (Allain et al., 2005; Sorel & Pennequin, 2008; Sanders & Schmitter-

Edgecombe, 2012). This may be linked to other studies showing that older adults tend

to perform poorly on decision making tasks compared to younger adults (Frank & Kong,

2008; Mell et al., 2005; Mata et al., 2007; Wiegand et al., 2019). In some cases, this is

because older adults use different decision making strategies compared to younger adults
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and end up using a less efficient strategy (Mata, Josef, & Lemaire, 2015; Blanco et al., 2016;

Lemaire, 2010). For example, older adults tend to rely on heuristics or easier decision making

strategies (Mata et al., 2007; Lemaire, 2010; Worthy, Cooper, Byrne, Gorlick, & Maddox,

2014). However, older adults are also able to adapt their decision making strategies in certain

task environments and in these cases, they are able to adapt as well as younger adults (Mata

et al., 2007; Queen et al., 2012; Worthy & Maddox, 2012).

Despite multiple studies investigating how age affects decision making and the strategies

that older people use to make decisions, there has been little work studying the problem of

planning. This is because planning is generally hard to observe and depending on the task,

researchers struggle to disentangle the formulation phase of planning from the execution

phase (Sanders & Schmitter-Edgecombe, 2012). We can overcome these difficulties with

a new process-tracing task called Mouselab-MDP (Callaway, van Opheusden, et al., 2022;

Callaway, Jain, et al., 2022). Mouselab-MDP externalizes the planning process by having

participants click to gather information about various paths to a goal before they can take

any actions to follow a particular path. By observing participants’ clicks, we can observe

which action on which path they are considering at any time. Furthermore, computational

models of various planning strategies can be fit to participants’ data on the Mouselab-MDP

task, allowing us identify the different strategies that people use while planning (Callaway,

van Opheusden, et al., 2022).

Although we know that using different strategies from younger adults leads to poorer out-

comes for older adults, there is a dearth of solutions to help older adults choose better

strategies. As with other aging-related cognitive issues such as failing memory or increased

inattentiveness, cognitive training programs targeting decision making skills have gained

popularity as a potential solution, but their effectiveness remains to be seen (Consensus on

Brain Training, 2014; Simons et al., 2016; Kable et al., 2017). Recently, we introduced a

new training method to teach people better planning strategies (Callaway, Jain, et al., 2022).
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Our cognitive tutor differs from other cognitive training programs by giving feedback about

how someone chose an action, rather than giving feedback about the action itself. For ex-

ample, on the Mouselab-MDP task, there are multiple paths to consider which have hidden

rewards and punishments along the way. Feedback based on action alone would describe

when a person chooses a path to go down and experiences all the rewards and punishments

on that path. However, feedback given on the decision making process would be based on

how the person gathered information about each of the potential paths before making their

choice of path. Rather than giving feedback such as pointing out a better path, our cogni-

tive tutor gives feedback by pointing out whether someone spent too much time or too little

time considering their options. This is a kind of metacognitive feedback which has shown to

improve people’s performance in different reward environments on the Mouselab-MDP task

(Callaway, Jain, et al., 2022).

In the present chapter, we use Mouselab-MDP and the method of modeling planning strate-

gies to study how planning strategies differ by age in Experiment 1. We will also examine

how well older adults perform on the task compared to younger adults. In line with the

results from previous research, we expect that older adults’ will use strategies which are dif-

ferent from younger adults and that this will lead to poorer performance on the task. Thus,

in Experiment 2 we will use our cognitive tutor to teach both younger and older adults better

planning strategies and examine whether both age groups benefit equally. We expect that

the cognitive tutor will help minimize differences in task performance between younger and

older adults. Even if we do not find age differences in task performance in Experiment 1, we

can evaluate how much both age groups benefit from using the tutor compared to a control

group.
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1.2 Experiment 1

Methods

We recruited participants younger than 25 years old to form our younger adults group (19−24

y.o., median = 23, n = 49) and adults older than 47 years old to form our older adults group

(48 − 70 y.o., median = 52, n = 29). The experiment was conducted online via Amazon

Mechanical Turk. In the experiment, participants completed 30 trials of the Mouselab-MDP

paradigm (Callaway, Lieder, Krueger, & Griffiths, 2017) with a three-step route planning

task. On each trial, participants were shown a map of gray circles (Figure 1.1) and instructed

to move the spider in the middle to one of the outermost nodes, picking up the rewards

hidden along the way. For each trial, rewards are independently drawn from discrete uniform

distributions; in the first step the possible values were {−4,−2,+2,+4}; in the second step

the possible values were {−8,−4,+4,+8}; and in the third step the possible values were

{−48,−24,+24,+48}. Participants could uncover rewards beforehand by clicking on the

gray circles and paying a cost of −1 for each reveal. Participants were instructed to maximize

their rewards and were incentivized with a monetary bonus based on their in-game score.

We use the clicks our participants made to infer which kind of planning strategy they used.

We considered six different planning strategies: depth-first search, breadth-first search, best-

first search, progressive deepening, the optimal planning strategy, and an impulsive strategy

that chooses randomly. Depth-first search explores a single path at a time – from its begin-

ning to its end. Once it reaches the end of this path, it returns to the most recent unexplored

fork in that path and continues exploring until all nodes have been inspected. Breadth-first

search explores the first nodes of all possible paths, then the second nodes, and so on until

all paths have been explored. Best-first search explores paths in the order of highest ex-

pected sum of rewards. Progressive deepening is a strategy proposed by Newell and Simon

(1972) and is similar to depth-first search. The main difference is that after exploring a path
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Figure 1.1: A typical Mouselab-MDP trial used in Experiment 1 and the control condition
of Experiment 2. Some of the rewards have already been revealed by the participant.

in its entirety, progressive deepening skips back to the starting node, treating branches as

part of another path for later exploration. Callaway et al. (2018) found that the optimal

strategy for the task environment used in this experiment is to first set a goal by evaluating

potential final destinations. As soon as inspecting a potential final destination uncovers the

highest possible reward (+48), the optimal strategy selects the path that leads to it and

terminates planning. If multiple potential final destinations are good (i.e., +$24) then the

optimal strategy collects additional information about the paths leading to those promising

potential final destinations starting with the nodes right before a potential final destination.

Modeling Strategies

We modeled participants’ click sequences as a combination of following one of the six strate-

gies described above and some random moves. Formally, the probability of making click c

when following strategy k is defined as

(1− ϵ) · σ(c;Vb,Mk
, τ) + ϵ · Uniform(c;Cb) (1.1)
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where the first term, σ(c;Vb,Mk
, τ), is a softmax over the possible clicks c in state b when

following strategy k and τ is the temperature parameter. The second term, Uniform(c;Cb),

can account for actions that are inconsistent with strategy k; the probability of such “random

clicks” is modeled by a uniform distribution over all possible clicks and the action of stopping

planning. Finally, ϵ is the probability that a random click will be made.

The random strategy can therefore be modeled by the second term alone. The systematic

behavior of the other strategies was modeled in terms of the values Vb,M(c) they assign to

different clicks c and the decision to terminate planning. For example, in the depth-first

search model, the preference function Vb,DFS(c) is the depth of the node inspected by click

c if that node lies on a partially explored path and a large negative value otherwise. As a

result, deeper nodes are prioritized and partially explored paths will be explored to the end

before others are considered. In the optimal strategy model, the value assigned to Vb,O is

given by the optimal solution to the problem of deciding how to plan. In previous work, we

formalized this problem as a meta-level Markov Decision Process and computed its solution

for the environment used in this study using backwards induction (Callaway et al., 2018).

Aside from the random and optimal strategy models, all of our strategy models also capture

previous findings that people often act as soon as they have identified an alternative they

deem good enough (i.e., satisficing; Simon, 1956) and tend to stop considering a course of

action when they realize it would entail a large loss at one point or another (i.e., pruning;

Huys et al., 2012). To model satisficing and pruning, our models include two free parameters

for the participant’s aspiration level and pruning threshold respectively.

When the expected reward for terminating in belief state b exceeds the aspiration level,

then our models assign a very large value to the terminate planning action. Conversely, if

the expected sum of rewards for any path falls below the pruning threshold, then clicks on

the remaining unobserved nodes on that path are assigned a large negative value such that

the strategy was discouraged from continuing to explore that unprofitable path. We fit all
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models to each trial for each participant using maximum likelihood estimation for all model

parameters (i.e., τ , ϵ, and the thresholds for satisficing and pruning). We then performed

model comparisons using the Bayesian Information Criterion (Schwarz, 1978) to determine

which strategy each participant is most likely to have used on each trial.

Figure 1.2: Strategy usage frequencies for younger adults versus older adults over all trials.
The strategies we modeled are (from left to right): Best-first search, breadth-first search,
depth-first search, optimal, progressive deepening, and random.

Results

In Experiment 1, we found that older adults differed significantly from younger adults in how

often they used each of the six planning strategies introduced above (χ2(5) = 205.43, p <

.001). While both age groups used the optimal strategy the most, older adults also favored

the depth-first search strategy, using it almost as much as the optimal strategy (Figure 1.2).

Taking a look at how participants’ strategy usage evolved over time indicates that older

adults were adopting the optimal strategy later in the experiment compared to younger adults

(Figure 1.3). However, by the end of the experiment, the older adults were still not using the
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Figure 1.3: The frequencies of strategy usage for every trial in the experiment for younger
adults (left) and older adults (right). The strategies shown are best-first search (red),
breadth-first search (yellow), depth-first search (green), optimal (teal), progressive deep-
ening (sky blue), and random (magenta).

optimal strategy as frequently as the younger adults (avg. frequency in the last five trials:

69.0% vs. 58.6%, χ2(1) = 3.86, p < 0.05). We also found that older adults were performing

worse on the task compared to younger adults, even after discovering the optimal strategy

on their own (avg. score in the last five trials: 24.7 vs. 37.4, t(76) = −2.87, p < 0.01). This

is consistent with our expectation that using the optimal strategy less than another group

will lead to lower scores.

If this difference in strategy usage is due to older participants being unaware of the existence

of the optimal strategy, then it should be possible to remedy their deficits by teaching them

the optimal strategy using our cognitive tutor. We tested this hypothesis in Experiment 2.
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Figure 1.4: Example feedback from the cognitive tutor in the training phase of Experiment
2.

1.3 Experiment 2

Methods

Participants & Procedure

For Experiment 2, we recruited and sorted participants into two groups: younger than 25

(median = 22 years, n = 41) and older than 47 (median = 53 years, n = 37). We conducted

the experiment via Amazon Mechanical Turk. Participants were randomly assigned to either

train with the cognitive tutor (feedback condition: 18 − 69 y.o, nyoung = 24, nold = 23) or

to practice the task on their own (control condition: 18 − 68 y.o, nyoung = 17, nold = 14).

Participants in the control condition performed 30 trials of the Mouselab-MDP task described

in the Methods section of Experiment 1. Participants in the feedback condition were first

given 15 trials where they practiced the Mouselab-MDP task while receiving our cognitive

tutor’s optimal metacognitive feedback (Lieder et al., 2018; Lieder, Krueger, Callaway, &

Griffiths, 2017). As illustrated in Figure 1.4, the tutor’s feedback comprised i) a delay penalty
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whose duration was proportional to how suboptimal the participant’s planning operation was,

and ii) a visual demonstration of what the optimal planning strategy described above would

have done differently. The feedback thereby supported both reinforcement learning and

learning from demonstrations. Participants were then given 15 test trials of Mouselab-MDP

without any feedback, identical to the trials given to the control group.

Analysis Plan

We conducted four t-tests to compare age groups and conditions on participants’ score, or

the average amount of reward participants earned per trial. We compared older adults’

scores to that of younger adults’ in the training phase, or first 15 trials, in both conditions in

order to verify the age differences in performance which were found in Experiment 1. Then,

we compared the scores of both age groups during the test phase, or last 15 trials, of the

task. We also compared the scores of the feedback group and the control condition during

the test phase. Finally, we compared the scores of older adults in the feedback condition to

the scores of younger adults in the control condition during the test phase. Additionally, we

fit a three-way ANOVA model to examine the effects of age, condition, and trial number on

participants’ scores.

Results

During the training phase of the experiment, there was no difference in the average scores

of the younger adults (19.45, SEM = 4.55) and the older adults (14.27, SEM = 3.76) in

the control condition (t(29) = −0.85, p = 0.40). However, in the feedback condition there

was a difference in the average scores between younger adults (36.4, SEM = 0.85) and older

adults (28.69, SEM = 1.89; t(45) = −3.79, p < 0.001). Moving on to the test phase of

the experiment, there was no difference in the average scores of younger and older adults
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Figure 1.5: The average scores on the task for older and younger adults in both the control
and feedback conditions. Participants in the feedback condition trained with our cognitive
tutor during the first 15 trials of the experiment. The last 15 trials consisted of the test
phase where there was no feedback given in either condition. * means p < 0.01 while **
means p < 0.001

in both the control condition (t(29) = −0.76, p = 0.45) and in the feedback condition

(t(45) = −1.02, p = 0.31). Thus, we only found evidence of an age effect on performance

in the feedback condition, but this went away by the end of the task, indicating that older

adults learned and improved throughout the task.

However, we did see a difference in average scores between the feedback condition and the

control condition in both younger adults (t(39) = 3.31, p < 0.01) and older adults (t(35) =

3.56, p < 0.01). On average, older adults scored 36.79 (SEM = 2.10) in the feedback condition

compared to older adults in the control condition who scored 19.28 (SEM = 5.30), while

younger adults in the feedback condition scored 38.99 (SEM = 0.63) compared to younger

adults in the control condition who scored 24.85 (SEM = 5.02). These results indicate

that practicing with our cognitive tutor was effective at improving decision-making skills

regardless of age (Figure 1.5).

Encouragingly, for older people the benefit of training with our cognitive tutor was so large

that they were able to outperform younger people in the control condition (t(38) = 2.41, p <
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0.05). Furthermore, it appears that older adults benefited more from the cognitive tutor

than younger adults. According to the results of the ANOVA, the advantage of young

people gradually vanished over time in both conditions (βtrial×young = −0.13, F (1, 2332) =

5.21, p < 0.05). Taken together, these results suggest that feedback from our cognitive tutor

helps close the gap in performance between older and younger adults on the task.

1.4 Discussion

Older adults are known to struggle with planning but until recently, researchers had very

limited ways of observing how people conducted the planning process. In Experiment 1,

we used the Mouselab-MDP task and the associated planning strategy models developed

by Callaway, van Opheusden, et al. (2022) to reveal the kinds of planning strategies that

older adults and younger adults use when solving a route-planning task. We found that older

adults and younger adults differed in how often they used particular planning strategies, such

as the optimal strategy which resembles planning backward planning from the goal. Younger

adults used the optimal strategy for most of their trials whereas older adults favored both

the optimal strategy and the depth-first, or forward planning, strategy equally. While some

older adults did discover and favor the optimal strategy by the end of the task, they still

performed worse on the task compared to the younger adults who overwhelmingly used the

optimal strategy by the end of the task. This finding supports the results of previous studies

which found that older adults use decision making strategies at different rates compared to

younger adults (Lemaire, 2010; Hinault & Lemaire, 2020).

We thought that the reason younger adults outperformed the older adults on the task was

because not enough older adults had discovered the optimal strategy on their own. There-

fore, in Experiment 2, we introduced a cognitive tutor which gave people feedback on their

planning process, effectively teaching people the optimal, backwards planning strategy. Both
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older and younger adults trained with the tutor for half of the experiment and then were

left to do the task on their own for the latter half. In the group that received training, there

was a difference in performance between the older and younger adults in the beginning of

the experiment but after training, there was no difference between the age groups by the

end of the experiment. Interestingly, in the control group, there was no difference between

age groups towards the beginning of the experiment nor towards the end of the experiment,

which contradicts our results from Experiment 1. This may have been because of the rela-

tively small sample size we had in the control group in Experiment 2, or perhaps more older

adults in this sample were able to discover the optimal strategy earlier on. Despite this, the

group who received feedback from the cognitive tutor outperformed participants in the con-

trol group regardless of age. This means that everyone was able to benefit from instruction

in the optimal strategy, though older adults seemed to benefit even more. Although older

adults in the control group performed about the same as younger adults, the older adults

who received feedback from the tutor were able to significantly outperform the untrained

younger adults.

While our sample sizes are small and our results are constrained to the particular Mouselab-

MDP task, this work is an important start towards understanding the ways people plan

and how age affects this particular type of decision making. The Mouselab-MDP task can

be customized in order to study many different reward environments, each with their own

unique optimal planning strategies. For example, the depth-first strategy that many older

adults preferred in Experiment 1 would work well on an environment where rewards are

increasing. In that case, there may not be any age differences in planning strategies or older

adults may even outperform the younger adults. Future work can use Mouselab-MDP to

understand which types of planning problems older adults struggle with and whether this is

due to being unaware of the optimal strategy.
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Furthermore, while it is difficult to generalize the effectiveness of our cognitive tutor beyond

the Mouselab-MDP task, we believe that the overall method of giving feedback on someone’s

problem solving process can prove beneficial in a variety of other tasks. The metacognitive

skill of how to evaluate options before making a decision can be flexibly applied to a variety of

decision making problems compared to knowing how to solve a particular type of problem,

but much further research is needed to know whether people can be taught such flexible

metacognitive skills via digital cognitive tutors. In any case, the present tutor was able to

help close the performance gap between older and younger adults so we will optimistically

look towards a future where a variety of cognitive tutors can help give older adults a more

even footing against their younger counterparts on a variety of problem-solving tasks.
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Chapter 2

Older Adults Catch Up to Younger

Adults on Cognitive Tasks After

Extended Training

2.1 Introduction

”Practice makes perfect” is an old adage which applies to people of all ages. Whether

someone is learning something for the first time, or rehearsing a skill once learned but

unused for some time, practice or training can help people improve their current ability.

Older adults, in particular, have shown improvement and maintenance of new skills after

training (Baltes, Dittmann-Kohli, & Kliegl, 1986; Dahlin, Nyberg, Bäckman, & Neely, 2008).

In some cases, such as on collaborative, visual discrimination, or implicit learning tasks, older

adults and younger adults perform equally well after training (Derksen et al., 2015; Ratcliff

et al., 2006; Myers & Conner, 1992). However, for other tasks, such as those that require

memory, response inhibition, or task-switching, a noticeable performance gap exists. Despite
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potentially starting out at the same performance level, younger adults often outperform older

adults over time (Kliegl, Smith, & Baltes, 1989; Davidson, Zacks, & Williams, 2003; Dahlin

et al., 2008; Karbach & Kray, 2009).

Can training for a longer period of time help an older person improve enough to close such

performance gaps? Baltes and Kliegl (1992) had younger and older adults train for 38

sessions over a year, 18 more than their previous study (Kliegl et al., 1989), on a free-recall

memory task and found that younger adults continued to outperform older adults. They

also found that the older group never reached the same level of performance as that of

the younger group near the beginning of training. Similarly, Noack, Lövdén, Schmiedek,

and Lindenberger (2013) found that younger adults outperformed older adults on a spatial

and temporal memory task after training for 100 daily sessions. These results suggest that

it is unlikely for an average individual to reach the same level of performance as someone

several years younger. However, most lab studies of training rarely last longer than 12 weeks,

mainly due to resource limitations (Lampit, Hallock, & Valenzuela, 2014; Nguyen, Murphy,

& Andrews, 2019). Perhaps this is not enough time for older adults to close the performance

gap between themselves and younger adults.

We can circumvent the resource issues of traditional lab studies by using naturally occurring

data that was collected online (Goldstone & Lupyan, 2016; Griffiths, 2015). In particular,

we can use data from online cognitive training platforms to investigate the effect of extended

training. One platform which provides this kind of data is Lumosity. Lumosity has a

collection of more than 50 engaging games, some of which are based on common tasks used

in lab studies, that target various cognitive processes. Each game is categorized by the

cognitive domain being trained, such as attention or memory, and each gameplay lasts a

few minutes. While Lumosity has yet to prove that training improvements transfer to other

tasks outside of Lumosity (Simons et al., 2016), the detailed data collected on the platform

is helpful for understanding how people learn and improve on these games.
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Previously, Steyvers, Hawkins, Karayanidis, and Brown (2019) used data from Lumosity

to examine the effects of extensive practice on task switching. They found that a small

sample of older adults who played a task switching game over 1000 times were able to match

or exceed the performance of younger adults who played up to 60 times. Although this

study demonstrates that older adults can bridge the performance gap with their younger

counterparts, the extent of training needed and the degree of benefit gained still remain

unresolved questions.

In this paper, we investigate how much training older adults need to catch up to younger

adults on a variety of cognitive tasks. We define “catch up” as an older adult matching

or exceeding the score of a younger adult on one of the Lumosity games. We leverage the

Lumosity data set used in Steyvers and Schafer (2020) which contains data from 9,923 users

between 18 and 90 years old on 57 different games to examine catch up in different training

situations.

One way catch up could occur is if younger adults’ performance reaches an asymptote much

earlier in training compared to that of older adults’, but the older adults’ performance reaches

the same asymptote after extended training. Thus, much like previous studies, we will look

at the scenario where older adults and younger adults train for the same amount of time.

However, our primary focus is to what extent catch up occurs when older adults train longer

than younger adults. Many older adults in our sample have performance levels which lag

behind those of younger adults at the beginning of training, but by the time 200 games have

been played, some of the older adults’ performance levels surpass those of younger adults’

at an earlier training point. This scenario is another way that catch up can occur.

The data set used in our analyses is well suited to address catch up by older adults for two

main reasons: it contains data from thousands of users, with 55% of them over the age of 60,

and the training data spans several years, with many users training on the same game well

over a hundred times. However, as is the case with using any naturally occurring data, many
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users also drop out before training for very long. Since dropout is related to performance

(Steyvers & Benjamin, 2019), we address this issue and its impact on the generalizability of

our findings later in the paper. Despite this limitation, the data set enables us to accurately

assess the degree of benefit that additional training imparts to various age groups among

those who have trained for an extended duration.

2.2 Methods

Participants

The data used for analysis is the same as that which was analyzed in Steyvers and Schafer

(2020), which contained 36,297 English-speaking Lumosity users located in either the United

States, Canada, or Australia who primarily used the web version (as opposed to the mobile

app). These users signed up between August 1st, 2013 and December 31st, 2016 and the

data was collected between August 1st, 2013 and June 30th, 2019 (see Appendix A for

further information on this data set). A subset of 9,923 Lumosity users between the ages of

18 and 90 at signup (under 40: 360 males, 239 females, 55 gender unavailable; 40-59: 1210

males, 1504 females, 276 gender unavailable; 60-79: 1989 males, 3056 females, 632 gender

unavailable; 80 and over: 216 males, 311 females, 75 gender unavailable) were included in our

analyses. No racial data was available. 15% of users had a high school diploma or completed

some high school, 19% had completed some college, 25% had a bachelor’s degree, 3% had

an associate’s degree, 25% had a postgraduate degree, and the rest declined to specify their

education level. Users were included in the subset if they had played any of Lumosity’s

games at least 100 times. We chose 100 gameplays to ensure that users had trained for an

extended period of time and to avoid noise in the data caused by dropout, or users who play

for a bit and then stop playing completely (Steyvers & Benjamin, 2019). The users in our
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sample played a median number of 2,284 games total. Thus, our sample size of nearly 10,000

people is sufficient for investigating catch up abilities on various tasks across the lifespan.

Games

There are 57 games in the data set. The original data set labeled each Lumosity game by

the cognitive domain that the game was targeting and we kept these labels to observe trends

within domains (Steyvers & Schafer, 2020). The six domains are attention (12 games), flex-

ibility (6 games), memory (21 games), reasoning (7 games), language (6 games), & math (5

games). Previous results have shown that the domains of math and reasoning show some in-

ternal consistency such that games within these domains show more correlated scores within

the domain than across domains (see Figure 3 of Steyvers and Schafer (2020)). However, we

should note that the domain labels used by Lumosity platform do not uniquely describe the

cognitive processes involved in each game as most games involve multiple types of cognitive

processes.

Preprocessing

Lumosity games each have a unique scoring system which is generally based on the user’s

speed and accuracy but also involves game-specific factors, leading to game scores on different

scales. In order to compare the performances across games with these different scoring

systems, we first normalized the game scores using a min-max transformation (Han, Pei,

& Kamber, 2011). Under this normalization, scores closest to 1 are the best of the whole

sample while scores close to 0 are the worst performers. This involved first setting outliers

greater than 3 standard deviations above the mean equal to 3 standard deviations above the

mean. We can do this because we care about the relative ranking of the scores rather than

the actual value of the score. This value is now the maximum score achieved by users, so
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after normalization, anyone who got this score (or higher) would have their score represented

as a 1. Normalization follows the formula (score− scoresmin)/(scoresmax − scoresmin). For

example, if Mark plays Ebb and Flow and scores 21,400 and the best score achieved by

someone in our sample in that game is 35,000 and the lowest score is 1,000, then Mark’s

score of 21,400 would be normalized to 0.6, which means that his score is a bit better than

half of those in the sample.

After applying the transformation to all the game scores in the data set, we smoothed the

learning curves for each user in each game so that user scores would more accurately reflect

the current performance level and our results would be less susceptible to temporary score

fluctuations. Finally, a user’s age at the time of gameplay (extrapolated from time passed

since signup) was added to each of their gameplay records. Further details are in Appendix

A.

Data Analysis Approach

We conducted two different analyses which together help us answer our questions related

to catch up by older adults. The first is a group-level analysis which looks at the learning

curves for each age group. The second analysis calculates catch up probabilities at an

individual level. At the outset, we should note that none of the analyses involve curve fitting

or computational modeling. Previous research has investigated the learning trajectories of

individual users on the Lumosity platform using exponential and power law functions that

only consider the amount of practice (Steyvers & Benjamin, 2019; Donner & Hardy, 2015)

as well as more complex computational models that also take into account the effect of

spacing and retention (Kumar, Benjamin, Heathcote, & Steyvers, 2022). Given the aims of

the current data analysis, we are not focused on explaining the underlying functional form
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of the learning process and instead use a much simpler approach of comparing performance

levels at different levels of training.

Group performance analysis

In order to clearly visualize the learning curves of each age group for different levels of

training, we grouped users into age bins that were mostly five years apart. For example, one

bin would contain users from 40-44 years old while the next bin contained users from 45-49

years old. However, this only applied to the ages between 40 and 89. A few age bins were

merged at the extreme ends of the age range due to insufficient data in the five year bins. In

the end there was also a 18-29 bin, 30-39 bin, and 90-95 bin. This binning procedure applies

only to the data presented in Figure 2.1, which visualizes the mean performance for each of

these age bins. The rest of the results presented in the text follow the analysis procedure

explained in the next section.

Catch up analysis

Our main analysis focused on catch up, or the idea of whether an older adult who has trained

for a while can match or exceed the performance of a younger adult. For each game, we

computed the catch up probabilities across pairs of age groups. To calculate this probability,

we looked at all individual pairwise comparisons between the two age groups and calculated

the proportion of older adults that had a higher score than a particular younger adult,

for every adult in the younger group. Depending on the game and age groups, pairwise

comparisons numbered anywhere from 160 to over 4.6 million. The resulting probability

is akin to the probability of randomly sampling an individual from one age group and an

individual in another age group and observing that the older individual has a higher score.
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We chose to look at catch up in this manner as opposed to comparing group performance

means because there is a lot of individual variability among people in the same age group.

We started calculating catch up probabilities from 20 gameplays, when users have reasonably

learned how to play the game, and continued in 20 gameplay increments until 100 gameplays,

beyond which the analysis would suffer from insufficient data. We did so in order to calculate

how the amount of training relates to catch up probability.

Catch up probabilities were calculated separately for each Lumosity game. Not all Lumosity

games are equally popular, so games that had less than ten users from an age group of interest

were excluded from that age group’s catch up analysis. Thus, instead of all 57 games in the

original data set, the number of games included in our catch up analysis ranged between

32-36 games, depending on the age comparison (10 attention, 4-5 flexibility, 8-10 memory, 4

reasoning, 2-4 language, and 3 math games).

In order to have enough data to directly compare two age groups, we grouped users into

larger age bins of ten years. Thus, we had the following bins: 20-29, 30-39, 40-49, 50-59,

60-69, 70-79, and 80-89. The exceptions are at the extreme ends of the age range: 18 and 19

year old users are included with the 20-29 year old users and the catch up results for those

90-95 are not reported since there was only one game which had at least ten users from this

age group.

2.3 Results

We present our results according to the two scenarios of catch up discussed in the introduc-

tion: the scenario where older and younger adults train an equal amount, and one where the

amount of training is unequal, with older adults training longer.
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To answer our first question of whether older adults can catch up with the same amount of

training, we calculated the catch up probability of the older group when both the older group

and the younger group have trained for 100 gameplays. For our second question concerning

how different amounts of training affects catch up, we compared older adults who trained

for 20, 40, 60, 80, & 100 gameplays to younger adults who only trained for 20 gameplays.

After calculating catch up probabilities for each game, we looked for age equivalence, which

we define as a 50% or greater chance for a randomly sampled older adult to score better

than a randomly sampled younger adult.

Throughout the rest of this paper, we will use the decade marker as a shorthand for each

age bin. For example, ”60s” refers to those users between 60 and 69 years of age while ”70s”

includes those between 70 and 79 years. The singular exception is the ”20s” group which

also includes 18 and 19 year old users along with those between 20 and 29 years.

Additionally, we report Bayes factors (BFs) for our analyses, which were computed using

Pingouin (Vallat, 2018), since they are easier to interpret over p values (Kass & Raftery,

1995). Following the notation for the alternative hypothesis (1) against the null (0), BF10 > 1

indicates evidence for the alternative hypothesis while BF10 < 1 indicates evidence for the

null hypothesis. The value of the Bayes factor increases with the likelihood of the alternative

hypothesis. For example, BF10 = 10 means that the data are 10 times more likely under

the alternative hypothesis compared to the null hypothesis. Generally, BFs between 3 and

10 indicate moderate evidence against the null hypothesis, and BFs greater than 10 indicate

strong evidence against the null (Kass & Raftery, 1995).

Performance gaps persist after equal training

First, we looked at the scenario where older and younger adults both train for an extended

amount, in case older adults simply need more time in order to catch up to younger adults.
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Figure 2.1: Mean performance for each age group on Lumosity games grouped by cognitive
domains, plotted for three different levels of training (20, 60, and 100 gameplays). Game
scores were normalized between 0 and 1 such that performance values closer to 1 indicate
the best game performance. Error bands represent the 95% confidence interval while error
bars describe the 25% and 75% percentiles of the data to show the range of scores.

When older adults and younger adults train up to 100 gameplays, the mean score for nearly

all age groups improves regardless of cognitive domain (BF ¿ 10 on paired t-tests; Figure

2.1). The exceptions were people over 90 on attention, memory, language and math games

and people in their 20s and 40s on math games (BF ¡ 10 on paired t-tests; see Appendix

A for training improvements). However, despite training for 100 gameplays, most older age

groups continued to score lower on average compared to younger groups (Figure 2.1).
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Figure 2.2: The probabilities of an older adult catching up to a younger adult after both have
played a game 100 times. A value of 0.50 or greater indicates age equivalence. Age bins are
ten years wide such that ”30” represents those users 30-39, ”40” means 40-49, etc. ”20” also
includes those who are 18 or 19. The diagonal represents the smallest age difference (≤ 10
years) amongst the age comparisons, while the upper right corner represents the greatest
age difference (80s vs 20s).

When examining the catch up probabilities, age equivalence was observed for one game, a

vocabulary game called Taking Root, when comparing the 70s group to the 60s group. We

found no age equivalence when we compared older adults in their 70s and 80s to individuals

20 years their junior at the same training level of 100 gameplays (Figure 2.2). However,

the probability of catch up for these older adults was significantly greater than zero on

attention, flexibility, memory, and reasoning games (BF10 > 10 on one-sample Bayesian t-

tests) suggesting that some older individuals have the ability to catch up to adults who are

nearly twenty years younger.
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Figure 2.3: The probabilities of an older adult catching up to a younger adult on a game
after the younger adult has played 20 times and the older adult has played 100 times. A
value of 0.50 or greater indicates age equivalence. Age bins are ten years wide such that
”30” represents those users 30-39, ”40” means 40-49, etc. ”20” also includes those who are
18 or 19. The diagonal represents the smallest age difference (≤ 10 years) amongst the age
comparisons, while the upper right corner represents the greatest age difference (80s vs 20s).

Unequal training promotes catch up

Next, we shift our focus to the primary question concerning the impact of unequal training

on the catch-up potential for older adults. In the analysis, we assessed the performance of

two groups of adults, a younger group after 20 gameplays and an older group after 20, 40,

60, 80, and 100 gameplays (corresponding to 0, 20, 40, 60, 80 extra gameplays respectively).

Figure 2.3 shows the catch up probabilities for a subset of comparisons: older adults who

trained for 80 extra gameplays relative to younger adults (more detailed results are shown

in Appendix A). These results generally show that additional training makes it possible for
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the older group to catch up to the performance of slightly younger groups, although the

potential for catch up is limited for the largest age differences.

When the amount of additional training increases from 0 to 80 extra gameplays, the prob-

ability of an older adult in the 60s, 70s, and 80s groups catching up to someone in a 20

years younger group increases. Across all games, the increase in catch up probability for

these groups is substantially different from 0 (BF10 > 10; one-sample t-test to quantify the

evidence for catch up). When comparing different domains, there is substantial evidence for

catch up on attention, flexibility, and memory games (BF10 > 10) as opposed to moderate

evidence for math (BF10 > 5) and reasoning (BF10 > 3 except for the 80s group). Evidence

for catch up on language games was very weak (BF10 < 3), though this may be due in part

to the small number of language games included in the analysis.

For the 80s vs 60s, 70s vs 50s, and 60s vs 40s comparisons, the average increase in catch

up probability ranges from 0.22 to 0.32 on attention, flexibility, memory, and reasoning

games. The increase for language and math games is between 0.09 and 0.15. The catch

up gains are greater when comparing adults to those in a 10 years younger group. For this

comparison, the average improvement in catch up was 0.30 for attention, flexibility, memory,

and reasoning, compared to 0.16 for language and math (BF10 > 50 for attention, flexibility,

memory; BF10 > 5 for reasoning, language, math).

The prevalence of age equivalence also increases when we allow the older adults to train more

than younger adults. When we compared the 60s, 70s, and 80s groups to groups that were

20 years younger, then equivalence was possible after 100 gameplays in 3 games for the 80s

vs 60s comparison. These games included a Stroop task (Color Match), a face-name recall

task (Familiar Faces), and a planning task (Pet Detective). Equivalence was also observed

in 9 games for the 70s vs 50s comparison and in 19 games for 60s vs 40s (see Appendix A).
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2.4 Discussion

In this paper we used a data set with cognitive training scores from almost 10,000 people ages

18-90 to investigate whether a longer period of training helps to close the commonly observed

performance gap between age groups. We were interested in how much extra training would

help older adults catch up to younger adults on these cognitive training tasks. When older

adults train more than younger adults, up to 100 training sessions, we found evidence of the

performance gap diminishing as the older adults catch up to the younger adults. In some

cases, with unequal training, the performance gap completely disappears.

Additionally, we looked at whether catch up would occur after equal amounts of extended

training for both older and younger groups. Like Baltes and Kliegl (1992), our results

also showed that age differences continued to persist even after both age groups undertake

extended practice on the task. Unlike this previous study, which compared people in their 70s

to people in their 20s on a memory task, we found that when people in their 70s trained up

to 100 sessions, the mean group score overlapped with the mean score of people in their 20s

who had only trained for 20 sessions on a memory game (see Figure 2.1). These discrepancies

may be due to the greater number of extra practice sessions (80 compared to 18) and the

larger sample size in our study. Additionally, in the unequal training case, we were able

to find instances where little to no age differences were observed between adults who were

closer in age, consistent with Steyvers et al. (2019).

One reason we found robust increases in catch up probability for the attention, memory,

and flexibility domains and not in others is that the domain categories used here may not

accurately represent the underlying cognitive processes that these games try to target. For

example, many of the language and math games test vocabulary knowledge and simple

arithmetic under time pressure and so performance on these games may be greatly influenced

by response speed rather than domain knowledge. In addition, even though some of the
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games in the attention, memory, and flexibility categories are directly modeled after classic

lab tasks used to assess these cognitive abilities, only the math and reasoning games were

previously found to have high internal consistency (Steyvers & Schafer, 2020). Therefore,

care must be taken when interpreting these results at the domain level and may be more

informative at the single game level.

One important limitation of this work is that it is not clear to what degree our results

will generalize to the full population. To address potential concerns arising from comparing

groups with unequal total training amounts, as noted by Steyvers and Benjamin (2019), we

confined our sample to players who had completed a minimum of 100 gameplays. However,

this subset is not fully representative of the full population of Lumosity players as the older

players tend to persist longer. Consequently, our sample exhibits a bias towards older players:

for example, our sample’s average age is 64.8 years, compared to the 61-year average age

among players with a minimum of 20 game sessions. When working with longitudinal data

that spans a few years, dropout is inevitable and limits the generalizability of the results.

Thus, while we have been careful to control for the amount of practice in the sample, our

results only hold for people who persist to 100 gameplays.

Furthermore, while we have used number of gameplays as a measure of training, it is difficult

to directly compare the amount of training done on the online training platform to that

conducted in labs during cognitive training studies. Each gameplay of a particular game

only lasts a couple of minutes and the player is free to play them whenever they’d like, often

taking a month just to play 20 times, whereas participants in lab studies come in for training

sessions on a rigid schedule with each session lasting anywhere from 15 minutes to 2 hours

(Lampit et al., 2014; Reijnders, van Heugten, & van Boxtel, 2013). However, our results are

compatible with lab-based studies which find that participants improve on the trained task

over time (Anguera et al., 2013; Verhaeghen, Marcoen, & Goossens, 1992; Baltes & Kliegl,

1992; Kliegl et al., 1989).
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While our analysis has demonstrated that it is possible for older adults to match younger

adults on task performance, this is only a start. One extension of this work would be to

use naturally occurring data for other tasks to build a model which could predict a person’s

performance in the future based on their current learning trajectory, similar to work done by

Steyvers and Schafer (2020). Such a model could help inform older adults how much more

practice they require to reach their target performance level (which might be expressed

in terms of a younger age group’s performance). In addition, future studies can analyze

other factors which might affect an individual’s catch up rate, such as the frequency of their

practice sessions (Kumar et al., 2022) or particular game features. Future lab based training

studies can use our catch up probabilities to inform study design and estimate the magnitude

of the expected results.

In conclusion, some older adults who persist in extended training have the potential to match

younger adults on a subset of short cognitive tasks even when younger adults outperform

them initially. The key seems to be for older adults to train for much longer than the younger

adults. Additionally, we quantified the degree of benefit gained from different amounts of

training. These results, along with future studies, can help us form a more complete picture

of how age differences can be overcome with additional practice.
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Chapter 3

Older Adults Invest Effort Similarly

to Younger Adults When Learning

3.1 Introduction

When people make decisions to learn something new, they often engage in a cost-benefit

analysis where they consider whether the benefit of the new skill or information is worth the

cost of the mental effort and time required to learn it (on top of any other ancillary costs).

For example, a person may be introduced to a new technology that will help them work

more efficiently. However, the person must learn how to use this technology well in order

to reap the benefits. If they decide to try it out while working on an important task, the

process of learning will slow down this person’s current pace of work. Thus, a decision must

be made as to whether investing the time and effort into learning this new technology now

is worth the future benefits of the task being completed more efficiently.

People perform a cost-benefit analysis in these kinds of situations because mental effort is

unpleasant, but they are willing to expend that effort when the rewards, or benefits, are
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sufficiently high (Kool & Botvinick, 2018). Though mental effort is difficult to measure

directly, some methods for estimating relative amounts of people’s mental effort include

analyzing their response time differences in task switching experiments or classifying the

strategies they use in decision making experiments, with some strategies requiring less mental

effort than others.

Previous work has shown that the consideration of costs and benefits differs between older

and younger adults. For example, older adults are more sensitive to costs compared to

younger adults on tasks requiring mental effort (Westbrook, Kester, & Braver, 2013; Hess,

Smith, & Sharifian, 2016). Older adults are also less likely than younger adults to use

cognitively effortful decision making strategies (Mata et al., 2007; Worthy & Maddox, 2012;

Hinault & Lemaire, 2020). These behaviors are not due to a lack of motivation, since older

adults’ use of model based strategies isn’t affected by high rewards (Bolenz et al., 2019).

Furthermore, older adults will expend more effort than younger adults when rewards are

easier to obtain (Devine et al., 2021). One explanation is that older adults have limited

cognitive resources and that they are exhibiting resource-rational behavior.

The research presented in this chapter will continue to probe the relationship between these

costs and rewards over the lifespan, but on a new type of task. Previous mental effort studies

use tasks that either do not require much effort to learn (such as task switching experiments

involving perceptual decisions) or do not give participants much control over what to learn.

There aren’t many experimental tasks that approximate learning a complex tool and then

using that tool to achieve a goal, as in the example of learning a new technology to help

with one’s work. Thus, we have designed such a task, called the IntelliBaker task, to fulfill

this need.
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(a) An example of the feedback given after a
suboptimal guess.

(b) An example of the feedback given once
the best settings are found.

Figure 3.1: Some examples of the feedback screens in the IntelliBaker task featuring an
IntelliBaker with three knobs.

The IntelliBaker

The main task consists of participants learning how to manipulate knobs on a futuristic

kitchen appliance called the IntelliBaker. The IntelliBaker produces cakes of varying quality

based on the settings of these knobs. Participants are given no instructions on how to set the

knobs to produce the best results, but are encouraged to find this setting while baking cakes

with the IntelliBaker. Feedback is given through a star rating system, with better cakes

earning a higher number of stars (Figure 3.1). Participants who can skillfully manipulate

the machine and produce high quality cakes can progress faster through the experiment

compared to less skillful participants.

The IntelliBaker works similarly to the code breaking game Mastermind where the goal is to

find the correct combination of some numbers. In this case, rather than numbers, participants

must find the correct combination of knob settings on the machine. One particular setting

of these knobs will yield the best cake possible that the machine can produce. Other settings

result in cakes of differing qualities, and the amount of stars awarded is determined by the

distance between the setting the participant tried and the actual best setting for the machine.
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2 + 2 + 1 + 2 = 7

1 + 2 + 1 + 2 = 6

1 + 2 + 1 + 2 = 6

Guess Distance from Target Reward

#1

#2

#3

A.

Target 0
(maximum)

…

B. ✔ ✔ ✘ ✘

Figure 3.2: (A) An example showing three guesses tried in succession on an IntelliBaker with
four knobs. Rewards are earned based on the distance of the guess from the target settings.
This distance is a linear sum of the number of turns each knob needs in order to reach the
correct position in the target setting. The rewards in this example follow the mapping in
Figure 3.3. (B) Each knob can only be turned one setting to the left or right from its position
during the previous guess.

The smaller the distance, the better the cake, and the more reward the participant gets per

trial. Figure 3.2A shows a detailed example of how a participant’s attempts translate into

distances and rewards.

The mechanics of the IntelliBaker

In experiments, the number of knobs on the IntelliBaker may vary, but the number of settings

per knob is 5. 2 settings away is the maximum distance someone can be from the correct knob

setting per knob. Depending on the number of knobs on the machine, the maximum distance

for the machine is 2 * number of knobs + 1. The initial knob settings are randomized such
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that the distance away from the correct setting lies uniformly between the max distance and

the max distance - 3. This is to ensure that participants start at a relatively low reward of 1

to 3 stars should they decide to try the initial setting. Furthermore, to prevent participants

from getting lucky and earning high rewards from random guesses, the movement of the

knobs is restricted such that the knobs will only turn one notch forward or backward per

trial. This is to encourage a more incremental and systematic approach towards earning

higher rewards and getting the correct combination of settings (Figure 3.2B).

The Experiments

We designed two experiments using the IntelliBaker to answer the question of how people

allocate their mental effort towards learning new tools and to investigate how expected

rewards influence this effort allocation.

In order to induce different amounts of mental effort in our experiment, we created three

different types of IntelliBakers which varied by the number of knobs each machine had. The

more knobs on an IntelliBaker, the more combinations of settings there are to try and the

more difficult it is to get high rewards from it. However, we also ensured that more difficult

IntelliBakers could reward participants with more stars than easier IntelliBakers once the

participant invested effort to learn it. If people are very sensitive to the balance of effort

and rewards, then we expect that in order to conserve mental effort, people will try to avoid

the hardest IntelliBaker, but will be enticed enough by higher reward to also resist using the

easiest one and settle for learning the medium difficulty level IntelliBaker. In Experiment

1A, we test how good people are at learning to use these three different IntelliBakers and

that the difference in difficulty between the machines is salient.

We are also interested in the question of whether older adults follow a resource-rational

approach to this task and expend most of their mental effort on learning easier tools compared
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to younger adults. While we can observe how well older adults learn to use the IntelliBaker

in Experiment 1A, we directly tackle this question in Experiment 1B by explicitly giving

participants the choice of which type of IntelliBaker to use.

3.2 Experiment 1A

Experiment 1A is for determining how long it takes people to learn to use the IntelliBaker

at varying levels of complexity. How long it takes for participants to learn the IntelliBaker

is measured by the number of attempts, or trials, a participant uses to find the correct

settings for the IntelliBaker. There are three different types of IntelliBaker machines which

we have named machine A, B, & C for the purposes of reporting. We expect that it will take

participants the fewest number of attempts to solve machine A, which should be the easiest

machine to solve. We also expect that it will take participants the most number of attempts

to solve machine C, with the number of attempts needed for machine B falling somewhere

in between the number needed for A and C. Furthermore, we hypothesize that older adults

will need more attempts on average to solve the machines compared to younger adults.

1A: Methods

Participants

Participants were recruited from the online platform Prolific. A person could take part in

the experiment if they lived in the United States of America, were fluent in English, and had

an approval rate of at least 90% on the platform. If the person was between the ages of 18

and 40 years old, they were assigned to the younger adult group and if the person was 60

years or older, then they were assigned to the older adult group. Due to participant feedback
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during the piloting phase, the two groups were given a different estimate of the time needed

to complete the experiment. We made this change so that all participants felt they were

being fairly paid at a rate of at least $12/hr. As a result, the younger group were given a

time estimate of 15 minutes while the older group were given an estimate of 30 minutes. In

actuality, participants were free to spend as much time as they wanted on the task.

49 participants took part in experiment 1A. 1 participant was excluded for not understanding

the task (their data showed that they tried the same settings repeatedly for the majority of

trials), leaving 48 participants. There were 24 participants in both the younger and older

adult groups. The age range of the younger adult group was 21-40 years (mean 29.33 years)

while the range of the older adult group was 60-76 years (mean 65.08 years).

Procedure

Experiment 1A asked participants to solve three different types of IntelliBaker machines.

These types varied in the number of knobs and difficulty. Machine A had three knobs, gave

a max reward of 7 stars, and rewards followed a 1-to-1 linear function where a distance of 0

(the correct settings) gave 7 stars, a distance of 1 gave 6 stars, and so on, with 1 star being

the lowest reward one could earn. Machine B had four knobs, gave a max reward of 9 stars,

and rewards followed the same structure as Machine A, with 9 stars given for a distance of

0 and 1 star given for a distance of 8. Machine C had five knobs, gave a max reward of 11

stars, but the reward structure differed from the other two machines. Any guesses that were

a distance of 7 to 10 away gave 0 stars as a reward, while distances smaller than 7 paid out

linearly such that a distance of 6 resulted in 5 stars, a distance of 5 resulted in 6 stars, up

until 11 stars for a distance of 0 (see Figure 3.3). This reward structure was implemented to

adhere to our experimental need for a machine that is unrewarding until effort is invested

into learning it, at which point the rewards make up for the effort.
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Figure 3.3: The reward structures for the different machines. Each machine awarded a
number of stars relative to how close a participant’s guess was to the correct setting. A
distance of 0 represents guessing correctly and awards the highest possible amount of stars
for that particular machine.

This experiment had 9 blocks total, with each block featuring one type of machine. The

three different machines were shown three times each. The blocks were presented in sets

of three, where each set had the order of the machines randomized. The participant was

not aware of the differences between sets and viewed the experiment as a progression of 9

blocks. Within each block, participants were given 30 trials, or attempts, to solve each type

of machine. If participants were able to find the correct settings in under 30 attempts, then

they were able to move on to the next block immediately. Otherwise, they moved on to the

next block after 30 attempts.

Analysis Plan

The number of attempts each participant needed to solve a particular type of machine (A, B,

or C) was averaged across the three blocks in which it appeared. If the participant did not

solve the machine, this block was omitted from the average. To account for blocks when the

participant did not solve the machine, their probability of success in solving for each machine
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was calculated as well. We used a Bayesian A/B test to compare younger adults’ and older

adults’ probabilities of success on machines A, B, & C (Hoffmann, Hofman, & Wagenmakers,

2022). We used a Bayesian paired samples Wilcoxon signed-rank test to compare the two

age groups on their average number of attempts needed to solve for these machines (van

Doorn, Ly, Marsman, & Wagenmakers, 2020). These analyses were done using JASP (JASP

Team, 2023).

In the results section, we will report Bayes factors (BFs) for our analyses, since they are easier

to interpret over p values (Kass & Raftery, 1995). Following the notation for the alternative

hypothesis (1) against the null (0), BF10 > 1 indicates evidence for the alternative hypothesis

while BF10 < 1 indicates evidence for the null hypothesis. If the alternative hypothesis is one

sided, then the notation changes to BF+0 or BF−0, depending on if the alternative hypothesis

is that effect is greater or less for one group over the other. The value of the Bayes factor

increases with the likelihood of the alternative hypothesis. For example, BF10 = 10 means

that the data are 10 times more likely under the alternative hypothesis compared to the

null hypothesis. Generally, BFs between 3 and 10 indicate moderate evidence against the

null hypothesis, and BFs greater than 10 indicate strong evidence against the null (Kass &

Raftery, 1995).

1A: Results

One of the main goals of experiment 1A was to ensure that participants could learn to solve

the three types of IntelliBaker machines and that the three types were significantly different

in terms of how difficult they were to solve. Once we verified this, the other goal of the

experiment was to check for age differences in the capability to solve these machines.

Of the 48 participants, 2 in the younger group were unable to solve any of the machines

even once. 2 participants in the older group were also unable to solve the machine in 8 out
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of 9 blocks, suggesting that these participants did not learn how to solve the IntelliBaker

either. The remaining 44 participants were able to solve machines A and B at least once

and 35 of these 44 participants were successful in solving machine C. Of the 9 participants

who struggled with machine C, 2 were younger adults and 7 were older adults.

Since some participants were unable to solve a machine more than once, we calculated

everyone’s probability of success to get a better idea of their mastery of the IntelliBakers.

The probability of success on machine A was 83.3% for both younger and older adults

(BF10 = 0.40). For machine B, the probability of success was 70.8% for younger adults

and 75% for older adults (BF10 = 0.40). Finally, the probability of success for machine C

was 50% for younger adults and 37.5% for older adults (BF10 = 0.90). Thus, there was no

statistical difference between the age groups in their ability to solve the machines.

On average, it took participants 12.53 attempts (std 5.8) to solve machine A, 16.18 attempts

(std 5.46) to solve machine B, and 19.15 attempts (std 5.82) to solve machine C. The dif-

ferences between the number of attempts were statistically significant within subjects on a

paired samples Wilcoxon test (BF10 > 30), which means the machines were qualitatively

different. However, there were no statistically significant differences between the two age

groups in the number of attempts needed to solve any of the machines. This indicates that

on average, older adults can use the machines as well as younger adults.

1A: Discussion

The IntelliBaker task is a brand new task created to assess how people learn to use new tools

when given a choice between various tools. Thus, we first ran experiment 1A to test the

validity of using the IntelliBaker in future experiments where participants of various ages

would be asked to choose between the different machines. The experiment had two goals:

the first was to validate that both young and older adults are able to show mastery of the

46



IntelliBaker and that the three different versions were different in difficulty, while the second

goal was to test for age differences in mastery of the different versions.

We found that a majority of participants, both young and old, were able to solve for the

correct settings on three different versions of the IntelliBaker. Furthermore, each version

of the machine differed from the others in terms of difficulty, with machine A taking the

fewest attempts to solve, machine C taking the most attempts to solve, and machine B was

somewhere in between. Taken together, these results validate the use of the Intellibaker

task in future experiments testing how the difficulty of learning a new tool affects people’s

decisions on whether to learn said tool.

Additionally, we were unable to find much evidence for age differences in the number of

attempts used to solve a machine nor the probability of success of solving a particular

version of the machine. We interpret these results to mean that both older and younger

adults are equally capable, on average, of solving the different types of IntelliBakers.

3.3 Experiment 1B

After we validated the use of IntelliBakers in experiment 1A, it was time to conduct an

experiment where people could freely choose which IntelliBaker they wanted to learn to use

and then use the IntelliBaker to work towards a goal, much like learning a new tool in order

to complete a specific task. We accomplished this by presenting machines A, B, and C all

at once to the participant and instructing them to use any of the machines to earn a total

of 150 stars. Crucially, participants were only given limited exposure to the three types of

IntelliBakers before being asked to use them in the main task, but participants could switch

which machine they used at any time. This was to ensure that the majority of learning took

place at the same time as participants were making decisions about which machine to use.
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Furthermore, the main task didn’t have a set number of trials, ending only when participants

reached a set number of stars. In this way, experiment 1B was designed to have participants

assess how much time to spend using a machine in order to efficiently complete the task and

to understand their preferences regarding the different IntelliBakers.

While the current experiment bears similarities to task switching experiments, there are

also key differences from a classic task switching experiment (e.g. Kray & Lindenberger,

2000). One important difference is that the participant, rather than the experimenter, is

in control of when the switch happens, if at all. Switch costs are generally reduced when

subjects are aware of an upcoming switch and can make mental preparations for the task

switch (Kramer et al., 1999; Kray & Ferdinand, 2014). Another key difference is that the

different tasks, or IntelliBakers, take a nontrivial amount of time and effort to learn. Unlike

classic task switching experiments where the goal is to study switch costs, the design of the

current experiment promotes learning of a particular IntelliBaker and discourages frequent

switching.

We hypothesized that older adults would switch machines less times compared to younger

adults. Additionally, we expected that older adults would spend more time on easier ma-

chines compared to younger adults. For example, older adults might use machines A and B

more often than younger adults who spend most of their time using machine C.

1B: Methods

Participants

Participants were recruited from the online platform Prolific. A person could take part in

the experiment if they lived in the United States of America, were fluent in English, and

had an approval rate of at least 90% on the platform. If the person was between the ages of
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18 and 40 years old, they were assigned to the younger adult group and if the person was

60 years or older, then they were assigned to the older adult group. Both groups were told

the estimated time for the task was 15 minutes and were paid at a rate of roughly $12/hr.

Participants were free to spend as much time as they wanted on the task.

60 participants took part in experiment 1B, with 30 participants each in the older adult

group and the younger adult group. The age range of the younger adult group was 20 - 38

(mean 30.27 years) while the age range of the older adult group was 60 - 79 (mean 65.27

years).

Procedure

This experiment made use of the same three Intellibaker machine types (A, B, & C) as

described in the Methods section of experiment 1A. There were three practice blocks followed

by the main task. The practice blocks had 10 trials each and were arranged in the order of

machine A first, machine B second, and machine C third, to acquaint participants with the

increasing difficulty. As in experiment 1A, participants moved on to the next block as soon

as they found the optimal setting for the current machine or after 10 attempts, whichever

came first.

The main task presented all three types of machines at once, arranged on the screen in a

pyramid pattern (see Figure 3.4). The position of the machines on the screen was randomized

between participants and participants were informed that they were seeing new machines

with different combinations of settings than those they had interacted with during the prac-

tice block. Participants were also informed that they were free to use any of the machines

at any time in order to earn a total of 150 stars, after which the task would end. The goal

of 150 stars was chosen based on twice the median number of trials participants needed to

solve machine B in experiment 1A (15) multiplied by the average reward earned on those
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Figure 3.4: A screenshot of the main task in experiment 1B. Participants could use any of
the machines to try to reach the goal shown in the upper left.

trials (5 stars). This was to allow participants enough time to explore the different machines

and also have time left to find the best settings for either machine A or B.

Analysis

To answer the question of whether older adults switched less compared to younger adults, we

compared the average number of switches between the older and younger age groups using

a Bayesian Mann-Whitney U test (van Doorn et al., 2020). For the Mann-Whitney U test,

the effect size δ was assigned a Cauchy prior distribution with r = 1/
√
2, truncated to only

allow negative values due to our one-sided hypothesis. For our second hypothesis regarding

older adults’ preference for easier machines, we measured preference for each machine as the

number of trials a participant spent using a particular machine out of the total number of

trials participants did to finish the main task. We then used a Bayesian A/B test to compare

the group preferences for each machine (Hoffmann et al., 2022). For machines A and B, we
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assigned a standard normal prior to the log odds ratio ψ and compared the null hypothesis

of ψ = 0 to the one sided alternative hypothesis that older adults use machines A and B

more than younger adults, or ψ > 0. For machine C, we also assigned a standard normal

prior to ψ, but this time we compared the null hypothesis ψ = 0 to the one sided alternative

hypothesis ψ < 0, or that older adults use machine C less than younger adults.

We also looked post-hoc at the correlation between the number of switches and the total

trials needed to finish the experiment, as well as the correlation between the number of

switches and average reward earned for all the participants. For these post-hoc tests, we

assigned an uninformed stretched beta prior with a width of 1 to Kendall’s τB (van Doorn,

Ly, Marsman, & Wagenmakers, 2018). These statistical analyses were done using JASP

(JASP Team, 2023). Just like we did for experiment 1A, we will report Bayes factors (BFs)

for our analyses in the results section.

1B: Results

After being allowed to use any of three different IntelliBakers freely to earn 150 stars, both

young adults and older adults switched between using the various machines multiple times.

Older adults switched 9.87 times on average (std 7.54 times) while younger adults switched

machines 9.17 times on average (std 8.23 times). The Mann-Whitney U test supported the

null hypothesis that there is no difference between age groups in terms of the number of

switches (BF0− = 5.49; Figure 3.5).

Older adults also had similar preferences for each machine on average compared to younger

adults (Figure 3.6). Older adults used machine A for 23.6% of their trials while younger

adults used it for 26.1% of trials (BF0+ = 18.12). For machine B, older adults used it for

35.9% of trials while younger adults used it for 35.5% of trials (BF0+ = 10.54). Finally, for

machine C, older adults used it for 44.7% of trials while younger adults used it for 44.2%
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Figure 3.5: A plot of the number of times each participant switched between the three dif-
ferent versions of the IntelliBaker during the experiment. Older adults had similar switching
behavior to younger adults.

of trials (BF0− = 19.52). The A/B tests for each machine support the null hypothesis that

there is no difference in preferences between the two age groups.

Because people switched more often than we expected, we decided to look post-hoc at corre-

lations between the number of switches and how it affected performance on the task across all

participants. There was a positive correlation between the number of switches and the total

number of trials needed to finish the task (BF10 > 106, Kendall’s τB = 0.501). There was

also a negative correlation between the number of switches and the average reward earned

per trial (BF10 > 105, Kendall’s τB = −0.491). Together, these results indicate that the
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Figure 3.6: A bar graph plotting the percentage of trials that participants used a particular
type of IntelliBaker, averaged across the participants in each age group. The error bars
represent the 95% confidence interval of the mean. Older adults preferred certain machines
as much as younger adults did.

more often that people switched, the less they learned about a particular machine, and their

task performance suffered as a result.

1B: Discussion

Experiment 1B was designed with the idea in mind of people needing to learn a new tool

to accomplish a goal. We wanted to see if given the choice between using a relatively easy

tool, like machine A, and a harder to use yet better performing tool, like machines B and

C, whether people would conserve their effort and stick to an easy machine or invest more

effort towards learning a harder machine in anticipation of the higher rewards. Furthermore,

we anticipated that there would be age differences in people’s behavior and preferences

when using these machines. Specifically, we hypothesized that older adults wouldn’t switch
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between machines as much as younger adults, since older adults tend to explore less compared

to younger adults (Spreng & Turner, 2021). We also hypothesized that older adults would

conserve their effort and stick to using easier machines like machine A or B compared to

younger adults, who might feel more confident in challenging machine C.

What we found instead was that older adults did not differ from younger adults very much

in their switching behavior nor in their preference for a particular machine. For both age

groups, the hardest machine, machine C, was the most used machine. This result supports

the idea that older adults are willing to invest more mental effort into learning something if

they believe the rewards are worth it (Devine et al., 2021).

We also found that some people switched between machines frequently and that this strongly

correlated with poorer performance in the task in terms of average reward earned per trial

and longer completion times. Perhaps the goal of 150 stars was too low and participants

felt that even with increased exploration, they were still making timely progress towards

the goal. With a larger goal, participants may realize that a better strategy would be to

invest time into getting the maximum reward from one of the machines. Additionally, it’s

possible that the people who switched the most treated each machine as dispensing a random

reward, rather than something which they had control over to produce better rewards. Future

iterations of this task can involve different star goals to see how participants’ behavior may

be affected, as well as include some free response questions at the end of the experiment to

probe participants’ understanding of the IntelliBaker and the experiment goals.

3.4 General Discussion

We were interested in understanding how age affects people’s decisions to invest effort into

learning to use new technology. Previous work suggests that older adults will avoid cogni-
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tively effortful tasks in order to conserve their cognitive resources, which are thought to be

more limited than those of younger adults (Devine et al., 2021; Ruel et al., 2021). With this

in mind, we created the IntelliBaker task, a task with varying levels of difficulty that took

time to learn. With this new task, we could manipulate the balance of effort and reward and

observe how this balance affected people’s use of new technologies, represented by the Intel-

liBakers, while working towards a goal, whether it was finding the best settings or earning a

large number of stars.

While we expected to find that older adults would struggle with the most challenging Intel-

liBaker, machine C, and feel less inclined to use it compared to younger adults, we did not

find strong evidence of age differences in how people chose to allocate their mental effort.

Both younger and older adults learned how to use machine C and even when they were given

the choice to use other machines, both age groups preferred to use machine C.

The simplest possible explanation for this finding is that machine C was not challenging

enough for either age group and so older adults did not feel as if it required significant mental

effort for them to be able to use it. Although we went through many design iterations of

machine C to make it harder to learn, it is difficult to create a task that is both immensely

challenging yet can still be learned within a reasonable amount of time. At least, this

consideration stopped us from simply putting 10 knobs on machine C, which even younger

participants would balk at. In any case, though machine C may not have seemed intimidating

to participants, it certainly provided enough of a challenge since fewer older adults were able

to find the best setting for machine C in experiment 1A compared to younger adults and

only a handful of participants overall were able to earn more reward with machine C than

they did with machines A or B in experiment 1B. Thus, it would also not be accurate to say

that participants preferred machine C because it was easy for them to use.

Another possible explanation is that older adults were aware of the increased effort required

to learn machine C over the other machines, but that they perceived the increased rewards
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to be worth the effort. Even if they didn’t feel confident that they could master machine C,

they may have engaged in a satisficing strategy in experiment 1B, where they tried to earn

just enough reward per trial in order to make timely progress towards the goal. Although

the current chapter does not include any analysis of the different strategies that participants

used for the IntelliBaker task, the data is ripe for such analysis and could help us understand

how people choose to learn about the IntelliBakers.

Despite the limitations with the current experiments, the data from both experiments clearly

show that older adults are as capable as younger adults at learning this complex task. There

were no group differences in terms of how long it took participants to find the best setting

for each machine nor in terms of how much reward they earned per trial. Though it’s unclear

here to what extent the older adults were engaging in resource rationality, more generally, we

should give older adults more credit for their potential to learn challenging new technologies.
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Chapter 4

Older Adults Conserve Effort

Regardless of Time Left to Learn

4.1 Introduction

A common stereotype of older adults is that they avoid using new technology such as the

latest smartphone or teleconferencing software. However, older adults who resist new tech-

nology can have various reasons for doing so. They may worry that the new technology is

too complicated for them to use easily or believe that it is unnecessary to learn, especially

when there are existing solutions. These are reasonable concerns for anyone to have, so why

are they attributed more to older adults? The answer may lie in the perception of the time

costs associated with learning to use the new technology.

People seem to consider time costs differently based on their age. A person’s perception

of how much time they have to achieve their goals is sometimes referred to as their future

time perspective. According to socioemotional selectivity theory, someone with a greater

future time perspective will take actions to optimize for the future, whereas someone who
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perceives their time as limited will focus on optimizing for the present (Carstensen, 2006;

Lang & Carstensen, 2002; Löckenhoff, 2011). Thus, younger adults can be thought of as

having a greater future time perspective than older adults in general. However, future time

perspective can be manipulated in experiments - when younger adults are asked to imagine

that they will be moving to a new place soon, their responses match those of older adults’

asked to imagine the same scenario (Fung & Carstensen, 2004). Similarly, asking older

adults to imagine a medical breakthrough that can lengthen their lifespan also reduces any

significant response differences with younger adults (Löckenhoff, 2011; Löckenhoff & Rutt,

2015).

Future time perspective may also play a role in older adults expending less effort compared

to younger adults on decision making tasks (Mata et al., 2007; Worthy et al., 2014; Hinault

& Lemaire, 2020). Older adults may judge that they do not have enough time to benefit from

learning a more effortful strategy to make the best decisions, and thus end up using easier

strategies. This thought process may also explain why older adults tend to rely heavily

on prior knowledge instead of trying to learn new information (Spreng & Turner, 2021;

Sherratt & Morand-Ferron, 2018). However, if future time perspective is subjective and can

be localized to the time frame of an experiment, then perhaps older adults will choose to

expend mental effort when they believe that they have enough time left in the experiment

to benefit from the extra effort.

Although a recent meta-analysis (Seaman, Abiodun, Fenn, Samanez-Larkin, & Mata, 2022)

found that there was little evidence for a relationship between age and the perception of

future rewards, the authors only included studies using monetary rewards in intertemporal

choice tasks. Such tasks generally involve asking participants whether they prefer a smaller

immediate reward or a larger delayed reward. These tasks, and most tasks studying future

time perspective, also rely on asking participants to imagine scenarios. Few studies manip-

ulate participants’ future time perspective by varying the length of the experiment to affect
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how much time participants spend in the experiment. Thus, we designed the present study

such that participants’ choices directly affect how quickly they can finish the experiment.

The research presented in this chapter makes use of the IntelliBaker task introduced in

chapter 3. There are two different versions of the IntelliBaker, type A and type B, with type

B being the more difficult of the two to learn. However, type B also gives more rewards

than type A when mastered. Participants who can learn to skillfully use either type A or

type B can finish the experiment faster than those who cannot. Furthermore, while we have

participants use the easier type A for the majority of the experiment, they are given multiple

opportunities to switch to type B if they believe that using type B will improve the rate at

which they progress through the experiment. By varying the time points in the experiment

where we ask participants to make a choice between using type A or type B, we are asking

participants to estimate how much time they have left in the experiment and reason about

which IntelliBaker type will help them reach the end faster. If someone has a long future

time perspective, then they will be inclined to choose the more rewarding type B because

they believe they have enough time to master it. On the other hand, if someone doesn’t

believe that they can master type B in time, they will choose to stick to type A. Considering

this, the first hypothesis we plan to test is that older adults will stop switching earlier in the

experiment compared to younger adults due to their shorter future time perspectives.

Additionally, we designed the present study such that we can determine whether people are

making optimal decisions in their choice of IntelliBaker. If older adults are choosing to stay

with type A because they don’t have enough time to master type B, we can verify this with

simulated data based on participants’ task performance. Thus, the second hypothesis we

will test is that older adults are acting optimally when they choose to stay with IntelliBaker

type A instead of switching.

If we find that older adults perform better on the task when they forgo learning about a

new option, then we can conclude that their reluctance to try new technologies is justified.
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However, if we find that older adults perform suboptimally when avoiding the new technology,

then we will know that their conservation of effort is actually holding them back.

4.2 Methods

Participants

Participants were recruited from the online platform Prolific. A person could take part in

the experiment if they lived in the United States of America, were fluent in English, and

had an approval rate of at least 90% on the platform. If the person was between the ages of

18 and 40 years old, they were assigned to the younger adult group and if the person was

60 years or older, then they were assigned to the older adult group. Participants were paid

$3.00 for completing the study.

60 participants took part in the experiment. 1 participant was excluded for not completing

the final block of the experiment for unknown reasons, leaving 59 participants. There were

29 participants in the younger adult group and 30 participants in the older adult group. The

age range of the younger adult group was 22-39 years (mean 29.79 years) while the range of

the older adult group was 60-77 years (mean 66.30 years).

Procedure

The experiment consisted of 5 blocks total. During each block, participants were tasked

with using an IntelliBaker machine to earn 150 stars total (Figure 4.1). The details of

the IntelliBaker task are in chapter 3, but in short, participants are asked to find the best

settings for the machine and on each attempt, participants can earn between 1 and 7 stars

using IntelliBaker type A and between 1 and 9 stars using IntelliBaker type B. However, it
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Figure 4.1: An example of the main task screen which features IntelliBaker type A.

takes more attempts on average to earn 9 stars with type B than to earn 7 stars with type

A (see experiment 1A in chapter 3). Participants learn to find the best setting based on the

number of stars they earn on a trial. The more stars they earn, the closer their guess is to

the correct setting.

The first block, baseline block A, consisted of participants only using IntelliBaker type A

to earn 150 stars. The second block, baseline block B, consisted of participants only using

IntelliBaker type B. These baseline blocks allowed participants to get a sense of how both

types work. Then came three test blocks, which were randomized. In each test block,

participants always started with a new version of type A, but once they earned a certain

amount of stars, they were given the option to either switch to type B or stay with type A

(Figure 4.2. This option was offered after either earning 15, 75, or 125 stars to correspond

roughly with the beginning, middle, and end of the block. After participants made their

choice, they were asked to type why they made that choice before finishing the rest of the

block with their preferred machine.
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Figure 4.2: An example of the switch screen which appears during the test blocks after
participants have earned either 15, 75, or 125 stars out of 150 stars.

Analysis

First, we’ll confirm the results from experiment 1A in chapter 3 that there is no difference

between age groups in how well they can use IntelliBaker types A and B. We’ll use a Bayesian

Mann-Whitney U test (van Doorn et al., 2020) to compare the two age groups on the number

of trials needed to reach 150 stars in the baseline blocks. We will also confirm the absence of

learning between blocks by using a Bayesian paired samples Wilcoxon test on participants’

performance during their first test block and the last block (van Doorn et al., 2020).

We calculated the proportion of adults who chose to switch in each age group at the three

different switch points (15, 75, and 125 stars). Then we compared the proportions at each

time point for both age groups (e.g. % of older adults who switched after 15 stars vs % of

older adults who switched after 75 stars) using a Bayesian A/B test (Hoffmann et al., 2022).

We also used the Bayesian A/B test to compare the two age groups at the same time point.
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In order to determine whether older adults were making optimal choices, we needed to ap-

proximate the counterfactual scenario. Then, we could compare the number of trials, or

attempts, each participant needed to reach 150 stars during the test block to the counter-

factual block. If a participant used more attempts during their test block than the imagined

counterfactual, then their choice of IntelliBaker seems suboptimal. In order to simulate the

data of what these counterfactual blocks could look like, we used the data from the first two

baseline blocks. If a participant chose to switch to type B, we could simply compare that

test block performance to the performance in baseline block A. If a participant chose to stay

with type A, then we spliced together the rewards earned per trial from the test block up

until the switch point and their rewards earned per trial from baseline block B, to simulate

the scenario where the participant switched and started to learn type B from the beginning.

We used this counterfactual analysis method to create visualizations of group level per-

formance after switching at 15, 75, and 125 stars. These visualizations made use of only

the participants’ baseline block data, such that rewards from the baseline A block were

spliced together with rewards from participants’ baseline B block to visualize the hypotheti-

cal switching scenario. We averaged the number of trials participants needed to reach or cross

a certain reward threshold and then plotted this average at various reward levels (specifically

at 5, 15, 25, 50, 75, 100, 125, and 150 stars). The error bands were constructed using the

95% confidence interval of the number of trials at each point.

Once we constructed the counterfactual data for each participant, we find the difference

between the number of trials needed to reach 150 stars in the test block and the counterfactual

block. If this difference is positive, that means the participant’s choice resulted in them

needing extra trials to finish the block. If the difference is negative, then that means their

choice resulted in them needing less trials compared to the counterfactual. This difference is

also known as regret in the machine learning literature (Neller & Lanctot, 2013). We then use

a Bayesian t-test (Rouder, Speckman, Sun, Morey, & Iverson, 2009) to compare the regret
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between older adults who chose to switch and older adults who chose to stay at each time

point to determine whether or not older adults are acting optimally. Since we hypothesize

that older adults who choose to stay with IntelliBaker type A are acting optimally, we will

define the alternative hypothesis as older adults who choose to stay will use fewer trials than

older adults who had chosen to switch (i.e. their regret will be negative.) For younger adults,

we used a two tailed alternative hypothesis since we are unsure which is the optimal choice

for younger adults.

All of the Bayesian analysese were conducted using JASP (JASP Team, 2023). In the

results section, we will report Bayes factors (BFs) for our analyses. Following the notation

for the alternative hypothesis (1) against the null (0), BF10 > 1 indicates evidence for the

alternative hypothesis while BF10 < 1 indicates evidence for the null hypothesis. If the

alternative hypothesis is one sided, then the notation changes to BF+0 or BF−0, depending

on if the alternative hypothesis is that effect is greater or less for one group over the other.

The value of the Bayes factor increases with the likelihood of the alternative hypothesis.

For example, BF10 = 10 means that the data are 10 times more likely under the alternative

hypothesis compared to the null hypothesis. Generally, BFs between 3 and 10 indicate

moderate evidence against the null hypothesis, and BFs greater than 10 indicate strong

evidence against the null (Kass & Raftery, 1995).

Additionally, we examined the free-text responses participants gave immediately after mak-

ing their decision to switch or stay and coded these responses as one of five reasons for

choosing a particular machine: ease of use, reward potential, time efficient, mastery focused,

and other reasons not captured by the aforementioned categories, such as choosing based

on a whim. Each participant was asked for a reason three times throughout the experiment

and as such there are 177 total responses. We report the proportion of responses in each

category in the results section.
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4.3 Results

First, we compared the two age groups on the number of trials participants needed to reach

150 trials in the baseline blocks. There was little to no evidence pointing to a difference

between age groups for both IntelliBaker type A (BF10 < 1) and type B (BF10 < 3). We

also verified that both older adults (BF−0 < 1) and younger adults (BF−0 < 1) were not

improving between the first test block and the last test block. Thus, we can conclude that

both age groups are comparable when looking at their IntelliBaker performance.
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Figure 4.3: The proportion of each age group that chose to switch to IntelliBaker type B
after either earning 15 stars, 75 stars, or 125 stars towards the overall goal of earning 150
stars. Error bars reflect the 95% credible interval.

Next, we compared the proportion of each age group who chose to switch to type B across

the three different time points: at 15 stars, 75 stars, and 125 stars (Figure 4.3. There was no

difference between the 7 out of 30 older adults who switched at 15 stars and the 9 older adults

who switched at both 75 stars and 125 stars (BF10 < 1). There was moderate evidence for

a difference between the 17 younger adults who chose to switch at 15 stars compared to

the 10 younger adults who switched at 75 stars (BF10 > 3). There was very little evidence

for a difference between these 10 younger adults at 75 stars and the 6 younger adults who

switched after 125 stars (BF10 > 1). We also found a difference between age groups at 15

stars (BF10 > 20) but not at the other time points. The proportion of older adults who
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Figure 4.4: Plots of the predicted cumulative rewards for each age group if participants chose
to switch to using IntelliBaker type B after earning 15, 75, and 125 stars out of 150 total,
compared to if they stayed with IntelliBaker type A for the rest of the block. The earlier in
the block participants switch, the better chance they have of finishing the block faster than
if they chose to stay with the same IntelliBaker.
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switched stayed relatively consistent at each time point, whereas the proportion of younger

adults seems to decrease as the switch is offered later in the block.

Figure 4.4 illustrates the counterfactual performance for younger adults and older adults as

a group at each of the possible switch points. Each group’s baseline block A performance is

plotted alongside for visual comparison of the reward trajectories. Based on these results,

it seems like both younger and older adults have a chance at finishing the test block faster

if they choose to switch to IntelliBaker type B early on in the block, after earning 15 stars

(Figure 4.4 top panel). As the switch occurs later and later in the block it appears more

likely to take younger and older adults more time to finish the block compared to if they

just continued using IntelliBaker type A (Figure 4.4 middle and bottom panels).

When we compared participants’ actual test block performance to their simulated counterfac-

tual performance, we found no strong evidence that older adults who stayed with IntelliBaker

type A were acting suboptimally. Specifically, when we compared the number of extra trials

needed by older adults who chose to stay with type A compared to the older adults who

chose to switch to type B, there was no difference at 15 stars (BF−0 < 1) nor at 75 stars

(BF−0 < 3). While the older adults who stayed with type A weren’t acting suboptimally, we

can’t conclude that they were acting optimally either, at least at the earlier switch points.

At 125 stars, staying with type A was clearly the better option for older adults (BF−0 > 20;

Figure 4.5). Turning our attention to the younger adults, there was no difference between

those who chose to stay and those who chose to switch at 15 stars (BF10 < 1). There

was strong evidence for differences in younger adults at 75 stars (BF10 > 20) and 125 stars

(BF10 > 200). Figure 4.5 reveals that staying with type A is the optimal choice for younger

adults at these later time points.

We also coded the free-form text responses to the prompt “please tell us why you chose

this machine” into five categories: ease of use, reward potential, time efficient, mastery

focused, and other. Reward potential was the code given to any responses which mentioned
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Figure 4.5: The number of extra trials a participant needed to reach the end of the block
based on their decision to switch or stay, compared to their counterfactual data. Values less
than or near 0 can be interpreted as having made an optimal choice since these participants
finished the block as fast or faster than if they had made the other choice.

being able to get a higher amount of stars while ”time efficient” was the category for all

responses mentioning an aspect of time, such as being able to finish the experiment faster.

”Mastery focused” describes those responses which mention finding the best combination for

a particular IntelliBaker type, since achieving this would indicate mastery of the IntelliBaker.

Examples of these responses and of the other categories can be found in Table 4.1, as well

as the proportion of responses which fall into each category. The reasons most often given

for staying with type A fell into the category “ease of use”, which made up 36.7% of all

responses. The reasons most often given for switching to type B were in the “time efficient”

category and made up 11% of all responses.

Category Example Response Stay Switch

Ease of Use “It is easier”/“has less knobs” 0.367 0.017

Reward Potential “More possible points.” 0.017 0.085

Time Efficient “to reach the goal with fewer attempts” 0.062 0.113

Mastery Focused “I know the settings on this machine” 0.175 0.028

Other “Just a random guess...” 0.107 0.085

Table 4.1: The proportion of responses given for why a participant chose to stay with
IntelliBaker type A or switch to type B, broken down by choice. Each participant made
three choices, so there were 177 total responses.
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4.4 Discussion

We conducted the current experiment to understand how future time perspective affects older

adults’ decisions to invest mental effort towards learning a new and challenging technological

device. The main task was to use an IntelliBaker to earn rewards totalling 150 stars. The

speed at which participants moved through the task was directly tied to their ability to learn

the IntelliBaker. At three different points in the task, we offered participants the option to

switch to a more difficult yet more rewarding IntelliBaker. We expected that participants

would choose to switch if they believed they had enough time left in the task to benefit from

the switch, otherwise they would stay with the easier, more familiar IntelliBaker.

Because older adults have shorter future time perspectives on average compared to younger

adults (Carstensen, 2006, 2021), we expected that the proportion of older adults who choose

to switch will decrease earlier in the experiment compared to younger adults. We found that

the proportion of older adults who switched stayed relatively constant throughout the task.

We also found that the proportion of younger adults who switched was highest near the

beginning of the task, before dropping during the middle of the task and staying relatively

constant till the end. We can interpret this finding in one of two ways. The first is that older

adults are not affected by the amount of time they have to learn something and will always

prefer to conserve their efforts and stick to the easier option. This interpretation is in line

with previous results in the literature where older adults preferred known options (Spreng &

Turner, 2021; Sherratt & Morand-Ferron, 2018). The second is that older adults never felt

that they had enough time to learn the new IntelliBaker at the time points we chose to test

and thus it remains possible that a higher proportion of older adults are willing to switch at

an even earlier point in the task, much like we see in the younger adults. The switch point

of 15 stars may have been the stopping point we were hoping to observe where older adults

largely choose to stay with the easier option compared to younger adults who were more

likely to switch at this point. Because there were age group differences at this point, we
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cannot rule out the possibility that our hypothesis holds at an earlier time point. However,

participants earn 15 stars pretty quickly in the task, after using the IntelliBaker only about

4 or 5 times. Offering participants a switch even earlier may be risky since participants may

choose to stay with the easier IntelliBaker because they may be curious about how well it

works and have not had adequate time to learn about it. Thus, it would be better to extend

the goal beyond 150 stars instead and lengthen the task. Perhaps a goal that is farther away

will assure participants that they have enough time to learn a new IntelliBaker. With this

option though, care must be taken to avoid enticing people to switch due to boredom. With

the current design, at least, very few responses noted boredom as the reason for switching

(boredom made up a fraction of the ”Other” category in 4.1).

We also wondered whether older adults who choose to stay with the easier IntelliBaker are

doing so optimally. The results are mixed. Towards the end of the task, older adults who

stay with the easier IntelliBaker definitely made the correct choice in terms of finishing the

task faster, but at earlier time points, there is little difference between the people who chose

to switch and people who chose to stay. This was also true for younger adults at the earliest

switch point of 15 stars, but later in the task, it was clear that staying with the easier machine

was the best option for most people. Figure 4.5 indicates that early in the task, whether

a particular choice is optimal is dependent on the individual’s performance regardless of

their age. Although these results are based on crude approximations of the counterfactual,

we believe that our method is a reasonable starting point. We found very little evidence

for learning between blocks so we can equate performance from the earlier blocks and later

blocks. Even if we suppose that participants get better at using the IntelliBaker each time

they use one, we can then assume that the baseline blocks represent participants’ worst

possible performance. In this scenario, participants who took more time to complete the

test block clearly did not make the best choice because they were unable to best their worst

performance despite getting better at the task.
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Overall, these results neither prove nor disprove our hypotheses and thus, further research is

needed. Future experiments can modify several parameters of the IntelliBaker task or sim-

ilar “skilled bandit” tasks (e.g. Hotaling, Navarro, & Newell, 2021) to see how they affect

participants’ switch inclinations, such as when to offer a switch, the number of switch points,

and the length of a block. The counterfactual analysis can also be improved by modeling

participants’ performance curves on these skilled bandit tasks and using the curves to pre-

dict performance after switching. Until these new experiments and analyses are conducted

however, we interpret the current results to mean that older adults are inclined to stick with

easier, more familiar options rather than learn a new one regardless of the amount of time

given to them to learn. Whether this behavior is to their benefit or their detriment remains

to be seen. If it is to their benefit, then the stereotype of older adults avoiding new technolo-

gies takes on a positive light. However, if older adults are missing opportunities to increase

their quality of life due to feeling they have limited time to learn useful technologies, then

this phenomenon should be established quickly so that solutions can be found.
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CONCLUSION

The research included in this dissertation explores the various ways that adults can adapt

to cognitive changes brought by aging, and also demonstrates that older adults are capable

of learning complex strategies and tools as well as younger adults. In chapters 1 and 2, I

discussed how some cognitive tutoring or extra practice on a task can help older adults per-

form as well as younger adults on planning, reasoning, and problem solving tasks. Like many

other cognitive training programs that have come before this research, my results likely only

hold for the particular set of tasks that I tested participants on. Strong evidence of transfer-

able cognitive skills from a training task to activities of daily living remains elusive (Owen

et al., 2010; Rebok et al., 2014; Simons et al., 2016). Thus, while training metacognitive

skills such as teaching people how to choose a good planning strategy rather than training

people to solve particular problems sounds promising in helping people make better decisions

overall, much more careful research is needed to demonstrate that this kind of training will

transfer beyond the training task. I believe such research will require sustained training of a

particular metacognitive strategy on a variety of tasks in order for people to learn the par-

ticular features of a task in which the strategy is useful. Additionally, older adults will need

much more training compared to younger adults in order to use these strategies proficiently.

Despite these limitations, the work in these chapters adds to previous scientific work which

finds that older adults can reach age equivalence with younger adults by adapting the way
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they learn, such as trying a different decision making strategy or giving themselves more

time to learn.

In chapters 3 and 4, I investigated the reasons behind older adults’ resistance to learning

new technology and found that older adults are capable of learning complex tools and will

approach them at the same rate as younger adults if the benefits of doing so are sufficiently

high. Contrary to previous studies which reported that older adults explore less than younger

adults (Queen et al., 2012; Mata et al., 2013; Wiegand et al., 2019; Spreng & Turner, 2021),

we found in chapter 3 that older adults switch between IntelliBakers as often as younger

adults do and they don’t shy away from the hardest IntelliBaker either. However, in chapter

4, we found a different pattern of results – older adults were much less willing to switch to a

different and more challenging IntelliBaker type compared to younger adults, which indicates

a reluctance to explore and is in line with previous studies. The two experiments were set

up similarly in terms of the goal and the types of IntelliBaker that were available, though

chapter 4’s experiment reduced the number of IntelliBaker types and did not include the

most preferred IntelliBaker type from chapter 3 experiment 1B, type C. This was because

the pace of earning rewards with type C is so slow that it would never make sense to choose

type C over type A at any point in the experimental blocks in chapter 4. With type B,

there was at least a chance of performing better after switching as opposed to staying with

type A. However, type B had an earning potential of 9 stars compared to type C’s 11 stars

and so older adults may have felt that the reward potential was not high enough to invest

the effort of learning the more difficult type B and chose to stay with type A. The other,

major, difference between the two experiments is that the experiment in chapter 3 allowed

participants to switch between IntelliBaker types at will, multiple times, while during the

experiment in chapter 4, participants could only switch once per block and they had no

control over when the switch option would appear. Having to commit to an IntelliBaker

may have raised the stakes considerably and caused older adults to consider more deeply

which IntelliBaker they wanted to spend time learning. In the situation where participants
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could switch at any time, older adults may have felt that there were no consequences to their

decision because they could always switch to a different IntelliBaker if they felt they had

chosen suboptimally. Not fearing severe consequences may have emboldened older adults to

interact more with the challenging IntelliBaker type C.

Future experiments can elucidate this pattern of results from chapters 3 and 4 a number

of ways. For example, decision consequences can be made clearer in the switch-at-will

experimental setup by limiting the number of switches possible, while keeping the timing of

the switch under participants’ control. I also think both experimental setups would benefit

from being made longer. The goal for both experiments was to earn 150 stars total using

the participant’s IntelliBaker(s) of choice but it seems likely that 150 stars is too few to feel

the consequences of choosing a harder IntelliBaker that slows you down. Put another way,

even if someone picked the wrong IntelliBaker to use, they still often reached the goal in a

reasonable amount of time. Increasing the goal to 200 or 250 stars or more might encourage

participants to really consider their time and effort costs while making a decision, and will

provide further clarity as to whether older adults are swayed by time costs when choosing to

learn something new. While the results from chapters 3 and 4 may have left us with more

questions than answers, I believe they still provide encouraging evidence that older adults

are capable not only of learning complex tasks, but also of acting optimally at times by

conserving their mental effort.

This dissertation also introduces or builds upon a few new tasks and methods which can

greatly aid future research on cognitive aging’s effects on learning and decision making. In

chapter 2, I introduced a new type of analysis which harnessed the power of a large data set

to quantify training benefits at an individual level rather than at the group level, allowing

us to be much more precise in our measurements. I also made the data set of nearly 10,000

participants’ scores on 57 cognitive training games publicly available for other researchers

(https://osf.io/wbrq2/). As I noted in chapter 3, I created the IntelliBaker task due to
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a lack of complex learning tasks in the cognitive aging literature and demonstrated that

both younger and older adults are able to learn this task. The ways in which I set up and

used the IntelliBaker task are far from the only ways to use it. Not only the number of

knobs and settings, but the maximum potential rewards, or even how rewards are earned

per trial can all be varied and adjusted to suit researchers’ questions of interest. I believe

there is a lot of potential in using the task to study problem solving strategies in older

adults and I have deposited the full data from chapters 3 and 4, which includes participants’

guesses and the correct setting, on the Open Science Framework for interested researchers

(https://osf.io/k2ye8/).

Although the work in this dissertation doesn’t directly engage with it, there is an adjacent

line of cognitive aging research which contends that differences between older adults and

younger adults on cognitive tasks appear due to the wealth of experience and knowledge that

older adults have built over their lives. For example, older adults struggle with vocabulary-

based problem solving tasks compared to younger adults because they know many more

words than younger adults and thus need more time to mentally consider all the possible

options (Ramscar, Hendrix, Shaoul, Milin, & Baayen, 2014; Ramscar, Sun, Hendrix, &

Baayen, 2017). Relatedly, the decision making strategies that older adults default to often

work poorly on decision making tasks in the lab because many lab tasks treat each decision

as independent, which are unlike the decisions people make in real life. When lab based

decision making tasks are modified so that each decision depends on a previous outcome,

older adults’ strategies turn out to work quite well (Blanco et al., 2016; Worthy & Maddox,

2012). These results suggest that researchers should be very careful about attributing an age

effect to cognitive decline without carefully considering how task characteristics might put

older adults at an unfair disadvantage. To this end, researchers interested in the planning

strategies of older adults can make great use of the Mouselab-MDP task used in chapter 1

because it is flexible enough to support many different reward environments. Based on the
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results from experiment 1 in that chapter, I suspect that older adults would do as well as

younger adults on an environment which rewards depth-first planning.

This dissertation adds to the growing body of scientific literature which provides a more

nuanced look at cognition in later life. While it’s true that aging contributes to cognitive

decline and limits the use of cognitive resources, older adults need not resign themselves to

a life of cognitive struggles and failures. As research on cognitive aging progresses, I remain

optimistic that we will continue to uncover the ways in which the brain adapts with age and

devise solutions to support lifelong learners.
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Appendix A

Supplementary Information for

Chapter 2: ”Older Adults Catch Up”

The Games

A list of all Lumosity games included in the analysis and a brief description of each game

is provided in Table A.1. For a more complete description of the properties of each game

and which cognitive processes are engaged, please refer to Extended Data Figures 1 and 2

in Steyvers and Schafer (2020). The extended description of each game’s features is also

available in a dummy coded format in the OSF repository for this paper (https://osf.io/

wbrq2).

84

https://osf.io/wbrq2
https://osf.io/wbrq2


Table A.1: Table of all Lumosity games included in the main analyses and the cognitive
domain they were classified as.

Game Name Cognitive Domain Game Type

Train of Thought Attention Divided Attention

Trouble Brewing Attention Divided Attention

Assist Ants Attention Divided Attention

Birdwatching Attention Field of View

Eagle Eye Attention Field of View

Eagle Eye 2 Attention Field of View

Highway Hazards Attention Information Processing

Splitting Seeds Attention Information Processing

Lost in Migration 2 Attention Selective Attention

Star Search Attention Selective Attention

Penguin Pursuit Attention Spatial Orientation

Speed Pack Attention Visualization

Color Match 2 Flexibility Response Inhibition

Brain Shift 2 Flexibility Task Switching

Brain Shift Overdrive 2 Flexibility Task Switching

Disillusion Flexibility Task Switching

Disillusion 2 Flexibility Task Switching

Ebb and Flow Flexibility Task Switching

Word Bubbles Language Verbal Fluency

Word Bubbles 3 Language Verbal Fluency

Word Bubbles Rising Language Verbal Fluency

Editors Choice Language Vocabulary Proficiency

Taking Root Language Vocabulary Proficiency

Word Snatchers Language Vocabulary Proficiency

Raindrops Math Numerical Calculation

Raindrops 2 Math Numerical Calculation

Halve Your Cake Math Numerical Calculation

Continued on next page
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Game Name Cognitive Domain Game Type

Chalkboard Challenge 2 Math Quantitative Reasoning

Top That Math Quantitative Reasoning

Playing Koi Memory Divided Attention

Familiar Faces Memory Face-Name Recall

Observation Tower Memory Field of View

River Ranger Memory Information Processing

Spatial Speed Match 2 Memory Information Processing

Speed Match 2 Memory Information Processing

Speed Match Overdrive Memory Information Processing

Speed Match Web Memory Information Processing

Memory Matrix 2 Memory Spatial Recall

Moneycomb Memory Spatial Recall

Follow That Frog Memory Working Memory

Memory Match Memory Working Memory

Memory Match 2 Memory Working Memory

Memory Match Overdrive Memory Working Memory

Pinball Recall Memory Working Memory

Tidal Treasures Memory Working Memory

Rhyme Workout Memory Working Memory

Rotation Matrix Memory Working Memory

Memory Match Overdrive Memory Working Memory

Rotation Matrix 2 Memory Working Memory

Memory Serves Web Memory Working Memory

Fuse Clues Reasoning Logical Reasoning

By the Rules Reasoning Logical Reasoning

Organic Order Reasoning Logical Reasoning

Word Sort Reasoning Logical Reasoning

Pet Detective Reasoning Planning

Pirate Passage Reasoning Planning

Continued on next page
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Game Name Cognitive Domain Game Type

Masterpiece Reasoning Spatial Reasoning

The Data

The original data set used for this analysis consists of 36,297 Lumosity users who have played

at least 500 times across any of the games and played them broadly (defined as 5% or less

of the user’s gameplays were repeats of the previously played game.) Users played on the

web platform in English and were located in either the US, Canada, or Australia. These

users had signed up between August 1st, 2013 and December 31st, 2016 and the data was

collected between August 1st, 2013 and June 30th, 2019. This data can be found on the

OSF repository for Steyvers and Schafer (2020) at https://osf.io/g9zkf/.

Figure A.1 is included here to give a sense of the raw learning trajectories on a single Lumosity

game and to highlight the individual differences within age groups.

Table A.2 provides the breakdown of the various age groups in the sample at three different

levels of training. As the amount of training increases, users drop out and the sample skews

older. The first row of the table represents a sample of 36,294 users. The last row of the

table represents the sample used for all of the analyses in the main text (9,923 users).

Table A.2: The percentage of users in each age bin when the sample consists of all users who
played any game up to 20, 60, and 100 times.

Age Bin

Gameplays 20s 30s 40s 50s 60s 70s 80s 90s

20 0.051 0.055 0.104 0.239 0.320 0.184 0.046 0.001
60 0.039 0.043 0.090 0.234 0.336 0.203 0.053 0.001
100 0.032 0.034 0.077 0.224 0.350 0.222 0.060 0.001
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Figure A.1: A random sample of 207 players’ learning trajectories during multiple plays of
the task switching game Ebb and Flow. One individual from the 30-39 and 70-79 groups
has been highlighted to show the initial performance gap and the later catch up potential of
the older adult.

Score Normalization and Smoothing

Three methods were considered: z-scoring, min-max scaling, and the method used in Steyvers

and Schafer (2020). All three produced similar results, and we chose min-max scaling due

to its parsimony. First we considered all scores that were greater than 3 standard devi-

ations above the mean score as outliers and set those scores to be 3 standard deviations

above the mean. Then the scores were transformed using the min-max rule (scores −

scoresmin)/(scoresmax−scoresmin) which transforms the scores such that the smallest value

(0) is the lowest score and the largest value (1) is the highest score achieved (3 standard

deviations above the mean).

To calculate the current best performance at every time point we took a rolling average

of the normalized score over windows of 5 gameplays around the current time point. For

example, to estimate a user’s performance level at gameplay 10, we calculated the average
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Table A.3: Difference in mean scores [95% confidence intervals] between 20 and 100 game-
plays for each age bin, where ”30s” means users who are 30-39 years old, ”40s” means 40-49,
etc.

Age Attention Flexibility Memory Reasoning Language Math

20s 0.137 [0.099 0.174] 0.091 [0.043 0.137] 0.125 [0.082 0.166] 0.187 [0.146 0.226] 0.15 [0.089 0.212] 0.082 [0.013 0.146]
30s 0.15 [0.122 0.177] 0.12 [0.087 0.154] 0.138 [0.106 0.17] 0.222 [0.19 0.254] 0.128 [0.079 0.181] 0.107 [0.043 0.169]
40s 0.157 [0.14 0.174] 0.148 [0.129 0.169] 0.158 [0.138 0.179] 0.204 [0.182 0.223] 0.143 [0.113 0.177] 0.105 [0.061 0.15]
50s 0.156 [0.148 0.164] 0.167 [0.158 0.176] 0.154 [0.144 0.163] 0.206 [0.196 0.216] 0.119 [0.103 0.134] 0.1 [0.083 0.119]
60s 0.135 [0.129 0.14] 0.177 [0.17 0.183] 0.137 [0.131 0.144] 0.188 [0.18 0.195] 0.096 [0.086 0.106] 0.086 [0.075 0.097]
70s 0.092 [0.087 0.098] 0.177 [0.169 0.184] 0.124 [0.117 0.131] 0.163 [0.153 0.171] 0.063 [0.054 0.073] 0.076 [0.066 0.086]
80s 0.058 [0.05 0.068] 0.151 [0.139 0.162] 0.097 [0.086 0.108] 0.139 [0.125 0.154] 0.039 [0.025 0.053] 0.057 [0.043 0.069]
90s -0.021 [-0.069 0.025] 0.162 [0.117 0.21] 0.039 [-0.017 0.095] 0.106 [0.054 0.158] -0.004 [-0.088 0.074] 0.05 [0.011 0.093]

of that user’s scores for gameplays 8, 9, 10, 11, and 12. This helps smooth out the individual

learning curve.

Additional Results

Table A.3 shows the difference in mean scores between 20 gameplays and 100 gameplays

for each age bin. As reported in the main text, these differences were mainly positive and

nonzero, showing that users are improving performance over practice. One exception involves

the 90-95 age group on attention, memory, and language games.

Figure A.2 shows the catch up effect in greater detail. For select age comparisons we have

visualized the increase in catch up probability per every extra 20 gameplays of training.

Table A.4 lists the catch up probabilities (along with the 95% credible intervals) per Lumosity

game for the age group comparisons discussed in the main text.
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Table A.4: Table of catch up probabilities [95% credible intervals] for the age comparisons
reported in the paper on each Lumosity game. Blanks in the table mean there were less than
10 players in either age group for that particular game.

Game 80s vs 60s 70s vs 60s 70s vs 50s 60s vs 40s

Penguin Pursuit 0.469 [0.393 0.544] 0.569 [0.495 0.62] 0.363 [0.282 0.445] 0.512 [0.374 0.618]

Eagle Eye 0.453 [0.422 0.482] 0.607 [0.582 0.62] 0.41 [0.389 0.432] 0.42 [0.393 0.454]

Lost in Migration 2 0.371 [0.355 0.402] 0.583 [0.558 0.592] 0.366 [0.361 0.398] 0.427 [0.415 0.47]

Speed Pack 0.488 [0.475 0.531] 0.651 [0.633 0.668] 0.486 [0.471 0.513] 0.564 [0.518 0.583]

Train of Thought 0.398 [0.416 0.467] 0.623 [0.64 0.673] 0.477 [0.476 0.514] 0.573 [0.55 0.602]

Star Search 0.414 [0.389 0.444] 0.614 [0.599 0.635] 0.455 [0.438 0.48] 0.555 [0.518 0.588]

Trouble Brewing 0.356 [0.321 0.391] 0.564 [0.524 0.572] 0.398 [0.367 0.421] 0.469 [0.443 0.52]

Splitting Seeds 0.321 [0.262 0.377] 0.502 [0.449 0.547] 0.415 [0.349 0.475] 0.542 [0.428 0.632]

Highway Hazards 0.483 [0.451 0.53] 0.63 [0.614 0.666] 0.478 [0.446 0.515] 0.543 [0.475 0.588]

Eagle Eye 2 0.338 [0.296 0.4] 0.489 [0.451 0.541] 0.337 [0.287 0.395] 0.402 [0.299 0.503]

Color Match 2 0.526 [0.49 0.563] 0.708 [0.686 0.731] 0.577 [0.546 0.602] 0.66 [0.616 0.696]

Brain Shift 2 0.483 [0.434 0.522] 0.681 [0.645 0.701] 0.53 [0.498 0.566] 0.615 [0.558 0.656]

Ebb and Flow 0.445 [0.423 0.472] 0.633 [0.604 0.638] 0.43 [0.421 0.462] 0.519 [0.487 0.549]

Disillusion 2 0.368 [0.33 0.391] 0.546 [0.517 0.564] 0.374 [0.346 0.399] 0.47 [0.425 0.517]

Playing Koi 0.357 [0.268 0.523] 0.497 [0.422 0.641] 0.322 [0.206 0.458]

Familiar Faces 0.636 [0.669 0.751] 0.805 [0.81 0.851] 0.782 [0.785 0.83] 0.863 [0.862 0.896]

Observation Tower 0.336 [0.275 0.397] 0.426 [0.389 0.484] 0.353 [0.305 0.426] 0.312 [0.277 0.474]

Pinball Recall 0.473 [0.424 0.512] 0.594 [0.562 0.623] 0.444 [0.408 0.476] 0.461 [0.409 0.508]

Memory Matrix 2 0.346 [0.309 0.375] 0.481 [0.453 0.503] 0.351 [0.325 0.38] 0.393 [0.348 0.428]

Speed Match 2 0.465 [0.435 0.489] 0.631 [0.597 0.631] 0.473 [0.448 0.489] 0.54 [0.502 0.568]

Spatial Speed Match 2 0.478 [0.417 0.536] 0.729 [0.675 0.746] 0.601 [0.549 0.639] 0.556 [0.481 0.611]

Tidal Treasures 0.473 [0.447 0.507] 0.584 [0.573 0.618] 0.513 [0.498 0.55] 0.586 [0.545 0.627]

River Ranger 0.416 [0.384 0.473] 0.599 [0.567 0.63] 0.4 [0.391 0.468] 0.528 [0.5 0.618]

Pet Detective 0.674 [0.653 0.719] 0.789 [0.777 0.81] 0.729 [0.71 0.749] 0.835 [0.811 0.85]

Organic Order 0.392 [0.378 0.501] 0.597 [0.588 0.673] 0.438 [0.388 0.518] 0.565 [0.461 0.67]

Masterpiece 0.465 [0.414 0.515] 0.574 [0.533 0.607] 0.466 [0.405 0.509] 0.611 [0.512 0.685]

Continued on next page
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Game 80s vs 60s 70s vs 60s 70s vs 50s 60s vs 40s

Fuse Clues 0.457 [0.383 0.519] 0.654 [0.569 0.675] 0.56 [0.451 0.602] 0.629 [0.463 0.721]

Word Bubbles Rising 0.367 [0.348 0.401] 0.534 [0.52 0.559] 0.431 [0.413 0.456] 0.516 [0.481 0.546]

Word Bubbles 3 0.232 [0.188 0.286] 0.397 [0.36 0.444] 0.247 [0.208 0.308] 0.377 [0.292 0.508]

Raindrops 0.327 [0.265 0.374] 0.513 [0.457 0.557] 0.375 [0.316 0.419] 0.405 [0.315 0.455]

Chalkboard Challenge 2 0.333 [0.308 0.396] 0.476 [0.454 0.524] 0.393 [0.368 0.444] 0.496 [0.431 0.545]

Raindrops 2 0.242 [0.225 0.275] 0.423 [0.402 0.451] 0.303 [0.283 0.34] 0.432 [0.379 0.48]

Disillusion 0.689 [0.578 0.764] 0.522 [0.42 0.617] 0.465 [0.385 0.603]

Memory Match 2 0.619 [0.469 0.741] 0.442 [0.281 0.606]

Editors Choice 0.461 [0.281 0.616] 0.586 [0.346 0.755]

Taking Root 0.844 [0.631 0.937]
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Figure A.2: The catch up potential for 60-69, 70-79, and 80-89 year olds versus younger
age groups across different levels of training and different domains. Each bar represents the
probability of the older adult meeting or exceeding the performance of the younger adult after
randomly sampling an individual from the two age groups and comparing their performances.
The younger group stays fixed at 20 gameplays while the older group is assessed at higher
levels of training, up to 100 total gameplays. Catch up probability was averaged across the
individual games and the error bars represent the 95% confidence interval on the average
catch up probability.
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