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Abstract

In an attractor model of semantic memory, semantic similarity
is determined by degree of featural overlap. In contrast, in
spreading activation theory, two concepts are similar if they
share features or if they are linked to the same superordinate
category node. We present an attractor network model of
computing word meaning and use it to simulate the data of
McRae and Boisvert (in press), who found that short SOA
semantic similarity priming directly depends on degree of
featural overlap. The two accounts of semantic similarity are
then contrasted in a human experiment. In support of attractor
networks, priming effects were determined by featural
overlap, and no evidence was found for priming through a
purported superordinate node. It is concluded that lexical
concepts are not represented as static nodes in a hierarchical
system.

Semantic Similarity

Semantic memory research has been dominated by semantic
networks and the associated spreading activation theory
(Collins & Loftus, 1975). Recently, however, theories of the
computation of word meaning have been expressed in terms
of distributed attractor networks (Hinton & Shallice, 1991).
Semantic networks are typically hierarchical in nature, with
categories at different levels represented by individual
nodes. Category membership is thus explicitly coded via
links between exemplar and category nodes. In contrast,
category membership is not coded in such an explicit
manner in attractor networks. The present work focuses on
this contrasting aspect of these two theories, testing this
difference in the realm of semantic similarity priming.

Semantic similarity priming refers to the fact that
response latency to a target word such as hawk is faster
when it is preceded by a similar word such as eagle versus
an unrelated word such as bread, even when the similar
prime and target are not normatively associated. Priming
research has played a key role in the development and
testing of theories of semantic memory because most
researchers believe that results of these experiments directly
reflect the structure of semantic memory, particularly when
subjects’ strategies are minimized.

The mechanisms used to account for semantic similarity
priming differ in spreading activation models versus
attractor networks. In spreading activation theory,
recognizing a word includes activating its corresponding
node in semantic memory. Response latency is assumed to
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be directly related to the time required for a word's node to
reach an activation threshold. Critical for explanations of
priming, when a word is activated, activation spreads from it
to all linked nodes. The existence and strength of these links
is assumed to directly reflect learned semantic relationships
between pairs of words. Similarity-based priming is due to
two mechanisms, the first being spreading activation from
prime to target via links between shared features (e.g., eagle
= <has wings> = hawk). The second is that activation is
assumed to spread via “highly criterial” links connecting
exemplar and category nodes (eagle = bird = hawk)
(Collins and Loftus, 1975, p. 413).

In attractor networks, recognizing a word involves
settling into a stable state in a multi-dimensional space.
Short SOA semantic priming is thought to be due to residual
activation of the prime's meaning, which influences the ease
with which the model can move from one attractor state to
another (Masson, 1995; Plaut, 1995). In a typical
simulation, the prime's word form is input to the network
and its meaning is computed. With the network thus in a
state representing the prime (eagle), the target's word form
(hawk) is given as input. Facilitation results because the
distributed semantic representations of the prime and target
overlap, so that some portion of the semantic units for the
target begin in their correct state. This is not the case when
the prime is not related to the target. Critically important is
the fact that category membership in these networks is given
no special status. Therefore, priming is not due to category
membership per se.

The majority of human empirical studies of semantic
similarity priming have operationalized similarity on the
basis of shared superordinate category (e.g., Lupker, 1984;
Moss, Ostrin, Tyler, and Marslen-Wilson, 1995; Shelton
and Martin, 1992). However, these studies have found little
or no priming between words defined as similar on this
metric (but see Chiarello et al., 1990). On the other hand,
McRae and Boisvert (in press) clearly demonstrated that
similarity priming depends on the degree of featural overlap
between two lexical concepts, with strong featural similarity
being required for priming to occur. McRae and Boisvert
also noted that the studies in which null effects were
obtained used prime-target pairs that were only moderately
similar, presumably because the researchers felt that shared
category membership was key, following spreading
activation theory.


mailto:george@sunrae.sscl.uwo.ca
mailto:cinn@rogers.wave.ca

Although it appears that featural similarity is the key
variable to explain this set of behavioral phenomena, it is
not clear whether the notion of shared category membership
is necessary to account for similarity priming. Therefore, the
goals of this article are to show that an implemented
attractor network simulates McRae and Boisvert's (in press)
result that degree of featural similarity determines amount
of priming, and to directly contrast featural similarity versus
shared superordinate category in a human experiment.

This article is structured as follows: (1) we present an
attractor model of computing word meaning, (2) via
simulation, we demonstrate that short SOA semantic
similarity priming effects are best predicted by similarity in
terms of featural overlap; and (3) we present an experiment
showing that semantic similarity priming effects are
influenced by featural similarity, but not hierarchical
category structure (typicality).

Model of Computing Word Meaning

The key elements of the model are: (1) semantic
representations were derived from subjects, rather than
being experimenter-created, so that degree of similarity is
not a free parameter; (2) a word's meaning is an attractor
point in semantic state space; (3) the mapping from word
form to meaning is arbitrary; and (4) there is no explicit
hierarchical structure.

The model's architecture is presented in Figure 1. The
network mapped directly from 12 word form units to 1242
semantic features. The semantic feature units looped back to
themselves through a layer of 30 hidden units (semantic
structure units).
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Figure 1: Model Architecture.

Units
Input to the network was an abstract word form
representation that could be interpreted as either spelling or
sound. Each word's form was represented by turning on a
randomly selected 3 units (activation = 1). Thus, the
mapping between meaning and form was arbitrary, as in
English monomorphemic words.

The semantic representations were taken from McRae, de
Sa, and Seidenberg (1997), who asked subjects to produce

semantic features for 19 exemplars from each of 10 object
categories: birds, mammals, fruits, vegetables, clothing,
furniture, kitchen items, tools, vehicles, and weapons. The
resulting output representation was sparse because a concept
consisted of at most 27 features across the semantic feature
layer.

McRae et al. (1997) noted that relevant structure is not
restricted to mappings between domains such as
orthography, phonology, and semantics, but also includes
structure within a domain. Thus, the semantic structure units
play an important role as hidden units in that they encode
semantic regularities (feature correlations) and exploit these
regularities for computing word meaning. In essence, this
cyclical part of the network is where the attractors are
formed, so that the model's computational dynamics are
strongly influenced by correlations among semantic
features, such as <has wings> and <has a beak>.

Training

The semantic and semantic structure units were initialized to
random starting values in the range 0.2 + .05. A word’s
form was then hard-clamped at the input layer. Each tick of
processing time (20 in total) allowed activation to spread
one layer forward. Total time was segmented into 4 time
steps (t), each consisting of 5 time ticks (T = 0.2) (similar to
Plaut, 1995). Net inputs to a unit (x) were averaged
according to Equation 1,
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where si was the activation of the ith unit and wii was the
weight on the connection to the jM unit from the iM
Therefore, a unit's input at each time step was a weighted
average of its previous input and the current input from all
sending units. Activation was then determined using the
standard sigmoidal function.

Weight changes were calculated using the
backpropagation-through-time learning algorithm. Error was
backpropagated over the 20 processing ticks in a manner
analogous to the forward pass. Error was injected into the
system (i.e., the target’s semantic representation was
provided) for the final two time steps only (10 time ticks),
thereby training the network to produce the target output
gradually over time. Error derivatives were calculated using
cross entropy error (E) as in Equation 2,

@ E=YYdlny+01-d)ndl-y,)
p i

where d; was the desired activation for unit; and yj was the
computed activation, summed over patterns p.

The network was trained using the PDP++ (version 1.1)
simulator developed at Carnegie Melon by R. C. O'Reilly,
C. K. Dawson, and J. L. McClelland. Weights were updated
after each pattern presentation. The learning rate was 0.01
throughout training. Momentum was set at 0 for the first 10
epochs of training and 0.9 thereafter. Each epoch consisted
of randomly presenting the 190 patterns. After 85 epochs of
training, the network settled to the correct stable state for all
patterns within 20 time ticks.
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Simulation:
McRae and Boisvert (in press, Experiment 3)

The model was used to simulate Experiment 3 of McRae
and Boisvert (in press), in which it was demonstrated that
semantic similarity priming is crucially dependent on the
degree of featural overlap. They designed word triplets by
pairing a target (jar) with both a highly similar prime
(bottle) and a less similar prime (plate), with degree of
similarity being established by subjects' ratings. Prime-
target similarity of the less similar primes was in the range
of Shelton and Martin's (1992) items. SOAs of 250 ms and
750 ms were used because short SOAs such as 250 ms are
believed to reflect lexical-internal factors only, whereas
effects at a longer SOA such as 750 ms may be influenced
by subjects' strategies (see Neely, 1991 for a review).
Consistent with these notions, with a 250 ms SOA, latencies
in a semantic decision task ("Does it refer to a concrete
object?”) were faster for targets preceded by highly similar
primes (685 ms) than by less similar (712 ms) or dissimilar
primes (711 ms), and no priming obtained for the less
similar items. With a 750 ms SOA, semantic decisions were
again faster in the highly similar condition (646 ms) than in
both the less similar (664 ms) and dissimilar conditions (692
ms). However, reliable priming was found for the less
similar items, replicating Shelton and Martin's findings.

The simulation investigated whether the network would
exhibit appropriate settling for the same items. That is, the
model should show faster settling times for targets preceded
by highly similar primes versus either less similar or
dissimilar primes. We did not attempt to closely
approximate the long SOA condition because it is unclear
how to incorporate subjects' strategies into the network. Of
interest, however, is the prediction that less similar targets
should converge somewhat faster than dissimilar ones
because there must be a basis for the priming obtained at the
long SOA.

Method

Prior to presenting the prime, all semantic and semantic
structure units remained in the state determined by the

previous target. The prime’s word form was hard-clamped
for 15 ticks. The target's word form was then clamped with
all other units unchanged. The target was allowed to settle
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Figure 2a: Mean error at each tick

for 20 ticks and cross-entropy at the semantic feature layer
was recorded. Priming trials were run using five random
orders, with the results averaged across runs.

Results

The settling profiles for the targets are presented in Figure
2A. The difference between the high and less similar groups
is more pronounced than between the less similar and
dissimilar items, reflecting the human data. It is not clear
how best to map such data onto human decision latencies
because of the uncertainty involved in determining the
extent to which a representation must stabilize before a
response can be initiated in a speeded task. Therefore, we
calculated the mean number of time ticks required to reach
several levels of cross-entropy, and these results are
presented in Figure 2b. Settling times are presented for a
number of thresholds, ranging from 2.5 to 0.5 (in
decrements of 0.25).

A two-way repeated measures ANOVA was conducted
with error level (2.5 - 0.5) and prime-target similarity
(highly similar vs. less similar vs. dissimilar) as the
independent variables, and number of ticks to reach the
specified error level (convergence latency) as the dependent
variable. Prime target similarity influenced convergence
latency, F(2,52) = 26.75'. With the nine error levels
combined, convergence latency for the highly similar items
was significantly shorter than for the less similar, F(1,52) =
30.35, and dissimilar items, F(1,52) = 47.90, but the less
similar and dissimilar targets did not differ, F(1,52) = 1.99,
p>.L

Similarity and error level interacted in that differences
among the three conditions decreased at the lower error
levels, F(16,416) = 17.75. Planned comparisons revealed
that at error levels 2.5 and 2.25, convergence latency for
highly similar targets was significantly shorter than for less
similar targets, which was in turn shorter than for dissimilar
targets. These results mirror those of the long SOA
presentation condition of McRae and Boisvert’s Experiment
3. At the next 5 error levels (2 to 1), highly similar targets
converged more quickly than less similar targets, which did
not differ significantly from the dissimilar condition. These
results mirror their short SOA. At error levels of 0.75 and
0.5, only the highly similar and dissimilar groups differed
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Figure 2b: Mean number of ticks to reach error level.

! Note that p <0.05 unless otherwise indicated. Where appropriate,
F, refers to analyses by subjects whereas F;, refers to analyses by
items.
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reliably. Finally, convergence latency increased across the
nine error levels, F(8,208) = 147.14.

Discussion

The priming effects demonstrated by the model reflected the
subtle effects seen in the human data. The small difference
between the convergence latencies of the less similar and
dissimilar conditions explain the small priming effects
found by Lupker (1984), Moss et al. (1995), and Shelton
and Martin (1992). Note that the degrees of freedom for
accounting for these effects were minimized because degree
of similarity was determined by McRae et al.’s (1997)
feature production norms, rather than by the experimenters’
intuitions, and all items in the human experiment were
included in the model.

Experiment

McRae and Boisvert’s (in press) Experiment 3 and the
simulation thereof suggest that featural similarity is the
primary determinant of semantic similarity priming effects.
In contrast, according to most semantic network models
such as Collins and Loftus (1975), semantic priming is also
mediated by superordinate category nodes. In this account,
the strength of the exemplar < superordinate links are
directly related to exemplar typicality. Thus priming
between category co-ordinates should depend on their
typicality. To investigate this, Chiarello and Richards
(1992) compared priming effects for typical (robin-crow)
versus less typical (duck-crow) members of a category, with
the two groups equated for rated featural similarity. Priming
was found for the highly typical primes in a lexical decision
task when primes and targets were presented in the left
visual field, but not when words were presented to the right.
In a pronunciation task, numerically but not significantly
larger priming effects were found for the highly typical
primes in both visual fields. In summary, these experiments
are suggestive, but they do not clarify the role of typicality.

To investigate this issue further, we reanalyzed McRae et
al.’s (1997) Experiment 3 short SOA priming data. They
measured priming effects for 88 items that ranged both in
item similarity and in typicality of the primes and targets.
Item by item priming effects were predicted using typicality
of the prime, typicality of the target, summed typicality of
the prime and target, and similarity in terms of individual
and correlated features. Two items were deleted because the
typicality ratings for shed-barn and crayon-pencil were
collected with respect to the superordinate fool, and the
ratings showed that subjects did not consider them part of
this category. For the 86 prime-target pairs, similarity in
terms of correlated feature pairs was the strongest predictor,
r? = 0.16, F(1,83) = 15.60, and similarity in terms of
individual features also significantly predicted priming
effects, r2 = 0.15, F(1,83) = 14.10. In contrast, none of the
typicality measures predicted priming: prime typicality, r2 =
0.03, F(1,83) = 2.37, p > 0.1; target typicality, 2 = 0.01,
F(1,83) = 1.10, p > .2; summed typicality, r2 = 0.03, F(1,83)
= 2.15, p > 0.1. Note that because the variation of the
typicality ratings was slightly greater than of the two
similarity measures, any differences in predictive ability
cannot be attributed to this factor.

In the present experiment, similarity and typicality were
compared in a more direct fashion. Targets were paired with
more similar/less typical (“Similar”) and less similar/more
typical (“Typical”) primes (e.g., squash as the target,
pumpkin as the Similar prime, corn as the Typical prime).
Extensive norming was conducted to ensure these
conditions were met. If featural similarity is the key
predictor of short SOA priming effects, as predicted by an
attractor network, then priming should obtain only for the
Similar prime-target pairs. If priming occurs through a
superordinate node and shared features, as in a spreading
activation network, it should be relatively equal for both
types of items. In this case, featural similarity would play
the stronger role for the Similar items, whereas shared
superordinate category node would dominate when the
primes are Typical.

Norming

Norming studies produced 18 triplets (from 75 candidate
triplets) that included a target, a Similar prime, and a
Typical prime (see Appendix).

Word Association Norms To ensure that the prime-target
pairs were not normatively associated, the experimenter
read aloud either the targets or one of the primes (in three
lists, 16 subjects each) from the 75 triplets originally
constructed. A word triplet was discarded if more than one
subject produced the target as a response to either prime, or
vice versa. This left 51 nonassociated triplets.

Category Production Norms Forty-five subjects were
shown one word from each of the 51 triplets. The
experimenter read each item aloud and the subject indicated
the category to which she believed the concept belonged.
The most frequent response was designated as the item's
dominant category. Eighteen triplets were retained on the
basis that the dominant category was identical for each of its
members and at least 50% of the subjects produced it for
each. The mean percentage of dominant category responses,
along with other stimuli characteristics, are presented in
Table 1. Subjects produced the dominant category name
more frequently for Typical primes than for Similar primes,
F1(1,42) = 8.59, F5(1,34) = 13.85.

For a few of the 18 items, a secondary superordinate
category name was produced by more than one subject. In
terms of predicting priming effects, a concern arises if the
secondary category is more restricted than the dominant
category because it could be the case that priming is
mediated by that closer superordinate node. This situation
arose for the waffle - toast - pancake triplet only, where food
was the dominant category and breakfast food was the less
inclusive secondary category. Subjects produced breakfast
food 33% of the time to waffle and pancake, and 7% of the
time to toast, which was the Typical prime.

Typicality Ratings Seventeen subjects rated the typicality
of each member of the 18 triplets. Each item was included
with its dominant category. Sentences of the form: "How
typical of a VEGETABLE is CORN?" were presented along
with a 9 point scale, where 1 corresponded to “not at all
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typical” and 9 to “extremely typical”. Subjects rated the
Typical primes as more typical than the Similar primes,
F1(1,32) = 45.83, F5(1,34) = 4.95.

Similarity Ratings Thirty-six subjects rated the similarity
of the 18 triplets on a 9 point scale, where | corresponded to
not at all similar and 9 to extremely similar. Subjects rated
the Similar primes as being more similar to the targets than
were the Typical primes, 1;(34) = 4.79, 15(17) = 6.43.

Table 1: Characteristics of Stimuli.

Target Similar  Typical

Prime Prime
Sim 6.0(0.3) 4.4(0.3)
Dom 72.3(3.5) 70.1(3.3) 83.0(24)
Typ 6.6(0.3) 6.8(0.3) 7.8(0.2)
Lets 6.5(0.4) 5.4(0.3) 5.3(0.3)
Freq 7.7(2.7)  10.2(3.7)  16.3(6.5)

Note: (Standard error in parentheses)
Sim = similarity to target; Dom = dominant category
response; Typ = typicality; Lets = length in letters;
Freq =word frequency (Kucera and Francis, 1967)

Method

Subjects Sixty-six University of Western Ontario
undergraduates participated (22 per list) either for course
credit or for cash remuneration. All subjects were native
speakers of English, and had normal or corrected-to-normal
vision.

Materials Three lists were created so that subjects saw no
prime or target twice. For each list, 6 targets were paired
with Similar primes, 6 with Typical primes, and 6 with
unrelated primes. Unrelated trials were created by re-pairing
similar primes with the targets. There were 102 filler trials
per list, consisting of 42 unrelated word-word and 60 word-
nonword pairs. The relatedness proportion was 0.2, and the
nonword ratio was 0.56.

Procedure Subjects were tested individually using
PsyScope (Cohen et al., 1993) on a Macintosh LC630 with
a 14-inch color Sony Trinitron monitor. They responded by
pressing one of two buttons on a CMU button box. The
subjects' index finger of their dominant hand was used for a
"yes" response. A trial consisted of a fixation point "+" for
250 ms, followed by the prime for 200 ms, a mask
(&&8&&&&&&) for 50 ms, and then the target, which
remained on screen until the subject made a lexical decision.
The ITI was 1500 ms. Subjects were given 40 practice trials
followed by 120 experimental trials.

Design The independent variable was prime type (Similar
vs. Typical vs. unrelated). A list factor (or item rotation
group) was included. Prime type was within subjects and
items. The dependent measures were decision latency and
accuracy.

685

Results

Mean decision latency and error rate for each condition are
presented in Table 2. Latencies greater than 3 standard
deviations above the grand mean were replaced by the
cutoff value (1% of the scores).

Lexical decision latencies differed by prime type,
F1(2,162) = 4.26, F5(2,30) = 4.75. Planned comparisons
revealed that subjects responded 26 ms faster to the Similar
pairs than to the unrelated pairs, F(1,162) = 7.34, F5(1,30)
= 8.72. Furthermore, subjects responded 22 ms faster to the
Similar pairs than to the Typical pairs, Fy(1,162) = 5.29,
F(1,30) = 5.02. The 4 ms priming effect for the Typical
pairs was not reliable, Fy < 1, Fp < 1.

No differences were significant in the error data.

Table 2: Mean Decision Latency in ms and % Errors.

Prime Decision Errors
Type Latency

Similar 636 (12) 6.2 (1.1)
Typical 658 (12) 7.3(1.2)
Unrelated 662 (12) 9.7 (1.2)

Note: (Standard error in parentheses)

Discussion

Subjects were faster to respond to targets preceded by
Similar primes than those preceded by either Typical or
unrelated primes, and there was a small nonsignificant
difference between the latter two conditions. Thus, semantic
similarity priming is a product of featural overlap, rather
than shared superordinate category. These results can be
taken as evidence to refute one central aspect of most
versions of spreading activation theory; semantic memory
does not consist of a set of concept nodes organized in a
hierarchical fashion. Note that although the hierarchical
nature of semantic memory and the key role played by
superordinate nodes are critical components of semantic
network theories such as Collins and Loftus (1975), this
experiment does not completely discount spreading
activation models of semantic memory. Even without this
mechanism, similarity-based priming effects can be
attributed to featural links between highly similar concept
nodes, or direct concept-concept links.

In addition to empirical problems, there are logical
problems with an account of semantic memory that
emphasizes hierarchical semantic structure coded in terms
of local category nodes. For instance, there are inherent
difficulties in  determining what categories are
psychologically real, and hence what category nodes would
be implicated to play a role in, for example, semantic
priming. Many types of concepts exist for which the
relevant superordinates are not obvious, particularly to the
average person. These might include verbs such as run or
break, adjectives such as silent or beautiful, and even
concrete nouns such as fence or garage. This problem
became painfully apparent when constructing candidate
items for the category production task of the experiment in
that it was difficult to create basic-level concepts that we
felt would induce consistent superordinate category



responses in the absence of any biasing context. Along
similar lines, Barsalou (1987) has argued that superordinate
categories should not be viewed as static nodes in a
hierarchically-organized semantic system. Rather, on the
basis of the variation in typicality ratings across individuals
and within individuals over time, as well as results showing
that people treat ad hoc categories such as things on my desk
in much the same way as taxonomically-based categories,
he concluded that people's representations of categories are
not stable entities, but are computed only when needed and
are constantly changing as a result of experience.

Conclusions

Evidence was presented to support an attractor network
theory of the computation of word meaning by
demonstrating that semantic similarity priming effects are
best explained in terms of featural overlap, rather than
explicitly encoded shared category membership. This work
adds to the growing list of phenomena in word recognition
that have been accounted for, or predicted by, attractor
networks of lexical processing.
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Appendix 1: Prime-target pairs from the Experiment

More Typical More Similar Target Dominant
Prime Prime Category
sparrow cagle hawk bird

robin parakeet budgie bird

vulture duck chicken bird

apple plum prune fruit

peach coconut pincapple  fruit

com pumpkin squash vegetable
carrot radish beets vegetable
cucumber peas beans vegetable
toast waffle pancake food

strudel cupcake muffin food

pepper nutmeg cinnamon  spice

ocean stream creek body of water
shirt bra camisole  clothing

torch lamp chandelier  light source
silk denim corduroy fabric

tuba flute clarinet musical instrument
rake hoe shovel gardening tool
gun missile bomb weapon



	cogsci_1998_681-686



