Title
Cardiac Arrhythmia Following an Epileptic Seizure

Permalink
https://escholarship.org/uc/item/7kj240jb

Journal
Clinical Practice and Cases in Emergency Medicine, 0(0)

ISSN
2474-252X

Authors
Kuttab, Hani I.
Harris, Elizabeth A.
Tataris, Katie L.
et al.

Publication Date
2019-08-05

License
CC BY 4.0

Peer reviewed
Sudden unexplained death in epilepsy (SUDEP) refers to a death in a patient with epilepsy that is not due to trauma, drowning, status epilepticus, or another apparent cause. Although the pathophysiology of SUDEP is incompletely understood, growing evidence supports the role of seizure-associated arrhythmias as a potential etiology. We present a unique case of a patient presenting with ventricular tachycardia shortly following a seizure, along with corresponding laboratory data. Awareness of high risk arrhythmias in seizure patients could lead to advances in understanding pathophysiology and treatment of this complication of seizure disorder and ultimately prevention of SUDEP. [Clin Pract Cases Emerg Med. 2019;3(4):X–X.]
Cardiac Arrhythmia Following an Epileptic Seizure

Kuttab et al.

CPC-EM Capsule

What do we already know about this clinical entity?
Sudden, Unexplained Death in Epilepsy (SUDEP) accounts for death in 20-30% of patients with epilepsy. However, the pathophysiology is not well understood.

What makes this presentation of disease reportable?
Pre-hospital rhythm strips captured a cardiac arrhythmia in a patient following a seizure, suggesting that SUDEP may be caused by a cardiac arrhythmia.

What is the major learning point?
Emergency department providers must be aware of cardiac arrhythmias or near-SUDEP in patients immediately following a seizure.

How might this improve emergency medicine practice?
With better understanding of SUDEP and cardiac arrhythmias in post-ictal patients, providers can take measures to prevent apnea and correct subsequent metabolic derangements.

DISCUSSION

Meta-analysis of peri-ictal cardiac arrhythmias reveals that ictal asystole, ictal bradycardia, and postictal atrial flutter/fibrillation are the most common presenting arrhythmias related to seizure, and are often self-limiting. Proposed mechanisms include direct stimulation of the central autonomic network (i.e., cingulated gyrus, amygdala, or insular cortex) and seizure-induced catecholamine release leading to vasovagal responses. Both peri-ictal ventricular tachycardia and fibrillation have been described in epilepsy patients with no underlying cardiac disease. It has also been suggested that pathologic cardiac repolarization (including QT prolongation, QT shortening, and increased dispersion) is responsible for tachyarrhythmias in these patients, and ultimately leads to SUDEP. Recent data also suggests a significant association between potentially high risk cardiac arrhythmias and the duration of ictal/postictal oxygen desaturation. Ultimately, cerebral anoxia from asystole ceases seizure activity.

The above case describes a patient with postictal ventricular tachycardia in the setting of markedly deranged blood glucose, and lactate of 13.8 mg per deciliter (dL) (normal <2.0 mg/dL). The patient received two liters of IV fluids and a two-gram IV loading dose of levetiracetam. The patient was also placed on supplemental oxygen by nasal cannula. Subsequent blood gases thereafter showed improvement in both metabolic and respiratory acidosis (pH 7.0, CO₂ 62 mmHg, lactate 10 mg/dL). The patient’s high-sensitivity troponin T resulted at 22 nanogram per liter (ng/L) (normal <14 ng/L). The magnesium, potassium, and calcium levels were normal. Electrocardiogram obtained in the ED was significant for sinus tachycardia and a corrected QT interval of 398 milliseconds.

The patient was admitted to the pediatric intensive care unit and underwent correction of all metabolic abnormalities. Later, the serum levetiracetam resulted at <2.0 micrograms per milliliter (ug/mL) (therapeutic levels 12.0-46.0 ug/mL) and the valproic acid level at 112 ug/mL (therapeutic levels 50-125 ug/mL). The patient was seen by the pediatric cardiology team, had a normal pediatric echocardiogram, and was discharged home with a 30-day cardiac monitoring device, ultimately demonstrating no additional arrhythmias.

Image 1. Rhythm strip demonstrating ventricular tachycardia (monomorphic). Heart rate = 143 beats per minute.
tachycardia and fibrillation. In our case, this patient had no recurrence of cardiac arrhythmias following interventions as described above, and fortunately did not succumb to SUDEP.

In the seizing patient, measures must be taken to avoid apnea and correct hypoxemia and metabolic derangements. ED providers must be aware of cardiac arrhythmias or near-SUDEP following a seizure. Early nursing interventions, including administration of supplemental oxygen, oropharyngeal suctioning, and patient repositioning have been shown to reduce the duration of respiratory-induced hypoxemia. Providers should also be aware of the use of benzodiazepines as a potential cause of worsening respiratory depression and subsequent respiratory acidosis, leading to the development of arrhythmias. Finally, in postictal patients, physicians should consider electrocardiograms and continuous telemetry monitoring while rapidly reversing metabolic derangements.

CONCLUSION

More knowledge about the cardiovascular status of epileptic patients during, between, and immediately after seizures is needed to better understand and prevent high-risk arrhythmias and SUDEP by measures such as cardioprotective drugs, respiratory therapy, or implantation of a defibrillator. Specifically, more knowledge and awareness of this phenomenon in the emergency medicine community is necessary to best care for these patients in the acute setting.

REFERENCES