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Abstract

Work done under this �Innovative Proposal� may be summarized as follows. A

closed-form series solution is provided for the displacement of a pavement loaded by a

truck modeled as an Euler beam with elastic foundation under a moving load. A method

is developed to estimate the load based on accelerometer measurements. Lastly, it was

found that the measurement system that we built was not suited for the problem at

hand because the accelerometer bandwidth was too high and the system could not isolate

the accelerometer from ambient noise. This led to a new measurement system design.

However, that design could not be built because of the limited resources available.

Keywords: weigh in motion, pavement impact, truck weight, accelerometer measurements,

Euler beam





EXECUTIVE SUMMARY

The objective of this innovative project was to design, build, and conduct a `a proof of

concept' test of an experimental WIM system based on a radically di�erent approach than

current WIM systems. The approach relied on two ideas:

1. Single- or double-axis MeMS accelerometers can directly measure the vibration (ac-

celeration) of the pavement where the accelerometers are located. The vibration is

related to the instantaneous, dynamic load on the pavement by the passage of a truck

in the vicinity of the accelerometers.

2. The measurements can be processed to �lter out noise and to extract important fea-

tures of the dynamic load.

The project was only partially successful. As shown in the attached report, we can �nd

a closed-form series solution of the displacement of an Euler beam with elastic foundation

udner a moving load. Based on that solution we proposed algorithms to process the ac-

celerometer measurements to estimate the force on the pavement placed by a moving truck.

Analysis and simulation results strongly indicate that the two ideas above are fruitful.

Unfortunately, the prototype system that was built was unable to measure pavement vibra-

tions with su�cient accuracy. There were two di�culties. First, we were unable to isolate

the sensor from ambient noise whose magnitude turned out to be much larger than the

`signal'�the pavement accelerations. Second, the bandwidth of the accelerometer that we

used was much larger than that of the signal, which further reduced the signal-to-noise ratio.

The project did not have enough resources to redesign the sensor system.

Nevertheless, the results are so enticing that we are pursuing a de�nitive test of our ideas.
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1 Introduction

Weighing stations along the highway are used to check truck weights. These stations require
separate areas along the highway where trucks stop be to weighed. Due to their high cost and
also operational issues, such as requiring trucks to reduce speed and queue up for some time, such
stations are scarce. In Weight In Motion Stations (WIM) trucks can be weighed as they slowly
move along [2]. This technology is deployed in roadside weighing stations as a replacement to
traditional weigh-in stations.

Traditional stations use bending plate, piezoelectric, or load cell sensors to measure the vertical
forces applied by axles to sensors [2]. The stations require a controlled environment and continu-
ous calibration to reliably estimate static axle loads. Additional calculations are then performed
to transform the static axle load estimates into the dynamic load that the pavement actually ex-
periences. The latter calculations are based on models of vehicle-pavement interactions. These
interaction models are rarely if ever calibrated for individual WIM stations. [10, 24]

This paper explores a very different approach. The system comprises a network of sensor nodes
(SN) and an access point (AP). Each SN assembles a single- or double-axis MeMS accelerometer,
a microprocessor, flash memory, a radio, and an electronic PC board that interconnects these
components. A pair of AA batteries powers the assembly. The SN is encased in a 3” ’Smart Stud’
and glued on the pavement surface. The processed data are sent by the SN radio to the AP, situated
on the side of the road. The AP may record the data locally or forward them to a remote site.

The SNs directly measure the vibration (acceleration) of the pavement under them. It may also
be possible to process the SN data to estimate the truck axle weight and spacing, classification,
and speed. The SN and AP used, together with the installation cost, are a fraction of the cost of
current WIM stations.

Figure 1 shows a possible deployment.
[19] and [16] deal with a similar problem. But the application is restricted to bridges, and

the model does not consider transient pavement effects. The models are much simpler since they
∗Research supported by California Department of Transportation and ARO-MURI UCSC-W911NF-05-1-0246-

VA-09/05
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Figure 1: Deployment of proposed WIM system on a multi-lane freeway or bridge location. The
sensor nodes are only 3” in diameter; the access point is a 5” cube. Data from sensors nodes are
sent to the access point via radio. The sensor nodes and access points are drawn at an exaggerated
scale relative to lane width.

rely on modal estimation, and give no accuracy guarantees. In bridges the responses have higher
amplitudes as well as the decay is slower, making it possible for a modal estimation procedure to
work. But among the many constraints, only a single truck at a time can pass through the bridge,
which makes it an impractical solution.

We in turn, develop a different approach. We start our study with the analysis of a literature
validated PDE model of the pavement [23, 12, 2]. We compute a closed form solution for the
pavement response under truck motion. We then design optimal weight estimation algorithms
using the closed form solution. Along the way we discuss issues such as required precision for SN,
energy consumption for stand alone operation and communication requirements, as well as efficient
algorithmic implementations.

The paper also holds independent interest due to the closed form solution derivation presented.
To our knowledge no similar derivations exist in the literature for the situation presented. One
advantage of the closed solution in the present case is that for usual parameters the system is
stiff, and simulation poses serious difficulties. We attempted using some popular PDE solvers for
computing the solution and obtained poor approximations.

Furthermore, our estimation problem aims at estimating a finite parameter, from infinite mea-
surements or point measurements of an distributed dimensional system, contributing to the litera-
ture on estimation in systems described by partial differential equations [9, 6, 1, 17].

The paper is organized as follows. Section 2 states the pavement model and the estimation prob-
lem of interest. Section 3 develops an analysis of the model, including a closed form approximation
that is of independent interest. In Section 4 we present methods for estimating the load under
various setups. The presented method is optimal and can be used to gauge other methods used
in practice. Section 5 introduces some system design considerations, regarding sensor placement
and estimation methods. We discuss simulation results using real world pavement parameters in
Section 6. The proofs of all theorems of the paper are presented in Section 7. Concluding remarks
are presented in Section8.
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2 Problem statement

We consider the model of a road as an Euler beam with elastic foundation with a moving load.
The vertical non-stationary force acting on the the road (beam) is due to transient dynamic loads
applied through tires of moving vehicles [13, 18, 23].

The conventional model of the equation of motion of a one-dimensional damped beam is [see
[2, 7, 12, 22]]

EI
∂4y

∂x4
+ γ

∂2y

∂t2
+ κ

∂y

∂t
+ βy = F (x, t). (1)

Here x and y(x, t) are the horizontal position (along the road) and the vertical displacement (of
the pavement), and F (x, t) is the applied force at position x and time t. The displacement y varies
in the domain y ∈ R, and the position x varies within the interval [0, L]. The standard road beam
model makes the assumption β > κ, which results in the road pavement having natural frequencies
[25].

The basic force resulting from a truck moving at velocity V is modeled as the moving excita-
tion[13]

F (x, t) = F cos(ω0t)× δ(x− V t), (2)

where V is the velocity of the point of application of the force F cos(ω0t) with magnitude F and
frequency ω0). The magnitude and frequency are determined by the vehicle’s suspension system.
Typical values are F = 50000N and ω0 = 2π f0, where f0 is between 1 Hz and 3 Hz [8, 5]. Real
trucks have force excitations composed of a linear combination of basic components

F (x, t) = P (t)× δ(x− V t), (3)

P (t) = F (
W∑
r=0

Pr cos(ωrt)),

where the number of components W and the frequencies ωi depend on the truck suspension system
type. For quarter car models, W = 2, ω0 = 0, ω1 is in the given range [5, 24]. For walking beam
models, W = 3, with ω0 = 0 [24]. The values of Pr are usually assumed to be equal or have a fixed
proportion.

We also consider a fixed excitation applied at a point x0 at time t0

F (x, t) = Fδ(t− t0)δ(x− x0), (4)

The point of application of the force at time t is xa = V t. It starts to move at time t0 = 0,
from position xa(0) = 0. This model is an approximation of the standard quarter car model
([24, 13, 4]). We opt for the approximation since in real applications, the quarter car model has
too many parameters compared to the expected uncertainty ([2, 13]).

We consider two types of boundary and initial condition sets for solving the equation of motion:
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Model I and Model II. In Model I we consider equation (1) for the elastic beam taking it to
be finite of length L with its ends freely hinged at x = 0 and at x = L. In Model II we consider
equation (1) for the elastic beam taking it to be semiinfinite, with its end freely hinged at x = 0.
In both cases the beam is initially at rest.

The observation is given by the measurement equation

(A) Pointwise displacement sensor measurement of y(x∗, t), t ∈ [0, τ ]

z(t) = y(x∗, t) + ξ(t). (5)

(B) Pointwise acceleration sensor measurement of ÿ(x∗, t), t ∈ [0, τ ]

z(t) =
∂2y(x∗, t)

∂t2
+ ξ(t) = ÿ(x∗, t) + ξ(t). (6)

Throughout the text y′ denotes the spatial derivative ∂y/∂x in x and ẏ – the time derivative
∂y
∂t in t.

In (5) and (6), x∗ is the point of measurement and ξ(t) is the measurement noise, with ξ(t) white
noise with variance σ2

ξ (White Noise Model) [11, 14] or ξ(t) = η(t) +u(t), |u(t)| ≤ µ, µ > 0, and
η(t) white noise with variance σ2

η (Bounded Noise Model). White noise arises in applications
due to electrical and transducer noise in typical sensors used for measurements [17]. Bounded
noise arises due to drift observed in some sensor modalities. Typically, we also observe white noise
together with the bounded noise.

In general, continuous time measurements are not available. But we sample at a high sampling
rate, therefore the performance loss due to discretization is small. Also, we allow measurements
to be made at several points along the highway, at x1, ..., xN . The vector of observed functions is
denoted by z(t).

Based on this model we identify three problems to be solved:

Problem 1[Force estimation] Estimate the value F on the basis of the available measurement
z(t), t ∈ [0, τ ]. The parameters EI, γ, κ, β, in (1) are all taken as known.

Problem 2[Class detection] Suppose there are m nonintersecting intervals Fk ⊂ IR+:

{Fj ∩ Fk | j, k = 1, ...,m; k 6= j} = ∅.

On the basis of measurements z(t), t ∈ [0, τ ] identify to which interval Fk does F belong.

Problem 3[Calibration] Given available measurements z(t) and an input with known dy-
namic force (F, ω0), estimate the parameters of the road model.

Observe that these problems deal with the identification of a finite number (F ) through mea-
surement of an infinite–dimensional process [17]. Also notice that the bounded noise model is more
naturally related to Problem 2 and the white noise model is better related to Problem 1. In
this paper we focus on Problems 1 and 2. Problem 3 will be addressed separately.
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3 System analysis

In this section we explore the behavior of the system given in equation (1). First an analytic
solution of the response of the system is computed under the assumption the beam is finite. Next
an extension for the semi-infinite beam is presented, and the solution can be reduced to a particular
setting of the finite beam solution. We also consider an analytic approximation to the complete
solution.

[15], [25] and [3] and propose approximations of the beam response to moving loads. These
approximations are different, in the sense that no guarantees on the error size of the approxima-
tion are computed, as well as the applied loads have different characteristics. Furthermore, the
modulated moving characterization of the system response is not as clearly identifiable in some of
these approximations. In some sense, the work in this section complements and extends previous
approximation methodologies.

[4] also proposes a numerical approximation methodology to compute pavement responses, based
on a state-space model [21]. The main issue of this approach for our purposes is that computing the
numerical responses in real-time is much more computationally intensive than the formulas derived
in this section.

3.1 Finite beam

Let us now consider equation (1) for the elastic beam taking it to be of finite length L, with both
ends freely hinged at x = 0 and x = L [22]. Then we have

y(0, t) = y(L, 0) = 0, y′′(0, t) = y′′(L, 0) = 0, t ≥ 0. (7)

We assume the beam to be originally at rest, in its equilibrium position:

y(x, 0) = 0, ẏ(x, 0) = 0, x ≥ 0. (8)

Therefore, the motion of the beam will arise only due to the external force F (x, t). For the moving
excitation, we can then show:

Theorem 3.1. Consider the system in equation (1) with the boundary conditions (7) and (8). The
response of the system excited by F (x, t) = F cos(ω0t)× δ(x− V t) is:

(a) The exact solution is given by:

y(x, t) =
2
L

∞∑
m=0

Ym(t) sin
(πmx

L

)
, (9)

where Ym(t) is given in equation (10), and is composed by two parts Ytr,m(t), the transient nat-
ural beam response, and Yss,m(t), the ”steady-state” component, corresponding to the response
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of the beam to the excitation:

Ym(t) = Ytr,m(t) + Yss,m(t), (10)

Yss,m(t) =
F0

2
{|Fa,m| sin(ωa,mt+ ∠|Fa,m|) + |Fb,m| sin(ωb,mt+ ∠|Fb,m|)} ,

Ytr,m(t) =
F0

2Ωm
e−kt (|Ca,m| sin(Ωmt+ ∠Ca,m) + |Cb,m| sin(Ωmt+ ∠Cb,m)) ,

F0 =
F

γ
, k =

κ

γ
, ω2

m = (α(πm/L)4 + β)/γ, Ω2
m = ω2

m − k2

ωa,m =
πm

L
V + ω0, ωb,m =

πm

L
V − ω0,

Ca,m =
1

k2 − 2kΩmi− Ω2
m + ω2

a,m

,

Cb,m =
1

k2 − 2kΩmi− Ω2
m + ω2

b,m

,

F (s,m) = s2 + 2ks+ ω2
m,

Fa,m = F (iωa,m,m)−1,

Fb,m = F (iωb,m,m)−1 = F ∗(iωa,m,−m)−1.

(b) We have:

lim
L→∞

y(x, t) = F0Re[ψ∗(V t− x)ejω0t] +O
(
e−k t

)
,

where

ψ∗(t) =
1

2π i

∫ ∞
−∞

Ω(s)−1es tds,

Ω(s) = α/γs4 + V 2s2 + (2ω0V i+ 2kV )s+ (β/γ − ω2
0 + 2kω0i). (11)

(c) The response of system (1) to the fixed excitation F (x, t) = Fδ(t− t0)δ(x− x0) is given by:

Ỹm(t) = F0Ω−1
m e−kt sin(Ωmt)u(t),

y(x, t) =
2
L

∞∑
m=0

Ỹm(t− t0) cos
(
πm(x− x0)

L

)
− 2
L

∞∑
m=0

Ỹm(t− t0) cos
(
πm(x+ x0)

L

)
,

where the Heaveside function u(t) is defined as u(t) = 1 for t ≥ 0 and u(t) = 0 for t < 0.

The solution in Theorem 3.1 does not solve for the truck forcing term (equation (2)), but since
the PDE is linear, the result is easily extended.

Corollary 1. Let

h(x, t|ω0, V ) =
1
γ
Re[ψ∗(V t− x)ejω0t], (12)
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where ψ∗ is computed according to equation (48) with parameters ω0 and V . Then the response of
system (1) to the truck forcing term (equation (2)) is given by

lim
L→∞

y(x, t) = F (h(x, t|0, V ) + h(x, t|ω0, V )) +O
(
e−k t

)
(13)

The qualitative behavior of the system can be explored using Theorem 3.1(c). The closed form
solution for the displacement y(x, t) can be obtained by computing the inverse Laplace transform
[21] of Ω(s)−1 as shown. Inverting Laplace transforms requires the specification of the region of
convergence (ROC) of the integral [21]. Since the system we are dealing is a physical system, the
solution obtained from the inversion computation should be a solution with bounded energy.

The standard inversion procedure starts by computing the roots of the rational transfer function
to be inverted. In the present case this corresponds to finding the values λi such that Ω(λi) = 0,
which amounts to solving for the roots of a fourth order polynomial. Then we can use the partial
fraction expansion, and assuming no repeated roots, to obtain the decomposition:

Ω(s)−1 =
4∑
i=1

Ai
s− λi

,

where Ai are the partial fraction expansion coefficients. Using the bounded energy condition as the
region of convergence rule, the inverse Laplace transform states:

1
2π

∫ ∞
−∞

Ai
s− λi

es tds =

{
Aie

λit u(t) Re[λi] ≤ 0
−Aieλit u(−t) Re[λi] > 0

.

Since the coefficient that follows s3 in the polynomial Ω(s) is zero, we have that λ1+λ2+λ3+λ4 = 0,
which implies that either Re[λi] = 0 for all the roots, or else, there are roots with Re[λi] > 0 and
with Re[λi] < 0. The beam is damped, therefore not all roots can be Re[λi] = 0. Without loss
of generality, let us assume that Re[λ1] > 0, Re[λ2] > 0, Re[λ3] < 0 and Re[λ4] < 0. Then, the
function ψ∗(t) in Theorem 3.1(c) can be computed as

ψ∗(t) = −A1e
λ1 tu(−t)−A2e

λ2 tu(−t) +A3e
λ3 tu(t) +A4e

λ4 tu(t).

The beam deflection response is essentially a traveling wave shaped by ψ∗(t). The shape of ψ∗

implies that there is a decaying behavior for large t > 0 and for small t < 0. Moreover, the time
t∗ at which the truck goes over the location x is t∗ = x/V . At this time, the value of the wave
shape is ψ∗(0). This also implies that at location x the beam experiences some displacement even
before the truck arrives at that location, since ψ∗(t) 6= 0 for t < 0. This displacement is caused
by the sum of the excitations just prior to the truck arriving at that location. The whole response
is modulated by the truck’s suspension system frequency. This accurately captures the important
phenomena observed in the more complex quarter car model [2, 13].

A better comprehension of the behavior of the roots can be gained by looking at the system
response for large truck speeds. Consider the transform s′ = iω0 + V s. Then, the polynomial can

7



be written as:

Ω(s′) = s′2 + 2k s′ +
β

γ
+

α

γV 4
(s′ − i ω0)4

≈ s′2 + 2ks′ +
β

γ

Thus the roots of the original Ω(s) at high speed are given by

λ1,2 =
−k ±

√
β/γ − k2i− ω0i

V
.

The displacement can be computed as:

y(x, t) ≈ F

γ V
√
β/γ − k2

e−k (t− x
V ) sin

(√
β/γ − k2

(
t− x

V

))
cos
(ω0 x

V

)
. (14)

The exponential decay of the solution is at a rate −k (notice the normalization by V ) indepen-
dent of speed, and the fundamental frequencies of the system is

√
β/γ − k2. At high speeds, the

suspension system modulation frequency ω0 only affects the amplitude of the response spatially.
To conclude the discussion, the solution for a fixed excitation (Theorem 3.1 (d)) can be related

to the moving excitation solution. Let t0 = x/V and x0 = V t in the fixed excitation. This is similar
to having an unmodulated moving impulse without iterating through the physical system. Then:

y(x, t) =
2
L

∞∑
m=0

Ỹm(V t− x) cos
(
πm(V t− x)

L

)
− 2
L

∞∑
m=0

Ỹm(V t− x) cos
(
πm(x+ V t)

L

)
,

which is the solution for the moving excitation when ω0 = 0.

3.2 Semi-infinite beam

For completeness, we consider system (1) for the elastic beam taking it to be semiinfinite, with
its end freely hinged at x = 0 [7, 22]. The important observation is that the obtained solution is
equivalent to the solution obtained for a finite beam of length L by letting L → ∞, confirming
the validity of our approximation. The computation of the current solution, though, relies on a
continuous Fourier transform decomposition [7, 22].

Since the end is freely hinged, the boundary conditions are then given by

y(0, t) = 0, y′′(0, t) = 0, t ≥ 0, (15)

We assume the beam to be originally at rest, in its equilibrium position:

y(x, 0) = 0, ẏ(x, 0) = 0, x ≥ 0. (16)

Furthermore, also presume that the derivatives y(k)(x, t), k = 1, . . . , 3, vanish at x = ∞, which is
equivalent to the limit of the condition we used at x = L for a finite beam. We can then show
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Theorem 3.2. The exact solution for the moving excitation hinged semi-infinite beam problem is
given by:

y(x, t) = (2/π)
1
2

∫ ∞
0

Yξ(t) sin(ξx)dξ, (17)

where

Yξ(t) = Y ξL
π

(t), (18)

and Ym is given in Equation (10).

4 Estimating the load

Problem 1 concerns the estimation of the weight under the White Noise Model, given that the
parameters of the highway are known [3]. The input to the highway system is a truck, whose
corresponding forcing model is given by

F (x, t) = F (1 + cos(ω0[t− t0] + φ))× δ(x− V [t− t0]), (19)

where we have included the phase term φ to account for the uncertainty in the initial conditions of
the suspension system for the truck and t0 to account for the unknown initial starting time of the
truck.

We assume two types of situations. In the coherent estimation problem, we assume that the
truck parameters t0,φ, ω0, and V are known, and we have to estimate the value of F . In a certain
sense, this is the best possible situation, since the whole parametrization of the problem is known.

The conditions are progressively relaxed, assuming first that t0 is unknown, both φ and t0 are
unknown, and finally t0, ω0 and φ are unknown. We assume that the speed V can be measured,
but at the end of the section we study the sensitivity of our problem towards this parameter. The
problems with less information are categorized as non-coherent estimation problems, and as we will
see there are considerable noise tradeoffs in such scenarios. One of the issues with non-coherent
estimation is that the identifiability of the force F depends on the information set. Denote the
information set as I, such as in I = [V, ω0, φ].

The first important observation is about the role of the measurement equation. For the methods
presented here, the fact that displacement is being measured (equation (5)) or acceleration is being
measured (equation (6)) does not change the methodology. The error rates of the proposed methods
though could be different since they depend on the amount of energy measured by the transducer
relative to the amount of noise. To normalize our error computations, we define the signal-to-noise
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ration (SNR) of the measurement system as [14, 17]:

Pξ = E
[∫ τ

0
ξ(t)2 dt

]
, Ps = E

[∫ τ

0
z(t)2 dt

]
,

SNR =
Ps − Pξ
Pξ

, (20)

which is a surrogate measure of the relative amount of information being captured by the sensor. We
assume without loss of generality, that the measurement is displacement. Also, for the remainder
of the section, denote by h(t, x|V, ω0, φ), the response to the forcing equation (19):

h(x, t|ω0, V, φ, t0) =
1
γ
Re[ψ∗1(V [t− t0]− x)ej(ω0(t−t0)+φ)] +

1
γ
Re[ψ∗0(V [t− t0]− x)ejφ], (21)

where ψ∗1 is computed according to equation (48) with parameters ω0 and V , and ψ∗0 computed
with parameters ω0 = 0 and V . This result can be demonstrated with a minor modification in the
proof of Theorem 3.1.

Furthermore, we allow the observation to be a scalar function z(t), at a single point in space
x∗, or more generally, zi(t), at points in space x∗i for i = 1, ..., I, implying measurements with I

sensors. Procedures for different information sets are shown in Theorem 4.1. Notice that as more
parameters become unknown, the complexity of the procedure increases.

Theorem 4.1. Given the complete information set I0 = [V, ω0, φ, t0],the optimal mean square
estimate of the parameter F is

(a) For a single observation at x∗

F̂ =
∫ ∞

0

z(t)h(t, x∗|ω0, V, φ, t0)
||h(t, x∗|ω0, V, φ, t0)||2

dt, (22)

and the Mean Square Error (MSE) is given by

E[(F̂ − F )2] =
σ2

||h(t, x∗|ω0, V, φ, t0)||2
, (23)

=
1

SNR(x∗)
(24)

(b) For multiple observations x∗i , i = 1, ..., I:

F̂ =
∑I

i=1

∫∞
0 zi(t)h(t, x∗i |ω0, V, φ, t0)dt∑I
i=1 ||h(t, x∗i |ω0, V, φ, t0)||2

, (25)

The MSE is

E[(F̂ − F )2] =
I∑
i=1

1
SNR(x∗i )

, (26)

10



Given the information set I1 = [V, ω0, φ],the energy estimate of the parameter F is

(c) For a single observation at x∗

F̂ =
[ ∫ τ

0 z(t)2 dt
||h(t, x∗|ω0, V, φ, 0)||2τ

] 1
2

, (27)

(d) For multiple observations x∗i , i = 1, ..., I:

F̂ =
∑I

i=1

∫∞
0 zi(t)2 dt∑I

i=1 ||h(t, x∗i |ω0, V, φ, 0)||2τ
, (28)

Given the information set Ii, where I0 represents the complete information set, denote by I = I0−Ii
the set of unknown parameters. Then

(e) For a single observation at x∗, the least-squares estimator is

Î = arg max
I

(∫∞
0 z(t)h(t, x∗|ω0, V, φ, t0)dt

)2
||h(t, x∗|ω0, V, φ, t0)||2

(29)

F̂ =

∣∣∣∫∞0 z(t)h(t, x∗|Ii ∪ Î) dt
∣∣∣

||h(t, x∗|Ii ∪ Î)||2
(30)

(f) For multiple observations x∗i , i = 1, ..., I:

Î = arg max
I

(∑I
i=1

∫∞
0 z(t)h(t, x∗i |ω0, V, φ, t0)dt

)2

∑I
i=1 ||h(t, x∗i |ω0, V, φ, t0)||2

(31)

F̂ =

∣∣∣∑I
i=1

∫∞
0 z(t)h(t, x∗i |Ii ∪ Î) dt

∣∣∣∑I
i=1 ||h(t, x∗i |Ii ∪ Î)||2

(32)

The first insight that Theorem 4.1 gives is that in the full information case, the optimal estimator
guarantees that the mean squared error decreases as O(1/I), where I is the number of sensors. So
in theory increased precision in the force estimation can be obtained by adding additional sensors
to the system. In practice the limits are the uncertainties about the speed over a longer stretch of
pavement might limit this performance.

The second observation is that as the information set becomes smaller, the complexity of the
optimization needed to be carried out increases. For example, for the information set I4 = {V },
an optimization over the three remaining parameters ω0, t0 and φ needs to be carried out. The
optimization itself is not convex, but the domain is bounded in ω0 and φ. This fact can be used to
devise a more efficient optimization methodology.

To conclude the section, we note that the result for the Bounded Noise Model is identical
to the White Noise Model.
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5 System design

In this section we address some important considerations when building a practical system for
axel dynamic force computation. The first important consideration is the spatial placement of the
acceleration sensors, which can result in improved estimation of the force. The next important con-
sideration is how to implement a computation system for the axel force, based on the methodology
suggested in section 4. Some considerations about the most efficient approaches to compute the
optimization should be made. Both issues are addressed in this section.

5.1 Sensor placement and design

Natural constraints on the placement of the sensor arise from observing the system response function
to the moving load (Theorem 3.1(c)). The constraints are driven by observability requirements of
the output of the system. The first important natural constraint arises from the observation that
taking samples of sensors at different sensors at locations xi, at times ti = xi/V + δ, for some
constant δ, we obtain the response function

y(ti, xi) = F0Re[ψ∗(δ)] cos(ω0/V xi + ω0δ) + F0Im[ψ∗(δ)] sin(ω0/V xi + ω0δ) +O
(
e−k(

xi
V

+δ)
)
.

The Nyquist condition [20] implies that the sampling rate has to be less than twice the highest
frequency of the signal, for uniformly sampled spatial signals. If we assume that sensors are placed
uniformly according to xi = i∆x, and the bandwidth of y(ti, xi) is ∆ω0, the condition becomes

2π
∆x
≥ 2∆ω0.

The truck suspension system parameter ω0 is in the range ω0 ∈ 2π[1, 3], therefore ∆ω0 = 2π(3−1)/V
for the signal of interest, and we can conclude the following requirement on the sensor placement:

∆x ≤ V

4
(meters).

Interestingly, the minimum speed of the truck in the system is the limitation on how closes sensors
must be. If we assume that the minimum speed is 30 mph, the sensors must be at most 3.35 meters
apart for observability of the measurement.

Similarly, the fundamental frequencies in the function ψ∗ play a role as well. For each root λi
of the system function Ω(s) in (Theorem 3.1(c)), the Nyquist criterion applies, therefore

∆x ≤ 2π
2 maxi λi

(meters).

For high speeds V of the truck, Equation 14 shows that both conditions can be simplified to
the condition

∆x ≤ 2π V
2(∆ω0 +

√
β/γ − k2)

(meters).

12



5.2 Distributed data computation

The optimization in Equation (29) is complex when the information set is small. The optimization
is not convex, but is in a bounded domain, which facilitates a simple approach. We consider here
the smallest information set, I = {V }. The procedure can be adjusted for other information sets
in a straightforward manner.

The parameter t0 is a time shift parameter, and can be optimized separately. One choice is to
compute a cross correlation [14, 17], which consists in calculating the objective function for a series
of values of t0 in some window of interest [T1, T2] where the energy of the signal z(t)∗ is greater than
the noise floor. Another choice is to compute Fourier transforms of both z(t)∗ and the normalized
signal

h̃(t, x∗i ) =
h(t, x∗i |ω0, V, φ, 0)√∑I
i=1 ||h(t, x∗i |ω0, V, φ, 0)||2

(33)

and use Parseval’s relation to obtain:

Î = arg max
I−{t0}

(
I∑
i=1

∫ ∞
−∞

Z(ω)H̃(ω, x∗i |ω0, V, φ, 0)∗dω

)2

F̂ =

∣∣∣∣∣
I∑
i=1

∫ ∞
−∞

Z(ω)H̃(ω, x∗i |ω0, V, φ, 0)∗dω

∣∣∣∣∣
/√∫ ∞

−∞
|H(ω, x∗i |ω0, V, φ, 0)|2 dω .

6 Simulation

In this section we examine the behavior of the pavement-truck system and the quality of the
proposed weight estimation schemes. First we compute the responses of the system to a variety of
changes in the parameters representing the truck such as its speed V and suspension frequency ω0.
We use the following parameter values for the pavement [2]1:

EI = 1.38× 106Nm2;β = 170× 106N/m2; γ = 353× 103kg/m;κ = 106Ns/m2, (34)

where we have assumed M = 106; g = 10m/s2. We take the axel weight of the truck to be 5000
Kg, therefore F0 = 50000N . Whenever unspecified, we take the suspension system fundamental
frequency to be ω0 = 1.23Hz.

The observed measurements are acceleration measurements and follow the noise Model I. The
measurement noise is assumed zero mean white noise with standard deviation σw = 120µg (micro-
g’s), which is the expected noise power for a measurement system based on MEMS accelerometers.

In the second part of the section we compute error distributions for the proposed weight estima-
tion methodology. As we will see, the proposed method is quite robust to noise in the acceleration
measurements.

1In the book these parameters are: EI = 1.38MNm2;β = 170MN/m2; γ = 353Mg/m;κ = 1MNs/m2.
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Figure 2: Relative Mean Squared Error (%) between ground truth displacement and asymptotic
approximation at L/2 for V = 10 m/s (y(L/2, t)).

6.1 Pavement response

The main difficulty in simulating the distributed system (Equation (1)) is its stiffness with respect
to parameters in Equation (34) [4]. Stiffness means that small variations on the forcing function
F (x, t) cause large variations in the output y(x, t). This is the case for any pavement model, given
that the material structure itself is not very flexible and therefore the system will exhibit a stiff
response [13].

The pavement response to a moving load can be computed exactly by using Theorem 3.1(Eq. (9)).
The solution is a convergent infinite summation. The summation cannot be computed exactly, but
can be approximated by truncating at a predetermined number of terms. Lemma 7.1 shows that
the truncation has exponential decay so the ignored part will only contribute a finite amount to
the error. Unfortunately, such solution does not give much insight on the behavior of the system.
Furthermore, for the parameters in Equation (34), the pavement exhibits a very stiff behavior, and
the number of terms required is quite large. For the reported parameters, we observed that at
least 5,000 elements were required before the norm of the additional terms being added is a small
fraction of the sum at that point.

An alternative approach is to compute a direct numerical solution to the original PDE (Equa-
tion (1)). A Finite Element Method is indicated for this problem. The publicly available state-of-
the-art FlexPDE solver can be used. Due to the high degree of stiffness of the PDE, the solver has
difficulties finding acceptable numerical approximations to the response since it has to handle very
poorly conditioned matrix inversions. In our experiments, the numerical approximation resulted in
solutions qualitatively correct but with severe kinks, which are not physically valid.

The closed form approximation in Theorem 3.1(b) is easy to compute. The solution is exact
as the length L → ∞. It is important then to evaluate the quality of the approximation for finite
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(a) (b)

Figure 3: (a) Displacement at x = 500 m, for L = 1000 m, V = 10 m/s and ω0/2π = 1.23 Hz.
Fundamental frequencies (amplitudes) for the signal before t = 50 s are 4.7 Hz (14.2) and 9.8 Hz
(2.8). After t = 50 s they are 3.7 Hz (13.8) and 3.5 Hz (3.1). (b) Displacement at x = 500 m, for
L = 1000 m, V = 50 m/s and ω0/2π = 1.23 Hz.

values of L. As the gold standard we choose the truncated solution based on Theorem 3.1(b), with a
large number of coefficients, N = 10, 000, where it is observed computationally that the summation
has converged to a degree. The relative mean squared error is used for comparison purposes:

Err(r(t), y(t)) =

∫ τ
0 (r(t)− y(t))2dt∫ τ

0 r(t)
2dt

(35)

Figure 2 shows the relative mean squared difference between the ground truth solution and the
asymptotic approximation, in percentages. A fixed position x = L/2 was chosen. Of course the
solution is accurate away from the boundaries, and in our highway problem we are only interested in
the behavior away from the virtual boundaries as well. Notice that very quickly the error becomes
negligible. It is safe to say that for L > 50 m, we have an accurate solution for the given parameters
choice.

Simulation results

Figure 6.1 shows the displacement y(x, t) at x = 500 m. The peak of the response happens at
t = 50 s as expected. Furthermore, even before the truck arrives at x = 500 m, there is a response
signal being generated. This is a typical characteristic of a distributed parameter wave system. We
also computed the signal frequencies before and after the arrival of the truck at x = 500 m. A
single frequency before and a single frequency after are responsible for most of the response. As we
saw in the theoretical section, the frequencies before the arrival of the truck at x = 500 m consist
of the imaginary parts of the anti-causal poles of the response transfer function and the frequencies
after correspond to the imaginary part of the causal poles.

One interesting feature is that the signal after the truck arrival vibrates at a smaller frequency

15



Figure 4: Contour plot of displacement y(x, t), for L = 1000 m, V = 10 m/s and ω0/2π = 1.23 Hz.

than the signal before. In physical terms it can be understood as a doppler type phenomenon, but
the waves being propagated are vibrations and the propagation medium is the pavement.

Figure 4 shows the wave behavior of the displacement response. The response is approximately
localized in space and time, i.e., at any given fixed measurement point, there is a window of
useful data. Furthermore the figure also shows more clearly the effects of modulating the typical
response. In summary, the displacement response at any point in space is an appropriately shifted
and modulated version of the response at any other point, with fix modulation frequency but
variable phase.

In Section 3 we computed the asymptotic pole locations as the velocity of the truck become
high. The fourth order polynomial reduced to a second order polynomial with causal complex
roots. That is, the response of the pavement before the truck arrives at the measurement location
is negligible compared to the response after. Figure shows the response with the truck at a higher
speed, confirming this asymptotic viewpoint.

Figure 5 shows the variation of the magnitudes of the real and imaginary parts of the poles of the
response with respect to the speed. As the speed becomes higher, we see that a pair of the imaginary
frequencies tend to a small value. Furthermore, the remaining pair increases linearly with speed
and becomes approximately conjugate. This behavior also means that the expansion coefficients
for the small value imaginary frequency poles become small, as they are directly proportional to
the product of the magnitude of the remaining poles. Thus, as speed increases, the 4 pole system
collapses to a two pole system approximately. This observation will be useful to calibrate the model
PDE. The Figure also shows the real part of the poles, and they confirm the notion that as the
speed becomes higher we end up with a pair of causal complex conjugate poles and possibly a pair
of anti-causal complex conjugate poles.

Finally, Figure 6 shows the impulse response for an impulse located at x = 500 m. Notice that
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Figure 5: Real and imaginary parts of the poles of the system for L = 1000 m and ω0/2π = 1.23
Hz.

Figure 6: Displacement impulse response along the highway, for L = 1000 m, at (a) t = 0.00001 s
and (b) t = 0.1 s.
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now the oscillation is symmetric.

7 Proofs

7.1 Theorem 3.1

(a) A Fourier expansion should be use to solve the equation [22]. The basis choice is constrained
by the boundary condition [7, 22]. There are four available basis sin πmx

L , cos πmxL , sinh πmx
L and

cosh πmx
L . The four boundary conditions are used to determine the right expansion to use. Using

a Fourier type expansion on the basis {sin πmx
L }, integrating from 0 to L by parts and taking into

account the boundary conditions (7) at x = 0 and x = L, we obtain the relations∫ L

0
y′′′′(x, t) sin(πmx/L)dx = −(πm/L)2

∫ L

0
y′′(x, t) sin(πmx/L)dx (36)

= (πm/L)4
∫ L

0
y(x, t) sin(πmx/L)dx.

We further proceed as follows. We multiply both sides of equation (1) by sin(πmx/L) and integrate
them from 0 to L in x. Further on, denoting EI = α and dividing both parts by γ, we come to
equation

Ÿm + 2κγ−1 ˙Ym + (α(πm/L)4 + β)γ−1Ym = Fγ−1 cosω0t sin(πmV t/L) (37)

with initial condition Ym(0) = Ẏm(0) = 0.
Here

Ym(t) =
∫ L

0
y(x, t) sin(πmx/L)dx

is the finite Fourier sine coefficient of function y(x, t). The right-hand side arrived through formula∫ L

0
F cosω0(t) sin(πmx/L)δ(x− V t)dx = F cosω0t sin(πmV t/L)

Using the definitions for k, F0, ω
2
m and Ω2

m we come to equation

Ÿm + 2k ˙Ym + ω2
mYm = F0 cosω0t sin(πmV t/L) (38)

with zero initial conditions for each m.
We can now solve this equation by using the following simplification:

Ÿm + 2k ˙Ym + ω2
mYm =

F0

2
sin((πmV/L+ ω0)t) +

F0

2
sin((πmV/L− ω0)t) (39)

Noticing that the roots of the differential equation are k±Ωmi since β > κ (implying ω2
m > k),

we can write the full response to the above ODE as in Equation (10) [21].
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(b) First we show that the transient part of the complete response to a moving excitation is
O(1) for the total transient response:

Ytr(x, t) =
2
L

∞∑
m=0

Ytr,m(t) sin
(πmx

L

)
(40)

Lemma 7.1. Ytr(x, t) = O
(
e−k t

)
, uniformly in x. Furthermore, limL→∞ Ytr(x, t) = O

(
e−k t

)
,

uniformly in x.

Proof. From the definitions:

|Ytr(x, t)| =

∣∣∣∣∣ 2L
∞∑
m=0

Ytr,m(t) sin
(πmx

L

)∣∣∣∣∣
≤ 2

L

∞∑
m=1

|Ytr,m|

≤ F0e
−k t 2

L

∞∑
m=1

1
Ω3
m

≤ F0e
−k t 2

L

∞∑
m=1

γ
3
2

α
3
2 π6(m/L)6

=
2F γ

1
2

α
3
2 π6

e−ktK(L), (41)

where

K(L) =
1
L

∞∑
m=1

1
(m/L)6

.

For each finite L it is clear that K(L) <∞. Moreover:

lim
L→∞

K(L) <
∫ ∞

1

1
s6
ds

= 1/7

We can now consider Yss,m(t). Isolating the modulation of the forcing term:

Yss,m(t) =
F0

2

{
|Fa,m| sin

(
πmV

L
t+ ∠|Fa,m|

)
+ |Fb,m| sin

(
πmV

L
t+ ∠|Fb,m|

)}
cos(ω0t) +

+
F0

2

{
|Fa,m| cos

(
πmV

L
t+ ∠|Fa,m|

)
− |Fb,m| cos

(
πmV

L
t+ ∠|Fb,m|

)}
sin(ω0t) (42)

We can now incorporate the sine term in Equation (9), using sine and cosine identities and moving
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constants around:

f(r) =
1

2L

∞∑
m=0

|Fa,m| cos
(πm
L
r + ∠|Fa,m|

)
+ |Fb,m| cos

(πm
L
r + ∠|Fb,m|

)
(43)

g(r) =
1

2L

∞∑
m=0

|Fa,m| sin
(πm
L
r + ∠|Fa,m|

)
− |Fb,m| sin

(πm
L
r + ∠|Fb,m|

)
(44)

y(x, t) = F0{(f(V t− x)− f(V t+ x)) cos(ω0t) + (g(V t+ x)− g(V t− x)) sin(ω0t)} (45)

Now we can compute the following quantity:

f∗(r) = lim
L→∞

1
2L

∞∑
m=0

|Fa,m| cos
(πm
L
r + ∠|Fa,m|

)
+ |Fb,m| cos

(πm
L
r + ∠|Fb,m|

)
(46)

Defining the constants

ωa,ξ = πξV + ω0, ωb,ξ = πξV − ω0,

ω2
ξ = (α(πξ)4 + β)/γ, ω̂a,ξ = ξV + ω0,

F (s, ξ) = s2 + 2ks+ ω2
ξ

Fa,ξ = F (iωa,ξ, ξ)−1

Fb,ξ = F (iωb,ξ, ξ)−1 = F ∗(iωa,ξ,−ξ)−1,

we can obtain

f∗(r) =
1
2

∫ ∞
0
{|Fa,ξ| cos (πξr + ∠|Fa,ξ|) + |Fb,ξ| cos (πξr + ∠|Fb,ξ|)} dξ

=
1

2π

∫ ∞
−∞

∣∣F (iω̂a,ξ, ξ)−1
∣∣ cos

(
ξr + ∠F (iω̂a,ξ, ξ)−1

)
dξ (47)

Then, define:

ψ∗(r) =
1

2π

∫ ∞
−∞

Ω−1
ξ eiξrdξ

Ωξ = −(ξV + ω0)2 + 2k(ξV + ω0)i+ (αξ4 + β)/γ (48)

Using this definition we can see that:

f∗(r) = Re[ψ∗(r)] (49)

g∗(r) = lim
L→∞

g(r) = Im[ψ∗(r)] (50)

Notice that 48 is just the definition of an inverse fourier transform of Ω−1
ξ . We can study the

zeros of this transfer function. For this purpose we can write the poles/zeros form of the fourier
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transform as:

Ωξ = −(ξV + ω0)2 + 2k(ξV + ω0)i+ (αξ4 + β)/γ (51)

= α/γξ4 − V 2ξ2 + (−2ω0V + 2kV i)ξ + (β/γ − ω2
0 + 2kω0i)

= α/γ(iξ)4 + V 2(iξ)2 + (2ω0V i+ 2kV )(iξ) + (β/γ − ω2
0 + 2kω0i)

= α/γs4 + V 2s2 + (2ω0V i+ 2kV )s+ (β/γ − ω2
0 + 2kω0i)

(c) For the fixed excitation case, we can start at equation (37) and compute the solution to the
fixed excitation F (x, t) = Fδ(t− t0)δ(x− x0) applied at the point x0 at time t0.

Ÿm + 2κγ−1 ˙Ym + (α(πm/L)4 + β)γ−1Ym = F0δ(t− t0) sin(πmx0/L) (52)

Using the same definitions and initial conditions as in the moving excitation case, we can solve the
above ODE:

Ym(t) = F0Ω−1
m e−k(t−t0) sin(Ωm(t− t0)) sin(πmx0/L)u(t− t0) (53)

y(x, t) =
2
L

∞∑
m=0

Ym(t) sin
(πmx

L

)
(54)

We can develop the previous result, obtaining equation (12).

7.2 Theorem 3.2

Integrating by parts and taking into account the boundary conditions (15) at x = 0 and those at
x =∞, we get the next relations∫ ∞

0
y′′′′(x, t) sin(ξx)dx = −ξ2

∫ ∞
0

y′′(x, t) sin(ξx)dx = ξ4
∫ ∞

0
y(x, t) sin(ξx)dx (55)

These will be used as follows. We multiply both sides of equation (1) by (2/π)1/2 sin ξx and integrate
them from 0 to ∞ in x. Further on, denoting EI = α and dividing both parts by γ, we come to
equation

Ÿξ + 2κγ−1Ẏξ + (αξ4 + β)γ−1Yξ = Fγ−1 cosω0t sin ξV t (56)

with initial condition Yξ(0) = Ẏξ(0) = 0. Here

Yξ(t) = (2/π)1/2
∫ ∞

0
y(x, t) sin(ξx)dx (57)

is the Fourier sine transformation of function y(x, t). The right-hand side arrived through formula∫ ∞
0

F cosω0(t) sin(ξx)δ(x− V t)dx = F cosω0t sin ξV t (58)
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Denoting κ/γ = k, (αξ4 + β)/γ = ω2, Ω2 = ω2 − k2 we come to equation

Ÿξ + 2kẎξ + ω2Yξ = F0 cosω0t sin ξV t (59)

with zero initial conditions.
Assuming ω2 − k2 > 0, the roots of its characteristic equation are

λ = −kξ ± iΩξ (60)

Now we can follow the steps of Theorem 3.1 and using the definition of inverse Sine Transform in
17, we obtain Theorem 3.2.

7.3 Theorem 4.1

Denote h(t, x∗|ω0, V, φ, t0) by h(t, x∗). To prove (a), notice that:

z(t) = F h(t, x∗) + ξ(t)

Now, consider the the projection operator that projects z(t) into two subspaces: the subspace
defined by h(t,x∗)

||h(t,x∗)|| and the subspace orthogonal to it. It is clear that the projection to the orthog-
onal subspace will not contain any information about F , as the noise is white. Thus our infinite
dimensional estimation problem is reduced to:∫ ∞

0

z(t)h(t, x∗)
||h(t, x∗)||

dt = F ||h(t, x∗)||+
∫ ∞

0

ξ(t)h(t, x∗)
||h(t, x∗)||

dt

In this one dimensional problem, with a single measurement, it is clear that the optimal estimate
of F is obtained by dividing both sides by ||h(t, x∗)||. The MSE can be computed directly from
the definition, using E

[ ∫∞
0

ξ(t)h(t,x∗)
||h(t,x∗)||2 dt

]
= 0 and E

[ ∫∞
0

ξ(t)h(t,x∗)
||h(t,x∗)||2 dt

]2 = σ2/||h(t, x∗)||2 since ξ(t) is
white noise with variance σ2.

For (b) the proof follows from (a), noticing that the multiple sensor problem can be reduced to
the single problem by considering a composite vector z = [z1z2...zI ]T .

The proof for (c) uses the Parseval’s relation [21] for a function f(t). Let F (w) be the Fourier
transform of f(t). Then, using the time shift property of the Fourier Transform, f(t − t0) ⇔
e−j w t0F (w), and Parseval’s relation, we have the identity∫ ∞

0
f(t− t0)2 dt =

1
2π

∫ ∞
0
|e−j w t0 F (w)|2 dw =

1
2π

∫ ∞
0
|F (w)|2 dw

=
∫ ∞

0
f(t)2 dt

Using the identity, it is clear that for the given information set the proposed estimator computes
F exactly when the measurement is noise free.
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For item (e), we start by writing the empirical mean squared error function:

E =
∫ ∞

0
(z(t)− F h(t, x∗|ω0, V, φ, t0))2 dt.

One of the optimality conditions for the estimator is that ∂E/∂F = 0, which implies:

F =
∑I

i=1

∫∞
0 z(t)h(t, x∗||ω0, V, φ, t0) dt∑I

i=1 ||h(t, x∗||ω0, V, φ, t0)||2
.

Now use this equation in the definition of the error E, and ignoring the term that only depends on
z, we obtain

E′ = −
(∫∞

0 z(t)h(t, x∗|ω0, V, φ, t0)dt
)2

||h(t, x∗|ω0, V, φ, t0)||2
,

and so maximizing −E′ is equivalent to minimizing E. Item (f) follows by using the same approach
to the cost

E =
I∑
i=1

∫ ∞
0

(z(t)− F h(t, x∗i |ω0, V, φ, t0))2 dt.

8 Discussion

In this paper we have developed a methodology for estimating the magnitude of a dynamic forcing
function applied to a concrete roadway, using distributed measurements from acceleration sensors
embedded in the pavement. We use an asymptotic approximation to the pavement model that
can be efficiently computed as the basis of our estimator. The asymptotic model is accurate for
concrete slabs starting at 20 meters.

We verified the behavior of the pavement response using some simulations and then developed
a time synchronized estimator for the forcing parameter. We also calculate an error bound that
shows the quality of our approximation, which is helpful to gauge the quality of responses in field
experiments.

One important issue that is addressed is also the need for a maximum distance between the
sensors, which we derive using principles from sampling theory. This distance is the only constraint
in sensor placement for our problem.

An extension of the current model, left for future works, is to model the roadway as a 2-
dimensional system. We also are in the process of validating our setup experimentally with a
sensor deployed at a concrete roadway.
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