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Abstract

Computational models have long been used in Cognitive Sci-
ence, but to date most research has used language models
trained on text. With recent advances in Computer Vision, new
research is expanding to visually informed models. In this pa-
per, we explore the potential of such models to account for
human naming behavior as recorded in naming norms (where
subjects are asked to name visually presented objects). We
compare the performance of three representative models on a
set of norms that include stimuli in the form of line drawings,
colored drawings, and realistic photos. The state-of-the-art
Language and Vision model CLIP, trained on both text and im-
ages, performs best. It generalizes well across different types
of stimuli and achieves good overall accuracy. CLIP affords
both linguistic (text-based) and visual (image-based) represen-
tations for names, and we find that textual representations out-
perform visual representations. This is good news, as textual
representations are easier to obtain than visual representations.
All in all, our results show promise for the use of Computer
Vision and Language and Vision models in Cognitive Science.

Keywords: object naming; naming norms; computer vision;
psycholinguistics

Introduction
The last decade has seen a leap in the capabilities of AI mod-
els. Already before the current deep learning wave, compu-
tational models were being used in Cognitive Science. For
instance, Shriberg and Stolcke (1996) used language models
to model word predictability in humans. However, this ear-
lier work, as well as most current work using deep neural
networks (Goodkind & Bicknell, 2018), used models based
on text, as those are the most developed in AI. This means
that for other modalities relevant to cognition, like visual
stimuli, obtaining data (such as typicality ratings) from hu-
man subjects remains the prevailing method. With the advent
of deep learning in Computer Vision, the situation is chang-
ing, and recent work showcases the potential of these models
for Cognitive Science (Günther, Marelli, Tureski, & Petilli,
2023; Gualdoni, Brochhagen, Mädebach, & Boleda, 2023;
Brochhagen, Boleda, Gualdoni, & Xu, 2023).

In this paper, we test the potential of Computer Vision and
Language and Vision models to model naming behavior in
people. Note that our goal is to assess computational mod-
els for use in Cognitive Science, as opposed to answering a

specific question about cognition. As data, we use naming
norms, i.e. collections of names for visually presented stim-
uli, which are a standard tool to investigate processes related
to lexical production. Naming norms are created by asking
subjects to name carefully curated sets of images (more de-
tails below). As illustrated in Figure 1, naming norms have
been collected for different types of images, from black-and-
white drawings to more realistic stimuli. We test models on
the alignment between images in the norms, on the one hand,
and their names, on the other, where the representation of
both the images and the names are built from the models.1

Specifically, we test them in terms of how well they match a
given object with the most frequent name produced for it (in
Figure 1, that would be “penguin”). This is a general proxy
measure for the ability of models to account for naming be-
havior; we leave more specific applications for future work.
We deliberately focus on off-the-shelf models that are easily
available,2 as opposed to adapting models or training models
from scratch. This is because we want to ascertain whether
current models are mature enough for use by cognitive sci-
entists as is (which would lower the bar in terms of required
skills, making them usable by a larger set of researchers), and
to test their ability to generalize across different kinds of stim-
uli.

Related Work
Naming norms. Naming norms are sets of images for
which naming data are collected, usually selected so as to be
easily identifiable. The images are therefore usually highly
stylized and prototypical exemplars of the concept expressed
by the target name. In early work, the stimuli were not very
realistic; for instance, in the seminal paper that introduced
naming norms (Snodgrass & Vanderwart, 1980), the objects
were presented as line drawings. The field has moved to more
and more naturalistic images (see Figure 1 for example im-
ages for the name “penguin” in the norms that we will use

1Data and scripts are available at https://osf.io/7dfgx, as is
an appendix with further results.

2E.g. through websites and packages such as HuggingFace
https://huggingface.co.
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Figure 1: Images named “penguin” from each of the naming norms we use.

in this paper). However, the focus on prototypical exemplars
has remained, except for a set of naming norms that was cre-
ated within the computational linguistics community, Many-
Names (Silberer, Zarrieß, & Boleda, 2020; Silberer, Zarrieß,
Westera, & Boleda, 2020).

Using Computer Vision models for Cognitive Science. A
very recent series of studies have shown the promise of Com-
puter Vision models to address research questions in Cog-
nitive Science. Much of this work has targeted image sim-
ilarity and categorization (Jozwik, Kriegeskorte, Storrs, &
Mur, 2017; Peterson, Abbott, & Griffiths, 2018; Zhang,
Isola, Efros, Shechtman, & Wang, 2018; Battleday, Peterson,
& Griffiths, 2020; Singh, Peterson, Battleday, & Griffiths,
2020); the latter is related to but not the same as the phe-
nomenon of naming that we tackle here. This work has col-
lectively shown that deep visual representations (especially
those in the outmost layers of the models) mirror human rep-
resentations remarkably well, at least if measured by com-
paring human perceptual similarity judgments to similarity
scores assigned by models.

More related to the present article is work by Gualdoni
et al. (2023) and Günther et al. (2023), who build visual-
semantic representations for relatively large vocabularies us-
ing deep learning-based Computer Vision models. In both
studies, the authors build representations for individual im-
ages as well as concepts or names, like we do here. We adopt
part of their methodology, and examine a large set of naming
norms including different types of images as well as a wider
range of models.

Representations in Computer Vision. The models used
by Gualdoni et al. (2023) and Günther et al. (2023) are object
classification models, trained to associate images to ground
truth labels, such as DOG or CHAIR. ResNet (He, Zhang,
Ren, & Sun, 2015) and BottomUp (Anderson et al., 2018)
are well-known examples; we use the latter here. To be suc-
cessful at the task, these models learn to encode the images
in vector representations, different for each class label. As a
result of this training regime, these models perform very well
on data that do not differ from the ones that they have seen in
the training phase.

In part to overcome this lack of generalization abilities,

multi-modal models have been proposed, with the goal of
learning perceptual properties from supervision contained in
both images and natural language (as found in textual data).
The most successful available Language and Vision model to
date is CLIP (Radford et al., 2021), which features both a
text encoder and an image encoder.3 Both encoders are trans-
formers, the state of the art architecture in both computational
linguistics and Computer Vision (Vaswani et al., 2023; Doso-
vitskiy et al., 2021). A key feature of CLIP is its training
regime: during training, the model has to match images with
descriptive captions (produced by annotators), thus learning
to associate a wide variety of visual concepts with the lan-
guage that is used to talk about them.

On the other side of the spectrum, self-supervised mod-
els have been proposed (Devlin, Chang, Lee, & Toutanova,
2019; Radford et al., 2019; Caron et al., 2021), with the idea
of leveraging the information contained in the training data
itself, without the need for annotations (e.g., manually pro-
vided object classes or captions). These models learn repre-
sentations for images by learning to reconstruct the original
image from several perturbations (e.g. from rotated, cropped,
or blurred versions). They are known to learn robust and gen-
eral information, although they typically perform worse for a
given task than a supervised system that has been trained for
that task. A representative model of this class is the one we
use here, the Vision Transformer (Dosovitskiy et al., 2021).

In our experiments, we use a representative example of
each type of model.

Method
Naming Norms
We use a representative set of naming norms for English,
jointly comprising four image types: black-and-white line
drawings, colored drawings, photorealistic isolated images
(with no background), and realistic photos with the object in
context. Table 1 contains descriptive statistics for the naming
norms that we test, and Figure 1 provides an example image
of each. Each set of norms provides the name that was pro-
duced by the most subjects for each image (henceforth, top
name).4

3The encoder is the part of the model that transforms the input
data into a vector representation.

4Some of them also provide the remaining names that were pro-
duced by participants (other than the top names), but this is not con-
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Table 1: Norms used in the experiments. “#imgs” and “#names” contain the number of provided images and top names,
respectively; “subj/img” indicates the number of subjects by which each image was named (for ManyNames, this is an average).

Image Type Naming Norms #imgs #names subj/img

line S&V (Snodgrass & Vanderwart, 1980) 260 260 42
IPNP free (Székely et al., 2004) 244 243 NA

colored
R&P (Rossion & Pourtois, 2004) 260 260 20
IMABASE (Bonin et al., 2020) 313 312 30
MultiPic (Duñabeitia et al., 2018) 750 693 100

photo BOSS (Brodeur et al. 2010, 2014) 1468 1194 39, 42
real. photo ManyNames (Silberer, Zarrieß, & Boleda, 2020) 25315 7970 31

Line drawings. The Snodgrass and Vanderwart (1980)
naming norms (henceforth, S&V) were the first to be cre-
ated, and they are still widely used as visual stimuli in Cog-
nitive Science. Snodgrass and Vanderwart defined the task as
well as the method to gather naming data and assess naming
agreement. Subjects were instructed to write the first name
that came to mind for each object. The International Picture-
Naming Project (Székely et al., 2004, IPNP) expanded on
the S&V norms by gathering data for 520 common objects
in seven languages. 176 of the 520 images were from the
S&V norms, and 244 are available as freeware for research
purposes. Here we use the IPNP freeware subset (so there is
no overlap with S&V), and the naming data for English.

Colored drawings. Rossion and Pourtois (2004, R&P)
added gray-level texture, surface details and color to the
black-and-white line drawings of Snodgrass and Vanderwart
and collected data from French-speaking subjects. The pic-
tures for the other two sets of naming norms for colored draw-
ings, IMABASE (Bonin et al., 2020) and MultiPic, were
created anew. While IMABASE and R&P collected French
data, they also provide English translations for the top name
of each image, and we use those. Compared to names directly
collected from English speakers, we expect only marginal dif-
ferences for the common objects depicted in these databases.
MultiPic provides 750 images with naming norms for six lan-
guages including British English, which is what we use.

Photorealistic isolated. The 1.5K images in the Bank
of Standard Stimuli project (Brodeur, Dionne-Dostie, Mon-
treuil, & Lepage, 2010; Brodeur, Guérard, & Bouras, 2014,
BOSS) are photos that were edited so as to have a white back-
ground by the creators of the dataset. They were selected to
be highly prototypical. Naming data was collected from both
French and English speakers; we use the English data.5

Photorealistic in context. ManyNames (Silberer, Zarrieß,
& Boleda, 2020; Silberer, Zarrieß, Westera, & Boleda, 2020,
ManyNames) is a large-scale dataset providing 31 names on
average for each of 25K objects in real-world images. It in-
cludes common objects from different domains (e.g. animals,
buildings, etc.). The images were retrieved from the Visu-

sistent across norms and we do not use these data here. They also
provide other data, such as naming agreement among subjects.

5We use the union of BOSS1 and BOSS2, two data collection
efforts within the project in which naming data were collected for
different images, and where each image was named by 39 and 42
subjects, respectively.

alGenome dataset (Krishna et al., 2017), and target objects
were highlighted in a red bounding box. ManyNames was
created to study naming in a naturalistic context. The objects
were not pre-selected to be prototypical or of high quality,
beyond general aspects such as having a minimal size. The
instructions were the same as in naming norms.

There is no image overlap in stimuli across these naming
norms except for the fact that the R&P colored drawings are
processed on the basis of S&V black-and-white line draw-
ings. All naming norms provide downloadable image files
except S&V. We retrieved the latter by taking screenshots of
their pdf file. To enable fair comparison across datasets, and
after a preliminary exploration of this setting, for all norms
except for ManyNames we used a white margin background
around the target object of size 1/4 of the target object. That
is, for an object that is e.g. 400×200 pixels in size, the image
size would become (100+400+100)×(50+200+50).

Models and Representations

As mentioned above, we use three models that are repre-
sentative of the three major types of models that are avail-
able nowadays: ViT (Caron et al., 2021, self-supervised),
Bottom-Up (Anderson et al., 2018, object classifier), and
CLIP (Radford et al., 2021, multi-modal). As we aim at test-
ing whether off-the-shelf, easily available models can be of
use for cognitive scientists, we do not do any further adap-
tation, or fine-tuning (Chen, Kornblith, Norouzi, & Hinton,
2020; Kornblith, Shlens, & Le, 2019), of the models.

To obtain visual representations for names from the mod-
els, we follow the methodology of Gualdoni et al. (2023) and
Günther et al. (2023): the visual representation of a name is
defined as the centroid (average) of the visual embeddings
(vector representations) of a set of exemplar images tagged
with that name in a given image dataset. For Bottom-Up, we
use the name representations made available by Gualdoni et
al. (2023), the rest we compute ourselves. For ViT, it’s the
embedding of the [CLS] token. Since CLIP maps two differ-
ent modalities (language and vision) to the same space, it af-
fords two ways of estimating name representations, one based
on visual data (images), and one on linguistic input (text).
We explore both types of representations. We extract visual
representations from the visual encoder (henceforth, CLIP-
V), and linguistic representations from the linguistic encoder
(henceforth, CLIP-L, details below).
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voc. #names repr. model section

VGMN 874 visual B-Up Analysis 1
VGMN 874 visual CLIP Analysis 1
VGMN 874 visual ViT Analysis 1

VG 2016 visual CLIP Analysis 2
VG 2016 linguistic CLIP Analysis 2
THINGS 1854 visual CLIP Analysis 2
THINGS 1823 linguistic CLIP Analysis 2

UNION 3231 linguistic (x6) CLIP Analysis 2

Table 2: Name spaces, with vocabulary label (“voc.”), size
(“#names”), type of representation (“repr.”), model (where B-
Up is Bottom-Up), and section where they are used.

Image Datasets for Space Construction
To build name representations, we sampled image exemplars
from two different image datasets, namely VisualGenome
(Krishna et al., 2017) and THINGS (Hebart et al., 2019).

VisualGenome contains over 108K images of natural
scenes where different objects were marked and given a de-
scription by human annotators. The ManyNames image in
Figure 1 is an example (images in ManyNames were sam-
pled from VisualGenome, and one object per image selected
for naming). We use the head noun of the description (pro-
vided by VisualGenome) as the object name. The objects in
VisualGenome bounding boxes are exemplars of their names,
but since they are part of realistic photos, they can be rel-
atively small in size, incomplete, or from an atypical view-
point. VisualGenome thus has the advantage of being realistic
and large, but the disadvantage of being noisy.

THINGS provides a set of 1854 object concepts with corre-
sponding exemplar images (12-35 depending on the concept).
The images were gathered through a semi-automatic method
involving web searches and ImageNet. Images were checked
for size, quality and naturalness of background, and cropped
so that they are square. THINGS is still largely naturalistic,
but curated and smaller than VisualGenome. 58 of the 1854
concepts correspond to polysemous or homonymous names
(27 names in total). For instance, there are two concepts cor-
responding to the name “bat” (for the animal and the sports
tool), each with its own set of image exemplars.

Name Spaces
We build 15 different name spaces (vector representations
for names obtained from model embeddings) for the analy-
sis. These spaces were obtained by varying the vocabulary
of names taken into account in the evaluation (VGMN, VG,
THINGS, UNION, explained below), the type of representa-
tion (visual or linguistic embeddings), and the computational
model used to obtain them (ViT, Bottom-Up, or CLIP). Ta-
ble 2 summarizes the different spaces that we worked with
and the section of the corresponding analyses.

VGMN and VG. We define two vocabularies based on Vi-
sualGenome. The first, VGMN, was defined in Gualdoni et
al. (2023) and is included for comparison purposes only. It

contains the 874 names that occurred as top names for im-
ages in ManyNames and had at least 30 exemplars in Visu-
alGenome. The second, VG, is a more comprehensive vocab-
ulary: it includes all the 2016 names in VisualGenome that
have at least 30 exemplar images meeting our quality crite-
ria (namely, having width and height no less than 10 pixels,
and a bounding box area no less than 1% of the original Vi-
sualGenome picture). We built three name spaces for each
of these vocabularies: one with ViT, the other two based on
CLIP but using either visual or linguistic representations (see
Analysis 2 below for details). The image exemplars that went
into name representations were taken from VisualGenome:
For each name, we used up to 200 images for prototype con-
struction (with random subsampling to 200 if needed), total-
ing 74,910 object exemplars from 48,041 images.6

THINGS. The vocabulary of the THINGS dataset con-
sists of 1,823 names and 1,854 concepts (some names are
homonyms; different sets of image exemplars for each con-
cept are associated to a given homonym). As with VG, we
obtained two visual spaces (with ViT and CLIP-V), and one
linguistic space with CLIP-L. The visual spaces contains sep-
arate name representations for each of the 1,854 THINGS
concepts. All the provided exemplars are used for prototype
computation. Instead, the linguistic space contains represen-
tations for the 1,823 names.7

UNION. Finally, the UNION vocabulary is the union of
the three vocabularies VGMN, MN, and THINGS (total:
3,231 names), which we use the experiments with linguistic
representations. Linguistic representations are not bounded
by the amount and type of images in any dataset, as they are
built based on textual input, which affords the use of a larger
vocabulary. Details about the spaces with the UNION vocab-
ulary will be given in Analysis 2 below.

Evaluation
We compare the different representations in terms of how
well they match the images in the naming norms with their
top name. Specifically, for the evaluation of a particular name
space on a particular set of norms, we 1) select the images in
the norms whose top name is included in the space; 2) feed
them to the ViT, Bottom-Up, or CLIP model to obtain their vi-
sual representation; and 3) compute the cosine between each
image embedding and each name embedding in the space. We
thus obtain a ranked vocabulary for each image, and we use
MRR (mean reciprocal rank, i.e., mean of the reciprocal of
the rank) of the gold name as the main metric.8 For fairness,

6Gualdoni et al. (2023) excluded from the space all object images
that appear in ManyNames, to avoid circularity in their evaluation,
which had different goals from ours. We did not exclude the Many-
Names images from the construction of the VG space because we
wanted to build as general a space as possible, for reuse in future
research. 775 (1%) of the object exemplars and 13,944 (29%) of the
images are included in ManyNames.

7For instance, BAT1 and BAT2 were merged into “bat”.
8Note that an MRR of 1 means that the gold label is always

ranked first; an MRR of 0.5 means that, on average, the gold la-
bel is ranked second; 0.33 third, and so on. We choose MRR instead

6043



Img Type Norms N ViT B-Up CLIP-V

line S&V 130 0.04 0.03 0.39
IPNP free 95 0.06 0.04 0.35

color
RP 130 0.18 0.18 0.44
IMABASE 130 0.10 0.10 0.48
MultiPic 261 0.09 0.14 0.42

photo BOSS 406 0.18 0.29 0.35
real. photo ManyNames 25K 0.18 0.40 0.29

average 0.12 0.17 0.39

Table 3: Mean Reciprocal Ranks for representations gener-
ated with the ViT, Bottom-up and CLIP-V models on the
VGMN data (higher is better). N: number of images of each
norm included for evaluation (all those whose top name is in
VGMN); average: macro-average (each dataset is one data-
point).

the models are compared on the same set of names (which
varies in each experiment).

Analysis 1: Visual vs. Multi-modal
Representations

The first analysis shows that, as expected, CLIP, which was
explicitly trained to align visual and linguistic information,
generalizes better to different kinds of stimuli in naming
norms than the Bottom-Up model and ViT.

As shown in Table 3, CLIP works much better than
Bottom-Up and ViT for all datasets except for ManyNames,
for which Bottom-Up works better. This is most probably due
to the fact that Bottom-Up was trained exactly on the same
kind of data as that contained in ManyNames (namely, im-
ages from VisualGenome). That being said, the performance
of CLIP is not terrible for this dataset (it obtains 0.29 MRR,
compared to 0.40 for Bottom-Up).

For the kind of norms used in Cognitive Science, Bottom-
Up works really badly but shows a gradient that makes sense:
from really low performance for line drawings (MRR 0.03-
0.04, near bottom) through low performance for colored
drawings (0.10-0.18) to reasonable performance for photos
(0.29).9 The same gradient is shown by ViT, with very low
performances on line drawings (MRR 0.04-0.06) and gen-
erally higher –and similar to Bottom-Up– performances on
colored pictures (0.09-0.18), scoring 0.18 on photos. Given
that ManyNames images were part of the Bottom-Up train-
ing set, making this dataset an easy testbed for Bottom-Up, it
is remarkable that the overall performances of Bottom-Up on
the other image sets are comparable to those of ViT, with the
exception of the BOSS dataset. That is, a costly supervised

of accuracy because of the differences in the size of the vocabu-
laries, which range from 874 for VGMN to 3,231 for UNION. For
completeness, accuracy is reported in the Appendix (see OSF repos-
itory). The overall patterns do not change.

9Qualitative analysis revealed that Bottom-Up tends to give uni-
form predictions for drawings: for line drawings, it often predicts
“power lines”, and for colored drawings, “parachute”.

training regime leads to better performances only on stimuli
that look much like the training dataset, without gain in gen-
eralization. On stimuli of different kinds, a model trained
without image labels can achieve the same result.

Overall, CLIP shows a much better and more stable be-
havior (range: 0.36-0.48). However, there is an intriguing
result: it doesn’t show the expected gradient (line < colored
drawings < photos), but performs best on colored drawings
(0.42-0.48) and worst on photos (0.36). We have no explana-
tion for this pattern at present. The average result obtained by
CLIP across datasets is 0.39, which means that the top name
of an object is ranked, on average, within the top 3 predic-
tions. While this is a notable performance, we next investi-
gate whether using linguistic representations leads to better
results.

Analysis 2: Visual vs. Linguistic
Representations

In our second analysis, we focus on the best model, CLIP, and
compare the performance of its visual and linguistic repre-
sentations. The visual representations (CLIP-V) are obtained
as in the first analysis. The linguistic representations are af-
forded by the textual encoder, CLIP-L, which works with tex-
tual inputs.

There are different ways of obtaining linguistic represen-
tations, depending on which input is given to CLIP-L. We
tested 8 textual kinds of input: the name (e.g., “penguin”),
adding a determiner (“some penguin”),10 specifying that it is
an image (“an image of some penguin”), and specialized tem-
plates for each type of stimulus (e.g. “a photo / colored draw-
ing / line drawing of some penguin”). Results on the UNION
vocabulary show that there are no major differences between
the different prompt templates (range: 0.50-0.56); and the
generic template “an image of some X” worked best.11 We
will use this template for the present analysis.

We evaluate the performance of the representations using
the VG and THINGS data.12 Recall that THINGS separates
concepts for homonymous and polysemous names such as
“bat”; we exclude them from the results for visual represen-
tations, and carry out a separate evaluation below.

The results, summarized in Table 4, show that linguistic
representations are clearly superior to visual representations
for all image types, by a large margin: for VG, CLIP-L ob-
tains on average 0.60 MRR, CLIP-V 0.39; for THINGS, the
results are 0.64/0.55, respectively. Remarkably, the results for
CLIP-L are quite good also in absolute terms, with an aver-
age of 0.60 and 0.64 for VG and THINGS, respectively. This
is especially so for the “traditional” psycholinguistic norms,
where CLIP-L obtains MRR scores between 0.53-0.76 (VG)

10We use “some” instead of “a/an” because our names include
mass nouns like “water” and plural nouns like “blinds”, for which
using “a” would be ungrammatical.

11We provide detailed results in the Appendix available in the
OSF repository.

12VG is from the same source as VGMN, and larger.
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VG THINGS
Image Type Norms N CLIP-V CLIP-L N CLIP-V CLIP-L

line S&V 168 0.41 0.68 230 0.47 0.64
IPNP free 146 0.34 0.53 184 0.48 0.58

color
R&P 168 0.47 0.76 227 0.66 0.75
IMABASE 189 0.42 0.72 244 0.67 0.78
MultiPic 406 0.39 0.61 460 0.60 0.65

photo BOSS 634 0.37 0.62 940 0.55 0.64
real. photo ManyN 25K 0.35 0.31 23K 0.40 0.42

average 0.39 0.60 0.55 0.64

Table 4: Mean Reciprocal Ranks for representations generated with CLIP-V and CLIP-L, evaluated on the VG and THINGS
data. Information as in Table 3.

and 0.58-0.78 (THINGS).13 As in Analysis 1, CLIP-L results
are worst for ManyNames (0.31 VG, 0.42 THINGS); in fact,
for ManyNames in the VG space the representations of CLIP-
V are superior to the linguistic ones (0.35). In both modali-
ties, we find the same intriguing pattern of results as in the
previous sections, with the best results obtained for colored
drawings.

Finally, we present a focused evaluation for ambigu-
ous (homonymous/polysemous) names in the THINGS data.
There are 63 images with ambiguous names in the norms;
we manually disambiguate the concept corresponding to each
image (assigning them to, e.g., BAT1 for animals and BAT2
for the sports tool). It could be expected that CLIP-V would
perform better on ambiguous names, due to its ability to dis-
tinguish between the two concepts associated to them, as it
has different visual prototpes for each (whereas CLIP-L only
has a single representation). Instead, CLIP-L still wins (MRR
0.55, vs. 0.51 of CLIP-V; there is, as expected, a drop in per-
formance for both models). This could be due to the fact that
the word representations (e.g., for “bat”) contain information
from the two senses, both linguistic and visual, but further
research should probe this hypothesis.

Discussion and Conclusion
In this paper, we have assessed the potential of visually in-
formed computational representations to model human nam-
ing behavior, in particular naming responses to visual stimuli.
Recall from above that, due to our focus on the use of off-the-
shelf models as is, we use three models that, while represen-
tative of their respective types, differ in other aspects that are
known to affect performance of deep learning models (such
as the amount of training data and the number of parameters).
Future research should assess the extent to which the differ-
ences in model performance found in this paper generalize.

We find, in line with results in language and vision
tasks (Radford et al., 2021), that the multi-modal model
CLIP greatly outperforms both the object classification model

13Note that the MRR scores suggest that results are overall bet-
ter when building name representations with THINGS images as
opposed to VG images. However, the results cannot be compared
directly because they are computed on different sets of stimuli from
the norms (compare the two columns “N” in the table).

Bottom-Up and the self-supervised model ViT, which were
trained in a uni-modal setting (with only images as input)
and a less cognitively rich task (object classification or im-
age reconstruction, as opposed to caption-image matching).
As expected, the self-supervised model ViT performs worst.
Self-supervised models are valuable for Cognitive Science
because they afford language-independent representations. It
is however encouraging that ViT performs better (though still
with low MRR values of around 0.18) for naming datasets us-
ing realistic pictures, as Cognitive Science has been steadily
moving towards this kind of stimulus.

The superiority of CLIP tentatively suggests that linguis-
tic information provides models with crucial clues as to what
is common to different objects that cannot be inferred based
purely on visual features. For instance, linguistic informa-
tion may help capture the fact that different types of coffee
makers, though looking different, have the same function.
Moreover, we find that using the linguistic encoder to ob-
tain name representations performs much better than using
an abstraction over representations obtained through the vi-
sual encoder.14 This is actually good news for applications
of these models in Cognitive Science, as linguistic represen-
tations are easy to obtain —a simple model query is enough
(visual representations do not scale up as easily). We consider
the absolute performance of CLIP-L to be very good: around
0.60-0.64 MRR, meaning that it tends to rank the most fre-
quently produced name for a given image between first (MRR
1) and second (MRR 0.5), in vocabularies that contain around
2000 names.

Overall, thus, our results suggest that current Computer Vi-
sion and Language and Vision models hold great promise for
psycholinguistic research on object naming and, possibly, for
other research in Cognitive Science involving visual stimuli.
Moreover, depending on the application, off-the-shelf models
can be used without further adaptation via e.g. fine-tuning.
This means that a much larger pool of cognitive scientists
can work with these representations than would be the case
if training or adapting a model was needed.

14Recall that using CLIP enables linguistic name representations
and visual image representations to be directly compared, because
they live in the same space.
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